1
|
Boufidis D, Garg R, Angelopoulos E, Cullen DK, Vitale F. Bio-inspired electronics: Soft, biohybrid, and "living" neural interfaces. Nat Commun 2025; 16:1861. [PMID: 39984447 PMCID: PMC11845577 DOI: 10.1038/s41467-025-57016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/04/2025] [Indexed: 02/23/2025] Open
Abstract
Neural interface technologies are increasingly evolving towards bio-inspired approaches to enhance integration and long-term functionality. Recent strategies merge soft materials with tissue engineering to realize biologically-active and/or cell-containing living layers at the tissue-device interface that enable seamless biointegration and novel cell-mediated therapeutic opportunities. This review maps the field of bio-inspired electronics and discusses key recent developments in tissue-like and regenerative bioelectronics, from soft biomaterials and surface-functionalized bioactive coatings to cell-containing 'biohybrid' and 'all-living' interfaces. We define and contextualize key terminology in this emerging field and highlight how biological and living components can bridge the gap to clinical translation.
Collapse
Affiliation(s)
- Dimitris Boufidis
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Raghav Garg
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eugenia Angelopoulos
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - D Kacy Cullen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA.
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA.
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
2
|
Villa J, Cury J, Kessler L, Tan X, Richter CP. Enhancing biocompatibility of the brain-machine interface: A review. Bioact Mater 2024; 42:531-549. [PMID: 39308547 PMCID: PMC11416625 DOI: 10.1016/j.bioactmat.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
In vivo implantation of microelectrodes opens the door to studying neural circuits and restoring damaged neural pathways through direct electrical stimulation and recording. Although some neuroprostheses have achieved clinical success, electrode material properties, inflammatory response, and glial scar formation at the electrode-tissue interfaces affect performance and sustainability. Those challenges can be addressed by improving some of the materials' mechanical, physical, chemical, and electrical properties. This paper reviews materials and designs of current microelectrodes and discusses perspectives to advance neuroprosthetics performance.
Collapse
Affiliation(s)
- Jordan Villa
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Joaquin Cury
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Lexie Kessler
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Xiaodong Tan
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
| | - Claus-Peter Richter
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Biomedical Engineering, Northwestern University, USA
| |
Collapse
|
3
|
Iqbal MH, Kerdjoudj H, Boulmedais F. Protein-based layer-by-layer films for biomedical applications. Chem Sci 2024; 15:9408-9437. [PMID: 38939139 PMCID: PMC11206333 DOI: 10.1039/d3sc06549a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/03/2024] [Indexed: 06/29/2024] Open
Abstract
The surface engineering of biomaterials is crucial for their successful (bio)integration by the body, i.e. the colonization by the tissue-specific cell, and the prevention of fibrosis and/or bacterial colonization. Performed at room temperature in an aqueous medium, the layer-by-layer (LbL) coating method is based on the alternating deposition of macromolecules. Versatile and simple, this method allows the functionalization of surfaces with proteins, which play a crucial role in several biological mechanisms. Possessing intrinsic properties (cell adhesion, antibacterial, degradable, etc.), protein-based LbL films represent a powerful tool to control bacterial and mammalian cell fate. In this article, after a general introduction to the LbL technique, we will focus on protein-based LbL films addressing different biomedical issues/domains, such as bacterial infection, blood contacting surfaces, mammalian cell adhesion, drug and gene delivery, and bone and neural tissue engineering. We do not consider biosensing applications or electrochemical aspects using specific proteins such as enzymes.
Collapse
Affiliation(s)
- Muhammad Haseeb Iqbal
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, Strasbourg Cedex 2 67034 France
| | | | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, Strasbourg Cedex 2 67034 France
| |
Collapse
|
4
|
Sturgill B, Hernandez-Reynoso AG, Druschel LN, Smith TJ, Boucher PE, Hoeferlin GF, Thai TTD, Jiang MS, Hess JL, Alam NN, Menendez DM, Duncan JL, Cogan SF, Pancrazio JJ, Capadona JR. Reactive Amine Functionalized Microelectrode Arrays Provide Short-Term Benefit but Long-Term Detriment to In Vivo Recording Performance. ACS APPLIED BIO MATERIALS 2024; 7:1052-1063. [PMID: 38290529 PMCID: PMC10880090 DOI: 10.1021/acsabm.3c01014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
Intracortical microelectrode arrays (MEAs) are used for recording neural signals. However, indwelling devices result in chronic neuroinflammation, which leads to decreased recording performance through degradation of the device and surrounding tissue. Coating the MEAs with bioactive molecules is being explored to mitigate neuroinflammation. Such approaches often require an intermediate functionalization step such as (3-aminopropyl)triethoxysilane (APTES), which serves as a linker. However, the standalone effect of this intermediate step has not been previously characterized. Here, we investigated the effect of coating MEAs with APTES by comparing APTES-coated to uncoated controls in vivo and ex vivo. First, we measured water contact angles between silicon uncoated and APTES-coated substrates to verify the hydrophilic characteristics of the APTES coating. Next, we implanted MEAs in the motor cortex (M1) of Sprague-Dawley rats with uncoated or APTES-coated devices. We assessed changes in the electrochemical impedance and neural recording performance over a chronic implantation period of 16 weeks. Additionally, histology and bulk gene expression were analyzed to understand further the reactive tissue changes arising from the coating. Results showed that APTES increased the hydrophilicity of the devices and decreased electrochemical impedance at 1 kHz. APTES coatings proved detrimental to the recording performance, as shown by a constant decay up to 16 weeks postimplantation. Bulk gene analysis showed differential changes in gene expression between groups that were inconclusive with regard to the long-term effect on neuronal tissue. Together, these results suggest that APTES coatings are ultimately detrimental to chronic neural recordings. Furthermore, interpretations of studies using APTES as a functionalization step should consider the potential consequences if the final functionalization step is incomplete.
Collapse
Affiliation(s)
- Brandon
S. Sturgill
- Department
of Bioengineering, The University of Texas
at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Ana G. Hernandez-Reynoso
- Department
of Bioengineering, The University of Texas
at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Lindsey N. Druschel
- Department
of Biomedical Engineering, Case Western
Reserve University. 10900 Euclid Ave, Cleveland, Ohio 44106, United States
- Advanced
Platform Technology Center, Louis Stokes Cleveland Veterans Affairs
Medical Center, Cleveland, Ohio 44106, United States
| | - Thomas J. Smith
- School
of Behavioral and BrainSciences, The University
of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Pierce E. Boucher
- Department
of Biomedical Engineering, Case Western
Reserve University. 10900 Euclid Ave, Cleveland, Ohio 44106, United States
- Advanced
Platform Technology Center, Louis Stokes Cleveland Veterans Affairs
Medical Center, Cleveland, Ohio 44106, United States
| | - George F. Hoeferlin
- Department
of Biomedical Engineering, Case Western
Reserve University. 10900 Euclid Ave, Cleveland, Ohio 44106, United States
- Advanced
Platform Technology Center, Louis Stokes Cleveland Veterans Affairs
Medical Center, Cleveland, Ohio 44106, United States
| | - Teresa Thuc Doan Thai
- Department
of Bioengineering, The University of Texas
at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Madison S. Jiang
- School
of Behavioral and BrainSciences, The University
of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Jordan L. Hess
- School
of Behavioral and BrainSciences, The University
of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Neeha N. Alam
- Department
of Bioengineering, The University of Texas
at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Dhariyat M. Menendez
- Department
of Biomedical Engineering, Case Western
Reserve University. 10900 Euclid Ave, Cleveland, Ohio 44106, United States
- Advanced
Platform Technology Center, Louis Stokes Cleveland Veterans Affairs
Medical Center, Cleveland, Ohio 44106, United States
| | - Jonathan L. Duncan
- Department
of Biomedical Engineering, Case Western
Reserve University. 10900 Euclid Ave, Cleveland, Ohio 44106, United States
- Advanced
Platform Technology Center, Louis Stokes Cleveland Veterans Affairs
Medical Center, Cleveland, Ohio 44106, United States
| | - Stuart F. Cogan
- Department
of Bioengineering, The University of Texas
at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Joseph J. Pancrazio
- Department
of Bioengineering, The University of Texas
at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Jeffrey R. Capadona
- Department
of Biomedical Engineering, Case Western
Reserve University. 10900 Euclid Ave, Cleveland, Ohio 44106, United States
- Advanced
Platform Technology Center, Louis Stokes Cleveland Veterans Affairs
Medical Center, Cleveland, Ohio 44106, United States
| |
Collapse
|
5
|
Hui Y, Yan Z, Yang H, Xu X, Yuan WE, Qian Y. Graphene Family Nanomaterials for Stem Cell Neurogenic Differentiation and Peripheral Nerve Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:4741-4759. [PMID: 36102324 DOI: 10.1021/acsabm.2c00663] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Stem cells play a critical role in peripheral nerve regeneration. Nerve scaffolds fabricated by specific materials can help induce the neurogenic differentiation of stem cells. Therefore, it is a potential strategy to enhance therapeutic efficiency. Graphene family nanomaterials are widely applied in repairing peripheral nerves. However, the mechanism underlying the pro-regeneration effects remains elusive. In this review, we first discuss the properties of graphene family nanomaterials, including monolayer and multilayer graphene, few-layer graphene, graphene oxide, reduced graphene oxide, and graphene quantum dots. We also introduce their applications in regulating stem cell differentiation. Then, we review the potential mechanisms of the neurogenic differentiation of stem cells facilitated by the materials. Finally, we discuss the existing challenges in this field to advance the development of nerve biomaterials.
