1
|
Yang L, Sun X, Li H, Hao R, Liu F. New insights into microalgal-bacterial immobilization systems for wastewater treatment: mechanisms, enhancement strategies, and application prospects. BIORESOURCE TECHNOLOGY 2025; 431:132609. [PMID: 40315931 DOI: 10.1016/j.biortech.2025.132609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
The wastewater treatment based on the symbiosis of microalgae and bacteria has attracted increasing attention for its excellent pollutant removal efficiency, energy savings, and resource recovery. Among them, the microalgae-bacteria immobilization (MABI) system stands out by enhancing the electron transfer efficiency through carrier domain confinement, thereby overcoming bottlenecks of low light energy utilization and challenging biomass recycling. MABI is considered a key breakthrough for advancing engineering applications. However, a comprehensive exploration of MABI systems remains lacking. This review systematically summarizes the latest advancements, covering major immobilization techniques and the intrinsic mechanisms underlying microalgae-bacteria interactions and electron transport. Additionally, it explores enhancement strategies aimed at balancing microbial light energy allocation, optimizing nutrient supply, and constructing complementary ecological niches. The advantages and application prospects of MABI systems are highlighted. The review contributes to structuring the knowledge framework of MABI research and identifies critical gaps for future investigation.
Collapse
Affiliation(s)
- Lili Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xin Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Hongwei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ran Hao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fengling Liu
- Faculty of Architecture, Planning and Surveying, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
2
|
Gao J, Mang Q, Li Q, Sun Y, Xu G. Microbial-algal symbiotic system drives reconstruction of nitrogen, phosphorus, and methane cycles for purification of pollutants in aquaculture water. BIORESOURCE TECHNOLOGY 2025; 430:132531. [PMID: 40233882 DOI: 10.1016/j.biortech.2025.132531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
Intensive aquaculture's excessive nitrogen, phosphorus, and methane emissions caused environmental degradation. This study explored how algae-bacteria symbiotic systems (ABSS) enhanced water purification by regulating element cycles. We established a Chlorella pyrenoidosa-Bacillus subtilis symbiotic system. At a 1:1 bacteria-to-algae ratio, chlorophyll a and cell dry weight were highest. C. pyrenoidosa supplied organic acids, carbohydrates, and amino acids to B. subtilis, which reciprocated with amino acids, purines, and vitamins. ABSS significantly reduced total nitrogen, ammonia nitrogen (NH4+-N), nitrite (NO2--N), nitrate (NO3--N), phosphate (PO43--P), total phosphorous, dissolved organic carbon, and chemical oxygen demand in aquaculture water. It reshaped microbial communities and enriched key genus (Limnohabitans, Planktophila, Polaromonas, Methylocystis) and upregulating genes linked to organic phosphate mineralization, methane oxidation, and nitrate reduction. These changes strengthened nitrogen-phosphorus-methane cycle coupling, boosting water purification. ABSS offers an eco-engineering solution for aquaculture pollution by optimizing microbial interactions and nutrient cycling.
Collapse
Affiliation(s)
- Jun Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Qi Mang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China
| | - Quanjie Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Yi Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| |
Collapse
|
3
|
Cao Y, Xu X, Zhi S, Phyu K, Wang H, Liu J, Chang CC, Zhang K. Microalgal-bacterial system responses to nitrogen forms in dairy farm wastewater: Focusing on the phycosphere and nitrogen transformation. ENVIRONMENTAL RESEARCH 2025; 276:121451. [PMID: 40122500 DOI: 10.1016/j.envres.2025.121451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
As an environmentally friendly medium, microalgae are often used in wastewater treatment. However, few studies have examined the effects of different nitrogen forms on microalgae and bacteria, particularly regarding material and gene transfer and nitrogen metabolic pathways in phycosphere and various extracellular polymeric substance layers. To address this research gap, Chlorella vulgaris was used to treat the dairy farm wastewater with different nitrogen additives. The results showed that the dry weight and chlorophyll a production were lowest at high ammonia nitrogen concentrations (0.460 g/L and 0.883 mg/L, respectively). The ability of microalgae to remove total phosphorus and ammonia nitrogen was significantly enhanced at appropriate nitrogen concentrations. There were clear differences in community abundance between phycosphere and different extracellular polymeric substance layers bacteria. Nitrate nitrogen promoted electron transfer in photosynthesis, while organic nitrogen facilitated the synthesis of siderophores. In high-ammonia nitrogen wastewater, ammonia nitrogen conversion primarily occurred through the action of nitrifying bacteria, whereas denitrification promoted nitrate nitrogen conversion. There is an interaction between nitrogen forms and microalgal-bacterial system. The study provided critical insights for microalgae treatment of dairy farm wastewater, contributing to environmental friendly and resource recycling wastewater management.
Collapse
Affiliation(s)
- Yuang Cao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xiaoyu Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Key Laboratory of Low-Carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China.
| | - Khinkhin Phyu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Han Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jiahua Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Chein-Chi Chang
- Washington D.C. Water and Sewer Authority, Ellicott City, MD, 21042, USA
| | - Keqiang Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Key Laboratory of Low-Carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| |
Collapse
|
4
|
Abd-El-Aziz A, Elnagdy SM, Han J, Mihelič R, Wang X, Agathos SN, Li J. Bacteria-microalgae interactions from an evolutionary perspective and their biotechnological significance. Biotechnol Adv 2025; 82:108591. [PMID: 40328341 DOI: 10.1016/j.biotechadv.2025.108591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/03/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
Interactions between bacteria and microalgae have been studied in natural environments and in industrial consortia. As results of co-evolution for millions of years in nature, they have developed complex symbiotic relationships, including mutualism, commensalism and parasitism, the nature of which is decided by mechanisms of the interaction. There are two main types of molecular interactions between microalgae and bacteria: exchange of nutrients and release of signalling molecules. Nutrient exchange includes transport of organic carbon from microalgae to bacteria and nutrient nitrogen released from nitrogen-fixing bacteria to microalgae, as well as reciprocal supply of micronutrients such as B vitamins and iron. Signalling molecules such as phytohormones secreted by microalgae and quorum sensing molecules secreted by bacteria have been shown to positively affect growth and metabolism of the symbiotic partner. However, there are still a number of potential microalgae-bacteria interactions that have not been well explored, including cyclic peptides, other quorum signalling molecules, and extracellular vesicles involved in exchange of genetic materials. A more thorough understanding of these interactions may not only result in a deeper understanding of the relationships between these symbiotic organisms but also have potential biotechnological applications. Upon new mechanisms of interaction being identified and characterized, novel bioprocesses of synthetic ecology might be developed especially for wastewater treatment and production of biofertilizers and biofuels.
Collapse
Affiliation(s)
- Ahmad Abd-El-Aziz
- College of Materials Science and Chemical Engineering, Harbin, 150001, and Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000 China.
| | - Sherif M Elnagdy
- College of Materials Science and Chemical Engineering, Harbin, 150001, and Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000 China; Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Jichang Han
- College of Food and Engineering, Ningbo University, Ningbo 315832, China
| | - Rok Mihelič
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Xulei Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Spiros N Agathos
- College of Materials Science and Chemical Engineering, Harbin, 150001, and Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000 China; Earth & Life Institute, Catholic University of Louvain, Louvain-la-Neuve 1348, Belgium
| | - Jian Li
- College of Materials Science and Chemical Engineering, Harbin, 150001, and Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000 China.
| |
Collapse
|
5
|
Moezzi SA, Rastgar S, Faghani M, Ghiasvand Z, Javanshir Khoei A. Optimization of carbon membrane performance in reverse osmosis systems for reducing salinity, nitrates, phosphates, and ammonia in aquaculture wastewater. CHEMOSPHERE 2025; 376:144304. [PMID: 40090114 DOI: 10.1016/j.chemosphere.2025.144304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
This study investigates the performance of various types of carbon membranes in reverse osmosis systems aimed at reducing salinity, nitrates, phosphates, and ammonia in aquaculture wastewater. As sustainable aquaculture practices become increasingly essential, effective treatment solutions are needed to mitigate pollution from nutrient-rich effluents. The research highlights several carbon membranes types, including carbon molecular sieves, activated carbon membranes, carbon nanotube membranes, and graphene oxide membranes, all of which demonstrate exceptional filtration capabilities due to their unique structural properties. Findings reveal that these carbon membranes can achieve removal efficiencies exceeding 90 % for critical pollutants, thereby significantly improving water quality and supporting environmental sustainability. The study also explores the development of hybrid membranes and nanocomposites, which enhance performance by combining the strengths of different materials, allowing for customized solutions tailored to the specific requirements of aquaculture wastewater treatment. Additionally, operational parameters such as pH, temperature, and feed water characteristics are crucial for maximizing membrane efficiency. The integration of real-time monitoring technologies is proposed to enable prompt adjustments to treatment processes, thereby improving system performance and reliability. Overall, this research emphasizes the importance of interdisciplinary collaboration among researchers and industry stakeholders to drive innovation in advanced filtration technologies. The findings underscore the substantial potential of carbon membranes in tackling the pressing water quality challenges faced by the aquaculture sector, ultimately contributing to the sustainability of aquatic ecosystems and ensuring compliance with environmental standards for future generations.
Collapse
Affiliation(s)
- Sayyed Ali Moezzi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Saeedeh Rastgar
- Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran.
| | - Monireh Faghani
- Water Science and Engineering-Irrigation and Drainage, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran
| | - Zahra Ghiasvand
- Faculty of Agriculture, Department of Animal Sciences and Aquaculture, Dalhousie University, Halifax, Canada
| | - Arash Javanshir Khoei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
6
|
Hamzah N, Ismail N, Kasmuri N. Benzo(a)pyrene degradation by the interaction of Aspergillus brasilensis and Sphigobacterium spiritovorum in wastewater: optimisation and kinetic response. ENVIRONMENTAL TECHNOLOGY 2025; 46:2268-2280. [PMID: 39581567 DOI: 10.1080/09593330.2024.2428442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024]
Abstract
Benzo(a)pyrene (BaP) is a well-known environmental contaminant that poses significant risks due to its carcinogenic nature and it is crucial to remove it from the environment, especially in wastewater. Thus, this study aims to enhance the degradation of BaP in wastewater through the optimised interaction of the fungus Aspergillus brasiliensis and the bacterium Sphingomonas spiritovorum. The ideal initial pH and temperature ranges for optimising BaP breakdown were determined using response surface methodology (RSM). For that, the range of initial pH chosen was pH 4-9 and the temperature was between 25℃ - 40℃. The first-order kinetic was used to determine the kinetic response for monoculture and co-culture. The co-culture of A. brasiliensis and S. spiritovorum successfully produced a BaP removal rate of over 50%, which was much higher than the removal rates observed in monoculture treatments under optimisation conditions. The kinetic response was obtained with 0.067 d-1 (A. brasiliensis), 0.127 d-1 (S.spriritovorum) and 0.144 d-1 (co-culture) for the degradation rate constant, K. The degradation half-life time, t1/2 shows the decrement for the co-culture (4.83 days) compared to monoculture. The increased degradation has been attributed to the synergistic biochemical pathways, in which fungal ligninolytic enzymes initiate the breakdown of BaP, followed by bacterial degradation of the resulting compounds. The study's results, which have been validated by Analysis of Variance (ANOVA), offer insightful information for the enhancement of bioremediation strategies. This information is practicable for researchers, practitioners, and policymakers in the context of addressing carcinogenic pollutants in wastewater.
