1
|
Tkachenko A, Havranek O. Cell death signaling in human erythron: erythrocytes lose the complexity of cell death machinery upon maturation. Apoptosis 2025; 30:652-673. [PMID: 39924584 PMCID: PMC11947060 DOI: 10.1007/s10495-025-02081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
Over the recent years, our understanding of the cell death machinery of mature erythrocytes has been greatly expanded. It resulted in the discovery of several regulated cell death (RCD) pathways in red blood cells. Apoptosis (eryptosis) and necroptosis of erythrocytes share certain features with their counterparts in nucleated cells, but they are also critically different in particular details. In this review article, we summarize the cell death subroutines in the erythroid precursors (apoptosis, necroptosis, and ferroptosis) in comparison to mature erythrocytes (eryptosis and erythronecroptosis) to highlight the consequences of organelle clearance and associated loss of multiple components of the cell death machinery upon erythrocyte maturation. Recent advances in understanding the role of erythrocyte RCDs in health and disease have expanded potential clinical applications of these lethal subroutines, emphasizing their contribution to the development of anemia, microthrombosis, and endothelial dysfunction, as well as their role as diagnostic biomarkers and markers of erythrocyte storage-induced lesions. Fas signaling and the functional caspase-8/caspase-3 system are not indispensable for eryptosis, but might be retained in mature erythrocytes to mediate the crosstalk between both erythrocyte-associated RCDs. The ability of erythrocytes to switch between eryptosis and necroptosis suggests that their cell death is not a simple unregulated mechanical disintegration, but a tightly controlled process. This allows investigation of eventual pharmacological interventions aimed at individual cell death subroutines of erythrocytes.
Collapse
Affiliation(s)
- Anton Tkachenko
- First Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic.
| | - Ondrej Havranek
- First Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic
- First Department of Medicine - Hematology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Chang RT, Fisher MJ, Sumbria RK. Brain endothelial cells as phagocytes: mechanisms and implications. Fluids Barriers CNS 2025; 22:30. [PMID: 40170044 PMCID: PMC11959998 DOI: 10.1186/s12987-025-00637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Brain microvascular endothelial cells (BECs) lining the brain capillaries form the anatomical site of the blood-brain barrier (BBB), providing a highly selective barrier to support brain homeostasis and function. While the BBB acts as a barrier to immune cells and pathogens under normal conditions, BECs can facilitate their entry into the CNS via a phagocytosis-like mechanism. A similar process is now increasingly reported for a diverse set of cargos, resulting in the categorization of BECs as "non-professional" phagocytes and redefining the conventional view that these cells are functionally non-phagocytic. This review aims to summarize research demonstrating the capacity of BECs to phagocytose various cargos, including aged red blood cells (RBC), myelin debris, and embolic particles. Mechanistically, BEC phagocytosis can be triggered by the exposure of phosphatidylserine on RBC, expression of adhesion molecules such as ICAM-1 and VCAM-1 on BECs, cargo-opsonization, and/or involve BEC cytoskeleton remodeling. Phagocytic activity by BECs has significant clinical implications ranging from regulation of cerebral microvascular patency (particularly by contributing to and resolving capillary stalling), clearance of brain parenchymal debris, and brain parenchymal invasion by pathogens. Further, BEC phagocytosis of RBC, which represents a cell (RBC)-in-cell (BEC) phenomenon, is implicated in hemorrhagic lesions including cerebral microhemorrhages. This review aims to shed light on BEC phagocytosis as an important function within the brain microvascular system and will delve into the underlying mechanisms, discuss the clinical implications, and identify gaps in our understanding of this phenomenon.
Collapse
Affiliation(s)
- Rudy T Chang
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, USA
| | - Mark J Fisher
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
- Departments of Anatomy & Neurobiology and Pathology & Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Rachita K Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, USA.
- Department of Neurology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
3
|
Bissinger R, Schaefer L, Bohnert BN, Schork A, Hoerber S, Peter A, Qadri SM, Birkenfeld AL, Heyne N, Bakchoul T, Wieder T, Artunc F. GFR is a Key Determinant of Red Blood Cell Survival in Anemia Associated With Progressive CKD. Kidney Int Rep 2025; 10:730-742. [PMID: 40225399 PMCID: PMC11993223 DOI: 10.1016/j.ekir.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/17/2024] [Accepted: 12/16/2024] [Indexed: 04/15/2025] Open
Abstract
Introduction Anemia is a common and clinically significant complication observed in patients with chronic kidney disease (CKD), resulting from complex interactions between renal dysfunction, erythropoietin (EPO) deficiency, and altered iron metabolism. In murine CKD models, red blood cell (RBC) death or eryptosis, characterized by exposure of phosphatidylserine (PS) on the outer membrane of RBCs, was observed to drive anemia. However, there is limited research that has investigated this phenomenon in patients with non-dialysis-dependent CKD (NDD-CKD). Methods In this cross-sectional cohort study, we describe the relationship between RBC death and anemia in all stages of NDD-CKD (n = 122). Blood samples from 133 healthy blood donors were additionally analyzed as controls. Results Patients with CKD had a significantly lower hemoglobin (Hb) concentration (12.4 [interquartile range: 11.1-13.7] g/dl) when compared with the healthy group (13.8 [13.0-14.8] g/dl, P < 0.001). Hb concentrations exhibited a significant positive correlation with the estimated glomerular filtration rate (eGFR) across the entire cohort (r = 0.5, P < 0.001). RBC death rates, quantified by the binding of freshly isolated RBCs to the ligand annexin V using flow cytometry (FACS), were significantly increased by approximately 1.4-fold in patients with CKD compared with the RBC death rates in healthy blood donors. RBC death correlated with the glomerular filtration rate (GFR) stage but not with the albuminuria stage of CKD, the degree of anemia, and serum iron concentration. Using multiple linear regression, eGFR was identified as the sole independent predictor of RBC death with an inverse relationship. Conclusion RBC death is stimulated in progressive NDD-CKD, possibly contributing to the development of renal anemia.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Lina Schaefer
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Bernhard N. Bohnert
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research at the University of Tübingen, Tübingen, Germany
| | - Anja Schork
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research at the University of Tübingen, Tübingen, Germany
| | - Sebastian Hoerber
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research at the University of Tübingen, Tübingen, Germany
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital of Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research at the University of Tübingen, Tübingen, Germany
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital of Tübingen, Tübingen, Germany
| | - Syed M. Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, Ontario, Canada
- Innovation & Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Andreas L. Birkenfeld
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research at the University of Tübingen, Tübingen, Germany
| | - Nils Heyne
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research at the University of Tübingen, Tübingen, Germany
| | - Tamam Bakchoul
- Institute for Clinical and Experimental Transfusion Medicine (IKET), University Hospital of Tübingen, Tübingen, Germany
- Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Thomas Wieder
- Department of Vegetative and Clinical Physiology, University of Tübingen, Tübingen, Germany
| | - Ferruh Artunc
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research at the University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Perrone P, Notariale R, Lettieri G, Mele L, La Pietra V, Piscopo M, Manna C. Protective effects of olive oil antioxidant phenols on mercury-induced phosphatidylserine externalization in erythrocyte membrane: Insights into scramblase and flippase activity. Free Radic Biol Med 2025; 227:42-51. [PMID: 39613047 DOI: 10.1016/j.freeradbiomed.2024.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
In several physiopathological processes, phosphatidylserine (PS), normally sequestered to the inner leaflet of the plasma membrane, becomes exposed to the cell surface. In erythrocytes (RBC), PS externalization is a crucial event for the removal of aged/damaged cells but can also be associated with increased prothrombotic activity. Structurally related olive oil antioxidants, including hydroxytyrosol (HT), are able to significantly reduce the percentage of PS-exposing RBC, when cells are exposed to toxic compounds such as the heavy metal mercury (Hg). The aim of the present study was to identify the molecular mechanisms underlying the protective effect, with a focus on two different phospholipid translocases, the ATP-dependent flippase ATP11C and the calcium-dependent scramblase PLSCR1, which are responsible for PS internalization and exposure, respectively. In addition to HT, its monophenol analogue, tyrosol, and its in vivo metabolite, homovanillic alcohol, were also tested. Our investigation revealed that exposure of human intact RBC to HgCl2 induced a decrease in flippase activity and an increase in scramblase activity, and that all the selected phenols restored the control activity, regardless of their different scavenging properties. Interestingly, all phenols restored the ATP level of control cells, which were significantly reduced by HgCl2 treatment. Conversely, no variation in intracellular calcium was observed under our experimental conditions. Additionally, all phenols restored the glutathione levels, significantly reduced in the presence of HgCl2. In line with the data on the enzymatic activity, Western blotting analysis indicated changes in the membrane expression of the two enzymes, alterations prevented by antioxidant pre-treatment. Finally, molecular docking analysis suggests that the tested antioxidants may be able to directly interact with ATP11C. Our findings provide an experimental basis for the use of olive oil bioactive compounds in nutritional/nutraceutical strategies for the prevention of Hg-related toxicity, particularly in relation to the cardiovascular tissues.
Collapse
Affiliation(s)
- Pasquale Perrone
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| | - Rosaria Notariale
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Italy.
| | - Valeria La Pietra
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, NA, Italy.
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| |
Collapse
|
5
|
Di Santo R, Niccolini B, Rizzi A, Bertini L, Marafon DP, Vaccaro M, Cristallo F, Rosa E, Tartaglione L, Leo L, De Spirito M, Ciasca G, Pitocco D. Sensing Biomechanical Alterations in Red Blood Cells of Type 1 Diabetes Patients: Potential Markers for Microvascular Complications. BIOSENSORS 2024; 14:587. [PMID: 39727851 DOI: 10.3390/bios14120587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/28/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
In physiological conditions, red blood cells (RBCs) demonstrate remarkable deformability, allowing them to undergo considerable deformation when passing through the microcirculation. However, this deformability is compromised in Type 1 diabetes mellitus (T1DM) and related pathological conditions. This study aims to investigate the biomechanical properties of RBCs in T1DM patients, focusing on identifying significant mechanical alterations associated with microvascular complications (MCs). We conducted a case-control study involving 38 T1DM subjects recruited from the Diabetes Care Unit at Fondazione Policlinico Gemelli Hospital, comprising 22 without MCs (control group) and 16 with MCs (pathological group). Atomic Force Microscopy was employed to assess RBC biomechanical properties in a liquid environment. We observed significant RBC stiffening in individuals with MCs, particularly during large indentations that mimic microcirculatory deformations. Univariate analysis unveiled significant differences in RBC stiffness (median difference 0.0006 N/m, p = 0.012) and RBC counts (median difference -0.39 × 1012/L, p = 0.009) between the MC and control groups. Bivariate logistic regression further demonstrated that combining these parameters could effectively discriminate between MC and non-MC conditions, achieving an AUC of 0.82 (95% CI: 0.67-0.97). These findings reveal the potential of RBC biomechanical properties as diagnostic and monitoring tools in diabetes research. Exploring RBC mechanical alterations may lead to the development of novel biomarkers, which, in combination with clinical markers, could facilitate the early diagnosis of diabetes-related complications.
