1
|
Shneider NA, Nesta AV, Rifai OM, Yasek J, Elyaman W, Aziz-Zaman S, Lyu MA, Levy SHS, Hoover BN, Vlad G, Huang M, Zeng K, Sadeghi T, Reddy A, Flowers CR, Parmar S. Clinical Safety and Preliminary Efficacy of Regulatory T Cells for ALS. NEJM EVIDENCE 2025; 4:EVIDoa2400249. [PMID: 40261116 DOI: 10.1056/evidoa2400249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
BACKGROUND Peripheral and neuroinflammation have been previously associated with progression in amyotrophic lateral sclerosis (ALS), a neurodegenerative disease involving progressive loss of motor neurons. We hypothesize that regulatory T cell (Treg) therapy can resolve inflammation and preserve function in those patients with ALS. METHODS Participants with ALS received infusions of a fixed dose (100×106 cells) of umbilical cord blood-derived, allogeneic, nonhuman leukocyte antigen-matched, cryopreserved Treg product (TREG), administered as four weekly infusions followed by six monthly infusions. No lymphodepletion, immunosuppression, or interleukin 2 was administered. The primary outcome was dose-limiting toxicity, including infusion reaction within 24 hours (as graded by National Cancer Institute - Common Terminology Criteria for Adverse Events, Version 4.0) and/or regimen-related death, or grade 3 or 4 cytokine release syndrome within 14 days postinfusion. We measured clinical response using the Revised ALS Functional Rating Scale (ALSFRS-R; range 0 to 48, with lower numbers indicating lower functional ability). Exploratory analyses measured serum and plasma neurofilament light (NfL) and inflammatory biomarkers. RESULTS Six participants with a median age of 48.5 years (range 27 to 66 years) and baseline ALSFRS-R score of 31.5 (range 23 to 43) were treated with a median of 11 (range 6 to 22) TREG infusions in an ambulatory setting. No dose-limiting toxicity was observed. In participants with sufficient data points (n=4), the mean ALSFRS-R slope of decline was -1.66±1.03 points/month before treatment, -0.41±0.45/month during treatment, and -0.60±0.59/month posttreatment. Biomarkers including NfL and inflammatory markers MIP-1δ (macrophage inflammatory protein-1 delta), CTACK (cutaneous T cell-attracting chemokine), and GROα (growth-regulated oncogene alpha) exhibited different relationships with ALSFRS-R score between participants. CONCLUSIONS This study demonstrates the preliminary safety of "off-the-shelf", allogeneic Treg-cell therapy.
Collapse
Affiliation(s)
| | | | | | - Julia Yasek
- Department of Neurology, Columbia University, New York
| | | | | | - Mi-Ae Lyu
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston
| | | | | | - George Vlad
- Department of Neurology, Columbia University, New York
| | - Meixian Huang
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston
| | - Ke Zeng
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston
| | | | | | | | - Simrit Parmar
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, Bryan, TX
| |
Collapse
|
2
|
Mehta P, Raymond J, Nair T, Han M, Berry J, Punjani R, Larson T, Mohidul S, Horton DK. Amyotrophic lateral sclerosis estimated prevalence cases from 2022 to 2030, data from the national ALS Registry. Amyotroph Lateral Scler Frontotemporal Degener 2025; 26:290-295. [PMID: 39749668 DOI: 10.1080/21678421.2024.2447919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Objective: To estimate the projected number of ALS cases in the United States from 2022 to 2030. Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neuromuscular disease with no known cure. Because ALS is not a notifiable disease in the United States, the accurate ascertainment of prevalent ALS cases continues to be a challenge. To overcome this, the National ALS Registry (Registry) uses novel methods to estimate newly diagnosed and existing cases in the United States. Methods: We estimated ALS prevalence retrospectively from 2022 to 2024 and prospectively from 2025 to 2030 using prevalence obtained through previous CRC analyses on 2018 Registry data (the most current data available) to generate projected observed, missing, and total cases. Projected prevalent cases were then stratified by age, race, and sex. Results: The number of estimated ALS cases in 2022 was 32,893. By 2030, projected cases increase more than 10%, to 36,308. The largest increase occurs for the population ages 66 years and older, with a 25% increase (from 16,349 cases in 2022 to 20,438 cases in 2030). The projected number of cases classified as "other race" will increase by 15% (from 2,473 cases in 2022 to 2,854 cases in 2030). Conclusions: These estimates of projected ALS cases reflect anticipated changes in the underlying demographics of the United States. Our projections are likely an underestimation because emerging therapeutics and improved healthcare will improve survivability in this vulnerable population. These results should inform policy to more efficiently allocate resources for ALS patients and programs.
Collapse
Affiliation(s)
- Paul Mehta
- Office of Innovation and Analytics, Centers for Disease Control and Prevention, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA
| | - Jaime Raymond
- Office of Innovation and Analytics, Centers for Disease Control and Prevention, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA
| | - Theresa Nair
- Office of Innovation and Analytics, Centers for Disease Control and Prevention, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA
| | - Moon Han
- Office of Innovation and Analytics, Centers for Disease Control and Prevention, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA
| | - Jasmine Berry
- Office of Innovation and Analytics, Centers for Disease Control and Prevention, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA
| | - Reshma Punjani
- Office of Innovation and Analytics, Centers for Disease Control and Prevention, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA
| | - Theodore Larson
- Office of Innovation and Analytics, Centers for Disease Control and Prevention, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA
| | - Suraya Mohidul
- Office of Innovation and Analytics, Centers for Disease Control and Prevention, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA
| | - D Kevin Horton
- Office of Innovation and Analytics, Centers for Disease Control and Prevention, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA
| |
Collapse
|
3
|
Xu IQ, Guo L, Xu J, Setiawan S, Deng X, Lo YL, Chai JYH, Simmons Z, Ramasamy S, Yeo CJJ. Predictive Analysis of Amyotrophic Lateral Sclerosis Progression and Mortality in a Clinic Cohort From Singapore. Muscle Nerve 2025. [PMID: 40265300 DOI: 10.1002/mus.28416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/12/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
INTRODUCTION There is currently no comprehensive Amyotrophic Lateral Sclerosis (ALS) patient database in Singapore comparable to those available in Europe and the United States. We established the Singapore ALS registry (SingALS) to draw meaningful inferences about the ALS population in Singapore through developing statistical and machine learning-based predictive models. METHODS The SingALS registry was established through the retrospective collection of demographic, clinical, and laboratory data from 72 ALS patients at Tan Tock Seng Hospital (TTSH) and combining it with demographic and clinical data from 71 patients at Singapore General Hospital (SGH). The SingALS was compared against international ALS registries. Using comparative studies including survival and temporal feature analysis, we identified key factors influencing ALS survival and developed a machine learning model to predict survival outcomes. RESULTS Compared to Caucasian-dominant registries, such as the German Swabia registry, SingALS patients had longer average survival (50.51 vs. 31.0 months), younger age of onset (56.18 vs. 66.6 years), and lower bulbar onset prevalence (20.98% vs. 34.10%). Singaporean males had poorer outcomes compared to females, with a hazard ratio (HR) of 3.12 (p = 0.008). Patients who died within 24 months had an earlier need for being bedbound (p < 0.004), percutaneous endoscopic gastrostomy (PEG) insertion (p = 0.004) and non-invasive ventilation (NIV) (p < 0.001). Machine learning and statistical analysis indicated that a steeper ALSFRS-R slope, higher alkaline phosphatase (ALP), white blood cell (WBC), absolute neutrophil counts, and creatinine levels are associated with worse mortality. DISCUSSION We developed a comprehensive Singaporean ALS registry and identified key factors influencing survival.
