1
|
Feng H, Song L, Wu Y, Zhao F, Zhu F, Song Z, Zhang K, Jiang J, Cai X, Yin S, Zhang C. Novel insight into the mechanisms of neurotoxicity induced by glufosinate-ammonium via the microbiota-intestine-brain axis in Chinese mitten crab (Eriocheir sinensis). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 211:106426. [PMID: 40350230 DOI: 10.1016/j.pestbp.2025.106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/02/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025]
Abstract
Glufosinate-ammonium (GLA) is a highly water-soluble and broad-spectrum herbicide, which poses a potential risk to aquatic organisms in aquatic ecosystems. In this study, the neurotoxic effects of GLA exposure on juvenile Eriocheir sinensis were evaluated from the perspective of microbiota-intestine-brain axis. The acute toxicity test was conducted by semi-static method. The results showed that GLA exposure induced neurotoxicity in juvenile crabs, mainly manifested by significantly increased neuronal apoptosis rate, DNA damage and neuron-specific enolase activity in serum, and showed a dose-dependent manner. The expression of apoptosis-related genes showed a similar trend. Moreover, GLA exposure significantly affected the depolarization and hyperpolarization signal transduction processes in the nervous system of juvenile crabs. In addition, compared with the control group, GLA exposure resulted in significantly changed of metabolic profile in ganglia, especially amino acid metabolism and glycerophospholipid metabolism. The intestinal microbial diversity changed significantly at the phylum, family and genus levels exposed to GLA. These results revealed the potential role of microbiota-intestine-brain axis in GLA-induced neurotoxicity in juvenile crabs. Taken together, this study suggested that GLA may induce neurotoxicity damage in juvenile crabs by affecting the neurotransmitter system and nerve signal transduction, and the inapplicability of the blood-brain barrier in crustaceans may intense the effect of microbial changes on neurological function. The results of this study provide new insights into the mechanism of GLA-induced neurotoxicity and preliminarily demonstrate the toxic risk of GLA exposure to non-target aquatic species.
Collapse
Affiliation(s)
- Huixia Feng
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Lexue Song
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Yi Wu
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Feng Zhao
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Fei Zhu
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Zihao Song
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Jianbin Jiang
- Nantong Tongzhou District Aquatic Technology Guidance Station, Nantong 226399, China
| | - Xinfeng Cai
- Nantong Tongzhou District Aquatic Technology Guidance Station, Nantong 226399, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China.
| | - Cong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China.
| |
Collapse
|
2
|
Zhang HJ, Zhao Q, Zhang M, Yang LL, Abiti J, Han MM, Gao YP, Lu JT, Wang JN, Ji MY, Zhang X, Wang W, Qiu LL, Wang XY, Wang TY, Jia YL. Overexpression of Tgm2 in Chinese Hamster Ovary Cells Enhances Recombinant Monoclonal Antibody Expression and Promotes Cell Proliferation through Reduction of Apoptosis. ACS Synth Biol 2025. [PMID: 40327404 DOI: 10.1021/acssynbio.5c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Chinese hamster ovary (CHO) cells are the preferred host system for producing protein-based (antibody) therapeutics. However, recombinant CHO cells undergo substantial apoptosis during prolonged cultivation, impairing cell growth and ultimately compromising product yield and quality. Transglutaminase 2 (Tgm2), which mediates post-translational modifications of substrate proteins, regulates critical biological processes including cellular differentiation, apoptosis, cell cycle progression, and extracellular matrix assembly. In this study, we examined the effects of Tgm2 overexpression and knockdown on CHO cell growth and recombinant antibody production. Stable Tgm2 overexpression enhanced CHO cell proliferation while reducing apoptotic rates, resulting in significantly increased recombinant adalimumab expression (2.09 ± 0.08-fold) and specific productivity (1.88 ± 0.08-fold) compared to controls. In contrast, Tgm2 knockdown promoted apoptosis and induced cell cycle arrest. Mechanistically, elevated Tgm2 upregulated antiapoptotic genes (Bcl-2, Bcl-xL, and Mcl-1) while suppressing caspase-3 activity and BAX expression. These effects were associated with PI3K/AKT/mTOR pathway activation. Our findings demonstrate that Tgm2 overexpression enhances proliferation, bolsters antiapoptotic capacity, and improves monoclonal antibody production efficiency in CHO cells, establishing it as a viable strategy for increasing recombinant protein yields.
Collapse
Affiliation(s)
- Hui-Jie Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China 453003
- International Joint Laboratory of Recombinant Drug Protein Expression System, Xinxiang, Henan China, 453003
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Qi Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China 453003
- International Joint Laboratory of Recombinant Drug Protein Expression System, Xinxiang, Henan China, 453003
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Miao Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China 453003
- International Joint Laboratory of Recombinant Drug Protein Expression System, Xinxiang, Henan China, 453003
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Lu Lu Yang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China 453003
- International Joint Laboratory of Recombinant Drug Protein Expression System, Xinxiang, Henan China, 453003
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jumai Abiti
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China 453003
- International Joint Laboratory of Recombinant Drug Protein Expression System, Xinxiang, Henan China, 453003
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Ming-Ming Han
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China 453003
- International Joint Laboratory of Recombinant Drug Protein Expression System, Xinxiang, Henan China, 453003
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yan-Ping Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China 453003
- International Joint Laboratory of Recombinant Drug Protein Expression System, Xinxiang, Henan China, 453003
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jiang-Tao Lu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China 453003
- International Joint Laboratory of Recombinant Drug Protein Expression System, Xinxiang, Henan China, 453003
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jia-Ning Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China 453003
- International Joint Laboratory of Recombinant Drug Protein Expression System, Xinxiang, Henan China, 453003
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Meng-Ying Ji
- School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xi Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China 453003
- International Joint Laboratory of Recombinant Drug Protein Expression System, Xinxiang, Henan China, 453003
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Wen Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China 453003
- International Joint Laboratory of Recombinant Drug Protein Expression System, Xinxiang, Henan China, 453003
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Le-Le Qiu
- School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xiao-Yin Wang
- International Joint Laboratory of Recombinant Drug Protein Expression System, Xinxiang, Henan China, 453003
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan 453003, China
- School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Tian-Yun Wang
- International Joint Laboratory of Recombinant Drug Protein Expression System, Xinxiang, Henan China, 453003
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan 453003, China
- School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yan-Long Jia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China 453003
- International Joint Laboratory of Recombinant Drug Protein Expression System, Xinxiang, Henan China, 453003
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan 453003, China
| |
Collapse
|
3
|
Kunitskaya A, Piret JM. Impacts of transient exposure of human T cells to low oxygen, temperature, pH and nutrient levels relevant to bioprocessing for cell therapy applications. Cytotherapy 2025; 27:522-533. [PMID: 39891634 DOI: 10.1016/j.jcyt.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND T-cell therapy advances have stimulated the development of bioprocesses to address the specialized needs of cell therapy manufacturing. During concentrated cell washing, the cells are frequently exposed to transiently reduced oxygen, temperature, pH, and nutrient levels. Longer durations of these conditions can be caused by process deviations or, if they are not harmful, be used to ease the scheduling of process stages during experiments as well as manufacturing. METHODS To avoid unpredictable impacts on T-cell quality during bioprocessing, we measured the influences of such environmental exposures generated by settling 250 million activated human T cells per mL, for up to 6 h at temperatures from 4 to 37°C. RESULTS The measured glucose concentration decreased to as low as 0.5 mM and the pH to 6, while lactate increased up to 55 mM. The concentrated cell conditions at 37°C resulted in by far the greatest losses in viable cell numbers with, on average, only 58% and 41% of the cells recovered after 3 and 6 h, respectively. Likewise, their subsequent cell expansion cultures were substantially reduced even after only 3 h of exposure, and with decreased percentages of central memory T cells and increased percentages of effector memory and effector T cells. Although under similar environmental conditions at room temperatures, the negative impacts of high cell concentrations were greatly diminished for up to 3 h. At 4°C the transient conditions were less extreme, and the cells well maintained for 6 h. CONCLUSIONS Overall, when developing processes and devices for T-cell therapy manufacturing that involve concentrated cells, the results of this study indicate that more practically feasible room temperatures can be used for up to 3 h to obtain high viable cell recoveries whereas lower temperatures such as 4°C should be used if there is a need for more prolonged concentrated T-cell conditions.
Collapse
Affiliation(s)
- Alina Kunitskaya
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; The School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - James M Piret
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; The School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
4
|
Zhang X, Yan Q, Xiao Y, Du X, Zhang X, Lou D, Peng F, Chen D, Tang W. Integrating network pharmacology, molecular docking, and animal studies to investigate the protective effect of astragalus polysaccharide on fluoride-induced renal injury in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118109. [PMID: 40154226 DOI: 10.1016/j.ecoenv.2025.118109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/24/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Fluoride is an essential trace element required for normal physiological functions and holds significant importance for human health. However, excessive fluoride intake can lead to renal damage, for which effective prevention and therapeutic strategies remain scarce. Astragalus polysaccharide (APS), a major bioactive component of the traditional Chinese herb Astragalus membranaceus, possesses pharmacological properties including anti-inflammatory, antiviral, and antioxidant activities. In this study, we investigated the protective effects of APS against fluoride-induced renal injury in vivo experiment. Additionally, network pharmacology and molecular docking techniques were employed to predict its potential mechanisms of action, while the protein expression levels of key target molecules were validated. The results demonstrated that APS intervention significantly alleviated renal injury and oxidative stress induced by sodium fluoride (NaF) in rats. Key targets involved in the amelioration of fluoride-induced renal damage by APS included STAT3, Caspase-3, JUN, MMP1, and PTGS2. Molecular docking analysis revealed high-affinity binding between APS and these core targets. Immunohistochemical and Western blot analysis further confirmed that APS suppressed the expression of pro-apoptotic proteins STAT3, Caspase-3, JUN, and MMP1 while enhancing the expression of the anti-apoptotic protein PTGS2. Overall, our findings suggest that APS alleviates fluoride-induced renal injury by modulating multiple targets, with the potential mechanism linked to the regulation of apoptotic processes. This study provides a theoretical basis for the prevention and treatment of fluoride toxicity.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Qianda Yan
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yuanyuan Xiao
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Xingyan Du
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Xuehua Zhang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Didong Lou
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; School of Public Health, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Fang Peng
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; School of Public Health, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Daiyong Chen
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Wenchao Tang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; School of Public Health, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
5
|
Kienzle S, Junghans L, Wieschalka S, Diem K, Takors R, Radde NE, Kunzelmann M, Presser B, Nold V. Direct Consideration of Process History During Intensified Design of Experiments Planning Eases Interpretation of Mammalian Cell Culture Dynamics. Bioengineering (Basel) 2025; 12:319. [PMID: 40150783 PMCID: PMC11939677 DOI: 10.3390/bioengineering12030319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/26/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Intra-experimental factor setting shifts in intensified design of experiments (iDoE) enhance understanding of bioproduction processes by capturing their dynamics and are thus essential to fulfill quality by design (QbD) ambitions. Determining the influence of process history on the cellular responses, often referred to as memory effect, is fundamental for accurate predictions. However, the current iDoE designs do not explicitly consider nor quantify the influence of process history. Therefore, we propose the one-factor-multiple-columns (OFMC)-format for iDoE planning. This format explicitly describes stage-dependent factor effects and potential memory effects as across-stage interactions (ASIs) during a bioprocess. To illustrate its utility, an OFMC-iDoE that considers the characteristic growth phases during a fed-batch process was planned. Data were analyzed using ordinary least squares (OLS) regression as previously described via stage-wise analysis of the time series and compared to direct modeling of end-of-process outcomes enabled by the OFMC-format. This article aims to provide the reader with a framework on how to plan and model iDoE data and highlights how the OFMC-format simplifies planning, and data acquisition, eases modeling and gives a straightforward quantification of potential memory effects. With the proposed OFMC-format, optimization of bioprocesses can leverage which factor settings are most beneficial in which state of the mammalian culture and thus elevate performance and quality to the next level.
