1
|
Dodean RA, Li Y, Zhang X, Caridha D, Madejczyk MS, Jin X, Dennis WE, Chetree R, Kudyba K, McEnearney S, Lee PJ, Blount C, DeLuca J, Vuong C, Pannone K, Dinh HT, Mdaki K, Leed S, Martin ML, Pybus BS, Pou S, Winter RW, Liebman KM, Williams R, Kumar A, Chim-Ong A, Cui L, Orena S, Assimwe J, Tibagambirwa I, Byaruhanga O, Angutoko P, Legac J, Kreutzfeld O, Rosenthal PJ, Cooper RA, Nilsen A, Riscoe MK, Roth A, Kancharla P, Kelly JX. Development of Next-Generation Antimalarial Acridones with Radical Cure Potential. J Med Chem 2025; 68:8817-8840. [PMID: 40179277 PMCID: PMC12021554 DOI: 10.1021/acs.jmedchem.5c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Building from our previous lead compound T111 (1) possessing activity against both Plasmodium falciparum asexual blood-stage (ABS) and Plasmodium berghei liver-stage (LS) parasites, next-generation antimalarial acridones were systematically designed and synthesized. A large number of newly generated acridones displayed excellent antimalarial activities against both ABS and LS parasites, with feasible safety and metabolic profiles. In a high-throughput hypnozoitocidal assay using Plasmodium cynomolgi, a number of these acridones significantly inhibited schizont and hypnozoite formation in both prophylactic and radical cure-dosing modes. Notably, newer generation acridones substantially mitigated cross-resistance with atovaquone. Representative compound 28 (T229) provided full LS protection and a sustained blood-stage cure for murine P. berghei infection dosed at both 10 and 40 mg/kg/day orally. Furthermore, compound 28 demonstrated a low risk of both genotoxicity and cardiotoxicity and was highly effective against ART-resistant parasites. This study demonstrated the first and robust antirelapse LS activity from a novel acridone family.
Collapse
Affiliation(s)
- Rozalia A. Dodean
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
| | - Yuexin Li
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
| | - Xiaowei Zhang
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
| | - Diana Caridha
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Michael S. Madejczyk
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Xiannu Jin
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - William E. Dennis
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Ravi Chetree
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Karl Kudyba
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Sharon McEnearney
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Patricia J. Lee
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Cameron Blount
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Jesse DeLuca
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Chau Vuong
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Kristina Pannone
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Hieu T. Dinh
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Kennedy Mdaki
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Susan Leed
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Monica L. Martin
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Brandon S. Pybus
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Sovitj Pou
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
| | - Rolf W. Winter
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
| | - Katherine M. Liebman
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
| | - Rachel Williams
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
| | - Amrendra Kumar
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Anongruk Chim-Ong
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Stephen Orena
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | | | | | - Jennifer Legac
- Department of Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Oriana Kreutzfeld
- Department of Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Roland A. Cooper
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | - Aaron Nilsen
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
- Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, 97239, United States
| | - Michael K. Riscoe
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, 97239, United States
| | - Alison Roth
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Papireddy Kancharla
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Jane X. Kelly
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
| |
Collapse
|
2
|
Korbmacher F, Bernabeu M. Induced pluripotent stem cell-based tissue models to study malaria: a new player in the research game. Curr Opin Microbiol 2025; 84:102585. [PMID: 40010012 DOI: 10.1016/j.mib.2025.102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/28/2025]
Abstract
Most in vitro studies on parasite development and pathogenesis in the human host have been conducted using traditional primary or immortalized cells, despite their inherent limitations. Breakthroughs in the field of induced pluripotent stem cells (iPSCs) are revolutionizing disease modeling, offering alternatives to traditional in vivo and in vitro infection models. Human iPSCs differentiate into all cell types, proliferate indefinitely, and offer experimental advantages, like genome editing and donor control. iPSCs can be engineered into complex 3D tissue models that closely mimic morphology and function of their in vivo counterparts and allow for precise experimental manipulation. The physiological complexity of iPSC-based tissue models has improved rapidly. Given Plasmodium's systemic impact across multiple organs, these models provide an invaluable resource for studying parasite-tissue interactions. This opinion article focuses on recent developments of iPSC-based models for Plasmodium research. We describe the main highlights and potential use of these systems while acknowledging current limitations.
Collapse
Affiliation(s)
- François Korbmacher
- European Molecular Biology Laboratory (EMBL) Barcelona, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Maria Bernabeu
- European Molecular Biology Laboratory (EMBL) Barcelona, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
3
|
Zondag R, Ploeger E, Kocken CHM, Bártfai R. Unravelling malaria latency: parasite intrinsic and environmental factors influencing dormant liver stages. Trends Parasitol 2025; 41:102-114. [PMID: 39809619 DOI: 10.1016/j.pt.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025]
Abstract
Hypnozoites - dormant Plasmodium parasites in the liver - can cause relapse infections and form a major obstacle to malaria eradication. The mechanisms controlling dormancy remain poorly understood, but hypnozoite formation and reactivation is likely regulated by a combination of parasite intrinsic factors and external stimuli. We reviewed current knowledge of Plasmodium dormancy and drew parallels with dormancy in other parasites and life-cycle stages. Epigenetic, post-transcriptional, or post-translational regulation probably jointly control hypnozoite dormancy at the intrinsic level. Additionally, environmental factors, such as vector availability, host wellbeing, and tissue microenvironment, could be instrumental to hypnozoite reactivation. A better understanding of how external stimuli influence the intrinsic reactivation switch at a mechanistic level will be required to expand the limited toolset to combat relapsing malaria.
Collapse
Affiliation(s)
- Ruth Zondag
- Department of Molecular Biology, Radboud University, 6525GA, Nijmegen, The Netherlands
| | - Ellen Ploeger
- Department of Molecular Biology, Radboud University, 6525GA, Nijmegen, The Netherlands; Department of Parasitology, Biomedical Primate Research Centre, 2288GJ, Rijswijk, The Netherlands
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Centre, 2288GJ, Rijswijk, The Netherlands
| | - Richárd Bártfai
- Department of Molecular Biology, Radboud University, 6525GA, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Amanzougaghene N, Tajeri S, Franetich JF, Ashraf K, Soulard V, Bigeard P, Guindo CO, Bouillier C, Lemaitre J, Relouzat F, Legrand R, Kocken CHM, Zeeman AM, Roobsoong W, Sattabongkot J, Yang Z, Snounou G, Mazier D. Azithromycin disrupts apicoplast biogenesis in replicating and dormant liver stages of the relapsing malaria parasites Plasmodium vivax and Plasmodium cynomolgi. Int J Antimicrob Agents 2024; 63:107112. [PMID: 38367843 DOI: 10.1016/j.ijantimicag.2024.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
The control and elimination of malaria caused by Plasmodium vivax is hampered by the threat of relapsed infection resulting from the activation of dormant hepatic hypnozoites. Currently, only the 8-aminoquinolines, primaquine and tafenoquine, have been approved for the elimination of hypnozoites, although their use is hampered by potential toxicity. Therefore, an alternative radical curative drug that safely eliminates hypnozoites is a pressing need. This study assessed the potential hypnozoiticidal activity of the antibiotic azithromycin, which is thought to exert antimalarial activity by inhibiting prokaryote-like ribosomal translation within the apicoplast, an indispensable organelle. The results show that azithromycin inhibited apicoplast development during liver-stage schizogony in P. vivax and Plasmodium cynomolgi, leading to impaired parasite maturation. More importantly, this study found that azithromycin is likely to impair the hypnozoite's apicoplast, resulting in the loss of this organelle. Subsequently, using a recently developed long-term hepatocyte culture system, this study found that this loss likely induces a delay in the hypnozoite activation rate, and that those parasites that do proceed to schizogony display liver-stage arrest prior to differentiating into hepatic merozoites, thus potentially preventing relapse. Overall, this work provides evidence for the potential use of azithromycin for the radical cure of relapsing malaria, and identifies apicoplast functions as potential drug targets in quiescent hypnozoites.
Collapse
Affiliation(s)
- Nadia Amanzougaghene
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France; Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses and Kremlin-Bicêtre, France
| | - Shahin Tajeri
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Jean-François Franetich
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Kutub Ashraf
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Valérie Soulard
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Pierre Bigeard
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Cheick Oumar Guindo
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Camille Bouillier
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses and Kremlin-Bicêtre, France
| | - Julien Lemaitre
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses and Kremlin-Bicêtre, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses and Kremlin-Bicêtre, France
| | - Roger Legrand
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses and Kremlin-Bicêtre, France
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Anne-Marie Zeeman
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine Mahidol University, Bangkok, Thailand
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Chenggong New Town, Kunming, Yunnan Province,China
| | - Georges Snounou
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses and Kremlin-Bicêtre, France.
| | - Dominique Mazier
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France.
| |
Collapse
|
5
|
Pottenger AE, Roy D, Srinivasan S, Chavas TEJ, Vlaskin V, Ho DK, Livingston VC, Maktabi M, Lin H, Zhang J, Pybus B, Kudyba K, Roth A, Senter P, Tyson G, Huber HE, Wesche D, Rochford R, Burke PA, Stayton PS. Liver-targeted polymeric prodrugs delivered subcutaneously improve tafenoquine therapeutic window for malaria radical cure. SCIENCE ADVANCES 2024; 10:eadk4492. [PMID: 38640243 PMCID: PMC11029812 DOI: 10.1126/sciadv.adk4492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Approximately 3.3 billion people live with the threat of Plasmodium vivax malaria. Infection can result in liver-localized hypnozoites, which when reactivated cause relapsing malaria. This work demonstrates that an enzyme-cleavable polymeric prodrug of tafenoquine addresses key requirements for a mass administration, eradication campaign: excellent subcutaneous bioavailability, complete parasite control after a single dose, improved therapeutic window compared to the parent oral drug, and low cost of goods sold (COGS) at less than $1.50 per dose. Liver targeting and subcutaneous dosing resulted in improved liver:plasma exposure profiles, with increased efficacy and reduced glucose 6-phosphate dehydrogenase-dependent hemotoxicity in validated preclinical models. A COGS and manufacturability analysis demonstrated global scalability, affordability, and the ability to redesign this fully synthetic polymeric prodrug specifically to increase global equity and access. Together, this polymer prodrug platform is a candidate for evaluation in human patients and shows potential for P. vivax eradication campaigns.