Collapse
Affiliation(s)
- Ian Qian Xu
- Duke-NUS Medical School, Singapore
- National Neuroscience Institute, Singapore
| | - Ling Guo
- Institute for Infocomm Research (I2R), A*STAR, Singapore
| | - Jing Xu
- Centre for Quantitative Medicine, Duke-NUS, Singapore
| | | | - Xiao Deng
- National Neuroscience Institute, Singapore
| | | | | | - Zachary Simmons
- Department of Neurology, Pennsylvania State University, Hershey, Pennsylvania, USA
| | | | - Crystal Jing Jing Yeo
- National Neuroscience Institute, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
4
|
Wang Z, Yin Z, Sun G, Zhang D, Zhang J. Genetic evidence for the liver-brain axis: lipid metabolism and neurodegenerative disease risk. Lipids Health Dis 2025; 24:41. [PMID: 39923073 PMCID: PMC11806572 DOI: 10.1186/s12944-025-02455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND The liver‒brain axis is critical in neurodegenerative diseases (NDs), with lipid metabolism influencing neuroinflammation and microglial function. A systematic investigation of the genetic relationship between lipid metabolism abnormalities and ND, namely, Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS), is lacking. To assess potential causal links between ND and six lipid parameters, two-sample Mendelian randomization (MR) was used. METHODS Large-scale European ancestry GWAS data for lipid parameters and ND (AD, ALS, PD, and MS) were used. Genetic variants demonstrating significant correlations (P < 5 × 10-8) with lipid metabolism parameters were identified and employed as instrumental variables (IVs) after proper validation. The research incorporated UK Biobank genomic data to examine associations between genetic variants and lipid metabolism parameters. The analysis included primary MR, sensitivity analyses, and multivariable MR, which considered potential mediators. RESULTS MR via the inverse-variance weighted method revealed causal effects of cholesterol (CHOL, OR = 1.10, 95% CI: 1.03-1.18, P = 4.23 × 10⁻3) and low-density lipoprotein cholesterol (LDLC, OR = 1.10, 95% CI: 1.03-1.17, P = 3.28 × 10⁻3) on the risk of ALS, which were validated across multiple methods. Potential correlations were observed between ApoB and ALS and inversely correlated with AD, whereas no significant associations were found for PD or MS. CHOL and LDLC associations with ALS demonstrated no significant heterogeneity or pleiotropy, supporting their reliability. CONCLUSIONS Higher CHOL and LDLC levels were associated with increased ALS risk, suggesting a potential causal link, and supporting the liver‒brain axis hypothesis in ND. Current genetic evidence does not support a significant role for lipid metabolism in PD and MS etiology, suggesting the relationship between lipid metabolism and other NDs may be more complex and warrants further investigation.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China
| | - Guangyong Sun
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Dong Zhang
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China.
| |
Collapse
|
5
|
García-Parra B, Guiu JM, Povedano MÓ, Modamio P. A scoping review of the role of managed entry agreements in upcoming drugs for amyotrophic lateral sclerosis: learning from the case of spinal muscular atrophy. Amyotroph Lateral Scler Frontotemporal Degener 2025; 26:48-57. [PMID: 39254482 DOI: 10.1080/21678421.2024.2400522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
INTRODUCTION The therapeutic options for spinal muscular atrophy (SMA) are encouraging. However, there is currently no cure for amyotrophic lateral sclerosis (ALS). The clinical and economic uncertainty surrounding innovative treatments for rare neurodegenerative diseases makes it necessary to understand managed entry agreements (MEAs). The aim of this study was to review whether models of MEAs in SMA could be extrapolated to ALS. METHODS We performed a scoping review with information on MEAs on SMA in Web of Science (WOS), PubMed, Lyfegen Library, the National Institute for Health and Care Excellence (NICE), and the Canadian Agency for Drugs and Technologies in Health (CADTH). RESULTS We found 45 results in WOS and PubMed. After an initial survey, 10 were reviewed to assess eligibility, and three were selected. We obtained 44 results from Lyfegen Library, and three results each from NICE and CADTH. CONCLUSION The main objective of MEAs is to reduce uncertainty in the financing of drugs with a high budgetary impact and clinical concerns, as is the case with drugs for SMA and ALS. While the information available on MEAs in SMA is scarce, some conceptual models are publicly available. MEAs for long-term treatments for SMA could be used for the design of MEAs in ALS because of their similarities in economic and clinical uncertainty.
Collapse
Affiliation(s)
- Beliu García-Parra
- Clinical Neurophysiology Section - Neurology Service, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Guiu
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Clinical Pharmacy and Pharmaceutical Care Unit, University of Barcelona, Barcelona, Spain, and
| | - MÓnica Povedano
- Clinical Neurophysiology Section - Neurology Service, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Motor Neuron Diseases Unit, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pilar Modamio
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Clinical Pharmacy and Pharmaceutical Care Unit, University of Barcelona, Barcelona, Spain, and
| |
Collapse
|
6
|
Yuan D, Jiang S, Xu R. Clinical features and progress in diagnosis and treatment of amyotrophic lateral sclerosis. Ann Med 2024; 56:2399962. [PMID: 39624969 PMCID: PMC11616751 DOI: 10.1080/07853890.2024.2399962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/27/2024] [Accepted: 08/26/2024] [Indexed: 12/06/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the central nervous system. Despite a large number of studies, the current prognosis of ALS is still not ideal. This article briefly describes the clinical features including epidemiology, genetic structure and clinical manifestations, as well as the progress of new diagnostic criteria and treatment of ALS. Meanwhile, we also discussed further both developments and improvements to enhance understanding and accelerating the introduction of the effective treatments of ALS.
