1
|
Silva JDME, Martins LHDS, Moreira DKT, Silva LDP, Barbosa PDPM, Komesu A, Ferreira NR, de Oliveira JAR. Microbial Lipid Based Biorefinery Concepts: A Review of Status and Prospects. Foods 2023; 12:2074. [PMID: 37238892 PMCID: PMC10217607 DOI: 10.3390/foods12102074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The use of lignocellulosic biomass as a raw material for the production of lipids has gained increasing attention, especially in recent years when the use of food in the production of biofuels has become a current technology. Thus, the competition for raw materials for both uses has brought the need to create technological alternatives to reduce this competition that could generate a reduction in the volume of food offered and a consequent commercial increase in the value of food. Furthermore, the use of microbial oils has been studied in many industrial branches, from the generation of renewable energy to the obtainment of several value-added products in the pharmaceutical and food industries. Thus, this review provides an overview of the feasibility and challenges observed in the production of microbial lipids through the use of lignocellulosic biomass in a biorefinery. Topics covered include biorefining technology, the microbial oil market, oily microorganisms, mechanisms involved in lipid-producing microbial metabolism, strain development, processes, lignocellulosic lipids, technical drawbacks, and lipid recovery.
Collapse
Affiliation(s)
- Jonilson de Melo e Silva
- Program of Food Science and Technology, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | | | | | - Leonardo do Prado Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering (FEA), State University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | | | - Andrea Komesu
- Department of Marine Sciences (DCMar), Federal University of São Paulo (UNIFESP), Santos 11070-100, SP, Brazil
| | - Nelson Rosa Ferreira
- Faculty of Food Engineering, Technology Institute, Federal University of Pará (UFPA), Belém 66077-000, PA, Brazil;
| | | |
Collapse
|
2
|
Woo S, Moon JH, Sung J, Baek D, Shon YJ, Jung GY. Recent Advances in the Utilization of Brown Macroalgae as Feedstock for Microbial Biorefinery. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Pardilhó S, Cotas J, Pereira L, Oliveira MB, Dias JM. Marine macroalgae in a circular economy context: A comprehensive analysis focused on residual biomass. Biotechnol Adv 2022; 60:107987. [DOI: 10.1016/j.biotechadv.2022.107987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023]
|
4
|
Zheng Y, Li Y, Yang Y, Zhang Y, Wang D, Wang P, Wong ACY, Hsieh YSY, Wang D. Recent Advances in Bioutilization of Marine Macroalgae Carbohydrates: Degradation, Metabolism, and Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1438-1453. [PMID: 35089725 DOI: 10.1021/acs.jafc.1c07267] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Marine macroalgae are considered renewable natural resources due to their high carbohydrate content, which gives better utilization value in biorefineries and higher value conversion than first- and second-generation biomass. However, due to the diverse composition, complex structure, and rare metabolic pathways of macroalgae polysaccharides, their bioavailability needs to be improved. In recent years, enzymes and pathways related to the degradation and metabolism of macroalgae polysaccharides have been continuously developed, and new microbial fermentation platforms have emerged. Aiming at the bioutilization and transformation of macroalgae resources, this review describes the latest research results from the direction of green degradation, biorefining, and metabolic pathway design, including summarizing the the latest biorefining technology and the fermentation platform design of agarose, alginate, and other polysaccharides. This information will provide new research directions and solutions for the biotransformation and utilization of marine macroalgae.
Collapse
Affiliation(s)
- Yuting Zheng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yanping Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuanyuan Yang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ye Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Di Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Peiyao Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ann C Y Wong
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan
| | - Yves S Y Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 11421 Stockholm, Sweden
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Sasaki Y, Yoshikuni Y. Metabolic engineering for valorization of macroalgae biomass. Metab Eng 2022; 71:42-61. [PMID: 35077903 DOI: 10.1016/j.ymben.2022.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/18/2022]
Abstract
Marine macroalgae have huge potential as feedstocks for production of a wide spectrum of chemicals used in biofuels, biomaterials, and bioactive compounds. Harnessing macroalgae in these ways could promote wellbeing for people while mitigating climate change and environmental destruction linked to use of fossil fuels. Microorganisms play pivotal roles in converting macroalgae into valuable products, and metabolic engineering technologies have been developed to extend their native capabilities. This review showcases current achievements in engineering the metabolisms of various microbial chassis to convert red, green, and brown macroalgae into bioproducts. Unique features of macroalgae, such as seasonal variation in carbohydrate content and salinity, provide the next challenges to advancing macroalgae-based biorefineries. Three emerging engineering strategies are discussed here: (1) designing dynamic control of metabolic pathways, (2) engineering strains of halophilic (salt-tolerant) microbes, and (3) developing microbial consortia for conversion. This review illuminates opportunities for future research communities by elucidating current approaches to engineering microbes so they can become cell factories for the utilization of macroalgae feedstocks.
Collapse
Affiliation(s)
- Yusuke Sasaki
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Global Institution for Collaborative Research and Education, Hokkaido University, Hokkaido, 060-8589, Japan.
| |
Collapse
|
6
|
Abstract
Fossil fuels are a major contributor to climate change, and as the demand for energy production increases, alternative sources (e.g., renewables) are becoming more attractive. Biofuels such as bioethanol reduce reliance on fossil fuels and can be compatible with the existing fleet of internal combustion engines. Incorporation of biofuels can reduce internal combustion engine (ICE) fleet carbon dioxide emissions. Bioethanol is typically produced via microbial fermentation of fermentable sugars, such as glucose, to ethanol. Traditional feedstocks (e.g., first-generation feedstock) include cereal grains, sugar cane, and sugar beets. However, due to concerns regarding food sustainability, lignocellulosic (second-generation) and algal biomass (third-generation) feedstocks have been investigated. Ethanol yield from fermentation is dependent on a multitude of factors. This review compares bioethanol production from a range of feedstocks, and elaborates on available technologies, including fermentation practices. The importance of maintaining nutrient homeostasis of yeast is also examined. The purpose of this review is to provide industrial producers and policy makers insight into available technologies, yields of bioethanol achieved by current manufacturing practices, and goals for future innovation.
Collapse
|
7
|
Aparicio E, Rodríguez-Jasso RM, Pinales-Márquez CD, Loredo-Treviño A, Robledo-Olivo A, Aguilar CN, Kostas ET, Ruiz HA. High-pressure technology for Sargassum spp biomass pretreatment and fractionation in the third generation of bioethanol production. BIORESOURCE TECHNOLOGY 2021; 329:124935. [PMID: 33713900 DOI: 10.1016/j.biortech.2021.124935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Sargassum spp is an invasive macroalgae and an alternative feedstock for bioethanol production. Sargassum spp biomass was subjected to high-pressure technology for biomass fractionation under different operating conditions of temperature and residence time to obtain glucan enriched pretreated solids (32.22 g/100 g of raw material). Enzyme hydrolysis process at high pretreated solid loading (13%, w/v) and enzyme loading of 10 FPU/g of glucan was performed, obtaining 43.01 g/L of glucose corresponding to a conversion yield of 92.12%. Finally, a pre-simultaneous saccharification and fermentation strategy (PSSF) was performed to produce bioethanol. This operational strategy produced 45.66 g/L of glucose in the pre-saccharification stage, and 18.14 g/L of bioethanol was produced with a glucose to bioethanol conversion yield of 76.23%. The development of this process highlights the feasibility of bioethanol production from macroalgal biomass in the biorefinery concept.
