1
|
Paul M, Banerjee A, Maiti S, Mitra D, DasMohapatra PK, Thatoi H. Evaluation of substrate specificity and catalytic promiscuity of Bacillus albus cellulase: an insight into in silico proteomic study aiming at enhanced production of renewable energy. J Biomol Struct Dyn 2025; 43:3076-3098. [PMID: 38126200 DOI: 10.1080/07391102.2023.2295971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Cellulases are enzymes that aid in the hydrolysis of cellulosic fibers and have a wide range of industrial uses. In the present in silico study, sequence alignment between cellulases from different Bacillus species revealed that most of the residues are conserved in those aligned enzymes. Three dimensional structures of cellulase enzymes from 23 different Bacillus species have been predicted and based on the alignment between the modeled structures, those enzymes have been categorized into 7 different groups according to the homology in their conformational folds. There are two structural contents in Gr-I cellulase namely β1-α2 and β3-α5 loops which varies greatly according to their static position. Molecular docking study between the B. albus cellulase and its various cellulosic substrates including xylanoglucan oligosaccharides revealed that residues viz. Phe154, Tyr258, Tyr282, Tyr285, and Tyr376 of B. albus cellulase are significantly involved in formation stacking interaction during enzyme-substrate binding. Residue interaction network and binding energy analysis for the B. albus cellulase with different cellulosic substrates depicted the strong affinity of XylGlc3 substrate with the receptor enzyme. Molecular interaction and molecular dynamics simulation studies exhibited structural stability of enzyme-substrate complexes which are greatly influenced by the presence of catalytic promiscuity in their substrate binding sites. Screening of B. albus in carboxymethylcellulose (CMC) and xylan supplemented agar media revealed the capability of the bacterium in degrading both cellulose and xylan. Overall, the study demonstrated B. albus cellulase as an effective biocatalyst candidate with the potential role of catalytic promiscuity for possible applications in biofuel industries.
Collapse
Affiliation(s)
- Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, India
- Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Amrita Banerjee
- Oriental Institute of Science and Technology, Midnapore, India
| | - Smarajit Maiti
- Oriental Institute of Science and Technology, Midnapore, India
| | - Debanjan Mitra
- Department of Microbiology, Raiganj University, Raiganj, India
| | - Pradeep K DasMohapatra
- Department of Microbiology, Raiganj University, Raiganj, India
- PAKB Environment Conservation Centre, Raiganj University, Raiganj, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, India
| |
Collapse
|
2
|
Matsuzaki C, Hidaka M, Nakashima Y, Honda Y, Koyanagi T, Ishikawa K, Katoh T, Katayama T, Kumagai H. A thermostable and highly active fungal GH3 β-glucosidase generated by random and saturation mutagenesis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:177-195. [PMID: 39971319 DOI: 10.2183/pjab.101.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Enhancing the thermostability of cellulose-degrading enzymes is pivotal for establishing an efficient bioconversion system from cellulosic materials to value-added compounds. Here, by introducing random and saturation mutagenesis into the Thermoascus aurantiacus β-glucosidase gene, we generated a hyperthermostable mutant with five amino acid substitutions. Analysis of temperature-induced unfolding revealed the involvement of each replacement in the increased Tm value. Structural analysis showed that all replacements are located at the periphery of the catalytic pocket. D433N replacement, which had a pronounced thermostabilizing effect (ΔTm = 4.5°C), introduced an additional hydrogen bond with a backbone carbonyl oxygen in a long loop structure. The mutant enzyme expressed in Kluyveromyces marxianus exhibited a Tm of 82°C and hydrolyzed cellobiose with kcat and Km values of 200 s-1 and 1.8 mM, respectively. When combined with a thermostable endoglucanase, the mutant enzyme released 20% more glucose than wild-type enzyme from cellulosic material. The mutant enzyme is therefore a noteworthy addition to the existing repertoire of thermostable β-glucosidases.
Collapse
Affiliation(s)
- Chiaki Matsuzaki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Masafumi Hidaka
- Graduate School of Agricultural Science, Division of Agricultural Chemistry, Tohoku University, Sendai, Miyagi, Japan
| | - Yukari Nakashima
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Yuji Honda
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Takashi Koyanagi
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Kazuhiko Ishikawa
- Rare Sugar and Enzyme Research, Dep. I, R&D, Matsutani Chemical Industry Co. Ltd., Itami, Hyogo, Japan
| | - Toshihiko Katoh
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takane Katayama
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hidehiko Kumagai
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| |
Collapse
|
3
|
Hussain N, Mikolajek H, Harrison PJ, Paterson N, Akhtar MW, Sadaf S, Naismith JH. Structural and functional snapshots of a broad-specificity endoglucanase from Thermogutta terrifontis for biomass saccharification. Arch Biochem Biophys 2025; 764:110274. [PMID: 39701201 DOI: 10.1016/j.abb.2024.110274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Multifunctionality, processivity, and thermostability are critical for the cost-effective enzymatic saccharification of non-food plant biomass polymers such as β-glucans, celluloses, and xylans to generate biofuels and other valuable products. We present molecular insights into a processive multifunctional endo-1,3-1,4-β-d-glucanase (Tt_End5A) from the hyperthermophilic bacterium Thermogutta terrifontis. Tt_End5A demonstrated activities against a broad spectrum of β-polysaccharides, including barley glucan, lichenan, carboxymethyl cellulose, regenerated amorphous cellulose (RAC), Avicel, xylan, laminarin, mannan, curdlan, xanthan, and various chromogenic substrates at pH 7 and temperatures ranging from 70 to 80°C. The enzyme exhibited a high level of processivity on RAC and retained over 90% activity at 80°C for an extended period, indicating exceptional thermal stability. The 1.20 Å crystal structure of the Tt_End5A catalytic domain revealed an archetypal glycoside hydrolase family 5 (GH5) catalytic TIM-(β/α)8-barrel, supplemented with additional β-strands, elongated α-helices, and a rare cis-non-Pro (His481-cis-Ala482) peptide. A large central cleft was observed in the 3D structure, which is likely related to the enzyme's multifunctionality and processivity. The catalytic domain is preceded by a novel N-terminal multivalent carbohydrate-binding module (CBM) that enhances the enzymatic degradation of insoluble polysaccharides. Mutagenesis studies, ligand interaction analyses, and the structurally conserved positions of E329 and E448 in Tt_End5A suggest that these residues function as the proton donor and nucleophile in the catalytic mechanism. Owing to its multifunctionality and processivity, Tt_End5A can reduce the need for multiple saccharification enzymes to generate fermentable sugars from plant biomass for bioethanol production. Additionally, it holds promise for applications in the pharmaceutical, feed, and food industries.
Collapse
Affiliation(s)
- Naveed Hussain
- School of Biochemistry & Biotechnology, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan; The Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, UK; The Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0FA, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0QS, UK; School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Halina Mikolajek
- The Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0FA, UK; Diamond Light Source Ltd, Diamond House, Harwell Science & Innovation Campus, Fermi Ave, Didcot, OX11 0DE, UK
| | - Peter J Harrison
- The Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, UK; The Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0FA, UK; Diamond Light Source Ltd, Diamond House, Harwell Science & Innovation Campus, Fermi Ave, Didcot, OX11 0DE, UK
| | - Neil Paterson
- Diamond Light Source Ltd, Diamond House, Harwell Science & Innovation Campus, Fermi Ave, Didcot, OX11 0DE, UK
| | - Muhammad W Akhtar
- School of Biochemistry & Biotechnology, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan; School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| | - Saima Sadaf
- School of Biochemistry & Biotechnology, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| | - James H Naismith
- The Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0QS, UK.
| |
Collapse
|
4
|
Ghaffar OR, Khoshnaw DM, Ahmed OR, Aziz SO, Abdollahi A, Mohammed NI, Saleh KK, Ahmad NR, Majeed MM, Muhammad SI, Osman SF, Khdir HA. Supplementing high-fiber olive pomace and multi-enzymes to broiler chicken's diet can improve health and performance. Trop Anim Health Prod 2025; 57:47. [PMID: 39891791 DOI: 10.1007/s11250-025-04298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
This study assessed the effects of high-fiber olive pomace (OP) and exogenous multi-enzymes (phytase, cellulase and xylanase) on broiler chickens' growth performance, internal organs, intestinal morphology, blood traits, serum lipid profile and health. A total of three hundred one-day-old Ross 308 chicks were randomly allocated into six treatments using a 2 × 3 factorial design involving 0 and 0.5 g/kg multi-enzymes and 0, 5, and 10% olive pomace. The diet was primarily based on corn and soybean meal. The experiment was carried out in three stages: starter, grower and finisher. The results indicated that including OP at 5% and 10% levels did not negatively impact broilers' performance (P > 0.05). However, supplementing the diet with multi-enzymes significantly increased feed consumption, body weight, and weight gain (P < 0.05). Furthermore, chickens offered with 10% OP + multi-enzymes exhibited the best performance compared to other experimental groups. The mortality rate also showed a non-significant decline of almost 5% (P > 0.05). Additionally, administration of OP and multi-enzymes or a combination of them to the broilers' diet improved serum lipid profile and liver enzyme activity (P < 0.05) and did not affect the relative weight and length of internal organs and intestinal histomorphology (P > 0.05). In conclusion, using multi-enzymes and a diet containing olive pomace could improve the serum lipid profile, liver enzyme activity, and overall health without adversely affecting broiler performance.
Collapse
Affiliation(s)
- Osama Rahman Ghaffar
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq.
| | - Dastan Mohammed Khoshnaw
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Omer Rasool Ahmed
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Sarwar Omer Aziz
- Raparin Hospital: Raparin Teaching Hospital for Paediatric Diseases and Surgery, Ranya, Sulaymaniyah, 46016, Iraq
| | - Asrin Abdollahi
- Department of Animal Science, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Nihayat Ibrahim Mohammed
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Karzan Kareem Saleh
- Raparin Hospital: Raparin Teaching Hospital for Paediatric Diseases and Surgery, Ranya, Sulaymaniyah, 46016, Iraq
| | - Niga Rzgar Ahmad
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Mzhda Mohammed Majeed
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Shiraz Ismail Muhammad
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Srwsht Farhad Osman
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Hawkar Azad Khdir
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| |
Collapse
|
5
|
Yaşar Yıldız S. Genomic insights into Thermomonas hydrothermalis: potential applications in industrial biotechnology. World J Microbiol Biotechnol 2025; 41:30. [PMID: 39794628 DOI: 10.1007/s11274-024-04240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Thermomonas hydrothermalis, a thermophilic bacterium isolated from hot springs, exhibits unique genomic features that underpin its adaptability to extreme environments and its potential in industrial biotechnology. In this study, we present a comparative genomic analysis of two strains, DSM 14834 and HOT.CON.106, revealing distinct metabolic pathways and stress response mechanisms. The genome annotation highlighted strain-specific variations, such as enhanced motility and chemotaxis capabilities in HOT.CON.106 and a stronger genomic stability emphasis in DSM 14834. Comparative analysis with other Thermomonas species demonstrated that T. hydrothermalis possesses a unique genomic architecture, including genes for thermostable enzymes (e.g., amylases and pullulanases) and secondary metabolite biosynthesis. These enzymes and metabolites have significant industrial potential in high-temperature processes such as bioenergy production, bioplastics synthesis, and bioremediation. The findings underscore the relative differentiation between the strains and their broader implications for sustainable biotechnology, offering a basis for further exploration of thermophilic microorganisms in industrial applications.