Collapse
Affiliation(s)
- Dongxiang Yuan
- Department of Neurology, Jiangxi Provincial People’s Hospital; The Clinical College of Nanchang Medical College; The First Affiliated Hospital of Nanchang Medical College; Xiangya Hospital of Center South University, Jiangxi Hospital; National Regional Center for Neurological Disease, Honggutan District, Nanchang, Jiangxi Province, China
| | - Shishi Jiang
- Department of Neurology, Jiangxi Provincial People’s Hospital; The Clinical College of Nanchang Medical College; The First Affiliated Hospital of Nanchang Medical College; Xiangya Hospital of Center South University, Jiangxi Hospital; National Regional Center for Neurological Disease, Honggutan District, Nanchang, Jiangxi Province, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People’s Hospital; The Clinical College of Nanchang Medical College; The First Affiliated Hospital of Nanchang Medical College; Xiangya Hospital of Center South University, Jiangxi Hospital; National Regional Center for Neurological Disease, Honggutan District, Nanchang, Jiangxi Province, China
| |
Collapse
|
7
|
Hamidpour SK, Amiri M, Ketabforoush AHME, Saeedi S, Angaji A, Tavakol S. Unraveling Dysregulated Cell Signaling Pathways, Genetic and Epigenetic Mysteries of Parkinson's Disease. Mol Neurobiol 2024; 61:8928-8966. [PMID: 38573414 DOI: 10.1007/s12035-024-04128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Parkinson's disease (PD) is a prevalent and burdensome neurodegenerative disorder that has been extensively researched to understand its complex etiology, diagnosis, and treatment. The interplay between genetic and environmental factors in PD makes its pathophysiology difficult to comprehend, emphasizing the need for further investigation into genetic and epigenetic markers involved in the disease. Early diagnosis is crucial for optimal management of the disease, and the development of novel diagnostic biomarkers is ongoing. Although many efforts have been made in the field of recognition and interpretation of the mechanisms involved in the pathophysiology of the disease, the current knowledge about PD is just the tip of the iceberg. By scrutinizing genetic and epigenetic patterns underlying PD, new avenues can be opened for dissecting the pathology of the disorder, leading to more precise and efficient diagnostic and therapeutic approaches. This review emphasizes the importance of studying dysregulated cell signaling pathways and molecular processes associated with genes and epigenetic alterations in understanding PD, paving the way for the development of novel therapeutic strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Shayesteh Kokabi Hamidpour
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Mobina Amiri
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | | | - Saeedeh Saeedi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Abdolhamid Angaji
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
- Department of Research and Development, Tavakol BioMimetic Technologies Company, Tehran, Iran.
| |
Collapse
|
8
|
Alshehri RS, Abuzinadah AR, Alrawaili MS, Alotaibi MK, Alsufyani HA, Alshanketi RM, AlShareef AA. A Review of Biomarkers of Amyotrophic Lateral Sclerosis: A Pathophysiologic Approach. Int J Mol Sci 2024; 25:10900. [PMID: 39456682 PMCID: PMC11507293 DOI: 10.3390/ijms252010900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. The heterogeneous nature of ALS at the clinical, genetic, and pathological levels makes it challenging to develop diagnostic and prognostic tools that fit all disease phenotypes. Limitations associated with the functional scales and the qualitative nature of mainstay electrophysiological testing prompt the investigation of more objective quantitative assessment. Biofluid biomarkers have the potential to fill that gap by providing evidence of a disease process potentially early in the disease, its progression, and its response to therapy. In contrast to other neurodegenerative diseases, no biomarker has yet been validated in clinical use for ALS. Several fluid biomarkers have been investigated in clinical studies in ALS. Biofluid biomarkers reflect the different pathophysiological processes, from protein aggregation to muscle denervation. This review takes a pathophysiologic approach to summarizing the findings of clinical studies utilizing quantitative biofluid biomarkers in ALS, discusses the utility and shortcomings of each biomarker, and highlights the superiority of neurofilaments as biomarkers of neurodegeneration over other candidate biomarkers.
Collapse
Affiliation(s)
- Rawiah S. Alshehri
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Ahmad R. Abuzinadah
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Moafaq S. Alrawaili
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Muteb K. Alotaibi
- Neurology Department, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Hadeel A. Alsufyani
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Rajaa M. Alshanketi
- Internal Medicine Department, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Aysha A. AlShareef
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
9
|
Giannakou M, Akrani I, Tsoka A, Myrianthopoulos V, Mikros E, Vorgias C, Hatzinikolaou DG. Discovery of Novel Inhibitors against ALS-Related SOD1(A4V) Aggregation through the Screening of a Chemical Library Using Differential Scanning Fluorimetry (DSF). Pharmaceuticals (Basel) 2024; 17:1286. [PMID: 39458929 PMCID: PMC11510448 DOI: 10.3390/ph17101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cu/Zn Superoxide Dismutase 1 (SOD1) is a 32 kDa cytosolic dimeric metalloenzyme that neutralizes superoxide anions into oxygen and hydrogen peroxide. Mutations in SOD1 are associated with ALS, a disease causing motor neuron atrophy and subsequent mortality. These mutations exert their harmful effects through a gain of function mechanism, rather than a loss of function. Despite extensive research, the mechanism causing selective motor neuron death still remains unclear. A defining feature of ALS pathogenesis is protein misfolding and aggregation, evidenced by ubiquitinated protein inclusions containing SOD1 in affected motor neurons. This work aims to identify compounds countering SOD1(A4V) misfolding and aggregation, which could potentially aid in ALS treatment. METHODS The approach employed was in vitro screening of a library comprising 1280 pharmacologically active compounds (LOPAC®) in the context of drug repurposing. Using differential scanning fluorimetry (DSF), these compounds were tested for their impact on SOD1(A4V) thermal stability. RESULTS AND CONCLUSIONS Dimer stability was the parameter chosen as the criterion for screening, since the dissociation of the native SOD1 dimer is the step prior to its in vitro aggregation. The screening revealed one compound raising protein-ligand Tm by 6 °C, eleven inducing a higher second Tm, suggesting a stabilization effect, and fourteen reducing Tm from 10 up to 26 °C, suggesting possible interactions or non-specific binding.
