1
|
Yang D, Xu Z, Huang D, Luo Q, Zhang C, Guo J, Tan L, Ge L, Mu C, Li D. Immunomodulatory multifunctional janus collagen-based membrane for advanced bone regeneration. Nat Commun 2025; 16:4264. [PMID: 40335547 PMCID: PMC12059164 DOI: 10.1038/s41467-025-59651-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/28/2025] [Indexed: 05/09/2025] Open
Abstract
Guided bone regeneration (GBR) is a standard therapy for treating bone defects, with collagen-based barrier membranes widely used clinically. However, these membranes face challenges like poor mechanical properties, early bacterial invasion and immunomodulation deficiency, potentially risking GBR failure. Orchestrating macrophage activation and controlling their M1 or M2 polarization are effective strategies for bone repair. Here, we present a Janus collagen-based barrier membrane with immunomodulation. The porous layer promotes direct osteogenic differentiation and inward growth of osteoblasts. The dense layer prevents invasion of soft tissue into bone defects and protects bone defects from bacterial infection. The membrane also enhances rat bone marrow-derived mesenchymal stem cell infiltration, proliferation, and osteogenic differentiation by regulating the immune microenvironment, demonstrating superior bone regeneration compared to the commercial Bio-Gide® membrane. Overall, the Janus collagen-based membrane reduces tissue inflammation and fosters an osteoimmune environment conducive to new bone formation, offering effective material design for advanced GBR technology.
Collapse
Affiliation(s)
- Die Yang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Zhilang Xu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Dou Huang
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Qi Luo
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Chunli Zhang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Jimin Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, P. R. China.
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, P. R. China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, P. R. China.
| | - Lu Tan
- Department of Osteology, Wushan County Hospital of Traditional Chinese Medicine, Wushan, Chongqing, P. R. China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China.
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China.
| |
Collapse
|
2
|
Sun Y, Ma S, Shi Y, Chen M, Lan Y, Hu L, Yang X. Overcoming biological inertness: multifaceted strategies to optimize PEEK bioactivity for interdisciplinary clinical applications. Biomater Sci 2025. [PMID: 40314180 DOI: 10.1039/d4bm01693a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Polyether ether ketone (PEEK), characterized by a comparable elastic modulus to human bone with high wear resistance, radiolucency, and biocompatibility, demonstrates considerable promise for clinical applications. However, due to the significant limitations in clinical applications caused by the biological inertness of PEEK, it should first be modified to meet clinical needs. Currently, the field of PEEK modifications is rapidly advancing, with a particular emphasis on enhancing its biological properties. Most of the previous reviews have separately discussed strategies like antibacterial, osteogenic, and angiogenic enhancements for PEEK. This review combines cross-domain insights to update and synthesize recent research on PEEK composites, focusing on advanced multi-component sustained release platforms that mimic postoperative biological processes. Such temporal alignment between material functionality and physiological healing phases demonstrates unprecedented potential for expanding PEEK's clinical versatility.
Collapse
Affiliation(s)
- Yingjia Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Shixing Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Yang Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Mumian Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Yanhua Lan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Lingling Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Xiaofeng Yang
- Hangzhou City University School of Medicine, Hangzhou, 310000, China
| |
Collapse
|
3
|
Ma S, Yao S, Li Y, Yang Y, Tong T, Zheng H, Ma B, Wei P, Di Z, Zhao B, Deng J. A pH-Responsive Polyetheretherketone Implant Modified with a Core-Shell Metal-Organic Framework to Promote Antibacterial and Osseointegration Abilities. Biomater Res 2025; 29:0188. [PMID: 40290761 PMCID: PMC12022397 DOI: 10.34133/bmr.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Polyetheretherketone (PEEK) is considered to be a potential material for oral implants due to its elastic modulus being similar to that of human cortical bone. However, the poor antibacterial, anti-inflammatory, and osseointegration properties of bioinert PEEK have hindered its clinical application. Therefore, this study designed and constructed a pH-responsive PEEK implant with a bilayer core-shell zeolitic imidazolate framework-8 (ZIF-8) structure loaded on its surface, with an antimicrobial peptide (KR12) encapsulated in the outer shell and an osteogenic peptide (osteogenic growth peptide ) encapsulated in its inner core. In this study, the bilayer core-shell ZIF-8 structure was confirmed to have pH-responsive properties. In vitro studies proved that the implant could promote bone marrow mesenchymal stem cells' proliferation and differentiation and the M1 phenotype to M2 phenotype conversion of RAW 264.7 and could inhibit bacterial adhesion and proliferation. By constructing rats' distal femur with/without infection models, it was further demonstrated that the novel implant could effectively inhibit bacterial adhesion and growth, inhibit inflammation, and promote peri-implant osseointegration, which was more substantial when the local area was infected and the pH was lower than that of normal tissue. Collectively, the results suggest that this novel pH-responsive PEEK implant loaded with a bilayer core-shell ZIF-8 structure is a promising peptide delivery implant system, which is well suited for dental applications and offers a potential solution for the prevention of infection during the early phase after implantation.
Collapse
Affiliation(s)
- Shiqing Ma
- Department of Stomatology,
The Second Hospital of Tianjin Medical University, Tianjin 300070, PR China
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
| | - Shiyu Yao
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Department of Periodontology,
Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, PR China
| | - Yumeng Li
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Department of Periodontology,
Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, PR China
| | - Yilin Yang
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Department of Periodontology,
Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, PR China
| | - Tianyi Tong
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Department of Periodontology,
Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, PR China
| | - Hong Zheng
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Department of Periodontology,
Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, PR China
| | - Beibei Ma
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Department of Periodontology,
Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, PR China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing 102600, PR China
| | - Zhengyi Di
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules,
Tianjin Normal University, Tianjin 300387, PR China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing 102600, PR China
| | - Jiayin Deng
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Department of Periodontology,
Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, PR China
| |
Collapse
|
4
|
Kowalski R, Frąckiewicz W, Kwiatkowska M, Adamiak M, Pruss A, Sobolewska E. Comparison of the Performance Parameters of BioHPP ® and Biocetal ® Used in the Production of Prosthetic Restorations in Dentistry-Part II: Physicochemical and Microbiological Tests: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2025; 18:519. [PMID: 39942185 PMCID: PMC11818142 DOI: 10.3390/ma18030519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025]
Abstract
The natural aging process of the human organism leads to both physiological and pathological changes, including tooth loss. This requires dental prosthetic interventions aimed at restoring patients' quality of life. The use of such prostheses necessitates selection of sufficiently strong, aesthetic and biocompatible materials, which also offer ease of shaping. The market for materials used in prosthetic applications offers a wide array of options; however, selection of the most suitable material for specific clinical scenarios can be challenging for dental professionals. This paper continues the comprehensive investigation of the physiochemical and mechanical/functional properties of two commonly used prosthetic-Biocetal and BioHPP-offering a comparative analysis of their characteristics to provide valuable insights for dentists and prosthodontists. The study focuses on in vitro analyses of physiochemical parameters, including density, water sorption, contact angle, and surface roughness. The structure of the materials was examined via scanning electron microscopy. Additionally, microbiological studies were performed using strains of Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. Statistical analysis was performed using Shapiro-Wilk test, Q-Q plot analysis, Grubbs test, and Student's T-test (p < 0.05). The findings indicate that BioHPP demonstrates superior physiochemical and microbiological properties. However, Biocetal exhibit better surface characteristics. Despite its high performance, BioHPP presents certain drawbacks, which may influence dentists' material choice in specific clinical cases, particularly for certain prosthetic restorations.
Collapse
Affiliation(s)
- Robert Kowalski
- Department of Dental Prosthetics, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Av. Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Wojciech Frąckiewicz
- Ra-Dent Stomatologia Protetyka, Bolesława Krzywoustego Street 19/5, 70-252 Szczecin, Poland
| | - Magdalena Kwiatkowska
- Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, Av. Piastów 19, 70-310 Szczecin, Poland
| | - Marcin Adamiak
- Materials Testing Laboratory—RMT L1, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego Street 18a, 44-100 Gliwice, Poland
| | - Agata Pruss
- Department of Laboratory Medicine, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Av. Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Ewa Sobolewska
- Department of Dental Prosthetics, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Av. Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
5
|
Sikder P. A comprehensive review on the State of the Art in the research and development of poly-ether-ether-ketone (PEEK) biomaterial-based implants. Acta Biomater 2025; 191:29-52. [PMID: 39579846 DOI: 10.1016/j.actbio.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Polyetheretherketone (PEEK) is a preferred high-performance polymer in the spine, orthopedic, and craniomaxillofacial implant industry. However, despite its commendable mechanical properties, its bioinert nature limits the implants from integrating with neighboring tissues, impacting the implant's long-term performance. To address this limitation, various kinds of surface functionalization techniques have been developed over the years. Noteworthy efforts have been made to incorporate bioactive fillers in the PEEK matrix to develop standalone bioactive composites. In personalized medicine, significant advances have been made in the 3D Printing of PEEK implants. 3D-printed PEEK implants are now being developed at Point-of-Care, significantly reducing manufacturing and logistic time. Given the recent clinical follow-up updates and advancements in PEEK-based implants, PEEK implants are witnessing an important phase in its history. Recognizing this vital phase, this paper aims to comprehensively review the advancements of PEEK implants over the past decade. The review starts with an overview of the clinical impact of varying PEEK implants, followed by PEEK's surface functionalization techniques and engineering of PEEK-based bioactive composites. Next, this review describes the advancements made in the 3D printing of PEEK implants and points out the essential considerations that should be considered when developing 3D-printed PEEK-based implants. Finally, the review ends with an estimated projection about the future of PEEK-based implants. Readers are expected to gain an all-encompassing and in-depth understanding of PEEK biomedical implants' past, present, and future, enabling researchers to advance the research and development of PEEK-based implants in the required direction. STATEMENT OF SIGNIFICANCE: PEEK is a preferred high-performance polymer in the implant industry, with notable benefits over metallic and ceramic implants, such as bone-matching stiffness and durability. Significant strides have been made in the last decade to make PEEK implants bioactive and utilize 3D Printing to develop patient-specific implants. Given the recent advancements in PEEK-based implants, this review aims to provide an all-encompassing and in-depth understanding of PEEK biomedical implants' past, present, and future. It will comprehensively discuss the know-how gained from the clinical follow-up, the strategies to address the limitations of PEEK implants, and the essential considerations in 3D Printing of PEEK implants. This review will enable researchers to advance the research and development of PEEK implants in the required direction.