Collapse
Affiliation(s)
- Yuxuan Hui
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| | - Hao Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| | - Xingxing Xu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| |
Collapse
|
6
|
Liang C, Liu Y, Lu W, Tian G, Zhao Q, Yang D, Sun J, Qi D. Strategies for interface issues and challenges of neural electrodes. NANOSCALE 2022; 14:3346-3366. [PMID: 35179152 DOI: 10.1039/d1nr07226a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neural electrodes, as a bridge for bidirectional communication between the body and external devices, are crucial means for detecting and controlling nerve activity. The electrodes play a vital role in monitoring the state of neural systems or influencing it to treat disease or restore functions. To achieve high-resolution, safe and long-term stable nerve recording and stimulation, a neural electrode with excellent electrochemical performance (e.g., impedance, charge storage capacity, charge injection limit), and good biocompatibility and stability is required. Here, the charge transfer process in the tissues, the electrode-tissue interfaces and the electrode materials are discussed respectively. Subsequently, the latest research methods and strategies for improving the electrochemical performance and biocompatibility of neural electrodes are reviewed. Finally, the challenges in the development of neural electrodes are proposed. It is expected that the development of neural electrodes will offer new opportunities for the evolution of neural prosthesis, bioelectronic medicine, brain science, and so on.
Collapse
Affiliation(s)
- Cuiyuan Liang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Yan Liu
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Weihong Lu
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Gongwei Tian
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Qinyi Zhao
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Dan Yang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Jing Sun
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Dianpeng Qi
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| |
Collapse
|
7
|
Sharafkhani N, Kouzani AZ, Adams SD, Long JM, Lissorgues G, Rousseau L, Orwa JO. Neural tissue-microelectrode interaction: Brain micromotion, electrical impedance, and flexible microelectrode insertion. J Neurosci Methods 2022; 365:109388. [PMID: 34678387 DOI: 10.1016/j.jneumeth.2021.109388] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 10/20/2022]
Abstract
Insertion of a microelectrode into the brain to record/stimulate neurons damages neural tissue and blood vessels and initiates the brain's wound healing response. Due to the large difference between the stiffness of neural tissue and microelectrode, brain micromotion also leads to neural tissue damage and associated local immune response. Over time, following implantation, the brain's response to the tissue damage can result in microelectrode failure. Reducing the microelectrode's cross-sectional dimensions to single-digit microns or using soft materials with elastic modulus close to that of the neural tissue are effective methods to alleviate the neural tissue damage and enhance microelectrode longevity. However, the increase in electrical impedance of the microelectrode caused by reducing the microelectrode contact site's dimensions can decrease the signal-to-noise ratio. Most importantly, the reduced dimensions also lead to a reduction in the critical buckling force, which increases the microelectrode's propensity to buckling during insertion. After discussing brain micromotion, the main source of neural tissue damage, surface modification of the microelectrode contact site is reviewed as a key method for addressing the increase in electrical impedance issue. The review then focuses on recent approaches to aiding insertion of flexible microelectrodes into the brain, including bending stiffness modification, effective length reduction, and application of a magnetic field to pull the electrode. An understanding of the advantages and drawbacks of the developed strategies offers a guide for dealing with the buckling phenomenon during implantation.
Collapse
Affiliation(s)
- Naser Sharafkhani
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia.
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia
| | - Scott D Adams
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia
| | - John M Long
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia
| | | | | | - Julius O Orwa
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia.
| |
Collapse
|
8
|
Kim D, Park D, Kim TH, Chung JJ, Jung Y, Kim SH. Substance P/Heparin-Conjugated PLCL Mitigate Acute Gliosis on Neural Implants and Improve Neuronal Regeneration via Recruitment of Neural Stem Cells. Adv Healthc Mater 2021; 10:e2100107. [PMID: 34227258 DOI: 10.1002/adhm.202100107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/03/2021] [Indexed: 12/15/2022]
Abstract
The inflammatory host tissue response, characterized by gliosis and neuronal death at the neural interface, limits signal transmission and longevity of the neural probe. Substance P induces an anti-inflammatory response and neuronal regeneration and recruits endogenous stem cells. Heparin prevents nonspecific protein adsorption, suppresses the inflammatory response, and is beneficial to neuronal behavior. Poly(l-lactide-co-ε-caprolactone) (PLCL) is a soft and flexible polymer, and PLCL covalently conjugated with biomolecules has been widely used in tissue engineering. Coatings of heparin-conjugated PLCL (Hep-PLCL), substance P-conjugated PLCL (SP-PLCL), and heparin/substance P-conjugated PLCL (Hep/SP-PLCL) reduced the adhesion of astrocytes and fibroblasts and improved neuronal adhesion and neurite development compared to bare glass. The effects of these coatings are evaluated using immunohistochemistry analysis after implantation of coated stainless steel probes in rat brain for 1 week. In particular, Hep/SP-PLCL coating reduced the activation of microglia and astrocytes, the neuronal degeneration caused by inflammation, and indicated a potential for neuronal regeneration at the tissue-device interface. Suppression of the acute host tissue response by coating Hep/SP-PLCL could lead to improved functionality of the neural prosthesis.
Collapse
Affiliation(s)
- Donghak Kim
- KU‐KIST Graduate School of Converging Science and Technology Korea University 145 Anam‐ro, Seongbuk‐gu Seoul 02841 Republic of Korea
- Biomaterials Research Center Korea Institute of Science and Technology (KIST) 5, Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul 02792 Republic of Korea
| | - DoYeun Park
- Biomaterials Research Center Korea Institute of Science and Technology (KIST) 5, Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul 02792 Republic of Korea
| | - Tae Hee Kim
- Biomaterials Research Center Korea Institute of Science and Technology (KIST) 5, Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul 02792 Republic of Korea
| | - Justin J. Chung
- Biomaterials Research Center Korea Institute of Science and Technology (KIST) 5, Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul 02792 Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center Korea Institute of Science and Technology (KIST) 5, Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul 02792 Republic of Korea
| | - Soo Hyun Kim
- KU‐KIST Graduate School of Converging Science and Technology Korea University 145 Anam‐ro, Seongbuk‐gu Seoul 02841 Republic of Korea
- Biomaterials Research Center Korea Institute of Science and Technology (KIST) 5, Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul 02792 Republic of Korea
| |
Collapse
|
9
|
Yang R, Yang S, Li K, Luo Z, Xian B, Tang J, Ye M, Lu S, Zhang H, Ge J. Carbon Nanotube Polymer Scaffolds as a Conductive Alternative for the Construction of Retinal Sheet Tissue. ACS Chem Neurosci 2021; 12:3167-3175. [PMID: 34375091 DOI: 10.1021/acschemneuro.1c00242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
With the great success of graphene in the biomedical field, carbon nanotubes have attracted increasing attention for different applications in ophthalmology. Here, we report a novel retinal sheet composed of carbon nanotubes (CNTs) and poly(lactic-co-glycolic acid) (PLGA) that can enhance retinal cell therapy. By tuning our CNTs to regulate the mechanical characteristics of retina sheets, we were able to improve the in vitro viability of retinal ganglion cells derived from human-induced pluripotent stem cells incorporated into CNTs. Engrafted retinal ganglion cells displayed signs of regenerating processes along the optic nerve. Compared with PLGA scaffolds, CNT-PLGA retinal sheet tissue has excellent electrical conductivity, biocompatibility, and biodegradation. This new biomaterial offers new insight into retinal injury, repair, and regeneration.
Collapse
Affiliation(s)
- Runcai Yang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Sijing Yang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou, Hangzhou, Zhejiang 310000, China
| | - Kaijing Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Ziming Luo
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Bikun Xian
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Jiaqi Tang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Meifang Ye
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Shoutao Lu
- National United Engineering Laboratory for Biomedical Material Modification,
Branden Industrial Park, Dezhou, Shandong 251100, China
| | - Haijun Zhang
- National United Engineering Laboratory for Biomedical Material Modification,
Branden Industrial Park, Dezhou, Shandong 251100, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| |
Collapse
|
10
|
vander Straeten A, Lefèvre D, Demoustier-Champagne S, Dupont-Gillain C. Protein-based polyelectrolyte multilayers. Adv Colloid Interface Sci 2020; 280:102161. [PMID: 32416541 DOI: 10.1016/j.cis.2020.102161] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
The immobilization of proteins to impart specific functions to surfaces is topical for chemical engineering, healthcare and diagnosis. Layer-by-Layer (LbL) self-assembly is one of the most used method to immobilize macromolecules on surfaces. It consists in the alternate adsorption of oppositely charged species, resulting in the formation of a multilayer. This method in principle allows any charged object to be immobilized on any surface, from aqueous solutions. However, when it comes to proteins, the promises of versatility, simplicity and universality that the LbL approach holds are unmet due to the heterogeneity of protein properties. In this review, the literature is analyzed to make a generic approach emerge, with a view to facilitate the LbL assembly of proteins with polyelectrolytes (PEs). In particular, this review aims at guiding the choice of the PE and the building conditions that lead to the successful growth of protein-based multilayered self-assemblies.