Collapse
Affiliation(s)
- Ayumi E. Pottenger
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Debashish Roy
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Selvi Srinivasan
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Thomas E. J. Chavas
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Vladmir Vlaskin
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Duy-Khiet Ho
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | - Mahdi Maktabi
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO 80045, USA
| | - Hsiuling Lin
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jing Zhang
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Brandon Pybus
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Karl Kudyba
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | - George Tyson
- George Tyson Consulting, Los Altos Hills, CA 94022, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hans E. Huber
- BioTD Strategies LLC, 213 Abbey Ln., Lansdale, PA 19446, USA
| | | | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO 80045, USA
| | - Paul A. Burke
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Burke Bioventures LLC, 1 Broadway 14th Floor, Cambridge, MA 02142, USA
| | - Patrick S. Stayton
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Scheiner M, Burda PC, Ingmundson A. Moving on: How malaria parasites exit the liver. Mol Microbiol 2024; 121:328-340. [PMID: 37602900 DOI: 10.1111/mmi.15141] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
An essential step in the life cycle of malaria parasites is their egress from hepatocytes, which enables the transition from the asymptomatic liver stage to the pathogenic blood stage of infection. To exit the liver, Plasmodium parasites first disrupt the parasitophorous vacuole membrane that surrounds them during their intracellular replication. Subsequently, parasite-filled structures called merosomes emerge from the infected cell. Shrouded by host plasma membrane, like in a Trojan horse, parasites enter the vasculature undetected by the host immune system and travel to the lung where merosomes rupture, parasites are released, and the blood infection stage begins. This complex, multi-step process must be carefully orchestrated by the parasite and requires extensive manipulation of the infected host cell. This review aims to outline the known signaling pathways that trigger exit, highlight Plasmodium proteins that contribute to the release of liver-stage merozoites, and summarize the accompanying changes to the hepatic host cell.
Collapse
Affiliation(s)
- Mattea Scheiner
- Molecular Parasitology, Humboldt University Berlin, Berlin, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | | |
Collapse
|
7
|
Xing C, Kemas A, Mickols E, Klein K, Artursson P, Lauschke VM. The choice of ultra-low attachment plates impacts primary human and primary canine hepatocyte spheroid formation, phenotypes, and function. Biotechnol J 2024; 19:e2300587. [PMID: 38403411 DOI: 10.1002/biot.202300587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/27/2024]
Abstract
Organotypic three-dimensional liver spheroid cultures in which hepatic cells retain their molecular phenotype and functionality have emerged as powerful tools for preclinical drug development. In recent years a multitude of culture systems have been developed; however, a thorough side-by-side benchmarking of the different methods is lacking. Here, we compared the performance of ten different 96- and 384-well microplate types to support spheroid formation and long-term culture. Specifically, we evaluated differences in spheroid formation kinetics, viability, functionality, expression patterns, and their utility for hepatotoxicity assessments using primary human hepatocytes (PHH) and primary canine hepatocytes (PCH). All 96-well plates enabled formation of PHH liver spheroids, albeit with differences between plates in spheroid size, geometry, and reproducibility. Performance of different 384-wells was less consistent. Only 6/10 microplates supported the formation of PCH aggregates. Interestingly, even if PCH aggregates in these six microplates were more loosely packed than PHH spheroids, they maintained their function and were compatible with long-term pharmacological and toxicological assays. Overall, Corning and Biofloat plates showed the best performance in the formation of both human and canine liver spheroids with highest viability, most physiologically relevant phenotypes, superior CYP activity and lowest coefficient of variation in toxicity assays. The presented data constitutes a valuable resource that demonstrates the impacts of current ultra-low attachment plates on liver spheroid metrics and can guide evidence-based plate selection. Combined, these results have important implications for the cross-comparison of different studies and can facilitate the standardization and reproducibility of three-dimensional liver culture experiments.
Collapse
Affiliation(s)
- Chen Xing
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Aurino Kemas
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | - Kathrin Klein
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Hsu HC, Li D, Zhan W, Ye J, Liu YJ, Leung A, Qin J, Crespo B, Gamo FJ, Zhang H, Cui L, Roth A, Kirkman LA, Li H, Lin G. Structures revealing mechanisms of resistance and collateral sensitivity of Plasmodium falciparum to proteasome inhibitors. Nat Commun 2023; 14:8302. [PMID: 38097652 PMCID: PMC10721928 DOI: 10.1038/s41467-023-44077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
The proteasome of the malaria parasite Plasmodium falciparum (Pf20S) is an advantageous drug target because its inhibition kills P. falciparum in multiple stages of its life cycle and synergizes with artemisinins. We recently developed a macrocyclic peptide, TDI-8304, that is highly selective for Pf20S over human proteasomes and is potent in vitro and in vivo against P. falciparum. A mutation in the Pf20S β6 subunit, A117D, confers resistance to TDI-8304, yet enhances both enzyme inhibition and anti-parasite activity of a tripeptide vinyl sulfone β2 inhibitor, WLW-vs. Here we present the high-resolution cryo-EM structures of Pf20S with TDI-8304, of human constitutive proteasome with TDI-8304, and of Pf20Sβ6A117D with WLW-vs that give insights into the species selectivity of TDI-8304, resistance to it, and the collateral sensitivity associated with resistance, including that TDI-8304 binds β2 and β5 in wild type Pf20S as well as WLW-vs binds β2 and β5 in Pf20Sβ6A117D. We further show that TDI-8304 kills P. falciparum as quickly as chloroquine and artemisinin and is active against P. cynomolgi at the liver stage. This increases interest in using these structures to facilitate the development of Pf20S inhibitors that target multiple proteasome subunits and limit the emergence of resistance.
Collapse
Affiliation(s)
- Hao-Chi Hsu
- Department of Structural Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Daqiang Li
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Wenhu Zhan
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Jianxiang Ye
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Yi Jing Liu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Annie Leung
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Junling Qin
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Benigno Crespo
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Francisco-Javier Gamo
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Hao Zhang
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, The Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, 20910, MD, USA
| | - Laura A Kirkman
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA.
| | - Gang Lin
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
9
|
Sun Y, Ma H. Application of three-dimensional cell culture technology in screening anticancer drugs. Biotechnol Lett 2023; 45:1073-1092. [PMID: 37421554 DOI: 10.1007/s10529-023-03410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/10/2023]
Abstract
The drug development process involves a variety of drug activity evaluations, which can determine drug efficacy, strictly analyze the biological indicators after the drug action, and use these indicators as the preclinical drug evaluation criteria. At present, most of the screening of preclinical anticancer drugs mainly relies on traditional 2D cell culture. However, this traditional technology cannot simulate the tumor microenvironment in vivo, let alone reflect the characteristics of solid tumors in vivo, and has a relatively poor ability to predict drug activity. 3D cell culture is a technology between 2D cell culture and animal experiments, which can better reflect the biological state in vivo and reduce the consumption of animal experiments. 3D cell culture can link the individual study of cells with the study of the whole organism, reproduce in vitro the biological phenotype of cells in vivo more greatly, and thus predict the activity and resistance of anti-tumor drugs more accurately. In this paper, the common techniques of 3D cell culture are discussed, with emphasis on its main advantages and application in the evaluation of anti-tumor resistance, which can provide strategies for the screening of anti-tumor drugs.
Collapse
Affiliation(s)
- Yaqian Sun
- Oncology laboratory, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| | - Haiyang Ma
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi, 030024, People's Republic of China
| |
Collapse
|
10
|
Voorberg-van der Wel A, Zeeman AM, Kocken CHM. Transfection Models to Investigate Plasmodium vivax-Type Dormant Liver Stage Parasites. Pathogens 2023; 12:1070. [PMID: 37764878 PMCID: PMC10534883 DOI: 10.3390/pathogens12091070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Plasmodium vivax causes the second highest number of malaria morbidity and mortality cases in humans. Several biological traits of this parasite species, including the formation of dormant stages (hypnozoites) that persist inside the liver for prolonged periods of time, present an obstacle for intervention measures and create a barrier for the elimination of malaria. Research into the biology of hypnozoites requires efficient systems for parasite transmission, liver stage cultivation and genetic modification. However, P. vivax research is hampered by the lack of an in vitro blood stage culture system, rendering it reliant on in vivo-derived, mainly patient, material for transmission and liver stage culture. This has also resulted in limited capability for genetic modification, creating a bottleneck in investigations into the mechanisms underlying the persistence of the parasite inside the liver. This bottleneck can be overcome through optimal use of the closely related and experimentally more amenable nonhuman primate (NHP) parasite, Plasmodium cynomolgi, as a model system. In this review, we discuss the genetic modification tools and liver stage cultivation platforms available for studying P. vivax persistent stages and highlight how their combined use may advance our understanding of hypnozoite biology.
Collapse
Affiliation(s)
- Annemarie Voorberg-van der Wel
- Department of Parasitology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.-M.Z.); (C.H.M.K.)
| | | | | |
Collapse
|
11
|
de Oliveira LF, Filho DM, Marques BL, Maciel GF, Parreira RC, do Carmo Neto JR, Da Silva PEF, Guerra RO, da Silva MV, Santiago HDC, Birbrair A, Kihara AH, Dias da Silva VJ, Glaser T, Resende RR, Ulrich H. Organoids as a novel tool in modelling infectious diseases. Semin Cell Dev Biol 2023; 144:87-96. [PMID: 36182613 DOI: 10.1016/j.semcdb.2022.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022]
Abstract
Infectious diseases worldwide affect human health and have important societal impacts. A better understanding of infectious diseases is urgently needed. In vitro and in vivo infection models have brought notable contributions to the current knowledge of these diseases. Organoids are multicellular culture systems resembling tissue architecture and function, recapitulating many characteristics of human disease and elucidating mechanisms of host-infectious agent interactions in the respiratory and gastrointestinal systems, the central nervous system and the skin. Here, we discuss the applicability of the organoid technology for modeling pathogenesis, host response and features, which can be explored for the development of preventive and therapeutic treatments.