Collapse
Affiliation(s)
- Nurhidayah Hamzah
- School of Civil Engineering, College of Engineering, Universiti Teknologi MARA, Selangor, Malaysia
| | - Norasyikin Ismail
- Division of Water Resources Management and Hydrology, Department of Irrigation and Drainage, Kuala Lumpur, Malaysia
| | - Norhafezah Kasmuri
- School of Civil Engineering, College of Engineering, Universiti Teknologi MARA, Selangor, Malaysia
| |
Collapse
|
7
|
Crouchett-Catalán F, Arango J, Bernard O, Martínez C, Casagli F, Jeison D. M-ALBA: A modelling framework to guide the optimization of membrane-assisted algae-bacteria systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 971:179061. [PMID: 40081076 DOI: 10.1016/j.scitotenv.2025.179061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Biological systems combining microalgae and bacteria have been identified as a system with great potential to provide sustainable sanitation solutions. This consortium has been conceived to be normally implemented in the form of high-rate algal-bacteria ponds (HRABP). However, these systems face limitations, associated with effluent clarification and limited loads. Application of membrane filtration to induce biomass retention and effluent clarification have been identified as way to overcome such constraints. However, the effects of decoupling solid retention time (SRT) from hydraulic retention time (HRT) are complex and sometimes difficult to determine or predict. In this study, a model (M-ALBA) was used to predict the performance of a membrane-assisted HRABP. M-ALBA represents an extension of the previously validated ALBA model, by incorporating a compartment providing membrane separation. M-ALBA considers the action of microalgae, heterotrophic bacteria, and nitrifying bacteria (ammonium oxidizers and nitrite oxidizers), including 34 state variables, 19 biological processes and gas-liquid mass transfer of O2, CO2, and NH3. Experimental data from previous study were used to evaluate the model accuracy. Different scenarios were simulated and analysed, using mass balances, considering SRT and HRT in the ranges 4.5-22.5 and 0.5-4.5 days, respectively. Results show how decoupling SRT from HRT improves effluent quality, by increasing nitrogen removal, while avoiding ammonia volatilization. Additionally, it allows operation at lower HRT values, achieving the best performance at HRT 1.5 days. The results obtained in this study contributed to a better understanding of the complex microalgae-bacteria dynamics in membrane-assisted HRABPs.
Collapse
Affiliation(s)
- François Crouchett-Catalán
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, 2085 Valparaíso, Chile.
| | - Jineth Arango
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, 2085 Valparaíso, Chile.
| | - Olivier Bernard
- Centre INRIA d'Université Côte d'Azur, GreenOwl team, Sophia-Antipolis, 06902, France; LOV, Sorbonne University, CNRS, UMR 7093, Station Zoologique, BP 28, 06234 Villefranche-sur-mer, France.
| | - Carlos Martínez
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, 2085 Valparaíso, Chile.
| | - Francesca Casagli
- Centre INRIA d'Université Côte d'Azur, GreenOwl team, Sophia-Antipolis, 06902, France; LOV, Sorbonne University, CNRS, UMR 7093, Station Zoologique, BP 28, 06234 Villefranche-sur-mer, France.
| | - David Jeison
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, 2085 Valparaíso, Chile.
| |
Collapse
|
8
|
Zhang M, Zhao X, Ren X. Research Progress on the Mechanisms of Algal-Microorganism Symbiosis in Enhancing Large-Scale Lipid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6345-6360. [PMID: 40045656 DOI: 10.1021/acs.jafc.4c11580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Microalgae, characterized by their exceptional lipid content, rapid growth, and robust adaptability, represent a promising biological resource. In natural and engineered ecosystems, microalgae engage in intricate symbiotic relationships with diverse microorganisms, a dynamic interplay essential for ecological resilience and metabolic optimization. This review examines the role of symbiotic microorganisms in microalgal growth and lipid accumulation, with particular emphasis on the biological regulatory mechanisms that govern these processes. These include nutrient exchange, phytohormone-mediated growth stimulation, cofactors, and quorum-sensing-driven community coordination. The review highlights how these microbial interactions facilitate optimal lipid production by enhancing metabolic pathways, thereby improving the efficiency of lipid accumulation in microalgae. Furthermore, the review investigates horizontal gene transfer as an evolutionary driver that fortifies algal-microbial consortia against environmental stressors, enabling robust performance in fluctuating conditions. The integration of these biological insights holds transformative potential for advancing next-generation bioenergy platforms, where algal-microbial systems could play a pivotal role in enhancing biofuel production, wastewater treatment, and sustainable agriculture.
Collapse
Affiliation(s)
- Meiyu Zhang
- Food & Medicine Homology and Chinese Medicine Health Science Institute, International Cooperative Joint Laboratory for Marine Microbial Cell Factories, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xinhe Zhao
- Food & Medicine Homology and Chinese Medicine Health Science Institute, International Cooperative Joint Laboratory for Marine Microbial Cell Factories, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiaojie Ren
- Food & Medicine Homology and Chinese Medicine Health Science Institute, International Cooperative Joint Laboratory for Marine Microbial Cell Factories, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
9
|
Wang B, Zhang L, Lian L, Zhang X, Qi Y. Treatment of compound pollution in simulated livestock and poultry wastewater by algae-bacteria symbiosis system. CHEMOSPHERE 2025; 370:143927. [PMID: 39662840 DOI: 10.1016/j.chemosphere.2024.143927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Livestock and poultry breeding wastewater contains a large number of heavy metals and antibiotics; the volume is huge, and it is difficult to treat, which causes serious pollution of the environment. Some studies have shown that symbiotic systems can effectively improve the efficiency of sewage treatment, but there is still a lack of research on the treatment of livestock and poultry wastewater. This experiment not only provides a more in-depth discussion of previous studies, but also demonstrates the feasibility of symbiotic treatment of livestock and poultry wastewater and explores the survival mode and operation mechanism of algal and bacterial symbiosis. The results show that the presence of bacteria greatly promoted the growth of microalgae, with production of 0.50-0.59 g/L biomass and 17.5% lipid content. Lipid levels in the algae from the symbiotic system were 1.3 times higher than for the system of pure algae, which is attributed to the bacteria releasing extracellular substances to promote their own growth and providing small molecules of organic matter and other essential elements which can be used by microalgae. In addition, during the removal of complex pollutants in the symbiotic system we found that the main contributor to the removal of heavy metal ions was the adsorption by Chlorella, while the decomposition of antibiotics mainly originated from bacteria. Furthermore, in the context of this experiment was obtained the highest removal rate of SM2 reached 28.8%, while the removal rate of Cu(II) reached 60.6%-66.7%. The technology of symbiotic treatment of wastewater from livestock and poultry breeding fills a gap and lays a theoretical foundation for the improvement of wastewater treatment.
Collapse
Affiliation(s)
- Bo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Lijie Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Lu Lian
- Shandong Institute for Product Quality Inspection, Jinan, 250102, China
| | - Xiao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Yuejun Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| |
Collapse
|
10
|
Hu H, Yu XC, Hu YY, Wei D, Liu YK, Li WH, Zhu SG. Microalgal-bacterial biofilms enhance pollutant removal coupling with eicosapentaenoic acid production in high-concentration ammonia‑nitrogen wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178121. [PMID: 39700979 DOI: 10.1016/j.scitotenv.2024.178121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/17/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Microalgal-bacterial biofilms have emerged as a promising approach for wastewater treatment. However, its potential to treat high-concentration ammonia‑nitrogen wastewater coupling with high-value fatty acid production remains unclear. Therefore, this study explored the efficiency of a microalgal-bacterial biofilm in treating high-concentration ammonia‑nitrogen wastewater and its ability to produce high-value fatty acids, with the activated sludge (bacteria) and microalgal-bacterial suspension as control. The results indicated that pollutant removal in the microalgal-bacterial biofilm system was the most efficient, with a 98.3 % removal efficiency for chemical oxygen demand, 87.46 % for ammonium nitrogen, and 20.6 % for phosphate. Coupling analysis of microbial community shift and nitrogen conversion genes showed that the relative abundance of Rhodanobacter and Nitrosomonas significantly increased in microalgal-bacterial biofilms, and the expression of nitrification-related genes (amo and hao) and denitrification-related genes (nasA,napA, narI, narV, nirK, and norB) increased compared to the control systems, which played an important role in nitrogen removal. The microalgal-bacterial biofilm system exhibited higher levels of fatty acid synthase and omega-6 fatty acid desaturation, resulting in a dry weight content and production of eicosapentaenoic acid (EPA) with 15.8,19.1 times greater than that achieved by the microalgal suspension system. These results present a foundation for application of pollutant removal in high ammonia nitrogen wastewater coupling with high-value acid production by microalgal-bacterial biofilms.
Collapse
Affiliation(s)
- Hao Hu
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Xiang-Chong Yu
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Yan-Yun Hu
- Instruments Center for Physical Science, University of Science and Technology of China, Hefei 230026, PR China
| | - Dong Wei
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Yan-Kun Liu
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Wei-Hua Li
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Shu-Guang Zhu
- Energy saving Research Institute, Anhui Jianzhu University, Hefei 230601, PR China; Engineering Research Center of Building Energy Efficiency Control and Evaluation, Ministry of Education, Anhui Jianzhu University, Hefei 230601, PR China.
| |
Collapse
|
11
|
Zhao J, Song M, Yin D, Li R, Yu J, Ye X, Chen X. Sustainable transforming toxic sludge into amino acids via bacteria-algae consortium. ENVIRONMENTAL RESEARCH 2024; 263:120079. [PMID: 39343340 DOI: 10.1016/j.envres.2024.120079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The utilization of residual sludge by microalgae represents an environmentally sustainable method for resource recovery. In this study, Tetradesmus obliquus was cultured in hydrolysate derived from toxic sludge. Under symbiotic conditions with bacteria, Tetradesmus obliquus demonstrated enhanced toxin degradation capability and biomass accumulation, which exhibited a 1.39-fold increase in algal cell density, a 1.50-fold increase in Rubisco activity, and a total protein content of 341.83 ± 6.99 mg/L on the 30th day of cultivation. Metabolic utilization of substances in the hydrolysate by microalgae led to a toxicity removal rate of up to 60.43% by day 10. Phenylalanine showed the most significant increase among essential amino acids, and transcriptomic profiling identified genes (gene_16399, gene_16602) involved in phenylalanine enrichment. Macrotranscriptomics showed that bacteria upregulated the TCS system and tryptophan metabolism, supplying microalgae with more CO2 and IAA, which enhanced amino acid enrichment. This study established a non-toxic and biomass-accumulating bacterial-algal co-cultivation system.
Collapse
Affiliation(s)
- Jiamin Zhao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meijing Song
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Danning Yin
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Renjie Li
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiayu Yu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoyun Ye
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiurong Chen
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
12
|
Liu S, Kong Z, Guo H, Zhang Y, Han X, Gao Y, Daigger GT, Zhang G, Li R, Liu Y, Zhang P, Song G. Performance, mechanism regulation and resource recycling of bacteria-algae symbiosis system for wastewater treatment: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125019. [PMID: 39326826 DOI: 10.1016/j.envpol.2024.125019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
The bacteria-algae synergistic wastewater treatment process not only efficiently eliminates nutrients and absorbs heavy metals, but also utilizes photosynthesis to convert light energy into chemical energy, generating valuable bioresource. The study systematically explores the formation, algal species, and regulatory strategies of the bacterial-algal symbiosis system. It provides a detailed analysis of various interaction mechanisms, with a particular focus on nutrient exchange, signal transduction, and gene transfer. Additionally, the efficacy of the system in removing nitrogen, phosphorus, and heavy metals, as well as its role in CO2 reduction and bioresource recycling, is thoroughly elaborated. Potential future research of bacteria-algae cell factory producing bioenergy production, feed or fertilizers are summarized. This paper clearly presents effective strategies for efficiently removing pollutants, reducing carbon emissions, and promoting resource recycling in the field of wastewater treatment. It also provides recommendations for further research on utilizing microbial-algal symbiotic systems to remove novel pollutants from wastewater and extract value-added products from the resulting biomass.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Zhihui Kong
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Haoyi Guo
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yuhong Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Xiaohong Han
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yatong Gao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Ruihua Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Peng Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China.
| |
Collapse
|
13
|
Wang Z, Wang Q, Lu B, Zhao C, Chai W, Huang Z, Li P, Zhao Y. Biogas slurry treatment and biogas upgrading by microalgae-based systems under the induction of different phytohormones. BIORESOURCE TECHNOLOGY 2024; 414:131569. [PMID: 39366512 DOI: 10.1016/j.biortech.2024.131569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The low grade of biogas and the difficulty of treating biogas slurry are the two major bottlenecks limiting the sustainable development of the fermentation engineering. This study investigates the potential role of microalgae-microbial symbiosis and phytohormones in solving this challenge. Chlorella microalgae were combined with endophytic bacteria (S395-2) and Clonostachys fungus to construct symbiotic systems. Growth, photosynthetic activity, and carbon dioxide and pollutant removal out of biogas slurry and biogas were analyzed under treatment with three different phytohormones (cytokinin, synthetic strigolactones (GR24), natural strigolactones). The Chlorella-S395-2-Clonostachys symbiont achieved the highest purification efficiency under GR24 induction, with removal efficiency exceeding 86% for chemical oxygen demand, total phosphorous, and total nitrogen, as well as over 76% for CO2. Economic efficiency can be increased by about 150%. The positive correlation between treatment effectiveness and co-culture performance suggests a promising avenue for developing symbiotic systems for biogas slurry treatment and biogas upgrading.