Collapse
Affiliation(s)
- Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH 44115, United States.
| |
Collapse
|
6
|
Hao Y, Shi C, Zhang Y, Zou R, Dong S, Yang C, Niu L. The research status and future direction of polyetheretherketone in dental implant -A comprehensive review. Dent Mater J 2024; 43:609-620. [PMID: 39085142 DOI: 10.4012/dmj.2024-076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Currently, dental implants primarily rely on the use of titanium and titanium alloys. However, the extensive utilization of these materials in clinical practice has unveiled various problems including stress shielding, corrosion, allergic reactions, cytotoxicity, and image artifacts. As a result, polyetheretherketone (PEEK) has emerged as a notable alternative due to its favorable mechanical properties, corrosion resistance, wear resistance, biocompatibility, radiation penetrability and MRI compatibility. Meanwhile, the advancement and extensive application of 3D printing technology has expanded the range of medical applications for PEEK, including artificial spines, skulls, ribs, shinbones, hip joints, and temporomandibular joints. In this review, we aim to assess the advantages and disadvantages of PEEK as a dental implant material, summarize the measures taken to address its shortcomings and their effects, and provide insight into the future potential of PEEK in dental implant applications, with the goal of offering guidance and reference for future research endeavors.
Collapse
Affiliation(s)
- Yaqi Hao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
| | - Changquan Shi
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University
| | - Yuwei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
| | - Shaojie Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University
| | | | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University
| |
Collapse
|
7
|
Costa MR, Filho JAC, Luna CBB, Dantas GMP, Costa ACFDM, Oliveira NMDS. Toward the Production of Hydroxyapatite/Poly(Ether-Ether-Ketone) (PEEK) Biocomposites: Exploring the Physicochemical, Mechanical, Cytotoxic and Antimicrobial Properties. Polymers (Basel) 2024; 16:2520. [PMID: 39274153 PMCID: PMC11397911 DOI: 10.3390/polym16172520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
The development of hydroxyapatite (HAp) and polyether ether ketone (PEEK) biocomposites has been extensively studied for bone repair applications due to the synergistic properties of the involved materials. In this study, we aimed to develop HAp/PEEK biocomposites using high-energy ball milling, with HAp concentrations (20%, 40%, and 60% w/v) in PEEK, to evaluate their physicochemical, mechanical, cytotoxicity, and antimicrobial properties for potential applications in Tissue Engineering (TE). The biocomposites were characterized by structure, morphology, apparent porosity, diametral compression strength, cytotoxicity, and antimicrobial activity. The study results demonstrated that the HAp/PEEK biocomposites were successfully synthesized. The C2 biocomposite, containing 40% HAp, stood out due to the optimal distribution of HAp particles in the PEEK matrix, resulting in higher compression strength (246 MPa) and a homogeneous microstructure. It exhibited antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, with no cytotoxicity observed. These properties make the C2 biocomposite promising for regenerative medicine applications, combining mechanical strength, bioactivity, and biocompatibility.
Collapse
Affiliation(s)
- Meirilany Rozeno Costa
- Ceramic Materials Synthesis Laboratory, Federal University of Campina Grande, Av. Aprígio Veloso, 882, Bodocongó, Campina Grande 58429-900, PB, Brazil
| | - José Adeilton Carvalho Filho
- Ceramic Materials Synthesis Laboratory, Federal University of Campina Grande, Av. Aprígio Veloso, 882, Bodocongó, Campina Grande 58429-900, PB, Brazil
| | - Carlos Bruno Barreto Luna
- Polymer Processing Laboratory, Federal University of Campina Grande, Av. Aprígio Veloso, 882, Campina Grande 58429-140, PB, Brazil
| | - Gleydis Manalig Pereira Dantas
- Ceramic Materials Synthesis Laboratory, Federal University of Campina Grande, Av. Aprígio Veloso, 882, Bodocongó, Campina Grande 58429-900, PB, Brazil
| | - Ana Cristina Figueiredo de Melo Costa
- Ceramic Materials Synthesis Laboratory, Federal University of Campina Grande, Av. Aprígio Veloso, 882, Bodocongó, Campina Grande 58429-900, PB, Brazil
| | - Nadja Maria da Silva Oliveira
- Postgraduate Program in Health Science and Technology-PPGCTS, Dentistry Department, State University of Paraíba, R. Baraúnas, 351, Bodocongó, Campina Grande 58429-500, PB, Brazil
| |
Collapse
|
8
|
El-Sawy MA, ELgamal ME, Ahmed WM, El-Daker MA, Hegazy SA. Polyetheretherketone subperiosteal implant retaining a maxillary fixed prosthesis: A case series. J Prosthet Dent 2024; 132:562-569. [PMID: 36210190 DOI: 10.1016/j.prosdent.2022.08.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
STATEMENT OF PROBLEM Patients needing dental rehabilitation of a complete atrophic maxilla would benefit from simplified treatment plans. PURPOSE The purpose of this case series was to demonstrate the prosthetic management of 4 edentulous patients with severe maxillary ridge resorption who declined multiple stage surgery and sought a fixed prosthesis in single-stage surgery. MATERIAL AND METHODS The patients were provided with completely digital computer-aided designed and computer-aided manufactured (CAD-CAM) polyetheretherketone (PEEK) maxillary subperiosteal frameworks, which were surgically placed in a 1-step procedure. The patients were followed up for 12 months and evaluated for signs of implant rejection, infection, prosthetic fracture or mobility, or implant exposure. RESULTS At the 12-month follow-up, all the implants were functionally stable with healthy soft tissue and showed no sign of prosthetic fracture, infection, or pus discharge. CONCLUSIONS PEEK subperiosteal implants for maxillary atrophied ridges can be considered a promising treatment option within the limitations of this clinical study with low patient numbers and a short observational time.
Collapse
Affiliation(s)
- Mohammed A El-Sawy
- PhD student, Graduate Prosthodontics, Department of Prosthodontics, Faculty of Dentistry, Mansoura University, Al-Dakahliya, Egypt; Assistant Lecturer, Department of Prosthodontics, Faculty of Dentistry, Menoufiya University, Shibin El-kom, Egypt.
| | - Mohamed E ELgamal
- Associate Professor, Department of Prosthodontics, Faculty of Dentistry, Mansoura University, Al-Dakahliya, Egypt
| | - Wael M Ahmed
- Associate Professor, Department of Oral Surgery, Faculty of Dentistry, Mansoura University, Al-Dakahliya, Egypt
| | - Medhat A El-Daker
- Professor, Department of Microbiology & Immunology, Faculty of Medicine, Mansoura University, Al-Dakahliya, Egypt
| | - Salah A Hegazy
- Professor, Department of Prosthodontics, Faculty of Dentistry, Mansoura University, Al-Dakahliya, Egypt
| |
Collapse
|
9
|
Yu YM, Lu YP, Zhang T, Zheng YF, Liu YS, Xia DD. Biomaterials science and surface engineering strategies for dental peri-implantitis management. Mil Med Res 2024; 11:29. [PMID: 38741175 DOI: 10.1186/s40779-024-00532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Peri-implantitis is a bacterial infection that causes soft tissue inflammatory lesions and alveolar bone resorption, ultimately resulting in implant failure. Dental implants for clinical use barely have antibacterial properties, and bacterial colonization and biofilm formation on the dental implants are major causes of peri-implantitis. Treatment strategies such as mechanical debridement and antibiotic therapy have been used to remove dental plaque. However, it is particularly important to prevent the occurrence of peri-implantitis rather than treatment. Therefore, the current research spot has focused on improving the antibacterial properties of dental implants, such as the construction of specific micro-nano surface texture, the introduction of diverse functional coatings, or the application of materials with intrinsic antibacterial properties. The aforementioned antibacterial surfaces can be incorporated with bioactive molecules, metallic nanoparticles, or other functional components to further enhance the osteogenic properties and accelerate the healing process. In this review, we summarize the recent developments in biomaterial science and the modification strategies applied to dental implants to inhibit biofilm formation and facilitate bone-implant integration. Furthermore, we summarized the obstacles existing in the process of laboratory research to reach the clinic products, and propose corresponding directions for future developments and research perspectives, so that to provide insights into the rational design and construction of dental implants with the aim to balance antibacterial efficacy, biological safety, and osteogenic property.