Collapse
Affiliation(s)
- Lucas Felipe de Oliveira
- Departamento de Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil; Instituto Nacional de Ciência e Tecnologia de Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Daniel Mendes Filho
- Departamento de Fisiologia, Escola Médica de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Bruno Lemes Marques
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal deGoiás, Goiânia, GO, Brazil
| | | | | | - José Rodrigues do Carmo Neto
- Departamento de Biociência e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Rhanoica Oliveira Guerra
- Departamento de Microbiologia, Imunologia eParasitologia, Instituto de Ciências Naturais e Biológicas, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Marcos Vinicius da Silva
- Departamento de Microbiologia, Imunologia eParasitologia, Instituto de Ciências Naturais e Biológicas, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Helton da Costa Santiago
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Radiology, Columbia University Medical Center, New York, NY, USA; Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Belo Horizonte, MG, Brazil
| | - Alexandre H Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Valdo José Dias da Silva
- Departamento de Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil; Instituto Nacional de Ciência e Tecnologia de Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Talita Glaser
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Belo Horizonte, MG, Brazil
| | - Henning Ulrich
- Instituto Nacional de Ciência e Tecnologia de Medicina Regenerativa, Rio de Janeiro, RJ, Brazil; Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Sun XC, Kong DF, Zhao J, Faber KN, Xia Q, He K. Liver organoids: established tools for disease modeling and drug development. Hepatol Commun 2023; 7:02009842-202304010-00019. [PMID: 36972388 PMCID: PMC10043560 DOI: 10.1097/hc9.0000000000000105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/17/2023] [Indexed: 03/29/2023] Open
Abstract
In the past decade, liver organoids have evolved rapidly as valuable research tools, providing novel insights into almost all types of liver diseases, including monogenic liver diseases, alcohol-associated liver disease, metabolic-associated fatty liver disease, various types of (viral) hepatitis, and liver cancers. Liver organoids in part mimic the microphysiology of the human liver and fill a gap in high-fidelity liver disease models to a certain extent. They hold great promise to elucidate the pathogenic mechanism of a diversity of liver diseases and play a crucial role in drug development. Moreover, it is challenging but opportunistic to apply liver organoids for tailored therapies of various liver diseases. The establishment, applications, and challenges of different types of liver organoids, for example, derived from embryonic, adult, or induced pluripotent stem cells, to model different liver diseases, are presented in this review.
Collapse
Affiliation(s)
- Xi-Cheng Sun
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - De-Fu Kong
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
13
|
Faral-Tello P, Pagotto R, Bollati-Fogolín M, Francia ME. Modeling the human placental barrier to understand Toxoplasma gondii´s vertical transmission. Front Cell Infect Microbiol 2023; 13:1130901. [PMID: 36968102 PMCID: PMC10034043 DOI: 10.3389/fcimb.2023.1130901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Toxoplasma gondii is a ubiquitous apicomplexan parasite that can infect virtually any warm-blooded animal. Acquired infection during pregnancy and the placental breach, is at the core of the most devastating consequences of toxoplasmosis. T. gondii can severely impact the pregnancy’s outcome causing miscarriages, stillbirths, premature births, babies with hydrocephalus, microcephaly or intellectual disability, and other later onset neurological, ophthalmological or auditory diseases. To tackle T. gondii’s vertical transmission, it is important to understand the mechanisms underlying host-parasite interactions at the maternal-fetal interface. Nonetheless, the complexity of the human placenta and the ethical concerns associated with its study, have narrowed the modeling of parasite vertical transmission to animal models, encompassing several unavoidable experimental limitations. Some of these difficulties have been overcome by the development of different human cell lines and a variety of primary cultures obtained from human placentas. These cellular models, though extremely valuable, have limited ability to recreate what happens in vivo. During the last decades, the development of new biomaterials and the increase in stem cell knowledge have led to the generation of more physiologically relevant in vitro models. These cell cultures incorporate new dimensions and cellular diversity, emerging as promising tools for unraveling the poorly understood T. gondii´s infection mechanisms during pregnancy. Herein, we review the state of the art of 2D and 3D cultures to approach the biology of T. gondii pertaining to vertical transmission, highlighting the challenges and experimental opportunities of these up-and-coming experimental platforms.
Collapse
Affiliation(s)
- Paula Faral-Tello
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Romina Pagotto
- Cell Biology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Maria E. Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Maria E. Francia,
| |
Collapse
|
14
|
Roobsoong W, Yadava A, Draper SJ, Minassian AM, Sattabongkot J. The challenges of Plasmodium vivax human malaria infection models for vaccine development. Front Immunol 2023; 13:1006954. [PMID: 36685545 PMCID: PMC9849360 DOI: 10.3389/fimmu.2022.1006954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023] Open
Abstract
Controlled Human Malaria Infection models (CHMI) have been critical to advancing new vaccines for malaria. Stringent and safe preparation of a challenge agent is key to the success of any CHMI. Difficulty producing the Plasmodium vivax parasite in vitro has limited production of qualified parasites for CHMI as well as the functional assays required to screen and down-select candidate vaccines for this globally distributed parasite. This and other challenges to P. vivax CHMI (PvCHMI), including scientific, logistical, and ethical obstacles, are common to P. vivax research conducted in both non-endemic and endemic countries, with additional hurdles unique to each. The challenges of using CHMI for P. vivax vaccine development and evaluation, lessons learned from previous and ongoing clinical trials, and the way forward to effectively perform PvCHMI to support vaccine development, are discussed.
Collapse
Affiliation(s)
- Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Anjali Yadava
- Biologics Research & Development, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Simon J. Draper
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
15
|
Valenciano AL, Gomez-Lorenzo MG, Vega-Rodríguez J, Adams JH, Roth A. In vitro models for human malaria: targeting the liver stage. Trends Parasitol 2022; 38:758-774. [PMID: 35780012 PMCID: PMC9378454 DOI: 10.1016/j.pt.2022.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
The Plasmodium liver stage represents a vulnerable therapeutic target to prevent disease progression as the parasite resides in the liver before clinical representation caused by intraerythrocytic development. However, most antimalarial drugs target the blood stage of the parasite's life cycle, and the few drugs that target the liver stage are lethal to patients with a glucose-6-phosphate dehydrogenase deficiency. Furthermore, implementation of in vitro liver models to study and develop novel therapeutics against the liver stage of human Plasmodium species remains challenging. In this review, we focus on the progression of in vitro liver models developed for human Plasmodium spp. parasites, provide a brief review on important assay requirements, and lastly present recommendations to improve models to enhance the discovery process of novel preclinical therapeutics.
Collapse
Affiliation(s)
- Ana Lisa Valenciano
- Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA; Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Maria G Gomez-Lorenzo
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Joel Vega-Rodríguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - John H Adams
- Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
16
|
Gualdrón-López M, Díaz-Varela M, Zanghi G, Aparici-Herraiz I, Steel RW, Schäfer C, Cuscó P, Chuenchob V, Kangwangransan N, Billman ZP, Olsen TM, González JR, Roobsoong W, Sattabongkot J, Murphy SC, Mikolajczak SA, Borràs E, Sabidó E, Fernandez-Becerra C, Flannery EL, Kappe SH, del Portillo HA. Mass Spectrometry Identification of Biomarkers in Extracellular Vesicles From Plasmodium vivax Liver Hypnozoite Infections. Mol Cell Proteomics 2022; 21:100406. [PMID: 36030044 PMCID: PMC9520272 DOI: 10.1016/j.mcpro.2022.100406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 01/18/2023] Open
Abstract
Latent liver stages termed hypnozoites cause relapsing Plasmodium vivax malaria infection and represent a major obstacle in the goal of malaria elimination. Hypnozoites are clinically undetectable, and presently, there are no biomarkers of this persistent parasite reservoir in the human liver. Here, we have identified parasite and human proteins associated with extracellular vesicles (EVs) secreted from in vivo infections exclusively containing hypnozoites. We used P. vivax-infected human liver-chimeric (huHEP) FRG KO mice treated with the schizonticidal experimental drug MMV048 as hypnozoite infection model. Immunofluorescence-based quantification of P. vivax liver forms showed that MMV048 removed schizonts from chimeric mice livers. Proteomic analysis of EVs derived from FRG huHEP mice showed that human EV cargo from infected FRG huHEP mice contain inflammation markers associated with active schizont replication and identified 66 P. vivax proteins. To identify hypnozoite-specific proteins associated with EVs, we mined the proteome data from MMV048-treated mice and performed an analysis involving intragroup and intergroup comparisons across all experimental conditions followed by a peptide compatibility analysis with predicted spectra to warrant robust identification. Only one protein fulfilled this stringent top-down selection, a putative filamin domain-containing protein. This study sets the stage to unveil biological features of human liver infections and identify biomarkers of hypnozoite infection associated with EVs.
Collapse
Affiliation(s)
- Melisa Gualdrón-López
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain,IGTP, Institute for Health Sciences Trias I Pujol, Barcelona, Spain
| | - Miriam Díaz-Varela
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain,IGTP, Institute for Health Sciences Trias I Pujol, Barcelona, Spain
| | - Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Iris Aparici-Herraiz
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain,IGTP, Institute for Health Sciences Trias I Pujol, Barcelona, Spain
| | - Ryan W.J. Steel
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Carola Schäfer
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Pol Cuscó
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Vorada Chuenchob
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Niwat Kangwangransan
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Zachary P. Billman
- Department of Laboratory Medicine and Pathology, and Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Tayla M. Olsen
- Department of Laboratory Medicine and Pathology, and Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Juan R. González
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Wanlapa Roobsoong
- MVRU, Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | | | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, and Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Sebastian A. Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Eva Borràs
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carmen Fernandez-Becerra
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain,IGTP, Institute for Health Sciences Trias I Pujol, Barcelona, Spain
| | - Erika L. Flannery
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Stefan H.I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Hernando A. del Portillo
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain,IGTP, Institute for Health Sciences Trias I Pujol, Barcelona, Spain,ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain,For correspondence: Hernando A. del Portillo
| |
Collapse
|
17
|
Aparici Herraiz I, Caires HR, Castillo-Fernández Ó, Sima N, Méndez-Mora L, Risueño RM, Sattabongkot J, Roobsoong W, Hernández-Machado A, Fernandez-Becerra C, Barrias CC, del Portillo HA. Advancing Key Gaps in the Knowledge of Plasmodium vivax Cryptic Infections Using Humanized Mouse Models and Organs-on-Chips. Front Cell Infect Microbiol 2022; 12:920204. [PMID: 35873153 PMCID: PMC9302440 DOI: 10.3389/fcimb.2022.920204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium vivax is the most widely distributed human malaria parasite representing 36.3% of disease burden in the South-East Asia region and the most predominant species in the region of the Americas. Recent estimates indicate that 3.3 billion of people are under risk of infection with circa 7 million clinical cases reported each year. This burden is certainly underestimated as the vast majority of chronic infections are asymptomatic. For centuries, it has been widely accepted that the only source of cryptic parasites is the liver dormant stages known as hypnozoites. However, recent evidence indicates that niches outside the liver, in particular in the spleen and the bone marrow, can represent a major source of cryptic chronic erythrocytic infections. The origin of such chronic infections is highly controversial as many key knowledge gaps remain unanswered. Yet, as parasites in these niches seem to be sheltered from immune response and antimalarial drugs, research on this area should be reinforced if elimination of malaria is to be achieved. Due to ethical and technical considerations, working with the liver, bone marrow and spleen from natural infections is very difficult. Recent advances in the development of humanized mouse models and organs-on-a-chip models, offer novel technological frontiers to study human diseases, vaccine validation and drug discovery. Here, we review current data of these frontier technologies in malaria, highlighting major challenges ahead to study P. vivax cryptic niches, which perpetuate transmission and burden.