Collapse
|
11
|
Asgari V, Landarani-Isfahani A, Salehi H, Amirpour N, Hashemibeni B, Rezaei S, Bahramian H. The Story of Nanoparticles in Differentiation of Stem Cells into Neural Cells. Neurochem Res 2019; 44:2695-2707. [DOI: 10.1007/s11064-019-02900-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
|
12
|
Adewole DO, Serruya MD, Wolf JA, Cullen DK. Bioactive Neuroelectronic Interfaces. Front Neurosci 2019; 13:269. [PMID: 30983957 PMCID: PMC6449725 DOI: 10.3389/fnins.2019.00269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
Within the neural engineering field, next-generation implantable neuroelectronic interfaces are being developed using biologically-inspired and/or biologically-derived materials to improve upon the stability and functional lifetime of current interfaces. These technologies use biomaterials, bioactive molecules, living cells, or some combination of these, to promote host neuronal survival, reduce the foreign body response, and improve chronic device-tissue integration. This article provides a general overview of the different strategies, milestones, and evolution of bioactive neural interfaces including electrode material properties, biological coatings, and "decoration" with living cells. Another such biohybrid approach developed in our lab uses preformed implantable micro-tissue featuring long-projecting axonal tracts encased within carrier biomaterial micro-columns. These so-called "living electrodes" have been engineered with carefully tailored material, mechanical, and biological properties to enable natural, synaptic based modulation of specific host circuitry while ultimately being under computer control. This article provides an overview of these living electrodes, including design and fabrication, performance attributes, as well as findings to date characterizing in vitro and in vivo functionality.
Collapse
Affiliation(s)
- Dayo O. Adewole
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Mijail D. Serruya
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - John A. Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| |
Collapse
|
13
|
Landry MJ, Rollet FG, Kennedy TE, Barrett CJ. Layers and Multilayers of Self-Assembled Polymers: Tunable Engineered Extracellular Matrix Coatings for Neural Cell Growth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8709-8730. [PMID: 29481757 DOI: 10.1021/acs.langmuir.7b04108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Growing primary cells and tissue in long-term cultures, such as primary neural cell culture, presents many challenges. A critical component of any environment that supports neural cell growth in vivo is an appropriate 2-D surface or 3-D scaffold, typically in the form of a thin polymer layer that coats an underlying plastic or glass substrate and aims to mimic critical aspects of the extracellular matrix. A fundamental challenge to mimicking a hydrophilic, soft natural cell environment is that materials with these properties are typically fragile and are difficult to adhere to and stabilize on an underlying plastic or glass cell culture substrate. In this review, we highlight the current state of the art and overview recent developments of new artificial extracellular matrix (ECM) surfaces for in vitro neural cell culture. Notably, these materials aim to strike a balance between being hydrophilic and soft while also being thick, stable, robust, and bound well to the underlying surface to provide an effective surface to support long-term cell growth. We focus on improved surface and scaffold coating systems that can mimic the natural physicochemical properties that enhance neuronal survival and growth, applied as soft hydrophilic polymer coatings for both in vitro cell culture and for implantable neural probes and 3-D matrixes that aim to enhance stability and longevity to promote neural biocompatibility in vivo. With respect to future developments, we outline four emerging principles that serve to guide the development of polymer assemblies that function well as artificial ECMs: (a) design inspired by biological systems and (b) the employment of principles of aqueous soft bonding and self-assembly to achieve (c) a high-water-content gel-like coating that is stable over time in a biological environment and possesses (d) a low modulus to more closely mimic soft, compliant real biological tissue. We then highlight two emerging classes of thick material coatings that have successfully captured these guiding principles: layer-by-layer deposited water-soluble polymers (LbL) and silk fibroin (SF) materials. Both materials can be deposited from aqueous solution yet transition to a water-insoluble coating for long-term stability while retaining a softness and water content similar to those of biological materials. These materials hold great promise as next-generation biocompatible coatings for tissue engineers and for chemists and biologists within the biomedical field.
Collapse
|
14
|
Jin S, Gu H, Chen X, Liu X, Zhan W, Wei T, Sun X, Ren C, Chen H. A facile method to prepare a versatile surface coating with fibrinolytic activity, vascular cell selectivity and antibacterial properties. Colloids Surf B Biointerfaces 2018; 167:28-35. [PMID: 29625420 DOI: 10.1016/j.colsurfb.2018.03.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/27/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022]
Abstract
Clot and thrombus formation on surfaces that come into contact with blood is still the most serious problem for blood contacting devices. Despite many years of continuous efforts in developing hemocompatible materials, it is still of great interest to develop multifunctional materials to enable vascular cell selectivity (to favor rapid endothelialization while inhibiting smooth muscle cell proliferation) and improve hemocompatibility. In addition, biomaterial-associated infections also cause the failure of biomedical implants and devices. However, it remains a challenging task to design materials that are multifunctional, since one of their functions will usually be compromised by the introduction of another function. In the present work, the gold substrate was first layer-by-layer (LbL) deposited with a multilayered polyelectrolyte film containing chitosan (positively charged) and a copolymer of sodium 4-vinylbenzenesulfonate (SS) and the "guest" adamantane monomer 1-adamantan-1-ylmethyl methacrylate (P(SS-co-Ada), negatively charged) via electro-static interactions, referred to as Au-LbL. The chitosan and P(SS-co-Ada) were intended to provide, respectively, resistance to bacteria and heparin-like properties. Then, "host" β-cyclodextrin derivatives bearing seven lysine ligands (CD-L) were immobilized on the Au-LbL surface by host-guest interactions between adamantane residues and CD-L, referred to as Au-LbL/CD-L. Finally, a versatile surface coating with fibrinolytic activity (lysis of nascent clots), vascular cell selectivity and antibacterial properties was developed.
Collapse
Affiliation(s)
- Sheng Jin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Hao Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Xianshuang Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China.
| | - Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Xuebo Sun
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, PR China.
| | - Chuanlu Ren
- Department of Lab., No. 100 Hospital, CPLA, 4 Canglangting Street, Suzhou 215007, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| |
Collapse
|
15
|
Frey L, Bandaru P, Zhang YS, O’Kelly K, Khademhosseini A, Shin SR. A Dual-layered Microfluidic System for Long-term Controlled In Situ Delivery of Multiple Anti-inflammatory Factors for Chronic Neural Applications. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1702009. [PMID: 32774196 PMCID: PMC7413620 DOI: 10.1002/adfm.201702009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We report the development of a microfluidic system capable of repeated infusions of anti-inflammatory factors post-implantation for use as a coating for neural probes. This system consists of a microchannel in a thin gelatin methacryloyl (GelMA)-polyethylene glycol (PEG) composite hydrogel surrounded by a porous polydimethylsiloxane (PDMS) membrane, where the hydrogel can be dried to increase the stiffness for easy insertion. Reswelling allowed us to perfuse interleukin (IL)-4 and dexamethasone (DEX) as anti-inflammatory factors through the channel with minimal burst release and significant amounts of IL-4 were observed to release for up to 96 hr post-infusion. Repeated injections of IL-4 increased the ratio of prohealing M2 versus proinflammatory M1 phenotypes of macrophages encapsulated in the hydrogel by six fold compared with a single injection, over a 2-week period. These repeated infusions also significantly downregulated the expression of inflammatory markers tumor necrosis factor (TNF)-α and IL-6 in astrocytes encapsulated in hydrogel. To demonstrate the system as a coating of neural probe for in vivo applications, we further fabricated a prototype device, where a thin dual-layered microfluidic system was integrated onto a metal probe. Such a drug delivery system could help reduce the formation of a glial scar around neural probes.
Collapse
Affiliation(s)
- Laura Frey
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Trinity Centre of Bioengineering, Trinity College Dublin, Dublin 2, Ireland
| | - Praveen Bandaru
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Kevin O’Kelly
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Trinity Centre of Bioengineering, Trinity College Dublin, Dublin 2, Ireland
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
16
|
Righi M, Puleo GL, Tonazzini I, Giudetti G, Cecchini M, Micera S. Peptide-based coatings for flexible implantable neural interfaces. Sci Rep 2018; 8:502. [PMID: 29323135 PMCID: PMC5765121 DOI: 10.1038/s41598-017-17877-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 11/29/2017] [Indexed: 11/23/2022] Open
Abstract
In the last decade, the use of flexible biosensors for neuroprosthetic and translational applications has widely increased. Among them, the polyimide (PI)-based thin-film electrodes got a large popularity. However, the usability of these devices is still hampered by a non-optimal tissue-device interface that usually compromises the long-term quality of neural signals. Advanced strategies able to improve the surface properties of these devices have been developed in the recent past. Unfortunately, most of them are not easy to be developed and combined with micro-fabrication processes, and require long-term efforts to be testable with human subjects. Here we show the results of the design and in vitro testing of an easy-to-implement and potentially interesting coating approach for thin-film electrodes. In particular, two biocompatible coatings were obtained via covalent conjugation of a laminin-derived peptide, CAS-IKVAV-S (IKV), with polyimide sheets that we previously functionalized with vinyl- and amino- groups (PI_v and PI_a respectively). Both the engineered coatings (PI_v+IKV and PI_a+IKV) showed morphological and chemical properties able to support neuronal adhesion, neurite sprouting, and peripheral glial cell viability while reducing the fibroblasts contamination of the substrate. In particular, PI_v+IKV showed promising results that encourage further in vivo investigation and pave the way for a new generation of peptide-coated thin-film electrodes.