Collapse
Affiliation(s)
- E Aparicio
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico.
| | - César D Pinales-Márquez
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Araceli Loredo-Treviño
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Armando Robledo-Olivo
- Food Science & Technology Department, Universidad Autónoma Agraria Antonio Narro, Unidad Saltillo, Blvd Antonio Narro 1923, Buenavista, 25315 Saltillo, Coahuila, Mexico
| | - Cristóbal N Aguilar
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Emily T Kostas
- Department of Biochemical Engineering, The Advanced Centre of Biochemical Engineering, Bernard Katz Building, Gower Street, London WC1H 6BT, University College London, London, United Kingdom
| | - Héctor A Ruiz
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico.
| |
Collapse
|
8
|
Hrůzová K, Matsakas L, Karnaouri A, Norén F, Rova U, Christakopoulos P. Valorization of outer tunic of the marine filter feeder Ciona intestinalis towards the production of second-generation biofuel and prebiotic oligosaccharides. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:32. [PMID: 33509271 PMCID: PMC7841879 DOI: 10.1186/s13068-021-01875-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND One of the sustainable development goals focuses on the biomass-based production as a replacement for fossil-based commodities. A novel feedstock with vast potentials is tunicate biomass, which can be pretreated and fermented in a similar way to lignocellulose. Ciona intestinalis is a marine filter feeder that is cultivated to produce fish feed. While the inner tissue body is used for feed production, the surrounding tunic remains as a cellulose-rich by-product, which can be further separated into outer and inner tunic. Ethanol production from organosolv-pretreated whole-tunic biomass was recently validated. The aim of the present study was to evaluate the potential of organosolv pretreated outer-tunic biomass for the production of biofuels and cellobiose that is a disaccharide with prebiotic potential. RESULTS As a result, 41.4 g/L of ethanol by Saccharomyces cerevisiae, corresponding to a 90.2% theoretical yield, was achieved under the optimal conditions when the tunicate biomass was pretreated at 195 °C for 60 min at a liquid-to-solid ratio of 50. In addition, cellobiose production by enzymatic hydrolysis of the pretreated tunicate biomass was demonstrated with a maximum conversion yield of 49.7 wt. %. CONCLUSIONS The utilisation of tunicate biomass offers an eco-friendly and sustainable alternative for value-added biofuels and chemicals. The cultivation of tunicate biomass in shallow coastal sea improves the quality of the water and ensures sustainable production of fish feed. Moreover, there is no competition for arable land, which leaves the latter available for food and feed production.
Collapse
Affiliation(s)
- Kateřina Hrůzová
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Anthi Karnaouri
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Fredrik Norén
- N-Research AB, Gränsgatan 17, 453 30, Lysekil, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden.
| |
Collapse
|
9
|
Feng F, Zeng B, Ouyang S, Zhong Y, Chen J. Optimization of alkali-treated poplar fiber saccharification using metal ions and surfactants. Bioengineered 2020; 12:138-150. [PMID: 33350341 PMCID: PMC8806347 DOI: 10.1080/21655979.2020.1857576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In this study, contrary to untreated poplar fiber, processing of alkali-treated poplar fiber was optimized for the enzymatic saccharification. Considering reducing sugar content as the evaluation index, pH, temperature, time, amount of enzyme, and rotational speed of shaker were standardized to optimize the sugar production by enzymatic hydrolysis. Using response surface methodology, the optimum technological condition of enzymatic hydrolysis was found to be utilizing 43 mg cellulase at 46 °C for 50 h. At this, the sugar conversion amount of NaOH or H2O2-NaOH pretreated poplar was 164.62 mg/g and 218.82 mg/g respectively. It was a corresponding increase of 446.73% or 626.75% than that of poplar fiber without a pretreatment. At a low concentration, metal ions and surfactants promoted the conversion of reducing sugar. Especially, 0.01 g/L Mn2+ and 0.50 g/L hexadecyl trimethyl ammonium bromide (CTAB) produced the best effect and increased the conversion rate of reducing sugar by 23.62% and 21.44% respectively. Also, the effect of the combination of metal ions and surfactants was better than that of a single accelerator. By improving the enzymatic process, these findings could enhance the utilization of poplar fiber for the production of reducing sugar.
Collapse
Affiliation(s)
- Fan Feng
- College of Life Science and Technology, Central South University of Forestry & Technology , Changsha, China
| | - Baiquan Zeng
- College of Life Science and Technology, Central South University of Forestry & Technology , Changsha, China
| | - Shilin Ouyang
- College of Life Science and Technology, Central South University of Forestry & Technology , Changsha, China
| | - Yanan Zhong
- College of Life Science and Technology, Central South University of Forestry & Technology , Changsha, China
| | - Jienan Chen
- Ministry of Forestry Bioethanol Research Center , Changsha, China.,Hunan Engineering Research Center for Woody Biomass Conversion , Changsha, China
| |
Collapse
|
10
|
Wan Y, Sun Y, Cai D, Yin L, Dai N, Lei L, Jiang Y, Li J. Influence of Ethanol on Pitting Corrosion Behavior of Stainless Steel for Bioethanol Fermentation Tanks. Front Chem 2020; 8:529. [PMID: 32671020 PMCID: PMC7330168 DOI: 10.3389/fchem.2020.00529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 11/17/2022] Open
Abstract
The role of ethanol (C2H5OH) in pitting corrosion behavior of AISI 316L austenitic stainless steel was investigated in aqueous ethanolic solution with chloride. The pitting susceptibility and surface morphology of 316L in a series of ethanol-containing solutions were examined using X-ray photoelectron spectroscopy (XPS), optical microscopy with 3D stitching, immersion tests, and potentiodynamic polarization measurements. Results demonstrated that the ethanol concentration impacted little on the passive film stability while it dramatically influenced the pitting corrosion susceptibility. Corrosion rate of 316L after immersion tests first increased and then decreased as the concentration of ethanol increased from 0 to 10 M in ferric chloride solution. This, however, did not correspond to the breakdown potential which directly decreased from 489 to 249 mV as the water concentration decreased in ethanolic NaCl solutions. The pits density after both immersion and electrochemical tests showed that the initiation of pitting in ethanolic solution tended to occur at multiple points at the same time. The synergy effect on pitting behavior of hydrolysis enhancement and solubility reduction of metal cations due to the introduction of ethanol has also been discussed.
Collapse
Affiliation(s)
- Yiting Wan
- Corrosion Lab, Department of Materials Science, Fudan University, Shanghai, China
| | - Yangting Sun
- Corrosion Lab, Department of Materials Science, Fudan University, Shanghai, China
| | - Dingzhou Cai
- Institute of Materials, China Academy of Engineering Physics, Mianyang, China
| | - Liqiang Yin
- Corrosion Lab, Department of Materials Science, Fudan University, Shanghai, China
| | - Nianwei Dai
- Corrosion Lab, Department of Materials Science, Fudan University, Shanghai, China
| | - Longlin Lei
- Corrosion Lab, Department of Materials Science, Fudan University, Shanghai, China
| | - Yiming Jiang
- Corrosion Lab, Department of Materials Science, Fudan University, Shanghai, China
| | - Jin Li
- Corrosion Lab, Department of Materials Science, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Yang J, Xu H, Jiang J, Zhang N, Xie J, Zhao J, Bu Q, Wei M. Itaconic acid production from undetoxified enzymatic hydrolysate of bamboo residues using Aspergillus terreus. BIORESOURCE TECHNOLOGY 2020; 307:123208. [PMID: 32208342 DOI: 10.1016/j.biortech.2020.123208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 05/12/2023]
Abstract
Itaconic acid (IA) production by fermentation of undetoxified hydrolysate of bamboo residues by Aspergillus terreus was demonstrated. Monosaccharides were obtained by pretreatment and enzymatic hydrolysis of bamboo residues. A. terreus could not grow and synthesize IA in the hydrolysate. The buffer was confirmed to be an inhibitor, and was successfully replaced by deionized water as the suspension, to release equivalent sugar and eliminate the inhibition. Corn steep liquor significantly improved the adaptability of A. terreus to the hydrolysate at 2.0 g/L. The IA titer obtained (19.35 g/L IA) was the highest to be reported for IA production from lignocellulose without detoxification. Simultaneous saccharification and fermentation and fed-batch fermentation increased the titer to 22.43 g/L and 41.54 g/L, respectively. Meanwhile, economic assessment proved that bamboo residues were potential substrates for IA production with economic effectiveness.