Collapse
Affiliation(s)
- Maria Giannakou
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Ifigeneia Akrani
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Angeliki Tsoka
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Vassilios Myrianthopoulos
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Emmanuel Mikros
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Constantinos Vorgias
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| |
Collapse
|
10
|
Kubat GB, Picone P. Skeletal muscle dysfunction in amyotrophic lateral sclerosis: a mitochondrial perspective and therapeutic approaches. Neurol Sci 2024; 45:4121-4131. [PMID: 38676818 PMCID: PMC11306305 DOI: 10.1007/s10072-024-07508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neuromuscular disease that results in the loss of motor neurons and severe skeletal muscle atrophy. The etiology of ALS is linked to skeletal muscle, which can activate a retrograde signaling cascade that destroys motor neurons. This is why satellite cells and mitochondria play a crucial role in the health and performance of skeletal muscles. This review presents current knowledge on the involvement of mitochondrial dysfunction, skeletal muscle atrophy, muscle satellite cells, and neuromuscular junction (NMJ) in ALS. It also discusses current therapeutic strategies, including exercise, drugs, stem cells, gene therapy, and the prospective use of mitochondrial transplantation as a viable therapeutic strategy.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
| | - Pasquale Picone
- Istituto Per La Ricerca E L'Innovazione Biomedica, Consiglio Nazionale Delle Ricerche, Via U. La Malfa 153, 0146, Palermo, Italy.
| |
Collapse
|
11
|
Al Adem K, Ferreira J, Villanueva A, Fadl S, El-Sadaany F, Masmoudi I, Gidiya Y, Gurudza T, Cardoso T, Saksena N, Rabeh W. 3-chymotrypsin-like protease in SARS-CoV-2. Biosci Rep 2024; 44:BSR20231395. [PMID: 39036877 PMCID: PMC11300678 DOI: 10.1042/bsr20231395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024] Open
Abstract
Coronaviruses constitute a significant threat to the human population. Severe acute respiratory syndrome coronavirus-2, SARS-CoV-2, is a highly pathogenic human coronavirus that has caused the coronavirus disease 2019 (COVID-19) pandemic. It has led to a global viral outbreak with an exceptional spread and a high death toll, highlighting the need for effective antiviral strategies. 3-Chymotrypsin-like protease (3CLpro), the main protease in SARS-CoV-2, plays an indispensable role in the SARS-CoV-2 viral life cycle by cleaving the viral polyprotein to produce 11 individual non-structural proteins necessary for viral replication. 3CLpro is one of two proteases that function to produce new viral particles. It is a highly conserved cysteine protease with identical structural folds in all known human coronaviruses. Inhibitors binding with high affinity to 3CLpro will prevent the cleavage of viral polyproteins, thus impeding viral replication. Multiple strategies have been implemented to screen for inhibitors against 3CLpro, including peptide-like and small molecule inhibitors that covalently and non-covalently bind the active site, respectively. In addition, allosteric sites of 3CLpro have been identified to screen for small molecules that could make non-competitive inhibitors of 3CLpro. In essence, this review serves as a comprehensive guide to understanding the structural intricacies and functional dynamics of 3CLpro, emphasizing key findings that elucidate its role as the main protease of SARS-CoV-2. Notably, the review is a critical resource in recognizing the advancements in identifying and developing 3CLpro inhibitors as effective antiviral strategies against COVID-19, some of which are already approved for clinical use in COVID-19 patients.
Collapse
Affiliation(s)
- Kenana Al Adem
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Juliana C. Ferreira
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Adrian J. Villanueva
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Samar Fadl
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Farah El-Sadaany
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Imen Masmoudi
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Yugmee Gidiya
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Tariro Gurudza
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Thyago H.S. Cardoso
- OMICS Centre of Excellence, G42 Healthcare, Masdar City, Abu Dhabi, United Arab Emirates
| | - Nitin K. Saksena
- Victoria University, Footscray Campus, Melbourne, VIC. Australia
| | - Wael M. Rabeh
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Ketabforoush A, Faghihi F, Azedi F, Ariaei A, Habibi MA, Khalili M, Ashtiani BH, Joghataei MT, Arnold WD. Sodium Phenylbutyrate and Tauroursodeoxycholic Acid: A Story of Hope Turned to Disappointment in Amyotrophic Lateral Sclerosis Treatment. Clin Drug Investig 2024; 44:495-512. [PMID: 38909349 DOI: 10.1007/s40261-024-01371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 06/24/2024]
Abstract
The absence of a definitive cure for amyotrophic lateral sclerosis (ALS) emphasizes the crucial need to explore new and improved treatment approaches for this fatal, progressive, and disabling neurodegenerative disorder. As at the end of 2023, five treatments - riluzole, edaravone, dextromethorphan hydrobromide + quinidine sulfate (DHQ), tofersen, and sodium phenylbutyrate-tauroursodeoxycholic acid (PB-TUDCA) - were FDA approved for the treatment of patients with ALS. Among them PB-TUDCA has been shown to impact DNA processing impairments, mitochondria dysfunction, endoplasmic reticulum stress, oxidative stress, and pathologic folded protein agglomeration defects, which have been associated with ALS pathophysiology. The Phase 2 CENTAUR trial demonstrated significant impact of PB-TUDCA on the ALS Functional Rating Scale-Revised (ALSFRS-R) risk of death, hospitalization, and the need for tracheostomy or permanent assisted ventilation in patients with ALS based on post hoc analyses. More recently, contrasting with the CENTAUR trial results, results from the Phase 3 PHOENIX trial (NCT05021536) showed no change in ALSFRS-R total score at 48 weeks. Consequently, the sponsor company initiated the process with the US FDA and Health Canada to voluntarily withdraw the marketing authorizations for PB-TUDCA. In the present article, we review ALS pathophysiology, with a focus on PB-TUDCA's proposed mechanisms of action and recent clinical trial results and discuss the implications of conflicting trial data for ALS and other neurological disorders.
Collapse
Affiliation(s)
- Arsh Ketabforoush
- NextGen Precision Health, University of Missouri, 1030 Hitt St., Columbia, MO, 65211, USA
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Armin Ariaei
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Amin Habibi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Maryam Khalili
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahram Haghi Ashtiani
- Department of Neurology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - W David Arnold
- NextGen Precision Health, University of Missouri, 1030 Hitt St., Columbia, MO, 65211, USA.
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA.
- Department of Neurology, University of Missouri, Columbia, MO, USA.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
13
|
Chen E, Zhang ZQ, Xu AC, Huang F, He YX, Yu XC, He GX. INFLUENCES OF HEAT STRESS ON GLUTAMATE TRANSMISSION-DEPENDENT EXPRESSION LEVELS OF IL-1β and IL-18 IN BV-2 MICROGLIAL CELLS. Shock 2024; 62:146-152. [PMID: 38668801 DOI: 10.1097/shk.0000000000002374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Objective: This study aimed to explore the impact of heat stress (HS) on glutamate transmission-dependent expression levels of interleukin-1β (IL-1β) and IL-18 in BV-2 microglial cells. Methods: BV-2 microglial cells were cultured in vitro , with cells maintained at 37°C serving as the control. The HS group experienced incubation at 40°C for 1 h, followed by further culturing at 37°C for 6 or 12 h. The experimental group was preincubated with glutamate, the glutamate antagonist riluzole, or the mGluR5 agonist, 2-chloro-5-hydroxyphenylglycine (CHPG), before HS. Glutamate content in BV-2 culture supernatant was assessed using colorimetric assay. Moreover, mRNA expression levels of EAAT3 and/or mGluR5 in BV-2 cells were determined via quantitative polymerase chain reaction. Interleukins (IL-1β and IL-18) in cell culture supernatant were measured using enzyme-linked immunosorbent assay. Western blot analysis was employed to assess protein levels of IL-1β and IL-18 in BV-2 cells. Results: HS induced a significant release of glutamate and increased the expression levels of mGluR5 and EAAT3 in BV-2 cells. It also triggered the expression levels and release of proinflammatory factors, such as IL-1β and IL-18, synergizing with the effects of glutamate treatment. Preincubation with both riluzole and CHPG significantly reduced HS-induced glutamate release and mitigated the increased expression levels and release of IL-1β and IL-18 induced by HS. Conclusion: The findings confirmed that microglia could be involved in HS primarily through glutamate metabolisms, influencing the expression levels and release of IL-1β and IL-18.