Collapse
Affiliation(s)
- Songül Yaşar Yıldız
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, 34700, Turkey.
| |
Collapse
|
6
|
Wan X, Wang J, Zhang S, Zhang X, Shi X, Chen G. New insights into adlay seed bran polysaccharides: Effects of enzyme-assisted Aspergillus niger solid-state fermentation on its structural features, simulated gastrointestinal digestion, and prebiotic activity. Int J Biol Macromol 2025; 284:138101. [PMID: 39608551 DOI: 10.1016/j.ijbiomac.2024.138101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/04/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Adlay seed bran, typically discarded or used as animal feed, represents a significant resource waste. This study investigates the structural and physicochemical properties, in vitro digestive behavior, and fecal fermentation profiles of adlay seed bran polysaccharides (ASBPs) prepared using different methods. These methods include hot water extraction, Aspergillus niger solid-state fermentation (SSF), and enzyme-assisted SSF with β-glucosidase, cellulase, and xylanase, referred to as ASBP, ASBP-F, ASBP-GF, ASBP-CF, and ASBP-XF, respectively. Results showed that enzyme-assisted SSF with A. niger improved extraction efficiency and uniformity of ASBPs, increasing total neutral sugars, uronic acids, mannose, and galactose while reducing glucose content, molecular weight, and particle size. ASBP-CF had the best extraction rate, sugar content, lowest molecular weight, finest uniformity, and smallest particle size. In simulated digestion tests, all ASBP variants were stable in stomach and small intestine conditions but degradable by human fecal microbiota, showing varying fermentability levels. ASBPs increased Bacteroidetes populations, inhibited Proteobacteria growth, and enhanced short-chain fatty acid (SCFAs) production, with ASBP-CF showing the highest fermentability and prebiotic efficacy. ASBP-CF was particularly effective in promoting beneficial bacteria like Bacteroides and restraining harmful bacteria such as Escherichia_Shigella, producing more SCFAs during fermentation. These findings suggest that ASBP-CF has potential as a dietary supplement to improve gut health, presenting a high-value utilization strategy for adlay seed bran.
Collapse
Affiliation(s)
- Xiuping Wan
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Juxiang Wang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Shengyan Zhang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Xuemei Zhang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Xin Shi
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Guangjing Chen
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China.
| |
Collapse
|
7
|
Zeng X, Ren X, Wu R, Zhang Y, Zhang C, Ran S, Ma L. Screening, Gene Cloning and Expression of Cellulase-Producing Strain Bacillus subtilis Xh-16. Curr Microbiol 2024; 81:452. [PMID: 39523253 DOI: 10.1007/s00284-024-03961-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Cellulase is a complex enzyme system composed of multiple hydrolytic enzymes. It can degrade cellulose into glucose and improve the utilization efficiency of cellulose resources. Cellulase produced by microorganisms is the main method used in industry, offering the advantages of convenience and being environmentally friendly. A strain Xh-16 with high cellulase production was screened from the rotten rice straw. It was identified as Bacillus subtilis by morphological identification, physiological and biochemical identification, and 16S rRNA gene sequence analysis. Strain Xh-16 was used to degrade rice straw. After a 48 h cellulase treatment, the complete degradation and structural breakdown of the straw were observed. We cloned the endoglucanase Cel5L gene of Bacillus subtilis Xh-16 and induced expression of the cloned gene in Escherichia coli BL21 (DE3). The results showed that the coding length of Cel5L gene was 1500 bp, and the molecular weight of the encoded protein was about 55 kDa. The molecular formula is C2456H3811N671O761S10 and it has 7709 atoms and 499 amino acids. Cel5L differs significantly from some the glycoside hydrolase family 5 cellulases because it has only one carbohydrate binding module family 3 at the C-terminus of its catalytic domain. The cellulase gene Cel5L in Xh-16 can encode active cellulase and can be heterologously expressed in Escherichia coli, which makes Escherichia coli have cellulase function. This study serves as a foundation for further research on cellulase diversity in Bacillus subtilis and offers insights for enhancing cellulase production.
Collapse
Affiliation(s)
- Xiaoxi Zeng
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China.
| | - Xinping Ren
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Ruotong Wu
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yuanke Zhang
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Cheng Zhang
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Song Ran
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Liang Ma
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| |
Collapse
|
8
|
Arya M, Chauhan G, Fatima T, Verma D, Sharma M. Statistical Modelling of Thermostable Cellulase Production Conditions of Thermophilic Geobacillus sp. TP-1 Isolated from Tapovan Hot Springs of the Garhwal Himalayan Mountain Ranges, India. Indian J Microbiol 2024; 64:1132-1143. [PMID: 39282208 PMCID: PMC11399532 DOI: 10.1007/s12088-024-01258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/10/2024] [Indexed: 09/18/2024] Open
Abstract
A thermo-alkali stable cellulase from Geobacillus sp. TP-1 was isolated from Tapovan hot spring soil sample. The BLASTn sequence analysis of 16S rRNA sequence revealed that the isolate belonged to the Geobacillus genus and shared the highest degree of sequence similarity (99.43%) with the different strains of Geobacillus subterraneus. The neighbour joining method of multiple sequence alignment revealed that the 16S rRNA sequence of Geobacillus sp. TP-1 shows maximum similarity with Geobacillus stearothermophilus strain S_YE6-1017-022. One-Factor-At-a-Time analysis was used to optimize the carbon source, nitrogen source, pH, temperature, inoculum size and growth profile with respect to cellulase production. When compared to un-optimized basal media, optimised medium increased cellulase production by around 3.6 times. The Plackett Burman factorial design was employed to identify the critical medium components influencing cellulase activity and temperature was determined to have a significant effect on overall cellulase production. The current strain was capable of utilising lignocellulosic waste as an alternative carbon source. The use of sugarcane molasses and wheat bran as carbon sources resulted in a significant increase (~ 7.2 fold) in cellulase production in the current study, indicating the bacterium's potential for valorising lignocellulosic biomass into value-added products, which encourages its use in lignocellulosic-based bio refineries. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01258-x.
Collapse
Affiliation(s)
- Meghna Arya
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025 India
| | - Garima Chauhan
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025 India
| | - Tazeem Fatima
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025 India
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025 India
| | - Monica Sharma
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025 India
| |
Collapse
|
9
|
Zayulina KS, Podosokorskaya OA, Klyukina AA, Panova TV, Novikov AA, Kublanov IV, Bonch-Osmolovskaya EA, Elcheninov AG. A Novel Species of the Genus Thermanaerothrix Isolated from a Kamchatka Hot Spring Possesses Hydrolytic Capabilities. Curr Microbiol 2024; 81:293. [PMID: 39090416 DOI: 10.1007/s00284-024-03815-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
Hot springs are inhabited by specific microbial communities which are reservoirs of novel taxa. In this work strain 4228-RoLT was isolated from the Solnechny hot spring, Uzon Caldera, Kamchatka. Cells of the strain 4228-RoLT were Gram-negative rods forming multicellular filaments. The strain grew optimally at 60 °C and pH 7.0 and fermented various organic compounds including polysaccharides (microcrystalline cellulose, xylan, chitin, starch, dextrin, dextran, beta-glucan, galactomannan, glucomannan, mannan). Major fatty acids were iso-C17:0, C16:0, C18:0, C20:0, iso-C19:0, anteiso-C17:0 and C22:0. Genome of the strain was of 3.25 Mbp with GC content of 54.2%. Based on the whole genome comparisons and phylogenomic analysis the new isolate was affiliated to a novel species of Thermanaerothrix genus within Anaerolineae class of phylum Chloroflexota, for which the name T. solaris sp. nov. was proposed with 4228-RoLT (= VKM B-3776 T = UQM 41594 T = BIM B-2058 T) as the type strain. 114 CAZymes including 43 glycoside hydrolases were found to be encoded in the genome of strain 4228-RoLT. Cell-bound and extracellular enzymes of strain 4228-RoLT were active against starch, dextran, mannan, xylan and various kinds of celluloses, with the highest activity against beta-glucan. Altogether, growth experiments, enzymatic activities determination and genomic analysis suggested that T. solaris strain 4228-RoLT could serve as a source of glycosidases suitable for plant biomass hydrolysis.
Collapse
Affiliation(s)
- Kseniya S Zayulina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, 60-Let Oktyabrya Prospect, 7, Bld. 2, 119071, Moscow, Russia
| | - Olga A Podosokorskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, 60-Let Oktyabrya Prospect, 7, Bld. 2, 119071, Moscow, Russia
| | - Alexandra A Klyukina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, 60-Let Oktyabrya Prospect, 7, Bld. 2, 119071, Moscow, Russia
| | - Tatiana V Panova
- Faculty of Chemistry, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991, Moscow, Russia
| | - Andrei A Novikov
- Gubkin Russian State University of Oil and Gas, Leninskiy Prospect 65, 119991, Moscow, Russia
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, 60-Let Oktyabrya Prospect, 7, Bld. 2, 119071, Moscow, Russia
| | - Elizaveta A Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, 60-Let Oktyabrya Prospect, 7, Bld. 2, 119071, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991, Moscow, Russia
| | - Alexander G Elcheninov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, 60-Let Oktyabrya Prospect, 7, Bld. 2, 119071, Moscow, Russia.
| |
Collapse
|
10
|
Zhu X, Qiang Y, Wang X, Fan M, Lv Z, Zhou Y, He B. Reversible immobilization of cellulase on gelatin for efficient insoluble cellulose hydrolysis. Int J Biol Macromol 2024; 273:132928. [PMID: 38897510 DOI: 10.1016/j.ijbiomac.2024.132928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Immobilized enzymes are one of the most common tools used in enzyme engineering, as they can substantially reduce the cost of enzyme isolation and use. However, efficient catalysis of solid substrates using immobilized enzymes is challenging, hydrolysis of insoluble cellulose by immobilized cellulases is a typical example of this problem. In this study, inspired by bees and honeycombs, we prepared gelatin-modified cellulase (BEE) and gelatin hydrogels (HONEYCOMB) to achieve reversible recycling versus release of cellulase through temperature-responsive changes in the triple-stranded helix-like interactions between BEE and HONEYCOMB. At elevated temperatures, BEE was released from HONEYCOMB and participated in hydrolytic saccharification. After 24 h, the glucose yields of both the free enzyme and BEE reached the same level. When the temperature was decreased, BEE recombined with HONEYCOMB to facilitate the effective separation and recycling of BEE from the system. The enzymatic system retained >70 % activity after four reuse cycles. In addition, this system showed good biocompatibility and environmental safety. This method increases the mass transfer capacity and enables easy recovery of immobilized cellulase, thereby serving as a valuable strategy for the immobilization of other enzymes.