Collapse
Affiliation(s)
- Jing Yang
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Hao Xu
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Ning Zhang
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jingcong Xie
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jian Zhao
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Quan Bu
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Min Wei
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|
12
|
Rajak RC, Jacob S, Kim BS. A holistic zero waste biorefinery approach for macroalgal biomass utilization: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137067. [PMID: 32059301 DOI: 10.1016/j.scitotenv.2020.137067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/25/2020] [Accepted: 01/31/2020] [Indexed: 05/18/2023]
Abstract
The growing concerns over the depleting fossil fuels and increase in the release of greenhouse gas emissions have necessitated the search for the potential biomass source for alternative energy generation. In this context, third generation biomass specifically maroalgae has gained a lot of research interest in the recent years for energy and products generation such as ethanol, butanol, alginates, agars, and carrageenans. There are a few reviews available in scientific domain on macroalgal biomass utilization for bioethanol production but none of them has addressed precisely from phenolic precursor compounds to the entire ethanol production process and its bottlenecks. Here, we explained critically the processes involved in bioethanol, value added products and chemicals production utilizing macroalgal biomass as a feedstock along with its zero waste feasibility approach. Apart from this, we have also summarized the major issues linked to the macroalgae based biofuels and bioproducts generation processes and their possible corrective measures. Biorefinery is a promising way to generate multiple products from a single source with short processing time. Thus, this review also focuses on the recent advancement in the macroalgal biomass scaling up and how this could help in the growth of macroalgal biorefinery industry in the near future.
Collapse
Affiliation(s)
- Rajiv Chandra Rajak
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chunbuk 361-763, Republic of Korea
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chunbuk 361-763, Republic of Korea.
| |
Collapse
|
13
|
Banu JR, Kavitha S, Kannah RY, Usman TMM, Kumar G. Application of chemo thermal coupled sonic homogenization of marine macroalgal biomass for energy efficient volatile fatty acid recovery. BIORESOURCE TECHNOLOGY 2020; 303:122951. [PMID: 32058908 DOI: 10.1016/j.biortech.2020.122951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
The present study aimed to employ energy efficient chemo thermal coupled sonic homogenization (CTSH) to obtain VFA from marine macroalgal hydrolysate, (Ulva fasciata). At first, chemo thermal homogenization (CTH) was applied on macroalgal biomass by adjusting the temperature, pH and treatment time from 60 to 90 ℃, 4-7 and 0-60 min, respectively. A higher organic matter solubilisation of 11.81% was obtained at an optimum pH of 6 at a temperature of 80 ℃ with 40 min of homogenization time. The results of CTSH implied that a higher organic matter solubilization of 26.4% was achieved by combined CTSH (sonic power & treatment time - 140 W & 14 min treatment time). CTSH considerably doubles the liquefaction in comparison with CTH. Based on OMS grouping, achieving 25% was sufficient for VFA production (2172.09 mg/L) and considered as economically feasible with net cost of 97.17 USD/ton of macroalgae.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, CUTN Bridge, Neelakudy, Tamil Nadu 610005, India; Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - T M Mohamed Usman
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
14
|
|
15
|
Offei F, Mensah M, Kemausuor F. Cellulase and acid-catalysed hydrolysis of Ulva fasciata, Hydropuntia dentata and Sargassum vulgare for bioethanol production. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1501-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
16
|
Kostas ET, White DA, Cook DJ. Bioethanol Production from UK Seaweeds: Investigating Variable Pre-treatment and Enzyme Hydrolysis Parameters. BIOENERGY RESEARCH 2019; 13:271-285. [PMID: 32362995 PMCID: PMC7183493 DOI: 10.1007/s12155-019-10054-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study describes the method development for bioethanol production from three species of seaweed. Laminaria digitata, Ulva lactuca and for the first time Dilsea carnosa were used as representatives of brown, green and red species of seaweed, respectively. Acid thermo-chemical and entirely aqueous (water) based pre-treatments were evaluated, using a range of sulphuric acid concentrations (0.125-2.5 M) and solids loading contents (5-25 % [w/v]; biomass: reactant) and different reaction times (5-30 min), with the aim of maximising the release of glucose following enzyme hydrolysis. A pre-treatment step for each of the three seaweeds was required and pre-treatment conditions were found to be specific to each seaweed species. Dilsea carnosa and U. lactuca were more suited with an aqueous (water-based) pre-treatment (yielding 125.0 and 360.0 mg of glucose/g of pre-treated seaweed, respectively), yet interestingly non pre-treated D. carnosa yielded 106.4 g g-1 glucose. Laminaria digitata required a dilute acid thermo-chemical pre-treatment in order to liberate maximal glucose yields (218.9 mg glucose/g pre-treated seaweed). Fermentations with S. cerevisiae NCYC2592 of the generated hydrolysates gave ethanol yields of 5.4 g L-1, 7.8 g L-1 and 3.2 g L-1 from D. carnosa, U. lactuca and L. digitata, respectively. This study highlighted that entirely aqueous based pre-treatments are effective for seaweed biomass, yet bioethanol production alone may not make such bio-processes economically viable at large scale.
Collapse
Affiliation(s)
- Emily T. Kostas
- International Centre for Brewing Science, Division of Food Science, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD UK
- Department of Biochemical Engineering, The Advanced Centre of Biochemical Engineering, Bernard Katz Building, University College London, Gower Street, London, WC1H 6BT UK
| | - Daniel A. White
- Plymouth Marine Laboratory, Prospect Pl, Plymouth, Devon PL1 3DH UK
| | - David J. Cook
- International Centre for Brewing Science, Division of Food Science, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD UK
| |
Collapse
|
17
|
Ra CH, Sunwoo IY, Nguyen TH, Sukwong P, Sirisuk P, Jeong GT, Kim SK. Butanol and butyric acid production from Saccharina japonica by Clostridium acetobutylicum and Clostridium tyrobutyricum with adaptive evolution. Bioprocess Biosyst Eng 2019; 42:583-592. [PMID: 30788572 DOI: 10.1007/s00449-018-02063-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/12/2018] [Indexed: 11/26/2022]
Abstract
Optimal conditions of hyper thermal (HT) acid hydrolysis of the Saccharina japonica was determined to a seaweed slurry content of 12% (w/v) and 144 mM H2SO4 at 160 °C for 10 min. Enzymatic saccharification was carried out at 50 °C and 150 rpm for 48 h using the three enzymes at concentrations of 16 U/mL. Celluclast 1.5 L showed the lowest half-velocity constant (Km) of 0.168 g/L, indicating a higher affinity for S. japonica hydrolysate. Pretreatment yielded a maximum monosaccharide concentration of 36.2 g/L and 45.7% conversion from total fermentable monosaccharides of 79.2 g/L with 120 g dry weight/L S. japonica slurry. High cell densities of Clostridium acetobutylicum and Clostridium tyrobutyricum were obtained using the retarding agents KH2PO4 (50 mM) and NaHCO3 (200 mM). Adaptive evolution facilitated the efficient use of mixed monosaccharides. Therefore, adaptive evolution and retarding agents can enhance the overall butanol and butyric acid yields from S. japonica.