Collapse
Affiliation(s)
- Riccardo Di Santo
- Department of Life Science, Health, and Health Professions, Link Campus University, 00165 Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Benedetta Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandro Rizzi
- UOSA Diabetologia, Fondazione IRCCS, University Agostino Gemelli, 00168 Rome, Italy
| | - Laura Bertini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Denise Pires Marafon
- Section of Hygiene, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Vaccaro
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Federica Cristallo
- UOSA Diabetologia, Fondazione IRCCS, University Agostino Gemelli, 00168 Rome, Italy
| | - Enrico Rosa
- Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| | - Linda Tartaglione
- UOSA Diabetologia, Fondazione IRCCS, University Agostino Gemelli, 00168 Rome, Italy
| | - Laura Leo
- UOSA Diabetologia, Fondazione IRCCS, University Agostino Gemelli, 00168 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Dario Pitocco
- UOSA Diabetologia, Fondazione IRCCS, University Agostino Gemelli, 00168 Rome, Italy
| |
Collapse
|
6
|
Ye XH, Xu ZM, Shen D, Jin YJ, Li JW, Xu XH, Tong LS, Gao F. Gas6/Axl signaling promotes hematoma resolution and motivates protective microglial responses after intracerebral hemorrhage in mice. Exp Neurol 2024; 382:114964. [PMID: 39288830 DOI: 10.1016/j.expneurol.2024.114964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) stands out as the most fatal subtype of stroke, currently devoid of effective therapy. Recent research underscores the significance of Axl and its ligand growth arrest-specific 6 (Gas6) in normal brain function and a spectrum of neurological disorders, including ICH. This study is designed to delve into the role of Gas6/Axl signaling in facilitating hematoma clearance and neuroinflammation resolution following ICH. METHODS Adult male C57BL/6 mice were randomly assigned to sham and ICH groups. ICH was induced by intrastriatal injection of autologous arterial blood. Recombinant mouse Gas6 (rmGas6) was administered intracerebroventricularly 30 min after ICH. Virus-induced knockdown of Axl or R428 (a selective inhibitor of Axl) treatment was administrated before ICH induction to investigate the protective mechanisms. Molecular changes were assessed using western blot, enzyme-linked immunosorbent assay and immunohistochemistry. Coronal brain slices, brain water content and neurobehavioral tests were employed to evaluate histological and neurofunctional outcomes, respectively. Primary glia cultures and erythrophagocytosis assays were applied for mechanistic studies. RESULTS The expression of Axl increased at 12 h after ICH, peaking on day 3. Gas6 expression did not remarkably changed until day 3 post-ICH. Early administration of rmGas6 following ICH significantly reduced hematoma volume, mitigated brain edema, and restored neurological function. Both Axl-knockdown and Axl inhibitor treatment abolished the neuroprotection of exogenous Gas6 in ICH. In vitro studies demonstrated that microglia exhibited higher capacity for phagocytosing eryptotic erythrocytes compared to normal erythrocytes, a process reversed by blocking the externalized phosphatidylserine on eryptotic erythrocytes. The erythrophagocytosis by microglia was Axl-mediated and Gas6-dependent. Augmentation of Gas6/Axl signaling attenuated neuroinflammation and drove microglia towards pro-resolving phenotype. CONCLUSIONS This study demonstrated the beneficial effects of recombinant Gas6 on hematoma resolution, alleviation of neuroinflammation, and neurofunctional recovery in an animal model of ICH. These effects were primarily mediated by the phagocytotic role of Axl expressed on microglia.
Collapse
Affiliation(s)
- Xiang-Hua Ye
- Department of Rehabilitation, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhi-Ming Xu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Dan Shen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yu-Jia Jin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jia-Wen Li
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xu-Hua Xu
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Lu-Sha Tong
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Feng Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
7
|
Alghareeb SA, Alsughayyir J, Alfhili MA. Exposure to 2,4-Dichlorophenoxyacetic acid stimulates the calcium/ROS/CK1α pathway to trigger Hemolysis and Eryptosis in red blood cells. Toxicol Res (Camb) 2024; 13:tfae196. [PMID: 39600690 PMCID: PMC11586457 DOI: 10.1093/toxres/tfae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/08/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Objective The agricultural herbicide 2,4-dichlorophenoxyacetic (2,4-D) is cytotoxic to human red blood cells (RBCs) by virtue of oxidative hemolysis. Nevertheless, there remains a great paucity of literature detailing the mechanisms by which 2,4-D triggers hemolysis. Also, the eryptotic effects of 2,4-D has thus far been largely overlooked. This study aims to expand current understanding of the cytotoxic properties of 2,4-D in RBCs. Methods Cells were exposed to 2,4-D ranging from 100 to 1,000 μM for 24 h at 37 °C under varied experimental conditions. Hemolysis, LDH, AST, and AChE activities were photometrically measured. Flow cytometry assessed eryptotic markers including cell volume by forward scatter (FSC), phosphatidylserine (PS) externalization by annexin-V positivity, reactive oxygen species by H2DCFDA, and intracellular Ca2+ levels by Fluo4/AM. Results 2,4-D induced Ca2+-independent, concentration-responsive hemolysis paralleled by increased LDH, AST, and K+ in the supernatant, which was significantly blunted by D4476, isosmotic urea, sucrose, and polyethylene glycol 8,000 (PEG). Notably, 2,4-D caused a significant increase in cells positive for annexin-V-FITC, DCF, and Fluo4 with a concomitant decrease in AChE activity and FSC following KCl release. Furthermore, lymphocytes and reticulocytes were sensitive to 2,4-D within a whole blood milieu. Conclusion This work introduces novel cytotoxic mechanisms of 2,4-D in RBCs and reveals its pro-eryptotic effects. 2,4-D toxicity is neutralized by blockade of casein kinase 1α signaling and the presence of urea, sucrose, and PEG. These findings have significant implications for public health and inform future health risk assessments to develop novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Sumiah A Alghareeb
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, King Khalid Road, Riyadh 12372, Saudi Arabia
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, King Khalid Road, Riyadh 12372, Saudi Arabia
| | - Mohammad A Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, King Khalid Road, Riyadh 12372, Saudi Arabia
| |
Collapse
|
8
|
Zhang LG, Ma XJ, Li XY. Case report: Roxadustat overdose in an anemia patient of chronic kidney disease: insight beyond insignificant consequence. FRONTIERS IN NEPHROLOGY 2024; 4:1413496. [PMID: 39155928 PMCID: PMC11327132 DOI: 10.3389/fneph.2024.1413496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024]
Abstract
A 71-year-old man with a 20-year history of grade 3 hypertension experienced kidney dysfunction 2 years earlier. His serum creatinine (SCr) at the time was 140 μmol/L [with estimated glomerular filtration rate (eGFR) of 43.9 ml/min per 1.73m2], for which he received irbesartan since. At initial presentation, the spot urine dipstick protein was 1+, with an albumin-to-creatinine ratio of 230 mg/g (0-30) and normal urine sediments. The SCr was 176 μmol/L (eGFR = 32.8 ml/min per 1.73m2). The hemoglobulin (Hb) level decreased from 102 to 96 g/L despite oral ferrous succinate 100 mg twice daily starting 2 months ago. Roxadustat (ROXA) 50 mg (body weight, 70 kg) three times weekly was then prescribed. Unfortunately, the patient mistakenly took the drug at 50 mg three times a day (i.e., 1,050 mg instead of the intended 150 mg per week), which was 3.5 times the recommended starting dose for non-dialysis-dependent chronic kidney disease (CKD) patients (100 mg three times weekly for body weight >60 kg) and two times the highest drug manual-recommended weekly dose (2.5 mg/kg three times weekly) approved in the country. When the attending nephrologist discovered the misuse 1 month later, the patient reported no apparent discomfort, and his home blood pressure was in the range 110-130/60-80 mmHg. Repeat blood tests showed that the Hb increased from 96 to 163 g/L and the SCr from 199 to 201 μmol/L in a month. The serum alanine transaminase (ALT) remained within the normal range (from 12 U/L at baseline to 20 U/L), while the serum total and indirect bilirubin levels were slightly elevated. ROXA was withheld immediately. In 30 days, the serum bilirubin returned to baseline, but the Hb decreased from 163 to 140 g/L, and then to 108 g/L after 3 months. On the other hand, the SCr increased from 179 to 203 μmol/L. At 9 months after the initial dosing, when the SCr increased to 256 μmol/L and the Hb decreased to 94 g/L again, ROXA 50 mg three times weekly was reinitiated uneventfully. Herein, by introducing a case who erroneously consumed twice the highest recommended dose of ROXA for a month, but had apparently no obvious discomfort or unfavorable consequence, we attempt to provide a brief overview of the mechanism of action, characteristics, drug metabolism, and side effect profile associated with this agent.
Collapse
Affiliation(s)
| | | | - Xiang-Yang Li
- Department of Nephrology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
9
|
Jia G, Wang J, Wang H, Hu X, Long F, Yuan C, Liang C, Wang F. New insights into red blood cells in tumor precision diagnosis and treatment. NANOSCALE 2024; 16:11863-11878. [PMID: 38841898 DOI: 10.1039/d4nr01454e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Red blood cells (RBCs), which function as material transporters in organisms, are rich in materials that are exchanged with metabolically active tumor cells. Recent studies have demonstrated that tumor cells can regulate biological changes in RBCs, including influencing differentiation, maturation, and morphology. RBCs play an important role in tumor development and immune regulation. Notably, the novel scientific finding that RBCs absorb fragments of tumor-carrying DNA overturns the conventional wisdom that RBCs do not contain nucleic acids. RBC membranes are excellent biomimetic materials with significant advantages in terms of their biocompatibility, non-immunogenicity, non-specific adsorption resistance, and biodegradability. Therefore, RBCs provide a new research perspective for the development of tumor liquid biopsies, molecular imaging, drug delivery, and other tumor precision diagnosis and treatment technologies.
Collapse
Affiliation(s)
- Gaihua Jia
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Jun Wang
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China.
| | - Hu Wang
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Xin Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Fei Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China.
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Chen Liang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
10
|
Abstract
Eryptosis is a regulated cell death (RCD) of mature erythrocytes initially described as a counterpart of apoptosis for enucleated cells. However, over the recent years, a growing number of studies have emphasized certain differences between both cell death modalities. In this review paper, we underline the hallmarks of eryptosis and apoptosis and highlight resemblances and dissimilarities between both RCDs. We summarize and critically discuss differences in the impact of caspase-3, Ca2+ signaling, ROS signaling pathways, opposing roles of casein kinase 1α, protein kinase C, Janus kinase 3, cyclin-dependent kinase 4, and AMP-activated protein kinase to highlight a certain degree of divergence between apoptosis and eryptosis. This review emphasizes the crucial importance of further studies that focus on deepening our knowledge of cell death machinery and identifying novel differences between cell death of nucleated and enucleated cells. This might provide evidence that erythrocytes can be defined as viable entities capable of programmed cell destruction. Additionally, the revealed cell type-specific patterns in cell death can facilitate the development of cell death-modulating therapeutic agents.
Collapse
Affiliation(s)
- Anton Tkachenko
- 1st Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic.
| |
Collapse
|
11
|
Jin T, Fei M, Luo S, Wang H. Piezo1 as a potential player in intracranial hemorrhage: from perspectives on biomechanics and hematoma metabolism. J Biomed Res 2024; 38:1-12. [PMID: 38808569 PMCID: PMC11461532 DOI: 10.7555/jbr.37.20230241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 05/30/2024] Open
Abstract
Intracranial hemorrhage (ICH) causes numerous neurological deficits and deaths worldwide each year, leaving a significant health burden on the public. The pathophysiology of ICH is complicated, and involves both primary and secondary injury. Hematoma, as the prime pathology of ICH, undergoes metabolism and triggers biochemical and biomechanical alterations in the brain, leading to secondary injury. Past endeavors mainly aimed at biochemical-initiated mechanisms for causing secondary injury have made limited progress in recent years, although ICH itself is also highly biomechanics-related. The discovery of the mechanical-activated cation channel Piezo1 provides a new avenue to further explore underlying mechanisms of secondary injury. The current article reviews the structure and gating mechanisms of Piezo1, its roles in the physiology/pathophysiology of neurons, astrocytes, microglia, and bone-marrow-derived macrophages, and especially its roles in erythrocytic turnover and iron metabolism, revealing a potential interplay between the biomechanics and biochemistry of hematoma in ICH. Collectively, these advances provide deeper insights into the secondary injury of ICH and lay the foundations for future research.
Collapse
Affiliation(s)
- Tianle Jin
- Department of Neurosurgery, Nanjing BenQ Medical Center, the Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu 210019, China
| | - Maoxing Fei
- Department of Neurosurgery, Nanjing Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Shiqiao Luo
- Department of Neurosurgery, the Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, Jiangsu 210002, China
| | - Handong Wang
- Department of Neurosurgery, Nanjing BenQ Medical Center, the Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu 210019, China
| |
Collapse
|
12
|
Nakayama Y, Masuda Y, Mukae T, Mikami T, Shimizu R, Kondo N, Kitagawa H, Itoh N, Konishi M. A secretory protein neudesin regulates splenic red pulp macrophages in erythrophagocytosis and iron recycling. Commun Biol 2024; 7:129. [PMID: 38272969 PMCID: PMC10811329 DOI: 10.1038/s42003-024-05802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
Neudesin, originally identified as a neurotrophic factor, has primarily been studied for its neural functions despite its widespread expression. Using 8-week-old neudesin knockout mice, we elucidated the role of neudesin in the spleen. The absence of neudesin caused mild splenomegaly, shortened lifespan of circulating erythrocytes, and abnormal recovery from phenylhydrazine-induced acute anemia. Blood cross-transfusion and splenectomy experiments revealed that the shortened lifespan of erythrocytes was attributable to splenic impairment. Further analysis revealed increased erythrophagocytosis and decreased iron stores in the splenic red pulp, which was linked to the upregulation of Fcγ receptors and iron-recycling genes in neudesin-deficient macrophages. In vitro analysis confirmed that neudesin suppressed erythrophagocytosis and expression of Fcγ receptors through ERK1/2 activation in heme-stimulated macrophages. Finally, we observed that 24-week-old neudesin knockout mice exhibited severe symptoms of anemia. Collectively, our results suggest that neudesin regulates the function of red pulp macrophages and contributes to erythrocyte and iron homeostasis.