Collapse
Affiliation(s)
- Xing Zhu
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yuanyuan Qiang
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Xuechuan Wang
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| | - Mingliang Fan
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Zuoyuan Lv
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yi Zhou
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Bin He
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
11
|
Vardar-Yel N, Tütüncü HE, Sürmeli Y. Lipases for targeted industrial applications, focusing on the development of biotechnologically significant aspects: A comprehensive review of recent trends in protein engineering. Int J Biol Macromol 2024; 273:132853. [PMID: 38838897 DOI: 10.1016/j.ijbiomac.2024.132853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Lipases are remarkable biocatalysts, adept at catalyzing the breakdown of diverse compounds into glycerol, fatty acids, and mono- and di-glycerides via hydrolysis. Beyond this, they facilitate esterification, transesterification, alcoholysis, acidolysis, and more, making them versatile in industrial applications. In industrial processes, lipases that exhibit high stability are favored as they can withstand harsh conditions. However, most native lipases are unable to endure adverse conditions, making them unsuitable for industrial use. Protein engineering proves to be a potent technology in the development of lipases that can function effectively under challenging conditions and fulfill criteria for various industrial processes. This review concentrated on new trends in protein engineering to enhance the diversity of lipase genes and employed in silico methods for predicting and comprehensively analyzing target mutations in lipases. Additionally, key molecular factors associated with industrial characteristics of lipases, including thermostability, solvent tolerance, catalytic activity, and substrate preference have been elucidated. The present review delved into how industrial traits can be enhanced through directed evolution (epPCR, gene shuffling), rational design (FRESCO, ASR), combined engineering strategies (i.e. CAST, ISM, and FRISM) as protein engineering methodologies in contexts of biodiesel production, food processing, and applications of detergent, pharmaceutics, and plastic degradation.
Collapse
Affiliation(s)
- Nurcan Vardar-Yel
- Department of Medical Laboratory Techniques, Altınbaş University, 34145 İstanbul, Turkey
| | - Havva Esra Tütüncü
- Department of Nutrition and Dietetics, Malatya Turgut Özal University, 44210 Malatya, Turkey
| | - Yusuf Sürmeli
- Department of Agricultural Biotechnology, Tekirdağ Namık Kemal University, 59030 Tekirdağ, Turkey.
| |
Collapse
|
12
|
Kabarkouhi Z, Tadi SH, Mahmoodi H, Ranaei Siadat SO, Arjmand S, Shokri B. Simulation and experimental study of a cold atmospheric pressure plasma and comparison of efficiency in boosting recombinant Endoglucanase II production in Pichia pastoris. PLoS One 2024; 19:e0303795. [PMID: 38771745 PMCID: PMC11108213 DOI: 10.1371/journal.pone.0303795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Recombinant proteins are essential in various industries, and scientists employ genetic engineering and synthetic biology to enhance the host cell's protein production capacity. Stress response pathways have been found effective in augmenting protein secretion. Cold atmospheric pressure plasma (CAP) can induce oxidative stress and enhance protein production. Previous studies have confirmed the applicability of CAP jets on Phytase and green fluorescent protein (GFP) production in Pichia pastoris hosts. This study investigates the effect of CAP treatment on another valuable recombinant protein, Endoglucanase II (EgII), integrated into the Pichia pastoris genome. The results demonstrated that plasma induction via two different ignition modes: sinusoidal alternating current (AC) and pulsed direct current (DC) for 120, 180, and 240 s has boosted protein secretion without affecting cell growth and viability. The AC-driven jet exhibited a higher percentage increase in secretion, up to 45%. Simulation of plasma function using COMSOL software provided a pattern of electron temperature (Te) and density distribution, which determine the plasma cocktail's chemistry and reactive species production. Furthermore, electron density (ne) and temperature were estimated from the recorded optical spectrum. The difference in electron properties may explain the moderately different impressions on expression capability. However, cell engineering to improve secretion often remains a trial-and-error approach, and improvements are, at least partially, specific to the protein produced.
Collapse
Affiliation(s)
- Zeinab Kabarkouhi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Hadi Mahmoodi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Babak Shokri
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
13
|
Semba H, Horiguchi HK, Tsuboi H, Ishikawa K, Koda A. Effects of heterologous expression and N-glycosylation on the hyperthermostable endoglucanase of Pyrococcus furiosus. J Biosci Bioeng 2024; 137:329-334. [PMID: 38461105 DOI: 10.1016/j.jbiosc.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 03/11/2024]
Abstract
Hyperthermostable endoglucanases of glycoside hydrolase family 12 from the archaeon Pyrococcus furiosus (EGPf) catalyze the hydrolysis of β-1,4-glucosidic linkages in cellulose and β-glucan structures that contain β-1,3- and β-1,4-mixed linkages. In this study, EGPf was heterologously expressed with Aspergillus niger and the recombinant enzyme was characterized. The successful expression of EGPf resulted as N-glycosylated protein in its secretion into the culture medium. The glycosylation of the recombinant EGPf positively impacted the kinetic characterization of EGPf, thereby enhancing its catalytic efficiency. Moreover, glycosylation significantly boosted the thermostability of EGPf, allowing it to retain over 80% of its activity even after exposure to 100 °C for 5 h, with the optimal temperature being above 120 °C. Glycosylation did not affect the pH stability or salt tolerance of EGPf, although the glycosylated compound exhibited a high tolerance to ionic liquids. EGPf displayed the highest specific activity in the presence of 20% (v/v) 1-butyl-3-methylimidazolium chloride ([Bmim]Cl), reaching approximately 2.4 times greater activity than that in the absence of [Bmim]Cl. The specific activity was comparable to that without the ionic liquid even in the presence of 40% (v/v) [Bmim]Cl. Glycosylated EGPf has potential as an enzyme for saccharifying cellulose under high-temperature conditions or with ionic liquid treatment due to its exceptional thermostability and ionic liquid tolerance. These results underscore the potential of N-glycosylation as an effective strategy to further enhance both the thermostability of highly thermostable archaeal enzymes and the hydrolysis of barley cellulose in the presence of [Bmim]Cl.
Collapse
Affiliation(s)
- Hironori Semba
- General Research Laboratory, Ozeki Corporation, 4-9 Imazu Dezaike-cho, Nishinomiya, Hyogo 663-8227, Japan.
| | - Haruka Kado Horiguchi
- General Research Laboratory, Ozeki Corporation, 4-9 Imazu Dezaike-cho, Nishinomiya, Hyogo 663-8227, Japan
| | - Hirokazu Tsuboi
- General Research Laboratory, Ozeki Corporation, 4-9 Imazu Dezaike-cho, Nishinomiya, Hyogo 663-8227, Japan
| | - Kazuhiko Ishikawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan; Rare Sugar and Enzyme Research, Dep. I, R&D, Matsutani Chemical Industry Co. Ltd., 5-3 Kitaitami, Itami, Hyogo 664-8508, Japan
| | - Akio Koda
- General Research Laboratory, Ozeki Corporation, 4-9 Imazu Dezaike-cho, Nishinomiya, Hyogo 663-8227, Japan
| |
Collapse
|
14
|
Jia J, Tan Y, Gao J, Han J, Shi P, Fang H, Zhao C. Cloning and expression of Neurospora crassa cellobiohydrolase II in Pichia pastoris. Protein Expr Purif 2024; 216:106416. [PMID: 38104790 DOI: 10.1016/j.pep.2023.106416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
A major cellobiohydrolase of Neurospora crassa CBH2 was successfully expressed in Pichia pastoris. The maximum Avicelase activity in shake flask among seven transformants which selected on 4.0 g/L G418 plates was 0.61 U/mL. The optimal pH and temperature for Avicelase activity of the recombinant CBH2 were determined to be 4.8 and 60 °C, respectively. The new CBH2 maintained 63.5 % Avicelase activity in the range of pH 4.0-10.4, and 60.2 % Avicelase activity in the range of 30-90 °C. After incubation at 70-90 °C for 1 h, the Avicelase activity retained 60.5 % of its initial activity. The presence of Zn2+, Ca2+ or Cd2+ enhanced the Avicelase activity of the CBH2, of which Cd2+ at 10 mM causing the highest increase. The recombinant CBH2 was used to enhance the Avicel hydrolysis by improving the exo-exo-synergism between CBH2 and CBH1 in N.crassa cellulase. The enzymatic hydrolysis yield was increased by 38.1 % by adding recombinant CBH2 and CBH1, and the yield was increased by 215.4 % when the temperature is raised to 70 °C. This work provided a CBH2 with broader pH range and better heat resistance, which is a potential enzyme candidate in food, textile, pulp and paper industries, and other industrial fields.
Collapse
Affiliation(s)
- Jingsong Jia
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China; Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Yu Tan
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China; Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jialun Gao
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China; Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jingjing Han
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China; Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Peng Shi
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Hao Fang
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China; Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Zhao
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China; Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
15
|
Sutaoney P, Rai SN, Sinha S, Choudhary R, Gupta AK, Singh SK, Banerjee P. Current perspective in research and industrial applications of microbial cellulases. Int J Biol Macromol 2024; 264:130639. [PMID: 38453122 DOI: 10.1016/j.ijbiomac.2024.130639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/12/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
The natural interactions between various bacteria, fungi, and other cellulolytic microorganisms destroy lignocellulosic polymers. The efficacy of this process is determined by the combined action of three main enzymes: endoglucanases, exo-glucanases, and β-glucosidase. The enzyme attacks the polymeric structure's β-1,4-linkages during the cellulose breakdown reaction. This mechanism is crucial for the environment as it recycles cellulose in the biosphere. However, there are problems with enzymatic cellulose breakdown, including complex cellulase structure, insufficient degradation efficacy, high production costs, and post-translational alterations, many of which are closely related to certain unidentified cellulase properties. These issues impede the practical use of cellulases. A developing area of research is the application of this similar paradigm for industrial objectives. Cellulase enzyme exhibits greater promise in many critical industries, including biofuel manufacture, textile smoothing and finishing, paper and pulp manufacturing, and farming. However, the study on cellulolytic enzymes must move forward in various directions, including increasing the activity of cellulase as well as designing peptides to give biocatalysts their desired attributes. This manuscript includes an overview of current research on different sources of cellulases, their production, and biochemical characterization.
Collapse
Affiliation(s)
- Priya Sutaoney
- Present address-Department of Microbiology, Kalinga University, Raipur 492101, Chhattisgarh, India; Microbiology Laboratory, School of Studies in Life Science, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sakshi Sinha
- Present address-Department of Microbiology, Kalinga University, Raipur 492101, Chhattisgarh, India
| | - Rachana Choudhary
- Department of Microbiology, Shri Shankaracharya Mahavidyalaya, Junwani, Durg 490005, Chhattisgarh, India
| | - A K Gupta
- Microbiology Laboratory, School of Studies in Life Science, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
| | - Paromita Banerjee
- Department of Cardiology, All India Institute of Medical Sciences, Rishikesh, 249203, Uttarakhand, India.
| |
Collapse
|
16
|
Khlebodarova TM, Bogacheva NV, Zadorozhny AV, Bryanskaya AV, Vasilieva AR, Chesnokov DO, Pavlova EI, Peltek SE. Komagataella phaffii as a Platform for Heterologous Expression of Enzymes Used for Industry. Microorganisms 2024; 12:346. [PMID: 38399750 PMCID: PMC10892927 DOI: 10.3390/microorganisms12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In the 1980s, Escherichia coli was the preferred host for heterologous protein expression owing to its capacity for rapid growth in complex media; well-studied genetics; rapid and direct transformation with foreign DNA; and easily scalable fermentation. Despite the relative ease of use of E. coli for achieving the high expression of many recombinant proteins, for some proteins, e.g., membrane proteins or proteins of eukaryotic origin, this approach can be rather ineffective. Another microorganism long-used and popular as an expression system is baker's yeast, Saccharomyces cerevisiae. In spite of a number of obvious advantages of these yeasts as host cells, there are some limitations on their use as expression systems, for example, inefficient secretion, misfolding, hyperglycosylation, and aberrant proteolytic processing of proteins. Over the past decade, nontraditional yeast species have been adapted to the role of alternative hosts for the production of recombinant proteins, e.g., Komagataella phaffii, Yarrowia lipolytica, and Schizosaccharomyces pombe. These yeast species' several physiological characteristics (that are different from those of S. cerevisiae), such as faster growth on cheap carbon sources and higher secretion capacity, make them practical alternative hosts for biotechnological purposes. Currently, the K. phaffii-based expression system is one of the most popular for the production of heterologous proteins. Along with the low secretion of endogenous proteins, K. phaffii efficiently produces and secretes heterologous proteins in high yields, thereby reducing the cost of purifying the latter. This review will discuss practical approaches and technological solutions for the efficient expression of recombinant proteins in K. phaffii, mainly based on the example of enzymes used for the feed industry.