Collapse
Affiliation(s)
- Iris Aparici Herraiz
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Hugo R. Caires
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Óscar Castillo-Fernández
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Núria Sima
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Lourdes Méndez-Mora
- Department of Condensed Matter Physics, University of Barcelona (UB), Barcelona, Spain
| | - Ruth M. Risueño
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Aurora Hernández-Machado
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Department of Condensed Matter Physics, University of Barcelona (UB), Barcelona, Spain
- Centre de Recerca Matemàtica (CRM), Barcelona, Spain
| | - Carmen Fernandez-Becerra
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Cristina C. Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Hernando A. del Portillo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- *Correspondence: Hernando A. del Portillo,
| |
Collapse
|
18
|
Ramírez-Flores CJ, Tibabuzo Perdomo AM, Gallego-López GM, Knoll LJ. Transcending Dimensions in Apicomplexan Research: from Two-Dimensional to Three-Dimensional In Vitro Cultures. Microbiol Mol Biol Rev 2022; 86:e0002522. [PMID: 35412359 PMCID: PMC9199416 DOI: 10.1128/mmbr.00025-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Parasites belonging to the Apicomplexa phylum are among the most successful pathogens known in nature. They can infect a wide range of hosts, often remain undetected by the immune system, and cause acute and chronic illness. In this phylum, we can find parasites of human and veterinary health relevance, such as Toxoplasma, Plasmodium, Cryptosporidium, and Eimeria. There are still many unknowns about the biology of these pathogens due to the ethical and practical issues of performing research in their natural hosts. Animal models are often difficult or nonexistent, and as a result, there are apicomplexan life cycle stages that have not been studied. One recent alternative has been the use of three-dimensional (3D) systems such as organoids, 3D scaffolds with different matrices, microfluidic devices, organs-on-a-chip, and other tissue culture models. These 3D systems have facilitated and expanded the research of apicomplexans, allowing us to explore life stages that were previously out of reach and experimental procedures that were practically impossible to perform in animal models. Human- and animal-derived 3D systems can be obtained from different organs, allowing us to model host-pathogen interactions for diagnostic methods and vaccine development, drug testing, exploratory biology, and other applications. In this review, we summarize the most recent advances in the use of 3D systems applied to apicomplexans. We show the wide array of strategies that have been successfully used so far and apply them to explore other organisms that have been less studied.
Collapse
Affiliation(s)
- Carlos J. Ramírez-Flores
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Andrés M. Tibabuzo Perdomo
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Gina M. Gallego-López
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Park CG, Ryu CS, Sung B, Manz A, Kong H, Kim YJ. Transcriptomic and physiological analysis of endocrine disrupting chemicals Impacts on 3D Zebrafish liver cell culture system. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106105. [PMID: 35151072 DOI: 10.1016/j.aquatox.2022.106105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, extensive efforts have focused on developing in vitro platforms mimicking fish livers to better understand the acute or chronic effects of toxicants on lower aquatic vertebrates. Fish liver cell lines have emerged as a promising culture system for these in vitro platforms because they complement the currently limited in vitro tools that mostly consist of mammalian cell lines and adhere to the 3Rs: replacement, reduction, and refinement of living animal tests. However, monolayer cell lines have lower transcriptional and physiological responses upon exposure to toxic chemicals than freshly isolated primary cells. To overcome this challenge, we utilized a three-dimensional (3D) spheroid-based in vitro platform, in which hepatocyte cells had self-organized into spheroid forms via E-cadherin bonds. This platform exhibited augmented transcriptomic and phenotypic regulation of liver cells in comparison to monolayer cells. We examined the organoid platform using the zebrafish liver (ZFL) cell line as a model system. ZFL cells spontaneously clustered into 3D spheroids with long-term viability by optimizing cell seeding density on a non-adherent substrate. Interestingly, 3D ZFL spheroids treated with estrogenic chemicals were activated to synthesize a higher level of vitellogenin (Vtg) than monolayer cells. Whole-transcriptome sequencing analysis confirmed that 3D ZFL spheroids had greater transcriptional regulation of genes related to reproductive toxicological response and liver functions, such as the urea cycle, estrogen receptors, and vitellogenin, compared to monolayer cells. These results may contribute to the engineering of novel 3D in vitro platforms for screening harmful chemicals and improving understanding of the underlying liver toxicity mechanisms at the molecular and cellular levels.
Collapse
Affiliation(s)
- Chang Gyun Park
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Department of Systems Engineering, Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Chang Seon Ryu
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Baeckkyoung Sung
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, 34113 Daejeon, Republic of Korea
| | - Andreas Manz
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Department of Systems Engineering, Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Young Jun Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, 34113 Daejeon, Republic of Korea.
| |
Collapse
|
20
|
Zuieva A, Can S, Boelke F, Reuter S, Schattscheider S, Töpfer E, Westphal A, Mrowka R, Wölfl S. Real-time monitoring of immediate drug response and adaptation upon repeated treatment in a microfluidic chip system. Arch Toxicol 2022; 96:1483-1487. [PMID: 35304627 PMCID: PMC9013683 DOI: 10.1007/s00204-022-03272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/01/2022] [Indexed: 11/02/2022]
Abstract
Microfluidic tissue culture and organ-on-a-chip models provide efficient tools for drug testing in vivo and are considered to become the basis of in vitro test systems to analyze drug response, drug interactions and toxicity to complement and reduce animal testing. A major limitation is the efficient recording of drug action. Here we present an efficient experimental setup that allows long-term cultivation of cells in a microfluidic system in combination with continuous recording of luciferase reporter gene expression. The system combines a sensitive cooled luminescence camera system in combination with a custom build miniaturized incubation chamber. The setup allows to monitor time-dependent activation, but also the end of drug response. Repeated activation and recovery as well as varying durations of drug treatment periods can be monitored, and different modes of drug activity can be visualized.
Collapse
Affiliation(s)
- Anastasiia Zuieva
- Institute of Pharmacy and Molecular Biotechnology, Pharmaceutical Biology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Suzan Can
- Institute of Pharmacy and Molecular Biotechnology, Pharmaceutical Biology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Franziska Boelke
- Microfluidic ChipShop GmbH, Jena, Germany, Stockholmer Str. 20, 07747, Jena, Germany
| | - Stefanie Reuter
- Experimentelle Nephrologie, KIM III, 12 Universitätsklinikum Jena, Stockholmer Str. 20, 07747, Jena, Germany
| | | | - Elfi Töpfer
- Microfluidic ChipShop GmbH, Jena, Germany, Stockholmer Str. 20, 07747, Jena, Germany
| | - Anika Westphal
- Experimentelle Nephrologie, KIM III, 12 Universitätsklinikum Jena, Stockholmer Str. 20, 07747, Jena, Germany
| | - Ralf Mrowka
- Experimentelle Nephrologie, KIM III, 12 Universitätsklinikum Jena, Stockholmer Str. 20, 07747, Jena, Germany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, Pharmaceutical Biology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany.
| |
Collapse
|
21
|
Simwela NV, Waters AP. Current status of experimental models for the study of malaria. Parasitology 2022; 149:1-22. [PMID: 35357277 PMCID: PMC9378029 DOI: 10.1017/s0031182021002134] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023]
Abstract
Infection by malaria parasites (Plasmodium spp.) remains one of the leading causes of morbidity and mortality, especially in tropical regions of the world. Despite the availability of malaria control tools such as integrated vector management and effective therapeutics, these measures have been continuously undermined by the emergence of vector resistance to insecticides or parasite resistance to frontline antimalarial drugs. Whilst the recent pilot implementation of the RTS,S malaria vaccine is indeed a remarkable feat, highly effective vaccines against malaria remain elusive. The barriers to effective vaccines result from the complexity of both the malaria parasite lifecycle and the parasite as an organism itself with consequent major gaps in our understanding of their biology. Historically and due to the practical and ethical difficulties of working with human malaria infections, research into malaria parasite biology has been extensively facilitated by animal models. Animals have been used to study disease pathogenesis, host immune responses and their (dys)regulation and further disease processes such as transmission. Moreover, animal models remain at the forefront of pre-clinical evaluations of antimalarial drugs (drug efficacy, mode of action, mode of resistance) and vaccines. In this review, we discuss commonly used animal models of malaria, the parasite species used and their advantages and limitations which hinder their extrapolation to actual human disease. We also place into this context the most recent developments such as organoid technologies and humanized mice.
Collapse
Affiliation(s)
- Nelson V. Simwela
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Andrew P. Waters
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| |
Collapse
|
22
|
Youhanna S, Kemas AM, Preiss L, Zhou Y, Shen JX, Cakal SD, Paqualini FS, Goparaju SK, Shafagh RZ, Lind JU, Sellgren CM, Lauschke VM. Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development-Current State-of-the-Art and Future Perspectives. Pharmacol Rev 2022; 74:141-206. [PMID: 35017176 DOI: 10.1124/pharmrev.120.000238] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
The number of successful drug development projects has been stagnant for decades despite major breakthroughs in chemistry, molecular biology, and genetics. Unreliable target identification and poor translatability of preclinical models have been identified as major causes of failure. To improve predictions of clinical efficacy and safety, interest has shifted to three-dimensional culture methods in which human cells can retain many physiologically and functionally relevant phenotypes for extended periods of time. Here, we review the state of the art of available organotypic culture techniques and critically review emerging models of human tissues with key importance for pharmacokinetics, pharmacodynamics, and toxicity. In addition, developments in bioprinting and microfluidic multiorgan cultures to emulate systemic drug disposition are summarized. We close by highlighting important trends regarding the fabrication of organotypic culture platforms and the choice of platform material to limit drug absorption and polymer leaching while supporting the phenotypic maintenance of cultured cells and allowing for scalable device fabrication. We conclude that organotypic and microphysiological human tissue models constitute promising systems to promote drug discovery and development by facilitating drug target identification and improving the preclinical evaluation of drug toxicity and pharmacokinetics. There is, however, a critical need for further validation, benchmarking, and consolidation efforts ideally conducted in intersectoral multicenter settings to accelerate acceptance of these novel models as reliable tools for translational pharmacology and toxicology. SIGNIFICANCE STATEMENT: Organotypic and microphysiological culture of human cells has emerged as a promising tool for preclinical drug discovery and development that might be able to narrow the translation gap. This review discusses recent technological and methodological advancements and the use of these systems for hit discovery and the evaluation of toxicity, clearance, and absorption of lead compounds.