Collapse
Affiliation(s)
- Er Chen
- Department of Intensive Care Unit, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | - An-Cong Xu
- Department of Intensive Care Unit, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fan Huang
- Wenzhou Medical University, Wenzhou, China
| | | | - Xi-Chong Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guo-Xin He
- Department of Intensive Care Unit, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Rezaee Semnani M, Mirzaasgari Z, Ariaei A, Haghi Ashtiani B. Evaluation of carotid Intima-Media Thickness (IMT) in amyotrophic lateral sclerosis disease using ultrasonography. J Clin Neurosci 2024; 124:67-72. [PMID: 38657488 DOI: 10.1016/j.jocn.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease with multi-mechanisms as; inflammation, oxidative stress, glutamate excitotoxicity, protein aggregation, etc. This study aimed to evaluate the carotid Intima-Media Thickness (IMT) in ALS and healthy groups, as a possible indicator of these mechanisms. METHODS 42 patients with ALS along with 53 normal age and body mass index (BMI) matched participants were recruited from the Firoozgar hospital. Carotid IMT values of the participants were measured using B-mode ultrasonography. Using Pearson correlation and logistic regression adjusting with age, BMI, and gender, the IMT values were assessed. RESULTS The mean right and left carotid IMT values of the ALS patients (0.66 ± 0.09) were significantly higher than normal participants (0.45 ± 0.10) (p < 0.001). In addition, the IMT values were highly correlated with the age (r = 0.632; p < 0.001) and the age of ALS onset (r = 0.595; p < 0.001), in contrast to the BMI. Moreover, the higher value of IMT was associated with an increasing risk of ALS with an odd ratio (OR) of 1.483 (95 % Confidence interval [1.026-2.144]). Eventually, evaluating IMT by classifying ALS patients based on the ALS Health State Scale (ALSHSS) from early to late stage revealed a non-linear increase in the OR (1.372, 1.898, 2.172, and 3.403). CONCLUSION The increased value of the carotid IMT independent of BMI in ALS could be assessed through ultrasonography as a convenient tool to evaluate the disease severity or possible systemic inflammation.
Collapse
Affiliation(s)
- Maryam Rezaee Semnani
- Department of Neurology, School of Medicine, Iran University of Medical Sciences, Iran
| | - Zahra Mirzaasgari
- Department of Neurology, School of Medicine, Iran University of Medical Sciences, Iran
| | - Armin Ariaei
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Bahram Haghi Ashtiani
- Department of Neurology, School of Medicine, Iran University of Medical Sciences, Iran.
| |
Collapse
|
15
|
Su P, Li Z, Yan X, Wang B, Bai M, Li Y, Xu E. Quercetin and Kaempferol inhibit HMC-1 activation via SOCE/NFATc2 signaling and suppress hippocampal mast cell activation in lipopolysaccharide-induced depressive mice. Inflamm Res 2024; 73:945-960. [PMID: 38587532 DOI: 10.1007/s00011-024-01876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
OBJECTIVE AND DESIGN Mast cells (MCs), as the fastest immune responders, play a critical role in the progression of neuroinflammation-related diseases, especially in depression. Quercetin (Que) and kaempferol (Kae), as two major diet-derived flavonoids, inhibit MC activation and exhibit significant antidepressant effect due to their anti-inflammatory capacity. The study aimed to explore the mechanisms of inhibitory effect of Que and Kae on MC activation, and whether Que and Kae suppress hippocampal mast cell activation in LPS-induced depressive mice. SUBJECTS AND TREATMENT In vitro assays, human mast cells (HMC-1) were pretreated with Que or Kae for 1 h, then stimulated by phorbol 12-myristate 13-acetate (PMA) and 2,5-di-t-butyl-1,4-benzohydroquinone (tBHQ) for 3 h or 12 h. In vivo assays, Que or Kae was administered by oral gavage once daily for 14 days and then lipopolysaccharide (LPS) intraperitoneally injection to induce depressive behaviors. METHODS The secretion and expression of TNF-α were determined by ELISA and Western blotting. The nuclear factor of activated T cells (NFAT) transcriptional activity was measured in HMC-1 stably expressing NFAT luciferase reporter gene. Nuclear translocation of NFATc2 was detected by nuclear protein extraction and also was fluorescently detected in HMC-1 stably expressing eGFP-NFATc2. We used Ca2+ imaging to evaluate changes of store-operated calcium entry (SOCE) in HMC-1 stably expressing fluorescent Ca2+ indicator jGCamP7s. Molecular docking was used to assess interaction between the Que or Kae and calcium release-activated calcium modulator (ORAI). The hippocampal mast cell accumulation and activation were detected by toluidine blue staining and immunohistochemistry with β-tryptase. RESULTS In vitro assays of HMC-1 activated by PtBHQ (PMA and tBHQ), Que and Kae significantly decreased expression and secretion of TNF-α. Moreover, NFAT transcriptional activity and nuclear translocation of NFATc2 were remarkably inhibited by Que and Kae. In addition, the Ca2+ influx mediated by SOCE was suppressed by Que, Kae and the YM58483 (ORAI inhibitor), respectively. Importantly, the combination of YM58483 with Que or Kae had no additive effect on the inhibition of SOCE. The molecular docking also showed that Que and Kae both exhibit high binding affinities with ORAI at the same binding site as YM58483. In vivo assays, Que and Kae significantly reversed LPS-induced depression-like behaviors in mice, and inhibited hippocampal mast cell activation in LPS-induced depressive mice. CONCLUSIONS Our results indicated that suppression of SOCE/NFATc2 pathway-mediated by ORAI channels may be the mechanism of inhibitory effect of Que and Kae on MC activation, and also suggested Que and Kae may exert the antidepressant effect through suppressing hippocampal mast cell activation.