Collapse
Affiliation(s)
- Ya-Meng Yu
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yu-Pu Lu
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Ting Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yu-Feng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Yun-Song Liu
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Dan-Dan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.
| |
Collapse
|
10
|
Zan R, Wang H, Shen S, Yang S, Yu H, Zhang X, Zhang X, Chen X, Shu M, Lu X, Xia J, Gu Y, Liu H, Zhou Y, Zhang X, Suo T. Biomimicking covalent organic frameworks nanocomposite coating for integrated enhanced anticorrosion and antifouling properties of a biodegradable magnesium stent. Acta Biomater 2024; 180:183-196. [PMID: 38604465 DOI: 10.1016/j.actbio.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
The utilization of biodegradable magnesium (Mg) alloys in the fabrication of temporary non-vascular stents is an innovative trend in biomedical engineering. However, the heterogeneous degradation profiles of these biomaterials, together with potential bacterial colonization that could precipitate infectious or stenotic complications, are critical obstacles precluding their widespread clinical application. In pursuit of overcoming these limitations, this study applies the principles of biomimicry, particularly the hydrophobic and anti-fouling characteristics of lotus leaves, to pioneer the creation of nanocomposite coatings. These coatings integrate poly-trimethylene carbonate (PTMC) with covalent organic frameworks (COFs), to modify the stent's surface property. The strategic design of the coating's topography, porosity, and self-polishing capabilities collectively aims to decelerate degradation processes and minimize biological adhesion. The protective qualities of the coatings were substantiated through rigorous testing in both in vitro dynamic bile tests and in vivo New Zealand rabbit choledochal models. Empirical findings from these trials confirmed that the implementation of COF-based nanocomposite coatings robustly fortifies Mg implantations, conferring heightened resistance to both biocorrosion and biofouling as well as improved biocompatibility within bodily environments. The outcomes of this research elucidate a comprehensive framework for the multifaceted strategies against stent corrosion and fouling, thereby charting a visionary pathway toward the systematic conception of a new class of reliable COF-derived surface modifications poised to amplify the efficacy of Mg-based stents. STATEMENT OF SIGNIFICANCE: Biodegradable magnesium (Mg) alloys are widely utilized in temporary stents, though their rapid degradation and susceptibility to bacterial infection pose significant challenges. Our research has developed a nanocomposite coating inspired by the lotus, integrating poly-trimethylene carbonate with covalent organic frameworks (COF). The coating achieved self-polishing property and optimal surface energy on the Mg substrate, which decelerates stent degradation and reduces biofilm formation. Comprehensive evaluations utilizing dynamic bile simulations and implantation in New Zealand rabbit choledochal models reveal that the coating improves the durability and longevity of the stent. The implications of these findings suggest the potential COF-based Mg alloy stent surface treatments and a leap forward in advancing stent performance and endurance in clinical applications.
Collapse
Affiliation(s)
- Rui Zan
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Yiwu Research Institute of Fudan University, Yiwu, 322000, China
| | - Hao Wang
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, 214002, China; Department of General Surgery, Jiangnan University Medical Center, Wuxi, 214000, China
| | - Sheng Shen
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, 200032, China
| | - Shi Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiyue Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xian Zhang
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiang Chen
- Department of Hepatopancreatobiliary Surgery, Huainan Xinhua Hospital affiliated to Anhui University of Science and Technology, Huainan, 232000, China
| | - Mengxuan Shu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiao Lu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiazeng Xia
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, 214000, China
| | - Yaqi Gu
- Department of Hepatopancreatobiliary Surgery, Huainan Xinhua Hospital affiliated to Anhui University of Science and Technology, Huainan, 232000, China
| | - Houbao Liu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, 200032, China.
| | - Yongping Zhou
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, 214002, China; Department of General Surgery, Jiangnan University Medical Center, Wuxi, 214000, China.
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Tao Suo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, 200032, China.
| |
Collapse
|
11
|
Gurav T, Bhola RD. Application of Polyether Ketone in Oral Implantology and Prosthodontics. Cureus 2024; 16:e60175. [PMID: 38868253 PMCID: PMC11167513 DOI: 10.7759/cureus.60175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Polyetheretherketone (PEEK) is a polymer that has a comprehensive range of possible uses in dental treatment. The goal of this study was to compile research findings on the substance of dental claims and highlight the upcoming predictions of PEEK in clinical dentistry. PEEK is a novel polymeric material that is yet in its preliminary stage of evolution. Biomolecules are elastic materials with remarkable mechanical strength, barrier properties, and heat resistance compared to other matrix materials. The efficacy of PEEK in clinical dentistry has been acknowledged. Polyetherketone (PEKK) and PEEK are the most commonly mentioned members of the polyaryletherketone (PAEK) family. PEEK has also found significant use in dentistry, notably in prosthodontics and implant dentistry. It also offers exceptional mechanical qualities, including high strength and toughness, making it ideal for dental implants and prostheses. It can endure the stresses of chewing and grinding, resulting in long-lasting restorations. PEEK's tooth-colored look and ability to simulate natural tooth translucency make it suitable for use in dental prostheses such as crowns and bridges. This makes it a more esthetically acceptable alternative to standard metal-based repairs.
Collapse
Affiliation(s)
- Tikeshwari Gurav
- Department of Prosthodontics, Sharad Pawar Dental College and Hospital Dental, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Rajiv D Bhola
- Department of Prosthodontics, Sharad Pawar Dental College and Hospital Dental, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
12
|
Xie M, Xiao GY, Song ZG, Lu YP. The Formation Process and Mechanism of the 3D Porous Network on the Sulfonated PEEK Surface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13585-13596. [PMID: 38445618 DOI: 10.1021/acsami.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
A three-dimensional (3D) porous network can be prepared on the PEEK surface by sulfonation with enhanced osseointegration and antibacterial properties. However, few studies have been conducted on the formation mechanism of a 3D porous network. In this work, the surface and cross-sectional morphologies, chemical compositions, functional groups, surface wettability, and crystalline states of sulfonated PEEK were investigated at different sulfonation times and coagulant concentrations. The results show that the number of nodular structures and broken fibers on the sulfonated PEEK surface as well as the size of macrovoids in the cross sections increase with increasing sulfonation times when water is used as a coagulant. In contrast, dilute sulfuric acid as a coagulant can inhibit the formation of surface porous structures and macrovoids in the cross sections. Moreover, all of the sulfonated PEEK samples have the same chemical compositions but exhibit better hydrophilicity as the number of microsized pores decreases. It is proposed that non-solvent-induced phase separation (NIPS) occurs during the sulfonation process, and the formation mechanism of surface and cross-sectional morphologies is discussed. Furthermore, it is assumed that the air is trapped in the microsized pores, leaving the surface of the 3D porous network in the Cassie-wetting state. All of these preliminary results throw light on the nature of the sulfonation process and may guide further modification of the structures of sulfonated PEEK.
Collapse
Affiliation(s)
- Ming Xie
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Gui-Yong Xiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Zhi-Gang Song
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Yu-Peng Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
13
|
Uysal I, Tezcaner A, Evis Z. Methods to improve antibacterial properties of PEEK: A review. Biomed Mater 2024; 19:022004. [PMID: 38364280 DOI: 10.1088/1748-605x/ad2a3d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
As a thermoplastic and bioinert polymer, polyether ether ketone (PEEK) serves as spine implants, femoral stems, cranial implants, and joint arthroplasty implants due to its mechanical properties resembling the cortical bone, chemical stability, and radiolucency. Although there are standards and antibiotic treatments for infection control during and after surgery, the infection risk is lowered but can not be eliminated. The antibacterial properties of PEEK implants should be improved to provide better infection control. This review includes the strategies for enhancing the antibacterial properties of PEEK in four categories: immobilization of functional materials and functional groups, forming nanocomposites, changing surface topography, and coating with antibacterial material. The measuring methods of antibacterial properties of the current studies of PEEK are explained in detail under quantitative, qualitative, andin vivomethods. The mechanisms of bacterial inhibition by reactive oxygen species generation, contact killing, trap killing, and limited bacterial adhesion on hydrophobic surfaces are explained with corresponding antibacterial compounds or techniques. The prospective analysis of the current studies is done, and dual systems combining osteogenic and antibacterial agents immobilized on the surface of PEEK are found the promising solution for a better implant design.
Collapse
Affiliation(s)
- Idil Uysal
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Ayşen Tezcaner
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | - Zafer Evis
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
14
|
Sui J, Hou Y, Chen M, Zheng Z, Meng X, Liu L, Huo S, Liu S, Zhang H. Nanomaterials for Anti-Infection in Orthopedic Implants: A Review. COATINGS 2024; 14:254. [DOI: 10.3390/coatings14030254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Postoperative implant infection is a severe complication in orthopedic surgery, often leading to implant failure. Current treatment strategies mainly rely on systemic antibiotic therapies, despite contributing to increasing bacterial resistance. In recent years, nanomaterials have gained attention for their potential in anti-infection methods. They exhibit more substantial bactericidal effects and lower drug resistance than conventional antimicrobial agents. Nanomaterials also possess multiple bactericidal mechanisms, such as physico-mechanical interactions. Additionally, they can serve as carriers for localized antimicrobial delivery. This review explores recent applications of nanomaterials with different morphologies in post-orthopedic surgery infections and categorizes their bactericidal mechanisms.
Collapse
Affiliation(s)
- Junhao Sui
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Yijin Hou
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mengchen Chen
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Zhong Zheng
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Xiangyu Meng
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Lu Liu
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, Shanghai 200003, China
| | - Shu Liu
- Department of Spine Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Hao Zhang
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| |
Collapse
|
15
|
Gao X, Hou T, Wang L, Liu Y, Guo J, Zhang L, Yang T, Tang W, An M, Wen M. Aligned electrospun fibers of different diameters for improving cell migration capacity. Colloids Surf B Biointerfaces 2024; 234:113674. [PMID: 38039823 DOI: 10.1016/j.colsurfb.2023.113674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Electrospun fibers have gained significant attention as scaffolds in skin tissue engineering due to their biomimetic properties, which resemble the fibrous extracellular matrix. The morphological characteristics of electrospun fibers play a crucial role in determining cell behavior. However, the effects of electrospun fibers' arrangement and diameters on human skin fibroblasts (HSFs) remain elusive. Here, we revealed the impact of electrospun fiber diameters (700 nm, 2000 nm, and 3000 nm) on HSFs' proliferation, migration, and functional expression. The results demonstrated that all fibers exhibited good cytocompatibility. HSFs cultured on nanofibers (700 nm diameter) displayed a more dispersed and elongated morphology. Conversely, fibers with a diameter of 3000 nm exhibited a reduced specific surface area and lower adsorption of adhesion proteins, resulting in enhanced cell migration speed and effective migration rate. Meanwhile, the expression levels of migration-related genes and proteins were upregulated at 48 h for the 3000 nm fibers. This study demonstrated the unique role of fiber diameters in controlling the physiological functions of cells, especially decision-making and navigating migration in complex microenvironments of aligned electrospun fibers, and highlights the utility of these bioactive substitutes in skin tissue engineering applications.