Collapse
Affiliation(s)
- Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Lena Preiss
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Selgin D Cakal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Francesco S Paqualini
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Sravan K Goparaju
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Johan Ulrik Lind
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| |
Collapse
|
23
|
Maher SP, Vantaux A, Cooper CA, Chasen NM, Cheng WT, Joyner CJ, Manetsch R, Witkowski B, Kyle D. A Phenotypic Screen for the Liver Stages of Plasmodium vivax. Bio Protoc 2021; 11:e4253. [PMID: 35005096 DOI: 10.21769/bioprotoc.4253] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 11/02/2022] Open
Abstract
Control of malaria caused by Plasmodium vivax can be improved by the discovery and development of novel drugs against the parasite's liver stage, which includes relapse-causing hypnozoites. Several recent reports describe breakthroughs in the culture of the P. vivax liver stage in 384-well microtiter plates, with the goal of enabling a hypnozoite-focused drug screen. Herein we describe assay details, protocol developments, and different assay formats to interrogate the chemical sensitivity of the P. vivax liver stage in one such medium-throughput platform. The general assay protocol includes seeding of primary human hepatocytes which are infected with P. vivax sporozoites generated from the feeding of Anopheles dirus mosquitoes on patient isolate bloodmeals. This protocol is unique in that, after source drug plates are supplied, all culture-work steps have been optimized to preclude the need for automated liquid handling, thereby allowing the assay to be performed within resource-limited laboratories in malaria-endemic countries. Throughput is enhanced as complex culture methods, such as extracellular matrix overlays, multiple cell types in co-culture, or hepatic spheroids, are excluded as the workflow consists entirely of routine culture methods for adherent cells. Furthermore, installation of a high-content imager at the study site enables assay data to be read and transmitted with minimal logistical delays. Herein we detail distinct assay improvements which increase data quality, provide a means to limit the confounding effect of hepatic metabolism on assay data, and detect activity of compounds with a slow-clearance phenotype. Graphical abstract: Overview of P. vivax liver stage screening assay performed at the Institute Pasteur of Cambodia.
Collapse
Affiliation(s)
- Steven P Maher
- Center for Tropical and Emerging Global Disease, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA 30602, USA
| | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 120 210, Cambodia
| | - Caitlin A Cooper
- Center for Tropical and Emerging Global Disease, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA 30602, USA
| | - Nathan M Chasen
- Center for Tropical and Emerging Global Disease, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA 30602, USA
| | - Wayne T Cheng
- Center for Tropical and Emerging Global Disease, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA 30602, USA.,Center for Vaccines and Immunology, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Dr., Athens, GA, USA 30602
| | - Chester J Joyner
- Center for Tropical and Emerging Global Disease, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA 30602, USA.,Center for Vaccines and Immunology, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Dr., Athens, GA, USA 30602
| | - Roman Manetsch
- Department of Chemistry and Chemical Biology and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Benoît Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 120 210, Cambodia
| | - Dennis Kyle
- Center for Tropical and Emerging Global Disease, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA 30602, USA
| |
Collapse
|
24
|
Affiliation(s)
| | - Laura J. Knoll
- University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
25
|
Patra S, Singh M, Wasnik K, Pareek D, Gupta PS, Mukherjee S, Paik P. Polymeric Nanoparticle Based Diagnosis and Nanomedicine for Treatment and Development of Vaccines for Cerebral Malaria: A Review on Recent Advancement. ACS APPLIED BIO MATERIALS 2021; 4:7342-7365. [PMID: 35006689 DOI: 10.1021/acsabm.1c00635] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebral malaria occurs due to Plasmodium falciparum infection, which causes 228 million infections and 450,000 deaths worldwide every year. African people are mostly affected with nearly 91% cases, of which 86% are pregnant women and infants. India and Brazil are the other two countries severely suffering from malaria endemicity. Commonly used drugs have severe side effects, and unfortunately no suitable vaccine is available in the market today. In this line, this review is focused on polymeric nanomaterials and nanocapsules that can be used for the development of effective diagnostic strategies, nanomedicines, and vaccines in the management of cerebral malaria. Further, this review will help scientists and medical professionals by updating the status on the development stages of polymeric nanoparticle based diagnostics, nanomedicines, and vaccines and strategies to eradicate cerebral malaria. In addition to this, the predominant focus of this review is antimalarial agents based on polymer nanomedicines that are currently in the preclinical and clinical trial stages, and potential developments are suggested as well. This review further will have an important social and commercial impact worldwide for the development of polymeric nanomedicines and strategies for the treatment of cerebral malaria.
Collapse
Affiliation(s)
- Sukanya Patra
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Monika Singh
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Divya Pareek
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Prem Shankar Gupta
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Pradip Paik
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| |
Collapse
|
26
|
Maher SP, Vantaux A, Chaumeau V, Chua ACY, Cooper CA, Andolina C, Péneau J, Rouillier M, Rizopoulos Z, Phal S, Piv E, Vong C, Phen S, Chhin C, Tat B, Ouk S, Doeurk B, Kim S, Suriyakan S, Kittiphanakun P, Awuku NA, Conway AJ, Jiang RHY, Russell B, Bifani P, Campo B, Nosten F, Witkowski B, Kyle DE. Probing the distinct chemosensitivity of Plasmodium vivax liver stage parasites and demonstration of 8-aminoquinoline radical cure activity in vitro. Sci Rep 2021; 11:19905. [PMID: 34620901 PMCID: PMC8497498 DOI: 10.1038/s41598-021-99152-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
Improved control of Plasmodium vivax malaria can be achieved with the discovery of new antimalarials with radical cure efficacy, including prevention of relapse caused by hypnozoites residing in the liver of patients. We screened several compound libraries against P. vivax liver stages, including 1565 compounds against mature hypnozoites, resulting in one drug-like and several probe-like hits useful for investigating hypnozoite biology. Primaquine and tafenoquine, administered in combination with chloroquine, are currently the only FDA-approved antimalarials for radical cure, yet their activity against mature P. vivax hypnozoites has not yet been demonstrated in vitro. By developing an extended assay, we show both drugs are individually hypnozonticidal and made more potent when partnered with chloroquine, similar to clinically relevant combinations. Post-hoc analyses of screening data revealed excellent performance of ionophore controls and the high quality of single point assays, demonstrating a platform able to support screening of greater compound numbers. A comparison of P. vivax liver stage activity data with that of the P. cynomolgi blood, P. falciparum blood, and P. berghei liver stages reveals overlap in schizonticidal but not hypnozonticidal activity, indicating that the delivery of new radical curative agents killing P. vivax hypnozoites requires an independent and focused drug development test cascade.
Collapse
Affiliation(s)
- Steven P Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA.
| | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd., Mae Sot, Tak, 63110, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Adeline C Y Chua
- Infectious Diseases Laboratories (ID Labs), Agency for Science, Technology and Research (A*STAR), Immunos, Biopolis, Singapore, 138648, Singapore
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Caitlin A Cooper
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA
| | - Chiara Andolina
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd., Mae Sot, Tak, 63110, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Julie Péneau
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Mélanie Rouillier
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, 1215, Geneva, Switzerland
| | - Zaira Rizopoulos
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, 1215, Geneva, Switzerland
| | - Sivchheng Phal
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Eakpor Piv
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Chantrea Vong
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Sreyvouch Phen
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Chansophea Chhin
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Baura Tat
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Sivkeng Ouk
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Bros Doeurk
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Saorin Kim
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Sangrawee Suriyakan
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd., Mae Sot, Tak, 63110, Thailand
| | - Praphan Kittiphanakun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd., Mae Sot, Tak, 63110, Thailand
| | - Nana Akua Awuku
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA
| | - Amy J Conway
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Disease Research, University of South Florida, 3720 Spectrum Blvd Suite 402, Tampa, FL, 33612, USA
| | - Rays H Y Jiang
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Disease Research, University of South Florida, 3720 Spectrum Blvd Suite 402, Tampa, FL, 33612, USA
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Pablo Bifani
- Infectious Diseases Laboratories (ID Labs), Agency for Science, Technology and Research (A*STAR), Immunos, Biopolis, Singapore, 138648, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Brice Campo
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, 1215, Geneva, Switzerland
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd., Mae Sot, Tak, 63110, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Benoît Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia.
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA.
| |
Collapse
|
27
|
Xiao RR, Lv T, Tu X, Li P, Wang T, Dong H, Tu P, Ai X. An integrated biomimetic array chip for establishment of collagen-based 3D primary human hepatocyte model for prediction of clinical drug-induced liver injury. Biotechnol Bioeng 2021; 118:4687-4698. [PMID: 34478150 DOI: 10.1002/bit.27931] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/05/2021] [Accepted: 08/28/2021] [Indexed: 12/19/2022]
Abstract
Drug-induced liver injury (DILI) is a leading cause of therapy failure in the clinic and also contributes much to acute liver failure cases. Investigations of predictive sensitivity in animal models have limitations due to interspecies differences. Previously reported in vitro models of liver injury based on primary human hepatocytes (PHHs) cannot meet the requirements of high physiological fidelity, low cost, simple operation, and high throughput with improved sensitivity. Herein, we developed an integrated biomimetic array chip (iBAC) for establishing extracellular matrix (ECM)-based models. A collagen-based 3D PHH model was constructed on the iBAC as a case for the prediction of clinical DILI at throughput. The iBAC has a three-layer structure with a core component of 3D implanting holes. At an initial cell seeding numbers of 5000-10,000, the collagen-based 3D PHH model was optimized with improved and stabilized liver functionality, including cell viability, albumin, and urea production. Moreover, basal activities of most metabolic enzymes on the iBAC were maintained for at least 12 days. Next, a small-scale hepatotoxicity screening indicated that the 3D PHH model on the iBAC was more sensitive for predicting hepatotoxicity than the 2D PHH model on the plate. Finally, a large-scale screening of liver toxicity using 122 clinical drugs further demonstrated that the collagen-based 3D PHH model on the iBAC had superior predictive sensitivity compared to all previously reported in vitro models. These results indicated the importance of 3D collagen for liver physiological functionality and hepatotoxicity prediction. We anticipant it being a promising tool for risk assessment of drug-induced hepatotoxicity with a widespread acceptance in drug industry.