Collapse
Affiliation(s)
- Martina Righi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera (PI), Italy.
| | - Gian Luigi Puleo
- Istituto Italiano di Tecnologia, Center of Micro-BioRobotics@SSSA, Viale Rinaldo Piaggio 34, 56025, Pontedera (PI), Italy
| | - Ilaria Tonazzini
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR & Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Guido Giudetti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera (PI), Italy
| | - Marco Cecchini
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR & Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera (PI), Italy. .,Bertarelli Foundation Chair in NeuroEngineering, Center for Neuroprosthetics and Institute of Bioengineering (IBI)-School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
17
|
Li B, Agarwal V, Ho D, Vede JP, Iyer KS. Systematic assessment of surface functionality on nanoscale patterns for topographic contact guidance of cells. NEW J CHEM 2018. [DOI: 10.1039/c7nj04914e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability of surface topography to influence cellular response has been widely accepted, leading the way towards the development of potential neural prosthetics.
Collapse
Affiliation(s)
- Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
- Biomedical Materials and Engineering Research Center of Hubei Province
| | - Vipul Agarwal
- School of Molecular Sciences
- The University of Western Australia
- Crawley WA 6009
- Australia
| | - Dominic Ho
- School of Molecular Sciences
- The University of Western Australia
- Crawley WA 6009
- Australia
| | | | - K. Swaminathan Iyer
- School of Molecular Sciences
- The University of Western Australia
- Crawley WA 6009
- Australia
| |
Collapse
|
18
|
Kim E, Kim JY, Choi H. An SU-8-based microprobe with a nanostructured surface enhances neuronal cell attachment and growth. MICRO AND NANO SYSTEMS LETTERS 2017. [DOI: 10.1186/s40486-017-0062-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Affiliation(s)
- Eduardo Fernández
- Bioengineering Institute; Miguel Hernández University of Elche and CIBER BBN; Elche 03202 Spain
| | - Pablo Botella
- Instituto de Tecnología Química; Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas; Valencia 46022 Spain
| |
Collapse
|
20
|
Morin EA, He W. In vitro
study of central nervous system foreign body response towards hydrogel particle modified planar substrate. J Biomed Mater Res A 2017; 105:3242-3250. [DOI: 10.1002/jbm.a.36180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/30/2017] [Accepted: 08/01/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Emily A. Morin
- Department of Mechanical, Aerospace, and Biomedical EngineeringUniversity of TennesseeKnoxville Tennessee37996
| | - Wei He
- Department of Mechanical, Aerospace, and Biomedical EngineeringUniversity of TennesseeKnoxville Tennessee37996
- Department of Materials Science and EngineeringUniversity of TennesseeKnoxville Tennessee37996
- Department of Polymer Science and EngineeringDalian University of TechnologyDalian Liaoning116023 China
| |
Collapse
|
21
|
Hernandez-Montelongo J, Lucchesi E, Nascimento V, França C, Gonzalez I, Macedo W, Machado D, Lancellotti M, Moraes A, Beppu M, Cotta M. Antibacterial and non-cytotoxic ultra-thin polyethylenimine film. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:718-724. [DOI: 10.1016/j.msec.2016.10.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/28/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
|
22
|
Wurth S, Capogrosso M, Raspopovic S, Gandar J, Federici G, Kinany N, Cutrone A, Piersigilli A, Pavlova N, Guiet R, Taverni G, Rigosa J, Shkorbatova P, Navarro X, Barraud Q, Courtine G, Micera S. Long-term usability and bio-integration of polyimide-based intra-neural stimulating electrodes. Biomaterials 2017; 122:114-129. [PMID: 28110171 DOI: 10.1016/j.biomaterials.2017.01.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/21/2016] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
Abstract
Stimulation of peripheral nerves has transiently restored lost sensation and has the potential to alleviate motor deficits. However, incomplete characterization of the long-term usability and bio-integration of intra-neural implants has restricted their use for clinical applications. Here, we conducted a longitudinal assessment of the selectivity, stability, functionality, and biocompatibility of polyimide-based intra-neural implants that were inserted in the sciatic nerve of twenty-three healthy adult rats for up to six months. We found that the stimulation threshold and impedance of the electrodes increased moderately during the first four weeks after implantation, and then remained stable over the following five months. The time course of these adaptations correlated with the progressive development of a fibrotic capsule around the implants. The selectivity of the electrodes enabled the preferential recruitment of extensor and flexor muscles of the ankle. Despite the foreign body reaction, this selectivity remained stable over time. These functional properties supported the development of control algorithms that modulated the forces produced by ankle extensor and flexor muscles with high precision. The comprehensive characterization of the implant encapsulation revealed hyper-cellularity, increased microvascular density, Wallerian degeneration, and infiltration of macrophages within the endoneurial space early after implantation. Over time, the amount of macrophages markedly decreased, and a layer of multinucleated giant cells surrounded by a capsule of fibrotic tissue developed around the implant, causing an enlargement of the diameter of the nerve. However, the density of nerve fibers above and below the inserted implant remained unaffected. Upon removal of the implant, we did not detect alteration of skilled leg movements and only observed mild tissue reaction. Our study characterized the interplay between the development of foreign body responses and changes in the electrical properties of actively used intra-neural electrodes, highlighting functional stability of polyimide-based implants over more than six months. These results are essential for refining and validating these implants and open a realistic pathway for long-term clinical applications in humans.
Collapse
Affiliation(s)
- S Wurth
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - M Capogrosso
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - S Raspopovic
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - J Gandar
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - G Federici
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - N Kinany
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - A Cutrone
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - A Piersigilli
- Laboratory Animals Pathology Unit, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - N Pavlova
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Pavlov Institute of Physiology, St Petersbourg, Russia
| | - R Guiet
- Bioimaging and Optics Platform, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - G Taverni
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - J Rigosa
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; SAMBA Lab, International School for Advanced Studies, Trieste, Italy
| | - P Shkorbatova
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Pavlov Institute of Physiology, St Petersbourg, Russia
| | - X Navarro
- Institute of Neurosciences, Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, and CIBERNED, Bellaterra, Spain
| | - Q Barraud
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - G Courtine
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - S Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
23
|
Dayem AA, Choi HY, Yang GM, Kim K, Saha SK, Kim JH, Cho SG. The potential of nanoparticles in stem cell differentiation and further therapeutic applications. Biotechnol J 2016; 11:1550-1560. [PMID: 27797150 DOI: 10.1002/biot.201600453] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/29/2016] [Accepted: 10/07/2016] [Indexed: 12/22/2022]
Abstract
Tissue regeneration could offer therapeutic advantages for individuals experiencing organ or tissue damage. Recently, advances in nanotechnology have provided various nanomaterials, with a wide range of applications, for modulating stem cell behavior and for further therapeutic applications in tissue regeneration. Defects in cell proliferation and differentiation, a low mechanical strength of scaffolds, and inefficient production of factors that are essential for stem cell differentiation are the current challenges in tissue regeneration. This review provides a brief explanation about the link between nanotechnology and tissue engineering, highlighting the current literature about the interaction between nanoparticles (NPs) and stem cells, the promotional effect of NPs on stem cell differentiation into various lineages, and their possible therapeutic applications. We also tried to describe the mechanism through which NPs regulate the spatial-temporal release and kinetics of vital growth and differentiation factors, enhance stem cell differentiation, and improve culture conditions for in vivo tissue regeneration. The field of nanotechnology is promising and provides novel nanomaterials and methods with valuable clinical applications in the regenerative medicine. Understanding the mechanism, as well as the toxic effects of NPs in stem cell biology will undoubtedly provide valuable insight into their clinical application in the regenerative medicine.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Hye Yeon Choi
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Gwang-Mo Yang
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Subbroto Kumar Saha
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Jin-Hoi Kim
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul, Korea
| |
Collapse
|
24
|
Capeletti LB, Cardoso MB, Dos Santos JHZ, He W. Hybrid Thin Film Organosilica Sol-Gel Coatings To Support Neuronal Growth and Limit Astrocyte Growth. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27553-27563. [PMID: 27715001 DOI: 10.1021/acsami.6b09393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Thin films of silica prepared by a sol-gel process are becoming a feasible coating option for surface modification of implantable neural sensors without imposing adverse effects on the devices' electrical properties. In order to advance the application of such silica-based coatings in the context of neural interfacing, the characteristics of silica sol-gel are further tailored to gain active control of interactions between cells and the coating materials. By incorporating various readily available organotrialkoxysilanes carrying distinct organic functional groups during the sol-gel process, a library of hybrid organosilica coatings is developed and investigated. In vitro neural cultures using PC12 cells and primary cortical neurons both reveal that, among these different types of hybrid organosilica, the introduction of aminopropyl groups drastically transforms the silica into robust neural permissive substrate, supporting neuron adhesion and neurite outgrowth. Moreover, when this organosilica is cultured with astrocytes, a key type of glial cells responsible for glial scar response toward neural implants, such cell growth promoting effect is not observed. These findings highlight the potential of organo-group-bearing silica sol-gel to function as advanced coating materials to selectively modulate cell response and promote neural integration with implantable sensing devices.