Collapse
Affiliation(s)
- Chae Hun Ra
- Department of Food Science and Biotechnology, Food and Bio-industry Research Center, Hankyong National University, Anseong, 17579, South Korea
| | - In Yung Sunwoo
- Department of Biotechnology, Pukyong National University, Busan, 48513, South Korea
| | - Trung Hau Nguyen
- Department of Biotechnology, Pukyong National University, Busan, 48513, South Korea
| | - Pailin Sukwong
- Department of Biotechnology, Pukyong National University, Busan, 48513, South Korea
| | - Phunlap Sirisuk
- Department of Biotechnology, Pukyong National University, Busan, 48513, South Korea
| | - Gwi-Taek Jeong
- Department of Biotechnology, Pukyong National University, Busan, 48513, South Korea
| | - Sung-Koo Kim
- Department of Biotechnology, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
18
|
Bioethanol production from sugarcane leaf waste: Effect of various optimized pretreatments and fermentation conditions on process kinetics. ACTA ACUST UNITED AC 2019; 22:e00329. [PMID: 31008065 PMCID: PMC6453773 DOI: 10.1016/j.btre.2019.e00329] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/03/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Bioethanol kinetics was investigated under SSA-F, SSA-U, MSA-F and MSA-U conditions. Monod, logistic and modified Gompertz models gave R2 > 0.97. SSA-U pretreated SLW produced 25% more bioethanol than MSA-U. No difference was observed between filtered and unfiltered enzymatic hydrolysate. SLW residue showed a suitable protein and fat content for animal feed.
This study examines the kinetics of S. cerevisiae BY4743 growth and bioethanol production from sugarcane leaf waste (SLW), utilizing two different optimized pretreatment regimes; under two fermentation modes: steam salt-alkali filtered enzymatic hydrolysate (SSA-F), steam salt-alkali unfiltered (SSA-U), microwave salt-alkali filtered (MSA-F) and microwave salt-alkali unfiltered (MSA-U). The kinetic coefficients were determined by fitting the Monod, modified Gompertz and logistic models to the experimental data with high coefficients of determination R2 > 0.97. A maximum specific growth rate (μmax) of 0.153 h−1 was obtained under SSA-F and SSA-U whereas, 0.150 h−1 was observed with MSA-F and MSA-U. SSA-U gave a potential maximum bioethanol concentration (Pm) of 31.06 g/L compared to 30.49, 23.26 and 21.79 g/L for SSA-F, MSA-F and MSA-U respectively. An insignificant difference was observed in the μmax and Pm for the filtered and unfiltered enzymatic hydrolysate for both SSA and MSA pretreatments, thus potentially reducing a unit operation. These findings provide significant insights for process scale up.
Collapse
|
19
|
Ardalan Y, Jazini M, Karimi K. Sargassum angustifolium brown macroalga as a high potential substrate for alginate and ethanol production with minimal nutrient requirement. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Abstract
The rapid depletion and environmental concerns associated with the use of fossil fuels has led to extensive development of biofuels such as bioethanol from seaweeds. The long-term prospect of seaweed bioethanol production however, depends on the selection of processes in the hydrolysis and fermentation stages due to their limiting effect on ethanol yield. This review explored the factors influencing the hydrolysis and fermentation stages of seaweed bioethanol production with emphasis on process efficiency and sustainable application. Seaweed carbohydrate contents which are most critical for ethanol production substrate selection were 52 ± 6%, 55 ± 12% and 57 ± 13% for green, brown and red seaweeds, respectively. Inhibitor formation and polysaccharide selectivity were found to be the major bottlenecks influencing the efficiency of dilute acid and enzymatic hydrolysis, respectively. Current enzyme preparations used, were developed for starch-based and lignocellulosic biomass but not seaweeds, which differs in polysaccharide composition and structure. Also, the identification of fermenting organisms capable of converting the heterogeneous monomeric sugars in seaweeds is the major factor limiting ethanol yield during the fermentation stage and not the SHF or SSF pathway selection. This has resulted in variations in bioethanol yields, ranging from 0.04 g/g DM to 0.43 g/g DM.
Collapse
|
21
|
Chades T, Scully SM, Ingvadottir EM, Orlygsson J. Fermentation of Mannitol Extracts From Brown Macro Algae by Thermophilic Clostridia. Front Microbiol 2018; 9:1931. [PMID: 30177924 PMCID: PMC6110305 DOI: 10.3389/fmicb.2018.01931] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/30/2018] [Indexed: 01/30/2023] Open
Abstract
Mannitol-containing macro algae biomass, such as Ascophyllum nodosum and Laminaria digitata, are a potential feedstock for the production of biofuels such as bioethanol. The purpose of this work was to evaluate the ability of thermophilic anaerobes within Class Clostridia to ferment mannitol and mannitol-containing algal extracts. Screening of the type strains of six genera, Caldanaerobius, Caldanaerobacter, Caldicellulosiruptor, Thermoanaerobacter, Thermobrachium, and Thermoanaerobacterium) was conducted on 20 mM mannitol and revealed that 11 of 41 strains could utilize mannitol with ethanol being the dominant end-product. Mannitol utilization seems to be most common within the genus of Thermoanaerobacter (7 of 16 strains) with yields up to 88% of the theoretical yield in the case of Thermoanaerobacter pseudoethanolicus. Six selected mannitol-degrading strains (all Thermoanaerobacter species) were grown on mannitol extracts prepared from A. nodosum and L. digitata. Five of the strains produced similar amounts of ethanol as compared with ethanol yields from mannitol only. Finally, T. pseudoethanolicus was kinetically monitored using mannitol and mannitol extracts made from two macro algae species, A. nodosum and L. digitata for end-product formation.