Collapse
Affiliation(s)
- Yoshiaki Nakayama
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Yuki Masuda
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Takehiro Mukae
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Tadahisa Mikami
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Ryohei Shimizu
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Naoto Kondo
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Science, Kyoto, Japan
| | - Morichika Konishi
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan.
| |
Collapse
|
13
|
Dehghan S, Kheshtchin N, Hassannezhad S, Soleimani M. Cell death classification: A new insight based on molecular mechanisms. Exp Cell Res 2023; 433:113860. [PMID: 38013091 DOI: 10.1016/j.yexcr.2023.113860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Cells tend to disintegrate themselves or are forced to undergo such destructive processes in critical circumstances. This complex cellular function necessitates various mechanisms and molecular pathways in order to be executed. The very nature of cell death is essentially important and vital for maintaining homeostasis, thus any type of disturbing occurrence might lead to different sorts of diseases and dysfunctions. Cell death has various modalities and yet, every now and then, a new type of this elegant procedure gets to be discovered. The diversity of cell death compels the need for a universal organizing system in order to facilitate further studies, therapeutic strategies and the invention of new methods of research. Considering all that, we attempted to review most of the known cell death mechanisms and sort them all into one arranging system that operates under a simple but subtle decision-making (If \ Else) order as a sorting algorithm, in which it decides to place and sort an input data (a type of cell death) into its proper set, then a subset and finally a group of cell death. By proposing this algorithm, the authors hope it may solve the problems regarding newer and/or undiscovered types of cell death and facilitate research and therapeutic applications of cell death.
Collapse
Affiliation(s)
- Sepehr Dehghan
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nasim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Kondratov KA, Artamonov AA, Mikhailovskii VY, Velmiskina AA, Mosenko SV, Grigoryev EA, Anisenkova AY, Nikitin YV, Apalko SV, Sushentseva NN, Ivanov AM, Scherbak SG. SARS-CoV-2 Impact on Red Blood Cell Morphology. Biomedicines 2023; 11:2902. [PMID: 38001903 PMCID: PMC10669871 DOI: 10.3390/biomedicines11112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Severe COVID-19 alters the biochemical and morphological characteristics of blood cells in a wide variety of ways. To date, however, the vast majority of research has been devoted to the study of leukocytes, while erythrocyte morphological changes have received significantly less attention. The aim of this research was to identify erythrocyte morphology abnormalities that occur in COVID-19, compare the number of different poikilocyte types, and measure erythrocyte sizes to provide data on size dispersion. Red blood cells obtained from 6 control donors (800-2200 cells per donor) and 5 COVID-19 patients (800-1900 cells per patient) were examined using low-voltage scanning electron microscopy. We did not discover any forms of erythrocyte morphology abnormalities that would be specific to COVID-19. Among COVID-19 patients, we observed an increase in the number of acanthocytes (p = 0.01) and a decrease in the number of spherocytes (p = 0.03). In addition, our research demonstrates that COVID-19 causes an increase in the median (p = 0.004) and interquartile range (p = 0.009) when assessing erythrocyte size. The limitation of our study is a small number of participants.
Collapse
Affiliation(s)
- Kirill A. Kondratov
- City Hospital No. 40, St. Petersburg 197706, Russia
- S. M. Kirov Military Medical Academy, St. Petersburg 194044, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | | | | | - Anastasiya A. Velmiskina
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | - Sergey V. Mosenko
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | | | - Anna Yu. Anisenkova
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | - Yuri V. Nikitin
- S. M. Kirov Military Medical Academy, St. Petersburg 194044, Russia
| | - Svetlana V. Apalko
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | | | - Andrey M. Ivanov
- S. M. Kirov Military Medical Academy, St. Petersburg 194044, Russia
| | - Sergey G. Scherbak
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
15
|
Shevchenko JA, Nazarov KV, Alshevskaya AA, Sennikov SV. Erythroid Cells as Full Participants in the Tumor Microenvironment. Int J Mol Sci 2023; 24:15141. [PMID: 37894821 PMCID: PMC10606658 DOI: 10.3390/ijms242015141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The tumor microenvironment is an important factor that can determine the success or failure of antitumor therapy. Cells of hematopoietic origin are one of the most important mediators of the tumor-host interaction and, depending on the cell type and functional state, exert pro- or antitumor effects in the tumor microenvironment or in adjacent tissues. Erythroid cells can be full members of the tumor microenvironment and exhibit immunoregulatory properties. Tumor growth is accompanied by the need to obtain growth factors and oxygen, which stimulates the appearance of the foci of extramedullary erythropoiesis. Tumor cells create conditions to maintain the long-term proliferation and viability of erythroid cells. In turn, tumor erythroid cells have a number of mechanisms to suppress the antitumor immune response. This review considers current data on the existence of erythroid cells in the tumor microenvironment, formation of angiogenic clusters, and creation of optimal conditions for tumor growth. Despite being the most important life-support function of the body, erythroid cells support tumor growth and do not work against it. The study of various signaling mechanisms linking tumor growth with the mobilization of erythroid cells and the phenotypic and functional differences between erythroid cells of different origin allows us to identify potential targets for immunotherapy.
Collapse
Affiliation(s)
- Julia A. Shevchenko
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (J.A.S.); (K.V.N.)
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution, Ministry of Health of the Russian Federation, Higher Education I.M. Sechenov First Moscow State Medical University, Sechenov University, 119048 Moscow, Russia;
| | - Kirill V. Nazarov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (J.A.S.); (K.V.N.)
| | - Alina A. Alshevskaya
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution, Ministry of Health of the Russian Federation, Higher Education I.M. Sechenov First Moscow State Medical University, Sechenov University, 119048 Moscow, Russia;
| | - Sergey V. Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (J.A.S.); (K.V.N.)
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution, Ministry of Health of the Russian Federation, Higher Education I.M. Sechenov First Moscow State Medical University, Sechenov University, 119048 Moscow, Russia;
| |
Collapse
|
16
|
Zhao B, Yang X, Li W, Zhu H, Meng Q, Ma Y, Liu Y, Zhou Y, Lin J, Zhai C, Zhao L, Sun J, Wang R. Effect of roxadustat on red blood cell lifespan in patients with long-term haemodialysis: a single-centre, prospective, single-arm study. Clin Kidney J 2023; 16:1500-1507. [PMID: 37664567 PMCID: PMC10469108 DOI: 10.1093/ckj/sfad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Indexed: 09/05/2023] Open
Abstract
Background Reduced survival of red blood cells (RBCs) in patients with chronic kidney disease (CKD) is thought to contribute to renal anaemia. Although renal anaemia improved greatly because of the wide use of erythropoiesis-stimulating agents (ESAs) and the advancement of dialysis techniques, RBC longevity seems not to be obviously ameliorated. Methods In this single-centre, single-arm trial, patients who had been undergoing haemodialysis and ESA therapy with epoetin alfa for at least 12 weeks changed their anti-anaemia drugs from epoetin alfa to oral roxadustat three times per week for 24 weeks. The primary endpoint was the change in RBC lifespan from baseline at week 24. The change in the circulating percentage of eryptotic RBCs, RBC deformability and RBC oxygen transport ability were also assessed. Results A total of 27 patients were enrolled, with 26 completing the full course of intervention. At baseline, the average RBC lifespan was 60.1 days [standard deviation (SD) 14.4; n = 27]. At the end of the study period, 26 patients had an RBC lifespan measurement (83.9 days on average; SD 21.9). The RBC lifespan increased by 22.8 days on average [95% confidence interval (CI) 15.5-30.0, P < .001]. This equated to an average RBC lifespan increase of 39.2% (95% CI 27.8-50.6). The percentage of circulating eryptotic RBCs, erythrocyte filtration index and the pressure at which haemoglobin is 50% saturated decreased significantly from baseline to week 24 (1.39 ± 0.44% versus 0.89 ± 0.25%, P < .0001; 0.29 ± 0.12 versus 0.16 ± 0.08, P < .0001 and 32.54 ± 4.83 versus 28.40 ± 2.29, P < .001, respectively). Conclusion Roxadustat prolonged RBC lifespan in patients with long-term haemodialysis.
Collapse
Affiliation(s)
- Bing Zhao
- Department of Nephrology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaowei Yang
- Department of Nephrology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Weidan Li
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People's Liberation Army, Beijing, China
| | - Huizi Zhu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qian Meng
- Department of Nephrology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yongjian Ma
- Guangdong Breath Test Engineering and Technology Research Center, Shenzhen University, Shenzhen, China
| | - Yun Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Zhou
- Department of Nephrology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jiangong Lin
- Department of Nephrology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunjuan Zhai
- Department of Cardiology Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lian Zhao
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People's Liberation Army, Beijing, China
| | - Jing Sun
- Department of Nephrology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
17
|
Williams A, Bissinger R, Shamaa H, Patel S, Bourne L, Artunc F, Qadri SM. Pathophysiology of Red Blood Cell Dysfunction in Diabetes and Its Complications. PATHOPHYSIOLOGY 2023; 30:327-345. [PMID: 37606388 PMCID: PMC10443300 DOI: 10.3390/pathophysiology30030026] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
Diabetes Mellitus (DM) is a complex metabolic disorder associated with multiple microvascular complications leading to nephropathy, retinopathy, and neuropathy. Mounting evidence suggests that red blood cell (RBC) alterations are both a cause and consequence of disturbances related to DM-associated complications. Importantly, a significant proportion of DM patients develop varying degrees of anemia of confounding etiology, leading to increased morbidity. In chronic hyperglycemia, RBCs display morphological, enzymatic, and biophysical changes, which in turn prime them for swift phagocytic clearance from circulation. A multitude of endogenous factors, such as oxidative and dicarbonyl stress, uremic toxins, extracellular hypertonicity, sorbitol accumulation, and deranged nitric oxide metabolism, have been implicated in pathological RBC changes in DM. This review collates clinical laboratory findings of changes in hematology indices in DM patients and discusses recent reports on the putative mechanisms underpinning shortened RBC survival and disturbed cell membrane architecture within the diabetic milieu. Specifically, RBC cell death signaling, RBC metabolism, procoagulant RBC phenotype, RBC-triggered endothelial cell dysfunction, and changes in RBC deformability and aggregation in the context of DM are discussed. Understanding the mechanisms of RBC alterations in DM provides valuable insights into the clinical significance of the crosstalk between RBCs and microangiopathy in DM.
Collapse
Affiliation(s)
- Alyssa Williams
- Faculty of Science, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Rosi Bissinger
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Hala Shamaa
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| | - Shivani Patel
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| | - Lavern Bourne
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| | - Ferruh Artunc
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research at the University of Tübingen, 72076 Tübingen, Germany
| | - Syed M. Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| |
Collapse
|
18
|
Ewendt F, Schmitt M, Kluttig A, Kühn J, Hirche F, Kraus FB, Ludwig-Kraus B, Mikolajczyk R, Wätjen W, Bürkner PC, Föller M, Stangl GI. Association between vitamin D status and eryptosis-results from the German National Cohort Study. Ann Hematol 2023; 102:1351-1361. [PMID: 37121914 PMCID: PMC10149638 DOI: 10.1007/s00277-023-05239-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/16/2023] [Indexed: 05/02/2023]
Abstract
Vitamin D, besides its classical effect on mineral homeostasis and bone remodeling, can also modulate apoptosis. A special form of apoptosis termed eryptosis appears in erythrocytes. Eryptosis is characterized by cell shrinkage, membrane blebbing, and cell membrane phospholipid disorganization and associated with diseases such as sepsis, malaria or iron deficiency, and impaired microcirculation. To our knowledge, this is the first study that linked vitamin D with eryptosis in humans. This exploratory cross-sectional trial investigated the association between the vitamin D status assessed by the concentration of plasma 25-hydroxyvitamin D (25(OH)D) and eryptosis. Plasma 25(OH)D was analyzed by LC-MS/MS, and eryptosis was estimated from annexin V-FITC-binding erythrocytes by FACS analysis in 2074 blood samples from participants of the German National Cohort Study. We observed a weak but clear correlation between low vitamin D status and increased eryptosis (r = - 0.15; 95% CI [- 0.19, - 0.10]). There were no differences in plasma concentrations of 25(OH)D and eryptosis between male and female subjects. This finding raises questions of the importance of vitamin D status for eryptosis in terms of increased risk for anemia or cardiovascular events.