Collapse
Affiliation(s)
- Tamara M. Khlebodarova
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia V. Bogacheva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey V. Zadorozhny
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alla V. Bryanskaya
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Asya R. Vasilieva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Danil O. Chesnokov
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Elena I. Pavlova
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Sergey E. Peltek
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
17
|
Ejaz U, Taj A, Sohail M, Alanazi AK, Abo-Dief HM. Toward a zero waste approach: Utilization of sugarcane bagasse for dye removal and multienzymes production. J Basic Microbiol 2024; 64:e2300529. [PMID: 38066405 DOI: 10.1002/jobm.202300529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 02/13/2024]
Abstract
Global production of sugarcane bagasse (SB) by sugar industries exceeds more than 100 tons per annum. SB is rich in lignin and polysaccharide and hence can serve as a low-cost energy and carbon source for the growth of industrially important microorganism. However, various other applications of SB have also been investigated. In this study, SB was used as an adsorbent to remove an azo dye, malachite green. Subsequently, the dye-adsorbed SB was fermented by Trametes pubescens MB 89 for the production of laccase enzyme. The fungal pretreated SB was further utilized as a substrate for the simultaneous production of multiple plant cell wall degrading enzymes including, cellulase, xylanase, pectinase, and amylase by thermophilic bacterial strains. Results showed that 0.1% SB removed 97.04% malachite green at 30°C after 30 min from a solution containing 66 ppm of the dye. Fermentation of the dye-adsorbed SB by T. pubescens MB 89 yielded 667.203 IU mL-1 laccase. Moreover, Brevibacillus borstelensis UE10 produced 38.41 and 18.6 IU mL-1 β-glucosidase and pectinase, respectively, by using fungal-pretreated SB. Cultivation of B. borstelensis UE27 in the medium containing the same substrate yielded 32.14 IU mL-1 of endoglucanase and 27.23 IU mL-1 of β-glucosidase. Likewise, Neobacillus sedimentimangrovi UE25 could produce a mix of β-glucosidase (37.24 IU mL-1 ), xylanase (18.65 IU mL-1 ) and endoglucanase (26.65 IU mL-1 ). Hence, this study led to the development of a method through which dye-containing textile effluent can be treated by SB along with the production of industrially important enzymes.
Collapse
Affiliation(s)
- Uroosa Ejaz
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (Szabist University), Karachi, Pakistan
| | - Ayaz Taj
- Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | | | - Hala M Abo-Dief
- Department of Science and Technology, University College-Ranyah, Taif University, Taif, Saudi Arabia
| |
Collapse
|
18
|
Erkanli ME, El-Halabi K, Kim JR. Exploring the diversity of β-glucosidase: Classification, catalytic mechanism, molecular characteristics, kinetic models, and applications. Enzyme Microb Technol 2024; 173:110363. [PMID: 38041879 DOI: 10.1016/j.enzmictec.2023.110363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/04/2023]
Abstract
High-value chemicals and energy-related products can be produced from biomass. Biorefinery technology offers a sustainable and cost-effective method for this high-value conversion. β-glucosidase is one of the key enzymes in biorefinery processes, catalyzing the production of glucose from aryl-glycosides and cello-oligosaccharides via the hydrolysis of β-glycosidic bonds. Although β-glucosidase plays a critical catalytic role in the utilization of cellulosic biomass, its efficacy is often limited by substrate or product inhibitions, low thermostability, and/or insufficient catalytic activity. To provide a detailed overview of β-glucosidases and their benefits in certain desired applications, we collected and summarized extensive information from literature and public databases, covering β-glucosidases in different glycosidase hydrolase families and biological kingdoms. These β-glucosidases show differences in amino acid sequence, which are translated into varying degrees of the molecular properties critical in enzymatic applications. This review describes studies on the diversity of β-glucosidases related to the classification, catalytic mechanisms, key molecular characteristics, kinetics models, and applications, and highlights several β-glucosidases displaying high stability, activity, and resistance to glucose inhibition suitable for desired biotechnological applications.
Collapse
Affiliation(s)
- Mehmet Emre Erkanli
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, United States
| | - Khalid El-Halabi
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, United States
| | - Jin Ryoun Kim
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, United States.
| |
Collapse
|
19
|
Khan PA, Mohammad A, Bansal SL, Lal B, Singh P, Singh R, Syed A, Verma M, Singla D, Mishra PK, Wong LS, Srivastava N, O'Donovan A. Biotransformation of Raw Mango Seed Waste into Bacterial Hydrolytic Enzymes Enhancement Via Solid State Fermentation Strategy. Mol Biotechnol 2024:10.1007/s12033-023-01022-4. [PMID: 38195817 DOI: 10.1007/s12033-023-01022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024]
Abstract
Solid waste generation is a huge contributor to environmental pollution issues, and food wastes are prominent in this category due to their large generation on a day-to-day basis. Thus, the settlement of daily food waste is one of the major constraints and needs innovative manufacturing sheme to valorize solid waste in sustainable manner. Moreover, these food wastes are rich in organic content, which has promising scope for their value-added products. In the present study, raw mango seed waste has been biotransformed to produce bacterial hydrolytic enzymes as feedstock. On investigating the impact of substrate, the highest bacterial cellulase production was recorded to be 18 IU/gds FP (filter paper) in 24 h of microbial incubation at 5 g of substrate in solid-state fermentation (SSF). Furthermore, at 40 °C and pH 6.0, 23 IU/gds FP enzyme could be produced in 24 h of SSF. Beside this, on comparing the influence of inorganic and organic nitrogen sources, urea has been found to provide better cellulase production, which yielded 28 IU/gds FP in 24 h of incubation, along with 77 IU/gds BG (β-glucosidase) and 89 IU/gds EG (endoglucanase). On the other hand, Tween-40 and Tween-80, two different surfactants, were employed at a 1.0% concentration for 24 h of incubation. It was noticed that Tween-80 showed complete enzyme activity at 24 h, which was found to be relatively superior to that of Tween-40. This study may have potential utility in enzyme production using mango seed as a food waste for various industrial applications.
Collapse
Affiliation(s)
- Pathan Ahemad Khan
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Swarn Lata Bansal
- Department of Chemistry, Lucknow University, Lucknow, UP, 226007, India
| | - Basant Lal
- Department of Chemistry, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Preeti Singh
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| | - Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Meenakshi Verma
- Department of Chemistry, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Diksha Singla
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - P K Mishra
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India.
| | - Anthonia O'Donovan
- Applied Biology and Biopharmaceuticals Sciences, Department of Science, Atlantic Technological University, Galway, Ireland
| |
Collapse
|
20
|
de Araujo Ribeiro GC, de Assis SA. β-glucosidases from Saccharomyces cerevisiae: production, protein precipitation, characterization, and application in the enzymatic hydrolysis of delignified sugarcane bagasse. Prep Biochem Biotechnol 2024; 54:317-327. [PMID: 38178713 DOI: 10.1080/10826068.2023.2238290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
β-glucosidase is an essential enzyme for the enzymatic hydrolysis of lignocellulosic biomass, as it catalyzes the final stage of cellulose breakdown, releasing glucose. This paper aims to produce β-glucosidase from Saccharomyces cerevisiae and evaluate the enzymatic degradation of delignified sugarcane bagasse. S. cerevisiae was grown in yeast peptone dextrose medium. Partial purification of the enzyme was achieved through precipitating proteins with ethanol, and the optimal activity was measured by optimizing pH and temperature. The effects of ions, glucose tolerance, and heat treatment were evaluated. Delignified sugarcane bagasse was hydrolyzed by the enzyme. β-glucosidase showed a specific activity of 14.0712 ± 0.0207 U mg-1. Partial purification showed 1.22-fold purification. The optimum pH and temperature were 6.24 and 54 °C, respectively. β-glucosidase showed tolerance to glucose, with a relative activity of 71.27 ± 0.16%. Thermostability showed a relative activity of 58.84 ± 0.91% at 90 °C. The hydrolysis of delignified sugarcane bagasse showed a conversion rate of 87.97 ± 0.10% in the presence of Zn2+, an ion that promoted the highest increase in enzymatic activity. S. cerevisiae produced an extracellular β-glucosidase with good stability at pH and temperatures conventionally applied in the hydrolysis of lignocellulosic biomass, showing viability for industrial application.
Collapse
|
21
|
Qiu Y, Johnson Z, Gu X, Bohutskyi P, Chen S. Dairy manure acidogenic fermentation at hyperthermophilic temperature enabled superior activity of thermostable hydrolytic enzymes linked to the genus Caldicoprobacter. BIORESOURCE TECHNOLOGY 2024; 391:129978. [PMID: 37944622 DOI: 10.1016/j.biortech.2023.129978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
In this study, fermentation experiments were conducted under mesophilic, thermophilic, and hyperthermophilic conditions to investigate adaptation of microbial communities and its effect on extracellular enzyme activities toward degradation of cellulose, hemicellulose and proteins in dairy manure. Hyperthermophilic conditions transformed the microbiome structure and stimulated activity of extracellular proteolytic, cellulolytic, and hemicellulolytic enzymes. Specifically, the activities of protease, cellulose 1,4-β-cellobiosidase, and β-glucosidase secreted by hyperthermophilic microbes were higher by 22%, 47% and 49% compared to those produced by mesophilic and thermophilic communities. Enhanced hydrolytic activity of hyperthermophilic microbes enabled improved feedstock solubilization and production of 39% and 22% more soluble COD than mesophilic and thermophilic microbes, respectively. Connections between hydrolytic function and microbial community structure at various temperatures were assessed using the PICRUSt2 computational tool. Genus Caldicoprobacter was identified as the primary candidate responsible for increased production of thermostable endo-1,4-β-glucanase, β-glucosidase and endo-1,4-β-xylanase, and enhanced hydrolytic performance of hyperthermophilic microbial community.