Collapse
Affiliation(s)
- Xiang Gao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Tian Hou
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Jiqiang Guo
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Li Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tiantian Yang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Wenjie Tang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Meiwen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China.
| | - Meiling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
16
|
Guo K, Wang Y, Feng ZX, Lin XY, Wu ZR, Zhong XC, Zhuang ZM, Zhang T, Chen J, Tan WQ. Recent Development and Applications of Polydopamine in Tissue Repair and Regeneration Biomaterials. Int J Nanomedicine 2024; 19:859-881. [PMID: 38293610 PMCID: PMC10824616 DOI: 10.2147/ijn.s437854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
The various tissue damages are a severe problem to human health. The limited human tissue regenerate ability requires suitable biomaterials to help damage tissue repair and regeneration. Therefore, many researchers devoted themselves to exploring biomaterials suitable for tissue repair and regeneration. Polydopamine (PDA) as a natural and multifunctional material which is inspired by mussel has been widely applied in different biomaterials. The excellent properties of PDA, such as strong adhesion, photothermal and high drug-loaded capacity, seem to be born for tissue repair and regeneration. Furthermore, PDA combined with different materials can exert unexpected effects. Thus, to inspire researchers, this review summarizes the recent and representative development of PDA biomaterials in tissue repair and regeneration. This article focuses on why apply PDA in these biomaterials and what PDA can do in different tissue injuries.
Collapse
Affiliation(s)
- Kai Guo
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zi-Xuan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiao-Ying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zhang-Rui Wu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xin-Cao Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Ze-Ming Zhuang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Tao Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jian Chen
- Department of Ultrasonography, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang Province, People’s Republic of China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
17
|
Praharaj R, Rautray TR. Polymer Composites for Biomedical Applications. ENGINEERING MATERIALS 2024:489-532. [DOI: 10.1007/978-981-97-2075-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Jolly R, Furkan M, Khan AA, Ahmed SS, Khan RH, Singh N, Shakir M. Zizyphus mauritiana seed extract: Paving the way for next-generation bone constructs with nano-fluorohydroxyapatite/carboxymethyl chitosan nanocomposite scaffold. Int J Biol Macromol 2024; 254:127913. [PMID: 37939772 DOI: 10.1016/j.ijbiomac.2023.127913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
This is the first study that explored the potential use of Zizyphus mauritiana seed extract (ZSE) to synthesize nano-fluorohydroxyapatite/carboxymethyl chitosan nanocomposite scaffolds at different concentrations (CFZ1, CFZ2 and CFZ3) using co-precipitation method. The proposed scaffolds showed presence of intermolecular H bonding interactions between the constituents, according to the FTIR. The mechanical studies revealed shore hardness of 72 ± 4.6 and optimal compressive modulus in case of CFZ3 [1654.48 ± 1.6 MPa], that was comparable with that of human cortical bone. The SEM, TEM and platelet adhesion images corroborated uniformly distributed needle like particles in case of CFZ3 with an average size ranging from 22 to 26 nm, linked rough morphology, and appropriate hemocompatibility. The markedly up regulation in the ALP activity and protein adsorption upon increasing ZSE concentration demonstrated that CFZ nanocomposite scaffolds were compatible with osteoblastic cells relative to CF nanocomposite. The cytotoxicity study indicated that CFZ nanocomposite do not induce toxicity over MG-63 and did not aggravate LDH leakage in contrast to CF. The histopathological investigations on albino rats confirmed significantly improved regeneration of bone in the repair of a critical-size [8 mm] calvarium defect. Therefore, CFZ3 nanocomposite scaffold represents a simple, off-the-shelf solution to the combined challenges associated with bone defects.
Collapse
Affiliation(s)
- Reshma Jolly
- Indian Reference Material (Bharatiya Nirdeshak Dravya) Divison, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
| | - Mohammad Furkan
- Interdisciplinary Biotechnology Unit, AMU, Aligarh 202002, India
| | - Aijaz Ahmed Khan
- Neuroanatomy Laboratory, Department of Anatomy, J. N. Medical College, AMU, Aligarh 202002, India
| | - Syed Sayeed Ahmed
- Department of Oral and Maxillofacial Surgery, Dr. Ziauddin Ahmad Dental College, AMU, Aligarh 202002,India
| | | | - Nahar Singh
- Indian Reference Material (Bharatiya Nirdeshak Dravya) Divison, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India.
| | - Mohammad Shakir
- Inorganic Chemistry Laboratory, Department of Chemistry, AMU, Aligarh 202002, India.
| |
Collapse
|
19
|
Asadullah S, Ahmed M, Sarfraz S, Zahra M, Asari A, Wahab NHA, Sobia F, Iqbal DN. Polyimide biocomposites coated with tantalum pentoxide for stimulation of cell compatibility and enhancement of biointegration for orthopedic implant. Heliyon 2023; 9:e23284. [PMID: 38144283 PMCID: PMC10746511 DOI: 10.1016/j.heliyon.2023.e23284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Orthopedic implants are an important tool in the treatment of musculoskeletal conditions and helped many patients to improve their quality of life. Various inorganic-organic biocomposites have been broadly investigated particularly in the area of load-bearing orthopedic/dental applications. Polyimide (PI) is a promising organic material and shows excellent mechanical properties, biocompatibility, bio-stability, and its elastic modulus is similar to human bone but it lacks bioactivity, which is very important for cell adhesion and ultimately for bone regeneration. In this research, tantalum pentoxide (Ta2O5) coating was prepared on the surface of PI by polydopamine (PDA) bonding. The results showed that Ta2O5 was evenly coated on the surface of PI, and with the concentration of Ta2O5 in the PDA suspension increased, the content of Ta2O5 particles on the surface of PI increased significantly. In addition, the Ta2O5 coating significantly increased the roughness and hydrophilicity of the PI matrix. Cell experiments showed that PI surface coating Ta2O5 could promote the proliferation, adhesion, and osteogenic differentiation of bone marrow-derived stromal cells (BMSCs). The results demonstrated that fabricating Ta2O5 coating on the surface of PI through PDA bonding could improve the biocompatibility as well as bioactivity of PI, and increase the application potential of PI in the field of bone repair materials.
Collapse
Affiliation(s)
- Syed Asadullah
- Chandbagh College Kot Jilani, Muridke-Sheikhupura Road, Muridke, Pakistan
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore-54770, Pakistan
| | - Sadaf Sarfraz
- Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
| | - Manzar Zahra
- Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
| | - Asnuzilawati Asari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nurul Huda Abdul Wahab
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Farah Sobia
- Punjab Food Authority, 83-C, Muslim Town, Lahore-Pakistan
| | - Dure Najaf Iqbal
- Department of Chemistry, The University of Lahore, Lahore-Pakistan
| |
Collapse
|
20
|
Anjum S, Arya DK, Saeed M, Ali D, Athar MS, Yulin W, Alarifi S, Wu X, Rajinikanth P, Ao Q. Multifunctional electrospun nanofibrous scaffold enriched with alendronate and hydroxyapatite for balancing osteogenic and osteoclast activity to promote bone regeneration. Front Bioeng Biotechnol 2023; 11:1302594. [PMID: 38026845 PMCID: PMC10665524 DOI: 10.3389/fbioe.2023.1302594] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Electrospun composite nanofiber scaffolds are well known for their bone and tissue regeneration applications. This research is focused on the development of PVP and PVA nanofiber composite scaffolds enriched with hydroxyapatite (HA) nanoparticles and alendronate (ALN) using the electrospinning technique. The developed nanofiber scaffolds were investigated for their physicochemical as well as bone regeneration potential. The results obtained from particle size, zeta potential, SEM and EDX analysis of HA nanoparticles confirmed their successful fabrication. Further, SEM analysis verified nanofiber's diameters within 200-250 nm, while EDX analysis confirmed the successful incorporation of HA and ALN into the scaffolds. XRD and TGA analysis revealed the amorphous and thermally stable nature of the nanofiber composite scaffolds. Contact angle, FTIR analysis, Swelling and biodegradability studies revealed the hydrophilicity, chemical compatibility, suitable water uptake capacity and increased in-vitro degradation making it appropriate for tissue regeneration. The addition of HA into nanofiber scaffolds enhanced the physiochemical properties. Additionally, hemolysis cell viability, cell adhesion and proliferation by SEM as well as confocal microscopy and live/dead assay results demonstrated the non-toxic and biocompatibility behavior of nanofiber scaffolds. Alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) assays demonstrated osteoblast promotion and osteoclast inhibition, respectively. These findings suggest that developed HA and ALN-loaded PVP/PVA-ALN-HA nanofiber composite scaffolds hold significant promise for bone regeneration applications.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Mohammad Saeed
- Department of Pharmacology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Wang Yulin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Xixi Wu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - P.S. Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Bolhari B, Chitsaz N, Nazari S, Behroozibakhsh M, Sooratgar A, Hashemian A. Effect of Fluorohydroxyapatite on Biological and Physical Properties of MTA Angelus. ScientificWorldJournal 2023; 2023:7532898. [PMID: 37964892 PMCID: PMC10643032 DOI: 10.1155/2023/7532898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Objectives This study aimed to assess the effect of addition of fluorohydroxyapatite (FHI) on biological and physical properties of mineral trioxide aggregate (MTA) Angelus. Materials and Methods In this in vitro, experimental study, nano-FHI powder was first synthesized, and the morphology and chemical structure of particles were evaluated by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Three groups were evaluated in this study: MTA Angelus, MTA modified with 10% FHA, and MTA modified with 15% FHA. After mixing, the materials were applied to ring molds (10 mm diameter, 1 mm height), and the setting time of the three groups was evaluated according to ISO6876 and ASTMC266-03 with a Gillmore needle. The pH was measured using a pH meter at 24 and 48 hours and 7 days after mixing. The cytotoxicity of the materials was assessed in freshly mixed form and after 1 and 7 days using the methyl thiazolyl tetrazolium (MTT) assay according to ISO10993-5. Data were analyzed by one-way and repeated measures ANOVA and Tukey's test (alpha = 0.05). Results The addition of FHA to MTA significantly decreased the initial setting time (P < 0.05) and had no significant effect on cell viability (compared with pure MTA Angelus) at 1 and 7 days. However, modified MTA groups in freshly mixed form showed significantly lower cell viability (P < 0.05). The pH remained alkaline at all time points. Conclusion Addition of 15% FHA to MTA Angelus decreased its setting time with no adverse effect on cell viability (except for fresh form) or pH.