Collapse
Affiliation(s)
- Franz Ewendt
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Marvin Schmitt
- Cluster of Excellence SimTech, University of Stuttgart, 70569, Stuttgart, Germany
| | - Alexander Kluttig
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Medical Faculty of the Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Julia Kühn
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Frank Hirche
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Frank B Kraus
- Central Laboratory, Department of Laboratory Medicine, University Hospital Halle, 06120, Halle (Saale), Germany
| | - Beatrice Ludwig-Kraus
- Central Laboratory, Department of Laboratory Medicine, University Hospital Halle, 06120, Halle (Saale), Germany
| | - Rafael Mikolajczyk
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Medical Faculty of the Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Wim Wätjen
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | | | - Michael Föller
- Department of Physiology, University of Hohenheim, 70599, Stuttgart, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| |
Collapse
|
19
|
Tkachenko A, Onishchenko A, Myasoedov V, Yefimova S, Havranek O. Assessing regulated cell death modalities as an efficient tool for in vitro nanotoxicity screening: a review. Nanotoxicology 2023; 17:218-248. [PMID: 37083543 DOI: 10.1080/17435390.2023.2203239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Nanomedicine is a fast-growing field of nanotechnology. One of the major obstacles for a wider use of nanomaterials for medical application is the lack of standardized toxicity screening protocols for assessing the safety of newly synthesized nanomaterials. In this review, we focus on less frequently studied nanomaterials-induced regulated cell death (RCD) modalities, including eryptosis, necroptosis, pyroptosis, and ferroptosis, as a tool for in vitro nanomaterials safety evaluation. We summarize the latest insights into the mechanisms that mediate these RCDs in response to nanomaterials exposure. Comprehensive data from reviewed studies suggest that ROS (reactive oxygen species) overproduction and ROS-mediated pathways play a central role in nanomaterials-induced RCDs activation. On the other hand, studies also suggest that individual properties of nanomaterials, including size, shape, or surface charge, could determine specific toxicity pathways with consequent RCD induction as well. We anticipate that the evaluation of RCDs can become one of the mechanism-based screening methods in nanotoxicology. In addition to the toxicity assessment, evaluation of necroptosis-, pyroptosis-, and ferroptosis-promoting capacity of nanomaterials could simultaneously provide useful information for specific medical applications as could be their anti-tumor potential. Moreover, a detailed understanding of molecular mechanisms driving nanomaterials-mediated induction of immunogenic RCDs will substantially aid novel anti-tumor nanodrugs development.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Valeriy Myasoedov
- Department of Medical Biology, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Svetlana Yefimova
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Hematology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
20
|
Jemaà M, Mokdad Gargouri R, Lang F. Polo-like kinase inhibitor BI2536 induces eryptosis. Wien Med Wochenschr 2023; 173:152-157. [PMID: 36178637 DOI: 10.1007/s10354-022-00966-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
BI2536 is potent inhibitor of polo-like kinases PLK1, 2, and 3. The inhibition of PLKs in nucleated cells induces apoptosis by perturbing the cell cycle with consequent engagement of mitotic catastrophe. BI2536 is being tested as chemotherapy in various phase I/II/III clinical trials. Erythrocytes do not have a nucleus; however, they may undergo programmed suicide with characteristic hallmarks including cell shrinkage and phosphatidylserine translocation to the cell surface. This particular death is baptized eryptosis. Our study explored whether BI2536 induces eryptosis. We used flow cytometry to access death in red blood cells. We analyzed the cellular volume, the intracellular calcium concentration, the cell surface phosphatidylserine exposure, and the ceramide abundance. In addition, we analyzed the effect of BI2536 on hemolysis. Our investigation showed that after 48 h of incubation with PLK inhibitor BI2536, erythrocytes lost volume and were positive for annexin‑V without any effect on hemolysis. Cells also showed an abundance of ceramide and an increase of intracellular calcium. All these finding suggest that BI2536 provokes eryptosis in red blood cells, ostensibly in part due to Ca2+ entry and ceramide accumulation.
Collapse
Affiliation(s)
- Mohamed Jemaà
- Laboratory of Molecular Biotechnology of Eukaryotes, Sfax Biotechnology Centre, Sfax University, Sfax, Tunisia.
| | - Raja Mokdad Gargouri
- Laboratory of Molecular Biotechnology of Eukaryotes, Sfax Biotechnology Centre, Sfax University, Sfax, Tunisia
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Moisa E, Dutu M, Corneci D, Grintescu IM, Negoita S. Hematological Parameters and Procalcitonin as Discriminants between Bacterial Pneumonia-Induced Sepsis and Viral Sepsis Secondary to COVID-19: A Retrospective Single-Center Analysis. Int J Mol Sci 2023; 24:ijms24065146. [PMID: 36982221 PMCID: PMC10049727 DOI: 10.3390/ijms24065146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Bacterial and viral sepsis induce alterations of all hematological parameters and procalcitonin is used as a biomarker of infection and disease severity. Our aim was to study the hematological patterns associated with pulmonary sepsis triggered by bacteria and Severe Acute Respiratory Syndrome-Coronavirus-type-2 (SARS-CoV-2) and to identify the discriminants between them. We performed a retrospective, observational study including 124 patients with bacterial sepsis and 138 patients with viral sepsis. Discriminative ability of hematological parameters and procalcitonin between sepsis types was tested using receiver operating characteristic (ROC) analysis. Sensitivity (Sn%), specificity (Sp%), positive and negative likelihood ratios were calculated for the identified cut-off values. Patients with bacterial sepsis were older than patients with viral sepsis (p < 0.001), with no differences regarding gender. Subsequently to ROC analysis, procalcitonin had excellent discriminative ability for bacterial sepsis diagnosis with an area under the curve (AUC) of 0.92 (cut-off value of >1.49 ng/mL; Sn = 76.6%, Sp = 94.2%), followed by RDW% with an AUC = 0.87 (cut-off value >14.8%; Sn = 80.7%, Sp = 85.5%). Leukocytes, monocytes and neutrophils had good discriminative ability with AUCs between 0.76-0.78 (p < 0.001), while other hematological parameters had fair or no discriminative ability. Lastly, procalcitonin value was strongly correlated with disease severity in both types of sepsis (p < 0.001). Procalcitonin and RDW% had the best discriminative ability between bacterial and viral sepsis, followed by leukocytes, monocytes and neutrophils. Procalcitonin is a marker of disease severity regardless of sepsis type.
Collapse
Affiliation(s)
- Emanuel Moisa
- Department of Anaesthesia and Intensive Care Medicine, Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Clinic of Anaesthesia and Intensive Care Medicine, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Madalina Dutu
- Department of Anaesthesia and Intensive Care Medicine, Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Clinic of Anaesthesia and Intensive Care Medicine, Dr. Carol Davila Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Dan Corneci
- Department of Anaesthesia and Intensive Care Medicine, Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Clinic of Anaesthesia and Intensive Care Medicine, Dr. Carol Davila Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Ioana Marina Grintescu
- Department of Anaesthesia and Intensive Care Medicine, Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Clinic of Anaesthesia and Intensive Care Medicine, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Silvius Negoita
- Department of Anaesthesia and Intensive Care Medicine, Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Clinic of Anaesthesia and Intensive Care Medicine, Elias University Emergency Hospital, 011461 Bucharest, Romania
| |
Collapse
|
22
|
Molecular Mechanisms and Pathophysiological Significance of Eryptosis. Int J Mol Sci 2023; 24:ijms24065079. [PMID: 36982153 PMCID: PMC10049269 DOI: 10.3390/ijms24065079] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Despite lacking the central apoptotic machinery, senescent or damaged RBCs can undergo an unusual apoptosis-like cell death, termed eryptosis. This premature death can be caused by, or a symptom of, a wide range of diseases. However, various adverse conditions, xenobiotics, and endogenous mediators have also been recognized as triggers and inhibitors of eryptosis. Eukaryotic RBCs are unique among their cell membrane distribution of phospholipids. The change in the RBC membrane composition of the outer leaflet occurs in a variety of diseases, including sickle cell disease, renal diseases, leukemia, Parkinson’s disease, and diabetes. Eryptotic erythrocytes exhibit various morphological alterations such as shrinkage, swelling, and increased granulation. Biochemical changes include cytosolic Ca2+ increase, oxidative stress, stimulation of caspases, metabolic exhaustion, and ceramide accumulation. Eryptosis is an effective mechanism for the elimination of dysfunctional erythrocytes due to senescence, infection, or injury to prevent hemolysis. Nevertheless, excessive eryptosis is associated with multiple pathologies, most notably anemia, abnormal microcirculation, and prothrombotic risk; all of which contribute to the pathogenesis of several diseases. In this review, we provide an overview of the molecular mechanisms, physiological and pathophysiological relevance of eryptosis, as well as the potential role of natural and synthetic compounds in modulating RBC survival and death.
Collapse
|
23
|
Restivo I, Attanzio A, Tesoriere L, Allegra M, Garcia-Llatas G, Cilla A. A Mixture of Dietary Plant Sterols at Nutritional Relevant Serum Concentration Inhibits Extrinsic Pathway of Eryptosis Induced by Cigarette Smoke Extract. Int J Mol Sci 2023; 24:ijms24021264. [PMID: 36674779 PMCID: PMC9861561 DOI: 10.3390/ijms24021264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Cell death program of red blood cells (RBCs), called eryptosis, is characterized by activation of caspases and scrambling of membrane phospholipids with externalization of phosphatidylserine (PS). Excessive eryptosis confers a procoagulant phenotype and is implicated in impairment of microcirculation and increased prothrombotic risk. It has recently been reported that cigarette smokers have high levels of circulating eryptotic erythrocytes, and a possible contribution of eryptosis to the vaso-occlusive complications associated to cigarette smoke has been postulated. In this study, we demonstrate how a mixture of plant sterols (MPtS) consisting of β-sitosterol, campesterol and stigmasterol, at serum concentration reached after ingestion of a drink enriched with plant sterols, inhibits eryptosis induced by cigarette smoke extract (CSE). Isolated RBCs were exposed for 4 h to CSE (10-20% v/v). When RBCs were co-treated with CSE in the presence of 22 µM MPtS, a significant reduction of the measured hallmarks of apoptotic death like assembly of the death-inducing signaling complex (DISC), PS outsourced, ceramide production, cleaved forms of caspase 8/caspase 3, and phosphorylated p38 MAPK, was evident. The new beneficial properties of plant sterols on CSE-induced eryptosis presented in this work open new perspectives to prevent the negative physio-pathological events caused by the eryptotic red blood cells circulating in smokers.
Collapse
Affiliation(s)
- Ignazio Restivo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy
- Correspondence: ; Tel.: +39-091-2386-2434
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy
| | - Mario Allegra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy
| | - Guadalupe Garcia-Llatas
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| |
Collapse
|
24
|
Song P, Cai YC, Chen MX, Chen SH, Chen JX. Enhanced phosphatidylserine exposure and erythropoiesis in Babesia microti-infected mice. Front Microbiol 2023; 13:1083467. [PMID: 36687590 PMCID: PMC9846230 DOI: 10.3389/fmicb.2022.1083467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/08/2022] [Indexed: 12/02/2023] Open
Abstract
INTRODUCTION Babesia microti (B. microti) is the dominant species responsible for human babesiosis, which is associated with severe hemolytic anemia and splenomegaly because it infects mammalian erythrocytes. The actual prevalence of B. microti is thought to have been substantially underestimated. METHODS In this study, Bagg's albino/c (BALB/c) mice were intraperitoneally injected with B. microti-infected erythrocytes, and parasitemia was subsequently measured by calculating the proportion of infected erythrocytes. The ultrastructure of infected erythrocytes was observed using scanning and transmission electron microscopes. Quantifying phosphatidylserine (PS) exposure, oxidative stress, intracellular Ca2+, and erythropoiesis of erythrocytes were done using flow cytometry. The physiological indicators were analyzed using a Mindray BC-5000 Vet automatic hematology analyzer. RESULTS Of note, 40.7 ± 5.9% of erythrocytes changed their structure and shrunk in the B. microti-infected group. The percentage of annexin V-positive erythrocytes and the levels of reactive oxygen species (ROS) in the erythrocytes were higher in the B. microti-infected group than in the control group at 10 dpi. Significant splenomegaly and severe anemia were also observed following B. microti infection. The parasitemia level in the B. microti-infected splenectomized group was higher than that of the B. microti-infected sham group. The population of early erythroblasts increased, and the late erythroblasts decreased in both the bone marrow and spleen tissues of the B. microti-infected group at 10 dpi. DISCUSSION PS exposure and elevated ROS activities were hallmarks of eryptosis in the B. microti-infected group. This study revealed for the first time that B. microti could also induce eryptosis. At the higher parasitemia phase, the occurrence of severe anemia and significant changes in the abundance of erythroblasts in B. microti-infected mice group were established. The spleen plays a critical protective role in controlling B. microti infection and preventing anemia. B. microti infection could cause a massive loss of late erythroblasts and induce erythropoiesis.
