1
|
Weng K, He Y, Weng X, Yuan Y. Exercise alleviates osteoporosis by regulating the secretion of the Senescent Associated Secretory Phenotype. Bone 2025; 196:117485. [PMID: 40216288 DOI: 10.1016/j.bone.2025.117485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
As the elderly population grows, the number of patients with metabolic bone diseases such as osteoporosis has increased sharply, posing a significant threat to public health and social economics. Although pharmacological therapies for osteoporosis demonstrate therapeutic benefits, their prolonged use is associated with varying degrees of adverse effects. As a non-pharmacological intervention, exercise is widely recognized for its cost-effectiveness, safety, and lack of toxic side effects, making it a recommended treatment for osteoporosis prevention and management. Previous studies have demonstrated that exercise can improve metabolic bone diseases by modulating the Senescent Associated Secretory Phenotype (SASP). However, the mechanisms through which exercise influences SASP remain unclear. Therefore, this review aims to summarize the effects of exercise on SASP and elucidate the specific mechanisms by which exercise regulates SASP to alleviate osteoporosis, providing a theoretical basis for osteoporosis through exercise and developing targeted therapies.
Collapse
Affiliation(s)
- Kaihong Weng
- Graduate School, Guangzhou Sport University, 510500 Guangzhou, China
| | - Yuting He
- Graduate School, Guangzhou Sport University, 510500 Guangzhou, China
| | - Xiquan Weng
- School of Exercise and Health, Guangzhou Sport University, 510500 Guangzhou, China; Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 510500 Guangzhou, China.
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, 510500 Guangzhou, China; Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 510500 Guangzhou, China.
| |
Collapse
|
2
|
Wang J, Sun L, Zhang Y, Chen S, He Y. Wnt/β-catenin regulates Gli1 + osteogenic progenitors in condylar subchondral bone development and osteoarthritis. BMC Musculoskelet Disord 2025; 26:533. [PMID: 40448062 DOI: 10.1186/s12891-025-08765-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/15/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND Gli1 has been identified as a marker of osteogenic progenitors in the condylar subchondral bone. The Wnt/β-catenin signaling pathway is known to regulate stem cell proliferation and differentiation in bone. Whether Wnt/β-catenin signaling pathway could influence Gli1 + osteogenic progenitors remains unclear. Here, we aimed to investigate the role and related mechanisms of Wnt/β-catenin signaling in the regulation of Gli1 + osteogenic progenitors in condylar development and temporomandibular joint osteoarthritis (TMJOA). METHODS We generated Gli1-CreERT2;tdTomato mice to perform lineage tracing; We generated Gli1-CreERT2; β-cateninfl/fl mice, in which β-catenin was lost in the Gli1 + lineage to examine the role of Wnt/β-catenin signaling pathway in regulating the proliferation and differentiation of Gli1 + cells. The β-catenin CKO mice and their wild-type (WT) littermates were induced at 3 days and were euthanized 1, 2 or 4 weeks after induction; We induced a TMJOA model through a unilateral partial discectomy (UPD) of the temporomandibular joint disc in 6-week-old tamoxifen-treated Gli1-CreERT2;β-cateninfl/fl;tdTomato mice and control group (Gli1-CreERT2;tdTomato mice). We harvested the mandibles at 4 weeks post-surgery. RESULTS Conditional knockout of β-catenin inhibited the osteogenic activity of Gli1 + progenitor cells during condylar subchondral bone development. In discectomy-induced TMJOA, the overactivation of Gli1 in subchondral bone drove pathological osteogenesis and aberrant subchondral bone remodeling. Deletion of β-catenin in Gli1 + cells mitigated excessive Gli1 + cells activation and ectopic mineralization. CONCLUSION Our findings establish Wnt/β-catenin signaling as a key regulator of Gli1 + progenitor cell fate determination in both bone development and TMJOA pathogenesis.