Collapse
Affiliation(s)
- Behnam Bolhari
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Nazanin Chitsaz
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sara Nazari
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Behroozibakhsh
- Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Aidin Sooratgar
- Department of Endodontics, Tehran University of Medical Sciences (TUMS), International Campus, Tehran, Iran
| | - Atieh Hashemian
- Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
22
|
Pu F, Yu Y, Zhang Z, Wu W, Shao Z, Li C, Feng J, Xue L, Chen F. Research and Application of Medical Polyetheretherketone as Bone Repair Material. Macromol Biosci 2023; 23:e2300032. [PMID: 37088909 DOI: 10.1002/mabi.202300032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Indexed: 04/25/2023]
Abstract
Polyetheretherketone (PEEK) can potentially be used for bone repair because its elastic modulus is similar to that of human natural bone and good biocompatibility and chemical stability. However, its hydrophobicity and biological inertness limit its application in the biomedical field. Inspired by the composition, structure, and function of bone tissue, many strategies are proposed to change the structure and functionality of the PEEK surface. In this review, the applications of PEEK in bone repair and the optimization strategy for PEEK's biological activity are reviewed, which provides a direction for the development of multifunctional bone repair materials in the future.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yihan Yu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Wei Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chao Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jing Feng
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Longjian Xue
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| |
Collapse
|
23
|
Zhang Z, Shao J, Gao Y, Li Y, Liu T, Yang M. Research progress and future prospects of antimicrobial modified polyetheretherketone (PEEK) for the treatment of bone infections. Front Bioeng Biotechnol 2023; 11:1244184. [PMID: 37600311 PMCID: PMC10436002 DOI: 10.3389/fbioe.2023.1244184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Infection of the bone is a difficult problem in orthopedic diseases. The key and basis of the treatment of bone infection is the effective control of local infection, as well as the elimination of infection focus and dead cavities. The most commonly used approach utilized for the prevention and management of bone infection is the application of antibiotic bone cement. However, the incorporation of antibiotics into the cement matrix has been found to considerably compromise the mechanical characteristics of bone cement. Moreover, some investigations have indicated that the antibiotic release rate of antibiotic bone cement is relatively low. Polyetheretherketone (PEEK) and its composites have been considered to perfectly address the challenges above, according to its favorable biomechanical characteristics and diverse surface functionalizations. This article provides a comprehensive overview of the recent advancements in the antimicrobial modification of PEEK composites in the field of antibacterial therapy of bone infection. Furthermore, the potential application of PEEK-modified materials in clinical treatment was discussed and predicted.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junxing Shao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yuhuan Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Modi Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
24
|
Diaz F, Forsyth N, Boccaccini AR. Aligned Ice Templated Biomaterial Strategies for the Musculoskeletal System. Adv Healthc Mater 2023; 12:e2203205. [PMID: 37058583 PMCID: PMC11468517 DOI: 10.1002/adhm.202203205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/21/2023] [Indexed: 04/16/2023]
Abstract
Aligned pore structures present many advantages when conceiving biomaterial strategies for treatment of musculoskeletal disorders. Aligned ice templating (AIT) is one of the many different techniques capable of producing anisotropic porous scaffolds; its high versatility allows for the formation of structures with tunable pore sizes, as well as the use of many different materials. AIT has been found to yield improved compressive properties for bone tissue engineering (BTE), as well as higher tensile strength and optimized cellular alignment and proliferation in tendon and muscle repair applications. This review evaluates the work that has been done in the last decade toward the production of aligned pore structures by AIT with an outlook on the musculoskeletal system. This work describes the fundamentals of the AIT technique and focuses on the research carried out to optimize the biomechanical properties of scaffolds by modifying the pore structure, categorizing by material type and application. Related topics including growth factor incorporation into AIT scaffolds, drug delivery applications, and studies about immune system response will be discussed.
Collapse
Affiliation(s)
- Florencia Diaz
- Department of Materials Science and EngineeringInstitute of BiomaterialsUniversity of Erlangen‐Nuremberg91058ErlangenGermany
| | - Nicholas Forsyth
- The Guy Hilton Research LaboratoriesSchool of Pharmacy and BioengineeringFaculty of Medicine and Health SciencesKeele UniversityStoke on TrentST4 7QBUK
| | - Aldo R. Boccaccini
- Department of Materials Science and EngineeringInstitute of BiomaterialsUniversity of Erlangen‐Nuremberg91058ErlangenGermany
| |
Collapse
|
25
|
Wei Z, Zhang Z, Zhu W, Weng X. Polyetheretherketone development in bone tissue engineering and orthopedic surgery. Front Bioeng Biotechnol 2023; 11:1207277. [PMID: 37456732 PMCID: PMC10345210 DOI: 10.3389/fbioe.2023.1207277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Polyetheretherketone (PEEK) has been widely used in the medical field as an implant material, especially in bone tissue engineering and orthopedic surgery, in recent years. This material exhibits superior stability at high temperatures and is biosecured without harmful reactions. However, the chemical and biological inertness of PEEK still limits its applications. Recently, many approaches have been applied to improve its performance, including the modulation of physical morphology, chemical composition and antimicrobial agents, which advanced the osteointegration as well as antibacterial properties of PEEK materials. Based on the evolution of PEEK biomedical devices, many studies on the use of PEEK implants in spine surgery, joint surgery and trauma repair have been performed in the past few years, in most of which PEEK implants show better outcomes than traditional metal implants. This paper summarizes recent studies on the modification and application of biomedical PEEK materials, which provides further research directions for PEEK implants.
Collapse
Affiliation(s)
- Zhanqi Wei
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Ze Zhang
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Wei Zhu
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xisheng Weng
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Wu N, Gao H, Wang X, Pei X. Surface Modification of Titanium Implants by Metal Ions and Nanoparticles for Biomedical Application. ACS Biomater Sci Eng 2023; 9:2970-2990. [PMID: 37184344 DOI: 10.1021/acsbiomaterials.2c00722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Implant surface modification can improve osseointegration and reduce peri-implant inflammation. Implant surfaces are modified with metals because of their excellent mechanical properties and significant functions. Metal surface modification is divided into metal ions and nanoparticle surface modification. These two methods function by adding a finishing metal to the surface of the implant, and both play a role in promoting osteogenic, angiogenic, and antibacterial properties. Based on this, the nanostructural surface changes confer stronger antibacterial and cellular affinity to the implant surface. The current paper reviews the forms, mechanisms, and applications of nanoparticles and metal ion modifications to provide a foundation for the surface modification of implants.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
27
|
Sandmair MN, Kleber C, Ströbele DA, von See C. AFM Analysis of a Three-Point Flexure Tested, 3D Printing Definitive Restoration Material for Dentistry. J Funct Biomater 2023; 14:jfb14030152. [PMID: 36976076 PMCID: PMC10056548 DOI: 10.3390/jfb14030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Background: Three-dimensional printing is a rapidly developing technology across all industries. In medicine recent developments include 3D bioprinting, personalized medication and custom prosthetics and implants. To ensure safety and long-term usability in a clinical setting, it is essential to understand material specific properties. This study aims to analyze possible surface changes of a commercially available and approved DLP 3D printed definitive restoration material for dentistry after three-point flexure testing. Furthermore, this study explores whether Atomic Force Microscopy (AFM) is a feasible method for examination of 3D printed dental materials in general. This is a pilot study, as there are currently no studies that analyze 3D printed dental materials using an AFM. Methods: The present study consisted of a pretest followed by the main test. The resulting break force of the preliminary test was used to determine the force used in the main test. The main test consisted of atomic force microscopy (AFM) surface analysis of the test specimen followed by a three-point flexure procedure. After bending, the same specimen was analyzed with the AFM again, to observe possible surface changes. Results: The mean root mean square (RMS) roughness of the segments with the most stress was 20.27 nm (±5.16) before bending, while it was 26.48 nm (±6.67) afterward. The corresponding mean roughness (Ra) values were 16.05 nm (±4.25) and 21.19 nm (±5.71) Conclusions: Under three-point flexure testing, the surface roughness increased significantly. The p-value for RMS roughness was p = 0.003, while it was p = 0.006 for Ra. Furthermore, this study showed that AFM surface analysis is a suitable procedure to investigate surface changes in 3D printed dental materials.
Collapse
Affiliation(s)
- Maximilian N. Sandmair
- Research Center for Digital Technologies in Dentistry and CAD/CAM, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
- Correspondence: (M.N.S.); (C.v.S.)
| | - Christoph Kleber
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
| | - Dragan A. Ströbele
- Research Center for Digital Technologies in Dentistry and CAD/CAM, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
| | - Constantin von See
- Research Center for Digital Technologies in Dentistry and CAD/CAM, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
- Correspondence: (M.N.S.); (C.v.S.)
| |
Collapse
|
28
|
Gao Y, Pang Y, Wei S, Han Q, Miao S, Li M, Tian J, Fu C, Wang Z, Zhang X, Yang P, Liu Y. Amyloid-Mediated Nanoarchitectonics with Biomimetic Mineralization of Polyetheretherketone for Enhanced Osseointegration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10426-10440. [PMID: 36791143 DOI: 10.1021/acsami.2c20711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polyetheretherketone (PEEK), a widely used implant material, has attracted the attention of scientific researchers because of its bone-matched elastic modulus, radiolucency, and chemical resistance. However, the bioinert chemical properties of PEEK do not promote bone apposition once implanted. In this study, using a phase-transitioned lysozyme (PTL) nanofilm as a sandwiched layer, a robust hydroxyapatite (HAp) coating on PEEK (HAp@PTL@PEEK) is constructed. The PTL nanofilm shows strong adhesion to the PEEK surface and induces biomimetic mineralization to form a compact HAp coating on PEEK in simulated body fluids. This HAp coating not only shares a higher adhesion strength and better stability but can also be applied to implants with complex 3D structures. HAp@PTL@PEEK showed significantly enhanced osteogenic capacity when cultured with rat bone marrow mesenchymal stem cells by promoting initial cell adhesion, proliferation, and osteogenic differentiation in vitro. In vivo evaluations utilizing models of femoral condyle defects and skull defects confirm that the HAp coating substantially augments bone remodeling and osseointegration ability. Compared with the traditional method, our modified method is simpler, more environmentally friendly, and uses less hazardous components. Furthermore, the obtained HAp coating shares a higher adhesion strength to PEEK and a better osteogenic capacity. The study offers a novel method to improve the osseointegration of PEEK-based implants in biointerfaces and tissue engineering.