Collapse
Affiliation(s)
- Peng Song
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| | - Yu-Chun Cai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Mu-Xin Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| | - Shao-Hong Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| |
Collapse
|
25
|
Qadri SM, Liu Y, Barty RL, Heddle NM, Sheffield WP. A positive blood culture is associated with a lower haemoglobin increment in hospitalized patients after red blood cell transfusion. Vox Sang 2023; 118:33-40. [PMID: 36125492 DOI: 10.1111/vox.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND OBJECTIVES Abundant clinical evidence supports the safety of red blood cell (RBC) concentrates for transfusion irrespective of storage age, but still, less is known about how recipient characteristics may affect post-transfusion RBC recovery and function. Septic patients are frequently transfused. We hypothesized that the recipient environment in patients with septicaemia would blunt the increase in post-transfusion blood haemoglobin (Hb). The main objective was to compare the post-transfusion Hb increment in hospitalized patients with or without a positive blood culture. MATERIALS AND METHODS A retrospective cohort study using data from the Transfusion Research, Utilization, Surveillance, and Tracking database (TRUST) was performed. All adult non-trauma in-patients transfused between 2010 and 2017 with ≥1 RBC unit, and for whom both pre- and post-transfusion complete blood count and pre-transfusion blood culture data were available were included. A general linear model with binary blood culture positivity was fit for continuous Hb increment after transfusion and was adjusted for patient demographic parameters and transfusion-related covariates. RESULTS Among 210,263 admitted patients, 6252 were transfused: 596 had positive cultures, and 5656 had negative blood cultures. A modelled Hb deficit of 1.50 g/L in blood culture-positive patients was found. All covariates had a significant effect on Hb increment, except for the age of the transfused RBC. CONCLUSION Recipient blood culture positivity was associated with a statistically significant but modestly lower post-transfusion Hb increment in hospitalized patients. In isolation, the effect is unlikely to be clinically significant, but it could become so in combination with other recipient characteristics.
Collapse
Affiliation(s)
- Syed M Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, Ontario, Canada
| | - Yang Liu
- Department of Medicine and McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Rebecca L Barty
- Department of Medicine and McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada.,Southwest Region, Ontario Regional Blood Coordinating Network, Hamilton, Ontario, Canada
| | - Nancy M Heddle
- Department of Medicine and McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - William P Sheffield
- Canadian Blood Services, Medical Affairs and Innovation, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
26
|
Tkachenko A, Havránek O. Redox Status of Erythrocytes as an Important Factor in Eryptosis and Erythronecroptosis. Folia Biol (Praha) 2023; 69:116-126. [PMID: 38410969 DOI: 10.14712/fb2023069040116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Overall, reactive oxygen species (ROS) signalling significantly contributes to initiation and mo-dulation of multiple regulated cell death (RCD) pathways. Lately, more information has become available about RCD modalities of erythrocytes, including the role of ROS. ROS accumulation has therefore been increasingly recognized as a critical factor involved in eryptosis (apoptosis of erythrocytes) and erythro-necroptosis (necroptosis of erythrocytes). Eryptosis is a Ca2+-dependent apoptosis-like RCD of erythrocytes that occurs in response to oxidative stress, hyperosmolarity, ATP depletion, and a wide range of xenobiotics. Moreover, eryptosis seems to be involved in the pathogenesis of multiple human diseases and pathological processes. Several studies have reported that erythrocytes can also undergo necroptosis, a lytic RIPK1/RIPK3/MLKL-mediated RCD. As an example, erythronecroptosis can occur in response to CD59-specific pore-forming toxins. We have systematically summarized available studies regarding the involvement of ROS and oxidative stress in these two distinct RCDs of erythrocytes. We have focused specifically on cellular signalling pathways involved in ROS-mediated cell death decisions in erythrocytes. Furthermore, we have summarized dysregulation of related erythrocytic antioxidant defence systems. The general concept of the ROS role in eryptotic and necroptotic cell death pathways in erythrocytes seems to be established. However, further studies are required to uncover the complex role of ROS in the crosstalk and interplay between the survival and RCDs of erythrocytes.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Ondřej Havránek
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.
| |
Collapse
|
27
|
Sharma P, Hans C, Saini R, Sachdeva MU, Khadwal A, Bose P, Das R. Bone marrow erythroblastic dysplasia on morphology correlates significantly with flow cytometric apoptosis and peripheral blood eryptosis. J Microsc Ultrastruct 2023. [DOI: 10.4103/jmau.jmau_97_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
28
|
Cigarette Smoke Extract Induces p38 MAPK-Initiated, Fas-Mediated Eryptosis. Int J Mol Sci 2022; 23:ijms232314730. [PMID: 36499060 PMCID: PMC9738679 DOI: 10.3390/ijms232314730] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Eryptosis is a physiological mechanism for the clearance of senescent or damaged erythrocytes by phagocytes. Excessive eryptosis is stimulated under several pathologies and associated with endothelial injury and thrombosis. Cigarette smoke (CS) is an established risk factor for vascular diseases and cigarette smokers have high-levels of eryptotic erythrocytes. This study, for the first time, investigates the mechanism by which CS damages red blood cells (RBCs). CS extract (CSE) from commercial cigarettes was prepared and standardized for nicotine content. Cytofluorimetric analysis demonstrated that treatment of human RBCs with CSE caused dose-dependent, phosphatidylserine externalization and cell shrinkage, hallmarks of apoptotic death. CSE did not affect cellular levels of Ca2+, reactive oxygen species (ROS) or glutathione (GSH). Immununoprecipitation and immunoblotting revealed the assembly of the death-inducing signaling complex (DISC) and oligomerization of Fas receptor as well as cleaved caspase-8 and caspase-3 within 6 h from the treatment. At the same time-interval, CSE elicited neutral sphyngomielinase (nSMase) activity-dependent ceramide formation and phosphorylation of p38 MAPK. Through specific inhibitors' nSMase, caspase-8 or p38 MAPK activities, we demonstrated that p38 MAPK activation is required for caspase-8-mediated eryptosis and that ceramide generation is initiator caspase-dependent. Finally, ex vivo analysis detected phosphorylated p38 MAPK (p-p38) and Fas-associated signaling complex in erythrocytes from cigarette smokers. In conclusion, our study demonstrates that CSE exposure induces in erythrocytes an extrinsic apoptotic pathway involving p38 MAPK-initiated DISC formation followed by activation of caspase-8/caspase-3 via ceramide formation.
Collapse
|
29
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
30
|
Pereira-Veiga T, Schneegans S, Pantel K, Wikman H. Circulating tumor cell-blood cell crosstalk: Biology and clinical relevance. Cell Rep 2022; 40:111298. [PMID: 36044866 DOI: 10.1016/j.celrep.2022.111298] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/28/2022] [Accepted: 08/09/2022] [Indexed: 01/17/2023] Open
Abstract
Circulating tumor cells (CTCs) are the seeds of distant metastasis, and the number of CTCs detected in the blood of cancer patients is associated with a worse prognosis. CTCs face critical challenges for their survival in circulation, such as anoikis, shearing forces, and immune surveillance. Thus, understanding the mechanisms and interactions of CTCs within the blood microenvironment is crucial for better understanding of metastatic progression and the development of novel treatment strategies. CTCs interact with different hematopoietic cells, such as platelets, red blood cells, neutrophils, macrophages, natural killer (NK) cells, lymphocytes, endothelial cells, and cancer-associated fibroblasts, which can affect CTC survival in blood. This interaction may take place either via direct cell-cell contact or through secreted molecules. Here, we review interactions of CTCs with blood cells and discuss the potential clinical relevance of these interactions as biomarkers or as targets for anti-metastatic therapies.
Collapse
Affiliation(s)
- Thais Pereira-Veiga
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Svenja Schneegans
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
31
|
Phagocytosis of Erythrocytes from Gaucher Patients Induces Phenotypic Modifications in Macrophages, Driving Them toward Gaucher Cells. Int J Mol Sci 2022; 23:ijms23147640. [PMID: 35886988 PMCID: PMC9319206 DOI: 10.3390/ijms23147640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Gaucher disease (GD) is caused by glucocerebrosidase deficiency leading to the accumulation of sphingolipids in macrophages named “Gaucher’s Cells”. These cells are characterized by deregulated expression of cell surface markers, abnormal secretion of inflammatory cytokines, and iron sequestration. These cells are known to infiltrate tissues resulting in hematological manifestations, splenomegaly, and bone diseases. We have already demonstrated that Gaucher red blood cells exhibit altered properties suggesting their key role in GD clinical manifestations. We hypothesized that Gaucher’s erythrocytes could be prone to premature destruction by macrophages contributing to the formation of altered macrophages and Gaucher-like cells. We conducted in vitro experiments of erythrophagocytosis using erythrocytes from Gaucher’s patients or healthy donors. Our results showed an enhanced erythrophagocytosis of Gaucher red blood cells compared to healthy red blood cells, which is related to erythrocyte sphingolipids overload and reduced deformability. Importantly, we showed elevated expression of the antigen-presenting molecules CD1d and MHC-II and of the iron-regulator hepcidin in macrophages, as well as enhanced secretion of the pro-inflammatory cytokine IL-1β after phagocytosis of GD erythrocytes. These results strongly suggested that erythrophagocytosis in GD contribute to phenotypic modifications in macrophages. This present study shows that erythrocytes-macrophages interactions may be crucial in GD pathophysiology and pathogenesis.
Collapse
|
32
|
Soma P, Bester J. Pathophysiological Changes in Erythrocytes Contributing to Complications of Inflammation and Coagulation in COVID-19. Front Physiol 2022; 13:899629. [PMID: 35784888 PMCID: PMC9240594 DOI: 10.3389/fphys.2022.899629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Higher thrombotic burden in the acute phase of COVID-19 relies on a complex interplay between pro-inflammatory cytokine/chemokine release, increased endothelial dysfunction/damage, and potential sepsis-induced coagulopathy development in severe cases, all promoting coagulation activation. Plasma levels of cytokines and chemokines are known to be increased in COVID-19 however, are much higher in severe infections. Increased levels of IL-1β, IL-6, and IL-8 are known to play an important role in both acute and chronic inflammation, resulting in pathological clotting. However, little has been published on the effects of these interleukins on red blood cells (RBCs). Evidence shows that cytokines have a negative effect on the RBCs ultrastructure and introduce signs of eryptosis. Eryptosis can be described as a form of suicidal death of RBCs characterized by distinct findings of cell shrinkage, membrane blebbing, activation of proteases, and phosphatidylserine exposure at the outer membrane leaflet. Red blood cells from COVID-19 patients had increased levels of glycolytic intermediates, accompanied by oxidation and fragmentation of ankyrin, spectrin beta, and the N-terminal cytosolic domain of band 3 (AE1). Significantly altered lipid metabolism was also observed, in particular, short- and medium-chain saturated fatty acids, acyl-carnitines, and sphingolipids. Emerging research suggests that RBCs may contribute to a precision medicine approach to sepsis and have diagnostic value in monitoring complement dysregulation in COVID-19-sepsis and non-COVID sepsis as research indicates that complement activation products and viral antigens are present on RBCs in patients with COVID-19.