Collapse
Affiliation(s)
- Yaojing Qiu
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, United States
| | - Zachary Johnson
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, United States; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Xiangyu Gu
- State Key laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Pavlo Bohutskyi
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, United States; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States.
| | - Shulin Chen
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, United States.
| |
Collapse
|
22
|
Santos Gomes MMOD, Nicodemos IS, Costa Silva MD, Santos DMRCD, Santos Costa F, Franco M, Pereira HJV. Optimization of enzymatic saccharification of industrial wastes using a thermostable and halotolerant endoglucanase through Box-Behnken experimental design. Prep Biochem Biotechnol 2024; 54:1-11. [PMID: 37071540 DOI: 10.1080/10826068.2023.2201936] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
This study describes the production, characterization and application of an endoglucanase from Penicillium roqueforti using lignocellulosic agro-industrial wastes as the substrate during solid-state fermentation. The endoglucanase was generated after culturing with different agro-industrial wastes for 96 h without any pretreatment. The highest activity was obtained at 50 °C and pH 4.0. Additionally, the enzyme showed stability in the temperature and pH ranges of 40-80 °C and 4.0-5.0, respectively. The addition of Ca2+, Zn2+, Mg2+, and Cu2+ increased enzymatic activity. Halotolerance as a characteristic of the enzyme was confirmed when its activity increased by 35% on addition of 2 M NaCl. The endoglucanase saccharified sugarcane bagasse, coconut shell, wheat bran, cocoa fruit shell, and cocoa seed husk. The Box-Behnken design was employed to optimize fermentable sugar production by evaluating the following parameters: time, substrate, and enzyme concentration. Under ideal conditions, 253.19 mg/g of fermentable sugars were obtained following the saccharification of wheat bran, which is 41.5 times higher than that obtained without optimizing. This study presents a thermostable, halotolerant endoglucanase that is resistant to metal ions and organic solvents with the potential to be applied in producing fermentable sugars for manufacturing biofuels from agro-industrial wastes.
Collapse
Affiliation(s)
| | | | - Monizy da Costa Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | | | | | - Marcelo Franco
- Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Brazil
| | | |
Collapse
|
23
|
Yang W, Su Y, Wang R, Zhang H, Jing H, Meng J, Zhang G, Huang L, Guo L, Wang J, Gao W. Microbial production and applications of β-glucosidase-A review. Int J Biol Macromol 2024; 256:127915. [PMID: 37939774 DOI: 10.1016/j.ijbiomac.2023.127915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
β-Glucosidase exists in all areas of living organisms, and microbial β-glucosidase has become the main source of its production because of its unique physicochemical properties and the advantages of high-yield production by fermentation. With the rise of the green circular economy, the production of enzymes through the fermentation of waste as the substrate has become a popular trend. Lignocellulosic biomass is an easily accessible and sustainable feedstock that exists in nature, and the production of biofuels from lignocellulosic biomass requires the involvement of β-glucosidase. This review proposes ways to improve β-glucosidase yield and catalytic efficiency. Optimization of growth conditions and purification strategies of enzymes can increase enzyme yield, and enzyme immobilization, genetic engineering, protein engineering, and whole-cell catalysis provide solutions to enhance the catalytic efficiency and activity of β-glucosidase. Besides, the diversified industrial applications, challenges and prospects of β-glucosidase are also described.
Collapse
Affiliation(s)
- Wenqi Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yaowu Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Rubing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Hongyan Jing
- Traditional Chinese Medicine College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Meng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Guoqi Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lanping Guo
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs.
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
24
|
Zhang X, Chen G, Kang J, Bello A, Fan Z, Liu P, Su E, Lang K, Ma B, Li H, Xu X. β-Glucosidase-producing microbial community in composting: Response to different carbon metabolic pressure influenced by biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119506. [PMID: 37951109 DOI: 10.1016/j.jenvman.2023.119506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023]
Abstract
Poor management of agricultural waste will cause a lot of environment pollution and the composting process is one of the most effective measures for resource reuse of agricultural waste. β-Glucosidase-producing microbial communities play a vital role in cellulose degradation during composting and regulate cellulase production via differentially expressed glucose/non-glucose tolerant β-glucosidase genes. Biochar is widely used as an amendment in compost to accelerate cellulose degradation during composting. However, Biochar-mediated impacts on β-glucosidase-producing microbial communities in compost are unclear. Here, different carbon metabolism pressures were set in natural and biochar compost to elucidate the regulation mechanism and interaction of the β-glucosidase microbial community. Results showed that the addition of biochar decreased the transcription of β-glucosidase genes and led to a reduction of β-glucosidase activity. Micromonospora and Cellulosimicrobium were the predominant functional communities determining cellulose degradation during biochar compost. Biochar addition strengthened the response of the functional microbial community to carbon metabolism pressure. And adding biochar altered the key β-glucosidase-producing microbial communities, influencing cellulase and the interaction between these communities to respond to the different carbon metabolic pressure of compost. Biochar also shifted the co-occurrence network of β-glucosidase-producing microbial community by changing the keystone species. Furthermore, co-occurrence network analysis revealed that high glucose decreased the complexity and stability of the functional microbial network. Most functional microorganisms from Streptomyces produce non-glucose tolerant β-glucosidase, which were the key bacterial communities affecting β-glucosidase activity in the non-glucose treatment. This study provides new insights into the response of functional microbial communities and the regulation of enzyme production during the transformation of cellulosic biomass.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Guangxin Chen
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Jingxue Kang
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Ayodeji Bello
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Zhihua Fan
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Peizhu Liu
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Erlie Su
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Kaice Lang
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Ma
- School of Animal Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hongtao Li
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiuhong Xu
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
25
|
Singh R, Singh P, Ahmad I, Alkhathami AG, Rai AK, Mishra PK, Singh RP, Srivastava N. Bionanofabrication of Cupric oxide catalyst from Water hyacinth based carbohydrate and its impact on cellulose deconstructing enzymes production under solid state fermentation. Int J Biol Macromol 2023; 252:126377. [PMID: 37595725 DOI: 10.1016/j.ijbiomac.2023.126377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
One of the most important properties of cellulolytic enzyme is its ability to convert cellulosic polymer into monomeric fermentable sugars which are carbohydrate by nature can efficiently convert into biofuels. However, higher production costs of these enzymes with moderate activity-based stability are the main obstacles to making cellulase-based applications sustainably viable, and this has necessitated rigorous research for the economical availability of this process. Using water hyacinth (WH) waste leaves as the substrate for cellulase production under solid state fermentation (SSF) while treating the fermentation production medium with CuO (cupric oxide oxide) bionanocatalyst have been examined as ways to make fungal cellulase production economically feasible. Herein, a sustainable green synthesis of CuO bionanocatalyst has been performed by using waste leaves of WH. Through XRD, FT-IR, SEM, and TEM analysis, the prepared CuO bionanocatalyst's physicochemical properties have been evaluated. Furthermore, the effect of CuO bionanocatalyst on the temperature stability of raw cellulases was observed, and its half-life stability was found to be up to 9 h at 65 °C. The results presented in the current investigation may have broad scope for mass trials for various industrial applications, such as cellulosic biomass conversion.
Collapse
Affiliation(s)
- Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia, (A Central University), New Delhi 110025, India
| | - Pardeep Singh
- Department of Environmental Science, PGDAV College, University of Delhi, 110007, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - P K Mishra
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | | | - Neha Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
26
|
Yamaguchi D. Cellulose hydrolysis reactor incorporating stirring apparatus for use with carbon-based solid acid catalyst. Heliyon 2023; 9:e22723. [PMID: 38125460 PMCID: PMC10730584 DOI: 10.1016/j.heliyon.2023.e22723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/26/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
A highly efficient reactor with a stirring device was specially designed with the intent of performing the hydrolysis of pure crystalline cellulose using a carbon-based solid acid catalyst. This catalyst comprised an amorphous carbon-based material bearing -SO3H, -COOH and -OH groups. The stirring apparatus had seven blades coated with polytetrafluoroethylene and arranged axially at regular intervals with a 60° offset. This design proved highly effective, providing double the glucose yield compared with conventional stirring systems. The basic properties of this novel reactor were investigated and analyzed and are discussed herein.
Collapse
Affiliation(s)
- Daizo Yamaguchi
- National Institute of Technology, Tsuyama College, 624-1, Numa, Tsuyama-City, Okayama 708-8509, Japan
| |
Collapse
|
27
|
Yamaguchi D. Powder properties of carbon-based solid acid catalyst for designing cellulose hydrolysis reactor with stirring apparatus. Heliyon 2023; 9:e21805. [PMID: 38034806 PMCID: PMC10682613 DOI: 10.1016/j.heliyon.2023.e21805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023] Open
Abstract
The powder properties of a carbon-based solid acid catalyst, an amorphous carbon material bearing SO3H, COOH and OH groups, were investigated for the hydrolysis of cellulose. The Carr flowability and floodability indices, the angle of internal friction (adherence), and the particle size distribution and shape for the powder catalyst were determined. The need to develop a special reactor with a stirring apparatus for the hydrolysis of cellulose was determined based on the Carr flowability index. Insight into the interaction or adherence between the catalyst and crystalline cellulose during the hydrolysis process was gained by measuring the internal friction angle. The optimum moisture content in the catalyst to achieve the maximum adherence was investigated.
Collapse
Affiliation(s)
- Daizo Yamaguchi
- National Institute of Technology, Tsuyama College, 624-1, Numa, Tsuyama-City, Okayama 708-8509, Japan
| |
Collapse
|
28
|
Wang M, Cui H, Gu C, Li A, Qiao J, Schwaneberg U, Zhang L, Wei J, Li X, Huang H. Engineering All-Round Cellulase for Bioethanol Production. ACS Synth Biol 2023; 12:2187-2197. [PMID: 37403343 DOI: 10.1021/acssynbio.3c00289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
One strategy to decrease both the consumption of crude oil and environmental damage is through the production of bioethanol from biomass. Cellulolytic enzyme stability and enzymatic hydrolysis play important roles in the bioethanol process. However, the gradually increased ethanol concentration often reduces enzyme activity and leads to inactivation, thereby limiting the final ethanol yield. Herein, we employed an optimized Two-Gene Recombination Process (2GenReP) approach to evolve the exemplary cellulase CBHI for practical bioethanol fermentation. Two all-round CBHI variants (named as R2 and R4) were obtained with simultaneously improved ethanol resistance, organic solvent inhibitor tolerance, and enzymolysis stability in simultaneous saccharification and fermentation (SSF). Notably, CBHI R4 had a 7.0- to 34.5-fold enhanced catalytic efficiency (kcat/KM) in the presence/absence of ethanol. Employing the evolved CBHI R2 and R4 in the 1G bioethanol process resulted in up to 10.27% (6.7 g/L) improved ethanol yield (ethanol concentration) than non-cellulase, which was far more beyond than other optimization strategies. Besides bioenergy fields, this transferable protein engineering routine holds the potential to generate all-round enzymes that meet the requirement in biotransformation and bioenergy fields.