Collapse
Affiliation(s)
- Theo Chades
- Faculty of Natural Resource Sciences, University of Akureyri, Akureyri, Iceland
| | - Sean M Scully
- Faculty of Natural Resource Sciences, University of Akureyri, Akureyri, Iceland
| | - Eva M Ingvadottir
- Faculty of Natural Resource Sciences, University of Akureyri, Akureyri, Iceland
| | - Johann Orlygsson
- Faculty of Natural Resource Sciences, University of Akureyri, Akureyri, Iceland
| |
Collapse
|
22
|
Yu Z, Zhu B, Wang W, Tan H, Yin H. Characterization of a new oligoalginate lyase from marine bacterium Vibrio sp. Int J Biol Macromol 2018; 112:937-942. [DOI: 10.1016/j.ijbiomac.2018.02.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
|
23
|
Kim SW, Kim YW, Hong CH, Lyo IW, Lim HD, Kim GJ, Shin HJ. Recombinant agarase increases the production of reducing sugars from HCl-treated Gracilaria verrucosa, a red algae. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Amamou S, Sambusiti C, Monlau F, Dubreucq E, Barakat A. Mechano-Enzymatic Deconstruction with a New Enzymatic Cocktail to Enhance Enzymatic Hydrolysis and Bioethanol Fermentation of Two Macroalgae Species. Molecules 2018; 23:molecules23010174. [PMID: 29342098 PMCID: PMC6017876 DOI: 10.3390/molecules23010174] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/19/2017] [Accepted: 01/07/2018] [Indexed: 11/27/2022] Open
Abstract
The aim of this study was to explore the efficiency of a mechano-enzymatic deconstruction of two macroalgae species for sugars and bioethanol production, by using a new enzymatic cocktail (Haliatase) and two types of milling modes (vibro-ball: VBM and centrifugal milling: CM). By increasing the enzymatic concentration from 3.4 to 30 g/L, the total sugars released after 72 h of hydrolysis increased (from 6.7 to 13.1 g/100 g TS and from 7.95 to 10.8 g/100 g TS for the green algae U. lactuca and the red algae G. sesquipedale, respectively). Conversely, total sugars released from G. sesquipedale increased (up to 126% and 129% after VBM and CM, respectively). The best bioethanol yield (6 geth/100 g TS) was reached after 72 h of fermentation of U. lactuca and no increase was obtained after centrifugal milling. The latter led to an enhancement of the ethanol yield of G. sesquipedale (from 2 to 4 g/100 g TS).
Collapse
Affiliation(s)
- Sameh Amamou
- UMR, Ingénierie des Agropolymères et des Technologies Emergentes (IATE), CIRAD, Montpellier SupAgro, INRA, Université de Montpellier, 34060 Montpellier, France.
| | - Cecilia Sambusiti
- UMR, Ingénierie des Agropolymères et des Technologies Emergentes (IATE), CIRAD, Montpellier SupAgro, INRA, Université de Montpellier, 34060 Montpellier, France.
| | - Florian Monlau
- UMR, Ingénierie des Agropolymères et des Technologies Emergentes (IATE), CIRAD, Montpellier SupAgro, INRA, Université de Montpellier, 34060 Montpellier, France.
- APESA, Plateau Technique, Cap Ecologia, Avenue Fréderic Joliot Curie, 64230 Lescar, France.
| | - Eric Dubreucq
- UMR, Ingénierie des Agropolymères et des Technologies Emergentes (IATE), CIRAD, Montpellier SupAgro, INRA, Université de Montpellier, 34060 Montpellier, France.
| | - Abdellatif Barakat
- UMR, Ingénierie des Agropolymères et des Technologies Emergentes (IATE), CIRAD, Montpellier SupAgro, INRA, Université de Montpellier, 34060 Montpellier, France.
- AgroBioSciences, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, Ben Guerir 43150, Morocco.
| |
Collapse
|
25
|
Shobana S, Kumar G, Bakonyi P, Saratale GD, Al-Muhtaseb AH, Nemestóthy N, Bélafi-Bakó K, Xia A, Chang JS. A review on the biomass pretreatment and inhibitor removal methods as key-steps towards efficient macroalgae-based biohydrogen production. BIORESOURCE TECHNOLOGY 2017; 244:1341-1348. [PMID: 28602665 DOI: 10.1016/j.biortech.2017.05.172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 05/28/2023]
Abstract
(Red, green and brown) macroalgal biomass is a propitious candidate towards covenant alternative energy resources to be converted into biofuels i.e. hydrogen. The application of macroalgae for hydrogen fermentation (promising route in advancing the biohydrogen generation process) could be accomplished by the transformation of carbohydrates, which is a topic receiving broad attention in recent years. This article overviews the variety of marine algal biomass available in the coastal system, followed by the analyses of their pretreatment methods, inhibitor formation and possible detoxification, which are key-aspects to achieve subsequent H2 fermentation in a proper way.
Collapse
Affiliation(s)
- Sutha Shobana
- Department of Chemistry and Research Centre, Aditanar College of Arts and Science, Tirchendur, Tamil Nadu, India
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group (GPBAE), Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Péter Bakonyi
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| | - Ganesh D Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Ala'a Hamed Al-Muhtaseb
- Petroleum and Chemical Engineering Department, Faculty of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| | - Katalin Bélafi-Bakó
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
26
|
Acid pretreatment and enzymatic saccharification of brown seaweed for polyhydroxybutyrate (PHB) production using Cupriavidus necator. Int J Biol Macromol 2017; 101:1029-1040. [DOI: 10.1016/j.ijbiomac.2017.03.184] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 11/21/2022]
|
27
|
Ryu HJ, Oh KK. Combined De-Algination Process as a Fractionation Strategy for Valorization of Brown Macroalga Saccharina japonica. Appl Biochem Biotechnol 2017; 182:238-249. [PMID: 27858350 DOI: 10.1007/s12010-016-2323-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/03/2016] [Indexed: 12/28/2022]
Abstract
A combined process, de-algination followed by enzymatic saccharification, was designed to produce alginate and glucose from Saccharina japonica consecutively. The process conditions of de-algination were optimized separately for each stage of acidification and alkaline extraction. Collectively, the de-algination yield was 70.1% under the following optimized conditions: 2.4 wt% of Na2CO3, 70 °C, and 100 min with the acidified S. japonica immersed in a 0.5 wt% H2SO4 solution for 2 h at room temperature. The glucan content in the de-alginated S. japonica increased to 38.0%, which was approximately fivefold higher than that of the raw S. japonica. The enzymatic hydrolysis of the de-alginated S. japonica almost completed in 9 h, affording 5.2 g (96.8% of glucan digestibility) of glucose at a de-alginated S. japonica loading of 14.2 g.
Collapse
Affiliation(s)
- Hyun Jin Ryu
- R&D Center, SugarEn Co., Ltd, Cheonan, Chungnam, 31116, South Korea
| | - Kyeong Keun Oh
- Department of Applied Chemical Engineering, Dankook University, Cheonan, Chungnam, 31116, South Korea.
| |
Collapse
|
28
|
Jiang R, Ingle KN, Golberg A. Macroalgae (seaweed) for liquid transportation biofuel production: what is next? ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Obata O, Akunna J, Bockhorn H, Walker G. Ethanol production from brown seaweed using non-conventional yeasts. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/bioeth-2016-0010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe use of macroalgae (seaweed) as a potential source of biofuels has attracted considerable worldwide interest. Since brown algae, especially the giant kelp, grow very rapidly and contain considerable amounts of polysaccharides, coupled with low lignin content, they represent attractive candidates for bioconversion to ethanol through yeast fermentation processes. In the current study, powdered dried seaweeds (Ascophylum nodosum and Laminaria digitata) were pre-treated with dilute sulphuric acid and hydrolysed with commercially available enzymes to liberate fermentable sugars. Higher sugar concentrations were obtained from L. digitata compared with A. nodosum with glucose and rhamnose being the predominant sugars, respectively, liberated from these seaweeds. Fermentation of the resultant seaweed sugars was performed using two non-conventional yeast strains: Scheffersomyces (Pichia) stipitis and Kluyveromyces marxianus based on their abilities to utilise a wide range of sugars. Although the yields of ethanol were quite low (at around 6 g/L), macroalgal ethanol production was slightly higher using K. marxianus compared with S. stipitis. The results obtained demonstrate the feasibility of obtaining ethanol from brown algae using relatively straightforward bioprocess technology, together with non-conventional yeasts. Conversion efficiency of these non-conventional yeasts could be maximised by operating the fermentation process based on the physiological requirements of the yeasts.