Collapse
Affiliation(s)
- Prashilla Soma
- Department of Anatomy, University of Pretoria, Pretoria, South Africa
- *Correspondence: Prashilla Soma,
| | - Janette Bester
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
33
|
Liu J, Chaudhry M, Bai F, Chuang J, Chaudhry H, Al-Astal AEY, Nie Y, Sollars V, Sodhi K, Seligman P, Shapiro JI. Blockage of the Na-K-ATPase signaling-mediated oxidant amplification loop elongates red blood cell half-life and ameliorates uremic anemia induced by 5/6th PNx in C57BL/6 mice. Am J Physiol Renal Physiol 2022; 322:F655-F666. [PMID: 35435001 PMCID: PMC9076417 DOI: 10.1152/ajprenal.00189.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
We have previously demonstrated that the Na-K-ATPase signaling-mediated oxidant amplification loop contributes to experimental uremic cardiomyopathy and anemia induced by 5/6th partial nephrectomy (PNx). This process can be ameliorated by systemic administration of the peptide pNaKtide, which was designed to block this oxidant amplification loop. The present study demonstrated that the PNx-induced anemia is characterized by marked decreases in red blood cell (RBC) survival as assessed by biotinylated RBC clearance and eryptosis as assessed by annexin V binding. No significant change in iron homeostasis was observed. Examination of plasma samples demonstrated that PNx induced significant increases in systemic oxidant stress as assessed by protein carbonylation, plasma erythropoietin concentration, and blood urea nitrogen. Systemic administration of pNaKtide, but not NaKtide (pNaKtide without the TAT leader sequence) and a scramble "pNaKtide" (sc-pNaKtide), led to the normalization of hematocrit, RBC survival, and plasma protein carbonylation. Administration of the three peptides had no significant effect on PNx-induced increases in plasma erythropoietin and blood urea nitrogen without notable changes in iron metabolism. These data indicate that blockage of the Na-K-ATPase signaling-mediated oxidant amplification loop ameliorates the anemia of experimental renal failure by increasing RBC survival.NEW & NOTEWORTHY The anemia of CKD is multifactorial, and the current treatment based primarily on stimulating bone marrow production of RBCs with erythropoietin or erythropoietin analogs is unsatisfactory. In a murine model of CKD that is complicated by anemia, blockade of Na-K-ATPase signaling with a specific peptide (pNaKtide) ameliorated the anemia primarily by increasing RBC survival. Should these results be confirmed in patients, this strategy may allow for novel and potentially additive strategies to treat the anemia of CKD.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Muhammad Chaudhry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Fang Bai
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Justin Chuang
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Hibba Chaudhry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Ala-Eddin Yassin Al-Astal
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Ying Nie
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Vincent Sollars
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Komal Sodhi
- Department of Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Paul Seligman
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Joseph I Shapiro
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
34
|
Notariale R, Perrone P, Mele L, Lettieri G, Piscopo M, Manna C. Olive Oil Phenols Prevent Mercury-Induced Phosphatidylserine Exposure and Morphological Changes in Human Erythrocytes Regardless of Their Different Scavenging Activity. Int J Mol Sci 2022; 23:ijms23105693. [PMID: 35628502 PMCID: PMC9147954 DOI: 10.3390/ijms23105693] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
Phosphatidylserine (PS) translocation to the external membrane leaflet represents a key mechanism in the pathophysiology of human erythrocytes (RBC) acting as an "eat me" signal for the removal of aged/stressed cells. Loss of physiological membrane asymmetry, however, can lead to adverse effects on the cardiovascular system, activating a prothrombotic activity. The data presented indicate that structurally related olive oil phenols prevent cell alterations induced in intact human RBC exposed to HgCl2 (5-40 µM) or Ca2+ ionophore (5 µM), as measured by hallmarks including PS exposure, reactive oxygen species generation, glutathione depletion and microvesicles formation. The protective effect is observed in a concentration range of 1-30 µM, hydroxytyrosol being the most effective; its in vivo metabolite homovanillic alcohol still retains the biological activity of its dietary precursor. Significant protection is also exerted by tyrosol, in spite of its weak scavenging activity, indicating that additional mechanisms are involved in the protective effect. When RBC alterations are mediated by an increase in intracellular calcium, the protective effect is observed at higher concentrations, indicating that the selected phenols mainly act on Ca2+-independent mechanisms, identified as protection of glutathione depletion. Our findings strengthen the nutritional relevance of olive oil bioactive compounds in the claimed health-promoting effects of the Mediterranean Diet.
Collapse
Affiliation(s)
- Rosaria Notariale
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.N.); (P.P.)
| | - Pasquale Perrone
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.N.); (P.P.)
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.L.); (M.P.)
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.L.); (M.P.)
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.N.); (P.P.)
- Correspondence:
| |
Collapse
|
35
|
Raposo CJ, Cserny JD, Serena G, Chow JN, Cho P, Liu H, Kotler D, Sharei A, Bernstein H, John S. Engineered RBCs Encapsulating Antigen Induce Multi-Modal Antigen-Specific Tolerance and Protect Against Type 1 Diabetes. Front Immunol 2022; 13:869669. [PMID: 35444659 PMCID: PMC9014265 DOI: 10.3389/fimmu.2022.869669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Antigen-specific therapies that suppress autoreactive T cells without inducing systemic immunosuppression are a much-needed treatment for autoimmune diseases, yet effective strategies remain elusive. We describe a microfluidic Cell Squeeze® technology to engineer red blood cells (RBCs) encapsulating antigens to generate tolerizing antigen carriers (TACs). TACs exploit the natural route of RBC clearance enabling tolerogenic presentation of antigens. TAC treatment led to antigen-specific T cell tolerance towards exogenous and autoantigens in immunization and adoptive transfer mouse models of type 1 diabetes (T1D), respectively. Notably, in several accelerated models of T1D, TACs prevented hyperglycemia by blunting effector functions of pathogenic T cells, particularly in the pancreas. Mechanistically, TACs led to impaired trafficking of diabetogenic T cells to the pancreas, induced deletion of autoreactive CD8 T cells and expanded antigen specific Tregs that exerted bystander suppression. Our results highlight TACs as a novel approach for reinstating immune tolerance in CD4 and CD8 mediated autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shinu John
- SQZ Biotechnologies, Watertown, MA, United States
| |
Collapse
|
36
|
Anti-Eryptotic Activity of Food-Derived Phytochemicals and Natural Compounds. Int J Mol Sci 2022; 23:ijms23063019. [PMID: 35328440 PMCID: PMC8951285 DOI: 10.3390/ijms23063019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/05/2023] Open
Abstract
Human red blood cells (RBCs), senescent or damaged due to particular stress, can be removed by programmed suicidal death, a process called eryptosis. There are various molecular mechanisms underlying eryptosis. The most frequent is the increase in the cytoplasmic concentration of Ca2+ ions, later exposure of erythrocytes to oxidative stress, hyperosmotic shock, ceramide formation, stimulation of caspases, and energy depletion. Phosphatidylserine (PS) exposed by eryptotic RBCs due to interaction with endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor, causes the RBCs to adhere to vascular wall with consequent damage to the microcirculation. Eryptosis can be triggered by various xenobiotics and endogenous molecules, such as high cholesterol levels. The possible diseases associated with eryptosis are various, including anemia, chronic kidney disease, liver failure, diabetes, hypertension, heart failure, thrombosis, obesity, metabolic syndrome, arthritis, and lupus. This review addresses and collates the existing ex vivo and animal studies on the inhibition of eryptosis by food-derived phytochemicals and natural compounds including phenolic compounds (PC), alkaloids, and other substances that could be a therapeutic and/or co-adjuvant option in eryptotic-driven disorders, especially if they are introduced through the diet.
Collapse
|
37
|
Stephenson D, Nemkov T, Qadri SM, Sheffield WP, D’Alessandro A. Inductively-Coupled Plasma Mass Spectrometry-Novel Insights From an Old Technology Into Stressed Red Blood Cell Physiology. Front Physiol 2022; 13:828087. [PMID: 35197866 PMCID: PMC8859330 DOI: 10.3389/fphys.2022.828087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/17/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Ion and metal homeostasis are critical to red blood cell physiology and Inductively Coupled Plasma (ICP) is a decades old approach to pursue elemental analysis. Recent evolution of ICP has resulted in its coupling to mass spectrometry (MS) instead of atomic absorption/emission. METHODS Here we performed Inductively-coupled plasma mass spectrometry (ICP-MS) measurements of intra- and extra-cellular Na, K, Ca, Mg, Fe, and Cu in red blood cells undergoing ionic, heat, or starvation stress. Results were correlated with Ca measurements from other common platforms (e.g., fluorescence-based approaches) and extensive measurements of red blood cell metabolism. RESULTS All stresses induced significant intra- and extracellular alterations of all measured elements. In particular, ionomycin treatment or hypertonic stress significantly impacted intracellular sodium and extracellular potassium and magnesium levels. Iron efflux was observed as a function of temperatures, with ionic and heat stress at 40°C causing the maximum decrease in intracellular iron pools and increases in the supernatants. Strong positive correlation was observed between calcium measurements via ICP-MS and fluorescence-based approaches. Correlation analyses with metabolomics data showed a strong positive association between extracellular calcium and intracellular sodium or magnesium levels and intracellular glycolysis. Extracellular potassium or iron were positively correlated with free fatty acids (especially mono-, poly-, and highly-unsaturated or odd-chain fatty acid products of lipid peroxidation). Intracellular iron was instead positively correlated with saturated fatty acids (palmitate, stearate) and negatively with methionine metabolism (methionine, S-adenosylmethionine), phosphatidylserine exposure and glycolysis. CONCLUSION In the era of omics approaches, ICP-MS affords a comprehensive characterization of intracellular elements that provide direct insights on red blood cell physiology and represent meaningful covariates for data generated via other omics platforms such as metabolomics.
Collapse
Affiliation(s)
- Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO, United States
| | - Syed M. Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada
| | - William P. Sheffield
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
38
|
The Effect of Low Doses of Zearalenone (ZEN) on the Bone Marrow Microenvironment and Haematological Parameters of Blood Plasma in Pre-Pubertal Gilts. Toxins (Basel) 2022; 14:toxins14020105. [PMID: 35202133 PMCID: PMC8880195 DOI: 10.3390/toxins14020105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to determine whether low doses of zearalenone (ZEN) influence the carry-over of ZEN and its metabolites to the bone marrow microenvironment and, consequently, haematological parameters. Pre-pubertal gilts (with a body weight of up to 14.5 kg) were exposed to daily ZEN doses of 5 μg/kg BW (group ZEN5, n = 15), 10 μg/kg BW (group ZEN10, n = 15), 15 μg/kg BW (group ZEN15, n = 15), or were administered a placebo (group C, n = 15) throughout the entire experiment. Bone marrow was sampled on three dates (exposure dates 7, 21, and 42—after slaughter) and blood for haematological analyses was sampled on 10 dates. Significant differences in the analysed haematological parameters (WBC White Blood Cells, MONO—Monocytes, NEUT—Neutrophils, LYMPH—Lymphocytes, LUC—Large Unstained Cells, RBC—Red Blood Cells, HGB—Haemoglobin, HCT—Haematocrit, MCH—Mean Corpuscular Volume, MCHC—Mean Corpuscular Haemoglobin Concentrations, PLT—Platelet Count and MPV—Mean Platelet Volume) were observed between groups. The results of the experiment suggest that exposure to low ZEN doses triggered compensatory and adaptive mechanisms, stimulated the local immune system, promoted eryptosis, intensified mycotoxin biotransformation processes in the liver, and produced negative correlations between mycotoxin concentrations and selected haematological parameters.
Collapse
|
39
|
Song P, Cai YC, Chen MX, Chen SH, Chen JX. Enhanced phosphatidylserine exposure and erythropoiesis in Babesia microti-infected mice. Front Microbiol 2022; 13:1083467. [PMID: 36687590 PMCID: PMC9846230 DOI: 10.3389/fmicb.2023.1083467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Babesia microti (B. microti) is the dominant species responsible for human babesiosis, which is associated with severe hemolytic anemia and splenomegaly because it infects mammalian erythrocytes. The actual prevalence of B. microti is thought to have been substantially underestimated. Methods In this study, Bagg's albino/c (BALB/c) mice were intraperitoneally injected with B. microti-infected erythrocytes, and parasitemia was subsequently measured by calculating the proportion of infected erythrocytes. The ultrastructure of infected erythrocytes was observed using scanning and transmission electron microscopes. Quantifying phosphatidylserine (PS) exposure, oxidative stress, intracellular Ca2+, and erythropoiesis of erythrocytes were done using flow cytometry. The physiological indicators were analyzed using a Mindray BC-5000 Vet automatic hematology analyzer. Results Of note, 40.7 ± 5.9% of erythrocytes changed their structure and shrunk in the B. microti-infected group. The percentage of annexin V-positive erythrocytes and the levels of reactive oxygen species (ROS) in the erythrocytes were higher in the B. microti-infected group than in the control group at 10 dpi. Significant splenomegaly and severe anemia were also observed following B. microti infection. The parasitemia level in the B. microti-infected splenectomized group was higher than that of the B. microti-infected sham group. The population of early erythroblasts increased, and the late erythroblasts decreased in both the bone marrow and spleen tissues of the B. microti-infected group at 10 dpi. Discussion PS exposure and elevated ROS activities were hallmarks of eryptosis in the B. microti-infected group. This study revealed for the first time that B. microti could also induce eryptosis. At the higher parasitemia phase, the occurrence of severe anemia and significant changes in the abundance of erythroblasts in B. microti-infected mice group were established. The spleen plays a critical protective role in controlling B. microti infection and preventing anemia. B. microti infection could cause a massive loss of late erythroblasts and induce erythropoiesis.