Collapse
Affiliation(s)
- Minghui Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Chenlei Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Anni Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Jie Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Lihui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Junnan Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
29
|
Tan MCY, Zakaria MR, Liew KJ, Chong CS. Draft genome sequence of Hahella sp. CR1 and its ability in producing cellulases for saccharifying agricultural biomass. Arch Microbiol 2023; 205:278. [PMID: 37420023 DOI: 10.1007/s00203-023-03617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
Hahella is a genus that has not been well-studied, with only two identified species. The potential of this genus to produce cellulases is yet to be fully explored. The present study isolated Hahella sp. CR1 from mangrove soil in Tanjung Piai National Park, Malaysia, and performed whole genome sequencing (WGS) using NovaSeq 6000. The final assembled genome consists of 62 contigs, 7,106,771 bp, a GC ratio of 53.5%, and encoded for 6,397 genes. The CR1 strain exhibited the highest similarity with Hahella sp. HN01 compared to other available genomes, where the ANI, dDDH, AAI, and POCP were 97.04%, 75.2%, 97.95%, and 91.0%, respectively. In addition, the CAZymes analysis identified 88 GTs, 54 GHs, 11 CEs, 7 AAs, 2 PLs, and 48 CBMs in the genome of strain CR1. Among these proteins, 11 are related to cellulose degradation. The cellulases produced from strain CR1 were characterized and demonstrated optimal activity at 60 ℃, pH 7.0, and 15% (w/v) sodium chloride. The enzyme was activated by K+, Fe2+, Mg2+, Co2+, and Tween 40. Furthermore, cellulases from strain CR1 improved the saccharification efficiency of a commercial cellulase blend on the tested agricultural wastes, including empty fruit bunch, coconut husk, and sugarcane bagasse. This study provides new insights into the cellulases produced by strain CR1 and their potential to be used in lignocellulosic biomass pre-treatment.
Collapse
Affiliation(s)
- Melvin Chun Yun Tan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Muhammad Ramziuddin Zakaria
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Kok Jun Liew
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Chun Shiong Chong
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
30
|
Dong CD, Patel AK, Madhavan A, Chen CW, Singhania RR. Significance of glycans in cellulolytic enzymes for lignocellulosic biorefinery - A review. BIORESOURCE TECHNOLOGY 2023; 379:128992. [PMID: 37011847 DOI: 10.1016/j.biortech.2023.128992] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Lignocellulosic (LC) biomass is the most abundant renewable resource for mankind gravitating society towards sustainable solution for energy that can reduce the carbon footprint. The economic feasibility of 'biomass biorefinery' depends upon the efficiency cellulolytic enzymes which is the main crux. Its high production cost and low efficiencies are the major limitations, that need to be resolved. As the complexity of the genome increases, so does the complexity of the proteome, further facilitated by protein post-translational modifications (PTMs). Glycosylation is regarded the major PTMs and hardly any recent work is focused on importance of glycosylation in cellulase. By modifying protein side chains and glycans, superior cellulases with improved stability and efficiency can be obtained. Functional proteomics relies heavily on PTMs because they regulate activity, localization, and interactions with protein, lipid, nucleic acid, and cofactor molecules. O- and N- glycosylation in cellulases influences its characteristics adding positive attributes to the enzymes.
Collapse
Affiliation(s)
- Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690 525, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India.
| |
Collapse
|
31
|
Abrha GT, Li Q, Kuang X, Xiao D, Ayepa E, Wu J, Chen H, Zhang Z, Liu Y, Yu X, Xiang Q, Ma M. Contribution of YPRO15C Overexpression to the Resistance of Saccharomyces cerevisiae BY4742 Strain to Furfural Inhibitor. Pol J Microbiol 2023; 72:177-186. [PMID: 37314359 DOI: 10.33073/pjm-2023-019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/13/2023] [Indexed: 06/15/2023] Open
Abstract
Lignocellulosic biomass is still considered a feasible source of bioethanol production. Saccharomyces cerevisiae can adapt to detoxify lignocellulose-derived inhibitors, including furfural. Tolerance of strain performance has been measured by the extent of the lag phase for cell proliferation following the furfural inhibitor challenge. The purpose of this work was to obtain a tolerant yeast strain against furfural through overexpression of YPR015C using the in vivo homologous recombination method. The physiological observation of the overexpressing yeast strain showed that it was more resistant to furfural than its parental strain. Fluorescence microscopy revealed improved enzyme reductase activity and accumulation of oxygen reactive species due to the harmful effects of furfural inhibitor in contrast to its parental strain. Comparative transcriptomic analysis revealed 79 genes potentially involved in amino acid biosynthesis, oxidative stress, cell wall response, heat shock protein, and mitochondrial-associated protein for the YPR015C overexpressing strain associated with stress responses to furfural at the late stage of lag phase growth. Both up- and down-regulated genes involved in diversified functional categories were accountable for tolerance in yeast to survive and adapt to the furfural stress in a time course study during the lag phase growth. This study enlarges our perceptions comprehensively about the physiological and molecular mechanisms implicated in the YPR015C overexpressing strain's tolerance under furfural stress. Construction illustration of the recombinant plasmid. a) pUG6-TEF1p-YPR015C, b) integration diagram of the recombinant plasmid pUG6-TEF1p-YPR into the chromosomal DNA of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Getachew Tafere Abrha
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
- 3Department of Biotechnology, College of Dry Land Agriculture and Natural Resources, Mekelle University, Mekelle, Ethiopia
| | - Qian Li
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Xiaolin Kuang
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Difan Xiao
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Ellen Ayepa
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Jinjian Wu
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Huan Chen
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Zhengyue Zhang
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Yina Liu
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Xiumei Yu
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Quanju Xiang
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Menggen Ma
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
- 2Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Sichuan, China
| |
Collapse
|
32
|
Li S, Cao L, Yang X, Wu X, Xu S, Liu Y. Simultaneously optimizing multiple properties of β-glucosidase Bgl6 using combined (semi-)rational design strategies and investigation of the underlying mechanisms. BIORESOURCE TECHNOLOGY 2023; 374:128792. [PMID: 36842511 DOI: 10.1016/j.biortech.2023.128792] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The performance of β-glucosidase during cellulose saccharification is determined by thermostability, activity and glucose tolerance. However, conflicts between them make it challenging to simultaneously optimize three properties. In this work, such a case was reported using Bgl6-M3 as a starting point. Firstly, four thermostability-enhancing mutations were obtained using computer-aided engineering strategies (mutant M7). Secondly, substrate binding pocket of M7 was reshaped, generating two mutations that increased activity but decreased glucose tolerance (mutant M9). Then a key region lining active site cavity was redesigned, resulting in three mutations that boosted glucose tolerance and activity. Finally, mutant M12 with simultaneously improved thermostability (half-life of 20-fold), activity (kcat/Km of 5.6-fold) and glucose tolerance (ΔIC50 of 200 mM) was obtained. Mechanisms for property improvement were elucidated by structural analysis and molecular dynamics simulations. Overall, the strategies used here and new insights into the underlying mechanisms may provide guidance for multi-property engineering of other enzymes.
Collapse
Affiliation(s)
- Shuifeng Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lichuang Cao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xiangpeng Yang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xiangrui Wu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Shujing Xu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yuhuan Liu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
33
|
Yuansah SC, Laga A, Pirman. Production Strategy of Functional Oligosaccharides from Lignocellulosic Biomass Using Enzymatic Process: A Review. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
34
|
TtCel7A: A Native Thermophilic Bifunctional Cellulose/Xylanase Exogluclanase from the Thermophilic Biomass-Degrading Fungus Thielavia terrestris Co3Bag1, and Its Application in Enzymatic Hydrolysis of Agroindustrial Derivatives. J Fungi (Basel) 2023; 9:jof9020152. [PMID: 36836267 PMCID: PMC9961574 DOI: 10.3390/jof9020152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
The biomass-degrading thermophilic ascomycete fungus Thielavia terrestris Co3Bag1 produces TtCel7A, a native bifunctional cellulase/xylanase GH7 family. The purified TtCel7A, with an estimated molecular weight of 71 kDa, was biochemically characterized. TtCel7A displayed an optimal pH of 5.5 for both activities and an optimal temperature of 60 and 50 °C for cellulolytic and xylanolytic activities, respectively. The half-lives determined for cellulase activity were 140, 106, and 41 min at 50, 60, and 70 °C, respectively, whereas the half-lives observed for xylanase activity were 24, 10, and 1.4 h at 50, 60, and 70 °C, respectively. The KM and Vmax values were 3.12 mg/mL and 50 U/mg for cellulase activity and 0.17 mg/mL and 42.75 U/mg for xylanase activity. Circular dichroism analysis suggests changes in the secondary structure of TtCel7A in the presence of CMC as the substrate, whereas no modifications were observed with beechwood xylan. TtCel7A displayed the excellent capability to hydrolyze CMC, beechwood xylan, and complex substrates such as oat bran, wheat bran, and sugarcane bagasse, with glucose and cellobiose being the main products released; also, slightly less endo cellulase and xylanase activities were observed. Thus, suggesting TtCel7A has an exo- and endomode of action. Based on the characteristics of the enzyme, it might be considered a good candidate for industrial applications.
Collapse
|
35
|
Chaudhari YB, Várnai A, Sørlie M, Horn SJ, Eijsink VGH. Engineering cellulases for conversion of lignocellulosic biomass. Protein Eng Des Sel 2023; 36:gzad002. [PMID: 36892404 PMCID: PMC10394125 DOI: 10.1093/protein/gzad002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/10/2023] Open
Abstract
Lignocellulosic biomass is a renewable source of energy, chemicals and materials. Many applications of this resource require the depolymerization of one or more of its polymeric constituents. Efficient enzymatic depolymerization of cellulose to glucose by cellulases and accessory enzymes such as lytic polysaccharide monooxygenases is a prerequisite for economically viable exploitation of this biomass. Microbes produce a remarkably diverse range of cellulases, which consist of glycoside hydrolase (GH) catalytic domains and, although not in all cases, substrate-binding carbohydrate-binding modules (CBMs). As enzymes are a considerable cost factor, there is great interest in finding or engineering improved and robust cellulases, with higher activity and stability, easy expression, and minimal product inhibition. This review addresses relevant engineering targets for cellulases, discusses a few notable cellulase engineering studies of the past decades and provides an overview of recent work in the field.
Collapse
Affiliation(s)
- Yogesh B Chaudhari
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
36
|
Khan S, Khan M, Ahmad S, Sherwani S, Haque S, Bhagwath SS, Kushwaha D, Pal DB, Mishra PK, Srivastava N, Gupta VK. Towards enhancement of fungal hydrolytic enzyme cocktail using waste algal biomass of Oscillatoria obscura and enzyme stability investigation under the influence of iron oxide nanoparticles. J Biotechnol 2023; 361:74-79. [PMID: 36470313 DOI: 10.1016/j.jbiotec.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Development of low-cost and economic cellulase production is among the key challenges due to its broad industrial applications. One of the main topics of research pertaining to sustainable biomass waste based biorefinaries is the development of economic cellulase production strategies. The main cause of the increase in cellulase production costs is the use of commercial substrates; as a result, the cost of any cellulase-based bioprocess can be decreased by employing a productive, low-cost substrate. The goal of the current study is to develop low-cost cellulase using the carbohydrate-rich, renewable, and widely accessible cyanobacteria algae Oscillatoria obscura as the production substrate. Maximum cellulase was produced utilising the fungus Rhizopus oryzae at substrate concentration of 7.0 g among various tested concentrations of algal biomass. Maximum production rates of 22 IU/gds FP, 105 IU/gds BGL, and 116 IU/gds EG in 72 h were possible under optimal conditions and substrate concentration. Further investigations on the crude enzyme's stability in the presence of iron oxide nanoparticles (IONPs) revealed that it was thermally stable at 60 °C for up to 8 h. Additionally, the crude enzyme demonstrated pH stability by maintaining its complete activity at pH 6.0 for 8 h in the presence of the optimal dose of 15 mg IONPs. The outcomes of this research may be used to investigate the possibility of producing such enzymes in large quantities at low cost for industrial use.