Collapse
Affiliation(s)
- Larissa Brentano Capeletti
- LNLS - Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13083-970 Campinas, SP, Brazil
- Chemistry Institute, Universidade Federal do Rio Grande do Sul , CEP 91501-970, Porto Alegre, RS, Brazil
| | - Mateus Borba Cardoso
- LNLS - Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13083-970 Campinas, SP, Brazil
| | | | | |
Collapse
|
25
|
Altuntas S, Buyukserin F, Haider A, Altinok B, Biyikli N, Aslim B. Protein-releasing conductive anodized alumina membranes for nerve-interface materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:590-598. [DOI: 10.1016/j.msec.2016.05.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/20/2016] [Accepted: 05/18/2016] [Indexed: 12/26/2022]
|
26
|
Silva JM, Reis RL, Mano JF. Biomimetic Extracellular Environment Based on Natural Origin Polyelectrolyte Multilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4308-42. [PMID: 27435905 DOI: 10.1002/smll.201601355] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/15/2016] [Indexed: 05/23/2023]
Abstract
Surface modification of biomaterials is a well-known approach to enable an adequate biointerface between the implant and the surrounding tissue, dictating the initial acceptance or rejection of the implantable device. Since its discovery in early 1990s layer-by-layer (LbL) approaches have become a popular and attractive technique to functionalize the biomaterials surface and also engineering various types of objects such as capsules, hollow tubes, and freestanding membranes in a controllable and versatile manner. Such versatility enables the incorporation of different nanostructured building blocks, including natural biopolymers, which appear as promising biomimetic multilayered systems due to their similarity to human tissues. In this review, the potential of natural origin polymer-based multilayers is highlighted in hopes of a better understanding of the mechanisms behind its use as building blocks of LbL assembly. A deep overview on the recent progresses achieved in the design, fabrication, and applications of natural origin multilayered films is provided. Such films may lead to novel biomimetic approaches for various biomedical applications, such as tissue engineering, regenerative medicine, implantable devices, cell-based biosensors, diagnostic systems, and basic cell biology.
Collapse
Affiliation(s)
- Joana M Silva
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Rui L Reis
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - João F Mano
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| |
Collapse
|
27
|
Hernandez-Montelongo J, Lucchesi E, Gonzalez I, Macedo W, Nascimento V, Moraes A, Beppu M, Cotta M. Hyaluronan/chitosan nanofilms assembled layer-by-layer and their antibacterial effect: A study using Staphylococcus aureus and Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 2016; 141:499-506. [DOI: 10.1016/j.colsurfb.2016.02.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/01/2016] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
|
28
|
Thompson CH, Zoratti MJ, Langhals NB, Purcell EK. Regenerative Electrode Interfaces for Neural Prostheses. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:125-35. [DOI: 10.1089/ten.teb.2015.0279] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Cort H. Thompson
- Department of Electrical and Computer Engineering, Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Marissa J. Zoratti
- Department of Electrical and Computer Engineering, Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Nicholas B. Langhals
- Department of Electrical and Computer Engineering, Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Erin K. Purcell
- Department of Electrical and Computer Engineering, Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
29
|
Gilmour AD, Woolley AJ, Poole-Warren LA, Thomson CE, Green RA. A critical review of cell culture strategies for modelling intracortical brain implant material reactions. Biomaterials 2016; 91:23-43. [PMID: 26994876 DOI: 10.1016/j.biomaterials.2016.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 02/07/2023]
Abstract
The capacity to predict in vivo responses to medical devices in humans currently relies greatly on implantation in animal models. Researchers have been striving to develop in vitro techniques that can overcome the limitations associated with in vivo approaches. This review focuses on a critical analysis of the major in vitro strategies being utilized in laboratories around the world to improve understanding of the biological performance of intracortical, brain-implanted microdevices. Of particular interest to the current review are in vitro models for studying cell responses to penetrating intracortical devices and their materials, such as electrode arrays used for brain computer interface (BCI) and deep brain stimulation electrode probes implanted through the cortex. A background on the neural interface challenge is presented, followed by discussion of relevant in vitro culture strategies and their advantages and disadvantages. Future development of 2D culture models that exhibit developmental changes capable of mimicking normal, postnatal development will form the basis for more complex accurate predictive models in the future. Although not within the scope of this review, innovations in 3D scaffold technologies and microfluidic constructs will further improve the utility of in vitro approaches.
Collapse
Affiliation(s)
- A D Gilmour
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - A J Woolley
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; Western Sydney University, Sydney, NSW, Australia
| | - L A Poole-Warren
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - C E Thomson
- Department of Veterinary Medicine, University of Alaska, Fairbanks, AK 99775, USA
| | - R A Green
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
30
|
Morin EA, Tang S, Rogers KL, He W. Facile Use of Cationic Hydrogel Particles for Surface Modification of Planar Substrates Toward Multifunctional Neural Permissive Surfaces: An in Vitro Investigation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5737-5745. [PMID: 26881298 DOI: 10.1021/acsami.6b00929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Synthetic materials such as silicon have been commonly used for neural interfacing applications but are intrinsically noninteractive with neurons. Here, a facile approach has been developed to integrate both chemical and topographical cues to impart neural permissiveness for such materials. The approach simply exploits the basic phenomenon of electrostatically driven adsorption of colloidal particles onto a solid material and applies it to a cationic hydrogel particle system that we have developed recently based on "click" reaction of epoxide and amine. The particle adsorption process can be tuned by varying the adsorption time and the concentration of the original colloidal suspension, both of which directly control the surface densities of the adsorbed hydrogel particles. Using the PC12 cell line and primary cortical neurons derived from chick embryo, we demonstrate that the particle-adsorbed surface readily supports robust cell adhesion and differentiation. Although the extent of neural permissiveness exhibited by such particle-adsorbed surface was comparable to the cationic polyethylenimine-coated control surface, the adsorbed hydrogel particles offer a unique reservoir function to the modified surface that is unparalleled by the control. The successful loading of hydrophobic dye of nile red to the surface adsorbed hydrogel particles indicates that the modified surface not only provides physical support of neurons, but also can be explored in the future to exert localized therapeutic actions favorable for neural interfacing.
Collapse
Affiliation(s)
- Emily A Morin
- Department of Mechanical, Aerospace, and Biomedical Engineering and ‡Department of Materials Science and Engineering, The University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Shuangcheng Tang
- Department of Mechanical, Aerospace, and Biomedical Engineering and ‡Department of Materials Science and Engineering, The University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Katie Lou Rogers
- Department of Mechanical, Aerospace, and Biomedical Engineering and ‡Department of Materials Science and Engineering, The University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Wei He
- Department of Mechanical, Aerospace, and Biomedical Engineering and ‡Department of Materials Science and Engineering, The University of Tennessee , Knoxville, Tennessee 37996, United States
| |
Collapse
|
31
|
Hernández-Montelongo J, Nascimento VF, Murillo D, Taketa TB, Sahoo P, de Souza AA, Beppu MM, Cotta MA. Nanofilms of hyaluronan/chitosan assembled layer-by-layer: An antibacterial surface for Xylella fastidiosa. Carbohydr Polym 2016; 136:1-11. [DOI: 10.1016/j.carbpol.2015.08.076] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/23/2015] [Accepted: 08/26/2015] [Indexed: 12/11/2022]
|
32
|
Alba NA, Du ZJ, Catt KA, Kozai TDY, Cui XT. In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating. BIOSENSORS-BASEL 2015; 5:618-46. [PMID: 26473938 PMCID: PMC4697137 DOI: 10.3390/bios5040618] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/23/2015] [Accepted: 09/30/2015] [Indexed: 12/25/2022]
Abstract
Neural electrodes hold tremendous potential for improving understanding of brain function and restoring lost neurological functions. Multi-walled carbon nanotube (MWCNT) and dexamethasone (Dex)-doped poly(3,4-ethylenedioxythiophene) (PEDOT) coatings have shown promise to improve chronic neural electrode performance. Here, we employ electrochemical techniques to characterize the coating in vivo. Coated and uncoated electrode arrays were implanted into rat visual cortex and subjected to daily cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) for 11 days. Coated electrodes experienced a significant decrease in 1 kHz impedance within the first two days of implantation followed by an increase between days 4 and 7. Equivalent circuit analysis showed that the impedance increase is the result of surface capacitance reduction, likely due to protein and cellular processes encapsulating the porous coating. Coating's charge storage capacity remained consistently higher than uncoated electrodes, demonstrating its in vivo electrochemical stability. To decouple the PEDOT/MWCNT material property changes from the tissue response, in vitro characterization was conducted by soaking the coated electrodes in PBS for 11 days. Some coated electrodes exhibited steady impedance while others exhibiting large increases associated with large decreases in charge storage capacity suggesting delamination in PBS. This was not observed in vivo, as scanning electron microscopy of explants verified the integrity of the coating with no sign of delamination or cracking. Despite the impedance increase, coated electrodes successfully recorded neural activity throughout the implantation period.
Collapse
Affiliation(s)
- Nicolas A Alba
- Department of Bioengineering, University of Pittsburgh, 5056 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA.
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Zhanhong J Du
- Department of Bioengineering, University of Pittsburgh, 5056 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA.
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Kasey A Catt
- Department of Bioengineering, University of Pittsburgh, 5056 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, 5056 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA.
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
- NeuroTech Center of the University of Pittsburgh Brain Institute, Pittsburgh, PA 15260, USA.
| | - X Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 5056 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA.
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
33
|
Nagaraj V, Lee S, Krook-Magnuson E, Soltesz I, Benquet P, Irazoqui P, Netoff T. Future of seizure prediction and intervention: closing the loop. J Clin Neurophysiol 2015; 32:194-206. [PMID: 26035672 PMCID: PMC4455045 DOI: 10.1097/wnp.0000000000000139] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ultimate goal of epilepsy therapies is to provide seizure control for all patients while eliminating side effects. Improved specificity of intervention through on-demand approaches may overcome many of the limitations of current intervention strategies. This article reviews the progress in seizure prediction and detection, potential new therapies to provide improved specificity, and devices to achieve these ends. Specifically, we discuss (1) potential signal modalities and algorithms for seizure detection and prediction, (2) closed-loop intervention approaches, and (3) hardware for implementing these algorithms and interventions. Seizure prediction and therapies maximize efficacy, whereas minimizing side effects through improved specificity may represent the future of epilepsy treatments.