Collapse
Affiliation(s)
- Zhengfang Wang
- Suzhou Institute of Trade & Commerce, Suzhou 215009, PR China
| | - QiaoLi Wang
- Bureau of Hydrology, Changjiang Water Resources Commission, Wuhan 430000, PR China
| | - Bei Lu
- School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai, 201400, PR China
| | - Chunzhi Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Wenbo Chai
- Suzhou Institute of Trade & Commerce, Suzhou 215009, PR China
| | - Zijuan Huang
- Suzhou Institute of Trade & Commerce, Suzhou 215009, PR China
| | - PeiYing Li
- Suzhou Institute of Trade & Commerce, Suzhou 215009, PR China
| | - Yongjun Zhao
- School of engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
14
|
Zhao S, Qian J, Lu B, Tang S, He Y, Liu Y, Yan Y, Jin S. Enhancing treatment performance of Chlorella pyrenoidosa on levofloxacin wastewater through microalgae-bacteria consortia: Mechanistic insights using the transcriptome. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135670. [PMID: 39213769 DOI: 10.1016/j.jhazmat.2024.135670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/29/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microalgae-bacteria consortia (MBC) system has been shown to enhance the efficiency of microalgae in wastewater treatment, yet its effectiveness in treating levofloxacin (LEV) wastewater remains unexplored. This study compared the treatment of LEV wastewater using pure Chlorella pyrenoidosa (PA) and its MBC constructed with activated sludge bacteria. The results showed that MBC improved the removal efficiency of LEV from 3.50-5.41 % to 33.62-57.20 % by enhancing the growth metabolism of microalgae. The MBC increased microalgae biomass and extracellular polymeric substance (EPS) secretion, yet reduced photosynthetic pigment content compared to the PA. At the phylum level, Proteobacteria and Actinobacteriota are the major bacteria in MBC. Furthermore, the transcriptome reveals that the growth-promoting effects of MBC are associated with the up-regulation of genes encoding the glycolysis, the citrate cycle (TCA cycle), and the pentose phosphate pathway. Enhanced carbon fixation, coupled with down-regulation of photosynthetic electron transfer processes, suggests an energy allocation mechanism within MBC. The up-regulation of porphyrin and arachidonic acid metabolism, along with the expression of genes encoding LEV-degrading enzymes, provides evidence of MBC's superior tolerance to and degradation of LEV. Overall, these findings lead to a better understanding of the underlying mechanisms through which MBC outperforms PA in treating LEV wastewater.
Collapse
Affiliation(s)
- Shasha Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yitong Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shuai Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
15
|
Cheng R, Huang D, Xu X, Yang F. Optimal algae species inoculation strategy for algal-bacterial granular sludge: Sludge characteristics, performance and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123011. [PMID: 39447357 DOI: 10.1016/j.jenvman.2024.123011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/16/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
The algal-bacterial granular sludge (ABGS) system is emerging as a promising technology for future wastewater treatment. This study assessed the impact of different algae species inoculation on granulation, performance, and microbial communities within ABGS systems. The experimental setup included single-species inoculations (Chlorella sp. (R1), Scenedesmus sp. (R2), and Desmodesmus sp. (R3)) and a mixed-species inoculation strategy (R4). Results revealed that R4 achieved the fastest completed granulation process (15 days) with the largest average granule diameter (772.93 μm) and highest physical strength (2.24 ± 0.26%) in the end of the experiment. The relative abundance of extracellular polymeric substances secreting bacteria of R4 maintained high level in whole operation time. Algae assimilation capacity and the abundance of functional bacteria can also influence removal performance. In mature stage, only the average effluent total nitrogen (3.15 ± 2.87 mg/L), total phosphorus (0.37 ± 0.27 mg/L), chemical oxygen demand (25.25 ± 2.98 mg/L) concentration in R4 was lower than that of Grade I discharge standard of municipal wastewater treatment plants in China. The best inorganic carbon utilization and lipid production ability were observed in R4 and R3, respectively. The choice of inoculated algae species was identified as a key factor for bacterial community dynamics. Overall, above results demonstrated that mixed algae species inoculation can be selected as the optimal algae inoculation strategy due to its excellent granulation, performance, and acceptable carbon utilization and lipid production.
Collapse
Affiliation(s)
- Rui Cheng
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, PR China; School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Dan Huang
- China State Shipbuilding Corporation Environmental Development Co., Ltd, Beijing, 100039, PR China
| | - Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, PR China; School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China.
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, PR China; School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| |
Collapse
|
16
|
Pathom-Aree W, Sattayawat P, Inwongwan S, Cheirsilp B, Liewtrakula N, Maneechote W, Rangseekaew P, Ahmad F, Mehmood MA, Gao F, Srinuanpan S. Microalgae growth-promoting bacteria for cultivation strategies: Recent updates and progress. Microbiol Res 2024; 286:127813. [PMID: 38917638 DOI: 10.1016/j.micres.2024.127813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/02/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Microalgae growth-promoting bacteria (MGPB), both actinobacteria and non-actinobacteria, have received considerable attention recently because of their potential to develop microalgae-bacteria co-culture strategies for improved efficiency and sustainability of the water-energy-environment nexus. Owing to their diverse metabolic pathways and ability to adapt to diverse conditions, microalgal-MGPB co-cultures could be promising biological systems under uncertain environmental and nutrient conditions. This review proposes the recent updates and progress on MGPB for microalgae cultivation through co-culture strategies. Firstly, potential MGPB strains for microalgae cultivation are introduced. Following, microalgal-MGPB interaction mechanisms and applications of their co-cultures for biomass production and wastewater treatment are reviewed. Moreover, state-of-the-art studies on synthetic biology and metabolic network analysis, along with the challenges and prospects of opting these approaches for microalgal-MGPB co-cultures are presented. It is anticipated that these strategies may significantly improve the sustainability of microalgal-MGPB co-cultures for wastewater treatment, biomass valorization, and bioproducts synthesis in a circular bioeconomy paradigm.
Collapse
Affiliation(s)
- Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamas Cheirsilp
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand
| | - Naruepon Liewtrakula
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand
| | - Wageeporn Maneechote
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pharada Rangseekaew
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Fiaz Ahmad
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Muhammad Aamer Mehmood
- Bioenergy Research Center, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Fengzheng Gao
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Zurich 8092, Switzerland; Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; Biorefinery and Bioprocess Engineering Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
17
|
Yang Y, Guo W, Hao Ngo H, Zhang X, Ye Y, Peng L, Wei C, Zhang H. Mini critical review: Membrane fouling control in membrane bioreactors by microalgae. BIORESOURCE TECHNOLOGY 2024; 406:131022. [PMID: 38914234 DOI: 10.1016/j.biortech.2024.131022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Membrane bioreactors (MBRs) hold significant promise for wastewater treatment, yet the persistent challenge of membrane fouling impedes their practical application. One promising solution lies in the synergy between microalgae and bacteria, offering efficient nutrient removal, reduced energy consumption, and potential mitigation of extracellular polymeric substances (EPS) concentrations. Inoculating microalgae presents a promising avenue to address membrane fouling in MBRs. This review marks the first exploration of utilizing microalgae for membrane fouling control in MBR systems. The review begins with a comprehensive overview of the evolution and distinctive traits of microalgae-MBRs. It goes further insight into the performance and underlying mechanisms facilitating the reduction of membrane fouling through microalgae intervention. Moreover, the review not only identifies the challenges inherent in employing microalgae for membrane fouling control in MBRs but also illuminates prospective pathways for future advancement in this burgeoning field.
Collapse
Affiliation(s)
- Yuanying Yang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chunhai Wei
- Department of Municipal Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Huiying Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
18
|
Elsayad RM, Sharshir SW, Khalil A, Basha AM. Recent advancements in wastewater treatment via anaerobic fermentation process: A systematic review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121724. [PMID: 38971071 DOI: 10.1016/j.jenvman.2024.121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
This manuscript delves into the realm of wastewater treatment, with a particular emphasis on anaerobic fermentation processes, especially dark, photo, and dark-photo fermentation processes, which have not been covered and overviewed previously in the literature regarding the treatment of wastewater. Moreover, the study conducts a bibliometric analysis for the first time to elucidate the research landscape of anaerobic fermentation utilization in wastewater purification. Furthermore, microorganisms, ranging from microalgae to bacteria and fungi, emphasizing the integration of these agents for enhanced efficiency, are all discussed and compared. Various bioreactors, such as dark and photo fermentation bioreactors, including tubular photo bioreactors, are scrutinized for their design and operational intricacies. The results illustrated that using clostridium pasteurianum CH4 and Rhodopseudomonas palustris WP3-5 in a combined dark-photo fermentation process can treat wastewater to a pH of nearly 7 with over 90% COD removal. Also, integrating Chlorella sp and Activated sludge can potentially treat synthetic wastewater to COD, P, and N percentage removal rates of 99%,86%, and 79%, respectively. Finally, the paper extends to discuss the limitations and future prospects of dark-photo fermentation processes, offering insights into the road ahead for researchers and scientists.
Collapse
Affiliation(s)
- Rahma M Elsayad
- Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt; Higher Institute of Engineering and Technology, Kafrelsheikh, KFS-HIET, Kafrelsheikh, 33516, Egypt
| | - Swellam W Sharshir
- Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Ahmed Khalil
- Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Ali M Basha
- Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
19
|
Yu Q, Chen J, Ye M, Wei Y, Zhang C, Ge Y. N-acyl homoserine lactones (AHLs) enhanced removal of cadmium and other pollutants by algae-bacteria consortia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121792. [PMID: 39002459 DOI: 10.1016/j.jenvman.2024.121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Signal transduction is an important mode of algae-bacteria interaction, in which bacterial quorum sensing (QS) may affect microalgal growth and metabolism. Currently, little is known whether acyl homoserine lactones (AHLs) released by bacteria can affect the pollutant removal by algae-bacteria consortia (ABC). In this study, we constructed ABC using Chlorella vulgaris (Cv) with two AHLs-producing bacteria and investigated their performance in the removal of multiple pollutants, including chemical oxygen demand (COD), total nitrogen (TN), phosphorus (P), and cadmium (Cd). The AHLs-producing bacteria, namely Agrobacterium sp. (Ap) and Ensifer adherens (Ea), were capable of forming a symbiosis with C. vulgaris. Consortia of Cv and Ap with ratio of 2:1 (Cv2-Ap1) showed the optimal growth promotion and higher removal of Cd, COD, TN, and P compared to the C. vulgaris monoculture. Cv2-Ap1 ABC removed 36.1-47.5% of Cd, 94.5%-94.6% COD, 37.1%-56.0% TN, and 90.4%-93.5% P from the culture medium. In addition, increase of intracellular neutral lipids and extracellular protein, as well as the types of functional groups on cell surface contributed to Cd removal and tolerance in the Cv2-Ap1 ABC. Six AHLs were detected in the Cv2-Ap1 culture. Among these, 3OC8-HSL and 3OC12-HSL additions promoted the ABC growth and enhanced their Cd accumulation. These findings may contribute to further understanding of AHL-mediated communication between algae and bacteria and provide support bioremediation efforts of metal-containing wastewater.