Collapse
Affiliation(s)
- Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il 2440, Saudi Arabia
| | - Mahvish Khan
- Department of Biology, College of Science, University of Ha'il, Ha'il 2440, Saudi Arabia
| | - Saheem Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia
| | - Subuhi Sherwani
- Department of Biology, College of Science, University of Ha'il, Ha'il 2440, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Sundeep S Bhagwath
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il 2440, Saudi Arabia
| | - Deepika Kushwaha
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology, Mesra Ranchi 835215, Jharkhand, India; Department of Chemical Engineering, Harcourt Butler Technical University, Nawabganj Kanpur 208002, Uttar Pradesh, India
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
37
|
Archaea as a Model System for Molecular Biology and Biotechnology. Biomolecules 2023; 13:biom13010114. [PMID: 36671499 PMCID: PMC9855744 DOI: 10.3390/biom13010114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Archaea represents the third domain of life, displaying a closer relationship with eukaryotes than bacteria. These microorganisms are valuable model systems for molecular biology and biotechnology. In fact, nowadays, methanogens, halophiles, thermophilic euryarchaeota, and crenarchaeota are the four groups of archaea for which genetic systems have been well established, making them suitable as model systems and allowing for the increasing study of archaeal genes' functions. Furthermore, thermophiles are used to explore several aspects of archaeal biology, such as stress responses, DNA replication and repair, transcription, translation and its regulation mechanisms, CRISPR systems, and carbon and energy metabolism. Extremophilic archaea also represent a valuable source of new biomolecules for biological and biotechnological applications, and there is growing interest in the development of engineered strains. In this review, we report on some of the most important aspects of the use of archaea as a model system for genetic evolution, the development of genetic tools, and their application for the elucidation of the basal molecular mechanisms in this domain of life. Furthermore, an overview on the discovery of new enzymes of biotechnological interest from archaea thriving in extreme environments is reported.
Collapse
|
38
|
Zhou S, Zhang M, Zhu L, Zhao X, Chen J, Chen W, Chang C. Hydrolysis of lignocellulose to succinic acid: a review of treatment methods and succinic acid applications. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:1. [PMID: 36593503 PMCID: PMC9806916 DOI: 10.1186/s13068-022-02244-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/08/2022] [Indexed: 01/03/2023]
Abstract
Succinic acid (SA) is an intermediate product of the tricarboxylic acid cycle (TCA) and is one of the most significant platform chemicals for the production of various derivatives with high added value. Due to the depletion of fossil raw materials and the demand for eco-friendly energy sources, SA biosynthesis from renewable energy sources is gaining attention for its environmental friendliness. This review comprehensively analyzes strategies for the bioconversion of lignocellulose to SA based on the lignocellulose pretreatment processes and cellulose hydrolysis and fermentation principles and highlights the research progress on acid production and SA utilization under different microbial culture conditions. In addition, the fermentation efficiency of different microbial strains for the production of SA and the main challenges were analyzed. The future application directions of SA derivatives were pointed out. It is expected that this research will provide a reference for the optimization of SA production from lignocellulose.
Collapse
Affiliation(s)
- Shuzhen Zhou
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Miaomiao Zhang
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Linying Zhu
- College of Management Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiaoling Zhao
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China.
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang, China.
- Henan Center for Outstanding Overseas Scientists, Zhengzhou, China.
| | - Junying Chen
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang, China
- Henan Center for Outstanding Overseas Scientists, Zhengzhou, China
| | - Wei Chen
- Henan Key Laboratory of Green Manufacturing of Biobased Chemicals, Puyang, China
| | - Chun Chang
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang, China
- Henan Center for Outstanding Overseas Scientists, Zhengzhou, China
| |
Collapse
|
39
|
Characterization of a novel end product tolerant and thermostable cellulase from Neobacillus sedimentimangrovi UE25. Enzyme Microb Technol 2023; 162:110133. [DOI: 10.1016/j.enzmictec.2022.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
|
40
|
Madadi M, Song G, Sun F, Sun C, Xia C, Zhang E, Karimi K, Tu M. Positive role of non-catalytic proteins on mitigating inhibitory effects of lignin and enhancing cellulase activity in enzymatic hydrolysis: Application, mechanism, and prospective. ENVIRONMENTAL RESEARCH 2022; 215:114291. [PMID: 36103929 DOI: 10.1016/j.envres.2022.114291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/18/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Fermentable sugar production from lignocellulosic biomass has received considerable attention and has been dramatic progress recently. However, due to low enzymatic hydrolysis (EH) yields and rates, a high dosage of the costly enzyme is required, which is a bottleneck for commercial applications. Over the last decades, various strategies have been developed to reduce cellulase enzyme costs. The progress of the non-catalytic additive proteins in mitigating inhibition in EH is discussed in detail in this review. The low efficiency of EH is mostly due to soluble lignin compounds, insoluble lignin, and harsh thermal and mechanical conditions of the EH process. Adding non-catalytic proteins into the EH is considered a simple and efficient approach to boost hydrolysis yield. This review discussed the multiple mechanical steps involved in the EH process. The effect of physicochemical properties of modified lignin on EH and its interaction with cellulase and cellulose are identified and discussed, which include hydrogen bonding, hydrophobic, electrostatic, and cation-π interactions, as well as physical barriers. Moreover, the effects of different conditions of EH that lead to cellulase deactivation by thermal and mechanical mechanisms are also explained. Finally, recent advances in the development, potential mechanisms, and economic feasibility of non-catalytic proteins on EH are evaluated and perspectives are presented.
Collapse
Affiliation(s)
- Meysam Madadi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Chihe Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Ezhen Zhang
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Maobing Tu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, United States
| |
Collapse
|
41
|
Marzo-Gago C, Venus J, López-Gómez JP. Production of lactic acid from pasta wastes using a biorefinery approach. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:128. [PMID: 36411476 PMCID: PMC9680126 DOI: 10.1186/s13068-022-02222-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022]
Abstract
A total of 398 kt of pasta waste (PW), generated during the production process of pasta, were produced in 2021. Due to its chemical composition and practically zero cost, PW has already been studied as a raw material for the production of lactic acid (LA) through fermentations. The main objective of this article was to improve the economic viability of the process by replacing commercial enzymes, necessary for starch hydrolysis in PW, with raw enzymes also produced from wastes. Enzyme synthesis was achieved through solid-state fermentation (SsF) of wheat bran by Aspergillus awamori or Aspergillus oryzae at various moisture contents. The maximum amylase activity (52 U/g dry solid) was achieved after 2 days of fermentation with A. awamori at 60% of moisture content. After that, the enzymes were used to hydrolyse PW, reaching 76 g/L of total sugars, 65 g/L of glucose and a yield of 0.72 gglu/gds with the enzymes produced by A. awamori. Subsequently, the hydrolysate was fermented into LA using Bacillus coagulans A559, yielding 52 g/L and 49 g/L with and without yeast extract, respectively. Remarkably, compared to the process with commercial enzymes, a higher LA yield was reached when enzymes produced by SsF were added (0.80 gLA/gglu). Furthermore, the productivities between the two processes were similar (around 3.9 g/L/h) which highlights that yeast extract is not necessary when using enzymes produced by SsF.
Collapse
Affiliation(s)
- Cristina Marzo-Gago
- grid.435606.20000 0000 9125 3310Microbiome Biotechnology Department, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, Potsdam, Germany ,grid.7759.c0000000103580096Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cádiz, Pol. Río San Pedro S/N, Puerto Real, 11510 Cádiz, Spain
| | - Joachim Venus
- grid.435606.20000 0000 9125 3310Microbiome Biotechnology Department, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, Potsdam, Germany
| | - José Pablo López-Gómez
- grid.435606.20000 0000 9125 3310Microbiome Biotechnology Department, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, Potsdam, Germany ,National Center for Biotechnological Innovations of Costa Rica (CENIBiot), 1174-1200 San José, Costa Rica
| |
Collapse
|
42
|
Peach JT, Mueller RC, Skorupa DJ, Mesle MM, Kanta S, Boltinghouse E, Sharon B, Copié V, Bothner B, Peyton BM. Longitudinal analysis of the Five Sisters hot springs in Yellowstone National Park reveals a dynamic thermoalkaline environment. Sci Rep 2022; 12:18707. [PMID: 36333441 PMCID: PMC9636164 DOI: 10.1038/s41598-022-22047-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Research focused on microbial populations of thermoalkaline springs has been driven in a large part by the lure of discovering functional enzymes with industrial applications in high-pH and high temperature environments. While several studies have focused on understanding the fundamental ecology of these springs, the small molecule profiles of thermoalkaline springs have largely been overlooked. To better understand how geochemistry, small molecule composition, and microbial communities are connected, we conducted a three-year study of the Five Sisters (FS) springs that included high-resolution geochemical measurements, 16S rRNA sequencing of the bacterial and archaeal community, and mass spectrometry-based metabolite and extracellular small molecule characterization. Integration of the four datasets facilitated a comprehensive analysis of the interwoven thermoalkaline spring system. Over the course of the study, the microbial population responded to changing environmental conditions, with archaeal populations decreasing in both relative abundance and diversity compared to bacterial populations. Decreases in the relative abundance of Archaea were associated with environmental changes that included decreased availability of specific nitrogen- and sulfur-containing extracellular small molecules and fluctuations in metabolic pathways associated with nitrogen cycling. This multi-factorial analysis demonstrates that the microbial community composition is more closely correlated with pools of extracellular small molecules than with the geochemistry of the thermal springs. This is a novel finding and suggests that a previously overlooked component of thermal springs may have a significant impact on microbial community composition.
Collapse
Affiliation(s)
- Jesse T. Peach
- grid.41891.350000 0001 2156 6108Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA
| | - Rebecca C. Mueller
- grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Chemical and Biological Engineering Department, Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Dana J. Skorupa
- grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Chemical and Biological Engineering Department, Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Margaux M. Mesle
- grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Chemical and Biological Engineering Department, Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Sutton Kanta
- grid.41891.350000 0001 2156 6108Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA
| | - Eric Boltinghouse
- grid.41891.350000 0001 2156 6108Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA
| | - Bailey Sharon
- grid.41891.350000 0001 2156 6108Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA
| | - Valerie Copié
- grid.41891.350000 0001 2156 6108Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA
| | - Brian Bothner
- grid.41891.350000 0001 2156 6108Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA
| | - Brent M. Peyton
- grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Chemical and Biological Engineering Department, Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Department of Biological and Chemical Engineering, Montana State University, Bozeman, MT 59717 USA
| |
Collapse
|
43
|
Evaluation of Behavior of 13X Zeolite Modified with Transition Metals for Catalytic Applications. Bioinorg Chem Appl 2022; 2022:7352074. [PMID: 36340969 PMCID: PMC9629948 DOI: 10.1155/2022/7352074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
This work was intended to develop catalysts based on 13X zeolite modified with transition metals for catalytic applications. In this regard, 13X zeolite was modified by loading of transition metals such as Fe, Co, Cu and various types of catalysts such as Fe-, Co-, Cu-, Fe-Co-, Fe-Cu-, and Co-Cu/13X zeolite were obtained. To prepare these catalysts, the wet impregnation method and metallic precursors were used. The catalysts were characterized by SEM, XRD, BET, and ammonia adsorption. Then the catalytic performance was investigated during upgrading of rapeseed residual biomass pyrolysis vapors using this catalysts and a fixed-bed reactor in two stages. Experimental results showed that the addition of transition metals improved the catalytic selectivity towards aromatic hydrocarbons and Fe-Cu/13X zeolite catalyst was the best and had a high deoxygenation activity (from 62.45% to 20.56%), produced maximum monoaromatic hydrocarbons (of 27.45%), the oxygen content in bio-oil was reduced from 34.98 wt% to 16.06 wt%, the calorific value increased and thus the bio-oil quality was improved.