Collapse
Affiliation(s)
| | - Tian Lv
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xia Tu
- Discovery Biology Unit, WuXi AppTec (Shanghai) Co., Ltd., Shanghai, China
| | - Peiwen Li
- R&D Department, Beijing Daxiang Biotech, Beijing, China
| | - Tiantian Wang
- Discovery Biology Unit, WuXi AppTec (Shanghai) Co., Ltd., Shanghai, China
| | - Haiheng Dong
- Discovery Biology Unit, WuXi AppTec (Shanghai) Co., Ltd., Shanghai, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoni Ai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
28
|
Zanghi G, Vaughan AM. Plasmodium vivax pre-erythrocytic stages and the latent hypnozoite. Parasitol Int 2021; 85:102447. [PMID: 34474178 DOI: 10.1016/j.parint.2021.102447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/02/2023]
Abstract
Plasmodium vivax is the most geographically widespread malaria parasite on the planet. This is largely because after mosquito transmission, P. vivax sporozoites can invade hepatocytes and form latent liver stages known as hypnozoites. These persistent liver stages can activate weeks, months or even years after an infected individual suffers a primary clinical infection. Activation then leads to replication and liver stage schizont maturation that ultimately cause relapse of blood stage infection, disease, and onward transmission. Thus, the latent hypnozoite can lie in wait during times when onward transmission is unlikely due to conditions that do not favor the mosquito. For example, in temperate climates where mosquito prevalence is only seasonal. Furthermore, the elimination of hypnozoites is challenging since the hypnozoite reservoir is currently undetectable and not killed by most antimalarial drugs. Here, we review our current knowledge of the pre-erythrocytic stages of the malaria parasite - the sporozoite and liver stages, including the elusive and enigmatic hypnozoite. We focus on our understanding of sporozoite biology, the novel animal models that are available to study the hypnozoite and hypnozoite activation and the ongoing efforts to understand the biological makeup of the hypnozoite that allow for its persistence in the human host.
Collapse
Affiliation(s)
| | - Ashley M Vaughan
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
29
|
Sutrave S, Richter MH. The Truman Show for protozoan parasites: A review of in vitro cultivation platforms. PLoS Negl Trop Dis 2021; 15:e0009668. [PMID: 34437538 PMCID: PMC8389406 DOI: 10.1371/journal.pntd.0009668] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Protozoan parasites are responsible for severe disease and suffering in humans worldwide. Apart from disease transmission via insect vectors and contaminated soil, food, or water, transmission may occur congenitally or by way of blood transfusion and organ transplantation. Several recent outbreaks associated with fresh produce and potable water emphasize the need for vigilance and monitoring of protozoan parasites that cause severe disease in humans globally. Apart from the tropical parasite Plasmodium spp., other protozoa causing debilitating and fatal diseases such as Trypanosoma spp. and Naegleria fowleri need to be studied in more detail. Climate change and socioeconomic issues such as migration continue to be major drivers for the spread of these neglected tropical diseases beyond endemic zones. Due to the complex life cycles of protozoa involving multiple hosts, vectors, and stringent growth conditions, studying these parasites has been challenging. While in vivo models may provide insights into host–parasite interaction, the ethical aspects of laboratory animal use and the challenge of ready availability of parasite life stages underline the need for in vitro models as valid alternatives for culturing and maintaining protozoan parasites. To our knowledge, this review is the first of its kind to highlight available in vitro models for protozoa causing highly infectious diseases. In recent years, several research efforts using new technologies such as 3D organoid and spheroid systems for protozoan parasites have been introduced that provide valuable tools to advance complex culturing models and offer new opportunities toward the advancement of parasite in vitro studies. In vitro models aid scientists and healthcare providers in gaining insights into parasite infection biology, ultimately enabling the use of novel strategies for preventing and treating these diseases. In light of the far-reaching social and economic repercussions of communicable, zoonotic parasitic diseases on human health, it is imperative to continue to strive toward developing in vitro models for in-depth scrutiny and understanding of pathogenicity, as well as for innovations toward combating these infections. This review, to our knowledge, is the first to offer a qualitative summary of the existing models for culturing protozoan parasites with major relevance to human health in vitro. The present work aims to provide a reference guide on the current state of in vitro culture of these protozoan parasites and offers a foundation to facilitate exchange of expertise among researchers, clinicians, and healthcare workers. This comprehensive review would aid in enabling discussions on new intervention approaches to fill in the knowledge gaps in the field of parasitic diseases affecting the global population.
Collapse
Affiliation(s)
- Smita Sutrave
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, Berlin, Germany
| | - Martin Heinrich Richter
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, Berlin, Germany
- * E-mail:
| |
Collapse
|
30
|
Kukla DA, Khetani SR. Bioengineered Liver Models for Investigating Disease Pathogenesis and Regenerative Medicine. Semin Liver Dis 2021; 41:368-392. [PMID: 34139785 DOI: 10.1055/s-0041-1731016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Owing to species-specific differences in liver pathways, in vitro human liver models are utilized for elucidating mechanisms underlying disease pathogenesis, drug development, and regenerative medicine. To mitigate limitations with de-differentiated cultures, bioengineers have developed advanced techniques/platforms, including micropatterned cocultures, spheroids/organoids, bioprinting, and microfluidic devices, for perfusing cell cultures and liver slices. Such techniques improve mature functions and culture lifetime of primary and stem-cell human liver cells. Furthermore, bioengineered liver models display several features of liver diseases including infections with pathogens (e.g., malaria, hepatitis C/B viruses, Zika, dengue, yellow fever), alcoholic/nonalcoholic fatty liver disease, and cancer. Here, we discuss features of bioengineered human liver models, their uses for modeling aforementioned diseases, and how such models are being augmented/adapted for fabricating implantable human liver tissues for clinical therapy. Ultimately, continued advances in bioengineered human liver models have the potential to aid the development of novel, safe, and efficacious therapies for liver disease.
Collapse
Affiliation(s)
- David A Kukla
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R Khetani
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
31
|
Monckton CP, Brown GE, Khetani SR. Latest impact of engineered human liver platforms on drug development. APL Bioeng 2021; 5:031506. [PMID: 34286173 PMCID: PMC8286174 DOI: 10.1063/5.0051765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023] Open
Abstract
Drug-induced liver injury (DILI) is a leading cause of drug attrition, which is partly due to differences between preclinical animals and humans in metabolic pathways. Therefore, in vitro human liver models are utilized in biopharmaceutical practice to mitigate DILI risk and assess related mechanisms of drug transport and metabolism. However, liver cells lose phenotypic functions within 1–3 days in two-dimensional monocultures on collagen-coated polystyrene/glass, which precludes their use to model the chronic effects of drugs and disease stimuli. To mitigate such a limitation, bioengineers have adapted tools from the semiconductor industry and additive manufacturing to precisely control the microenvironment of liver cells. Such tools have led to the fabrication of advanced two-dimensional and three-dimensional human liver platforms for different throughput needs and assay endpoints (e.g., micropatterned cocultures, spheroids, organoids, bioprinted tissues, and microfluidic devices); such platforms have significantly enhanced liver functions closer to physiologic levels and improved functional lifetime to >4 weeks, which has translated to higher sensitivity for predicting drug outcomes and enabling modeling of diseased phenotypes for novel drug discovery. Here, we focus on commercialized engineered liver platforms and case studies from the biopharmaceutical industry showcasing their impact on drug development. We also discuss emerging multi-organ microfluidic devices containing a liver compartment that allow modeling of inter-tissue crosstalk following drug exposure. Finally, we end with key requirements for engineered liver platforms to become routine fixtures in the biopharmaceutical industry toward reducing animal usage and providing patients with safe and efficacious drugs with unprecedented speed and reduced cost.
Collapse
Affiliation(s)
- Chase P Monckton
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Grace E Brown
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Salman R Khetani
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
32
|
Schäfer C, Zanghi G, Vaughan AM, Kappe SHI. Plasmodium vivax Latent Liver Stage Infection and Relapse: Biological Insights and New Experimental Tools. Annu Rev Microbiol 2021; 75:87-106. [PMID: 34196569 DOI: 10.1146/annurev-micro-032421-061155] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasmodium vivax is the most widespread human malaria parasite, in part because it can form latent liver stages known as hypnozoites after transmission by female anopheline mosquitoes to human hosts. These persistent stages can activate weeks, months, or even years after the primary clinical infection; replicate; and initiate relapses of blood stage infection, which causes disease and recurring transmission. Eliminating hypnozoites is a substantial obstacle for malaria treatment and eradication since the hypnozoite reservoir is undetectable and unaffected by most antimalarial drugs. Importantly, in some parts of the globe where P. vivax malaria is endemic, as many as 90% of P. vivax blood stage infections are thought to be relapses rather than primary infections, rendering the hypnozoite a major driver of P. vivax epidemiology. Here, we review the biology of the hypnozoite and recent discoveries concerning this enigmatic parasite stage. We discuss treatment and prevention challenges, novel animal models to study hypnozoites and relapse, and hypotheses related to hypnozoite formation and activation. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Carola Schäfer
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington 98109, USA; , , ,
| | - Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington 98109, USA; , , ,
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington 98109, USA; , , , .,Department of Pediatrics, University of Washington, Seattle, Washington 98105, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington 98109, USA; , , , .,Department of Pediatrics, University of Washington, Seattle, Washington 98105, USA.,Deparment of Global Health, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
33
|
Kulkeaw K. Next-Generation Human Liver Models for Antimalarial Drug Assays. Antibiotics (Basel) 2021; 10:antibiotics10060642. [PMID: 34071885 PMCID: PMC8229011 DOI: 10.3390/antibiotics10060642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022] Open
Abstract
Advances in malaria prevention and treatment have significantly reduced the related morbidity and mortality worldwide, however, malaria continues to be a major threat to global public health. Because Plasmodium parasites reside in the liver prior to the appearance of clinical manifestations caused by intraerythrocytic development, the Plasmodium liver stage represents a vulnerable therapeutic target to prevent progression. Currently, a small number of drugs targeting liver-stage parasites are available, but all cause lethal side effects in glucose-6-phosphate dehydrogenase-deficient individuals, emphasizing the necessity for new drug development. Nevertheless, a longstanding hurdle to developing new drugs is the availability of appropriate in vitro cultures, the crucial conventional platform for evaluating the efficacy and toxicity of drugs in the preclinical phase. Most current cell culture systems rely primarily on growing immortalized or cancerous cells in the form of a two-dimensional monolayer, which is not very physiologically relevant to the complex cellular architecture of the human body. Although primary human cells are more relevant to human physiology, they are mainly hindered by batch-to-batch variation, limited supplies, and ethical issues. Advances in stem cell technologies and multidimensional culture have allowed the modelling of human infectious diseases. Here, current in vitro hepatic models and toolboxes for assaying the antimalarial drug activity are summarized. Given the physiological potential of pluripotent and adult stem cells to model liver-stage malaria, the opportunities and challenges in drug development against liver-stage malaria is highlighted, paving the way to assess the efficacy of hepatic plasmodicidal activity.