Collapse
Affiliation(s)
- Qingnan Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiale Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Menglei Ye
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanping Wei
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunhua Zhang
- Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Ge
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
20
|
Huang J, Wang Z, Zhao C, Yang H, Niu L. Performance of four different microalgae-based technologies in antibiotics removal under multiple concentrations of antibiotics and strigolactone analogue GR24 administration. Sci Rep 2024; 14:16004. [PMID: 38992288 PMCID: PMC11239813 DOI: 10.1038/s41598-024-67156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
The formation of symbionts by using different combinations of endophytic bacteria, microalgae, and fungi to purify antibiotics-containing wastewater is an effective and promising biomaterial technology. As it enhances the mixed antibiotics removal performance of the bio-system, this technology is currently extensively studied. Using exogenous supplementation of various low concentrations of the phytohormone strigolactone analogue GR24, the removal of various antibiotics from simulated wastewater was examined. The performances of Chlorella vulgaris monoculture, activated sludge-C. vulgaris-Clonostachys rosea, Bacillus licheniformis-C. vulgaris-C. rosea, and endophytic bacteria (S395-2)-C. vulgaris-C. rosea co-culture systems were systematically compared. Their removal capacities for tetracycline, oxytetracycline, and chlortetracycline antibiotics from simulated wastewater were assessed. Chlorella vulgaris-endophytic bacteria-C. rosea co-cultures achieved the best performance under 0.25 mg L-1 antibiotics, which could be further enhanced by GR24 supplementation. This result demonstrates that the combination of endophytic bacteria with microalgae and fungi is superior to activated sludge-B. licheniformis-microalgae-fungi systems. Exogenous supplementation of GR24 is an effective strategy to improve the performance of antibiotics removal from wastewater.
Collapse
Affiliation(s)
- Jing Huang
- School of Mathematics and Statistics, Donghua University, Shanghai, 201620, People's Republic of China
| | - Zhengfang Wang
- Suzhou Institute of Trade & Commerce, Suzhou, 215009, People's Republic of China
| | - Chunzhi Zhao
- School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai, 201400, People's Republic of China
| | - Huayun Yang
- School of Engineering, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Lei Niu
- School of Mathematics and Statistics, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
21
|
Hu Y, Sun S, Gu X, Li Z, Zhang J, Xing Y, Wang L, Zhang W. Linking the removal of enrofloxacin to the extracellular polymers of microalgae in water bodies: A case study focusing on the shifts in microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48062-48072. [PMID: 39017865 DOI: 10.1007/s11356-024-34238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Microalgae can promote antibiotic removal, which has attracted growing attention. However, its synergistic removal performance with bacteria in antibiotic pollutants is still poorly understood. In this study, firstly, we selected two green algae (Dictyosphaerium sp. and Chlorella sp.) and exposed them to Enrofloxacin (ENR) to observe their extracellular polysaccharides (EPS) concentration dynamic and the removal of antibiotics. Secondly, EPS was extracted and added to in situ lake water (no algae) to investigate its combined effect with bacteria. The results indicate that both Dictyosphaerium sp. and Chlorella sp. exhibited high tolerance to ENR stress. When the biomass of microalgae was low, ENR could significantly stimulate algae to produce EPS. The removal rates of Dictyosphaerium sp. and Chlorella sp. were 15.8% and 10.5%, respectively. The addition of EPS can both alter the microbial community structure in the lake water and promote the removal of ENR. The LEfSe analysis showed that there were significant differences in the microbial marker taxa, which promoted the increase of special functional bacteria for decomposing ENR, between the EPS-added group and the control group. The EPS of Dictyosphaerium sp. increased the abundance of Moraxellaceae and Spirosomaceae, while the EPS of Chlorella sp. increased the abundance of Sphingomonadaceae and Microbacteriaceae. Under the synergistic effect, Chlorella sp. achieved a maximum removal rate of 24.2%, while Dictyosphaerium sp. achieved a maximum removal rate of 28.9%. Our study provides new insights into the removal performance and mechanism of antibiotics by freshwater microalgae in water bodies and contribute to the development of more effective water treatment strategies.
Collapse
Affiliation(s)
- Youyin Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Shangsheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuewei Gu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Ziyi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jialin Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yawei Xing
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Liqing Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
22
|
Mustafa G, Zahid MT, Kurade MB, Alvi A, Ullah F, Yadav N, Park HK, Khan MA, Jeon BH. Microalgal and activated sludge processing for biodegradation of textile dyes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123902. [PMID: 38580061 DOI: 10.1016/j.envpol.2024.123902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
The textile industry contributes substantially to water pollution. To investigate bioremediation of dye-containing wastewater, the decolorization and biotransformation of three textile azo dyes, Red HE8B, Reactive Green 27, and Acid Blue 29, were considered using an integrated remediation approach involving the microalga Chlamydomonas mexicana and activated sludge (ACS). At a 5 mg L-1 dye concentration, using C. mexicana and ACS alone, decolorization percentages of 39%-64% and 52%-54%, respectively, were obtained. In comparison, decolorization percentages of 75%-79% were obtained using a consortium of C. mexicana and ACS. The same trend was observed for the decolorization of dyes at higher concentrations, but the potential for decolorization was low. The toxic azo dyes adversely affect the growth of microalgae and at high concentration 50 mg L-1 the growth rate inhibited to 50-60% as compared to the control. The natural textile wastewater was also treated with the same pattern and got promising results of decolorization (90%). Moreover, the removal of BOD (82%), COD (72%), TN (64%), and TP (63%) was observed with the consortium. The HPLC and GC-MS confirm dye biotransformation, revealing the emergence of new peaks and the generation of multiple metabolites with more superficial structures, such as N-hydroxy-aniline, naphthalene-1-ol, and sodium hydroxy naphthalene. This analysis demonstrates the potential of the C. mexicana and ACS consortium for efficient, eco-friendly bioremediation of textile azo dyes.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Muhammad Tariq Zahid
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea; Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Mayur Bharat Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Aliya Alvi
- Department of Chemistry, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Faheem Ullah
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Nikita Yadav
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
23
|
Wang Z, Liao Y, Yan L, Liao B. Biological performance and membrane fouling of a microalgal-bacterial membrane photobioreactor for wastewater treatment without external aeration and carbonation. ENVIRONMENTAL RESEARCH 2024; 247:118272. [PMID: 38246292 DOI: 10.1016/j.envres.2024.118272] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Biological nutrient removal processes involving the use of activated sludge (AS) to treat municipal wastewater normally result in high aeration energy consumption and significant greenhouse gas (GHG) emissions. Therefore, developing cost-efficient and environmentally friendly processes for wastewater treatment is vital. In this work, a novel non-aerated microalgal-bacterial membrane photobioreactor (MB-MPBR) was proposed, and its feasibility for organic contaminant and nutrient removals was evaluated, for the first time. The effects of inoculation ratio (microalgae to bacteria (M/B)) on the biological performance and membrane fouling were systematically investigated. The results showed that 95.9% of the chemical oxygen demand (COD), 74.5% of total nitrogen (TN), 98.5% of NH4+-N and 42.0% of total phosphorus (TP) were removed at an inoculation M/B ratio of 3:2 at steady state, representing a significant improvement compared to the M/B inoculation ratio of 1:3. Additionally, the higher inoculation M/B ratio (3:2) significantly promoted the biomass production owing to the favorable mutual exchange of oxygen and carbon dioxide between microalgae and bacteria. Cake layer formation was the primary fouling mechanism owing to the absence of aeration scouring on the membrane surface. The membrane fouling rate was slightly higher at the higher inoculation ratio (M/B = 3:2) owing to the increased biomass and extracellular polymeric substances (EPS) productions, despite the larger particle size. These results demonstrated that the non-aerated MB-MPBR could achieve superior biological performance, of which the inoculation M/B ratio was of critical importance for the initiation and maintenance of microalgal-bacterial symbiotic system, yet possibly caused severer membrane fouling in the absence of external aeration and carbonation. This study provides a new perspective for further optimizing and applying non-aerated MB-MPBR to enhance municipal wastewater treatment.
Collapse
Affiliation(s)
- Zhaozhao Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063210, PR China; College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, PR China; Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.
| | - Yichen Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Lina Yan
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, PR China
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
24
|
Ding S, Gu X, Sun S, He S. Optimization of microplastic removal based on the complementarity of constructed wetland and microalgal-based system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169081. [PMID: 38104829 DOI: 10.1016/j.scitotenv.2023.169081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/06/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
As one of the emblematic emerging contaminants, microplastics (MPs) have aroused great public concern. Nevertheless, the global community still insufficiently acknowledges the ecological health risks and resolution strategies of MP pollution. As the nature-based biotechnologies, the constructed wetland (CW) and microalgal-based system (MBS) have been applied in exploring the removal of MPs recently. This review separately presents the removal research (mechanism, interactions, implications, and technical defects) of MPs by a single method of CWs or MBS. But one thing with certitude is that the exclusive usage of these techniques to combat MPs has non-negligible and formidable challenges. The negative impacts of MP accumulation on CWs involve toxicity to macrophytes, substrates blocking, and nitrogen-removing performance inhibition. While MPs restrict MBS practical application by making troubles for separation difficulties of microalgal-based aggregations from effluent. Hence the combined strategy of microalgal-assisted CWs is proposed based on the complementarity of biotechnologies, in an attempt to expand the removing size range of MPs, create more biodegradable conditions and improve the effluent quality. Our work evaluates and forecasts the potential of integrating combination for strengthening micro-polluted wastewater treatment, completing the synergistic removal of MP-based co-pollutants and achieving long-term stability and sustainability, which is expected to provide new insights into MP pollution regulation and control.
Collapse
Affiliation(s)
- Shaoxuan Ding
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| |
Collapse
|
25
|
Dai C, Wang F. Potential applications of microalgae-bacteria consortia in wastewater treatment and biorefinery. BIORESOURCE TECHNOLOGY 2024; 393:130019. [PMID: 38000638 DOI: 10.1016/j.biortech.2023.130019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
The use of microalgae-bacteria consortia (MBC) for wastewater treatment has garnered attention as their interactions impart greater environmental adaptability and stability compared with that obtained by only microalgae or bacteria use, thereby improving the efficiency of pollutant removal and bio-product productivity. Additionally, the value-added bio-products produced via biorefineries can improve economic competitiveness and environmental sustainability. Therefore, this review focuses on the interaction between microalgae and bacteria that leads to nutrient exchange, gene transfer and signal transduction to comprehensively understand the interaction mechanisms underlying their strong adaptability. In addition, it includes recent research in which MBC has been efficiently used to treat various wastewater. Moreover, the review summarizes the use of MBC-produced biomass in a biorefining context to produce biofuel, biomaterial, high-value bio-products and bio-fertilizer. Overall, more effort is needed to identify the symbiotic mechanism in MBC to provide a foundation for circular bio-economy and environmentally friendly development programmes.
Collapse
Affiliation(s)
- Chenming Dai
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Feifei Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
26
|
Kishor R, Verma M, Saratale GD, Romanholo Ferreira LF, Kharat AS, Chandra R, Raj A, Bharagava RN. Treatment of industrial wastewaters by algae-bacterial consortium with Bio-H 2 production: Recent updates, challenges and future prospects. CHEMOSPHERE 2024; 349:140742. [PMID: 38013027 DOI: 10.1016/j.chemosphere.2023.140742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Currently, scarcity/security of clean water and energy resources are the most serious problems worldwide. Industries use large volume of ground water and a variety of chemicals to manufacture the products and discharge large volume of wastewater into environment, which causes severe impacts on environment and public health. Fossil fuels are considered as major energy resources for electricity and transportation sectors, which release large amount of CO2 and micro/macro pollutants, leading to cause the global warming and public health hazards. Therefore, algae-bacterial consortium (A-BC) may be eco-friendly, cost-effective and sustainable alternative way to treat the industrial wastewaters (IWWs) with Bio-H2 production. A-BC has potential to reduce the global warming and eutrophication. It also protects environment and public health as it converts toxic IWWs into non or less toxic (biomass). It also reduces 94%, 90% and 50% input costs of nutrients, freshwater and energy, respectively during IWWs treatment and Bio-H2 production. Most importantly, it produce sustainable alternative (Bio-H2) to replace use of fossil fuels and fill the world's energy demand in eco-friendly manner. Thus, this review paper provides a detailed knowledge on industrial wastewaters, their pollutants and toxic effects on water/soil/plant/humans and animals. It also provides an overview on A-BC, IWWs treatment, Bio-H2 production, fermentation process and its enhancement methods. Further, various molecular and analytical techniques are also discussed to characterize the A-BC structure, interactions, metabolites and Bio-H2 yield. The significance of A-BC, recent update, challenges and future prospects are also discussed.