Collapse
|
30
|
Neifar M, Chatter R, Chouchane H, Genouiz R, Jaouani A, Slaheddine Masmoudi A, Cherif A. Optimization of enzymatic saccharification of Chaetomorpha linum biomass for the production of macroalgae-based third generation bioethanol. AIMS BIOENGINEERING 2016. [DOI: 10.3934/bioeng.2016.3.400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Ravanal MC, Pezoa-Conte R, von Schoultz S, Hemming J, Salazar O, Anugwom I, Jogunola O, Mäki-Arvela P, Willför S, Mikkola JP, Lienqueo ME. Comparison of different types of pretreatment and enzymatic saccharification of Macrocystis pyrifera for the production of biofuel. ALGAL RES 2016. [DOI: 10.1016/j.algal.2015.11.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Tan IS, Lee KT. Comparison of different process strategies for bioethanol production from Eucheuma cottonii: An economic study. BIORESOURCE TECHNOLOGY 2016; 199:336-346. [PMID: 26283313 DOI: 10.1016/j.biortech.2015.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
The aim of this work was to evaluate the efficacy of red macroalgae Eucheuma cottonii (EC) as feedstock for third-generation bioethanol production. Dowex (TM) Dr-G8 was explored as a potential solid catalyst to hydrolyzed carbohydrates from EC or macroalgae extract (ME) and pretreatment of macroalgae cellulosic residue (MCR), to fermentable sugars prior to fermentation process. The highest total sugars were produced at 98.7 g/L when 16% of the ME was treated under the optimum conditions of solid acid hydrolysis (8% (w/v) Dowex (TM) Dr-G8, 120°C, 1h) and 2% pretreated MCR (P-MCR) treated by enzymatic hydrolysis (pH 4.8, 50°C, 30 h). A two-stream process resulted in 11.6g/L of bioethanol from the fermentation of ME hydrolysates and 11.7 g/L from prehydrolysis and simultaneous saccharification and fermentation of P-MCR. The fixed price of bioethanol obtained from the EC is competitive with that obtained from other feedstocks.
Collapse
Affiliation(s)
- Inn Shi Tan
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia.
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
33
|
Ji SQ, Wang B, Lu M, Li FL. Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:81. [PMID: 27042210 PMCID: PMC4818487 DOI: 10.1186/s13068-016-0494-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/22/2016] [Indexed: 05/13/2023]
Abstract
BACKGROUND Brown algae are promising feedstocks for biofuel production with inherent advantages of no structural lignin, high growth rate, and no competition for land and fresh water. However, it is difficult for one microorganism to convert all components of brown algae with different oxidoreduction potentials to ethanol. Defluviitalea phaphyphila Alg1 is the first characterized thermophilic bacterium capable of direct utilization of brown algae. RESULTS Defluviitalea phaphyphila Alg1 can simultaneously utilize mannitol, glucose, and alginate to produce ethanol, and high ethanol yields of 0.47 g/g-mannitol, 0.44 g/g-glucose, and 0.3 g/g-alginate were obtained. A rational redox balance system under obligate anaerobic condition in fermenting brown algae was revealed in D. phaphyphila Alg1 through genome and redox analysis. The excess reducing equivalents produced from mannitol metabolism were equilibrated by oxidizing forces from alginate assimilation. Furthermore, D. phaphyphila Alg1 can directly utilize unpretreated kelp powder, and 10 g/L of ethanol was accumulated within 72 h with an ethanol yield of 0.25 g/g-kelp. Microscopic observation further demonstrated the deconstruction process of brown algae cell by D. phaphyphila Alg1. CONCLUSIONS The integrated biomass deconstruction system of D. phaphyphila Alg1, as well as its high ethanol yield, provided us an excellent alternative for brown algae bioconversion at elevated temperature.
Collapse
Affiliation(s)
- Shi-Qi Ji
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101 People’s Republic of China
| | - Bing Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101 People’s Republic of China
| | - Ming Lu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101 People’s Republic of China
| | - Fu-Li Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101 People’s Republic of China
| |
Collapse
|
34
|
Hou X, Hansen JH, Bjerre AB. Integrated bioethanol and protein production from brown seaweed Laminaria digitata. BIORESOURCE TECHNOLOGY 2015; 197:310-7. [PMID: 26342344 DOI: 10.1016/j.biortech.2015.08.091] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 05/07/2023]
Abstract
A wild-growing glucose-rich (i.e. 56.7% glucose content) brown seaweed species Laminaria digitata, collected from the North Coast of Denmark in August 2012, was used as the feedstock for an integrated bioethanol and protein production. Glutamic acid and aspartic acid are the two most abundant amino acids in the algal protein, both with proportional content of 10% in crude protein. Only minor pretreatment of milling was used on the biomass to facilitate the subsequent enzymatic hydrolysis and fermentation. The Separate Hydrolysis and Fermentation (SHF) resulted in obviously higher ethanol yield than the Simultaneous Saccharification and Fermentation (SSF). High conversion rate at maximum of 84.1% glucose recovery by enzymatic hydrolysis and overall ethanol yield at maximum of 77.7% theoretical were achieved. Protein content in the solid residues after fermentation was enriched by 2.7 fold, with similar distributions of amino acids, due to the hydrolysis of polymers in the seaweed cell wall matrix.
Collapse
Affiliation(s)
- Xiaoru Hou
- Danish Technological Institute, Gregersensvej 1, DK 2630, Denmark.
| | | | | |
Collapse
|
35
|
|
36
|
Cabrera E, Muñoz MJ, Martín R, Caro I, Curbelo C, Díaz AB. Comparison of industrially viable pretreatments to enhance soybean straw biodegradability. BIORESOURCE TECHNOLOGY 2015; 194:1-6. [PMID: 26164601 DOI: 10.1016/j.biortech.2015.06.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 06/04/2023]
Abstract
This study explores acid and alkaline pretreatments in order to enhance soybean straw biodegradability. The effects of sulfuric acid and sodium hydroxide for different pretreatment times at 30°C and 121°C on biomass dissolution and the subsequent enzymatic hydrolysis were investigated. The highest total conversion to reducing sugars of 93.9% was attained when soybean straw was pretreated with acid (4% H2SO4, 121°C, 1 h) and subsequently subjected to the enzymatic process. However, conversion of 86.5%, were reached only with the hydrolysis of the pretreated residue using mild conditions, (0.5% NaOH, 30°C, 48 h), involving the reduction cost of the process. In addition to this, this result was dramatically decreased when pectinase was removed from the enzyme cocktail. It has been also demonstrated that the reduction of the enzyme loading to less than half allowed obtaining about 96% of the reducing sugars attained with the highest enzyme dose.