Collapse
Affiliation(s)
- Peng Song
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| | - Yu-Chun Cai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Mu-Xin Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| | - Shao-Hong Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| |
Collapse
|
40
|
Brun JF, Varlet-Marie E, Myzia J, Raynaud de Mauverger E, Pretorius E. Metabolic Influences Modulating Erythrocyte Deformability and Eryptosis. Metabolites 2021; 12:4. [PMID: 35050126 PMCID: PMC8778269 DOI: 10.3390/metabo12010004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/17/2022] Open
Abstract
Many factors in the surrounding environment have been reported to influence erythrocyte deformability. It is likely that some influences represent reversible changes in erythrocyte rigidity that may be involved in physiological regulation, while others represent the early stages of eryptosis, i.e., the red cell self-programmed death. For example, erythrocyte rigidification during exercise is probably a reversible physiological mechanism, while the alterations of red blood cells (RBCs) observed in pathological conditions (inflammation, type 2 diabetes, and sickle-cell disease) are more likely to lead to eryptosis. The splenic clearance of rigid erythrocytes is the major regulator of RBC deformability. The physicochemical characteristics of the surrounding environment (thermal injury, pH, osmolality, oxidative stress, and plasma protein profile) also play a major role. However, there are many other factors that influence RBC deformability and eryptosis. In this comprehensive review, we discuss the various elements and circulating molecules that might influence RBCs and modify their deformability: purinergic signaling, gasotransmitters such as nitric oxide (NO), divalent cations (magnesium, zinc, and Fe2+), lactate, ketone bodies, blood lipids, and several circulating hormones. Meal composition (caloric and carbohydrate intake) also modifies RBC deformability. Therefore, RBC deformability appears to be under the influence of many factors. This suggests that several homeostatic regulatory loops adapt the red cell rigidity to the physiological conditions in order to cope with the need for oxygen or fuel delivery to tissues. Furthermore, many conditions appear to irreversibly damage red cells, resulting in their destruction and removal from the blood. These two categories of modifications to erythrocyte deformability should thus be differentiated.
Collapse
Affiliation(s)
- Jean-Frédéric Brun
- UMR CNRS 9214-Inserm U1046 Physiologie et Médecine Expérimentale du Cœur et des Muscles-PHYMEDEXP, Unité D’explorations Métaboliques (CERAMM), Département de Physiologie Clinique, Université de Montpellier, Hôpital Lapeyronie-CHRU de Montpellier, 34295 Montpellier, France; (J.M.); (E.R.d.M.)
| | - Emmanuelle Varlet-Marie
- UMR CNRS 5247-Institut des Biomolécules Max Mousseron (IBMM), Laboratoire du Département de Physicochimie et Biophysique, UFR des Sciences Pharmaceutiques et Biologiques, Université de Montpellier, 34090 Montpellier, France;
| | - Justine Myzia
- UMR CNRS 9214-Inserm U1046 Physiologie et Médecine Expérimentale du Cœur et des Muscles-PHYMEDEXP, Unité D’explorations Métaboliques (CERAMM), Département de Physiologie Clinique, Université de Montpellier, Hôpital Lapeyronie-CHRU de Montpellier, 34295 Montpellier, France; (J.M.); (E.R.d.M.)
| | - Eric Raynaud de Mauverger
- UMR CNRS 9214-Inserm U1046 Physiologie et Médecine Expérimentale du Cœur et des Muscles-PHYMEDEXP, Unité D’explorations Métaboliques (CERAMM), Département de Physiologie Clinique, Université de Montpellier, Hôpital Lapeyronie-CHRU de Montpellier, 34295 Montpellier, France; (J.M.); (E.R.d.M.)
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Private Bag X1 MATIELAND, Stellenbosch 7602, South Africa;
| |
Collapse
|
41
|
Yang X, Zhao B, Wang J, Wang L, Tao M, Lu J, Lin J, Sun J, Wang R. Red blood cell lifespan in long-term hemodialysis patients treated with roxadustat or recombinant human erythropoietin. Ren Fail 2021; 43:1428-1436. [PMID: 34657570 PMCID: PMC8525968 DOI: 10.1080/0886022x.2021.1988968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Introduction A significant decrease in red blood cell (RBC) survival has been observed in patients with renal failure, which is supposed to contribute to renal anemia. The aim of this observational study was to determine RBC survival in hemodialysis (HD) patients treated with roxadustat or recombinant human erythropoietin (rhuEPO) compared with healthy persons. Methods RBC lifespan was measured by Levitt’s CO breath test with newly developed automatic instrument ELS Tester. Results A total of 102 patients receiving long-term HD from two independent dialysis centers enrolled in the study, of whom 62 were treated with rhuEPO and 40 were on roxadustat therapy. A total of 25 healthy participants were recruited to match HD participants according to age and sex. Median RBC survival times in rhuEPO, roxadustat, and control groups were 65.0 (25th–75th percentile, 49.5–77.3), 75.5 (25th–75th percentile, 57.3–99.3), and 108.0 (25th–75th percentile, 89.0–141.5) d, respectively. Patients treated with roxadustat had significantly longer RBC survival time than patients treated with rhuEPO (p < .05). In multivariate analysis of factors affecting RBC lifespan in the whole HD patients, anemia treatment drugs (rhuEPO/roxadustat) and levels of hemoglobin were the significantly independent factors. RBC survival was not found to correlate with either weekly rhuEPO dosage (r = –0.087, p = .500) or weekly roxadustat dosage (r = −0.267, p = .110) in our cohort. Conclusions HD patients treated with roxadustat had significantly longer RBC survival time than patients treated with rhuEPO, large prospective studies with long-term follow-up are warranted to verify the results in future. Abbreviations RBC: red blood cell; HD: hemodialysis; rhu EPO: recombinant human erythropoietin; ESRD: end-stage renal disease; EPO: erythropoietin; ROS: reactive oxygen species; CKD: chronic kideny disease; ESAs: erythropoiesis-stimulating agents; HIF-PHD: hypoxia-inducible factor prolyl hydroxylase; CO: carbon monoxide; Hb: hemoglobin
Collapse
Affiliation(s)
- Xiaowei Yang
- Department of Nephrology, Provincial Hospital affiliated to Shandong First Medical University, Jinan, PR China
| | - Bing Zhao
- Department of Nephrology, Provincial Hospital affiliated to Shandong First Medical University, Jinan, PR China
| | - Jing Wang
- Department of Nephrology, Caoxian People's Hospital, Heze, PR China
| | - Lei Wang
- Department of Nephrology, Caoxian People's Hospital, Heze, PR China
| | - Min Tao
- Department of Nephrology, Provincial Hospital affiliated to Shandong First Medical University, Jinan, PR China
| | - Jing Lu
- Department of Nephrology, Provincial Hospital affiliated to Shandong First Medical University, Jinan, PR China
| | - Jiangong Lin
- Department of Nephrology, Provincial Hospital affiliated to Shandong First Medical University, Jinan, PR China
| | - Jing Sun
- Department of Nephrology, Provincial Hospital affiliated to Shandong First Medical University, Jinan, PR China
| | - Rong Wang
- Department of Nephrology, Provincial Hospital affiliated to Shandong First Medical University, Jinan, PR China
| |
Collapse
|
42
|
Food-grade lactic acid bacteria and probiotics as a potential protective tool against erythrotoxic dietary xenobiotics. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
43
|
Bissinger R, Nemkov T, D'Alessandro A, Grau M, Dietz T, Bohnert BN, Essigke D, Wörn M, Schaefer L, Xiao M, Beirne JM, Kalo MZ, Schork A, Bakchoul T, Omage K, Kong L, Gonzalez-Menendez I, Quintanilla-Martinez L, Fehrenbacher B, Schaller M, Dhariwal A, Birkenfeld AL, Grahammer F, Qadri SM, Artunc F. Proteinuric chronic kidney disease is associated with altered red blood cell lifespan, deformability and metabolism. Kidney Int 2021; 100:1227-1239. [PMID: 34537228 DOI: 10.1016/j.kint.2021.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
Anemia is a common complication of chronic kidney disease, affecting the quality of life of patients. Among various factors, such as iron and erythropoietin deficiency, reduced red blood cell (RBC) lifespan has been implicated in the pathogenesis of anemia. However, mechanistic data on in vivo RBC dysfunction in kidney disease are lacking. Herein, we describe the development of chronic kidney disease-associated anemia in mice with proteinuric kidney disease resulting from either administration of doxorubicin or an inducible podocin deficiency. In both experimental models, anemia manifested at day 10 and progressed at day 30 despite increased circulating erythropoietin levels and erythropoiesis in the bone marrow and spleen. Circulating RBCs in both mouse models displayed altered morphology and diminished osmotic-sensitive deformability together with increased phosphatidylserine externalization on the outer plasma membrane, a hallmark of RBC death. Fluorescence-labelling of RBCs at day 20 of mice with doxorubicin-induced kidney disease revealed premature clearance from the circulation. Metabolomic analyses of RBCs from both mouse models demonstrated temporal changes in redox recycling pathways and Lands' cycle, a membrane lipid remodeling process. Anemic patients with proteinuric kidney disease had an increased proportion of circulating phosphatidylserine-positive RBCs. Thus, our observations suggest that reduced RBC lifespan, mediated by altered RBC metabolism, reduced RBC deformability, and enhanced cell death contribute to the development of anemia in proteinuric kidney disease.
Collapse
Affiliation(s)
- Rosi Bissinger
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Division of Hematology, University of Colorado Denver, Aurora, Colorado, USA
| | - Marijke Grau
- Institute of Molecular and Cellular Sports Medicine, German Sport University of Cologne, Köln, Germany
| | - Thomas Dietz
- Institute of Molecular and Cellular Sports Medicine, German Sport University of Cologne, Köln, Germany
| | - Bernhard N Bohnert
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD) at the University Tübingen, Tübingen, Germany
| | - Daniel Essigke
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Matthias Wörn
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Lina Schaefer
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Mengyun Xiao
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Jonathan M Beirne
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - M Zaher Kalo
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Anja Schork
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD) at the University Tübingen, Tübingen, Germany
| | - Tamam Bakchoul
- Center for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Kingsley Omage
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Lingsi Kong
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | | | | | - Birgit Fehrenbacher
- Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Achal Dhariwal
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Andreas L Birkenfeld
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD) at the University Tübingen, Tübingen, Germany
| | - Florian Grahammer
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Syed M Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, Ontario, Canada
| | - Ferruh Artunc
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD) at the University Tübingen, Tübingen, Germany.
| |
Collapse
|
44
|
Furrer R, Jauch AJ, Nageswara Rao T, Dilbaz S, Rhein P, Steurer SA, Recher M, Skoda RC, Handschin C. Remodeling of metabolism and inflammation by exercise ameliorates tumor-associated anemia. SCIENCE ADVANCES 2021; 7:eabi4852. [PMID: 34516881 PMCID: PMC8442918 DOI: 10.1126/sciadv.abi4852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/15/2021] [Indexed: 05/30/2023]
Abstract
A considerable number of patients with cancer suffer from anemia, which has detrimental effects on quality of life and survival. The mechanisms underlying tumor-associated anemia are multifactorial and poorly understood. Therefore, we aimed at systematically assessing the patho-etiology of tumor-associated anemia in mice. We demonstrate that reduced red blood cell (RBC) survival rather than altered erythropoiesis is driving the development of anemia. The tumor-induced inflammatory and metabolic remodeling affect RBC integrity and augment splenic phagocyte activity promoting erythrophagocytosis. Exercise training normalizes these tumor-associated abnormal metabolic profiles and inflammation and thereby ameliorates anemia, in part, by promoting RBC survival. Fatigue was prevented in exercising tumor-bearing mice. Thus, exercise has the unique potential to substantially modulate metabolism and inflammation and thereby counteracts pathological remodeling of these parameters by the tumor microenvironment. Translation of this finding to patients with cancer could have a major impact on quality of life and potentially survival.