Collapse
Affiliation(s)
- Vivek Nagaraj
- Graduate Program in Neuroscience, University of Minnesota
| | - Steven Lee
- Weldon School of Biomedical Engineering, Purdue University
| | | | - Ivan Soltesz
- Department of Anatomy & Neurobiology, University of California, Irvine
| | | | - Pedro Irazoqui
- Weldon School of Biomedical Engineering, Purdue University
| | - Theoden Netoff
- Graduate Program in Neuroscience, University of Minnesota
- Department of Biomedical Engineering, University of Minnesota
| |
Collapse
|
34
|
Köhler P, Wolff A, Ejserholm F, Wallman L, Schouenborg J, Linsmeier CE. Influence of probe flexibility and gelatin embedding on neuronal density and glial responses to brain implants. PLoS One 2015; 10:e0119340. [PMID: 25790172 PMCID: PMC4366143 DOI: 10.1371/journal.pone.0119340] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/21/2015] [Indexed: 01/08/2023] Open
Abstract
To develop long-term high quality communication between brain and computer, a key issue is how to reduce the adverse foreign body responses. Here, the impact of probe flexibility and gelatine embedding on long-term (6w) tissue responses, was analyzed. Probes of same polymer material, size and shape, flexible mainly in one direction, were implanted in rat cerebral cortex (nimplants = 3 x 8) in two orientations with respect to the major movement direction of the brain relative to the skull: parallel to (flex mode) or transverse to (rigid mode). Flex mode implants were either embedded in gelatin or non-embedded. Neurons, activated microglia and astrocytes were visualized using immunohistochemistry. The astrocytic reactivity, but not microglial response, was significantly lower to probes implanted in flex mode as compared to rigid mode. The microglial response, but not astrocytic reactivity, was significantly smaller to gelatin embedded probes (flex mode) than non-embedded. Interestingly, the neuronal density was preserved in the inner zone surrounding gelatin embedded probes. This contrasts to the common reports of reduced neuronal density close to implanted probes. In conclusion, sheer stress appears to be an important factor for astrocytic reactivity to implanted probes. Moreover, gelatin embedding can improve the neuronal density and reduce the microglial response close to the probe.
Collapse
Affiliation(s)
- Per Köhler
- Neuronano Research Center (NRC), Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Anette Wolff
- Neuronano Research Center (NRC), Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Fredrik Ejserholm
- Neuronano Research Center (NRC), Department of Experimental Medical Science, Lund University, Lund, Sweden; Department of Measurement Technology and Industrial Electrical Engineering, Electrical Measurements, The Faculty of Engineering at Lund University, Lund, Sweden
| | - Lars Wallman
- Neuronano Research Center (NRC), Department of Experimental Medical Science, Lund University, Lund, Sweden; Department of Measurement Technology and Industrial Electrical Engineering, Electrical Measurements, The Faculty of Engineering at Lund University, Lund, Sweden
| | - Jens Schouenborg
- Neuronano Research Center (NRC), Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cecilia E Linsmeier
- Neuronano Research Center (NRC), Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
35
|
Gunasekera B, Saxena T, Bellamkonda R, Karumbaiah L. Intracortical recording interfaces: current challenges to chronic recording function. ACS Chem Neurosci 2015; 6:68-83. [PMID: 25587704 DOI: 10.1021/cn5002864] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Brain Computer Interfaces (BCIs) offer significant hope to tetraplegic and paraplegic individuals. This technology relies on extracting and translating motor intent to facilitate control of a computer cursor or to enable fine control of an external assistive device such as a prosthetic limb. Intracortical recording interfaces (IRIs) are critical components of BCIs and consist of arrays of penetrating electrodes that are implanted into the motor cortex of the brain. These multielectrode arrays (MEAs) are responsible for recording and conducting neural signals from local ensembles of neurons in the motor cortex with the high speed and spatiotemporal resolution that is required for exercising control of external assistive prostheses. Recent design and technological innovations in the field have led to significant improvements in BCI function. However, long-term (chronic) BCI function is severely compromised by short-term (acute) IRI recording failure. In this review, we will discuss the design and function of current IRIs. We will also review a host of recent advances that contribute significantly to our overall understanding of the cellular and molecular events that lead to acute recording failure of these invasive implants. We will also present recent improvements to IRI design and provide insights into the futuristic design of more chronically functional IRIs.
Collapse
Affiliation(s)
- Bhagya Gunasekera
- Regenerative
Bioscience Center, ADS Complex, The University of Georgia, Athens, Georgia 30602-2771, United States
| | - Tarun Saxena
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0535, United States
| | - Ravi Bellamkonda
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0535, United States
| | - Lohitash Karumbaiah
- Regenerative
Bioscience Center, ADS Complex, The University of Georgia, Athens, Georgia 30602-2771, United States
| |
Collapse
|
36
|
Jorfi M, Skousen JL, Weder C, Capadona JR. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. J Neural Eng 2014; 12:011001. [PMID: 25460808 DOI: 10.1088/1741-2560/12/1/011001] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To ensure long-term consistent neural recordings, next-generation intracortical microelectrodes are being developed with an increased emphasis on reducing the neuro-inflammatory response. The increased emphasis stems from the improved understanding of the multifaceted role that inflammation may play in disrupting both biologic and abiologic components of the overall neural interface circuit. To combat neuro-inflammation and improve recording quality, the field is actively progressing from traditional inorganic materials towards approaches that either minimizes the microelectrode footprint or that incorporate compliant materials, bioactive molecules, conducting polymers or nanomaterials. However, the immune-privileged cortical tissue introduces an added complexity compared to other biomedical applications that remains to be fully understood. This review provides a comprehensive reflection on the current understanding of the key failure modes that may impact intracortical microelectrode performance. In addition, a detailed overview of the current status of various materials-based approaches that have gained interest for neural interfacing applications is presented, and key challenges that remain to be overcome are discussed. Finally, we present our vision on the future directions of materials-based treatments to improve intracortical microelectrodes for neural interfacing.
Collapse
Affiliation(s)
- Mehdi Jorfi
- Adolphe Merkle Institute, University of Fribourg, Rte de l'Ancienne Papeterie, CH-1723 Marly, Switzerland
| | | | | | | |
Collapse
|
37
|
Sommakia S, Lee HC, Gaire J, Otto KJ. Materials approaches for modulating neural tissue responses to implanted microelectrodes through mechanical and biochemical means. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2014; 18:319-328. [PMID: 25530703 PMCID: PMC4267064 DOI: 10.1016/j.cossms.2014.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Implantable intracortical microelectrodes face an uphill struggle for widespread clinical use. Their potential for treating a wide range of traumatic and degenerative neural disease is hampered by their unreliability in chronic settings. A major factor in this decline in chronic performance is a reactive response of brain tissue, which aims to isolate the implanted device from the rest of the healthy tissue. In this review we present a discussion of materials approaches aimed at modulating the reactive tissue response through mechanical and biochemical means. Benefits and challenges associated with these approaches are analyzed, and the importance of multimodal solutions tested in emerging animal models are presented.
Collapse
Affiliation(s)
- Salah Sommakia
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907-1791
| | - Heui C. Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907-1791
| | - Janak Gaire
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1791
| | - Kevin J. Otto
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907-1791
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1791
| |
Collapse
|
38
|
Mattei TA, Rehman AA. "Extremely minimally invasive": recent advances in nanotechnology research and future applications in neurosurgery. Neurosurg Rev 2014; 38:27-37; discussion 37. [PMID: 25173621 DOI: 10.1007/s10143-014-0566-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 05/20/2014] [Accepted: 06/22/2014] [Indexed: 12/25/2022]
Abstract
The term "nanotechnology" refers to the development of materials and devices that have been designed with specific properties at the nanometer scale (10(-9) m), usually being less than 100 nm in size. Recent advances in nanotechnology have promised to enable visualization and intervention at the subcellular level, and its incorporation to future medical therapeutics is expected to bring new avenues for molecular imaging, targeted drug delivery, and personalized interventions. Although the central nervous system presents unique challenges to the implementation of new therapeutic strategies involving nanotechnology (such as the heterogeneous molecular environment of different CNS regions, the existence of multiple processing centers with different cytoarchitecture, and the presence of the blood-brain barrier), numerous studies have demonstrated that the incorporation of nanotechnology resources into the armamentarium of neurosurgery may lead to breakthrough advances in the near future. In this article, the authors present a critical review on the current 'state-of-the-art' of basic research in nanotechnology with special attention to those issues which present the greatest potential to generate major therapeutic progresses in the neurosurgical field, including nanoelectromechanical systems, nano-scaffolds for neural regeneration, sutureless anastomosis, molecular imaging, targeted drug delivery, and theranostic strategies.