Collapse
Affiliation(s)
- Samuel Kienzle
- Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, 88397 Biberach an der Riß, Germany
| | - Lisa Junghans
- Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, 88397 Biberach an der Riß, Germany
| | - Stefan Wieschalka
- Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, 88397 Biberach an der Riß, Germany
| | - Katharina Diem
- Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, 88397 Biberach an der Riß, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Nicole Erika Radde
- Institute for Stochastics and Applications, University of Stuttgart, Wankelstr. 5, 70563 Stuttgart, Germany
| | - Marco Kunzelmann
- Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, 88397 Biberach an der Riß, Germany
| | - Beate Presser
- Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, 88397 Biberach an der Riß, Germany
| | - Verena Nold
- Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, 88397 Biberach an der Riß, Germany
- Global Computational Biology and Data Science, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, 88397 Biberach an der Riß, Germany
| |
Collapse
|
6
|
Tekin E, Kaya AK, Küçük A, Arslan M, Özer A, Demirtaş H, Sezen ŞC, Kip G. Effects of Ellagic Acid and Berberine on Hind Limb Ischemia Reperfusion Injury: Pathways of Apoptosis, Pyroptosis, and Oxidative Stress. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:451. [PMID: 40142262 PMCID: PMC11943544 DOI: 10.3390/medicina61030451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025]
Abstract
Background and Objectives: Hind limb ischemia-reperfusion (I/R) injury is a serious clinical condition that requires urgent treatment and develops as a result of a sudden decrease in blood flow in the extremity. Antioxidant combinations are frequently used in diseases today. This study aimed to investigate and compare the effectiveness of ellagic acid (EA) and berberine (BER), which are important antioxidants, and the combination on hind limb I/R injury to evaluate their therapeutic power. Materials and Methods: Thirty-five male Sprague Dawley rats were randomly divided into five groups: sham, I/R, EA+I/R, BER+I/R, and EA/BER+I/R. In the I/R procedure, the infrarenal abdominal aorta was clamped and reperfused for 2 h. EA (100 mg/kg, ip) and BER (200 mg/kg, ip) were administered in the 75th minute of ischemia. Oxidative stress markers (MDA, GSH, SOD, and CAT) and TNF-α were measured. Apoptosis (Bax, Bcl-2, and Cleaved caspase-3) and pyroptosis (Nrf2, NLRP3, and Gasdermin D) pathways were evaluated via Western blot. Muscle tissue was examined histopathologically by hematoxylin eosin staining. One-way ANOVA and post hoc LSD tests were applied for statistical analyses (p < 0.05). Results: Bax levels increased in the ischemia group and decreased with EA and BER (p < 0.05). Bcl-2 levels decreased in the ischemia group but increased with EA and BER (p < 0.05). The highest level of the Bax/Bcl-2 ratio was in the I/R group (p < 0.05). Cleaved caspase 3 was higher in the other groups compared to the sham group (p < 0.05). While Nrf2 decreased in the I/R group, NLRP3 and Gasdermin D increased; EA and BER normalized these levels (p < 0.05). In the histopathological analysis, a combination of EA and BER reduced damage (p < 0.05). TNF-α levels were similar between groups (p > 0.05). MDA levels were reduced by EA and BER, but GSH, SOD, and CAT levels were increased (p < 0.05). Conclusions: It was concluded that TNF-α levels depend on the degree and duration of inflammation and that no difference was found in relation to duration in this study. As a result, EA, BER, and their combination could be potential treatment agents on hind limb I/R injury with these positive effects.
Collapse
Affiliation(s)
- Esra Tekin
- Department of Physiology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya 43020, Turkey; (E.T.); (A.K.K.); (A.K.)
| | - Ali Koray Kaya
- Department of Physiology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya 43020, Turkey; (E.T.); (A.K.K.); (A.K.)
| | - Ayşegül Küçük
- Department of Physiology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya 43020, Turkey; (E.T.); (A.K.K.); (A.K.)
| | - Mustafa Arslan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06500, Turkey;
| | - Abdullah Özer
- Department of Cardiovascular Surgery, Faculty of Medicine, Gazi University, Ankara 06500, Turkey; (A.Ö.); (H.D.)
| | - Hüseyin Demirtaş
- Department of Cardiovascular Surgery, Faculty of Medicine, Gazi University, Ankara 06500, Turkey; (A.Ö.); (H.D.)
| | - Şaban Cem Sezen
- Department of Histology and Embryology, Faculty of Medicine, Kırıkkale University, Kırıkkale 71450, Turkey;
| | - Gülay Kip
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06500, Turkey;
| |
Collapse
|
7
|
Gao H, Ma B, Zhao Y, Pan Y, Zhang A. Implications and mechanisms of O-GlcNAcylation in cancer therapy resistance. TUMORI JOURNAL 2025; 111:41-54. [PMID: 39718082 DOI: 10.1177/03008916241299244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
O-linked-N-acetylglucosaminylation (O-GlcNAcylation), one of the protein post-translational modifications, is the process of adding O-linked-β-D-N-acetylglucosaminylation (O-GlcNAc) to serine and threonine residues of proteins. O-GlcNAcylation regulates various fundamental cell biological processes, including gene transcription, signal transduction, and cellular metabolism. The role of dysregulated O-GlcNAcylation in tumorigenesis has been recognized, but its role in cancer therapy tolerance has not been elucidated. Therefore, this paper provides the latest evidence on the role of O-GlcNAcylation in cancer therapy responsiveness to understand the impact of O-GlcNAcylation on cancer therapy outcomes, as well as analyzing several possible mechanisms by which O-GlcNAcylation dysregulation affects cancer therapy efficacy, and discusses the possibility of O-GlcNAcylation as a cancer therapy sensitizer.
Collapse
Affiliation(s)
- Hongwei Gao
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Binyuan Ma
- Healthy Examination & Management Center, First Hospital of Lanzhou University, Lanzhou, China
| | - Youli Zhao
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yunyan Pan
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Anan Zhang
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Zhao Y, Xiang C, Roy BC, Bruce HL, Blecker C, Zhang Y, Liu C, Zhang D, Chen L, Huang C. Apoptosis and its role in postmortem meat tenderness: A comprehensive review. Meat Sci 2025; 219:109652. [PMID: 39265386 DOI: 10.1016/j.meatsci.2024.109652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Tenderness is considered a crucial attribute of postmortem meat quality, directly influencing consumers' preferences and industrial economic benefits. The degradation of myofibrillar proteins by endogenous enzymes within muscle fibers is believed to be the most effective pathway for meat tenderization. After animals are slaughtered and exsanguinated, there is a significant accumulation of reactive oxygen species (ROS), and a dramatic depletion of adenosine triphosphate (ATP) in muscle, leading to inevitable cell death. Caspases are activated in postmortem muscle cells, which disrupt the cell structure and improve meat tenderness through protein hydrolysis. In this review, we systematically summarized the three primary types of cell death studied in postmortem muscle: apoptosis, autophagy and necrosis. Furthermore, we emphasized the molecular mechanisms of apoptosis and its corresponding apoptotic pathways (mitochondrial apoptosis, death receptors, and endoplasmic reticulum stress) that affect meat tenderness during muscle conversion to meat. Additionally, factors affecting apoptosis were comprehensively discussed, such as ROS, heat shock proteins, calcium (Ca2+)/calpains, and Bcl-2 family proteins. Finally, this comprehensive review of existing research reveals that apoptosis is mainly mediated by the mitochondrial pathway. This ultimately leads to myofibrillar proteins degradation through caspase activation, improving meat tenderness. This review summarizes the research progress on postmortem muscle apoptosis and its molecular mechanisms in meat tenderization. We hope this will enhance understanding of postmortem meat tenderness and provide a theoretical basis for meat tenderization techniques development in the future.
Collapse
Affiliation(s)
- Yingxin Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Can Xiang
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Avenue de la Faculté d'Agronomie 2, Gembloux B-5030, Belgium
| | - Yanyan Zhang
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Chongxin Liu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Caiyan Huang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Avenue de la Faculté d'Agronomie 2, Gembloux B-5030, Belgium.
| |
Collapse
|
9
|
Kavoni H, Savizi ISP, Lewis NE, Shojaosadati SA. Recent advances in culture medium design for enhanced production of monoclonal antibodies in CHO cells: A comparative study of machine learning and systems biology approaches. Biotechnol Adv 2025; 78:108480. [PMID: 39571767 DOI: 10.1016/j.biotechadv.2024.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/24/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
The production of monoclonal antibodies (mAbs) using Chinese Hamster Ovary (CHO) cells has revolutionized the treatment of numerous diseases, solidifying their position as a cornerstone of the biopharmaceutical industry. However, achieving maximum mAb production while upholding strict product quality standards remains a significant hurdle. Optimizing cell culture media emerges as a critical factor in this endeavor, requiring a nuanced understanding of the complex interplay of nutrients, growth factors, and other components that profoundly influence cellular growth, productivity, and product quality. Significant strides have been made in media optimization, including techniques such as media blending, one factor at a time, and statistical design of experiments approaches. The present review provides a comprehensive analysis of the recent advancements in culture media design strategies, focusing on the comparative application of systems biology (SB) and machine learning (ML) approaches. The applications of SB and ML in optimizing CHO cell culture medium and successful examples of their use are summarized. Finally, we highlight the immense potential of integrating SB and ML, emphasizing the development of hybrid models that leverage the strengths of both approaches for robust, efficient, and scalable optimization of mAb production in CHO cells. This review provides a roadmap for researchers and industry professionals to navigate the complex landscape of mAb production optimization, paving the way for developing next-generation CHO cell culture media that drive significant improvements in yield and productivity.
Collapse
Affiliation(s)
- Hossein Kavoni
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Iman Shahidi Pour Savizi
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, CA, USA; Department of Pediatrics, University of California, San Diego, CA, USA
| | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
10
|
Xie H, Tang J, Song L, Xu G, Li W, Zhu J, Liu Y, Ma H, Cai L, Han XX. Mitochondria-endoplasmic reticulum crosstalk in apoptosis: The interactions of cytochrome c with monooxygenase and its reductase. Int J Biol Macromol 2024; 279:135160. [PMID: 39214221 DOI: 10.1016/j.ijbiomac.2024.135160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The crosstalk between endoplasmic reticulum and mitochondria is of significance in apoptosis, in which cytochrome b5 (Cyt b5) is thought to be a major target for cytochrome c (Cyt c) upon its release from the mitochondria. In the absence of Cyt b5, the role of interactions of Cyt c with CYP-dependent monooxygenase system in apoptotic regulation was explored in this study. NADPH-dependent and Cyt c-induced formation of reactive oxygen species (ROS) and NADPH-independent Cyt c unfolding were revealed. With the aid of a CPR inhibitor and CYP antibodies, the interactions among Cyt c, cytochrome P450 reductase (CPR) and cytochrome P450 (CYP) are evidenced, which are found crucial for monooxygenase-derived ROS formation. The underlying structural basis of Cyt c-CYP complex was unveiled by molecular dynamics simulations. This study provides novel insights into how Cyt c regulates ROS formation through the interactions with CPR and CYP, and is implicated for a deeper understanding of the regulation mechanism in the mitochondria-endoplasmic reticulum apoptotic pathway.
Collapse
Affiliation(s)
- Han Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jinping Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Li Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Guangyang Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jinyu Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yawen Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Hao Ma
- State Key Laboratory of Physical Chemistry Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China.
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
11
|
Okamura K, Badr S, Ichida Y, Yamada A, Sugiyama H. Modeling of cell cultivation for monoclonal antibody production processes considering lactate metabolic shifts. Biotechnol Prog 2024; 40:e3486. [PMID: 38924316 PMCID: PMC11659809 DOI: 10.1002/btpr.3486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Demand for monoclonal antibodies (mAbs) is rapidly increasing. To achieve higher productivity, there have been improvements to cell lines, operating modes, media, and cultivation conditions. Representative mathematical models are needed to narrow down the growing number of process alternatives. Previous studies have proposed mechanistic models to depict cell metabolic shifts (e.g., lactate production to consumption). However, the impacts of variations of some operating conditions have not yet been fully incorporated in such models. This paper offers a new mechanistic model considering variations in dissolved oxygen and glutamine depletion on cell metabolism applied to a novel Chinese hamster ovary (CHO) cell line. Expressions for the specific rates of lactate production, glutamine consumption, and mAb production were formulated for stirred and shaken-tank reactors. A deeper understanding of lactate metabolic shifts was obtained under different combinations of experimental conditions. Lactate consumption was more pronounced in conditions with higher DO and low glutamine concentrations. The model offers mechanistic insights that are useful for designing advanced operation strategies. It can be used in design space generation and process optimization for better productivity and product quality.