Collapse
Affiliation(s)
| | - Annaïse J. Jauch
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Tata Nageswara Rao
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sedat Dilbaz
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Mike Recher
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Radek C. Skoda
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | | |
Collapse
|
45
|
Gajęcka M, Majewski MS, Zielonka Ł, Grzegorzewski W, Onyszek E, Lisieska-Żołnierczyk S, Juśkiewicz J, Babuchowski A, Gajęcki MT. Concentration of Zearalenone, Alpha-Zearalenol and Beta-Zearalenol in the Myocardium and the Results of Isometric Analyses of the Coronary Artery in Prepubertal Gilts. Toxins (Basel) 2021; 13:toxins13060396. [PMID: 34199438 PMCID: PMC8228058 DOI: 10.3390/toxins13060396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
The carry-over of zearalenone (ZEN) to the myocardium and its effects on coronary vascular reactivity in vivo have not been addressed in the literature to date. Therefore, the objective of this study was to verify the hypothesis that low ZEN doses (MABEL, NOAEL and LOAEL) administered per os to prepubertal gilts for 21 days affect the accumulation of ZEN, α-ZEL and β-ZEL in the myocardium and the reactivity of the porcine coronary arteries to vasoconstrictors: acetylcholine, potassium chloride and vasodilator sodium nitroprusside. The contractile response to acetylcholine in the presence of a cyclooxygenase (COX) inhibitor, indomethacin and / or an endothelial nitric oxide synthase (e-NOS) inhibitor, L-NAME was also studied. The results of this study indicate that the carry-over of ZEN and its metabolites to the myocardium is a highly individualized process that occurs even at very low mycotoxin concentrations. The concentrations of the accumulated ZEN metabolites are inversely proportional to each other due to biotransformation processes. The levels of vasoconstrictors, acetylcholine and potassium chloride, were examined in the left anterior descending branch of the porcine coronary artery after oral administration of ZEN. The LOAEL dose clearly decreased vasoconstriction in response to both potassium chloride and acetylcholine (P < 0.05 for all values) and increased vasodilation in the presence of sodium nitroprusside (P = 0.021). The NOAEL dose significantly increased vasoconstriction caused by acetylcholine (P < 0.04), whereas the MABEL dose did not cause significant changes in the vascular response. Unlike higher doses of ZEN, 5 μg/kg had no negative influence on the vascular system.
Collapse
Affiliation(s)
- Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (Ł.Z.); (M.T.G.)
- Correspondence:
| | - Michał S. Majewski
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland;
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (Ł.Z.); (M.T.G.)
| | - Waldemar Grzegorzewski
- Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland;
- Interdisciplinary Center for Preclinical and Clinical Research, Department of Biotechnology, Institute of Biol-ogy and Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Po-land
| | - Ewa Onyszek
- Dairy Industry Innovation Institute Ltd., Kormoranów 1, 11-700 Mrągowo, Poland; (E.O.); (A.B.)
| | - Sylwia Lisieska-Żołnierczyk
- Independent Public Health Care Centre of the Ministry of the Interior and Administration, and the Warmia and Mazury Oncology Centre in Olsztyn, Wojska Polskiego 37, 10-228 Olsztyn, Poland;
| | - Jerzy Juśkiewicz
- Department of Biological Function of Foods, Institute of Animal Reproduction and Food Research, Division of Food Science, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Andrzej Babuchowski
- Dairy Industry Innovation Institute Ltd., Kormoranów 1, 11-700 Mrągowo, Poland; (E.O.); (A.B.)
| | - Maciej T. Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (Ł.Z.); (M.T.G.)
| |
Collapse
|
46
|
Lee SA, Lee J, Kim K, Moon H, Min C, Moon B, Kim D, Yang S, Park H, Lee G, Park R, Park D. The Peroxisomal Localization of Hsd17b4 Is Regulated by Its Interaction with Phosphatidylserine. Mol Cells 2021; 44:214-222. [PMID: 33935042 PMCID: PMC8112170 DOI: 10.14348/molcells.2021.2217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/20/2021] [Accepted: 04/05/2021] [Indexed: 12/28/2022] Open
Abstract
Phosphatidylserine (PS), a negatively charged phospholipid exclusively located in the inner leaflet of the plasma membrane, is involved in various cellular processes such as blood coagulation, myoblast fusion, mammalian fertilization, and clearance of apoptotic cells. Proteins that specifically interact with PS must be identified to comprehensively understand the cellular processes involving PS. However, only a limited number of proteins are known to associate with PS. To identify PS-associating proteins, we performed a pulldown assay using streptavidin-coated magnetic beads on which biotin-linked PS was immobilized. Using this approach, we identified Hsd17b4, a peroxisomal protein, as a PS-associating protein. Hsd17b4 strongly associated with PS, but not with phosphatidylcholine or sphingomyelin, and the Scp-2-like domain of Hsd17b4 was responsible for this association. The association was disrupted by PS in liposomes, but not by free PS or the components of PS. In addition, translocation of PS to the outer leaflet of the plasma membrane enriched Hsd17b4 in peroxisomes. Collectively, this study suggests an unexpected role of PS as a regulator of the subcellular localization of Hsd17b4.
Collapse
Affiliation(s)
- Sang-Ah Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Juyeon Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Kwanhyeong Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Hyunji Moon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Chanhyuk Min
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Byeongjin Moon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Deokhwan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Susumin Yang
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Hyunjin Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Gwangrog Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, GIST, Gwangju 61005, Korea
| | - Daeho Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| |
Collapse
|
47
|
Eldakhakhny B, Al Sadoun H, Taleb NB, Nori DA, Helmi N, Ahmed IM, Bakhrebah MA, Abdulaal WH. Evaluation of the role of CD47 in sickle cell disease. J Hematop 2021. [DOI: 10.1007/s12308-020-00433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AbstractCD47 is a self-marker expressed on the surface of RBCs and work to prevent the process of phagocytosis. SIRPα is the ligand of CD47 that is expressed on the surface of phagocytic cells, such as macrophages, to control the removal of dead/diseased cells. This study aimed to examine the expression of CD47 on RBCs and SIRPα on PBMC cells in SCD patients and the apoptosis of SCD RBCs. We also measured the levels of pro-inflammatory cytokines in SCD patients and correlated it with the cell surface marker expression of CD47 and SIRPα to determine whether CD47 and/or SIRPα played a role in promoting the pro-inflammatory phenotype in SCD. Whole blood samples were drawn from SCD patients, and healthy control and PBMC were isolated and stained with SIRPα. Change in CD47, apoptosis by annexin V marker, and pro-inflammatory cytokines were measured and correlation among these variants was determined. The expression of CD47 was significantly decreased and the apoptosis was increased in RBCs of SCD patients. A higher level of pro-inflammatory cytokines, IL-6 and IL-1β, was found in SCD patients and IL-1β was found to be inversely correlated with SIRPα expression. Our data showed that CD47 of erythrocytes of SCD samples is reduced and that the apoptosis is increased in those patients. Based on the role of CD47, we suggest that increased apoptosis in SCD would be impacted by the reduced level of CD47. An inverse relationship was found between SIRPα marker on PBMC and the increased production of pro-inflammatory cytokines in SCD.
Collapse
|
48
|
Wang Y, Yang P, Yan Z, Liu Z, Ma Q, Zhang Z, Wang Y, Su Y. The Relationship between Erythrocytes and Diabetes Mellitus. J Diabetes Res 2021; 2021:6656062. [PMID: 33728350 PMCID: PMC7935596 DOI: 10.1155/2021/6656062] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/10/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
High blood glucose level (hyperglycemia) is a leading indicator of diabetes mellitus (DM). Erythrocytes are the most abundant cells in the circulation and the first to perceive changes in plasma composition. Long-lasting hyperglycemia affects the structure and function of erythrocytes. The detection of erythrocyte-related indicators can provide a valuable reference for the prevention, diagnosis, and treatment of DM and its complications. This paper reviews the normal structure and function of erythrocytes, the changes in erythrocytes in patients with diabetes, and the role of erythrocytes in the development of diabetic complications to provide more indicators for the early prevention of DM complications and to monitor the therapeutic effect of DM.
Collapse
Affiliation(s)
- Yaqi Wang
- Department of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, 014040 Inner Mongolia, China
| | - Peiyuan Yang
- Department of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, 014040 Inner Mongolia, China
| | - Zhaoli Yan
- Department of Endocrinology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 Inner Mongolia, China
| | - Zhi Liu
- Department of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, 014040 Inner Mongolia, China
| | - Qiang Ma
- Department of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, 014040 Inner Mongolia, China
| | - Zehong Zhang
- Department of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, 014040 Inner Mongolia, China
| | - Yunxia Wang
- Department of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, 014040 Inner Mongolia, China
| | - Yan Su
- Department of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, 014040 Inner Mongolia, China
| |
Collapse
|
49
|
18F-fluorodeoxyglucose positron emission tomography-computed tomography for assessing organ distribution of stressed red blood cells in mice. Sci Rep 2021; 11:2505. [PMID: 33510312 PMCID: PMC7844045 DOI: 10.1038/s41598-021-82100-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/13/2021] [Indexed: 02/04/2023] Open
Abstract
Red blood cells (RBCs) stressed by high temperature are similar to senescent or damaged RBCs in pathological conditions. RBCs can be efficiently labelled with 18F-fluorodeoxyglucose (FDG). The aim of this study was to assess stressed RBCs erythrophagocytosis and organ distribution in vivo with the application of 18F-FDG PET/CT. RBCs were induced under high temperature (48 °C) to prepare stressed RBCs. Fluorescence-activated cell sorting (FACS) was used to analyse reactive oxygen species (ROS) generation, intracellular Ca2+ concentration and membrane phosphatidylserine (PS) externalization of RBCs. 18F-FDG was used to label RBCs and assess the erythrophagocytosis. Finally, 18F-FDG PET/CT was applied to reveal and measure the organ distribution of stressed RBCs in mice. Compared with untreated RBCs, stressed RBCs decreased in cell volume and increased in ROS level, intracellular Ca2+ concentration, and PS exposure. RBCs could be labelled by 18F-FDG. Stressed RBCs tended to be phagocytosed by macrophages via assessment of FACS and radioactivity. 18F-FDG PET/CT imaging showed that stressed RBCs were mainly trapped in spleen, while untreated RBCs remained in circulation system. Thus, stressed RBCs can be effectively labelled by 18F-FDG and tend to be trapped in spleen of mice as assessed by PET/CT.
Collapse
|
50
|
Restivo I, Attanzio A, Tesoriere L, Allegra M. Suicidal Erythrocyte Death in Metabolic Syndrome. Antioxidants (Basel) 2021; 10:antiox10020154. [PMID: 33494379 PMCID: PMC7911029 DOI: 10.3390/antiox10020154] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Eryptosis is a coordinated, programmed cell death culminating with the disposal of cells without disruption of the cell membrane and the release of endocellular oxidative and pro-inflammatory milieu. While providing a convenient form of death for erythrocytes, dysregulated eryptosis may result in a series of detrimental and harmful pathological consequences highly related to the endothelial dysfunction (ED). Metabolic syndrome (MetS) is described as a cluster of cardiometabolic factors (hyperglycemia, dyslipidemia, hypertension and obesity) that increases the risk of cardiovascular complications such as those related to diabetes and atherosclerosis. In the light of the crucial role exerted by the eryptotic process in the ED, the focus of the present review is to report and discuss the involvement of eryptosis within MetS, where vascular complications are utterly relevant. Current knowledge on the mechanisms leading to eryptosis in MetS-related conditions (hyperglycemia, dyslipidemia, hypertension and obesity) will be analyzed. Moreover, clinical evidence supporting or proposing a role for eryptosis in the ED, associated to MetS cardiovascular complications, will be discussed.
Collapse
Affiliation(s)
| | | | - Luisa Tesoriere
- Correspondence: (L.T.); (M.A.); Tel.: +39-091-238-96803 (L.T. & M.A.)
| | - Mario Allegra
- Correspondence: (L.T.); (M.A.); Tel.: +39-091-238-96803 (L.T. & M.A.)
| |
Collapse
|