Collapse
Affiliation(s)
- Roop Kishor
- Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226 025 UP, India
| | - Meenakshi Verma
- University Centre of Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali 140413, Panjab, India
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University, Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | | | - Arun S Kharat
- Laboratory of Applied Microbiology, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Ram Chandra
- Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226 025 UP, India
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, UP, India
| | - Ram Naresh Bharagava
- Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226 025 UP, India.
| |
Collapse
|
27
|
de Morais EG, Sampaio ICF, Gonzalez-Flo E, Ferrer I, Uggetti E, García J. Microalgae harvesting for wastewater treatment and resources recovery: A review. N Biotechnol 2023; 78:84-94. [PMID: 37820831 DOI: 10.1016/j.nbt.2023.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Microalgae-based wastewater treatment has been conceived to obtain reclaimed water and produce microalgal biomass for bio-based products and biofuels generation. However, microalgal biomass harvesting is challenging and expensive, hence one of the main bottlenecks for full-scale implementation. Finding an integrated approach that covers concepts of engineering, green chemistry and the application of microbial anabolism driven towards the harvesting processes, is mandatory for the widespread establishment of full-scale microalgae wastewater treatment plants. By using nature-based substances and applying concepts of chemical functionalization in already established harvesting methods, the costs of harvesting processes could be reduced while preventing microalgae biomass contamination. Moreover, microalgae produced during wastewater treatment have unique culture characteristics, such as the consortia, which are primarily composed of microalgae and bacteria, that should be accounted for prior to downstream processing. The aim of this review is to examine recent advances in microalgal biomass harvesting and recovery in wastewater treatment systems, considering the impact of consortia variability. The costs of available harvesting technologies, such as coagulation/flocculation, coupled to sedimentation and differential air flotation, are provided. Additionally, promising technologies are discussed, including autoflocculation, bioflocculation, new filtration materials, nanotechnology, microfluidic and magnetic methods.
Collapse
Affiliation(s)
- Etiele Greque de Morais
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Igor Carvalho Fontes Sampaio
- CPID - Espírito Santo's Center for Research, Innovation and Development, Eliezer Batista hill, Jardim América, 29140-130 Cariacica, Espírito Santo, Brazil
| | - Eva Gonzalez-Flo
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain; GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019 Barcelona, Spain
| | - Ivet Ferrer
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Enrica Uggetti
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Joan García
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain.
| |
Collapse
|
28
|
Zhang L, Wang B, Zhang L, Lian L, Cheng X, Yang Z, Jin Y, Chen J, Ren Z, Qi Y, Chen F, Wu D, Wang L. Responses of Chlorella vulgaris to the native bacteria in real wastewater: Improvement in wastewater treatment and lipid production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122737. [PMID: 37838313 DOI: 10.1016/j.envpol.2023.122737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023]
Abstract
Alga-bacterium interaction can improve wastewater treatment efficiency. To unravel the mystery of the interaction between microalgae and bacteria in wastewater, mono-cultures and co-cultures of Chlorella vulgaris and native bacteria in pretreated biochemical wastewater from landfill leachate were investigated. The results showed that the microalgae selected dominant commensal bacteria, creating a further reduction in species richness for the co-culture, which in turn aids in the dominant commensal bacteria's survival, thereby enhancing algal and bacterial metabolic activity. Strikingly, the lipid productivity of Chlorella in co-culture - namely 41.5 mg/L·d - was 1.4 times higher than in algal monoculture. Additionally, pollutant removal was enhanced in co-cultures, attributed to the bacterial community associated with pollutants' degradation. Furthermore, this study provides an important advance towards observations on the migration and transformation pathways of nutrients and metals, and bridges the gap in algal-bacterial synergistic mechanisms in real wastewater, laying the theoretical foundation for improving wastewater treatment.
Collapse
Affiliation(s)
- Lijie Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Bo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Libin Zhang
- School of Civil Engineering, Tianjin University, Tianjin, 300072, China
| | - Lu Lian
- Shandong Institute for Product Quality Inspection, Jinan, 250102, China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Zhigang Yang
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Yan Jin
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Junren Chen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Zian Ren
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Yuejun Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Lin Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| |
Collapse
|
29
|
Sun X, Tong W, Wu G, Yang G, Zhou J, Feng L. A collaborative effect of solid-phase denitrification and algae on secondary effluent purification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119393. [PMID: 37925989 DOI: 10.1016/j.jenvman.2023.119393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
This study explored the collaborative effect on nutrients removal performance and microbial community in solid-phase denitrification based bacteria-algae symbiosis system. Three biodegradable carriers (apple wood, poplar wood and corncob) and two algae species (Chlorella vulgaris and Chlorella pyrenoidosa) were selected in these bacteria-algae symbiosis systems. Results demonstrated that corncob as the carrier exhibited the highest average removal efficiencies of total nitrogen (83.7%-85.1%) and phosphorus removal (38.1%-49.1%) in comparison with apple wood (65.8%-71.5%, 25.5%-32.7%) and poplar wood (42.5%-49.1%, 14.2%-20.7%), which was mainly attributed to the highest organics availability of corncob. The addition of Chlorella acquired approximately 3%-5% of promotion rates for nitrated removal among three biodegradable carriers, but only corncob reactor acquired significant promotions by 3%-11% for phosphorous removal. Metagenomics sequencing analysis further indicated that Proteobacteria was the largest phylum in all wood reactors (77.1%-93.3%) and corncob reactor without Chlorella (85.8%), while Chlorobi became the most dominant phylum instead of Proteobacteria (20.5%-41.3%) in the corncob with addition of Chlorella vulgaris (54.5%) and Chlorella pyrenoidosa (76.3%). Thus, the higher organics availability stimulated the growth of algae, and promoted the performance of bacteria-algae symbiosis system based biodegradable carriers.
Collapse
Affiliation(s)
- Xiaoran Sun
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Weibing Tong
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Guiyang Wu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Guangfeng Yang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Jiaheng Zhou
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Lijuan Feng
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhoushan, 316022, People's Republic of China.
| |
Collapse
|
30
|
Zhou XR, Wang R, Tang CC, Varrone C, He ZW, Li ZH, Wang XC. Advances, challenges, and prospects in microalgal-bacterial symbiosis system treating heavy metal wastewater. CHEMOSPHERE 2023; 345:140448. [PMID: 37839742 DOI: 10.1016/j.chemosphere.2023.140448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Heavy metal (HM) pollution, particularly in its ionic form in water bodies, is a chronic issue threatening environmental security and human health. The microalgal-bacterial symbiosis (MABS) system, as the basis of water ecosystems, has the potential to treat HM wastewater in a sustainable manner, with the advantages of environmental friendliness and carbon sequestration. However, the differences between laboratory studies and engineering practices, including the complexity of pollutant compositions and extreme environmental conditions, limit the applications of the MABS system. Additionally, the biomass from the MABS system containing HMs requires further disposal or recycling. This review summarized the recent advances of the MABS system treating HM wastewater, including key mechanisms, influence factors related to HM removal, and the tolerance threshold values of the MABS system to HM toxicity. Furthermore, the challenges and prospects of the MABS system in treating actual HM wastewater are analyzed and discussed, and suggestions for biochar preparation from the MABS biomass containing HMs are provided. This review provides a reference point for the MABS system treating HM wastewater and the corresponding challenges faced by future engineering practices.
Collapse
Affiliation(s)
- Xing-Rui Zhou
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Rong Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Cong-Cong Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Cristiano Varrone
- Department of Chemistry and BioScience, Aalborg University, Fredrik Bajers Vej 7H 9220, Aalborg Ø, Denmark
| | - Zhang-Wei He
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhi-Hua Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China
| |
Collapse
|
31
|
Selvaraj D, Dhayabaran NK, Mahizhnan A. An insight on pollutant removal mechanisms in phycoremediation of textile wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124714-124734. [PMID: 35708812 DOI: 10.1007/s11356-022-21307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Pollutants, including dyes and heavy metals from textile industrial discharge, adversely affect the surface and groundwater resources, and pose a severe risk to the living organisms in the ecosystem. Phycoremediation of wastewater is now an emerging trend, as it is colossally available, inexpensive, eco-friendly, and has many other benefits, with high removal efficiency for undesirable substances, when compared to conventional treatment methods. Algae have a good binding affinity toward nutrients and toxic compounds because of various functional groups on its cell surface by following the mechanisms such as biosorption, bioaccumulation, or alternate biodegradation pathway. Algae-based treatments generate bioenergy feedstock as sludge, mitigate CO2, synthesize high-value-added products, and release oxygenated effluent. Algae when converted into activated carbon also show good potential against contaminants, because of its higher binding efficiency and surface area. This review provides an extensive analysis of different mechanisms involved in removal of undesirable and hazardous substances from textile wastewater using algae as green technology. It could be founded that both biosorption and biodegradation mechanisms were responsible for the removal of dye, organic, and inorganic pollutants. But for the heavy metals removal, biosorption results in higher removal efficiency. Overall, phycoremediation is a convenient technique for substantial conserving of energy demand, reducing greenhouse gas emissions, and removing pollutants.
Collapse
Affiliation(s)
- Durgadevi Selvaraj
- Environmental Biotechnology Laboratory, Department of Chemical Engineering, National Institute of Technology, Tamil Nadu, Tiruchirappalli, 620015, India
| | - Navamani Kartic Dhayabaran
- Environmental Biotechnology Laboratory, Department of Chemical Engineering, National Institute of Technology, Tamil Nadu, Tiruchirappalli, 620015, India
| | - Arivazhagan Mahizhnan
- Environmental Biotechnology Laboratory, Department of Chemical Engineering, National Institute of Technology, Tamil Nadu, Tiruchirappalli, 620015, India.
| |
Collapse
|
32
|
Sun Z, Wen H, Di Z, Zhang Y, Zhang S, Zhang Z, Zhang J, Yu Z. Photosynthetic Living Fiber Fabrication from Algal-Bacterial Consortia with Controlled Spatial Distribution. ACS Biomater Sci Eng 2023; 9:6481-6489. [PMID: 37779379 DOI: 10.1021/acsbiomaterials.3c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Living materials that combine living cells and synthetic matrix materials have become promising research fields in recent years. While multicellular systems present exclusive benefits in developing living materials over single-cell systems, creating artificial multicellular systems can be challenging due to the difficulty in controlling the multicellular assemblies and the complexity of cell-to-cell interactions. Here, we propose a coculture platform capable of isolating and controlling the spatial distribution of algal-bacterial consortia, which can be utilized to construct photosynthetic living fibers. Through coaxial extrusion-based 3D printing, hydrogel fibers containing bacteria or algae can be deposited into designated structures and further processed into materials with precise geometries. In addition, the photosynthetic living fibers demonstrate a significant synergistic catalytic effect resulting from the immobilization of both bacteria and algae, which effectively optimizes sewage treatment for bioremediation purposes. The integration of microbial consortia and 3D printing yields functional living materials with promising applications in biocatalysis, biosensing, and biomedicine. Our approach provides an optimized solution for constructing efficient multicellular systems and opens a new avenue for the development of advanced materials.