Collapse
Affiliation(s)
- Kozue Okamura
- Department of Chemical System EngineeringThe University of TokyoTokyoJapan
| | - Sara Badr
- Department of Chemical System EngineeringThe University of TokyoTokyoJapan
| | - Yusuke Ichida
- Department of Chemical System EngineeringThe University of TokyoTokyoJapan
| | - Akira Yamada
- Department of Chemical System EngineeringThe University of TokyoTokyoJapan
| | - Hirokazu Sugiyama
- Department of Chemical System EngineeringThe University of TokyoTokyoJapan
| |
Collapse
|
12
|
Chen A, Wang B, Feng Q, Wang R. Potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117019. [PMID: 39317077 DOI: 10.1016/j.ecoenv.2024.117019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
Carbonaceous nanomaterials (CNMs) are widely used in electronics, biomedicine, agriculture, environmental remediation, and catalysis due to their excellent biocompatibility, high reactivity, and high specific surface area. However, the extensive applications of CNMs cause their inevitable release into water, which may result in toxic effects on the aquatic ecological environment and organisms. CNMs can cause lipid peroxidation damage and neurotoxicity in aquatic organisms, affecting embryo hatching and larval morphology. The effects of CNMs on aquatic organisms vary depending on their structures and physicochemical properties, as well as the species, age, and tolerance of the tested organisms. The above uncertainties have increased the difficulty of exploring the impact of carbonaceous nanomaterials on the toxicity of aquatic organisms to a certain extent. Solving these issues is of great significance and reference value for promoting the research and safe utilization of carbon nanomaterials. Therefore, a systematic review of the effects of potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies is needed. This paper firstly summarizes the toxic effects of commonly used CNMs (i.e., carbon nanotubes, graphene, and fullerene) on different aquatic organisms, which include developmental toxicity, behavioral and metabolic toxicity, reproductive toxicity, and organ toxicity. Then the main mechanisms of CNMs to aquatic organisms are further explored, and the methods to reduce the toxicity of CNMs are also summarized. Finally, the current challenges and future perspectives for studying CNM toxicity to aquatic organisms are proposed.
Collapse
Affiliation(s)
- Anying Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Rui Wang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China
| |
Collapse
|
13
|
Yang X, Bu X, Li Y, Shen R, Duan Y, Liu M, Ma X, Guo Z, Chen C, He L, Shi H, Kong X, Zhang L. Effects of oxidative stress and protein S-nitrosylation interactions on mitochondrial pathway apoptosis and tenderness of yak meat during postmortem aging. Food Res Int 2024; 191:114717. [PMID: 39059914 DOI: 10.1016/j.foodres.2024.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
To reveal the interaction of oxidative stress and protein S-nitrosylation on mitochondrial pathway apoptosis and tenderness development in postmortem yak meat. Herein, we selected yak longissimus dorsi muscle as the research object and treated hydrogen peroxide (H2O2) with S-nitrosoglutathione agent (GSNO) as well as Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) in mixed injections with 0.9 % saline as a control group, followed by incubation at 4 °C for 12, 24, 72, 120 and 168 h. Results showed that this interaction significantly increased mitochondrial ROS and NO content (P < 0.05) while weakening the antioxidant capacity of GSH and TRX redox response systems or accelerating the Ca2+ release process, leading to mitochondrial functional impairment and increased apoptosis rate. Notably, the H2O2 + L-NAME group showed more pronounced apoptosis. Hence, we suggest that the interaction between oxidative stress and protein S-nitrosylation could positively regulate yak meat tenderization.
Collapse
Affiliation(s)
- Xue Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xinrong Bu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yiheng Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ruheng Shen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yufeng Duan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Mengying Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaotong Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaobin Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Cheng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Long He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongmei Shi
- Gansu Gannan Animal Husbandry and Veterinary Workstation, Gannan 747000, China
| | - Xiangying Kong
- Qinghai Haibei Animal Husbandry and Veterinary Science Research Institute, Haibei 812200, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
14
|
Lam C, Sargon A, Diaz C, Lai Z, Sangaraju D, Yuk I, Barnard G, Misaghi S. Strategies to improve CHO cell culture performance: Targeted deletion of amino acid catabolism and apoptosis genes paired with growth inhibitor supplementation. Biotechnol Prog 2024; 40:e3471. [PMID: 38629737 DOI: 10.1002/btpr.3471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 10/15/2024]
Abstract
Chinese hamster ovary (CHO) cells are the predominant host of choice for recombinant monoclonal antibody (mAb) expression. Recent advancements in gene editing technology have enabled engineering new CHO hosts with higher growth, viability, or productivity. One approach involved knock out (KO) of BCAT1 gene, which codes for the first enzyme in the branched chain amino acid (BCAA) catabolism pathway; BCAT1 KO reduced accumulation of growth inhibitory short chain fatty acid (SCFA) byproducts and improved culture growth and titer when used in conjunction with high-end pH-controlled delivery of glucose (HiPDOG) technology and SCFA supplementation during production. Accumulation of SCFAs in the culture media is critical for metabolic shift toward higher specific productivity and hence titer. Here we describe knocking out BCKDHa/b genes (2XKO), which act downstream of the BCAT1, in a BAX/BAK KO CHO host cell line background to reduce accumulation of growth-inhibitory molecules in culture. Evaluation of the new 4XKO CHO cell lines in fed-batch production cultures (without HiPDOG) revealed that partial KO of BCKDHa/b genes in an apoptosis-resistant (BAX/BAK KO) background can achieve higher viabilities and mAb titers. This was evident when SCFAs were added to boost productivity as such additives negatively impacted culture viability in the WT but not BAX/BAK KO cells during batch production. Altogether, our findings suggest that SCFA addbacks can significantly increase productivity and mAb titers in the context of apoptosis-attenuated CHO cells with partial KO of BCAA genes. Such engineered CHO hosts can offer productivity advantages for expressing biotherapeutics in an industrial setting.
Collapse
Affiliation(s)
- Cynthia Lam
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Alyssa Sargon
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Camil Diaz
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Zijuan Lai
- Drug Metabolism and Pharmacokinetics Department, Genentech Inc., South San Francisco, California, USA
| | - Dewakar Sangaraju
- Drug Metabolism and Pharmacokinetics Department, Genentech Inc., South San Francisco, California, USA
| | - Inn Yuk
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Gavin Barnard
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Shahram Misaghi
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| |
Collapse
|
15
|
Reyes SJ, Lemire L, Molina RS, Roy M, L'Ecuyer-Coelho H, Martynova Y, Cass B, Voyer R, Durocher Y, Henry O, Pham PL. Multivariate data analysis of process parameters affecting the growth and productivity of stable Chinese hamster ovary cell pools expressing SARS-CoV-2 spike protein as vaccine antigen in early process development. Biotechnol Prog 2024; 40:e3467. [PMID: 38660973 DOI: 10.1002/btpr.3467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
The recent COVID-19 pandemic revealed an urgent need to develop robust cell culture platforms which can react rapidly to respond to this kind of global health issue. Chinese hamster ovary (CHO) stable pools can be a vital alternative to quickly provide gram amounts of recombinant proteins required for early-phase clinical assays. In this study, we analyze early process development data of recombinant trimeric spike protein Cumate-inducible manufacturing platform utilizing CHO stable pool as a preferred production host across three different stirred-tank bioreactor scales (0.75, 1, and 10 L). The impact of cell passage number as an indicator of cell age, methionine sulfoximine (MSX) concentration as a selection pressure, and cell seeding density was investigated using stable pools expressing three variants of concern. Multivariate data analysis with principal component analysis and batch-wise unfolding technique was applied to evaluate the effect of critical process parameters on production variability and a random forest (RF) model was developed to forecast protein production. In order to further improve process understanding, the RF model was analyzed with Shapley value dependency plots so as to determine what ranges of variables were most associated with increased protein production. Increasing longevity, controlling lactate build-up, and altering pH deadband are considered promising approaches to improve overall culture outcomes. The results also demonstrated that these pools are in general stable expressing similar level of spike proteins up to cell passage 11 (~31 cell generations). This enables to expand enough cells required to seed large volume of 200-2000 L bioreactor.
Collapse
Affiliation(s)
- Sebastian-Juan Reyes
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, Canada
| | - Lucas Lemire
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, Canada
| | | | - Marjolaine Roy
- Human Health Therapeutics Research Centre, National Research Council Canada, Canada
| | | | - Yuliya Martynova
- Human Health Therapeutics Research Centre, National Research Council Canada, Canada
| | - Brian Cass
- Human Health Therapeutics Research Centre, National Research Council Canada, Canada
| | - Robert Voyer
- Human Health Therapeutics Research Centre, National Research Council Canada, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Canada
| | - Phuong Lan Pham
- Human Health Therapeutics Research Centre, National Research Council Canada, Canada
| |
Collapse
|
16
|
Park SY, Choi DH, Song J, Lakshmanan M, Richelle A, Yoon S, Kontoravdi C, Lewis NE, Lee DY. Driving towards digital biomanufacturing by CHO genome-scale models. Trends Biotechnol 2024; 42:1192-1203. [PMID: 38548556 DOI: 10.1016/j.tibtech.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 05/20/2024]
Abstract
Genome-scale metabolic models (GEMs) of Chinese hamster ovary (CHO) cells are valuable for gaining mechanistic understanding of mammalian cell metabolism and cultures. We provide a comprehensive overview of past and present developments of CHO-GEMs and in silico methods within the flux balance analysis (FBA) framework, focusing on their practical utility in rational cell line development and bioprocess improvements. There are many opportunities for further augmenting the model coverage and establishing integrative models that account for different cellular processes and data for future applications. With supportive collaborative efforts by the research community, we envisage that CHO-GEMs will be crucial for the increasingly digitized and dynamically controlled bioprocessing pipelines, especially because they can be successfully deployed in conjunction with artificial intelligence (AI) and systems engineering algorithms.
Collapse
Affiliation(s)
- Seo-Young Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Dong-Hyuk Choi
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jinsung Song
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Meiyappan Lakshmanan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, and Centre for Integrative Biology and Systems Medicine (IBSE), Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Anne Richelle
- Sartorius Corporate Research, Avenue Ariane 5, 1200 Brussels, Belgium
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01850, USA
| | - Cleo Kontoravdi
- Department of Chemical Engineering and Chemical Technology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Nathan E Lewis
- Departments of Pediatrics and Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
17
|
Ma Q, Huang L, Long C, Lin W. 3D Imaging of Lipid Droplet-Nuclear Membrane Contact Sites and Cirrhotic Lipid Droplet Overexpression. Anal Chem 2024; 96:12908-12915. [PMID: 39066699 DOI: 10.1021/acs.analchem.4c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
To coordinate cellular physiology, cells rely on the rapid exchange of molecules at specialized organelle-organelle contact sites. Lipid droplets (LDs) and nuclear membrane (NM) contact sites are particularly vital communication hubs, playing key roles in the exchange of signaling molecules, lipids, and metabolites. However, there is still a lack of understanding of the specific morphology of the contact sites. Here, we combine advanced three-dimensional (3D) imaging with a high-brightness fluorescent probe specifically targeting LDs to map the structural landscape of LD-NM contact sites. The probe exhibits exceptional photophysical properties, making it highly suitable for visualizing the changes occurring in LDs during the apoptosis process. In addition, we utilize the advantages of the probe to accurately monitor the overexpression of abnormal LDs in cirrhosis by 3D imaging for the first time. The outcomes of this investigation highlight that the probe has potential as a robust imaging tool to investigate intricate biological functions of LDs and their implications in related diseases.