Collapse
Affiliation(s)
- Yingtao Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yanyun Pang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Shuo Wei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Qian Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shuting Miao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Min Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Juanhua Tian
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, West Five Road, No. 157, Xi'an 710004, China
| | - Chengyu Fu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Zhengge Wang
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China
| | - Xu Zhang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
- Institute of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
29
|
Haghani N, Hassanzadeh Nemati N, Khorasani MT, Bonakdar S. Fabrication of polycaprolactone/heparinized nano fluorohydroxyapatite scaffold for bone tissue engineering uses. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2182781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Nila Haghani
- Department of Biomedical Engineering, College of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nahid Hassanzadeh Nemati
- Department of Biomedical Engineering, College of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
30
|
Luo C, Liu Y, Peng B, Chen M, Liu Z, Li Z, Kuang H, Gong B, Li Z, Sun H. PEEK for Oral Applications: Recent Advances in Mechanical and Adhesive Properties. Polymers (Basel) 2023; 15:386. [PMID: 36679266 PMCID: PMC9864167 DOI: 10.3390/polym15020386] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
Polyetheretherketone (PEEK) is a thermoplastic material widely used in engineering applications due to its good biomechanical properties and high temperature stability. Compared to traditional metal and ceramic dental materials, PEEK dental implants exhibit less stress shielding, thus better matching the mechanical properties of bone. As a promising medical material, PEEK can be used as implant abutments, removable and fixed prostheses, and maxillofacial prostheses. It can be blended with materials such as fibers and ceramics to improve its mechanical strength for better clinical dental applications. Compared to conventional pressed and CAD/CAM milling fabrication, 3D-printed PEEK exhibits excellent flexural and tensile strength and parameters such as printing temperature and speed can affect its mechanical properties. However, the bioinert nature of PEEK can make adhesive bonding difficult. The bond strength can be improved by roughening or introducing functional groups on the PEEK surface by sandblasting, acid etching, plasma treatment, laser treatment, and adhesive systems. This paper provides a comprehensive overview of the research progress on the mechanical properties of PEEK for dental applications in the context of specific applications, composites, and their preparation processes. In addition, the research on the adhesive properties of PEEK over the past few years is highlighted. Thus, this review aims to build a conceptual and practical toolkit for the study of the mechanical and adhesive properties of PEEK materials. More importantly, it provides a rationale and a general new basis for the application of PEEK in the dental field.
Collapse
Affiliation(s)
- Chengfeng Luo
- School of Stomatology, China Medical University, Shenyang 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Ying Liu
- The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Bo Peng
- School of Stomatology, China Medical University, Shenyang 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Menghao Chen
- School of Stomatology, China Medical University, Shenyang 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Zhaogang Liu
- The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Zhanglong Li
- School of Stomatology, China Medical University, Shenyang 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Hai Kuang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Baijuan Gong
- School of Stomatology, China Medical University, Shenyang 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Zhimin Li
- School of Stomatology, China Medical University, Shenyang 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Hongchen Sun
- Hospital of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
31
|
Senra MR, Marques MDFV, Monteiro SN. Poly (Ether-Ether-Ketone) for Biomedical Applications: From Enhancing Bioactivity to Reinforced-Bioactive Composites-An Overview. Polymers (Basel) 2023; 15:373. [PMID: 36679253 PMCID: PMC9861117 DOI: 10.3390/polym15020373] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/13/2023] Open
Abstract
The global orthopedic market is forecasted to reach US$79.5 billion by the end of this decade. Factors driving the increase in this market are population aging, sports injury, road traffic accidents, and overweight, which justify a growing demand for orthopedic implants. Therefore, it is of utmost importance to develop bone implants with superior mechanical and biological properties to face the demand and improve patients' quality of life. Today, metallic implants still hold a dominant position in the global orthopedic implant market, mainly due to their superior mechanical resistance. However, their performance might be jeopardized due to the possible release of metallic debris, leading to cytotoxic effects and inflammatory responses in the body. Poly (ether-ether-ketone) (PEEK) is a biocompatible, high-performance polymer and one of the most prominent candidates to be used in manufacturing bone implants due to its similarity to the mechanical properties of bone. Unfortunately, the bioinert nature of PEEK culminates in its diminished osseointegration. Notwithstanding, PEEK's bioactivity can be improved through surface modification techniques and by the development of bioactive composites. This paper overviews the advantages of using PEEK for manufacturing implants and addresses the most common strategies to improve the bioactivity of PEEK in order to promote enhanced biomechanical performance.
Collapse
Affiliation(s)
- Mônica Rufino Senra
- Instituto de Macromoleculas Professor Eloisa Mano, Universidade Federal do Rio de Janeiro, Horácio Macedo Av., 2.030, Bloco J, Cidade Universitária, Rio de Janeiro CEP 21941-598, RJ, Brazil
| | - Maria de Fátima Vieira Marques
- Instituto de Macromoleculas Professor Eloisa Mano, Universidade Federal do Rio de Janeiro, Horácio Macedo Av., 2.030, Bloco J, Cidade Universitária, Rio de Janeiro CEP 21941-598, RJ, Brazil
| | - Sergio Neves Monteiro
- Department of Materials Science, Military Institute of Engineering, IME, Praça General Tibúrcio, 80, Urca, Rio de Janeiro CEP 22290-270, RJ, Brazil
| |
Collapse
|
32
|
Chakraborty U, Bhanjana G, Kaur N, Kaur G, Kaushik AK, Kumar S, Chaudhary GR. Design and testing of nanobiomaterials for orthopedic implants. ENGINEERED NANOSTRUCTURES FOR THERAPEUTICS AND BIOMEDICAL APPLICATIONS 2023:227-271. [DOI: 10.1016/b978-0-12-821240-0.00007-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
33
|
Antibacterial and Proliferative Effects of NaOH-Coated Titanium, Zirconia, and Ceramic-Reinforced PEEK Dental Composites on Bone Marrow Mesenchymal Stem Cells. Pharmaceutics 2022; 15:pharmaceutics15010098. [PMID: 36678727 PMCID: PMC9863913 DOI: 10.3390/pharmaceutics15010098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Several metallic and polymer-based implants have been fabricated for orthopedic applications. For instance, titanium (Ti), zirconia (Zr), and polyetheretherketone (PEEK) are employed due to their excellent biocompatibility properties. Hence, the present study aimed to compare the functional and biological properties of these three biomaterials with surface modification. For this purpose, Ti, Zr, and ceramic-reinforced PEEK (CrPEEK) were coated with NaOH and tested for the biological response. Our results showed that the surface modification of these biomaterials significantly improved the water contact, protein adhesion, and bioactivity compared with uncoated samples. Among the NaOH-coated biomaterials, Ti and CrPEEK showed higher protein absorption than Zr. However, the mineral binding ability was higher in CrPEEK than in the other two biomaterials. Although the coating improved the functional properties, NaOH coating did not influence the antibacterial effect against E. coli and S. aureus in these biomaterials. Similar to the antibacterial effects, the NaOH coating did not contribute any significant changes in cell proliferation and cell loading, and CrPEEK showed better biocompatibility among the biomaterials. Therefore, this study concluded that the surface modification of biomaterials could potentially improve the functional properties but not the antibacterial and biocompatibility, and CrPEEK could be an alternative material to Ti and Zr with desirable qualities in orthopedic applications.
Collapse
|
34
|
Rendas P, Figueiredo L, Machado C, Mourão A, Vidal C, Soares B. Mechanical performance and bioactivation of 3D-printed PEEK for high-performance implant manufacture: a review. Prog Biomater 2022; 12:89-111. [PMID: 36496542 PMCID: PMC10154446 DOI: 10.1007/s40204-022-00214-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Polyetheretherketone (PEEK) has stood out as the leading high-performance thermoplastic for the replacement of metals in orthopaedic, trauma and spinal implant applications due to its high biocompatibility and mechanical properties. Despite its potential for custom-made medical devices, 3D-printed PEEK's mechanical performance depends on processing parameters and its bioinertness may hinder bone opposition to the implant. Concerning these challenges, this review focuses on the available literature addressing the improvement of the mechanical performance of PEEK processed through "fused filament fabrication" (FFF) along with literature on bioactivation of PEEK for improved osseointegration. The reviewed research suggests that improvements can be achieved in mechanical performance of 3D-printed PEEK with adequate FFF parametrization while different bioactivation techniques can be used to improve the bioperformance of 3D-printed PEEK. The adequate approaches towards these procedures can increase PEEK's potential for the manufacture of high-performance custom-made implantable devices that display improved bone-implant integration and prevent stress shielding of the treated bone.