Collapse
Affiliation(s)
- Tobias A Mattei
- Department of Neurosurgery, Brain & Spine Center-InvisionHealth/Buffalo-NY, 400 International Dr., Buffalo, NY, ZIP 14221, USA,
| | | |
Collapse
|
39
|
Chen YH, Chang SH, Wang IJ, Young TH. The mechanism for keratinocyte detaching from pH-responsive chitosan. Biomaterials 2014; 35:9247-54. [PMID: 25129571 DOI: 10.1016/j.biomaterials.2014.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 07/19/2014] [Indexed: 01/01/2023]
Abstract
In this study, we compared the detachment ratio of HaCaT and Hs68 cells from pH-responsive chitosan surface by raising medium pH from 7.20 to 7.65 for 60 min. The detachment ratio of elongated Hs68 cells was over 75%, but that of round-shaped HaCaT cells was less than 50%, even extending the incubation time to 6 h or enhancing the cytoskeletal contractile force with the Rho activator CN01. However, the addition of 2 mm of EDTA into the medium at pH 7.65 could effectively detach HaCaT cells (detachment ratio > 90%), indicating that the calcium ion played an important role in the detachment process. Therefore, the family of Ca(+2)-dependent integrin receptors was examined by RT-PCR, real-time PCR and immunocytochemistry. It was found the expression of integrin β4 (ITGb4) was HaCaT cell-specific and the mRNA level of ITGb4 in undetached HaCaT cells was significantly higher than that in detached ones. By modulating ITGb4 activity with specific functional blocking antibody ASC-8, the detachment ratio of HaCaT cells could be increased to be greater than 85%. Conversely, the addition of the ligand of ITGb4 laminin into the culture system decreased the medium pH-induced detachment ratio for HaCaT cells, but not for Hs68 cells. Further addition of ASC-8 could rescue the effect of laminin on preventing the detachment of HaCaT cells from pH-sensitive chitosan surface. Therefore, this study demonstrated the interaction of ITGb4 and laminin played an important role in controlling the detachment of HaCaT cells on pH-responsive chitosan.
Collapse
Affiliation(s)
- Yi-Hsin Chen
- Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Shao-Hsuan Chang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, 100, Taiwan
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, 100, Taiwan.
| | - Tai-Horng Young
- Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, Taipei, 106, Taiwan; Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
40
|
Sawyer AJ, Tian W, Saucier-Sawyer JK, Rizk PJ, Saltzman WM, Bellamkonda RV, Kyriakides TR. The effect of inflammatory cell-derived MCP-1 loss on neuronal survival during chronic neuroinflammation. Biomaterials 2014; 35:6698-706. [PMID: 24881026 DOI: 10.1016/j.biomaterials.2014.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/01/2014] [Indexed: 01/22/2023]
Abstract
Intracranial implants elicit neurodegeneration via the foreign body response (FBR) that includes BBB leakage, macrophage/microglia accumulation, and reactive astrogliosis, in addition to neuronal degradation that limit their useful lifespan. Previously, monocyte chemoattractant protein 1 (MCP-1, also CCL2), which plays an important role in monocyte recruitment and propagation of inflammation, was shown to be critical for various aspects of the FBR in a tissue-specific manner. However, participation of MCP-1 in the brain FBR has not been evaluated. Here we examined the FBR to intracortical silicon implants in MCP-1 KO mice at 1, 2, and 8 weeks after implantation. MCP-1 KO mice had a diminished FBR compared to WT mice, characterized by reductions in BBB leakage, macrophage/microglia accumulation, and astrogliosis, and an increased neuronal density. Moreover, pharmacological inhibition of MCP-1 in implant-bearing WT mice maintained the increased neuronal density. To elucidate the relative contribution of microglia and macrophages, bone marrow chimeras were generated between MCP-1 KO and WT mice. Increased neuronal density was observed only in MCP-1 knockout mice transplanted with MCP-1 knockout marrow, which indicates that resident cells in the brain are major contributors. We hypothesized that these improvements are the result of a phenotypic switch of the macrophages/microglia polarization state, which we confirmed using PCR for common activation markers. Our observations suggest that MCP-1 influences neuronal loss, which is integral to the progression of neurological disorders like Alzheimer's and Parkinson disease, via BBB leakage and macrophage polarization.
Collapse
Affiliation(s)
- Andrew J Sawyer
- Department of Pathology, Yale School of Medicine, 310 Cedar Street LH 108, New Haven, CT 06520-8023, USA
| | - Weiming Tian
- Bio-X Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | | | - Paul J Rizk
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Themis R Kyriakides
- Department of Pathology, Yale School of Medicine, 310 Cedar Street LH 108, New Haven, CT 06520-8023, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
41
|
Kim YJ, Jin YH, Salieb-Beugelaar GB, Nam CH, Stieglitz T. Genetically engineered bacteriophage delivers a tumor necrosis factor alpha antagonist coating on neural electrodes. Biomed Mater 2014; 9:015009. [PMID: 24448635 DOI: 10.1088/1748-6041/9/1/015009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This paper reports a novel approach for the formation of anti-inflammatory surface coating on a neural electrode. The surface coating is realized using a recombinant f88 filamentous bacteriophage, which displays a short platinum binding motif and a tumor necrosis factor alpha antagonist (TNF-α antagonist) on p3 and p8 proteins, respectively. The recombinant bacteriophages are immobilized on the platinum surface by a simple dip coating process. The selective and stable immobilization of bacteriophages on a platinum electrode is confirmed by quartz crystal microbalance with dissipation monitoring, atomic force microscope and fluorescence microscope. From the in vitro cell viability test, the inflammatory cytokine (TNF-α) induced cell death was prevented by presenting recombinant bacteriophage coating, albeit with no significant cytotoxic effect. It is also observed that the bacteriophage coating does not have critical effects on the electrochemical properties such as impedance and charge storage capacities. Thus, this approach demonstrates a promising anti-apoptotic as well as anti-inflammatory surface coating for neural implant applications.
Collapse
Affiliation(s)
- Young Jun Kim
- Laboratory of Nanomedicine, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken, Germany
| | | | | | | | | |
Collapse
|
42
|
Karumbaiah L, Saxena T, Carlson D, Patil K, Patkar R, Gaupp EA, Betancur M, Stanley GB, Carin L, Bellamkonda RV. Relationship between intracortical electrode design and chronic recording function. Biomaterials 2013; 34:8061-74. [DOI: 10.1016/j.biomaterials.2013.07.016] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/03/2013] [Indexed: 12/16/2022]
|
43
|
Saurer EM, Jewell CM, Roenneburg DA, Bechler SL, Torrealba JR, Hacker TA, Lynn DM. Polyelectrolyte multilayers promote stent-mediated delivery of DNA to vascular tissue. Biomacromolecules 2013; 14:1696-704. [PMID: 23597075 PMCID: PMC3683994 DOI: 10.1021/bm4005222] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report an approach to deliver DNA to vascular tissue in vivo using intravascular stents coated with degradable, DNA-containing polyelectrolyte multilayers (PEMs). Ionically cross-linked multilayers ∼120 nm thick were fabricated layer-by-layer on the surfaces of balloon-mounted stainless steel stents using plasmid DNA and a hydrolytically degradable poly(β-amino ester) (polymer 1). Characterization of stents coated using a fluorescently end-labeled analog of polymer 1 revealed film erosion to be uniform across the surfaces of the stents; differential stresses experienced upon balloon expansion did not lead to faster film erosion or dose dumping of DNA in areas near stent joints when stents were incubated in physiologically relevant media. The ability of film-coated stents to transfer DNA and transfect arterial tissue in vivo was then investigated in pigs and rabbits. Stents coated with films fabricated using fluorescently labeled DNA resulted in uniform transfer of DNA to sub-endothelial tissue in the arteries of pigs in patterns corresponding to the locations and geometries of stent struts. Stents coated with films fabricated using polymer 1 and plasmid DNA encoding EGFP resulted in expression of EGFP in the medial layers of stented tissue in both pigs and rabbits two days after implantation. The results of this study, combined with the modular and versatile nature of layer-by-layer assembly, provide a polymer-based platform that is well suited for fundamental studies of stent-mediated gene transfer. With further development, this approach could also prove useful for the design of nonviral, gene-based approaches for prevention of complications that arise from the implantation of stents and other implantable interventional devices.
Collapse
Affiliation(s)
- Eric M Saurer
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | | | | | | | | | | |
Collapse
|
44
|
Yue Z, Moulton SE, Cook M, O'Leary S, Wallace GG. Controlled delivery for neuro-bionic devices. Adv Drug Deliv Rev 2013; 65:559-69. [PMID: 22705546 DOI: 10.1016/j.addr.2012.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/16/2012] [Accepted: 06/08/2012] [Indexed: 12/19/2022]
Abstract
Implantable electrodes interface with the human body for a range of therapeutic as well as diagnostic applications. Here we provide an overview of controlled delivery strategies used in neuro-bionics. Controlled delivery of bioactive molecules has been used to minimise reactive cellular and tissue responses and/or promote nerve preservation and neurite outgrowth toward the implanted electrode. These effects are integral to establishing a chronically stable and effective electrode-neural communication. Drug-eluting bioactive coatings, organic conductive polymers, or integrated microfabricated drug delivery channels are strategies commonly used.
Collapse
|
45
|
Alivisatos AP, Andrews AM, Boyden ES, Chun M, Church GM, Deisseroth K, Donoghue JP, Fraser SE, Lippincott-Schwartz J, Looger LL, Masmanidis S, McEuen PL, Nurmikko AV, Park H, Peterka DS, Reid C, Roukes ML, Scherer A, Schnitzer M, Sejnowski TJ, Shepard KL, Tsao D, Turrigiano G, Weiss PS, Xu C, Yuste R, Zhuang X. Nanotools for neuroscience and brain activity mapping. ACS NANO 2013; 7:1850-66. [PMID: 23514423 PMCID: PMC3665747 DOI: 10.1021/nn4012847] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function.