Collapse
Affiliation(s)
- Qingqing Ma
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Ling Huang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Chenyuan Long
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
18
|
Tasci T, Orta-Yilmaz B, Aydin Y, Caliskan M. N-acetylcysteine attenuates sodium arsenite-induced oxidative stress and apoptosis in embryonic fibroblast cells. Toxicol Res (Camb) 2024; 13:tfae128. [PMID: 39139367 PMCID: PMC11319482 DOI: 10.1093/toxres/tfae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
In recent years, the increase in environmental pollutants has been one of the most important factors threatening human and environmental health. Arsenic, a naturally occurring element found in soil, water, and air, easily enters the human body and leads to many metabolic disorders. In this study, we focused on the possible protective effects of N-acetylcysteine (NAC) against sodium arsenite (As)-induced toxic effects on embryonic fibroblast cells. The effects of As and NAC treatment on cells were evaluated, including cytotoxicity, oxidative stress, and apoptosis. Embryonic fibroblast cells were exposed to As (ranging from 0.01 μM to 10 μM) and NAC (at a concentration of 2 mM) for 24 h. The assessment of cytotoxicity markers, such as cell viability and lactate dehydrogenase (LDH), showed that As significantly reduced cell viability and increased LDH levels. Furthermore, we observed that As increased the amount of reactive oxygen species (ROS) in the cell, decreased the activity of antioxidant enzymes, and triggered apoptosis in cells. Additionally, our research revealed that the administration of NAC mitigates the detrimental effects of As. The results showed that As exerted hazardous effects on embryonic fibroblast cells through the induction of oxidative stress and apoptosis. In this context, our study provides evidence that NAC may have a protective effect against the toxicity of As in embryonic fibroblast cells.
Collapse
Affiliation(s)
- Tunahan Tasci
- Department of Biology, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul 34126, Turkey
- Department of Medical Services and Techniques, Vocational School of Health Services, Istanbul Bilgi University, Istanbul 34387, Turkey
| | - Banu Orta-Yilmaz
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul 34126, Turkey
| | - Yasemin Aydin
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul 34126, Turkey
| | - Mahmut Caliskan
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul 34126, Turkey
| |
Collapse
|
19
|
Wang H, Gao L, Zhao C, Fang F, Liu J, Wang Z, Zhong Y, Wang X. The role of PI3K/Akt signaling pathway in chronic kidney disease. Int Urol Nephrol 2024; 56:2623-2633. [PMID: 38498274 DOI: 10.1007/s11255-024-03989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Chronic kidney disease (CKD), including chronic glomerulonephritis, IgA nephropathy and diabetic nephropathy, are common chronic diseases characterized by structural damage and functional decline of the kidneys. The current treatment of CKD is symptom relief. Several studies have reported that the phosphatidylinositol 3 kinases (PI3K)/protein kinase B (Akt) signaling pathway is a pathway closely related to the pathological process of CKD. It can ameliorate kidney damage by inhibiting this signal pathway which is involved with inflammation, oxidative stress, cell apoptosis, epithelial mesenchymal transformation (EMT) and autophagy. This review highlights the role of activating or inhibiting the PI3K/Akt signaling pathway in CKD-induced inflammatory response, apoptosis, autophagy and EMT. We also summarize the latest evidence on treating CKD by targeting the PI3K/Akt pathway, discuss the shortcomings and deficiencies of PI3K/Akt research in the field of CKD, and identify potential challenges in developing these clinical therapeutic CKD strategies, and provide appropriate solutions.
Collapse
Affiliation(s)
- Hongshuang Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Lanjun Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Chenchen Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Fang Fang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Jiazhi Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Zheng Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang, 050091, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yan Zhong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang, 050091, China.
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang, 050091, China.
| |
Collapse
|
20
|
Yang H, Sun J, Sun A, Wei Y, Xie W, Xie P, Zhang L, Zhao L, Huang Y. Podocyte programmed cell death in diabetic kidney disease: Molecular mechanisms and therapeutic prospects. Biomed Pharmacother 2024; 177:117140. [PMID: 39018872 DOI: 10.1016/j.biopha.2024.117140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Diabetic kidney disease (DKD) is the primary cause of chronic kidney and end-stage renal disease. Glomerular podocyte loss and death are pathological hallmarks of DKD, and programmed cell death (PCD) in podocytes is crucial in DKD progression. PCD involves apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis. During DKD, PCD in podocytes is severely impacted and primarily characterized by accelerated podocyte apoptosis and suppressed autophagy. These changes lead to a gradual decrease in podocyte numbers, impairing the glomerular filtration barrier function and accelerating DKD progression. However, research on the interactions between the different types of PCD in podocytes is lacking. This review focuses on the novel roles and mechanisms of PCD in the podocytes of patients with DKD. Additionally, we summarize clinical drugs capable of regulating podocyte PCD, present challenges and prospects faced in developing drugs related to podocyte PCD and suggest that future research should further explore the detailed mechanisms of podocyte PCD and interactions among different types of PCD.
Collapse
Affiliation(s)
- Haoyu Yang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jun Sun
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Aru Sun
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yu Wei
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Weinan Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Pengfei Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Lili Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yishan Huang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
21
|
Ito T, Lutz H, Tan L, Wang B, Tan J, Patel M, Chen L, Tsunakawa Y, Park B, Banerjee S. Host cell proteins in monoclonal antibody processing: Control, detection, and removal. Biotechnol Prog 2024; 40:e3448. [PMID: 38477405 DOI: 10.1002/btpr.3448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
Host cell proteins (HCPs) are process-related impurities in a therapeutic protein expressed using cell culture technology. This review presents biopharmaceutical industry trends in terms of both HCPs in the bioprocessing of monoclonal antibodies (mAbs) and the capabilities for HCP clearance by downstream unit operations. A comprehensive assessment of currently implemented and emerging technologies in the manufacturing processes with extensive references was performed. Meta-analyses of published downstream data were conducted to identify trends. Improved analytical methods and understanding of "high-risk" HCPs lead to more robust manufacturing processes and higher-quality therapeutics. The trend of higher cell density cultures leads to both higher mAb expression and higher HCP levels. However, HCP levels can be significantly reduced with improvements in operations, resulting in similar concentrations of approx. 10 ppm HCPs. There are no differences in the performance of HCP clearance between recent enhanced downstream operations and traditional batch processing. This review includes best practices for developing improved processes.
Collapse
Affiliation(s)
- Takao Ito
- Life Science, Process Solutions, Merck Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Tokyo, Japan
| | - Herb Lutz
- Independent Consultant, Sudbury, Massachusetts, USA
| | - Lihan Tan
- Life Science Services, Sigma-Aldrich Pte Ltd, Singapore, Singapore
| | - Bin Wang
- Life Science, Process Solutions, Merck Chemicals (Shanghai) Co. Ltd. (An Affiliate of Merck KGaA Darmstadt, Germany), Shanghai, China
| | - Janice Tan
- Life Science, Process Solutions, Merck Pte Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Singapore
| | - Masum Patel
- Life Science, Process Solutions, Merck Life Sciences Pvt. Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Bangalore, India
| | - Lance Chen
- Life Science, Process Solutions, Merck Pte Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Singapore
| | - Yuki Tsunakawa
- Life Science, Process Solutions, Merck Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Tokyo, Japan
| | - Byunghyun Park
- Life Science, Process Solutions, Merck Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Seoul, South Korea
| | - Subhasis Banerjee
- Life Science, Process Solutions, Merck Life Sciences Pvt. Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Bangalore, India
| |
Collapse
|
22
|
Zhu M, Wang Y, Han J, Sun Y, Wang S, Yang B, Wang Q, Kuang H. Artesunate Exerts Organ- and Tissue-Protective Effects by Regulating Oxidative Stress, Inflammation, Autophagy, Apoptosis, and Fibrosis: A Review of Evidence and Mechanisms. Antioxidants (Basel) 2024; 13:686. [PMID: 38929125 PMCID: PMC11200509 DOI: 10.3390/antiox13060686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The human body comprises numerous organs and tissues operating in synchrony, it facilitates metabolism, circulation, and overall organismal function. Consequently, the well-being of our organs and tissues significantly influences our overall health. In recent years, research on the protective effects of artesunate (AS) on various organ functions, including the heart, liver, brain, lungs, kidneys, gastrointestinal tract, bones, and others has witnessed significant advancements. Findings from in vivo and in vitro studies suggest that AS may emerge as a newfound guardian against organ damage. Its protective mechanisms primarily entail the inhibition of inflammatory factors and affect anti-fibrotic, anti-aging, immune-enhancing, modulation of stem cells, apoptosis, metabolic homeostasis, and autophagy properties. Moreover, AS is attracting a high level of interest because of its obvious antioxidant activities, including the activation of Nrf2 and HO-1 signaling pathways, inhibiting the release of reactive oxygen species, and interfering with the expression of genes and proteins associated with oxidative stress. This review comprehensively outlines the recent strides made by AS in alleviating organismal injuries stemming from various causes and protecting organs, aiming to serve as a reference for further in-depth research and utilization of AS.
Collapse
Affiliation(s)
- Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; (M.Z.); (Y.W.); (J.H.); (Y.S.); (S.W.); (B.Y.)
| | - Yu Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; (M.Z.); (Y.W.); (J.H.); (Y.S.); (S.W.); (B.Y.)
| | - Jianwei Han
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; (M.Z.); (Y.W.); (J.H.); (Y.S.); (S.W.); (B.Y.)
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; (M.Z.); (Y.W.); (J.H.); (Y.S.); (S.W.); (B.Y.)
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; (M.Z.); (Y.W.); (J.H.); (Y.S.); (S.W.); (B.Y.)
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; (M.Z.); (Y.W.); (J.H.); (Y.S.); (S.W.); (B.Y.)
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510024, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; (M.Z.); (Y.W.); (J.H.); (Y.S.); (S.W.); (B.Y.)
| |
Collapse
|
23
|
Li L, Jin M, Tan J, Xiao B. NcRNAs: A synergistically antiapoptosis therapeutic tool in Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14476. [PMID: 37735992 PMCID: PMC11017435 DOI: 10.1111/cns.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
AIMS The aim of this review is to systematically summarize and analyze the noncoding RNAs (ncRNAs), especially microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), in the cell apoptosis among Alzheimer's disease (AD) in recent years to demonstrate their value in the diagnosis and treatment of AD. METHODS We systematically summarized in vitro and in vivo studies focusing on the ncRNAs in the regulation of cell apoptosis among AD in PubMed, ScienceDirect, and Google Scholar. RESULTS We discover three patterns of ncRNAs (including 'miRNA-mRNA', 'lncRNA-miRNA-mRNA', and 'circRNA-miRNA-mRNA') form the ncRNA-based regulatory networks in regulating cell apoptosis in AD. CONCLUSIONS This review provides a future diagnosis and treatment strategy for AD patients based on ncRNAs.
Collapse
Affiliation(s)
- Liangxian Li
- Laboratory of Respiratory DiseaseAffiliated Hospital of Guilin Medical UniversityGuilinChina
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinChina
| | - Mingyue Jin
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinChina
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinChina
| | - Bo Xiao
- Laboratory of Respiratory DiseaseAffiliated Hospital of Guilin Medical UniversityGuilinChina
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinChina
- Key Laboratory of Respiratory DiseasesEducation Department of Guangxi Zhuang Autonomous RegionGuilinChina
| |
Collapse
|
24
|
Wu S, Ketcham SA, Corredor C, Both D, Zhao Y, Drennen JK, Anderson CA. Adaptive modeling optimized by the data fusion strategy: Real-time dying cell percentage prediction using capacitance spectroscopy. Biotechnol Prog 2024; 40:e3424. [PMID: 38178645 DOI: 10.1002/btpr.3424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
The previous research showcased a partial least squares (PLS) regression model accurately predicting cell death percentages using in-line capacitance spectra. The current study advances the model accuracy through adaptive modeling employing a data fusion approach. This strategy enhances prediction performance by incorporating variables from the Cole-Cole model, conductivity and its derivatives over time, and Mahalanobis distance into the predictor matrix (X-matrix). Firstly, the Cole-Cole model, a mechanistic model with parameters linked to early cell death onset, was integrated to enhance prediction performance. Secondly, the inclusion of conductivity and its derivatives over time in the X-matrix mitigated prediction fluctuations resulting from abrupt conductivity changes during process operations. Thirdly, Mahalanobis distance, depicting spectral changes relative to a reference spectrum from a previous time point, improved model adaptability to independent test sets, thereby enhancing performance. The final data fusion model substantially decreased root-mean squared error of prediction (RMSEP) by around 50%, which is a significant boost in prediction accuracy compared to the prior PLS model. Robustness against reference spectrum selection was confirmed by consistent performance across various time points. In conclusion, this study illustrates that the data fusion strategy substantially enhances the model accuracy compared to the previous model relying solely on capacitance spectra.