Collapse
|
35
|
Afritha NA, Sharanya, Moses J. 3-D Printed space maintainers - A review. INTERNATIONAL JOURNAL OF PEDODONTIC REHABILITATION 2022. [DOI: 10.56501/intjpedorehab.v7i2.578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although the idea of a digital workflow is not new in dentistry, it has just recently started to be applied in pediatric dentistry. Fabrication of space maintainer is a time-consuming procedure that needs constant communication with the laboratory to be receive and provide patients the best outcomes. These devices maintain space created by premature tooth loss so that the erupting permanent teeth will not experience any kind of malocclusion As a result of clinician's natural curiosity 3-D printed space maintainer have been developed. The advanced CAD/CAM technology used for fabricating digital space maintainers improves patient experience and compliance. The current paper provides an insight on available conventional space maintainers and various aspects of technologically advanced digitainers.
Collapse
|
36
|
Polyetheretherketone/
Nano‐Ag‐TiO
2
composite with mechanical properties and antibacterial activity. J Appl Polym Sci 2022. [DOI: 10.1002/app.53377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Zhao M, Chen G, Zhang S, Chen B, Wu Z, Zhang C. A bioactive poly(ether-ether-ketone) nanocomposite scaffold regulates osteoblast/osteoclast activity for the regeneration of osteoporotic bone. J Mater Chem B 2022; 10:8719-8732. [PMID: 36239238 DOI: 10.1039/d2tb01387h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Due to the lower regeneration capacity of the osteoporotic bone, the treatment of osteoporotic defects is extremely challenging in clinics. In this study, strontium-doped bioactive glass nanoparticles loaded with sodium alendronate (ALN), namely A-SrBG, were incorporated into the poly(ether-ether-ketone) matrix to fabricate a bioactive composite scaffold (ASP), which was expected to both inhibit bone resorption and promote bone regeneration. The results showed that such a composite scaffold with interconnected macropores (200-400 μm) could release Ca2+, Sr2+, and ALN in vitro. The proliferation, alkaline phosphatase (ALP) activity, expression of osteogenesis-related genes, and formation of calcified nodules of rat bone marrow stromal cells (rBMSCs) were clearly evidenced, and the reduction in the proliferation, tartrate-resistant acid phosphatase (TRAP) activity, cell fusion, and expression of osteoclastogenesis-related genes of osteoclasts was observed as well. In the presence of the ASP scaffold, enhanced osteogenesis along with inhibiting osteoclastogenesis was observed by modulating the osteoprotegerin (OPG)/receptor activator for nuclear factor κB ligand (RANKL) ratio. The efficacy of the composite scaffold in the regeneration of osteoporotic critical-sized cranial defect in a rat model was evaluated. Therefore, the bioactive composite scaffold with excellent biocompatibility and osteogenic potential could be a promising material for the repair of osteoporotic bone defects.
Collapse
Affiliation(s)
- Mengen Zhao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Guo Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Shixiong Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Bin Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Zhaoying Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
38
|
Maloo LM, Toshniwal SH, Reche A, Paul P, Wanjari MB. A Sneak Peek Toward Polyaryletherketone (PAEK) Polymer: A Review. Cureus 2022; 14:e31042. [DOI: 10.7759/cureus.31042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
|
39
|
Tian H, Wu R, Feng N, Zhang J, Zuo J. Recent advances in hydrogels-based osteosarcoma therapy. Front Bioeng Biotechnol 2022; 10:1042625. [PMID: 36312544 PMCID: PMC9597306 DOI: 10.3389/fbioe.2022.1042625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma (OS), as a typical kind of bone tumors, has a high incidence among adolescents. Traditional tumor eradication avenues for OS such as chemotherapy, surgical therapy and radiation therapy usually have their own drawbacks including recurrence and metastasis. In addition, another serious issue in the treatment of OS is bone repair because the bone after tumor invasion usually has difficulty in repairing itself. Hydrogels, as a synthetic or natural platform with a porous three-dimensional structure, can be applied as desirable platforms for OS treatment. They can not only be used as carriers for tumor therapeutic drugs but mimic the extracellular matrix for the growth and differentiation of mesenchymal stem cells (MSCs), thus providing tumor treatment and enhancing bone regeneration at the same time. This review focuses the application of hydrogels in OS suppression and bone regeneration, and give some suggests on future development.
Collapse
Affiliation(s)
- Hao Tian
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ronghui Wu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Na Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinrui Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan, China
- *Correspondence: Jinrui Zhang, ; Jianlin Zuo,
| | - Jianlin Zuo
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Jinrui Zhang, ; Jianlin Zuo,
| |
Collapse
|
40
|
Çayır Bozoğlu Ü, Kiremitçi A, Yurtsever MÇ, Gümüşderelioğlu M. Peek dental implants coated with boron-doped nano-hydroxyapatites: Investigation of in-vitro osteogenic activity. J Trace Elem Med Biol 2022; 73:127026. [PMID: 35797924 DOI: 10.1016/j.jtemb.2022.127026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/16/2022] [Accepted: 06/18/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND PEEK is a high-performance thermoplastic that has many potential uses in orthopaedics and dentistry, and it has been shown to be a substitute for titanium (Ti) implants. However, PEEK is an inherently inert material, and that characteristic limits its cellular adhesion and bone integration. The aim of this study is to determine a suitable surface modification method for increasing the osteogenic potential of polyetheretherketone (PEEK) implants used in periodontal applications. METHODS In this work, a nanostructured porous surface is created on PEEK material by sulfonation, in sulfuric acid at room temperature for 20 min, and thus SPEEK samples were obtained. Then, PEEK and SPEEK samples were coated with boron (B) doped hydroxyapatite (HAp) nanoparticles (B-nHAp) precipitated from concentrated synthetic body fluid (10xSBF) by a microwave-assisted method conducted at 600 W. In vitro cell culture studies were carried out with periodontal ligament cells (PDL) on the samples. Osteogenic differentiation of PDL cells on PEEK, SPEEK and SPEEK-B-nHAp was evaluated using ALP activity assay, hydroxyproline assay, and RT-qPCR. RESULTS In vitro cell culture studies disclosed improved adhesion and proliferation of PDL cells on the SPEEK and B-nHAp coated SPEEK surfaces (SPEEK-B-nHAp). Results of these assays confirmed that treated PEEK surfaces, especially SPEEK-B-nHAp, significantly enhanced osteogenic differentiation of PDL cells in vitro compared with untreated PEEK surfaces. CONCLUSION Here a simple, easy to-use, and efficient modification method based on the properties of boron is proposed for increasing osteogenic potential of PEEK implants.
Collapse
Affiliation(s)
- Ü Çayır Bozoğlu
- Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Turkey; Department of Molecular Biology and Genetics/Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - A Kiremitçi
- Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Turkey; Restorative Dentistry/Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | | | - M Gümüşderelioğlu
- Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Turkey; Bioengineering Department, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
41
|
Lu M, Sun L, Yao J, Zhao B, Liu Y, Shao Z, Chen X. Protein-inorganic hybrid porous scaffolds for bone tissue engineering. J Mater Chem B 2022; 10:6546-6556. [PMID: 36000545 DOI: 10.1039/d2tb00853j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous scaffolds hold promise in the treatment of bone defects for bone tissue engineering due to their interconnected porous structure and suitable mechanical properties. Herein, LAPONITE® (LAP), which is able to promote osteogenic differentiation, was introduced into regenerated silk fibroin (RSF) porous scaffolds. Due to hydrogen bonding and electrostatic interactions between RSF and LAP, RSF/LAP 3D porous scaffolds were successfully prepared. The pore size, porosity, and mechanical properties of the RSF/LAP 3D porous scaffolds were modulated during the preparation process. Evaluation of the proliferation of bone marrow mesenchymal stem cells (BMSCs) on the RSF/LAP 3D porous scaffolds in vitro indicated that the addition of LAP improved the adhesion and proliferation of cells. Additionally, alkaline phosphatase activity and osteospecific gene expression analysis showed that the RSF/LAP 3D porous scaffolds enhanced the osteogenic differentiation of BMSCs compared to the pristine RSF porous scaffolds, especially with a higher LAP content. The subcutaneous implantation of the RSF/LAP 3D porous scaffolds in rats demonstrated good histocompatibility in vivo. Therefore, RSF/LAP 3D porous scaffolds with good biocompatibility and biodegradability have good application prospects in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Minqi Lu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Liangyan Sun
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200433, People's Republic of China. .,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200433, People's Republic of China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Bingjiao Zhao
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200433, People's Republic of China. .,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200433, People's Republic of China. .,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200433, People's Republic of China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
42
|
Zhang S, Long J, Chen L, Zhang J, Fan Y, Shi J, Huang Y. Treatment methods toward improving the anti-infection ability of poly(etheretherketone) implants for medical applications. Colloids Surf B Biointerfaces 2022; 218:112769. [PMID: 35994991 DOI: 10.1016/j.colsurfb.2022.112769] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Due to its favorable chemical stability, biocompatibility, and mechanical properties, Poly(etheretherketone) (PEEK) is a promising material for repairing bone and dental hard tissue defects. However, there are critical disadvantages: PEEK is biologically and chemically inert, which influences osseointegration of implants and bonding strength of prostheses, and its mechanical properties still cannot meet the requirements for some medical applications. Furthermore, bacterial infections and inflammatory reactions often accompany bone defects caused by trauma or inflammation or teeth loss caused by periodontitis. Previous studies mainly focused on enhancing PEEK's bioactivity and mechanical performance, but PEEK also lacks effective anti-infection ability. Thus, it is necessary to improve its anti-infection ability, and this is considered in this paper from two aspects. The first is to inhibit the attachment and growth of bacteria on the material, and the second is to endow the material with immunoregulatory ability, which means mobilizing the host immune system to protect tissue from inflammation. In this review, we analyze and discuss the existing treatment methods to improve the antibacterial and immunomodulatory abilities of PEEK addressing their limitations, relevant future challenges, and required research efforts.