Collapse
Affiliation(s)
- Zitong Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
- Cambridge University-Nanjing Centre of Technology and Innovation No. 23, Rongyue Road, Nanjing 210046, P. R. China
| | - Huilin Wen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Zhengao Di
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - Yang Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Shaobin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Zhiqian Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., No. 40 Shangchong South Road, Haizhu District, Guangzhou 510000, P. R. China
| | - Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| |
Collapse
|
33
|
Tian J, Li P, Luo Y, Yan H, Liu J, Pan Z, Chen Y, Wang R, Cheng Y, Zhou H, Li J, Li X, Tan Z. Insights of microalgal municipal wastewater treatment at low temperatures: Performance, microbiota patterns, and cold-adaptation of tubular and aeration column photobioreactors. CHEMOSPHERE 2023; 340:139910. [PMID: 37611753 DOI: 10.1016/j.chemosphere.2023.139910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/28/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
In order to refine the treatment of microalgae consortium (MC) for municipal wastewater (MWW) during the winter, this study investigated the effectiveness of tubular and aeration column photobioreactors (TPBR and APBR) in wastewater treatment plant (WWTP) during winter by two start-up modes: microalgae/microalgae-activated sludge (AS). The operation results showed that under 5.7-13.1 °C, TPBR enhanced the assimilation of N and P pollutant by microalgal accumulation, meeting the Chinese discharge standard within 24 h (NH4+-N, TP, and COD ≤8.0, 0.5, and 50 mg·L-1). The microbial community profiles were identified and showed that inoculating AS under low-temperature still promoted bacterial interspecific association, but influenced by the inhibition of microbial diversity by the homogeneous circulation of TPBR, the nitrogen transfer function of MC was lower than that of APBR at low temperatures, except nitrogen fixation (K02588), nitrosification (K10944, K10945, and K10946), assimilatory nitrate reduction (K00366), and ammonification (K01915 and K05601). And the intermittent aeration in the APBR was still beneficial in increasing microbial diversity, which was more beneficial for reducing COD through microbial collaboration. In the treatment, the cryotolerant MGPM were Delftia, Romboutsia, Rhizobiales, and Bacillus, and the cold stress-related genes that were highly up-regulated were defense signaling molecules (K03671 and K00384), cold shock protein gene (K03704), and cellular protector (K01784) were present in both PBRs. This study provided a reference for the feasibility of the low temperature treatment of MC with the different types of PBR, which improved the application of wastewater treatment in more climatic environments.
Collapse
Affiliation(s)
- Jiansong Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Institute of Resources and Environmental Engineering, Mianyang Teacher's College, Mianyang, 621000, China
| | - Pan Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Institute of Resources and Environmental Engineering, Mianyang Teacher's College, Mianyang, 621000, China
| | - Yajun Luo
- Institute of Resources and Environmental Engineering, Mianyang Teacher's College, Mianyang, 621000, China
| | - Heng Yan
- Institute of Resources and Environmental Engineering, Mianyang Teacher's College, Mianyang, 621000, China
| | - Jian Liu
- Institute of Resources and Environmental Engineering, Mianyang Teacher's College, Mianyang, 621000, China
| | - Zhicheng Pan
- Haitian Water Group Co., LTD., Chengdu, 610203, China
| | - Yangwu Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Rui Wang
- Haitian Water Group Co., LTD., Chengdu, 610203, China
| | - Yiwei Cheng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Houzhen Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Junjie Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xin Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Zhouliang Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
34
|
Kadri MS, Singhania RR, Haldar D, Patel AK, Bhatia SK, Saratale G, Parameswaran B, Chang JS. Advances in Algomics technology: Application in wastewater treatment and biofuel production. BIORESOURCE TECHNOLOGY 2023; 387:129636. [PMID: 37544548 DOI: 10.1016/j.biortech.2023.129636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Advanced sustainable bioremediation is gaining importance with rising global pollution. This review examines microalgae's potential for sustainable bioremediation and process enhancement using multi-omics approaches. Recently, microalgae-bacterial consortia have emerged for synergistic nutrient removal, allowing complex metabolite exchanges. Advanced bioremediation requires effective consortium design or pure culture based on the treatment stage and specific roles. The strain potential must be screened using modern omics approaches aligning wastewater composition. The review highlights crucial research gaps in microalgal bioremediation. It discusses multi-omics advantages for understanding microalgal fitness concerning wastewater composition and facilitating the design of microalgal consortia based on bioremediation skills. Metagenomics enables strain identification, thereby monitoring microbial dynamics during the treatment process. Transcriptomics and metabolomics encourage the algal cell response toward nutrients and pollutants in wastewater. Multi-omics role is also summarized for product enhancement to make algal treatment sustainable and fit for sustainable development goals and growing circular bioeconomy scenario.
Collapse
Affiliation(s)
- Mohammad Sibtain Kadri
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City 804201, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 805029, Republic of Korea
| | - Ganesh Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Binod Parameswaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan.
| |
Collapse
|
35
|
Zhao C, Li W, Shang D, Ma Q, Liu L, Xu J, Meng J, Zhang T, Wang Q, Wang X, Zhang J, Kong Q. Influence of nitrogen sources on wastewater treatment performance by filamentous algae in constructed wetland system. ENVIRONMENTAL RESEARCH 2023; 235:116638. [PMID: 37442256 DOI: 10.1016/j.envres.2023.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Although filamentous algae have the characteristics of high nutrient assimilation ability, and adaptation to different conditions, studies on their role in water purification of constructed wetlands (CWs) are limited. In this study, the wastewater treatment capacity under different nitrogen sources was explored by constructing a filamentous algal CW (FACW) system. Results confirmed the fast and stable operation efficiency of the FACW system. Ammonia nitrogen was preferred in Cladophora sp. absorption and assimilation. The nutrient consumption rate (NCR) for total nitrogen (TN) of AG was 2.65 mg g-1 d-1, much higher than that of nitrate nitrogen (NG) (0.89 mg g-1 d-1). The symbiosis of bacteria and Cladophora sp. Contributed to pollutant removal. A stable and diverse community of microorganisms was found on Cladophora sp. Surface, which revealed different phylogenetic relationships and functional bacterial proportions with those attached on sediment surface. In addition, temperature and light intensity have great influence on the purification ability of plants, and low hydraulic retention time is beneficial to the cost-effective operation of the system. This study provides a method to expand the utilization of wetland plants and apply large filamentous algae to the purification of wetland water quality.
Collapse
Affiliation(s)
- Congcong Zhao
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China; Dongying Institute, Shandong Normal University, Dongying 257092, Shandong, PR China
| | - Wenying Li
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Dawei Shang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Qilong Ma
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Luxing Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Jiashuo Meng
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Tao Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Qian Wang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Xiaofei Wang
- Shandong Academy of Environmental Sciences CO., LTD, No. 50, Lishan Road, Lixia District, Jinan City, Shandong Province, PR China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China; Dongying Institute, Shandong Normal University, Dongying 257092, Shandong, PR China.
| |
Collapse
|
36
|
Hou Z, Zhou Q, Xie Y, Mo F, Kang W, Wang Q. Potential contribution of chlorella vulgaris to carbon-nitrogen turnover in freshwater ecosystems after a great sandstorm event. ENVIRONMENTAL RESEARCH 2023; 234:116569. [PMID: 37422116 DOI: 10.1016/j.envres.2023.116569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Urban lakes represent important land-water and nature-human dual interfaces that promote the cycling of elements from terrestrials to sediments and consequently modulating the stabilization of regional climate. However, whether disturbances caused by extreme weather events can have substantial effects on carbon-nitrogen (C-N) cycling in these ecosystems are vague. To explore the impact of phytoplankton on the ecological retention time of C-N, two kinds of freshwater (natural and landscape) were collected and conducted a microcosm experiment using a freshwater algal species Chlorella vulgaris. Sandstorm events increased dissolved inorganic carbon in freshwater (65.55 ± 3.09 and 39.46 ± 2.51 mg·L-1 for samples from Jinyang and Nankai, respectively) and significantly affected the relevant pathways of photosynthesis in Chlorella vulgaris, including enhancing chlorophyll fluorescence (The effective quantum yield of PSII at the fifth day of incubation was 0.34 and 0.35 for Nankai and Jinyang, respectively), promoting the synthesis of sugars and inhibiting the synthesis of glycine and serine related proteins. Besides, carbon from plant biomass accumulation and cellular metabolism (fulvic acid-like, polyaromatic-type humic acid and polycarboxylate-type humic acid, etc.) was enriched into residues and become a kind of energy source for the decomposer (TC mass increased by 1.63-2.13 times after 21 days of incubation). This means that the accumulation and consumption of carbon and nitrogen in the residue can be used to track the processes controlling the long-term C-N cycle. Our findings shed light on the plant residues were key factors contributing to the formation of water carbon pool, breaks the traditional theory that dissolved carbonates cannot produce carbon sinks.
Collapse
Affiliation(s)
- Zelin Hou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Yingying Xie
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Fan Mo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Weilu Kang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
37
|
Shu L, Li J, Xu J, Zheng Z. Nutrient removal and biogas upgrade using co-cultivation of Chlorella vulgaris and three different bacteria under various GR24 concentrations by induction with 5-deoxystrigol. World J Microbiol Biotechnol 2023; 39:245. [PMID: 37420159 DOI: 10.1007/s11274-023-03647-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/14/2023] [Indexed: 07/09/2023]
Abstract
Algae symbiosis technology shows great potential in the synchronous treatment of biogas slurry and biogas, which has promising applications. For improving nutrients and CO2 removal rates, the present work constructed four microalgal systems: Chlorella vulgaris (C. vulgaris) monoculture, C. vulgaris-Bacillus licheniformis (B. licheniformis), C. vulgaris-activated sludge, and C. vulgaris-endophytic bacteria (S395-2) to simultaneously treat biogas as well as biogas slurry under GR24 and 5DS induction. Our results showed that the C. vulgaris-endophytic bacteria (S395-2) showed optimal growth performance along with photosynthetic activity under the introduction of GR24 (10-9 M). Under optimal conditions, CO2 removal efficiency form biogas, together with chemical oxygen demand, total phosphorus and total nitrogen removal efficiencies from biogas slurry reached 67.25 ± 6.71%, 81.75 ± 7.93%, 83.19 ± 8.32%, and 85.17 ± 8.26%, respectively. The addition of symbiotic bacteria isolated from microalgae can promote the growth of C. vulgaris, and the exogenous addition of GR24 and 5DS can strengthen the purification performance of the algae symbiosis to achieve the maximum removal of conventional pollutants and CO2.