Collapse
Affiliation(s)
- Jie Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Lin Sun
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Yi Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Shuo Chen
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China.
| | - Yang He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China.
| |
Collapse
|
3
|
Mohanty S, Sahu A, Mukherjee T, Kispotta S, Mal P, Gupta M, Ghosh JK, Prabhakar PK. Molecular mechanisms and treatment strategies for estrogen deficiency-related and glucocorticoid-induced osteoporosis: a comprehensive review. Inflammopharmacology 2025:10.1007/s10787-025-01749-3. [PMID: 40293652 DOI: 10.1007/s10787-025-01749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/04/2025] [Indexed: 04/30/2025]
Abstract
Osteoporosis, a debilitating condition characterized by reduced bone mass and increased fracture risk, is notably influenced by estrogen deficiency and glucocorticoid treatment. This comprehensive review elucidates the molecular mechanisms underpinning estrogen deficiency-related osteoporosis (EDOP) and glucocorticoid-induced osteoporosis (GIOP). The role of estrogen in bone metabolism is critically examined, highlighting its regulatory effects on bone turnover and formation through various signaling pathways. Conversely, this review explores how glucocorticoids disrupt bone homeostasis, focusing on their impact on osteoclast and osteoblast function and the subsequent alteration of bone remodeling processes. The pathogenesis of both conditions is intertwined, with estrogen receptor signaling pathways and the role of inflammatory cytokines being pivotal in driving bone loss. A detailed analysis of pathogenetic and risk factors associated with EDOP and GIOP is presented, including lifestyle and genetic factors contributing to disease progression. Modern therapeutic approaches emphasize pharmacologic, non-pharmacologic, and herbal treatments for managing EDOP and GIOP. In summary, current therapeutic strategies highlight the efficacy and the safety of various interventions. This review concludes with future directions for research, suggesting a need for novel treatment modalities and a deeper understanding of the underlying mechanisms of osteoporosis. By addressing the multifaceted nature of EDOP and GIOP, this work aims to provide insights into developing targeted therapeutic strategies and improving patient outcomes in osteoporosis management.
Collapse
Affiliation(s)
- Satyajit Mohanty
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| | - Anwesha Sahu
- Division of Pharmacology, Faculty of Medical Science and Research, Sai Nath University, Ranchi, 835219, Jharkhand, India
| | - Tuhin Mukherjee
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| | - Sneha Kispotta
- School of Pharmaceutical Sciences, Siksha O Anusandhan deemed to be University, Bhubaneswar, 751030, Odisha, India
| | - Payel Mal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Muskan Gupta
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Jeet Kumar Ghosh
- Department of Pharmacy, Usha Martin University, Ranchi, 835103, Jharkhand, India
| | | |
Collapse
|
4
|
Ahi EP. Regulation of Skeletogenic Pathways by m6A RNA Modification: A Comprehensive Review. Calcif Tissue Int 2025; 116:58. [PMID: 40180675 PMCID: PMC11968561 DOI: 10.1007/s00223-025-01367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
In the complex process of skeletal development, the significance of m6A RNA methylation-a predominant form of RNA modification-has not been fully explored. This review discuss how m6A RNA methylation plays an important, though not yet fully understood, role in regulating skeletal formation. It examines how m6A influences key signaling pathways essential for skeletal development and homeostasis, suggesting various possible interactions between m6A methylation and these critical pathways. While the exact mechanisms for many of these interactions remain to be elucidated, m6A RNA methylation is anticipated to be a key emerging regulator in skeletal structure development across vertebrates. Highlighting the need for further research, this overview provides an in-depth look at the potential regulatory interactions of m6A RNA methylation within skeletal system. Uniquely, this review is the most comprehensive compilation of evidence linking components of m6A RNA methylation to signaling pathways involved in skeletogenesis.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland.