Collapse
|
44
|
Ayuso-Fernández I, Molpeceres G, Camarero S, Ruiz-Dueñas FJ, Martínez AT. Ancestral sequence reconstruction as a tool to study the evolution of wood decaying fungi. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1003489. [PMID: 37746217 PMCID: PMC10512382 DOI: 10.3389/ffunb.2022.1003489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/22/2022] [Indexed: 09/26/2023]
Abstract
The study of evolution is limited by the techniques available to do so. Aside from the use of the fossil record, molecular phylogenetics can provide a detailed characterization of evolutionary histories using genes, genomes and proteins. However, these tools provide scarce biochemical information of the organisms and systems of interest and are therefore very limited when they come to explain protein evolution. In the past decade, this limitation has been overcome by the development of ancestral sequence reconstruction (ASR) methods. ASR allows the subsequent resurrection in the laboratory of inferred proteins from now extinct organisms, becoming an outstanding tool to study enzyme evolution. Here we review the recent advances in ASR methods and their application to study fungal evolution, with special focus on wood-decay fungi as essential organisms in the global carbon cycling.
Collapse
Affiliation(s)
- Iván Ayuso-Fernández
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Gonzalo Molpeceres
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), CSIC, Madrid, Spain
| | - Susana Camarero
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), CSIC, Madrid, Spain
| | | | - Angel T. Martínez
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), CSIC, Madrid, Spain
| |
Collapse
|
45
|
Identification and Mutation Analysis of Nonconserved Residues on the TIM-Barrel Surface of GH5_5 Cellulases for Catalytic Efficiency and Stability Improvement. Appl Environ Microbiol 2022; 88:e0104622. [PMID: 36000858 PMCID: PMC9469711 DOI: 10.1128/aem.01046-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exploring the potential functions of nonconserved residues on the outer side of α-helices and systematically optimizing them are pivotal for their application in protein engineering. Based on the evolutionary structural conservation analysis of GH5_5 cellulases, a practical molecular improvement strategy was developed. Highly variable sites on the outer side of the α-helices of the GH5_5 cellulase from Aspergillus niger (AnCel5A) were screened, and 14 out of the 34 highly variable sites were confirmed to exert a positive effect on the activity. After the modular combination of the positive mutations, the catalytic efficiency of the mutants was further improved. By using CMC-Na as the substrate, the catalytic efficiency and specific activity of variant AnCel5A_N193A/T300P/D307P were approximately 2.0-fold that of AnCel5A (227 ± 21 versus 451 ± 43 ml/s/mg and 1,726 ± 19 versus 3,472 ± 42 U/mg, respectively). The half-life (t1/2) of variant AnCel5A_N193A/T300P/D307P at 75°C was 2.36 times that of AnCel5A. The role of these sites was successfully validated in other GH5_5 cellulases. Computational analyses revealed that the flexibility of the loop 6-loop 7-loop 8 region was responsible for the increased catalytic performance. This work not only illustrated the important role of rapidly evolving positions on the outer side of the α-helices of GH5_5 cellulases but also revealed new insights into engineering the proteins that nature left as clues for us to find. IMPORTANCE A comprehensive understanding of the residues on the α-helices of the GH5_5 cellulases is important for catalytic efficiency and stability improvement. The main objective of this study was to use the evolutionary conservation and plasticity of the TIM-barrel fold to probe the relationship between nonconserved residues on the outer side of the α-helices and the catalytic efficiency of GH5_5 cellulases by conducting structure-guided protein engineering. By using a four-step nonconserved residue screening strategy, the functional role of nonconserved residues on the outer side of the α-helices was effectively identified, and a variant with superior performance and capability was constructed. Hence, this study proved the effectiveness of this strategy in engineering GH5_5 cellulases and provided a potential competitor for industrial applications. Furthermore, this study sheds new light on engineering TIM-barrel proteins.
Collapse
|
46
|
Fernandes CG, Sawant SC, Mule TA, Khadye VS, Lali AM, Odaneth AA. Enhancing cellulases through synergistic β-glucosidases for intensifying cellulose hydrolysis. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Yadav R, Vasundhara M, Rajamani T, Suryanarayanan TS, Reddy SM. Isolation and characterization of thermostable and alkali-tolerant cellulase from litter endophytic fungus Bartalinia pondoensis. Folia Microbiol (Praha) 2022; 67:955-964. [PMID: 35906455 DOI: 10.1007/s12223-022-00991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
Abstract
Endophytic fungi in plant tissues produce a wide range of secondary metabolites and enzymes, which exhibit a variety of biological activities. In the present study, litter endophytic fungi were isolated from a fire-prone forest and screened for thermostable cellulases. Among nine endophytic fungi tested, two isolates, Bartalinia pondoensis and Phoma sp., showed the maximum cellulase activity. Bartalinia pondoensis was further selected for its cellulase production and characterization. Among the carbon and nitrogen sources tested, maximum cellulase production was observed with maltose and yeast extract, and the eucalyptus leaves and rice bran served as the best natural substrates. The cellulase activity increased with increasing temperature, with maximum activity recorded at 100 °C. The maximum CMCase activity was observed between pH 6.0 and 7.0 and retained 80% of its activity in the pH range of 8-10. Partially purified cellulase of B. pondoensis retained 50% of its activity after 2 h of incubation at 60 °C, 80 °C and 100 °C. These results suggest that litter endophytic fungus B. pondoensis is a potential source for the production of thermostable and alkali-tolerant cellulase.
Collapse
Affiliation(s)
- Rajnish Yadav
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Mondem Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Thavamani Rajamani
- Vivekananda Institute of Tropical Mycology (VINSTROM), Ramakrishna Mission Vidyapith, Chennai, 600004, Tamil Nadu, India
| | - Trichur S Suryanarayanan
- Vivekananda Institute of Tropical Mycology (VINSTROM), Ramakrishna Mission Vidyapith, Chennai, 600004, Tamil Nadu, India
| | - Sudhakara M Reddy
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
48
|
Mohammadi S, Tarrahimofrad H, Arjmand S, Zamani J, Haghbeen K, Aminzadeh S. Expression, characterization, and activity optimization of a novel cellulase from the thermophilic bacteria Cohnella sp. A01. Sci Rep 2022; 12:10301. [PMID: 35717508 PMCID: PMC9206686 DOI: 10.1038/s41598-022-14651-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
Cellulases are hydrolytic enzymes with wide scientific and industrial applications. We described a novel cellulase, CelC307, from the thermophilic indigenous Cohnella sp. A01. The 3-D structure of the CelC307 was predicted by comparative modeling. Docking of CelC307 with specific inhibitors and molecular dynamic (MD) simulation revealed that these ligands bound in a non-competitive manner. The CelC307 protein was purified and characterized after recombinant expression in Escherichia coli (E. coli) BL21. Using CMC 1% as the substrate, the thermodynamic values were determined as Km 0.46 mM, kcat 104.30 × 10-3 (S-1), and kcat/Km 226.73 (M-1 S-1). The CelC307 was optimally active at 40 °C and pH 7.0. The culture condition was optimized for improved CelC307 expression using Plackett-Burman and Box-Behnken design as follows: temperature 20 °C, pH 7.5, and inoculation concentration with an OD600 = 1. The endoglucanase activity was positively modulated in the presence of Na+, Li+, Ca2+, 2-mercaptoethanol (2-ME), and glycerol. The thermodynamic parameters calculated for CelC307 confirmed its inherent thermostability. The characterized CelC307 may be a suitable candidate for various biotechnological applications.
Collapse
Affiliation(s)
- Shima Mohammadi
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Tarrahimofrad
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Javad Zamani
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Kamahldin Haghbeen
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
49
|
Advances and Challenges in Biocatalysts Application for High Solid-Loading of Biomass for 2nd Generation Bio-Ethanol Production. Catalysts 2022. [DOI: 10.3390/catal12060615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Growth in population and thereby increased industrialization to meet its requirement, has elevated significantly the demand for energy resources. Depletion of fossil fuel and environmental sustainability issues encouraged the exploration of alternative renewable eco-friendly fuel resources. Among major alternative fuels, bio-ethanol produced from lignocellulosic biomass is the most popular one. Lignocellulosic biomass is the most abundant renewable resource which is ubiquitous on our planet. All the plant biomass is lignocellulosic which is composed of cellulose, hemicellulose and lignin, intricately linked to each other. Filamentous fungi are known to secrete a plethora of biomass hydrolyzing enzymes. Mostly these enzymes are inducible, hence the fungi secrete them economically which causes challenges in their hyperproduction. Biomass’s complicated structure also throws challenges for which pre-treatments of biomass are necessary to make the biomass amorphous to be accessible for the enzymes to act on it. The enzymatic hydrolysis of biomass is the most sustainable way for fermentable sugar generation to convert into ethanol. To have sufficient ethanol concentration in the broth for efficient distillation, high solid loading ~<20% of biomass is desirable and is the crux of the whole technology. High solid loading offers several benefits including a high concentration of sugars in broth, low equipment sizing, saving cost on infrastructure, etc. Along with the benefits, several challenges also emerged simultaneously, like issues of mass transfer, low reaction rate due to water constrains in, high inhibitor concentration, non-productive binding of enzyme lignin, etc. This article will give an insight into the challenges for cellulase action on cellulosic biomass at a high solid loading of biomass and its probable solutions.
Collapse
|
50
|
Singhania RR, Patel AK, Singh A, Haldar D, Soam S, Chen CW, Tsai ML, Dong CD. Consolidated bioprocessing of lignocellulosic biomass: Technological advances and challenges. BIORESOURCE TECHNOLOGY 2022; 354:127153. [PMID: 35421566 DOI: 10.1016/j.biortech.2022.127153] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Consolidated bioprocessing (CBP) is characterized by a single-step production of value-added compounds directly from biomass in a single vessel. This strategy has the capacity to revolutionize the whole biorefinery concept as it can significantly reduce the infrastructure input and use of chemicals for various processing steps which can make it economically and environmentally benign. Although the proof of concept has been firmly established in the past, commercialization has been limited due to the low conversion efficiency of the technology. Either a native single microbe, genetically modified microbe or a consortium can be employed. The major challenge in developing a cost-effective and feasible CBP process is the recognition of bifunctional catalysts combining the capability to use the substrates and transform them into value-added products with high efficiency. This article presents an in-depth analysis of the current developments in CBP around the globe and the possibilities of advancements in the future.
Collapse
Affiliation(s)
- Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Anusuiya Singh
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - Shveta Soam
- Department of Building Engineering, Energy Systems and Sustainability Science, University of Gävle, Kungsbäcksvägen 47, 80176 Gävle, Sweden
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|