Collapse
Affiliation(s)
- Suyang Wu
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, USA
| | - Stephanie A Ketcham
- Manufascutring Science and Technology, Bristol-Myers Squibb, Devens, Massachusetts, USA
| | - Claudia Corredor
- Pharmaceutical Development, Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| | - Douglas Both
- Pharmaceutical Development, Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| | - Yuxiang Zhao
- Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts, USA
| | - James K Drennen
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, USA
| | - Carl A Anderson
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
Chang WH, Hsu HT, Lin CC, An LM, Lee CH, Ko HH, Lin CL, Lo YC. Linalool, a Fragrance Compound in Plants, Protects Dopaminergic Neurons and Improves Motor Function and Skeletal Muscle Strength in Experimental Models of Parkinson's Disease. Int J Mol Sci 2024; 25:2514. [PMID: 38473763 DOI: 10.3390/ijms25052514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the gradual loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), resulting in reduced dopamine levels in the striatum and eventual onset of motor symptoms. Linalool (3,7-dimethyl-1,6-octadien-3-ol) is a monoterpene in aromatic plants exhibiting antioxidant, antidepressant, and anti-anxiety properties. The objective of this study is to evaluate the neuroprotective impacts of linalool on dopaminergic SH-SY5Y cells, primary mesencephalic and cortical neurons treated with 1-methyl-4-phenylpyridinium ion (MPP+), as well as in PD-like mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Cell viability, α-tubulin staining, western blotting, immunohistochemistry and behavioral experiments were performed. In MPP+-treated SH-SY5Y cells, linalool increased cell viability, reduced neurite retraction, enhanced antioxidant defense by downregulation of apoptosis signaling (B-cell lymphoma 2 (Bcl-2), cleaved caspase-3 and poly ADP-ribose polymerase (PARP)) and phagocyte NADPH oxidase (gp91phox), as well as upregulation of neurotrophic signaling (brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF)) and nuclear factor-erythroid 2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. In MPP+-treated primary mesencephalic neurons, linalool enhanced the expressions of tyrosine hydroxylase (TH), Sirtuin 1 (SirT1), and parkin. In MPP+-treated primary cortical neurons, linalool upregulated protein expression of SirT1, γ-Aminobutyric acid type A-α1 (GABAA-α1), and γ-Aminobutyric acid type B (GABAB). In PD-like mice, linalool attenuated the loss of dopamine neurons in SNpc. Linalool improved the motor and nonmotor behavioral deficits and muscle strength of PD-like mice. These findings suggest that linalool potentially protects dopaminergic neurons and improves the impairment symptoms of PD.
Collapse
Affiliation(s)
- Wan-Hsuan Chang
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hung-Te Hsu
- Department of Anesthesia, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 80756, Taiwan
- Faculty of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Cheng Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Li-Mei An
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Hsing Lee
- Department of Pharmacology, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Horng-Huey Ko
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Lung Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
26
|
Tran HT, Pirker T, Pferschy-Wenzig EM, Kunert O, Huynh L, Bauer R. Structures and bioactivities of monomeric and dimeric carvotacetones from Sphaeranthus africanus. PHYTOCHEMISTRY 2024; 218:113938. [PMID: 38061483 DOI: 10.1016/j.phytochem.2023.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/19/2023]
Abstract
Four previously undescribed carvotacetones including one monomeric (1) and three dimeric (8, 9, 10) derivatives, together with six known compounds were isolated from the n-hexane extract of the aerial parts of Sphaeranthus africanus L. The structures of the previously undescribed compounds were elucidated as 3-angeloyloxy-5-isobutanoyloxy-7-hydroxycarvotacetone (1), 7,7'-oxybis{3-angeloyloxy-5-[(2R*,3R*)-2,3-dihydroxy-2-methylbutanoyloxy]carvotacetone} (8), (2″S*,3″R*)-7-{3-angeloyloxy-5-[(2R*,3R*)-2,3-dihydroxy-2-methylbuta-noyloxy]carvotaceton-7-yloxy}-3-angeloyloxy-5-(2,3-dihydroxy-2-methylbutanoyloxy)carvo-tacetone (9), and 7,7'-oxybis{3-angeloyloxy-5-[(2S*,3R*)-2,3-dihydroxy-2-methylbutanoyl-oxy]carvotacetone} (10). The three dimeric derivatives (8-10) showed potent anti-proliferative activity against human cancer cell lines (CCRF-CEM, MDA-MB-231, U-251, HCT-116) with IC50 values ranging from 0.2 to 2.0 μM. Caspases 3 and 7 were found to be activated by all compounds, indicating apoptosis induction activity. Monomers exhibited a specific inhibition of NO production in BV2 and RAW 264.7 cells with IC50 values ranging from 4.2 to 6.8 μM which were 2-3.5-fold lower than IC50 values causing cytotoxicity. In addition, the carvotacetones reduced NF-κB1 (p105) mRNA expression at concentrations of 10 and 2.5 μM. Altogether, the results indicate that carvotacetones may be interesting lead structures for the development of anti-cancer and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Huyen Thi Tran
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstrasse 8, 8010, Graz, Austria; Department of Pharmacognosy, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Hochiminh City, 700000, Viet Nam; Research Center for Genetics and Reproductive Health - CGRH, School of Medicine, Vietnam National University, HCM City, 700000, Viet Nam
| | - Teresa Pirker
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstrasse 8, 8010, Graz, Austria
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstrasse 8, 8010, Graz, Austria
| | - Olaf Kunert
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Universitaetsplatz 1, 8010, Graz, Austria
| | - Loi Huynh
- Faculty of Pharmacy, Binh Duong University, 504 Bình Dương Boulevard, Hiệp Thành Ward, Thủ Dầu Một City, Bình Dương Province, 75000, Viet Nam
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstrasse 8, 8010, Graz, Austria.
| |
Collapse
|
27
|
Chen J, Zhao T, Zheng X, Kang L, Wang J, Wei Y, Wu Y, Shen L, Long C, Wei G, Wu S. Protective effects of melatonin on DEHP-induced apoptosis and oxidative stress in prepubertal testes via the PI3K/AKT pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:952-964. [PMID: 37975621 DOI: 10.1002/tox.24029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/28/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, is one of the most common plasticizers and is widely used in various plastic products. DEHP induces apoptosis and oxidative stress and has been shown to have androgenic toxicity. However, the methods to combat DEHP-induced testicular damage and the mechanisms involved remain to be elucidated. In the present study, we used melatonin, which has strong antioxidant properties, to intervene in prepubertal mice and mouse Leydig cells (TM3) treated with DEHP or its metabolite mono(2-ethylhexyl) phthalate (MEHP). The results showed that melatonin protected against DEHP-induced testicular damage in prepubertal mice, mainly by protecting against DEHP-induced structural destruction of the germinal tubules and by attenuating the DEHP-induced decrease in testicular organ coefficients and testosterone levels. Transcriptomic analysis found that melatonin may attenuate DEHP-induced oxidative stress and apoptosis in prepubertal testes. In vitro studies further revealed that MEHP induces oxidative stress injury and increases apoptosis in TM3 cells, while melatonin reversed this damage. In vitro studies also found that MEHP exposure inhibited the expression levels of molecules related to the PI3K/AKT signaling pathway, and melatonin reversed this change. In conclusion, these findings suggest that melatonin protects against DEHP-induced prepubertal testicular injury via the PI3K/AKT signaling pathway, and provide a theoretical basis and experimental rationale for combating male reproductive dysfunction.
Collapse
Affiliation(s)
- Jiadong Chen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Tianxin Zhao
- Department of Pediatric Urology, Guangzhou Woman and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiangqin Zheng
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Lian Kang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Junke Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Yuexin Wei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Yuhao Wu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Guanghui Wei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shengde Wu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Mentlak DA, Raven J, Moses T, Massie F, Barber N, Hoare R, Burton G, Young A, Pybus LP, Rosser S, White RJ, Ungar D, Bryant NJ. Dissecting cell death pathways in fed-batch bioreactors. Biotechnol J 2024; 19:e2300257. [PMID: 38038229 PMCID: PMC11475371 DOI: 10.1002/biot.202300257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/09/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
Chinese hamster ovary (CHO) cells are widely used for production of biologics including therapeutic monoclonal antibodies. Cell death in CHO cells is a significant factor in biopharmaceutical production, impacting both product yield and quality. Apoptosis has previously been described as the major form of cell death occurring in CHO cells in bioreactors. However, these studies were undertaken when less was known about non-apoptotic cell death pathways. Here, we report the occurrence of non-apoptotic cell death in an industrial antibody-producing CHO cell line during fed-batch culture. Under standard conditions, crucial markers of apoptosis were not observed despite a decrease in viability towards the end of the culture; only by increasing stress within the system did we observe caspase activation indicative of apoptosis. In contrast, markers of parthanatos and ferroptosis were observed during standard fed-batch culture, indicating that these non-apoptotic cell death pathways contribute to viability loss under these conditions. These findings pave the way for targeting non-conventional cell death pathways to improve viability and biologic production in CHO cells.
Collapse
Affiliation(s)
| | - John Raven
- FUJIFILM Diosynth BiotechnologiesMammalian Cell Culture Process DevelopmentBillinghamUK
| | - Tessa Moses
- EdinOmicsRR*ID:SCR_021838University of EdinburghMax Born CrescentEdinburghUK
| | - Fraser Massie
- EdinOmicsRR*ID:SCR_021838University of EdinburghMax Born CrescentEdinburghUK
| | - Nicholas Barber
- FUJIFILM Diosynth BiotechnologiesMammalian Cell Culture Process DevelopmentBillinghamUK
| | - Robyn Hoare
- FUJIFILM Diosynth BiotechnologiesMammalian Cell Culture Process DevelopmentBillinghamUK
| | - Graeme Burton
- FUJIFILM Diosynth BiotechnologiesMammalian Cell Culture Process DevelopmentBillinghamUK
| | - Alison Young
- FUJIFILM Diosynth BiotechnologiesMammalian Cell Culture Process DevelopmentBillinghamUK
| | - Leon P. Pybus
- FUJIFILM Diosynth BiotechnologiesMammalian Cell Culture Process DevelopmentBillinghamUK
| | - Susan Rosser
- UK Centre for Mammalian Synthetic BiologySchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | | | - Daniel Ungar
- Department of BiologyUniversity of York, HeslingtonYorkUK
| | - Nia J. Bryant
- Department of BiologyUniversity of York, HeslingtonYorkUK
| |
Collapse
|
29
|
Hajizadeh M, Hajizadeh F, Ghaffarei S, Amin Doustvandi M, Hajizadeh K, Yaghoubi SM, Mohammadnejad F, Khiabani NA, Mousavi P, Baradaran B. MicroRNAs and their vital role in apoptosis in hepatocellular carcinoma: miRNA-based diagnostic and treatment methods. Gene 2023; 888:147803. [PMID: 37716587 DOI: 10.1016/j.gene.2023.147803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/03/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies with high invasive and metastatic capability. Although significant advances have been made in the treatment of HCC, the overall survival rate of patients is still low. It is essential to explore accurate biomarkers for early diagnosis and prognosis along with therapeutic procedures to increase the survival rate of these patients. Anticancer therapies can contribute to induce apoptosis for the elimination of cancerous cells. However, dysregulated apoptosis and proliferation signaling pathways lead to treatment resistance, a significant challenge in improving efficient therapies. MiRNAs, short non-coding RNAs, play crucial roles in the progression of HCC, which regulate gene expression through post-transcriptional inhibition and targeting mRNA degradation in cancers. Dysregulated expression of multiple miRNAs is associated with numerous biological processes, including cell proliferation, apoptosis, invasion and metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and drug resistance in HCC. This review summarizes the role and potential efficacy of miRNAs in promoting and inhibiting cell proliferation and apoptosis in HCC, as well as the role of miRNAs in therapy resistance in HCC.
Collapse
Affiliation(s)
- Masoumeh Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnaz Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevil Ghaffarei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Khadijeh Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Mohammad Yaghoubi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | | | - Pegah Mousavi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
30
|
Guez JS, Lacroix PY, Château T, Vial C. Deep in situ microscopy for real-time analysis of mammalian cell populations in bioreactors. Sci Rep 2023; 13:22045. [PMID: 38086908 PMCID: PMC10716407 DOI: 10.1038/s41598-023-48733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
An in situ microscope based on pulsed transmitted light illumination via optical fiber was combined to artificial-intelligence to enable for the first time an online cell classification according to well-known cellular morphological features. A 848 192-image database generated during a lab-scale production process of antibodies was processed using a convolutional neural network approach chosen for its accurate real-time object detection capabilities. In order to induce different cell death routes, hybridomas were grown in normal or suboptimal conditions in a stirred tank reactor, in the presence of substrate limitation, medium addition, pH regulation problem or oxygen depletion. Using such an optical system made it possible to monitor real-time the evolution of different classes of animal cells, among which viable, necrotic and apoptotic cells. A class of viable cells displaying bulges in feast or famine conditions was also revealed. Considered as a breakthrough in the catalogue of process analytical tools, in situ microscopy powered by artificial-intelligence is also of great interest for research.