| |
Collapse
|
5
|
Wang B, Ni J, Yu L, Chen S, Shang W, Fang P, Min W. Loss of chemerin prevents ovariectomy-induced osteoporosis in mice through intraosseous vascular remodeling. Mol Cell Endocrinol 2025; 599:112465. [PMID: 39848432 DOI: 10.1016/j.mce.2025.112465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Chemerin, an adipocyte-secreted adipokine, can regulate bone resorption and bone formation and is a promising therapy for postmenopausal osteoporosis. However, the effect of endogenous chemerin on intraosseous vascular remodeling in postmenopausal osteoporosis remains unclear. In this study, we investigated the effect of chemerin on osteogenesis formation and intraosseous vascular remodeling in ovariectomized Rarres2 knockout (Rarres2-/-) mice. The results showed that the bone mineral density (BMD) and volume score, trabecular thickness, cortical thickness, bone formation marker BALP and osteocalcin, and angiogenesis markers CD31 and EMCN significantly increased in ovariectomized Rarres2-/- mice. Furthermore, the expression of biomarkers to osteoblasts (β-catenin and Runx2) and angiogenesis markers (VEGF-A, Noggin, and Ang-1) significantly increased in the bone tissue of ovariectomized Rarres2-/- mice, as well as in bone marrow stromal cells and primary intraosseous vascular endothelial cells of Rarres2-/- mice. Conversely, treatment with chemerin significantly inhibited expression of biomarkers for osteoblasts and angiogenesis markers in bone marrow stromal cells and primary intraosseous vascular endothelial cells of Rarres2-/- mice. More importantly, the supernatants of the primary intraosseous vascular endothelial cells of the Rarres2-/- mice could promote the osteogenic differentiation effect of BMSCs, which could be blocked by treating with the chemerin recombinant protein. These data indicate that endogenous chemerin has an inhibitory effect on intraosseous vascular formation as well as osteoblast differentiation and proliferation in ovariectomy-induced osteoporosis mice. Chemerin effectively promoted postmenopausal osteoporosis development, which is associated with the involvement of chemerin in the reduction of microcirculation within the skeleton.
Collapse
Affiliation(s)
- Bingjie Wang
- Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinghuai Ni
- Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lingling Yu
- Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuai Chen
- Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wen Min
- Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
6
|
Szudy-Szczyrek A, Mlak R, Pigoń-Zając D, Krupski W, Mazurek M, Tomczak A, Chromik K, Górska A, Koźlik P, Juda A, Kokoć A, Dubaj M, Sacha T, Niedoszytko M, Helbig G, Szczyrek M, Szumiło J, Małecka-Massalska T, Hus M. Role of sclerostin in mastocytosis bone disease. Sci Rep 2025; 15:161. [PMID: 39747949 PMCID: PMC11697018 DOI: 10.1038/s41598-024-83851-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Mastocytosis is a heterogeneous group of disorders, characterized by accumulation of clonal mast cells which can infiltrate several organs, most often spine (70%). The pathogenesis of mastocytosis bone disease is poorly understood. The main aim of the study was to investigate whether neoplastic mast cells may be the source of sclerostin and whether there is an association between sclerostin and selected bone remodeling markers with mastocytosis related bone disease. We assessed sclerostin, bioactive sclerostin, and SOST gene expression in HMC-1.2 human mast cell culture supernatants and plasma of SM patients (n = 39). We showed that human mast cells can secrete sclerostin, and after their stimulation with IL-6, there is a significant increase in SOST gene expression. We observed significantly higher levels of sclerostin in patients diagnosed with more advanced disease. We observed a statistically significant correlation between concentations of sclerostin and its bioactive form and the concentration of alkaline phosphatase (ALP), and between sclerostin and interleukin-6 (IL-6). We observed that significantly higher sclerostin concentrations are present in patients with increased sclerosis of the spongy bone. Sclerostin may serve as a marker of more advanced disease and bone disease in mastocytosis. Further studies are justified to evaluate its role in mastocytosis.