Collapse
Affiliation(s)
- Emir Cabrera
- Departamento de Ingeniería Química, Instituto Superior Politécnico José Antonio Echeverría, Cujae, Ave. 114 No. 11901, Marianao 19390, Cuba.
| | - María J Muñoz
- Departamento de Ingeniería Química y Tecnología de Alimentos, Universidad de Cádiz, Campus Río San Pedro, s/n, Puerto Real, 11510 Cádiz, Spain
| | - Ricardo Martín
- Departamento de Ingeniería Química y Tecnología de Alimentos, Universidad de Cádiz, Campus Río San Pedro, s/n, Puerto Real, 11510 Cádiz, Spain
| | - Ildefonso Caro
- Departamento de Ingeniería Química y Tecnología de Alimentos, Universidad de Cádiz, Campus Río San Pedro, s/n, Puerto Real, 11510 Cádiz, Spain
| | - Caridad Curbelo
- Departamento de Ingeniería Química, Instituto Superior Politécnico José Antonio Echeverría, Cujae, Ave. 114 No. 11901, Marianao 19390, Cuba
| | - Ana B Díaz
- Departamento de Ingeniería Química y Tecnología de Alimentos, Universidad de Cádiz, Campus Río San Pedro, s/n, Puerto Real, 11510 Cádiz, Spain
| |
Collapse
|
37
|
Tan IS, Lee KT. Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol. Carbohydr Polym 2015; 124:311-21. [DOI: 10.1016/j.carbpol.2015.02.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
|
38
|
Overview of anaerobic digestion process for biofuels production from marine macroalgae: A developmental perspective on brown algae. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-015-0039-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
39
|
Gao F, Gao L, Zhang D, Ye N, Chen S, Li D. Enhanced hydrolysis of Macrocystis pyrifera by integrated hydroxyl radicals and hot water pretreatment. BIORESOURCE TECHNOLOGY 2015; 179:490-496. [PMID: 25575209 DOI: 10.1016/j.biortech.2014.12.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 05/23/2023]
Abstract
Integrated hydroxyl radicals and hot water pretreatment (IHRHW) was employed in the bioconversion of the brown macroalgae Macrocystis pyrifera (M. pyrifera) in this study. The optimum experimental pretreatment condition (100°C, 30 min, 11.9 mM FeSO4) and the predicted optimum pretreatment condition (113.95°C, 29.1 min, 12.75 mM FeSO4) were identified using a central composite design method. All glucan and xylan were recovered as monosaccharides or polysaccharides without a fermentation inhibitor (e.g., hydroxymethyl furfural and furfural). The IHRHW-treated macroalgae digestibility reached 88.1% under the optimum experimental condition, whereas that under the predicted optimum condition reached 92.1%. The value was approximately threefold higher than those obtained with untreated M. pyrifera. Carbohydrate recovery and enzymatic hydrolysis can be significantly enhanced by the new economic hydroxyl radicals and hot water pretreatment.
Collapse
Affiliation(s)
- Feng Gao
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Le Gao
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Dongyuan Zhang
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Naihao Ye
- Key Laboratory for Sustainable Utilization of Marine Fishery Resources, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Shulin Chen
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Demao Li
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
40
|
da Costa JA, Marques JE, Gonçalves LRB, Rocha MVP. Enhanced enzymatic hydrolysis and ethanol production from cashew apple bagasse pretreated with alkaline hydrogen peroxide. BIORESOURCE TECHNOLOGY 2015; 179:249-259. [PMID: 25545094 DOI: 10.1016/j.biortech.2014.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 05/25/2023]
Abstract
The effect of combinations and ratios between different enzymes has been investigated in order to assess the optimal conditions for hydrolysis of cashew apple bagasse pretreated with alkaline hydrogen peroxide (the solids named CAB-AHP). The separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes were evaluated in the ethanol production. The enzymatic hydrolysis conducted with cellulase complex and β-glucosidase in a ratio of 0.61:0.39, enzyme loading of 30FPU/g(CAB-AHP) and 66CBU/g(CAB-AHP), respectively, using 4% cellulose from CAB-AHP, turned out to be the most effective conditions, with glucose and xylose yields of 511.68 mg/g(CAB-AHP) and 237.8 mg/g(CAB-AHP), respectively. Fermentation of the pure hydrolysate by Kluyveromyces marxianus ATCC 36907 led to an ethanol yield of 61.8kg/ton(CAB), corresponding to 15 g/L ethanol and productivity of 3.75 g/( Lh). The ethanol production obtained for SSF process using K. marxianus ATCC 36907 was 18 g/L corresponding to 80% yield and 74.2kg/ton(CAB).
Collapse
Affiliation(s)
- Jessyca Aline da Costa
- Universidade Federal do Ceará, Departamento de Engenharia Química, Campus do Pici, Bloco 709, 60455-760 Fortaleza, CE, Brazil
| | - José Edvan Marques
- Universidade Federal do Ceará, Departamento de Engenharia Química, Campus do Pici, Bloco 709, 60455-760 Fortaleza, CE, Brazil
| | - Luciana Rocha Barros Gonçalves
- Universidade Federal do Ceará, Departamento de Engenharia Química, Campus do Pici, Bloco 709, 60455-760 Fortaleza, CE, Brazil
| | - Maria Valderez Ponte Rocha
- Universidade Federal do Ceará, Departamento de Engenharia Química, Campus do Pici, Bloco 709, 60455-760 Fortaleza, CE, Brazil.
| |
Collapse
|
41
|
Gao L, Li D, Gao F, Liu Z, Hou Y, Chen S, Zhang D. Hydroxyl radical-aided thermal pretreatment of algal biomass for enhanced biodegradability. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:194. [PMID: 26677397 PMCID: PMC4681426 DOI: 10.1186/s13068-015-0372-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 11/09/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Algal biomass, known as a potential feedstock for biofuel production, has cell wall structures that differ from terrestrial biomass. The existing methods for processing algae are limited to conventional pretreatments for terrestrial biomass. RESULTS In this study, we investigated a novel hydroxyl radical-aided approach for pretreating different types of algal biomass. In this process, hydroxyl radicals formed by a Fenton system were employed in combination with heating to alter the crystalline structure and hydrogen bonds of cellulose in the algal biomass. FeSO4 and H2O2 at low concentrations were employed to initiate the formation of hydroxyl radicals. This method releases trapped polysaccharides in algal cell walls and converts them into fermentable sugars. The effects of temperature, time, and hydroxyl radical concentration were analyzed. The optimal pretreatment condition [100 °C, 30 min, and 5.3 mM H2O2 (determined FeSO4 concentration of 11.9 mM)] was identified using a central composite design. Complete (100 %) carbohydrate recovery was achieved with some algal biomass without formation of inhibitors such as hydroxymethylfurfural and furfural as by-products. Both microalgal and macroalgal biomasses showed higher enzymatic digestibility of cellulose conversion (>80 %) after the milder pretreatment condition. CONCLUSION Hydroxyl radical-aided thermal pretreatment was used as a novel method to convert the carbohydrates in the algal cell wall into simple sugars. Overall, this method increased the amount of glucose released from the algal biomass. Overall, enhanced algal biomass digestibility was demonstrated with the proposed pretreatment process. The new pretreatment requires low concentration of chemical solvents and milder temperature conditions, which can prevent the toxic and corrosive effects that typically result from conventional pretreatments. Our data showed that the advantages of the new pretreatment include higher carbohydrate recovery, no inhibitor production, and lower energy consumption. The new pretreatment development mimicking natural system could be useful for biochemical conversion of algal biomass to fuels and chemicals.