Collapse
Affiliation(s)
- Jean-Sébastien Guez
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63 000, Clermont-Ferrand, France.
| | - Pierre-Yves Lacroix
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63 000, Clermont-Ferrand, France
- Logiroad.AI, 63 178, Aubière, France
| | - Thierry Château
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63 000, Clermont-Ferrand, France
- Logiroad.AI, 63 178, Aubière, France
| | - Christophe Vial
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63 000, Clermont-Ferrand, France
| |
Collapse
|
31
|
Chen T, Bao S, Chen J, Zhang J, Wei H, Hu X, Liang Y, Li J, Yan S. Xiaojianzhong decoction attenuates aspirin-induced gastric mucosal injury via the PI3K/AKT/mTOR/ULK1 and AMPK/ULK1 pathways. PHARMACEUTICAL BIOLOGY 2023; 61:1234-1248. [PMID: 37602379 PMCID: PMC10443964 DOI: 10.1080/13880209.2023.2243998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/05/2023] [Accepted: 07/29/2023] [Indexed: 08/22/2023]
Abstract
CONTEXT Xiaojianzhong decoction (XJZD), classically prescribed in Chinese medicine, has protective and healing effects on gastric mucosal injury. However, the exact mechanism behind this effect remains unclear. OBJECTIVE To investigate the effect of XJZD on gastric mucosal injury and explore its underlying mechanisms. MATERIALS AND METHODS C57BL/6 mice were randomized into six groups (n = 10): the control group receiving sterile water, the model (aspirin 300 mg/kg), the XJZD high-dose (12 g/kg), XJZD medium-dose (6 g/kg), XJZD low-dose (3 g/kg) and omeprazole (20 mg/kg) groups, by gavage daily for 14 days. The area of gastric mucosal injury, mucosal injury index and degree of histopathological damage were analysed. Gastric mucosal epithelial cell apoptosis was detected. Epithelial cell autophagy was observed. The expression levels of tight junction proteins and proteins related to apoptosis, autophagy and the pentose phosphate pathway were analysed. RESULTS The results showed that after treatment with XJZD (12, 6 and 3 g/kg), the mucosal injury area was reduced (83.4%, 22.6% and 11.3%), the expression level of ZO-1 and occludin was up-regulated, the apoptosis rate of epithelial cells was reduced (40.8%, 25.4% and 8.7%), the expression of autophagy-related proteins LC3 and Beclin1 was decreased and the expression of p62 was increased, the PI3K/AKT/mTOR/ULK1(ser757) signalling pathway was activated, and the AMPK/ULK1(ser317) signalling pathway was inhibited. In addition, XJZD can antagonize the imbalance of redox homeostasis caused by aspirin and protect the gastric mucosa. DISCUSSION AND CONCLUSIONS XJZD protects against aspirin-induced gastric mucosal injury, implying it to be a potential therapeutic agent.
Collapse
Affiliation(s)
- Ting Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Shengchuan Bao
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Juan Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Jiaxiang Zhang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Hailiang Wei
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Department of General Surgery, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Xin Hu
- State Forestry and Grassland Administration Engineering Research Center of Fu tea, Xianyang, PR China
| | - Yan Liang
- State Forestry and Grassland Administration Engineering Research Center of Fu tea, Xianyang, PR China
| | - Jingtao Li
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Department of Infectious Disease, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Shuguang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, PR China
| |
Collapse
|
32
|
Seyhan G, Akkaya D, Kolci K, Reis R, Yazici N, Nur Barut E, Barut B. Insights into the Biological Activity and Cytotoxic Mechanism of Epimedium pubigerum. Chem Biodivers 2023; 20:e202301003. [PMID: 37819048 DOI: 10.1002/cbdv.202301003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
In this work, the phytochemical characterization, biological activity, and cytotoxic mechanism of aerial and rhizome methanol extracts (SME and RME) of Epimedium pubigerum were investigated to demonstrate its potential usage in the treatment of lung cancer. LC-HRMS analysis, total phenolic/flavonoid content assay, DPPH radical scavenging assay, DNA interaction, cytotoxicity, and western blotting were investigated using different methods. Fumaric acid was found to be the most abundant compound in both extracts. SME and RME were cytotoxic on A549 cells concentration-dependently. Also, in vitro scratch assay showed that SME and RME led to a significant anti-migratory effect at 1 mg/mL. Cytochrome c, p53, and caspase 3 expression significantly increased in the presence of RME compared to the control. All of these results claimed that RME might be suggested as a theoretically more effective phytotherapeutic agent for lung cancer compared to the effect seen with the SME.
Collapse
Affiliation(s)
- Gökçe Seyhan
- Karadeniz Technical University, Faculty of Pharmacy, Biochemistry Department,61080, Trabzon, Türkiye
| | - Didem Akkaya
- Karadeniz Technical University, Faculty of Pharmacy, Biochemistry Department,61080, Trabzon, Türkiye
| | - Kübra Kolci
- Acıbadem University, Faculty of Pharmacy, Pharmaceutical Toxicology Department, 34752, İstanbul, Türkiye
- Yeditepe University, Faculty of Pharmacy, Pharmaceutical Toxicology Department, 34755, Istanbul, Türkiye
| | - Rengin Reis
- Acıbadem University, Faculty of Pharmacy, Pharmaceutical Toxicology Department, 34752, İstanbul, Türkiye
| | - Nurdan Yazici
- Karadeniz Technical University, Faculty of Pharmacy, Pharmacognosy Department, 61080, Trabzon, Türkiye
| | - Elif Nur Barut
- Karadeniz Technical University, Faculty of Pharmacy, Pharmacology Department, 61080, Trabzon, Türkiye
| | - Burak Barut
- Karadeniz Technical University, Faculty of Pharmacy, Biochemistry Department,61080, Trabzon, Türkiye
| |
Collapse
|
33
|
Dong X, He Y, An J, He L, Zheng Y, Wang X, Wang J, Chen S, Zhang Y. Increased apoptosis of gingival epithelium is associated with impaired autophagic flux in medication-related osteonecrosis of the jaw. Autophagy 2023; 19:2899-2911. [PMID: 37477258 PMCID: PMC10549186 DOI: 10.1080/15548627.2023.2234228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023] Open
Abstract
Macroautophagy/autophagy has both negative and positive aspects in the development of many diseases. Yet, its exact role and specific mechanism in the onset of medication-related osteonecrosis of the jaw (MRONJ) is still not fully understood. Retarded gingiva healing is the primary clinical manifestation in patients with MRONJ. In this study, we aimed to explore the relationship between autophagy and apoptosis in MRONJ gingival epithelium and search for a method to prevent this disease. First, we examined clinical samples from patients diagnosed with MRONJ and healthy controls, finding that autophagy-related markers MAP1LC3/LC3 and SQSTM1/p62 synchronously increased, thus suggesting that autophagic flux was suppressed in MRONJ. Moreover, mRNA sequencing analysis and TUNEL assay showed that the process of apoptosis was upregulated in patients and animals with MRONJ, indicating autophagy and apoptosis participate in the development of MRONJ. Furthermore, the level of autophagy and apoptosis in zoledronic acid (ZA)-treated human keratinocytes cell lines (HaCaT cells) was concentration dependent in vitro. In addition, we also found that RAB7 (RAB7, member RAS oncogene family) activator ML098 could rescue MRONJ gingival lesions in mice by activating the autophagic flux and downregulating apoptosis. To sum up, this study demonstrated that autophagic flux is impaired in the gingival epithelium during MRONJ, and the rescued autophagic flux could prevent the occurrence of MRONJ.Abbreviations: ACTB: actin beta; Baf-A1: bafilomycin A1; CASP3: caspase 3; CASP8: caspase 8; CT: computed tomography; DMSO: dimethyl sulfoxide; GFP: green fluorescent protein; HaCaT cells: human keratinocytes cell lines; H&E: hematoxylin and eosin; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MRONJ: medication-related osteonecrosis of the jaw; PARP: poly(ADP-ribose) polymerase; RAB7: RAB7, member RAS oncogene family; RFP: red fluorescent protein; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; ZA: zoledronic acid.
Collapse
Affiliation(s)
- Xian Dong
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yang He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jingang An
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Linhai He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- First Clinical Division, Peking University School Hospital of Stomatology, Beijing, China
| | - Yi Zheng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xinyu Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jie Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Shuo Chen
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yi Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
34
|
Jia Y, Li X, Meng X, Lei J, Xia Y, Yu L. Anticancer perspective of 6-shogaol: anticancer properties, mechanism of action, synergism and delivery system. Chin Med 2023; 18:138. [PMID: 37875983 PMCID: PMC10594701 DOI: 10.1186/s13020-023-00839-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
Cancer is a malignant disease that has plagued human beings all the time, but the treatment effect of commonly used anticancer drugs in clinical practice is not ideal by reason of their drug tolerance and Strong adverse reactions to patients. Therefore, it is imperative to find effective and low-toxic anticancer drugs. Many research works have shown that natural products in Chinese herbal medicine have great anticancer potential, such as 6-shogaol, a monomer composition obtained from Chinese herbal ginger, which has been confirmed by numerous in vitro or vivo studies to be an excellent anti-cancer active substance. In addition, most notably, 6-shogaol has different selectivity for normal and cancer cells during treatment, which makes it valuable for further research and clinical development. Therefore, this review focus on the anti-cancer attributes, the mechanism and the regulation of related signaling pathways of 6-shogaol. In addition, its synergy with commonly used anticancer drugs, potential drug delivery systems and prospects for future research are discussed. This is the first review to comprehensively summarize the anti-cancer mechanism of 6-shogaol, hoping to provide a theoretical basis and guiding significance for future anti-cancer research and clinical development of 6-shogaol.
Collapse
Affiliation(s)
- Yaoxia Jia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Xing Li
- Jianyang Chinese Medicine Hospital, Chengdu, 641400, China
| | - Xiangqi Meng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Jinjie Lei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Yangmiao Xia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Lingying Yu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| |
Collapse
|
35
|
Song QQ, Lin LP, Chen YL, Qian JC, Wei K, Su JW, Ding JH, Lu M, Liu Y, Tan RX, Hu G. Characterization of LTr1 derived from cruciferous vegetables as a novel anti-glioma agent via inhibiting TrkA/PI3K/AKT pathway. Acta Pharmacol Sin 2023; 44:1262-1276. [PMID: 36482085 PMCID: PMC10203337 DOI: 10.1038/s41401-022-01033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
Malignant glioma is the most fatal, invasive brain cancer with limited treatment options. Our previous studies show that 2-(indol-3-ylmethyl)-3,3'-diindolylmethane (LTr1), a major metabolite of indole-3-carbinol (I3C) derived from cruciferous vegetables, produces anti-tumour effect against various tumour cell lines. In this study we characterized LTr1 as a novel anti-glioma agent. Based on screening 134 natural compounds and comparing the candidates' efficacy and toxicity, LTr1 was selected as the lead compound. We showed that LTr1 potently inhibited the viability of human glioma cell lines (SHG-44, U87, and U251) with IC50 values of 1.97, 1.84, and 2.03 μM, respectively. Furthermore, administration of LTr1 (100,300 mg· kg-1 ·d-1, i.g. for 18 days) dose-dependently suppressed the tumour growth in a U87 xenograft nude mouse model. We demonstrated that LTr1 directly bound with TrkA to inhibit its kinase activity and the downstream PI3K/AKT pathway thus inducing significant S-phase cell cycle arrest and apoptosis in SHG-44 and U87 cells by activating the mitochondrial pathway and inducing the production of reactive oxygen species (ROS). Importantly, LTr1 could cross the blood-brain barrier to achieve the therapeutic concentration in the brain. Taken together, LTr1 is a safe and promising therapeutic agent against glioma through inhibiting TrkA/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Qi-Qi Song
- Departments of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li-Ping Lin
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ya-Li Chen
- Departments of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia-Cheng Qian
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ke Wei
- Departments of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian-Wei Su
- Departments of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian-Hua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211100, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211100, China
| | - Yang Liu
- Departments of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ren-Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, 210023, China.
| | - Gang Hu
- Departments of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211100, China.
| |
Collapse
|
36
|
Glinšek K, Bozovičar K, Bratkovič T. CRISPR Technologies in Chinese Hamster Ovary Cell Line Engineering. Int J Mol Sci 2023; 24:ijms24098144. [PMID: 37175850 PMCID: PMC10179654 DOI: 10.3390/ijms24098144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The Chinese hamster ovary (CHO) cell line is a well-established platform for the production of biopharmaceuticals due to its ability to express complex therapeutic proteins with human-like glycopatterns in high amounts. The advent of CRISPR technology has opened up new avenues for the engineering of CHO cell lines for improved protein production and enhanced product quality. This review summarizes recent advances in the application of CRISPR technology for CHO cell line engineering with a particular focus on glycosylation modulation, productivity enhancement, tackling adventitious agents, elimination of problematic host cell proteins, development of antibiotic-free selection systems, site-specific transgene integration, and CRISPR-mediated gene activation and repression. The review highlights the potential of CRISPR technology in CHO cell line genome editing and epigenetic engineering for the more efficient and cost-effective development of biopharmaceuticals while ensuring the safety and quality of the final product.