Collapse
Affiliation(s)
- Pan Su
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
- Henan Key Laboratory for Modern Research On Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| | - Zibo Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
- Henan Key Laboratory for Modern Research On Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Xiangli Yan
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
- Henan Key Laboratory for Modern Research On Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Baoying Wang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
- Henan Key Laboratory for Modern Research On Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Ming Bai
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
- Henan Key Laboratory for Modern Research On Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Yucheng Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
- Henan Key Laboratory for Modern Research On Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| | - Erping Xu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
- Henan Key Laboratory for Modern Research On Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
16
|
Shukla H, John D, Banerjee S, Tiwari AK. Drug repurposing for neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:249-319. [PMID: 38942541 DOI: 10.1016/bs.pmbts.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Neurodegenerative diseases (NDDs) are neuronal problems that include the brain and spinal cord and result in loss of sensory and motor dysfunction. Common NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS) etc. The occurrence of these diseases increases with age and is one of the challenging problems among elderly people. Though, several scientific research has demonstrated the key pathologies associated with NDDs still the underlying mechanisms and molecular details are not well understood and need to be explored and this poses a lack of effective treatments for NDDs. Several lines of evidence have shown that NDDs have a high prevalence and affect more than a billion individuals globally but still, researchers need to work forward in identifying the best therapeutic target for NDDs. Thus, several researchers are working in the directions to find potential therapeutic targets to alter the disease pathology and treat the diseases. Several steps have been taken to identify the early detection of the disease and drug repurposing for effective treatment of NDDs. Moreover, it is logical that current medications are being evaluated for their efficacy in treating such disorders; therefore, drug repurposing would be an efficient, safe, and cost-effective way in finding out better medication. In the current manuscript we discussed the utilization of drugs that have been repurposed for the treatment of AD, PD, HD, MS, and ALS.
Collapse
Affiliation(s)
- Halak Shukla
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Diana John
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Shuvomoy Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics and Developmental Biology Laboratory, Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India.
| |
Collapse
|
17
|
Bradford D, Rodgers KE. Advancements and challenges in amyotrophic lateral sclerosis. Front Neurosci 2024; 18:1401706. [PMID: 38846716 PMCID: PMC11155303 DOI: 10.3389/fnins.2024.1401706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) continues to pose a significant challenge due to the disease complexity and heterogeneous manifestations. Despite recent drug approvals, there remains a critical need for the development of more effective therapies. This review explores the underlying mechanisms involved; including neuroinflammation, glutamate mediated excitotoxicity, mitochondrial dysfunction, and hypermetabolism, and how researchers are trying to develop novel drugs to target these pathways. While progress has been made, the unmet need of ALS patients highlights the urgency for continued research and resource allocation in the pursuit of effective treatments.
Collapse
Affiliation(s)
| | - Kathleen E. Rodgers
- Department of Medical Pharmacology, Center for Innovation in Brain Science, University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
18
|
Kanda T, Sasaki-Tanaka R, Terai S. Liver Diseases: From Bench to Bedside. Int J Mol Sci 2024; 25:5454. [PMID: 38791491 PMCID: PMC11121884 DOI: 10.3390/ijms25105454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The human genome encodes at least 500 protein kinases, and among them, there are at least 90 tyrosine kinases [...].
Collapse
Affiliation(s)
- Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minamiuonuma 949-7302, Japan
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8520, Japan; (R.S.-T.); (S.T.)
| | - Reina Sasaki-Tanaka
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8520, Japan; (R.S.-T.); (S.T.)
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8520, Japan; (R.S.-T.); (S.T.)
| |
Collapse
|
19
|
Hamad AA, Amer BE, Hawas Y, Mabrouk MA, Meshref M. Masitinib as a neuroprotective agent: a scoping review of preclinical and clinical evidence. Neurol Sci 2024; 45:1861-1873. [PMID: 38105307 PMCID: PMC11021265 DOI: 10.1007/s10072-023-07259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVES Masitinib, originally developed as a tyrosine kinase inhibitor for cancer treatment, has shown potential neuroprotective effects in various neurological disorders by modulating key pathways implicated in neurodegeneration. This scoping review aimed to summarize the current evidence of masitinib's neuroprotective activities from preclinical to clinical studies. METHODS This scoping review was conducted following the guidelines described by Arksey and O'Malley and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The inclusion criteria covered all original studies reporting on the neuroprotective effects of masitinib, including clinical studies, animal studies, and in vitro studies. RESULTS A total of 16 studies met the inclusion criteria and were included in the review. These comprised five randomized controlled trials (RCTs), one post-hoc analysis study, one case report, and nine animal studies. The RCTs focused on Alzheimer's disease (two studies), multiple sclerosis (two studies), and amyotrophic lateral sclerosis (one study). Across all included studies, masitinib consistently demonstrated neuroprotective properties. However, the majority of RCTs reported concerns regarding the safety profile of masitinib. Preclinical studies revealed the neuroprotective mechanisms of masitinib, which include inhibition of certain kinases interfering with cell proliferation and survival, reduction of neuroinflammation, and exhibition of antioxidant activity. CONCLUSION The current evidence suggests a promising therapeutic benefit of masitinib in neurodegenerative diseases. However, further research is necessary to validate and expand upon these findings, particularly regarding the precise mechanisms through which masitinib exerts its therapeutic effects. Future studies should also focus on addressing the safety concerns associated with masitinib use.
Collapse
Affiliation(s)
| | | | - Yousef Hawas
- Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Manar Alaa Mabrouk
- Faculty of Medicine, Fayoum University, Fayoum, Egypt
- Medical Research Group of Egypt, Negida Academy, Arlington, MA, USA
| | - Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
20
|
García-Parra B, Guiu JM, Povedano M, Mariño EL, Modamio P. Geographical distribution of clinical trials in amyotrophic lateral sclerosis: a scoping review. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:376-381. [PMID: 38393299 DOI: 10.1080/21678421.2024.2320881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Introduction: Clinical trials location is determined by many factors, including the availability of patient populations, regulatory environment, scientific expertise, and cost considerations. In clinical drug development of amyotrophic lateral sclerosis (ALS), where genetic differences have been described and may be related to geographic setting, this could have implications for the clinical interpretation of results in underrepresented geographic settings. Objective: The aim of this study was to review country participation in ALS clinical research based on available data from clinical trial registries and databases. Methods: We performed a scoping review with available information about clinical trials on ALS in ClinicalTrials.gov (CT), EU clinical trials register (EudraCT), WHO International Clinical Trials Registry Platform (ICTRP) and Web of Science (WOS). Inclusion criteria were clinical trials in phase 2 and 3 to treat ALS, recruiting or active not recruiting, from 23/06/2018 to 23/06/2023. Results: The total number of clinical trials identified were 188; 54 studies in CT, 38 in EudraCT, 47 in ICTRP and 49 in WOS. We identified 77 clinical trials after deleting duplicates and applying exclusion criteria. The countries with most studies conducted were the US with 35 studies (10.9%), followed by the United Kingdom, Belgium, France and Germany with 21 studies each one of them (6.5%). Conclusion: The data obtained in our review showed a non-homogeneous distribution in clinical trials at the international level, which may influence the interpretation of the results obtained.