Collapse
Affiliation(s)
- Lixing Shu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China
| | - Junfeng Li
- School of Advanced Materials and Engineering, Jiaxing Nanhu University, Jiaxing, 314001, People's Republic of China
- Jiaxing Key Laboratory of Preparation and Application of Advanced Materials for Energy Conservation and Emission Reduction, Jiaxing, 314001, People's Republic of China
| | - Jun Xu
- School of Advanced Materials and Engineering, Jiaxing Nanhu University, Jiaxing, 314001, People's Republic of China
- Jiaxing Key Laboratory of Preparation and Application of Advanced Materials for Energy Conservation and Emission Reduction, Jiaxing, 314001, People's Republic of China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
38
|
Tong CY, Honda K, Derek CJC. A review on microalgal-bacterial co-culture: The multifaceted role of beneficial bacteria towards enhancement of microalgal metabolite production. ENVIRONMENTAL RESEARCH 2023; 228:115872. [PMID: 37054838 DOI: 10.1016/j.envres.2023.115872] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023]
Abstract
Mass microalgal-bacterial co-cultures have come to the fore of applied physiological research, in particularly for the optimization of high-value metabolite from microalgae. These co-cultures rely on the existence of a phycosphere which harbors unique cross-kingdom associations that are a prerequisite for the cooperative interactions. However, detailed mechanisms underpinning the beneficial bacterial effects onto microalgal growth and metabolic production are rather limited at the moment. Hence, the main purpose of this review is to shed light on how bacteria fuels microalgal metabolism or vice versa during mutualistic interactions, building upon the phycosphere which is a hotspot for chemical exchange. Nutrients exchange and signal transduction between two not only increase the algal productivity, but also facilitate in the degradation of bio-products and elevate the host defense ability. Main chemical mediators such as photosynthetic oxygen, N-acyl-homoserine lactone, siderophore and vitamin B12 were identified to elucidate beneficial cascading effects from the bacteria towards microalgal metabolites. In terms of applications, the enhancement of soluble microalgal metabolites is often associated with bacteria-mediated cell autolysis while bacterial bio-flocculants can aid in microalgal biomass harvesting. In addition, this review goes in depth into the discussion on enzyme-based communication via metabolic engineering such as gene modification, cellular metabolic pathway fine-tuning, over expression of target enzymes, and diversion of flux toward key metabolites. Furthermore, possible challenges and recommendations aimed at stimulating microalgal metabolite production are outlined. As more evidence emerges regarding the multifaceted role of beneficial bacteria, it will be crucial to incorporate these findings into the development of algal biotechnology.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
39
|
Amaro HM, Salgado EM, Nunes OC, Pires JCM, Esteves AF. Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117678. [PMID: 36948147 DOI: 10.1016/j.jenvman.2023.117678] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Water is the most valuable resource on the planet. However, massive anthropogenic activities generate threatening levels of biological, organic, and inorganic pollutants that are not efficiently removed in conventional wastewater treatment systems. High levels of conventional pollutants (carbon, nitrogen, and phosphorus), emerging chemical contaminants such as antibiotics, and pathogens (namely antibiotic-resistant ones and related genes) jeopardize ecosystems and human health. Conventional wastewater treatment systems entail several environmental issues: (i) high energy consumption; (ii) high CO2 emissions; and (iii) the use of chemicals or the generation of harmful by-products. Hence, the use of microalgal systems (entailing one or several microalgae species, and in consortium with bacteria) as environmental agents towards wastewater treatment has been seen as an environmentally friendly solution to remove conventional pollutants, antibiotics, coliforms and antibiotic resistance genes. In recent years, several authors have evaluated the use of microalgal systems for the treatment of different types of wastewater, such as agricultural, municipal, and industrial. Generally, microalgal systems can provide high removal efficiencies of: (i) conventional pollutants, up to 99%, 99%, and 90% of total nitrogen, total phosphorus, and/or organic carbon, respectively, through uptake mechanisms, and (ii) antibiotics frequently found in wastewaters, such as sulfamethoxazole, ciprofloxacin, trimethoprim and azithromycin at 86%, 65%, 42% and 93%, respectively, through the most desirable microalgal mechanism, biodegradation. Although pathogens removal by microalgal species is complex and very strain-specific, it is also possible to attain total coliform and Escherichia coli removal of 99.4% and 98.6%, respectively. However, microalgal systems' effectiveness strongly relies on biotic and abiotic conditions, thus the selection of operational conditions is critical. While the combination of selected species (microalgae and bacteria), ratios and inoculum concentration allow the efficient removal of conventional pollutants and generation of high amounts of biomass (that can be further converted into valuable products such as biofuels and biofertilisers), abiotic factors such as pH, hydraulic retention time, light intensity and CO2/O2 supply also have a crucial role in conventional pollutants and antibiotics removal, and wastewater disinfection. However, some rationale must be considered according to the purpose. While alkaline pH induces the hydrolysis of some antibiotics and the removal of faecal coliforms, it also decreases phosphates solubility and induces the formation of ammonium from ammonia. Also, while CO2 supply increases the removal of E. coli and Pseudomonas aeruginosa, as well as the microalgal growth (and thus the conventional pollutants uptake), it decreases Enterococcus faecalis removal. Therefore, this review aims to provide a critical review of recent studies towards the application of microalgal systems for the efficient removal of conventional pollutants, antibiotics, and pathogens; discussing the feasibility, highlighting the advantages and challenges of the implementation of such process, and presenting current case-studies of different applications of microalgal systems.
Collapse
Affiliation(s)
- Helena M Amaro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Eva M Salgado
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - José C M Pires
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Ana F Esteves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
40
|
Sonmez ME, Altinsoy B, Ozturk BY, Gumus NE, Eczacioglu N. Deep learning-based classification of microalgae using light and scanning electron microscopy images. Micron 2023; 172:103506. [PMID: 37406585 DOI: 10.1016/j.micron.2023.103506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
Microalgae possess diverse applications, such as food production, animal feed, cosmetics, plastics manufacturing, and renewable energy sources. However, uncontrolled proliferation, known as algal bloom, can detrimentally impact ecosystems. Therefore, the accurate detection, monitoring, identification, and tracking of algae are imperative, albeit demanding considerable time, effort, and expertise, as well as financial resources. Deep learning, employing image pattern recognition, emerges as a practical and promising approach for rapid and precise microalgae cell counting and identification. In this study, we processed light microscopy (LM) and scanning electron microscopy (SEM) images of two Cyanobacteria species and three Chlorophyta species to classify them, utilizing state-of-the-art Convolutional Neural Network (CNN) models, including VGG16, MobileNet V2, Xception, NasnetMobile, and EfficientNetV2. In contrast to prior deep learning based identification studies limited to LM images, we, for the first time, incorporated SEM images of microalgae in our analysis. Both LM and SEM microalgae images achieved an exceptional classification accuracy of 99%, representing the highest accuracy attained by the VGG16 and EfficientNetV2 models to date. While NasnetMobile exhibited the lowest accuracy of 87% with SEM images, the remaining models achieved classification accuracies surpassing 93%. Notably, the VGG16 and EfficientNetV2 models achieved the highest accuracy of 99%. Intriguingly, our findings indicate that algal identification using optical microscopes, which are more cost-effective, outperformed electron microscopy techniques.
Collapse
Affiliation(s)
- Mesut Ersin Sonmez
- Department of Bioengineering, Faculty of Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Betul Altinsoy
- Department of Bioengineering, Faculty of Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Betul Yilmaz Ozturk
- Central Research Laboratory Application and Research Center, Osmangazi University, Eskisehir, Turkey
| | - Numan Emre Gumus
- Scientific and Technological Research & Application Center, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Numan Eczacioglu
- Department of Bioengineering, Faculty of Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey; Scientific and Technological Research & Application Center, Karamanoglu Mehmetbey University, Karaman, Turkey.
| |
Collapse
|
41
|
Mofijur M, Hasan MM, Sultana S, Kabir Z, Djavanroodi F, Ahmed SF, Jahirul MI, Badruddin IA, Khan TMY. Advancements in algal membrane bioreactors: Overcoming obstacles and harnessing potential for eliminating hazardous pollutants from wastewater. CHEMOSPHERE 2023:139291. [PMID: 37353165 DOI: 10.1016/j.chemosphere.2023.139291] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
This paper offers a comprehensive analysis of algal-based membrane bioreactors (AMBRs) and their potential for removing hazardous and toxic contaminants from wastewater. Through an identification of contaminant types and sources, as well as an explanation of AMBR operating principles, this study sheds light on the promising capabilities of AMBRs in eliminating pollutants like nitrogen, phosphorus, and organic matter, while generating valuable biomass and energy. However, challenges and limitations, such as the need for process optimization and the risk of algal-bacterial imbalance, have been identified. To overcome these obstacles, strategies like mixed cultures and bioaugmentation techniques have been proposed. Furthermore, this study explores the wider applications of AMBRs beyond wastewater treatment, including the production of value-added products and the removal of emerging contaminants. The findings underscore the significance of factors such as appropriate algal-bacterial consortia selection, hydraulic and organic loading rate optimization, and environmental factor control for the success of AMBRs. A comprehensive understanding of these challenges and opportunities can pave the way for more efficient and effective wastewater treatment processes, which are crucial for safeguarding public health and the environment.
Collapse
Affiliation(s)
- M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| | - M M Hasan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Sabrina Sultana
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Zobaidul Kabir
- School of Environmental and Life Sciences, University of Newcastle, NSW, 2258, Australia
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - M I Jahirul
- School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - T M Yunus Khan
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| |
Collapse
|
42
|
Dos Santos Neto AG, Barragán-Trinidad M, Florêncio L, Buitrón G. Strategy for the formation of microalgae-bacteria aggregates in high-rate algal ponds. ENVIRONMENTAL TECHNOLOGY 2023; 44:1863-1876. [PMID: 34898377 DOI: 10.1080/09593330.2021.2014577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
This work studied the formation of aggregates used for wastewater treatment in high-rate algal ponds (HRAP). For this, the establishment of microalgae-bacteria aggregates in these systems was evaluated, considering strategies for the inoculation and start-up. Two HRAP were operated in parallel, at first in batch mode and then in continuous flow. The wastewater treatment was efficient, with removal rates around 80% for COD and N-ammoniacal. Volatile suspended solids and chlorophyll for the culture grew continuously reached a concentration of 548 ± 11 mg L-1 and 7.8 mg L-1, respectively. Larger photogranules were observed when the system was placed in a continuous regime. The protein fraction of extracellular polymeric substances was identified as a determinant in photogranules formation. During the continuous regime, more than 50% of the biomass was higher than 0.2 mm, flocculation efficiency of 78 ± 6%, and the volumetric sludge index of 32 ± 5 mL g-1. The genetic sequencing showed the growth of cyanobacteria in the aggregate and the presence of microalgae from the chlorophytes and diatoms groups in the final biomass.
Collapse
Affiliation(s)
- Antonio G Dos Santos Neto
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Federal University of Pernambuco, Recife, Brazil
| | - Martín Barragán-Trinidad
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Lourdinha Florêncio
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Federal University of Pernambuco, Recife, Brazil
| | - Germán Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
43
|
Yu Q, Yin M, Chen Y, Liu S, Wang S, Li Y, Cui H, Yu D, Ge B, Huang F. Simultaneous carbon dioxide sequestration and nitrate removal by Chlorella vulgaris and Pseudomonas sp. consortium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 333:117389. [PMID: 36758399 DOI: 10.1016/j.jenvman.2023.117389] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Carbon dioxide and nitrogen oxides are the main components of fossil flue gas causing the most serious environmental problems. Developing a sustainable and green method to treat carbon dioxide and nitrogen oxides of flue gas is still challenging. Here, a co-cultured microalgae/bacteria system, Chlorella vulgaris and Pseudomonas sp., was developed for simultaneous sequestration of CO2 and removal of nitrogen oxides from flue gas, as well as producing valuable microalgae biomass. The co-cultured Chlorella vulgaris and Pseudomonas sp. showed the highest CO2 fixation and NO3--N removal rate of 0.482 g L-1d-1 and 129.6 mg L-1d-1, the total chlorophyll accumulation rate of 65.6 mg L-1 at the initial volume ratio of Chlorella vulgaris and Pseudomonas sp. as 1:10. The NO3--N removal rate can be increased to 183.5 mg L-1d-1 by continuous addition of 0.6 g L-1d-1 of glucose, which was 37% higher than that of co-culture system without the addition of glucose. Photosynthetic activity and carbonic anhydrase activity of Chlorella vulgaris were significantly increased when co-cultured with Pseudomonas sp. Excitation-emission matrix (EEM) fluorescence spectroscopy indicated that the humic acid-like substances released from Pseudomonas sp. could increase the growth of microalgae. This work provides an attractive way to simultaneously treatment of CO2 and NOX from flue gas to produce valuable microalgal biomass.