Collapse
Affiliation(s)
- Katja Glinšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Krištof Bozovičar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Tomaž Bratkovič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
37
|
Aslani F, Afarin R, Dehghani Madiseh N, Beheshti Nasab H, Monjezi S, Igder S, Rashidi M. Potentiation of Apoptotic Effect of Combination of Etoposide and Quercetin on HepG2 Liver Cancer Cells. HEPATITIS MONTHLY 2023. [DOI: 10.5812/hepatmon-136194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Background: Hepatocellular carcinoma (HCC) is the most common type of liver cancer worldwide. The current remedies for cancer, including chemotherapy and radiation therapy, might damage patients’ organs, sometimes causing death. Etoposide (ETO), as a widely used chemo-drug, possesses the same problems. For years, combinational therapy has been considered a potential adjustor for common treatments, alleviating their side effects. Quercetin (Que), a phytochemical drug, has been used due to its potential against cancer. Objectives: This study explored whether synergy occurs between Que and ETO on the apoptosis of HepG2 HCC cells or not. Methods: The impacts of the drugs on cell growth were assessed through the MTT assay. The apoptotic death rates of treated cells were examined through Annexin/PI double staining and caspase-9 and caspase-3 activities. The relative expression of B-cell lymphoma 2 (Bcl-2) Associated X-protein (Bax), and Bcl-2 genes and proteins were analyzed using quantitative reverse transcription polymerase chain reaction and western blot analysis. Additionally, the levels of p53 protein were determined. Results: Both Que and ETO reduced the cell viability and increased apoptotic rates, caspases activities, Bax gene and protein expression, and the p53 protein levels of HepG2 cells. The combination of Que and ETO showed apparent synergy in terms of cell growth and cell apoptosis. Que significantly enhanced the effects of ETO on caspase activities, Bax and Bcl-2 genes’ expression, and p53 protein levels. Conclusions: The obtained results demonstrated that Que showed synergy when co-treated with ETO on HepG2 cells. Therefore, it is concluded that further studies on the aforementioned combination could lead to a potential anticancer compound against HCC.
Collapse
|
38
|
Idrissi SE, Fath N, Ibork H, Taghzouti K, Alamy M, Abboussi O. Restraint Stress Exacerbates Apoptosis in a 6-OHDA Animal Model of Parkinson Disease. Neurotox Res 2023; 41:166-176. [PMID: 36633788 DOI: 10.1007/s12640-022-00630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023]
Abstract
Activation of the apoptotic pathway has been associated with promoting neuronal cell death in the pathophysiology of Parkinson disease (PD). Nonetheless, the mechanisms by which it may occur remain unclear. It has been suggested that stress-induced oxidation and potential apoptosis may play a major role in the progression of PD. Thus, in this study, we aimed to investigate the effect of subchronic restraint stress on striatal dopaminergic activity, iron, p53, caspase-3, and plasmatic acetylcholinesterase (AChE) levels in male Wistar rat model of PD induced by administration of 6-hydroxydopamine (6-OHDA) in the medial forebrain bundle (MFB). The obtained results showed that restraint stress exacerbates motor coordination deficits and anxiety in animals treated with 6-OHDA in comparison to animals receiving saline, and it had no effect on object recognition memory. On another hand, 6-OHDA decreased dopamine (DA) levels, increased iron accumulation, and induced overexpression of the pro-apoptotic factors caspase-3, p53, and AChE. More interestingly, post-lesion restraint stress exacerbated the expression of caspase-3 and AChE without affecting p53 expression. These findings suggest that subchronic stress may accentuate apoptosis and may contribute to DA neuronal loss in the striatal regions and possibly exacerbate the progression of PD.
Collapse
Affiliation(s)
- Sara El Idrissi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Nada Fath
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Hind Ibork
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Khalid Taghzouti
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Meryem Alamy
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Oualid Abboussi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco.
| |
Collapse
|
39
|
Rahimi A, Karimipoor M, Mahdian R, Alipour A, Hosseini S, Mohammadi M, Kaghazian H, Abbasi A, Shahsavarani H, Shokrgozar MA. Efficient CRISPR/Cas9-Mediated BAX Gene Ablation in CHO Cells To Impair Apoptosis and Enhance Recombinant Protein Production. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3388. [PMID: 37228627 PMCID: PMC10203183 DOI: 10.30498/ijb.2023.343428.3388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 01/25/2023] [Indexed: 05/27/2023]
Abstract
Background Despite recent advances in recombinant biotherapeutics production using CHO cells, their productivity remains lower than industrial needs, mainly due to apoptosis. Objectives Present study aimed to exploit CRISPR/Cas9 technology to specifically disrupt the BAX gene to attenuate apoptosis in recombinant Chinese hamster's ovary cells producing erythropoietin. Materials and Methods The STRING database was used to identify the key pro-apoptotic genes to be modified by CRISPR/Cas9 technique. The single guide RNAs (sgRNAs) targeting identified gene (BAX) were designed, and CHO cells were then transfected with vectors. Afterward, changes in the expression of the Bax gene and consequent production rates of erythropoietin were investigated in manipulated cells, even in the presence of an apoptosis inducer agent, oleuropein. Results BAX disruption significantly prolonged cell viability and increased proliferation rate in manipulated clones (152%, P-value = 0.0002). This strategy reduced the levels of Bax protein expression in manipulated cells by more than 4.3-fold (P-value <0.0001). The Bax-8 manipulated cells displayed higher threshold tolerance to the stress and consequence apoptosis compared to the control group. Also, they exhibited a higher IC50 compared to the control in the presence of oleuropein (5095 µM.ml-1 Vs. 2505 µM.ml-1). We found a significant increase in recombinant protein production levels in manipulated cells, even in the presence of 1,000 µM oleuropein compared to the control cell line (p-value=0.0002). Conclusions CRISPR/Cas9 assisted BAX gene ablation is promising to improve erythropoietin production in CHO cells via engineering anti-apoptotic genes. Therefore, exploiting genome editing tools such as CRISPR/Cas9 has been proposed to develop host cells that result in a safe, feasible, and robust manufacturing operation with a yield that meets the industrial requirements.
Collapse
Affiliation(s)
- Amirabbas Rahimi
- Laboratory of regenerative medicine and biomedical innovations, National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Reza Mahdian
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Atefeh Alipour
- Department of Nano-Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Saadi Hosseini
- Laboratory of regenerative medicine and biomedical innovations, National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Marzieh Mohammadi
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Hooman Kaghazian
- Department of Research & Development, Production & Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Abdolrahim Abbasi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Ali Shokrgozar
- Laboratory of regenerative medicine and biomedical innovations, National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
40
|
Rapid Identification of Chinese Hamster Ovary Cell Apoptosis and Its Potential Role in Process Robustness Assessment. Bioengineering (Basel) 2023; 10:bioengineering10030357. [PMID: 36978748 PMCID: PMC10045091 DOI: 10.3390/bioengineering10030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Currently, the assessment of process robustness is often time-consuming, labor-intensive, and material-intensive using process characterization studies. Therefore, a simple and time-saving method is highly needed for the biopharmaceutical industry. Apoptosis is responsible for 80% of Chinese hamster ovary (CHO) cell deaths and affects the robustness of the cell culture process. This study’s results showed that a more robust process can support cells to tolerate apoptosis for a longer time, suggesting that the robustness of the process could be judged by the ability of cells to resist apoptosis. Therefore, it is necessary to establish a rapid method to detect the apoptosis of CHO cells. In trying to establish a new method for detecting apoptosis in large-scale cell cultures, glucose withdrawal was studied, and the results showed that CHO cells began to apoptose after glucose was consumed. Then, the concentration of extracellular potassium increased, and a prolongation of apoptosis time was observed. Further study results showed that the process with poor robustness was associated with a higher proportion of apoptosis and extracellular potassium concentration, so potassium could be used as a biochemical index of apoptosis. The strategy we present may be used to expedite the assessment of process robustness to obtain a robust cell culture process for other biologics.
Collapse
|
41
|
m6A modification in inflammatory bowel disease provides new insights into clinical applications. Biomed Pharmacother 2023; 159:114298. [PMID: 36706633 DOI: 10.1016/j.biopha.2023.114298] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) results from a complex interplay between genetic predisposition, environmental factors, and gut microbes. The role of N6-methyladenosine (m6A) methylation in the pathogenesis of IBD has attracted increasing attention. m6A modification not only regulates intestinal mucosal immunity and intestinal barrier function, but also affects apoptosis and autophagy in intestinal epithelial cells. Additionally, m6A modification participated in the interaction between gut microbes and the host, providing a novel direction to explore the molecular mechanisms of IBD and the theoretical basis for specific microorganism-oriented prevention and treatment measures. m6A regulators are expected to be biomarkers for predicting the prognosis of IBD patients. m6A methylation may be utilized as a novel target in the management of IBD. This review focused on the recent advances in how m6A modification causes the initiation and development of IBD, and provided new insights into optimal prevention and treatment measures for IBD.
Collapse
|
42
|
Lozano-Casabianca GA, Arango-Varela SS, Maldonado-Celis ME. Induction of Apoptosis and Decrease of Autophagy in Colon Cancer Cells by an Extract of Lyophilized Mango Pulp. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4165. [PMID: 36901174 PMCID: PMC10002435 DOI: 10.3390/ijerph20054165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Previous studies have indicated that mango fruit has a chemopreventive capacity against colorectal cancer cells. The objective of this research was to evaluate the effect of an aqueous extract of lyophilized mango pulp (LMPE) on colon adenocarcinoma cells (SW480) and their metastatic derivatives (SW620) death and cellular invasion. DNA fragmentation was assessed by TUNEL assay; autophagy and expression of DR4 and Bcl-2 by flow cytometry; the expression of 35 apoptosis-related proteins and of matrix metalloproteinases 7 and 9 by immunodetection; and the invasive capacity of the cells by Boyden chamber. The results showed that LMPE at 30 mg/mL and 48 h of exposure results in DNA fragmentation and apoptosis in SW480 (p < 0.001) and SW620 (p < 0.01) cells. Additionally, LMPE decreased autophagy in the SW480 and SW620 cell lines (p < 0.001), which could sensitize them to the DNA damage generated by LMPE. The LMPE did not modulate the expression of matrix metalloproteinases 7 and 9, nor did it affect cellular invasion processes in the SW480 and SW620 cell lines. In conclusion, LMPE induces apoptosis and decreases autophagy in SW480 and SW620 cells.