Collapse
Affiliation(s)
- Beliu García-Parra
- Clinical Neurophysiology Section - Neurology Service, Bellvitge University Hospital. L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Guiu
- Clinical Pharmacy and Pharmaceutical Care Unit, Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain, and
| | - Mónica Povedano
- Clinical Neurophysiology Section - Neurology Service, Bellvitge University Hospital. L'Hospitalet de Llobregat, Barcelona, Spain
- Motor Neuron Diseases Unit, Bellvitge University Hospital. L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eduardo L Mariño
- Clinical Pharmacy and Pharmaceutical Care Unit, Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain, and
| | - Pilar Modamio
- Clinical Pharmacy and Pharmaceutical Care Unit, Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain, and
| |
Collapse
|
21
|
Giri PM, Banerjee A, Ghosal A, Layek B. Neuroinflammation in Neurodegenerative Disorders: Current Knowledge and Therapeutic Implications. Int J Mol Sci 2024; 25:3995. [PMID: 38612804 PMCID: PMC11011898 DOI: 10.3390/ijms25073995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Neurodegenerative disorders (NDs) have become increasingly common during the past three decades. Approximately 15% of the total population of the world is affected by some form of NDs, resulting in physical and cognitive disability. The most common NDs include Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Although NDs are caused by a complex interaction of genetic, environmental, and lifestyle variables, neuroinflammation is known to be associated with all NDs, often leading to permanent damage to neurons of the central nervous system. Furthermore, numerous emerging pieces of evidence have demonstrated that inflammation not only supports the progression of NDs but can also serve as an initiator. Hence, various medicines capable of preventing or reducing neuroinflammation have been investigated as ND treatments. While anti-inflammatory medicine has shown promising benefits in several preclinical models, clinical outcomes are often questionable. In this review, we discuss various NDs with their current treatment strategies, the role of neuroinflammation in the pathophysiology of NDs, and the use of anti-inflammatory agents as a potential therapeutic option.
Collapse
Affiliation(s)
- Paras Mani Giri
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Anurag Banerjee
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Arpita Ghosal
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
22
|
King PH. Skeletal muscle as a molecular and cellular biomarker of disease progression in amyotrophic lateral sclerosis: a narrative review. Neural Regen Res 2024; 19:747-753. [PMID: 37843208 PMCID: PMC10664124 DOI: 10.4103/1673-5374.382226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 10/17/2023] Open
Abstract
Amyotrophic lateral sclerosis is a fatal multisystemic neurodegenerative disease with motor neurons being a primary target. Although progressive weakness is a hallmark feature of amyotrophic lateral sclerosis, there is considerable heterogeneity, including clinical presentation, progression, and the underlying triggers for disease initiation. Based on longitudinal studies with families harboring amyotrophic lateral sclerosis-associated gene mutations, it has become apparent that overt disease is preceded by a prodromal phase, possibly in years, where compensatory mechanisms delay symptom onset. Since 85-90% of amyotrophic lateral sclerosis is sporadic, there is a strong need for identifying biomarkers that can detect this prodromal phase as motor neurons have limited capacity for regeneration. Current Food and Drug Administration-approved therapies work by slowing the degenerative process and are most effective early in the disease. Skeletal muscle, including the neuromuscular junction, manifests abnormalities at the earliest stages of the disease, before motor neuron loss, making it a promising source for identifying biomarkers of the prodromal phase. The accessibility of muscle through biopsy provides a lens into the distal motor system at earlier stages and in real time. The advent of "omics" technology has led to the identification of numerous dysregulated molecules in amyotrophic lateral sclerosis muscle, ranging from coding and non-coding RNAs to proteins and metabolites. This technology has opened the door for identifying biomarkers of disease activity and providing insight into disease mechanisms. A major challenge is correlating the myriad of dysregulated molecules with clinical or histological progression and understanding their relevance to presymptomatic phases of disease. There are two major goals of this review. The first is to summarize some of the biomarkers identified in human amyotrophic lateral sclerosis muscle that have a clinicopathological correlation with disease activity, evidence of a similar dysregulation in the SOD1G93A mouse during presymptomatic stages, and evidence of progressive change during disease progression. The second goal is to review the molecular pathways these biomarkers reflect and their potential role in mitigating or promoting disease progression, and as such, their potential as therapeutic targets in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Peter H. King
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| |
Collapse
|
23
|
Chen H, Zeng Y, Wang D, Li Y, Xing J, Zeng Y, Liu Z, Zhou X, Fan H. Neuroinflammation of Microglial Regulation in Alzheimer's Disease: Therapeutic Approaches. Molecules 2024; 29:1478. [PMID: 38611758 PMCID: PMC11013124 DOI: 10.3390/molecules29071478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease (AD) is a complex degenerative disease of the central nervous system that is clinically characterized by a progressive decline in memory and cognitive function. The pathogenesis of AD is intricate and not yet fully understood. Neuroinflammation, particularly microglial activation-mediated neuroinflammation, is believed to play a crucial role in increasing the risk, triggering the onset, and hastening the progression of AD. Modulating microglial activation and regulating microglial energy metabolic disorder are seen as promising strategies to intervene in AD. The application of anti-inflammatory drugs and the targeting of microglia for the prevention and treatment of AD has emerged as a new area of research interest. This article provides a comprehensive review of the role of neuroinflammation of microglial regulation in the development of AD, exploring the connection between microglial energy metabolic disorder, neuroinflammation, and AD development. Additionally, the advancements in anti-inflammatory and microglia-regulating therapies for AD are discussed.
Collapse
Affiliation(s)
- Haiyun Chen
- College of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.C.)
| | - Yuhan Zeng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (Y.Z.)
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Dan Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (Y.Z.)
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Yichen Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China;
| | - Jieyu Xing
- College of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.C.)
| | - Yuejia Zeng
- College of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.C.)
| | - Zheng Liu
- School of Medicine, Foshan University, Foshan 528000, China;
| | - Xinhua Zhou
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Hui Fan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (Y.Z.)