Collapse
Affiliation(s)
- A. Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, California 94720, and Lawrence Berkeley Laboratory, Berkeley, California 94720-1460
| | - Anne M. Andrews
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095
- Department of Psychiatry, and Semel Institute for Neuroscience & Human Behavior, Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095
| | - Edward S. Boyden
- Media Laboratory, Department of Biological Engineering, Brain and Cognitive Sciences, and McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, Wyss Institute for Biologically Inspired Engineering and Biophysics Program, Harvard University, Boston, Massachusetts 02115
| | - Karl Deisseroth
- Howard Hughes Medical Institute, Stanford University, Stanford California 94305
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford California 94305
| | - John P. Donoghue
- Department of Neuroscience, Division of Engineering, Department of Computer Science, Brown University, Providence, Rhode Island 02912
| | - Scott E. Fraser
- Departments of Biological Sciences, Biomedical Engineering, Physiology and Biophysics, Stem Cell Biology and Regenerative Medicine, and Pediatrics, Radiology and Ophthalmology, University of Southern California, Los Angeles, California 90089
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Loren L. Looger
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - Sotiris Masmanidis
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095
- Department of Neurobiology, University of California, Los Angeles, California 90095
- Address correspondence to , , ,
| | - Paul L. McEuen
- Department of Physics, Laboratory of Atomic and Solid State Physics, and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853
| | - Arto V. Nurmikko
- Department of Physics and Division of Engineering, Brown University, Providence, Rhode Island 02912
| | - Hongkun Park
- Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, Massachusetts 02138
| | - Darcy S. Peterka
- Howard Hughes Medical Institute and Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Clay Reid
- Allen Institute for Brain Science, Seattle, Washington 98103
| | - Michael L. Roukes
- Kavli Nanoscience Institute, California Institute of Technology, MC 149-33, Pasadena, California 91125
- Departments of Physics, Applied Physics, and Bioengineering, California Institute of Technology, MC 149-33, Pasadena, California 91125
| | - Axel Scherer
- Kavli Nanoscience Institute, California Institute of Technology, MC 149-33, Pasadena, California 91125
- Departments of Electrical Engineering, Applied Physics, and Physics, California Institute of Technology, MC 149-33, Pasadena, California 91125
- Address correspondence to , , ,
| | - Mark Schnitzer
- Howard Hughes Medical Institute, Stanford University, Stanford California 94305
- Departments of Applied Physics and Biology, James H. Clark Center, Stanford University, Stanford, California 94305
| | - Terrence J. Sejnowski
- Howard Hughes Medical Institute, Computational Neurobiology Laboratory, Salk Institute, La Jolla, California 92037, and Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University, New York, New York 10027
| | - Doris Tsao
- Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Gina Turrigiano
- Department of Biology and Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02254
| | - Paul S. Weiss
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095
- Department of Chemistry & Biochemistry, Department of Materials Science & Engineering, University of California, Los Angeles, California 90095
- Address correspondence to , , ,
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853
| | - Rafael Yuste
- Howard Hughes Medical Institute and Department of Biological Sciences, Columbia University, New York, New York 10027
- Kavli Institute for Brain Science, Columbia University, New York, New York 10027
- Address correspondence to , , ,
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Departments of Chemistry and Chemical Biology and Physics, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
46
|
A primer on brain-machine interfaces, concepts, and technology: a key element in the future of functional neurorestoration. World Neurosurg 2013; 79:457-71. [PMID: 23333985 DOI: 10.1016/j.wneu.2013.01.078] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/14/2013] [Indexed: 11/23/2022]
Abstract
Conventionally, the practice of neurosurgery has been characterized by the removal of pathology, congenital or acquired. The emerging complement to the removal of pathology is surgery for the specific purpose of restoration of function. Advents in neuroscience, technology, and the understanding of neural circuitry are creating opportunities to intervene in disease processes in a reparative manner, thereby advancing toward the long-sought-after concept of neurorestoration. Approaching the issue of neurorestoration from a biomedical engineering perspective is the rapidly growing arena of implantable devices. Implantable devices are becoming more common in medicine and are making significant advancements to improve a patient's functional outcome. Devices such as deep brain stimulators, vagus nerve stimulators, and spinal cord stimulators are now becoming more commonplace in neurosurgery as we utilize our understanding of the nervous system to interpret neural activity and restore function. One of the most exciting prospects in neurosurgery is the technologically driven field of brain-machine interface, also known as brain-computer interface, or neuroprosthetics. The successful development of this technology will have far-reaching implications for patients suffering from a great number of diseases, including but not limited to spinal cord injury, paralysis, stroke, or loss of limb. This article provides an overview of the issues related to neurorestoration using implantable devices with a specific focus on brain-machine interface technology.
Collapse
|
47
|
Bareket-Keren L, Hanein Y. Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects. Front Neural Circuits 2013; 6:122. [PMID: 23316141 PMCID: PMC3540767 DOI: 10.3389/fncir.2012.00122] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/22/2012] [Indexed: 12/17/2022] Open
Abstract
Carbon nanotube (CNT) coatings have been demonstrated over the past several years as a promising material for neuronal interfacing applications. In particular, in the realm of neuronal implants, CNTs have major advantages owing to their unique mechanical and electrical properties. Here we review recent investigations utilizing CNTs in neuro-interfacing applications. Cell adhesion, neuronal engineering and multi electrode recordings with CNTs are described. We also highlight prospective advances in this field, in particular, progress toward flexible, bio-compatible CNT-based technology.
Collapse
Affiliation(s)
- Lilach Bareket-Keren
- School of Electrical Engineering, Tel-Aviv UniversityTel-Aviv, Israel
- Tel-Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv UniversityTel-Aviv, Israel
| | - Yael Hanein
- School of Electrical Engineering, Tel-Aviv UniversityTel-Aviv, Israel
- Tel-Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv UniversityTel-Aviv, Israel
| |
Collapse
|
48
|
Lind G, Gällentoft L, Danielsen N, Schouenborg J, Pettersson LME. Multiple implants do not aggravate the tissue reaction in rat brain. PLoS One 2012; 7:e47509. [PMID: 23091629 PMCID: PMC3472973 DOI: 10.1371/journal.pone.0047509] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/14/2012] [Indexed: 11/18/2022] Open
Abstract
Chronically implanted microelectrodes are an invaluable tool for neuroscientific research, allowing long term recordings in awake and behaving animals. It is known that all such electrodes will evoke a tissue reaction affected by its’ size, shape, surface structure, fixation mode and implantation method. However, the possible correlation between tissue reactions and the number of implanted electrodes is not clear. We implanted multiple wire bundles into the brain of rats and studied the correlation between the astrocytic and microglial reaction and the positioning of the electrode in relation to surrounding electrodes. We found that an electrode implanted in the middle of a row of implants is surrounded by a significantly smaller astrocytic scar than single ones. This possible interaction was only seen between implants within the same hemisphere, no interaction with the contralateral hemisphere was found. More importantly, we found no aggravation of tissue reactions as a result of a larger number of implants. These results highlight the possibility of implanting multiple electrodes without aggravating the glial scar surrounding each implant.
Collapse
Affiliation(s)
- Gustav Lind
- Department of Experimental Medical Sciences, Neuronano Research Center, Medical Faculty, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
49
|
Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. J Mol Neurosci 2012; 49:334-46. [PMID: 22878912 DOI: 10.1007/s12031-012-9863-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/23/2012] [Indexed: 01/15/2023]
Abstract
The aim of our work is to utilize the crosstalk between the vascular and the neuronal system to enhance directed neuritogenesis in uniaxial guidance scaffolds for the repair of spinal cord injury. In this study, we describe a method for angioneural regenerative engineering, i.e., for generating biodegradable scaffolds, produced by a combination of controlled freezing (freeze-casting) and lyophilization, which contain longitudinally oriented channels, and provide uniaxial directionality to support and guide neuritogenesis from neuronal cells in the presence of endothelial cells. The optimized scaffolds, composed of 2.5 % gelatin and 1 % genipin crosslinked, were characterized by an elastic modulus of ~51 kPa and longitudinal channels of ~50 μm diameter. The scaffolds support the growth of endothelial cells, undifferentiated or NGF-differentiated PC12 cells, and primary cultures of fetal chick forebrain neurons. The angioneural crosstalk, as generated by first forming endothelial cell monolayers in the scaffolds followed by injection of neuronal cells, leads to the outgrowth of long aligned neurites in the PC12/endothelial cell co-cultures also in the absence of exogenously added nerve growth factor. Neuritogenesis was not observed in the scaffolds in the absence of the endothelial cells. This methodology is a promising approach for neural tissue engineering and may be applicable for regenerative spinal cord injury repair.
Collapse
|
50
|
Rao SS, Han N, Winter JO. Polylysine-Modified PEG-Based Hydrogels to Enhance the Neuro–Electrode Interface. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 22:611-25. [DOI: 10.1163/092050610x488241] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shreyas S. Rao
- a William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 140 W 19th Avenue, Columbus, OH 43210, USA
| | - Ning Han
- b William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 140 W 19th Avenue, Columbus, OH 43210, USA
| | - Jessica O. Winter
- c William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 140 W 19th Avenue, Columbus, OH 43210, USA; Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|