Collapse
Affiliation(s)
| | - Sandra Sulay Arango-Varela
- Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano (ITM), Institución Universitaria, Medellín 050034, Colombia
| | | |
Collapse
|
43
|
Ribeiro AB, Nicolella HD, da Silva LHD, Mejía JAA, Tanimoto MH, Ambrósio SR, Bastos JK, Orenha RP, Parreira RLT, Tavares DC. Guttiferone E Displays Antineoplastic Activity Against Melanoma Cells. PLANTA MEDICA 2023; 89:158-167. [PMID: 36170858 DOI: 10.1055/a-1890-5446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Guttiferone E (GE) is a benzophenone found in Brazilian red propolis. In the present study, the effect of GE on human (A-375) and murine (B16-F10) melanoma cells was investigated. GE significantly reduced the cellular viability of melanoma cells in a time-dependent manner. In addition, GE demonstrated antiproliferative effect, with IC50 values equivalent to 9.0 and 6.6 µM for A-375 and B16-F10 cells, respectively. The treatment of A-375 cells with GE significantly increased cell populations in G0/G1 phase and decreased those in G2/M phase. Conversely, on B16-F10 cells, GE led to a significant decrease in the populations of cells in G0/G1 phase and concomitantly an increase in the population of cells in phase S. A significantly higher percentage of apoptotic cells was observed in A-375 (43.5%) and B16-F10 (49.9%) cultures after treatment with GE. Treatments with GE caused morphological changes and significant decrease to the melanoma cells' density. GE (10 µM) inhibited the migration of melanoma cells, with a higher rate of inhibition in B16-F10 cells (73.4%) observed. In addition, GE significantly reduced the adhesion of A375 cells, but showed no effect on B16-F10. Treatment with GE did not induce changes in P53 levels in A375 cultures. Molecular docking calculations showed that GE is stable in the active sites of the tubulin dimer with a similar energy to taxol chemotherapy. Taken together, the data suggest that GE has promising antineoplastic potential against melanoma.
Collapse
Affiliation(s)
| | | | | | | | - Matheus Hikaru Tanimoto
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renato Pereira Orenha
- University of Franca, Avenida Dr. Armando Salles Oliveira, Franca, São Paulo, Brazil
| | | | | |
Collapse
|
44
|
Xu Y, Wu Q, Tang Z, Tan Z, Pu D, Tan W, Zhang W, Liu S. Comprehensive Analysis of Necroptosis-Related Genes as Prognostic Factors and Immunological Biomarkers in Breast Cancer. J Pers Med 2022; 13:44. [PMID: 36675706 PMCID: PMC9863352 DOI: 10.3390/jpm13010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Breast cancer (BC) is a lethal malignancy with a poor prognosis. Necroptosis is critical in the progression of cancer. However, the expression of genes involved in necroptosis in BC and their association with prognosis remain unclear. We investigated the predictive potential of necroptosis-related genes in BC samples from the TCGA dataset. We used LASSO regression to build a risk model consisting of twelve necroptosis-related genes in BC. Using the necroptosis-related risk model, we were able to successfully classify BC patients into high- and low-risk groups with significant prognostic differences (p = 4.872 × 10 -7). Additionally, we developed a matched nomogram predicting 5, 7, and 10-year overall survival in BC patients based on this necroptosis-related risk model. Our next step was to perform multiple GSEA analyses to explore the biological pathways through which these necroptosis-related risk genes influence cancer progression. For these twelve risk model genes, we analyzed CNV, SNV, OS, methylation, immune cell infiltration, and drug sensitivity in pan-cancer. In addition, immunohistochemical data from the THPA database were used to validate the protein expression of these risk model genes in BC. Taken together, we believe that necroptosis-related genes are considered potential therapeutic targets in BC and should be further investigated.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shengchun Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| |
Collapse
|
45
|
Xu Y, Wu Q, Tang Z, Tan Z, Pu D, Tan W, Zhang W, Liu S. Comprehensive Analysis of Necroptosis-Related Genes as Prognostic Factors and Immunological Biomarkers in Breast Cancer. J Pers Med 2022; 13:44. [PMID: 36675706 PMCID: PMC9863352 DOI: 10.3390/jpm13010044;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 10/11/2024] Open
Abstract
Breast cancer (BC) is a lethal malignancy with a poor prognosis. Necroptosis is critical in the progression of cancer. However, the expression of genes involved in necroptosis in BC and their association with prognosis remain unclear. We investigated the predictive potential of necroptosis-related genes in BC samples from the TCGA dataset. We used LASSO regression to build a risk model consisting of twelve necroptosis-related genes in BC. Using the necroptosis-related risk model, we were able to successfully classify BC patients into high- and low-risk groups with significant prognostic differences (p = 4.872 × 10 −7). Additionally, we developed a matched nomogram predicting 5, 7, and 10-year overall survival in BC patients based on this necroptosis-related risk model. Our next step was to perform multiple GSEA analyses to explore the biological pathways through which these necroptosis-related risk genes influence cancer progression. For these twelve risk model genes, we analyzed CNV, SNV, OS, methylation, immune cell infiltration, and drug sensitivity in pan-cancer. In addition, immunohistochemical data from the THPA database were used to validate the protein expression of these risk model genes in BC. Taken together, we believe that necroptosis-related genes are considered potential therapeutic targets in BC and should be further investigated.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shengchun Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| |
Collapse
|
46
|
Effect of PhenylEthanol Glycosides from Cistanche Tubulosa on Autophagy and Apoptosis in H22 Tumor-Bearing Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3993445. [DOI: 10.1155/2022/3993445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 12/13/2022]
Abstract
An effectual remedy for hepatocellular carcinoma (HCC) and knowledge of the mechanism are urgently needed. Researchers have found that CPhGs, an extract from Cistanche tubulosa (Schenk) Wight, had better antitumor effects, but its mechanism is still unknown. In the present study, using an H22 tumor-bearing mouse as a model, we investigated the antitumor effects of CPhGs and the effect of CPhGs on autophagy and apoptosis. Besides, we also discussed the role of autophagy with the help of HCQ and rapamycin. Our results show that CPhGs inhibit tumor growth and induce apoptosis and autophagy of tumor tissue. TUNEL staining displayed that tumor apoptosis rate increased after the intervention of CPhGs, and immunohistochemistry and western blot showed that cleaved-PARP and cleaved-caspase 3 were upregulated after the intervention of CPhGs, and these results were most pronounced in the high-dose group. Autophagy results revealed that CPhGs increased the number of autophagosomes, increased the level of LC3B-II, and decreased the level of p62. Finally, our results showed that excessive autophagy suppresses tumor growth, whereas inhibition of autophagy does the opposite, which indicated that CPhGs induced autophagic death in H22 hepatoma-bearing mice. These data altogether confirmed the involvement of apoptosis and autophagy in CPhGs treatment for HCC.
Collapse
|
47
|
Triiodothyronine enhances cardiac contractility in septic rats and probably through Akt-Caspase9 pathway to reduce septic-induced cardiomyocyte apoptosis. Mol Cell Probes 2022; 66:101852. [PMID: 36084907 DOI: 10.1016/j.mcp.2022.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 12/30/2022]
|
48
|
Rahimi A, Karimipoor M, Mahdian R, Alipour A, Hosseini S, Kaghazian H, Abbasi A, Shahsavarani H, Shokrgozar MA. Targeting Caspase-3 Gene in rCHO Cell Line by CRISPR/Cas9 Editing Tool and Its Effect on Protein Production in Manipulated Cell Line. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e130236. [PMID: 36915405 PMCID: PMC10007989 DOI: 10.5812/ijpr-130236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/19/2022] [Accepted: 12/12/2022] [Indexed: 03/06/2023]
Abstract
Background Chinese hamster ovary (CHO) cells are the widely used mammalian cell host for biopharmaceutical manufacturing. During cell cultures, CHO cells lose viability mainly from apoptosis. Inhibiting cell death is useful because prolonging cell lifespans can direct to more productive cell culture systems for biotechnology requests. Objectives This study exploited a CRISPR/Cas9 technology to generate site-specific gene disruptions in the caspase-3 gene in the apoptosis pathway, which acts as an apoptotic regulator to extend cell viability in the CHO cell line. Methods The STRING database was used to identify the key pro-apoptotic genes to be modified by CRISPR/Cas9 system. The guide RNAs targeting the caspase-3 gene were designed, and vectors containing sgRNA and Cas9 were transfected into CHO cells that expressed erythropoietin as a heterologous protein. Indel formation was investigated by DNA sequencing. Caspase-3 expression was quantified by real-time PCR and western blot. The effect of editing the caspase-3 gene on the inhibition of apoptosis was also investigated by induction of apoptosis in manipulated cell lines by oleuropein. Finally, the erythropoietin production in the edited cells was compared to the control cells. Results The caspase-3 manipulation significantly prolongation of the cell viability and decreased the caspase-3 expression level of protein in manipulated CHO cells (more than 6-fold, P-value < 0.0001). Manipulated cells displayed higher threshold tolerance to apoptosis compared to the control cells when they were induced by oleuropein. They show a higher IC50 than the control ones (7271 µM/mL Vs. 5741 µM/mL). They also show a higher proliferation rate than the control cells in the presence of an apoptosis inducer (P-value < 0.0001). Furthermore, manipulated cell lines significantly produce more recombinant protein in the presence of 2,000 µM oleuropein compared to the control ones (P-value = 0.0021). Conclusions We understood that CRISPR/Cas9 could be effectively applied to suppress the expression of the caspase-3 gene and rescue CHO cells from apoptosis induced by cell stress and metabolites. The CRISPR/Cas9 system-assisted caspase-3 gene ablation can potentially increase erythropoietin yield in CHO cells.
Collapse
Affiliation(s)
- Amirabbas Rahimi
- Laboratory of Regenerative Medicine and Biomedical Innovations, Department of National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Mahdian
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Atefeh Alipour
- Department of Nano-Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Sadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, Department of National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Hooman Kaghazian
- Department of Research & Development, Production & Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Abdolrahim Abbasi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Corresponding Author: Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mohammad Ali Shokrgozar
- Laboratory of Regenerative Medicine and Biomedical Innovations, Department of National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
- Corresponding Author: Laboratory of Regenerative Medicine and Biomedical Innovations, Department of National Cell Bank, Pasteur Institute of Iran, 13169-43551, Tehran, Iran.
| |
Collapse
|
49
|
Mishra S, Kumar V, Sarkar J, Rathore AS. Mixing and mass transfer in production scale mammalian cell culture reactor using coupled CFD-species transport-PBM validation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Zhang C, He J, Wang X, Yang Y, Huang Q, Qiao F, Shi Q, Qin J, Chen L. Gamma-aminobutyric acid enhances hypoxia tolerance of juvenile Chinese mitten crab (Eriocheir sinensis) by regulating respiratory metabolism and alleviating neural excitotoxicity. Comp Biochem Physiol C Toxicol Pharmacol 2022; 260:109409. [PMID: 35830953 DOI: 10.1016/j.cbpc.2022.109409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
With climate change and intensive aquaculture development, environmental hypoxia in aquaculture water has become a common challenge for many aquatic species. Therefore, it is crucial to improve the hypoxic tolerance of animals through nutritional strategies. This study explored the positive role of dietary gamma-aminobutyric acid (GABA) supplementation in enhancing hypoxia tolerance of juvenile Eriocheir sinensis through respiratory regulation and alleviation of hypoxia-induced neural excitotoxicity. Acute hypoxia stress significantly up-regulated the mRNA expression level of hypoxia-inducible factor 1α, oxygen consumption rate and anaerobic respiratory metabolism-related enzyme activities. On the other hand, aerobic respiratory metabolism-related enzyme activities were significantly decreased. However, dietary GABA supplementation remodeled the respiratory metabolism pattern of juvenile crabs exposed to hypoxia stress. In addition, acute hypoxic stress significantly increased the contents of free glutamate and GABA in the nervous tissue. The expression levels of N-Methyl-d-aspartate-related receptor genes and calcium-dependent degradation enzyme-related genes were significantly up-regulated. Similarly, neuronal apoptosis rates, expression levels of apoptosis-related genes, and vesicular glutamate transporter genes were also significantly increased. The high-affinity neuronal glutamate transporter decreased significantly in the crabs exposed to hypoxia stress. However, dietary GABA supplementation could effectively prevent acute hypoxia stress-induced neural excitotoxicity. Furthermore, dietary GABA could significantly improve the redox status in vivo exposed to hypoxia stress. In conclusion, acute hypoxia stress can affect respiratory metabolism and redox state and induce neural excitotoxicity in juvenile E. sinensis. GABA supplementation could improve hypoxia tolerance through multiple physiological regulation pathways.
Collapse
Affiliation(s)
- Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Jiaqi He
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| | - Yiwen Yang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Qincheng Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Qingchao Shi
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Sichuan 641100, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| |
Collapse
|