Collapse
Affiliation(s)
- Shuqi Zhang
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Jiazhen Long
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Lin Chen
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Jie Zhang
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Yunjian Fan
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Jiayu Shi
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Yuanjin Huang
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| |
Collapse
|
43
|
Siraj N, Hashmi SAR, Verma S. State‐of‐the‐art review on the high‐performance poly (ether ether ketone) composites for mechanical, tribological and bioactive characteristics. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Naved Siraj
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002, India & CSIR‐Advanced Materials and Processes Research Institute (AMPRI) Bhopal India
- CIPET: Center for Skilling and Technical Support Bhopal India
| | - Syed Azhar Rashid Hashmi
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002, India & CSIR‐Advanced Materials and Processes Research Institute (AMPRI) Bhopal India
| | - Sarika Verma
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002, India & CSIR‐Advanced Materials and Processes Research Institute (AMPRI) Bhopal India
| |
Collapse
|
44
|
Application of biomolecules modification strategies on PEEK and its composites for osteogenesis and antibacterial properties. Colloids Surf B Biointerfaces 2022; 215:112492. [PMID: 35430485 DOI: 10.1016/j.colsurfb.2022.112492] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022]
Abstract
As orthopedic and dental implants, polyetheretherketone (PEEK) is expected to be a common substitute material of titanium (Ti) and its alloys due to its good biocompatibility, chemical stability, and elastic modulus close to that of bone tissue. It could avoid metal allergy and bone resorption caused by the stress shielding effect of Ti implants, widely studied in the medical field. However, the lack of biological activity is not conducive to the clinical application of PEEK implants. Therefore, the surface modification of PEEK has increasingly become one of the research hotspots. Researchers have explored various biomolecules modification methods to effectively enhance the osteogenic and antibacterial activities of PEEK and its composites. Therefore, this review mainly summarizes the recent research of PEEK modified by biomolecules and discusses the further research directions to promote the clinical transformation of PEEK implants.
Collapse
|
45
|
Kumar M, Kumar R, Kumar S. Nanomaterial reinforced composite for biomedical implants applications: a mini-review. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2022. [DOI: 10.1680/jbibn.21.00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There is heavy demand for suitable implant materials with improved mechanical and biological properties. Classically, the demand was catered by conventional materials like metals, alloys, and polymer-based materials. Recently, nanomaterial reinforced composites have played a significant role in replacing conventional materials due to their excellent properties such as biocompatibility, bioactivity, high strength to weight ratio, long life, corrosion & wear resistance, and tailor-ability. Herein, we composed a systematic focus review on the role of nanoparticles in the form of composite materials for the advancements in orthopedic implants. Several nano materials-based reinforcements have been reviewed with various matrix materials, including metals, alloys, ceramics, composites, and polymers for biomedical implant applications. Moreover, the improved biological properties, mechanical properties, and other functionalities like infection resistance, drug delivery at the target, sensing, and detection of bone diseases, and corrosion & wear resistance are elaborated. At last, a particular focus has been given to the un-resolved challenges in orthopedic implant development.
Collapse
Affiliation(s)
- Manjeet Kumar
- Department of Mechanical Engineering, UIET, Panjab University, Chandigarh, India
| | - Rajesh Kumar
- Department of Mechanical Engineering, UIET, Panjab University, Chandigarh, India
| | - Sandeep Kumar
- Department of Bio and Nanotechnology, Guru Jambheshwar University, Hissar, India
| |
Collapse
|
46
|
Zheng Z, Hu L, Ge Y, Qi J, Sun Q, Li Z, Lin L, Tang B. Surface Modification of Poly(ether ether ketone) by Simple Chemical Grafting of Strontium Chondroitin Sulfate to Improve its Anti-Inflammation, Angiogenesis, Osteogenic Properties. Adv Healthc Mater 2022; 11:e2200398. [PMID: 35481900 DOI: 10.1002/adhm.202200398] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Indexed: 12/19/2022]
Abstract
Besides inducing osteogenic differentiation, the surface modification of poly(ether ether ketone) (PEEK) is highly expected to improve its angiogenic activity and reduce the inflammatory response in the surrounding tissue. Herein, strontium chondroitin sulfate is first attempted to be introduced into the surface of sulfonated PEEK (SPEEK-CS@Sr) based on the Schiff base reaction between PEEK and ethylenediamine (EDA) and the amidation reaction between EDA and chondroitin sulfate (CS). The surface characteristics of SPEEK-CS@Sr implant are systematically investigated, and its biological properties in vitro and in vivo are also evaluated. The results show that the surface of SPEEK-CS@Sr implant exhibits a 3D microporous structure and good hydrophilicity, and can steadily release Sr ions. Importantly, the SPEEK-CS@Sr not only displays excellent biocompatibility, but also can remarkably promote cell adhesion and spread, improve osteogenic activity and angiogenic activity, and reduce the inflammatory response compared to the original PEEK. Therefore, this study presents the surface modification of PEEK material by simple chemical grafting of strontium chondroitin sulfate to improve its angiogenesis, anti-inflammation, and osteogenic properties, and the as-fabricated SPEEK-CS@Sr has the potential to serve as a promising orthopedic implant in bone tissue engineering.
Collapse
Affiliation(s)
- Zhe Zheng
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
| | - Liqiu Hu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
| | - Yongmei Ge
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
- Harbin Institute of Technology Harbin Heilongjiang P. R. China
| | - Jianchao Qi
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
- Department of Joint and Orthopedics Zhujiang Hospital Southern Medical University Guangzhou Guangdong P. R. China
- Department of Emergency surgery Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital Fuzhou P. R. China
| | - Qili Sun
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
| | - Zhenjian Li
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
| | - Lijun Lin
- Department of Joint and Orthopedics Zhujiang Hospital Southern Medical University Guangzhou Guangdong P. R. China
| | - Bin Tang
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research Shenzhen Guangdong P. R. China
- Shenzhen Key Laboratory of Cell Microenvironment Shenzhen Guangdong P. R. China
| |
Collapse
|
47
|
Joseph J, Parameswaran R, Gopalakrishna Panicker U. Recent advancements in blended and reinforced polymeric systems as bioscaffolds. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2066666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jasmin Joseph
- Department of Chemistry, National Institute of Technology, Calicut, India
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | |
Collapse
|
48
|
Jin Y, Wang Y, Chen Y, Han T, Chen Y, Wang C. Enhanced Antibacterial Ability and Bioactivity of Polyetherketoneketone Modified with LL-37. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4578-4588. [PMID: 35380840 DOI: 10.1021/acs.langmuir.1c03319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyetherketoneketone (PEKK) is considered to be a potential substitute material for metal bone implants because of its advantageous biocompatibility, chemical stability, and mechanical properties, but clinical application has been severely restricted due to PEKK's lack of antibacterial ability and biological activity. In this study, LL-37, a natural human antimicrobial peptide, was successfully modified on the PEKK surface with polydopamine as the intermediate layer and released continuously for more than 6 days. The results of the MTT assay, colony counts, and Live/Dead staining demonstrated that compared to unmodified PEKK, the LL-37-modified PEKK significantly inhibited the adhesion, vitality, and bacterial biofilm growth of Staphylococcus aureus and Escherichia coli in a concentration-dependent way. Furthermore, the LL-37-modified PEKK enhanced biocompatibility (cell adhesion and viability) and promoted osteogenic differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells. Our data suggested that LL-37-modified PEKK might be a promising material for use in orthopedic implants.
Collapse
Affiliation(s)
- Yabing Jin
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Yijin Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Yuhong Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Tianlei Han
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Yiyi Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Chen Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
49
|
TiO2 Nanocoatings with Controllable Crystal Type and Nanoscale Topography on Zirconia Implants to Accelerate Bone Formation. Bioinorg Chem Appl 2022; 2022:8650659. [PMID: 35529315 PMCID: PMC9068347 DOI: 10.1155/2022/8650659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
In dentistry, zirconia implants have emerged as a promising alternative for replacing missing teeth due to their superior aesthetic performance and chemical stability. To improve the osseointegration of zirconia implants, modifying their surface with hierarchical micro/nanotopography and bioactive chemical composition are two effective ways. In this work, a microscale topography was prepared on a zirconia surface using hydrofluoric acid etching, and then a 50 nm TiO2 nanocoating was deposited via atomic layer deposition (ALD). Subsequently, an annealing treatment was used to transform the TiO2 from amorphous to anatase and simultaneously generate nanoscale topography. Various investigations into the coating surface morphology, topography, wettability, and chemical composition were carried out using scanning electron microscopy, white light interferometry, contact-angle measurement, X-ray diffraction, and X-ray photoelectron spectroscopy. In addition, in vitro cytocompatibility and osteogenic potential performance of the coatings were evaluated by human bone marrow mesenchymal stem cells (hBMSCs), and in vivo osseointegration performance was assessed in a rat femoral condyle model. Moreover, the possible mechanism was also investigated. The deposition of TiO2 film with/without annealing treatment did not alter the microscale roughness of the zirconia surface, whereas the nanotopography changed significantly after annealing. The in vitro studies revealed that the anatase TiO2 coating with regular wavelike nanostructure could promote the adhesion and proliferation of osteoblasts and further improve the osteogenic potential in vitro and osseointegration in vivo. These positive effects may be caused by nanoscale topography via the canonical Wnt/β-catenin pathway. The results suggest that using ALD in combination with annealing treatment to fabricate a nanotopographic TiO2 coating is a promising way to improve the osteogenic properties of zirconia implants.
Collapse
|
50
|
Qin S, Lu Z, Gan K, Qiao C, Li B, Chen T, Gao Y, Jiang L, Liu H. Construction of a
BMP
‐2 gene delivery system for polyetheretherketone bone implant material and its effect on bone formation in vitro. J Biomed Mater Res B Appl Biomater 2022; 110:2075-2088. [PMID: 35398972 DOI: 10.1002/jbm.b.35062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Shuang Qin
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Zhengkuan Lu
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Kang Gan
- Department of Stomatology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Chunyan Qiao
- Department of Oral Pathology, Hospital of Stomatology Jilin University Changchun China
| | - Baosheng Li
- Department of Dental Implantology, Hospital of Stomatology Jilin University Changchun China
| | - Tianjie Chen
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Yunbo Gao
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Lingling Jiang
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Hong Liu
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| |
Collapse
|