Collapse
Affiliation(s)
- Kasem Kulkeaw
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
34
|
Arez F, Rodrigues AF, Brito C, Alves PM. Bioengineered Liver Cell Models of Hepatotropic Infections. Viruses 2021; 13:773. [PMID: 33925701 PMCID: PMC8146083 DOI: 10.3390/v13050773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis viruses and liver-stage malaria are within the liver infections causing higher morbidity and mortality rates worldwide. The highly restricted tropism of the major human hepatotropic pathogens-namely, the human hepatitis B and C viruses and the Plasmodium falciparum and Plasmodium vivax parasites-has hampered the development of disease models. These models are crucial for uncovering the molecular mechanisms underlying the biology of infection and governing host-pathogen interaction, as well as for fostering drug development. Bioengineered cell models better recapitulate the human liver microenvironment and extend hepatocyte viability and phenotype in vitro, when compared with conventional two-dimensional cell models. In this article, we review the bioengineering tools employed in the development of hepatic cell models for studying infection, with an emphasis on 3D cell culture strategies, and discuss how those tools contributed to the level of recapitulation attained in the different model layouts. Examples of host-pathogen interactions uncovered by engineered liver models and their usefulness in drug development are also presented. Finally, we address the current bottlenecks, trends, and prospect toward cell models' reliability, robustness, and reproducibility.
Collapse
MESH Headings
- Animals
- Bioengineering/methods
- Cell Culture Techniques
- Disease Models, Animal
- Disease Susceptibility
- Drug Discovery
- Hepatitis/drug therapy
- Hepatitis/etiology
- Hepatitis/metabolism
- Hepatitis/pathology
- Hepatitis, Viral, Human/etiology
- Hepatitis, Viral, Human/metabolism
- Hepatitis, Viral, Human/pathology
- Hepatocytes/metabolism
- Hepatocytes/parasitology
- Hepatocytes/virology
- Host-Pathogen Interactions
- Humans
- Liver/metabolism
- Liver/parasitology
- Liver/virology
- Liver Diseases, Parasitic/etiology
- Liver Diseases, Parasitic/metabolism
- Liver Diseases, Parasitic/pathology
Collapse
Affiliation(s)
- Francisca Arez
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (F.A.); (A.F.R.); (C.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana F. Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (F.A.); (A.F.R.); (C.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (F.A.); (A.F.R.); (C.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (F.A.); (A.F.R.); (C.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
35
|
Ingelman-Sundberg M, Lauschke VM. 3D human liver spheroids for translational pharmacology and toxicology. Basic Clin Pharmacol Toxicol 2021; 130 Suppl 1:5-15. [PMID: 33872466 DOI: 10.1111/bcpt.13587] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Drug development is a failure-prone endeavour, and more than 85% of drugs fail during clinical development, showcasing that current preclinical systems for compound selection are clearly inadequate. Liver toxicity remains a major reason for safety failures. Furthermore, all efforts to develop pharmacological therapies for a variety of chronic liver diseases, such as non-alcoholic steatohepatitis (NASH) and fibrosis, remain unsuccessful. Considering the time and expense of clinical trials, as well as the substantial burden on patients, new strategies are thus of paramount importance to increase clinical success rates. To this end, human liver spheroids are becoming increasingly utilized as they allow to preserve patient-specific phenotypes and functions for multiple weeks in culture. We here review the recent application of such systems for i) predictive and mechanistic analyses of drug hepatotoxicity, ii) the evaluation of hepatic disposition and metabolite formation of low clearance drugs and iii) the development of drugs for metabolic and infectious liver diseases, including NASH, fibrosis, malaria and viral hepatitis. We envision that with increasing dissemination, liver spheroids might become the new gold standard for such applications in translational pharmacology and toxicology.
Collapse
Affiliation(s)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Voorberg-van der Wel A, Kocken CHM, Zeeman AM. Modeling Relapsing Malaria: Emerging Technologies to Study Parasite-Host Interactions in the Liver. Front Cell Infect Microbiol 2021; 10:606033. [PMID: 33585277 PMCID: PMC7878928 DOI: 10.3389/fcimb.2020.606033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/04/2020] [Indexed: 01/03/2023] Open
Abstract
Recent studies of liver stage malaria parasite-host interactions have provided exciting new insights on the cross-talk between parasite and its mammalian (predominantly rodent) host. We review the latest state of the art and and zoom in on new technologies that will provide the tools necessary to investigate host-parasite interactions of relapsing parasites. Interactions between hypnozoites and hepatocytes are particularly interesting because the parasite can remain in a quiescent state for prolonged periods of time and triggers for reactivation have not been irrefutably identified. If we learn more about the cross-talk between hypnozoite and host we may be able to identify factors that encourage waking up these dormant parasite reservoirs and help to achieve the total eradication of malaria.
Collapse
Affiliation(s)
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| | - Anne-Marie Zeeman
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| |
Collapse
|
37
|
Peneda Pacheco D, Suárez Vargas N, Visentin S, Petrini P. From tissue engineering to engineering tissues: the role and application of in vitro models. Biomater Sci 2021; 9:70-83. [DOI: 10.1039/d0bm01097a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review defines and explores the engineering process and the multifaceted potential and limitations of models within the biomedical field.
Collapse
Affiliation(s)
- Daniela Peneda Pacheco
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta” – Politecnico di Milano
- Italy
| | - Natalia Suárez Vargas
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta” – Politecnico di Milano
- Italy
| | - Sonja Visentin
- Molecular Biotechnology and Health Sciences Department
- University of Torino
- Torino
- Italy
| | - Paola Petrini
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta” – Politecnico di Milano
- Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R)
- Politecnico di Milano Unit
| |
Collapse
|
38
|
Bove G, Mehnert AK, Dao Thi VL. iPSCs for modeling hepatotropic pathogen infections. IPSCS FOR STUDYING INFECTIOUS DISEASES 2021:149-213. [DOI: 10.1016/b978-0-12-823808-0.00013-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
39
|
Wang A, Madden LA, Paunov VN. Advanced biomedical applications based on emerging 3D cell culturing platforms. J Mater Chem B 2020; 8:10487-10501. [PMID: 33136103 DOI: 10.1039/d0tb01658f] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is of great value to develop reliable in vitro models for cell biology and toxicology. However, ethical issues and the decreasing number of donors restrict the further use of traditional animal models in various fields, including the emerging fields of tissue engineering and regenerative medicine. The huge gap created by the restrictions in animal models has pushed the development of the increasingly recognized three-dimensional (3D) cell culture, which enables cells to closely simulate authentic cellular behaviour such as close cell-to-cell interactions and can achieve higher functionality. Furthermore, 3D cell culturing is superior to the traditional 2D cell culture, which has obvious limitations and cannot closely mimic the structure and architecture of tissues. In this study, we review several methods used to form 3D multicellular spheroids. The extracellular microenvironment of 3D spheroids plays a role in many aspects of biological sciences, including cell signalling, cell growth, cancer cell generation, and anti-cancer drugs. More recently, they have been explored as basic construction units for tissue and organ engineering. We review this field with a focus on the previous research in different areas using spheroid models, emphasizing aqueous two-phase system (ATPS)-based techniques. Multi-cellular spheroids have great potential in the study of biological systems and can closely mimic the in vivo environment. New technologies to form and analyse spheroids such as the aqueous two-phase system and magnetic levitation are rapidly overcoming the technical limitations of spheroids and expanding their applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Anheng Wang
- Department of Chemistry, University of Hull, Hull, HU6 7RX, UK.
| | | | | |
Collapse
|
40
|
Li Y, Tang P, Cai S, Peng J, Hua G. Organoid based personalized medicine: from bench to bedside. CELL REGENERATION (LONDON, ENGLAND) 2020; 9:21. [PMID: 33135109 PMCID: PMC7603915 DOI: 10.1186/s13619-020-00059-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Three-dimensional cultured organoids have become a powerful in vitro research tool that preserves genetic, phenotypic and behavioral trait of in vivo organs, which can be established from both pluripotent stem cells and adult stem cells. Organoids derived from adult stem cells can be established directly from diseased epithelium and matched normal tissues, and organoids can also be genetically manipulated by CRISPR-Cas9 technology. Applications of organoids in basic research involve the modeling of human development and diseases, including genetic, infectious and malignant diseases. Importantly, accumulating evidence suggests that biobanks of patient-derived organoids for many cancers and cystic fibrosis have great value for drug development and personalized medicine. In addition, organoids hold promise for regenerative medicine. In the present review, we discuss the applications of organoids in the basic and translational research.
Collapse
Affiliation(s)
- Yaqi Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Peiyuan Tang
- Institute of Radiation Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Junjie Peng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Guoqiang Hua
- Institute of Radiation Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Cancer institute, Fudan University Shanghai Cancer Center, Shanghai, 230032, China.
| |
Collapse
|
41
|
Huang D, Gibeley SB, Xu C, Xiao Y, Celik O, Ginsberg HN, Leong KW. Engineering liver microtissues for disease modeling and regenerative medicine. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909553. [PMID: 33390875 PMCID: PMC7774671 DOI: 10.1002/adfm.201909553] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 05/08/2023]
Abstract
The burden of liver diseases is increasing worldwide, accounting for two million deaths annually. In the past decade, tremendous progress has been made in the basic and translational research of liver tissue engineering. Liver microtissues are small, three-dimensional hepatocyte cultures that recapitulate liver physiology and have been used in biomedical research and regenerative medicine. This review summarizes recent advances, challenges, and future directions in liver microtissue research. Cellular engineering approaches are used to sustain primary hepatocytes or produce hepatocytes derived from pluripotent stem cells and other adult tissues. Three-dimensional microtissues are generated by scaffold-free assembly or scaffold-assisted methods such as macroencapsulation, droplet microfluidics, and bioprinting. Optimization of the hepatic microenvironment entails incorporating the appropriate cell composition for enhanced cell-cell interactions and niche-specific signals, and creating scaffolds with desired chemical, mechanical and physical properties. Perfusion-based culture systems such as bioreactors and microfluidic systems are used to achieve efficient exchange of nutrients and soluble factors. Taken together, systematic optimization of liver microtissues is a multidisciplinary effort focused on creating liver cultures and on-chip models with greater structural complexity and physiological relevance for use in liver disease research, therapeutic development, and regenerative medicine.
Collapse
Affiliation(s)
- Dantong Huang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Sarah B. Gibeley
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Ozgenur Celik
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Henry N. Ginsberg
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
42
|
Utility of Three-Dimensional Cultures of Primary Human Hepatocytes (Spheroids) as Pharmacokinetic Models. Biomedicines 2020; 8:biomedicines8100374. [PMID: 32977664 PMCID: PMC7598599 DOI: 10.3390/biomedicines8100374] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
This paper reviews the usefulness, current status, and potential of primary human hepatocytes (PHHs) in three-dimensional (3D) cultures, also known as spheroids, in the field of pharmacokinetics (PK). Predicting PK and toxicity means pharmaceutical research can be conducted more efficiently. Various in vitro test systems using human hepatocytes have been proposed as tools to detect hepatic toxicity at an early stage in the drug development process. However, such evaluation requires long-term, low-level exposure to the test compound, and conventional screening systems such as PHHs in planar (2D) culture, in which the cells can only survive for a few days, are unsuitable for this purpose. In contrast, spheroids consisting of PHH are reported to retain the functional characteristics of human liver for at least 35 days. Here, we introduce a fundamental PK and toxicity assessment model of PHH spheroids and describe their applications for assessing species-specific metabolism, enzyme induction, and toxicity, focusing on our own work in these areas. The studies outlined in this paper may provide important information for pharmaceutical companies to reduce termination of development of drug candidates.