Collapse
Affiliation(s)
- Le Gao
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing
Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308 China
| | - Demao Li
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing
Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308 China
| | - Feng Gao
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing
Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308 China
| | - Zhiyong Liu
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing
Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308 China
| | - Yuyong Hou
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing
Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308 China
| | - Shulin Chen
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing
Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308 China
| | - Dongyuan Zhang
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing
Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308 China
| |
Collapse
|
42
|
Sun C, Chen YJ, Zhang XQ, Pan J, Cheng H, Wu M. Draft genome sequence of Microbulbifer elongatus strain HZ11, a brown seaweed-degrading bacterium with potential ability to produce bioethanol from alginate. Mar Genomics 2014; 18 Pt B:83-5. [PMID: 24907394 DOI: 10.1016/j.margen.2014.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 05/23/2014] [Accepted: 05/24/2014] [Indexed: 10/25/2022]
Abstract
Microbulbifer elongatus strain HZ11, was a new strain of M. elongates DSM 6810(T), which has the ability to degrade brown seaweeds such as Laminaria japonica into single cell detritus particles. Here we report a high quality draft genome of M. elongatus strain HZ11, which comprises 4,223,108bp in 9 contigs with the G+C content of 56.70%. A total of 3293 protein-coding sequences were predicted, including nine alginate lyases (EC 4.2.2.3), five agarases (EC 3.2.1.81), 2-dehydro-3-deoxygluconate kinase (EC 2.7.1.45) and all enzymes involved in the Entner-Doudoroff pathway. Our results suggest that strain HZ11 has the potential ability to produce bioethanol from alginate with moderate genetic modification, which may significantly increase the yield of bioethanol from brown seaweed and the utilization rate of brown seaweeds.
Collapse
Affiliation(s)
- Cong Sun
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yu-Jie Chen
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xin-Qi Zhang
- School of Foresty and Biotechnology, Zhejiang Agriculture and Forestry University, Linan, China
| | - Jie Pan
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hong Cheng
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Min Wu
- College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
43
|
Singh J, Suhag M, Dhaka A. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydr Polym 2014; 117:624-631. [PMID: 25498680 DOI: 10.1016/j.carbpol.2014.10.012] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 10/24/2022]
Abstract
Lignocellulosic materials can be explored as one of the sustainable substrates for bioethanol production through microbial intervention as they are abundant, cheap and renewable. But at the same time, their recalcitrant structure makes the conversion process more cumbersome owing to their chemical composition which adversely affects the efficiency of bioethanol production. Therefore, the technical approaches to overcome recalcitrance of biomass feedstock has been developed to remove the barriers with the help of pretreatment methods which make cellulose more accessible to the hydrolytic enzymes, secreted by the microorganisms, for its conversion to glucose. Pretreatment of lignocellulosic biomass in cost effective manner is a major challenge to bioethanol technology research and development. Hence, in this review, we have discussed various aspects of three commonly used pretreatment methods, viz., steam explosion, acid and alkaline, applied on various lignocellulosic biomasses to augment their digestibility alongwith the challenges associated with their processing.
Collapse
Affiliation(s)
- Joginder Singh
- Laboratory of Environmental Biotechnology, Department of Botany, A. I. Jat H. M. College, Rohtak 124001, Haryana, India.
| | - Meenakshi Suhag
- Institute of Environmental Studies, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| | - Anil Dhaka
- PNRS Government College, Rohtak 124001, Haryana, India.
| |
Collapse
|
44
|
Chen C, Ding S, Wang D, Li Z, Ye Q. Simultaneous saccharification and fermentation of cassava to succinic acid by Escherichia coli NZN111. BIORESOURCE TECHNOLOGY 2014; 163:100-105. [PMID: 24787322 DOI: 10.1016/j.biortech.2014.04.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/05/2014] [Accepted: 04/07/2014] [Indexed: 06/03/2023]
Abstract
In this study, the production of succinic acid from cassava starch and raw cassava instead of glucose by Escherichia coli NZN111 was investigated. During the two-stage fermentation, simultaneous saccharification and fermentation (SSF) was applied in the anaerobic stage. The results showed that both the productivity and specific productivity in the process conducted at 40°C were higher than those in the cultivation conducted at 37°C. The yield of succinic acid based on the amount of added starch reached the highest level 0.86 g/g and cassava starch was almost totally hydrolyzed in the SSF process. With the improved cell density, 127.13 g/L of succinic acid was obtained. When the liquefied crude cassava powder was used directly in SSF, 106.17 g/L of succinic acid was formed. The result showed that crude cassava powder could be another cheap raw material for succinic acid formation.
Collapse
Affiliation(s)
- Cuixia Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shaopeng Ding
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Dezheng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Qin Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
45
|
Harun R, Yip JWS, Thiruvenkadam S, Ghani WAWAK, Cherrington T, Danquah MK. Algal biomass conversion to bioethanol - a step-by-step assessment. Biotechnol J 2013; 9:73-86. [DOI: 10.1002/biot.201200353] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 09/18/2013] [Accepted: 10/15/2013] [Indexed: 01/08/2023]
|
46
|
Pham TN, Um Y, Yoon HH. Pretreatment of macroalgae for volatile fatty acid production. BIORESOURCE TECHNOLOGY 2013; 146:754-757. [PMID: 23942360 DOI: 10.1016/j.biortech.2013.07.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 06/02/2023]
Abstract
In this study, a novel method was proposed for the biological pretreatment of macroalgae (Laminaria japonica, Pachymeniopsis elliptica, and Enteromorpha crinita) for production of volatile fatty acid (VFA) by anaerobic fermentation. The amount of VFA produced from 40 g/L of L. japonica increased from 8.3 g/L (control) to 15.6 g/L when it was biologically pretreated with Vibrio harveyi. The biological treatment of L. japonica with Vibrio spp. was most effective likely due to the alginate lyase activity of Vibrio spp. However, a considerable effect was also observed after biological pretreatment of P. elliptica and E. crinita, which are red and green algae, respectively. Alkaline pretreatment of 40 g/L of L. japonica with 0.5 N NaOH resulted in an increase of VFA production to 12.2 g/L. These results indicate that VFA production from macroalgae can be significantly enhanced using the proposed biological pretreatments.
Collapse
Affiliation(s)
- Thi Nhan Pham
- Department of Chemical and Bio-Engineering, Gachon University, Seongnam, Gyeonggi-do 461-701, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Hyon Hee Yoon
- Department of Chemical and Bio-Engineering, Gachon University, Seongnam, Gyeonggi-do 461-701, Republic of Korea.
| |
Collapse
|
47
|
Schultz-Jensen N, Thygesen A, Leipold F, Thomsen ST, Roslander C, Lilholt H, Bjerre AB. Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol--comparison of five pretreatment technologies. BIORESOURCE TECHNOLOGY 2013; 140:36-42. [PMID: 23672937 DOI: 10.1016/j.biortech.2013.04.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 05/23/2023]
Abstract
A qualified estimate for pretreatment of the macroalgae Chaetomorpha linum for ethanol production was given, based on the experience of pretreatment of land-based biomass. C. linum was subjected to hydrothermal pretreatment (HTT), wet oxidation (WO), steam explosion (STEX), plasma-assisted pretreatment (PAP) and ball milling (BM), to determine effects of the pretreatment methods on the conversion of C. linum into ethanol by simultaneous saccharification and fermentation (SSF). WO and BM showed the highest ethanol yield of 44 g ethanol/100g glucan, which was close to the theoretical ethanol yield of 57 g ethanol/100g glucan. A 64% higher ethanol yield, based on raw material, was reached after pretreatment with WO and BM compared with unpretreated C. linum, however 50% of the biomass was lost during WO. Results indicated that the right combination of pretreatment and marine macroalgae, containing high amounts of glucan and cleaned from salts, enhanced the ethanol yield significantly.
Collapse
Affiliation(s)
- Nadja Schultz-Jensen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 229, DK-2800 Lyngby, Denmark.
| | | | | | | | | | | | | |
Collapse
|