Collapse
Affiliation(s)
- Aneta Szudy-Szczyrek
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Staszica Street 11, 20-081, Poland
| | - Radosław Mlak
- Department of Laboratory Diagnostics, Medical University of Lublin, Lublin, Poland
| | | | - Witold Krupski
- Department of Medical Radiology, Medical University of Lublin, Lublin, Poland
| | - Marcin Mazurek
- Department of Human Physiology, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Tomczak
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Staszica Street 11, 20-081, Poland
| | - Karolina Chromik
- Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia in Katowice, Katowice, Poland
| | - Aleksandra Górska
- Department of Pulmonology and Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Paweł Koźlik
- Chair of Hematology, Jagiellonian University, Kraków, Poland
| | - Adrian Juda
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Staszica Street 11, 20-081, Poland
| | - Anna Kokoć
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Staszica Street 11, 20-081, Poland
| | - Maciej Dubaj
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Staszica Street 11, 20-081, Poland.
| | - Tomasz Sacha
- Chair of Hematology, Jagiellonian University, Kraków, Poland
| | - Marek Niedoszytko
- Department of Pulmonology and Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Grzegorz Helbig
- Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia in Katowice, Katowice, Poland
| | - Michał Szczyrek
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Justyna Szumiło
- Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland
| | | | - Marek Hus
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Staszica Street 11, 20-081, Poland
| |
Collapse
|
7
|
Xv D, Cao Y, Hou Y, Hu Y, Li M, Xie C, Lu X. Polyphenols and Functionalized Hydrogels for Osteoporotic Bone Regeneration. Macromol Rapid Commun 2025; 46:e2400653. [PMID: 39588839 DOI: 10.1002/marc.202400653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/02/2024] [Indexed: 11/27/2024]
Abstract
Osteoporosis induces severe oxidative stress and disrupts bone metabolism, complicating the treatment of bone defects. Current therapies often have side effects and require lengthy bone regeneration periods. Hydrogels, known for their flexible mechanical properties and degradability, are promising carriers for drugs and bioactive factors in bone tissue engineering. However, they lack the ability to regulate the local pathological environment of osteoporosis and expedite bone repair. Polyphenols, with antioxidative, anti-inflammatory, and bone metabolism-regulating properties, have emerged as a solution. Combining hydrogels and polyphenols, polyphenol-based hydrogels can regulate local bone metabolism and oxidative stress while providing mechanical support and tissue adhesion, promoting osteoporotic bone regeneration. This review first provides a brief overview of the types of polyphenols and the mechanisms of polyphenols in facilitating adhesion, antioxidant, anti-inflammatory, and bone metabolism modulation in modulating the pathological environment of osteoporosis. Next, this review examines recent advances in hydrogels for the treatment of osteoporotic bone defects, including their use in angiogenesis, oxidative stress modulation, drug delivery, and stem cell therapy. Finally, it highlights the latest research on polyphenol hydrogels in osteoporotic bone defect regeneration. Overall, this review aims to facilitate the clinical application of polyphenol hydrogels for the treatment of osteoporotic bone defects.