Collapse
Affiliation(s)
- Qian Yu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Manshuang Yin
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Yanrui Chen
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Shiqi Liu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Shuo Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Yuying Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Hongli Cui
- Yantai Institute of Coastal Zone, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| |
Collapse
|
44
|
Gunjyal N, Singh G, Ojha CSP. Elevated levels of anthropogenic antibiotic resistance gene marker, sul1, linked with extreme fecal contamination and poor water quality in wastewater-receiving ponds. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:652-664. [PMID: 36716263 DOI: 10.1002/jeq2.20453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/12/2023] [Indexed: 05/06/2023]
Abstract
In several low- and middle-income countries, such as India, the rapid construction of toilets to combat open defecation has not been matched with adequate wastewater treatment, resulting in extreme fecal contamination of the receiving environments. The sewage-receiving surface water bodies, typically close to the residences, are a potential hotspot for disease transmission and antibiotic resistance. Water, soil, and sediment samples from seven wastewater-receiving ponds (WRPs) were analyzed for water quality, chlorophyll-a, fecal contamination (yccT for Escherichia coli), 16S rRNA gene copies, and anthropogenic antibiotic resistance gene markers-sul1 and intI1. These WRPs were contrasted with two ponds that did not directly receive sewage. The water quality in the WRPs was comparable to raw sewage (BOD: 210-380 mg/L; COD: 350-630 mg/L; total-N: 100-190 mg/L; and total-P: 6-21 mg/L), and the relative levels of the DNA marker of E. coli were very high (yccT: 0.1% to ∼100% of total bacterial count) indicating extreme fecal contamination. The relative levels of sul1 and intI1 were 1-3 orders of magnitude higher in WRPs (sul1: 0.32%-10% of total bacterial count; and intI1: 0.2%-5% of total bacterial count) compared to the ponds that did not receive sewage directly. The relative levels of sul1 correlated with the DNA marker for the fecal indicator, E. coli (p-value < 0.05; r = 0.50; Spearman's rank correlation), and poor water quality.
Collapse
Affiliation(s)
- Neelam Gunjyal
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Gargi Singh
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | | |
Collapse
|
45
|
Li X, Liu J, Tian J, Pan Z, Chen Y, Ming F, Wang R, Wang L, Zhou H, Li J, Tan Z. Co-cultivation of microalgae-activated sludge for municipal wastewater treatment: Exploring the performance, microbial co-occurrence patterns, microbiota dynamics and function during the startup stage. BIORESOURCE TECHNOLOGY 2023; 374:128733. [PMID: 36774984 DOI: 10.1016/j.biortech.2023.128733] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Microalgae consortium is a promising technology for achieving low-carbon and resource utilization goals in municipal wastewater treatment. However, little is known about how the consortium affects the treatment performance in the startup stage of co-cultivation. Herein, photobioreactors were constructed with different contents of microalgae and activated sludge (AS) (wt.microalgae: wt.AS ≥ 50 %). The results showed that the concentration of microalgae increased by more than 20 % with AS, and the effluents were close or lower than Chinese discharge standards within HRT 24 h (NH4+-N, TP, and COD ≤ 5.0, 0.5, and 50 mg L-1). Furthermore, the co-occurrence pattern of microbial populations experienced inhibition-reconstruction and reconstruction-inhibition processes, respectively, and the inter-species relationship was directly related to the effluent quality. Microalgal concentration and temperature were the key factors to the microbial community profiling. The potential microorganisms in AS could promote the growth of microalgae, and the bacteria and fungi formed co-metabolism through functional complementation.
Collapse
Affiliation(s)
- Xin Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jian Liu
- Institute of Resources and Environmental Engineering, Mianyang Teacher's College, Mianyang 621000, China
| | - Jiansong Tian
- Institute of Resources and Environmental Engineering, Mianyang Teacher's College, Mianyang 621000, China
| | - Zhicheng Pan
- Haitian Water Group Co., LTD., Chengdu 610203, China
| | - Yangwu Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Ming
- Institute of Resources and Environmental Engineering, Mianyang Teacher's College, Mianyang 621000, China
| | - Rui Wang
- Haitian Water Group Co., LTD., Chengdu 610203, China
| | - Lin Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Houzhen Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Junjie Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhouliang Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
46
|
Qv M, Dai D, Liu D, Wu Q, Tang C, Li S, Zhu L. Towards advanced nutrient removal by microalgae-bacteria symbiosis system for wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 370:128574. [PMID: 36603749 DOI: 10.1016/j.biortech.2022.128574] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
In this study, the microalgae-bacteria symbiosis (ABS) system by co-culturing Chlorella sorokiniana with activated sludge was constructed for pollutants removal, and the according interaction mechanism was investigated. The results showed that the ABS system could almost completely remove ammonia nitrogen, and the removal efficiency of total nitrogen and total phosphorus could accordingly reach up to 65.3 % and 42.6 %. Brevundimonas greatly promoted microalgal biomass growth (maximum chlorophyll-a concentration of 9.4 mg/L), and microalgae contributed to the increase in the abundance of Dokdonella and Thermomonas in ABS system, thus facilitating nitrogen removal. The extended Derjaguin-Landau-Verwey-Overbeek theory indicated a repulsive potential barrier of 561.7 KT, while tryptophan-like proteins and tyrosine-like proteins were key extracellular polymeric substances for the formation of flocs by microalgae and activated sludge. These findings provide an in-depth understanding of interaction mechanism between microalgae and activated sludge for the removal of contaminants from wastewater.
Collapse
Affiliation(s)
- Mingxiang Qv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Dian Dai
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Dongyang Liu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Chunming Tang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Shuangxi Li
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
47
|
Chen J, Ren Z, Li Z, Wang B, Qi Y, Yan W, Liu Q, Song H, Han Q, Zhang L. Interaction of Scenedesmus quadricauda and native bacteria in marine biopharmaceutical wastewater for desirable lipid production and wastewater treatment. CHEMOSPHERE 2023; 313:137473. [PMID: 36481174 DOI: 10.1016/j.chemosphere.2022.137473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Improving knowledge of the alga-bacterium interaction can promote the wastewater treatment. The untreated marine biopharmaceutical wastewater (containing native bacteria) was used directly for culturing microalgae. Unlike previous studies on specific bacteria in algal-bacterial co-culture systems, the effect of native bacteria in wastewater on microalgae growth was investigated in this study. The results showed that the coexistence of native bacteria greatly promoted the microalgae growth, ultimately producing biomass of 0.64 g/L and biomass productivity of 56.18 mg/L·d. Moreover, the lipid accumulation in the algae + bacteria group was 1.31 and 1.13 times higher than those of BG11 and pure algae, respectively, mainly attributed to the fact that bacteria provided a good environment for microalgae growth by using extracellular substances released from microalgae for their own growth, and providing micromolecules of organic matter and other required elements to microalgae. This study would lay the theoretical foundation for improving biopharmaceutical wastewater treatment.
Collapse
Affiliation(s)
- Junren Chen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Zian Ren
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Zheng Li
- Shandong Institute of Eco-environmental Planning, Jinan, 250101, China
| | - Bo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Yuejun Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Wenbao Yan
- Environmental Monitoring Station of Lanshan Branch of Rizhao Ecological and Environment Bureau, 539 Jiaodingshan Road, Rizhao, 276800, China
| | - Qingqing Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Hengyu Song
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Qingxiang Han
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Lijie Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| |
Collapse
|
48
|
Wang H, Wu B, Jiang N, Liu J, Zhao Y, Xu J, Wang H. The effects of influent chemical oxygen demand and strigolactone analog concentration on integral biogas upgrading and pollutants removal from piggery wastewater by different microalgae-based technologies. BIORESOURCE TECHNOLOGY 2023; 370:128483. [PMID: 36513303 DOI: 10.1016/j.biortech.2022.128483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Microalgae-based technologies are promising strategies for efficient wastewater treatment and biogas upgrading. In this study, three types of microalga-fungi/bacteria symbiotic systems stimulated with the strigolactone analog (GR24) were used to simultaneously remove nutrients from treated piggery wastewater and CO2 from biogas. The effects of initial concentrations of chemical oxygen demand (COD) and GR24 on nutrient removal and biogas upgrading were investigated. When the initial COD concentration was 1200 mg/L, the Chlorella vulgaris-Ganoderma lucidum-endophytic bacteria co-cultivation systems achieved the best photosynthetic performance and microalgae growth. Moreover, under the appropriate COD concentration (1200 mg/L), the highest nutrient/CO2 removal efficiencies were obtained. In addition, 10-9 M GR24 significantly accelerated nutrient/CO2 removal efficiencies. These findings provide a theoretical basis for scale-up experiments using microalgae-based technologies.
Collapse
Affiliation(s)
- Heyuan Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Bing Wu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130000, China
| | - Nan Jiang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130000, China
| | - Jinhua Liu
- Changchun Customs Technology Center, Changchun 130062, China
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jie Xu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Haotian Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
49
|
Liyun C. Influence of inoculation ratio on the performance and microbial community of bacterial-algal symbiotic system for rural wastewater treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10838. [PMID: 36744534 DOI: 10.1002/wer.10838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
In this study, co-culture of microalgae and activated sludge in photobioreactors (PBRs) was investigated at different inoculation ratios (0:1, 0.3:1, 0.7:1, and 1.3:1 sludge wt./algae wt.) for rural domestic wastewater treatment under direct solar radiation. Effluent qualities (such as pH, NO2 - , PO4 3- , and NH4 + -N concentrations) were assessed; bacterial and microalgal communities in co-culture system were compared. The microalgal and bacterial biomass fraction played a significant role in the performance and microbial community structure of the treatment system. In reactors with inoculation ratio of 0.3:1 and 0.7:1, the pH exceeded 9 or 10 under solar radiation, which led to some functional bacteria being missing. In the reactor with inoculation ratio of 1.3:1, activated sludge effectively prevented excessive increase in pH in the reactor. Similar observations were made for reactors with inoculation ratios below 1.3:1 by adding sludge halfway through the process. The results show that activated sludge can inhibit excessive increase in pH caused by algal photosynthesis, maintain the activity of nitrite-oxidizing bacteria in PBR, and reduce algae loss with the effluent. PRACTITIONER POINTS: Appropriate fraction of activated sludge can effectively inhibit the excessive increase in pH caused by algal photosynthesis in PBR. Adding activated sludge could maintain the activity of nitrite-oxidizing bacteria in PBR, and reduce microalgae loss with the effluent. Considering the stability of operation and biodiversity in PBR, a 1.3:1 inoculation ratio of activated sludge and microalgae is preferred.
Collapse
Affiliation(s)
- Cai Liyun
- Fujian Key University Laboratory of Estuarine Ecological Security and Environmental Health, School of Environmental Science and Engineering of Xiamen University TanKah Kee College, Zhangzhou, China
| |
Collapse
|
50
|
Sun H, Chen Q, Chen W, Qu C, Mo J, Song J, Guo J, Tian Y. Assessment of biological community in riparian zone contaminated by PAHs: Linking source apportionment to biodiversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158121. [PMID: 35988620 DOI: 10.1016/j.scitotenv.2022.158121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Riparian zone, an important land-water interface, plays an essential role in maintaining the ecological health of rivers, whereas the effects of Polycyclic aromatic hydrocarbons (PAHs) on the health of biological communities in riparian groundwater remain undetermined. To understand the responses of multiple communities to environmental variables, the distribution and ecosystem risk of 16 PAHs have been investigated in the Beiluo River, China. The distribution of multiple communities in riparian groundwater was investigated by environmental DNA metabarcoding, including 16S rRNA, 18S rRNA, and COI gene sequencing for bacteria, microbial eukaryotes (including algae, fungi, and protozoa), and metazoan, respectively, followed by correlation analysis between multiple communities and PAH contamination levels. The concentration of PAHs in the Beiluo River ranged largely from 35.32 to 728.59 ng/L. Here, the Shannon's diversity index of bacteria (Firmicutes) decreased possibly due to the occurrence of Pyrene, which mainly derives from coal and biomass combustion. Furthermore, the reduced richness of fungi (Ascomycota, Basidiomycota) and algae (Chlorophyta, Chrysophyceae) can be attributed to the presence of medium molecular weight (MMW) PAHs (Pyrene, Benz(a)anthracene, Chrysene), and low molecular weight (LMW) PAHs (Naphthalene, Fluorene, Phenanthrene). The richness and Shannon's diversity index of metazoan (Arthropoda) were promoted owing to MMW PAHs (Chrysene, Fluoranthene) generated from coal and biomass combustion and traffic emission. The ecological risk of PAHs in the groundwater environment of the Beiluo River was characterized as low to medium, where LMW and MMW PAHs posed higher risk than the high molecular weight (HMW) compounds. Overall, this study provides insights into the structures of riparian multi-biological communities altered by PAHs.
Collapse
Affiliation(s)
- Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Qiqi Chen
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Wenwu Chen
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jiezhang Mo
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| | - Yulu Tian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|