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
24
|
He D, Xu Y, Liu M, Cui L. The Inflammatory Puzzle: Piecing together the Links between Neuroinflammation and Amyotrophic Lateral Sclerosis. Aging Dis 2024; 15:96-114. [PMID: 37307819 PMCID: PMC10796096 DOI: 10.14336/ad.2023.0519] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that has a complex genetic basis. Through advancements in genetic screening, researchers have identified more than 40 mutant genes associated with ALS, some of which impact immune function. Neuroinflammation, with abnormal activation of immune cells and excessive production of inflammatory cytokines in the central nervous system, significantly contributes to the pathophysiology of ALS. In this review, we examine recent evidence on the involvement of ALS-associated mutant genes in immune dysregulation, with a specific focus on the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway and N6-methyladenosine (m6A)-mediated immune regulation in the context of neurodegeneration. We also discuss the perturbation of immune cell homeostasis in both the central nervous system and peripheral tissues in ALS. Furthermore, we explore the advancements made in the emerging genetic and cell-based therapies for ALS. This review underscores the complex relationship between ALS and neuroinflammation, highlighting the potential to identify modifiable factors for therapeutic intervention. A deeper understanding of the connection between neuroinflammation and the risk of ALS is crucial for advancing effective treatments for this debilitating disorder.
Collapse
Affiliation(s)
- Di He
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yan Xu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
25
|
Dey B, Kumar A, Patel AB. Pathomechanistic Networks of Motor System Injury in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2024; 22:1778-1806. [PMID: 37622689 PMCID: PMC11284732 DOI: 10.2174/1570159x21666230824091601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 08/26/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common, adult-onset, progressive motor neurodegenerative disorder that results in death within 3 years of the clinical diagnosis. Due to the clinicopathological heterogeneity, any reliable biomarkers for diagnosis or prognosis of ALS have not been identified till date. Moreover, the only three clinically approved treatments are not uniformly effective in slowing the disease progression. Over the last 15 years, there has been a rapid advancement in research on the complex pathomechanistic landscape of ALS that has opened up new avenues for successful clinical translation of targeted therapeutics. Multiple studies suggest that the age-dependent interaction of risk-associated genes with environmental factors and endogenous modifiers is critical to the multi-step process of ALS pathogenesis. In this review, we provide an updated discussion on the dysregulated cross-talk between intracellular homeostasis processes, the unique molecular networks across selectively vulnerable cell types, and the multisystemic nature of ALS pathomechanisms. Importantly, this work highlights the alteration in epigenetic and epitranscriptomic landscape due to gene-environment interactions, which have been largely overlooked in the context of ALS pathology. Finally, we suggest that precision medicine research in ALS will be largely benefitted from the stratification of patient groups based on the clinical phenotype, onset and progression, genome, exposome, and metabolic identities.
Collapse
Affiliation(s)
- Bedaballi Dey
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Anant Bahadur Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
26
|
Kutlubaev MA. [Promising approaches to the pathogenetic therapy of amyotrophic lateral sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:13-21. [PMID: 38676672 DOI: 10.17116/jnevro202412404113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Amyotrophic lateral sclerosis is a severe incurable disease of the nervous system. Currently only methods of palliative care for the patients with this disease are available. Few medications for the pathogenetic therapy are registered in some countries, i.e. riluzole, edaravon, sodium phenylbutyrate/taurursodiol as well as tofersen (conditionally). Their efficacy is relatively low. The main directions in the development of pathogenetic therapy of ALS include gene therapy, use of stem cells, immunomodulators, agents affecting gut microbiota. A search is also underway for low-molecular compounds with neuroprotective and antioxidant properties. Perspective direction is prevention of ALS. This will be possible when biomarkers for identification of patients in pre-manifest/prodromal stage are detected.
Collapse
|
27
|
Majeed J, Sabbagh MN, Kang MH, Lawrence JJ, Pruitt K, Bacus S, Reyna E, Brown M, Decourt B. Cancer drugs with high repositioning potential for Alzheimer's disease. Expert Opin Emerg Drugs 2023; 28:311-332. [PMID: 38100555 PMCID: PMC10877737 DOI: 10.1080/14728214.2023.2296079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Despite the recent full FDA approval of lecanemab, there is currently no disease modifying therapy (DMT) that can efficiently slow down the progression of Alzheimer's disease (AD) in the general population. This statement emphasizes the need to identify novel DMTs in the shortest time possible to prevent a global epidemic of AD cases as the world population experiences an increase in lifespan. AREAS COVERED Here, we review several classes of anti-cancer drugs that have been or are being investigated in Phase II/III clinical trials for AD, including immunomodulatory drugs, RXR agonists, sex hormone therapies, tyrosine kinase inhibitors, and monoclonal antibodies. EXPERT OPINION Given the overall course of brain pathologies during the progression of AD, we express a great enthusiasm for the repositioning of anti-cancer drugs as possible AD DMTs. We anticipate an increasing number of combinatorial therapy strategies to tackle AD symptoms and their underlying pathologies. However, we strongly encourage improvements in clinical trial study designs to better assess target engagement and possible efficacy over sufficient periods of drug exposure.
Collapse
Affiliation(s)
- Jad Majeed
- University of Arizona Honors College, Tucson, Arizona, USA
| | - Marwan N. Sabbagh
- Alzheimer’s and Memory Disorders Division, Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Min H. Kang
- Department of Pediatrics, Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - J. Josh Lawrence
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kevin Pruitt
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Ellie Reyna
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Maddy Brown
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
- Roseman University of Health Sciences, Las Vegas, Nevada, USA
| |
Collapse
|
28
|
Shu L, Du C, Zuo Y. Abnormal phosphorylation of protein tyrosine in neurodegenerative diseases. J Neuropathol Exp Neurol 2023; 82:826-835. [PMID: 37589710 DOI: 10.1093/jnen/nlad066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis, are chronic disorders of the CNS that are characterized by progressive neuronal dysfunction. These diseases have diverse clinical and pathological features and their pathogenetic mechanisms are not yet fully understood. Currently, widely accepted hypotheses include the accumulation of misfolded proteins, oxidative stress from reactive oxygen species, mitochondrial dysfunction, DNA damage, neurotrophin dysfunction, and neuroinflammatory processes. In the CNS of patients with neurodegenerative diseases, a variety of abnormally phosphorylated proteins play important roles in pathological processes such as neuroinflammation and intracellular accumulation of β-amyloid plaques and tau. In recent years, the roles of abnormal tyrosine phosphorylation of intracellular signaling molecules regulated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) in neurodegenerative diseases have attracted increasing attention. Here, we summarize the roles of signaling pathways related to protein tyrosine phosphorylation in the pathogenesis of neurodegenerative diseases and the progress of therapeutic studies targeting PTKs and PTPs that provide theoretical support for future studies on therapeutic strategies for these devastating and important neurodegenerative diseases.
Collapse
Affiliation(s)
- Lijuan Shu
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology Intensive Care Unit, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chunfu Du
- Department of Neurosurgery, Ya'an People's Hospital, Ya'an, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|