Collapse
|
43
|
Safety, Pharmacokinetics, and Activity of High-Dose Ivermectin and Chloroquine against the Liver Stage of Plasmodium cynomolgi Infection in Rhesus Macaques. Antimicrob Agents Chemother 2020; 64:AAC.00741-20. [PMID: 32660993 PMCID: PMC7449176 DOI: 10.1128/aac.00741-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Previously, ivermectin (1 to 10 mg/kg of body weight) was shown to inhibit the liver-stage development of Plasmodium berghei in orally dosed mice. Here, ivermectin showed inhibition of the in vitro development of Plasmodium cynomolgi schizonts (50% inhibitory concentration [IC50], 10.42 μM) and hypnozoites (IC50, 29.24 μM) in primary macaque hepatocytes when administered as a high dose prophylactically but not when administered in radical cure mode. Previously, ivermectin (1 to 10 mg/kg of body weight) was shown to inhibit the liver-stage development of Plasmodium berghei in orally dosed mice. Here, ivermectin showed inhibition of the in vitro development of Plasmodium cynomolgi schizonts (50% inhibitory concentration [IC50], 10.42 μM) and hypnozoites (IC50, 29.24 μM) in primary macaque hepatocytes when administered as a high dose prophylactically but not when administered in radical cure mode. The safety, pharmacokinetics, and efficacy of oral ivermectin (0.3, 0.6, and 1.2 mg/kg) with and without chloroquine (10 mg/kg) administered for 7 consecutive days were evaluated for prophylaxis or radical cure of P. cynomolgi liver stages in rhesus macaques. No inhibition or delay to blood-stage P. cynomolgi parasitemia was observed at any ivermectin dose (0.3, 0.6, and 1.2 mg/kg). Ivermectin (0.6 and 1.2 mg/kg) and chloroquine (10 mg/kg) in combination were well-tolerated with no adverse events and no significant pharmacokinetic drug-drug interactions observed. Repeated daily ivermectin administration for 7 days did not inhibit ivermectin bioavailability. It was recently demonstrated that both ivermectin and chloroquine inhibit replication of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. Further ivermectin and chloroquine trials in humans are warranted to evaluate their role in Plasmodium vivax control and as adjunctive therapies against COVID-19 infections.
Collapse
|
44
|
Maher SP, Conway AJ, Roth A, Adapa SR, Cualing P, Andolina C, Hsiao J, Turgeon J, Chaumeau V, Johnson M, Palmiotti C, Singh N, Barnes SJ, Patel R, Van Grod V, Carter R, Sun HCS, Sattabongkot J, Campo B, Nosten F, Saadi WM, Adams JH, Jiang RHY, Kyle DE. An adaptable soft-mold embossing process for fabricating optically-accessible, microfeature-based culture systems and application toward liver stage antimalarial compound testing. LAB ON A CHIP 2020; 20:1124-1139. [PMID: 32055808 DOI: 10.1039/c9lc00921c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advanced cell culture methods for modeling organ-level structure have been demonstrated to replicate in vivo conditions more accurately than traditional in vitro cell culture. Given that the liver is particularly important to human health, several advanced culture methods have been developed to experiment with liver disease states, including infection with Plasmodium parasites, the causative agent of malaria. These models have demonstrated that intrahepatic parasites require functionally stable hepatocytes to thrive and robust characterization of the parasite populations' response to investigational therapies is dependent on high-content and high-resolution imaging (HC/RI). We previously reported abiotic confinement extends the functional longevity of primary hepatocytes in a microfluidic platform and set out to instill confinement in a microtiter plate platform while maintaining optical accessibility for HC/RI; with an end-goal of producing an improved P. vivax liver stage culture model. We developed a novel fabrication process in which a PDMS soft mold embosses hepatocyte-confining microfeatures into polystyrene, resulting in microfeature-based hepatocyte confinement (μHEP) slides and plates. Our process was optimized to form both microfeatures and culture wells in a single embossing step, resulting in a 100 μm-thick bottom ideal for HC/RI, and was found inexpensively amendable to microfeature design changes. Microfeatures improved intrahepatic parasite infection rates and μHEP systems were used to reconfirm the activity of reference antimalarials in phenotypic dose-response assays. RNAseq of hepatocytes in μHEP systems demonstrated microfeatures sustain hepatic differentiation and function, suggesting broader utility for preclinical hepatic assays; while our tailorable embossing process could be repurposed for developing additional organ models.
Collapse
Affiliation(s)
- Steven P Maher
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA. and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Amy J Conway
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - Alison Roth
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - Swamy R Adapa
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - Phillip Cualing
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - Chiara Andolina
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand & Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James Hsiao
- Charles Stark Draper Laboratory, Cambridge, MA, USA
| | - Jessica Turgeon
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand & Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Myles Johnson
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | | | - Naresh Singh
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - Samantha J Barnes
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - Raahil Patel
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | | | - Robert Carter
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Brice Campo
- Medicines for Malaria Venture, Geneva, Switzerland
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand & Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - John H Adams
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - Rays H Y Jiang
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - Dennis E Kyle
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA. and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
45
|
Kawai S, Annoura T, Araki T, Shiogama Y, Soma S, Takano JI, Sato MO, Kaneko O, Yasutomi Y, Chigusa Y. Development of an effective alternative model for in vivo hypnozoite-induced relapse infection: A Japanese macaque (Macaca fuscata) model experimentally infected with Plasmodium cynomolgi. Parasitol Int 2020; 76:102096. [PMID: 32114084 DOI: 10.1016/j.parint.2020.102096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
Abstract
In the present study, we demonstrate that the Japanese macaque (Macaca fuscata) can be used as an effective alternative in vivo model for investigating hypnozoite-induced relapsing infection caused by Plasmodium cynomolgi B strain, and that this model is comparable to the rhesus macaque model. Two female Japanese macaques (JM-1 and JM-2; aged 5 years; weighing about 4.0 kg) were used for the experiment. To produce sporozoites in mosquitoes, blood infected with P. cynomolgi B strain was collected from the donor monkey JM-1 and fed to approximately 200 mosquitoes using the standard artificial membrane feeding method. The isolated sporozoites (2 × 105) were intravenously inoculated into the JM-2 monkey, and the blood stage of the parasite was detected on day 8 after the infection. Chloroquine sulfate (CQ) was intramuscularly administered at a dosage of 6.0 mg/kg into the JM-2 monkey for 6 consecutive days from day 12 onward, after which the parasites disappeared from the peripheral blood. The first relapse occurred on day 26, which was treated again with CQ. Then, the second relapse occurred on day 44, which was cured by CQ treatment followed by the administration of primaquine phosphate (PQ) at a dosage of 1.0 mg/kg/day for 15 days. The JM-2 monkey was observed until 69 days after PQ administration, and there was no relapse during the entire follow-up period. We propose that the Japanese macaque model could contribute not only to drug screening for anti-hypnozoite activity, but could also be used as a powerful tool for investigating hypnozoite biology.
Collapse
Affiliation(s)
- Satoru Kawai
- Department of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan.
| | - Takeshi Annoura
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Tamasa Araki
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yumiko Shiogama
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - Shogo Soma
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - Jun-Ichiro Takano
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - Marcello Otake Sato
- Department of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - Yuichi Chigusa
- Department of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan
| |
Collapse
|
46
|
Rodríguez-Pena A, Uranga-Solchaga J, Ortiz-de-Solórzano C, Cortés-Domínguez I. Spheroscope: A custom-made miniaturized microscope for tracking tumour spheroids in microfluidic devices. Sci Rep 2020; 10:2779. [PMID: 32066786 PMCID: PMC7026415 DOI: 10.1038/s41598-020-59673-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/03/2020] [Indexed: 01/08/2023] Open
Abstract
3D cell culture models consisting of self-assembled tumour cells in suspension, commonly known as tumour spheroids, are becoming mainstream for high-throughput anticancer drug screening. A usual measurable outcome of screening studies is the growth rate of the spheroids in response to treatment. This is commonly quantified on images obtained using complex, expensive, optical microscopy systems, equipped with high-quality optics and customized electronics. Here we present a novel, portable, miniaturized microscope made of low-cost, mass-producible parts, which produces both fluorescence and phase-gradient contrast images. Since phase-gradient contrast imaging is based on oblique illumination, epi-illumination is used for both modalities, thus simplifying the design of the system. We describe the system, characterize its performance on synthetic samples and show proof-of-principle applications of the system consisting in imaging and monitoring the formation and growth of lung and pancreas cancer tumour spheroids within custom made microfluidic devices.
Collapse
Affiliation(s)
- A Rodríguez-Pena
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, 31008, Pamplona, Spain
| | - J Uranga-Solchaga
- USCAL, S.L. Ingeniería Mecatrónica + Dirección, Pol. Industrial Arazuri-Orcoyen, Calle C - No1, 31160, Orcoyen, Spain
| | - C Ortiz-de-Solórzano
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, 31008, Pamplona, Spain
| | - I Cortés-Domínguez
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, 31008, Pamplona, Spain.
| |
Collapse
|
47
|
Mellin R, Boddey JA. Organoids for Liver Stage Malaria Research. Trends Parasitol 2019; 36:158-169. [PMID: 31848118 DOI: 10.1016/j.pt.2019.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 11/30/2022]
Abstract
Plasmodium parasites cause malaria and are maintained between Anopheles mosquitoes and mammalian hosts in a complex life cycle. Malaria parasites occupy tissue niches that can be difficult to access, and models to study them can be challenging to recapitulate experimentally, particularly for Plasmodium species that infect humans. 2D culture models provide extremely beneficial tools to investigate Plasmodium biology but they have limitations. More complex 3D structural networks, such as organoids, have unveiled new avenues for developing more physiological tissue models, and their application to malaria research offers great promise. Here, we review current models for studying Plasmodium infection with a key focus on the obligate pre-erythrocytic stage that culminates in blood infection, causing malaria, and discuss how organoids should fulfil an important and unmet need.
Collapse
Affiliation(s)
- Ronan Mellin
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia.
| |
Collapse
|
48
|
News & Views. Altern Lab Anim 2019; 47:167-169. [DOI: 10.1177/0261192919900428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|