Collapse
Affiliation(s)
- Dejia Xv
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuming Cao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yue Hou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yuelin Hu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250000, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, 250000, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
8
|
Fernandes CJC, Silva RA, Ferreira MR, Fuhler GM, Peppelenbosch MP, van der Eerden BC, Zambuzzi WF. Vascular smooth muscle cell-derived exosomes promote osteoblast-to-osteocyte transition via β-catenin signaling. Exp Cell Res 2024; 442:114211. [PMID: 39147261 DOI: 10.1016/j.yexcr.2024.114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Blood vessel growth and osteogenesis in the skeletal system are coupled; however, fundamental aspects of vascular function in osteoblast-to-osteocyte transition remain unclear. Our study demonstrates that vascular smooth muscle cells (VSMCs), but not endothelial cells, are sufficient to drive bone marrow mesenchymal stromal cell-derived osteoblast-to-osteocyte transition via β-catenin signaling and exosome-mediated communication. We found that VSMC-derived exosomes are loaded with transcripts encoding proteins associated with the osteocyte phenotype and members of the WNT/β-catenin signaling pathway. In contrast, endothelial cell-derived exosomes facilitated mature osteoblast differentiation by reprogramming the TGFB1 gene family and osteogenic transcription factors osterix (SP7) and RUNX2. Notably, VSMCs express significant levels of tetraspanins (CD9, CD63, and CD81) and drive the intracellular trafficking of exosomes with a lower membrane zeta potential than those from other cells. Additionally, the high ATP content within these exosomes supports mineralization mechanisms, as ATP is a substrate for alkaline phosphatase. Osteocyte function was further validated by RNA sequencing, revealing activity in genes related to intermittent mineralization and sonic hedgehog signaling, alongside a significant increase in TNFSF11 levels. Our findings unveil a novel role of VSMCs in promoting osteoblast-to-osteocyte transition, thus offering new insights into bone biology and homeostasis, as well as in bone-related diseases. Clinically, these insights could pave the way for innovative therapeutic strategies targeting VSMC-derived exosome pathways to treat bone-related disorders such as osteoporosis. By manipulating these signaling pathways, it may be possible to enhance bone regeneration and improve skeletal health in patients with compromised bone structure and function.
Collapse
Affiliation(s)
- Célio J C Fernandes
- Bioassays and Cell Dynamics Lab, Dept. of Chemistry and Biochemistry, Bioscience Institute, UNESP, Botucatu, 18603-100, Sao Paulo, Brazil
| | - Rodrigo A Silva
- School of Dentistry, University of Taubaté, 12020-340, Taubaté, São Paulo, Brazil
| | - Marcel R Ferreira
- Bioassays and Cell Dynamics Lab, Dept. of Chemistry and Biochemistry, Bioscience Institute, UNESP, Botucatu, 18603-100, Sao Paulo, Brazil
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Bram Cj van der Eerden
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Willian F Zambuzzi
- Bioassays and Cell Dynamics Lab, Dept. of Chemistry and Biochemistry, Bioscience Institute, UNESP, Botucatu, 18603-100, Sao Paulo, Brazil.
| |
Collapse
|
9
|
Yao Q, He L, Bao C, Yan X, Ao J. The role of TNF-α in osteoporosis, bone repair and inflammatory bone diseases: A review. Tissue Cell 2024; 89:102422. [PMID: 39003912 DOI: 10.1016/j.tice.2024.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
Tumour necrosis factor alpha (TNF-α) is a pleiotropic cytokine synthesised primarily by mononuclear cells; it has a potent pro-inflammatory effect, playing a crucial role in metabolic, immune, and inflammatory diseases. This cytokine has been studied in various biological systems. In bone tissue, TNF-α plays an integral role in skeletal disorders such as osteoporosis, fracture repair and rheumatoid arthritis through its involvement in regulating the balance between osteoblasts and osteoclasts, mediating inflammatory responses, promoting angiogenesis and exacerbating synovial proliferation. The biological effect TNF-α exerts in this context is determined by a combination of the signalling pathway it activates, the type of receptor it binds, and the concentration and duration of exposure. This review summarises the participation and pathophysiological role of TNF-α in osteoporosis, bone damage repair, chronic immunoinflammatory bone disease and spinal cord injury, and discusses its main mechanisms.
Collapse
Affiliation(s)
| | - Li He
- Affiliated Hospital of Zunyi Medical University, China.
| | | | - Xuhang Yan
- Affiliated Hospital of Zunyi Medical University, China.
| | - Jun Ao
- Affiliated Hospital of Zunyi Medical University, China.
| |
Collapse
|
10
|
Sakamoto E, Kitase Y, Fitt AJ, Zhu Z, Awad K, Brotto M, White KE, Welc SS, Bergwitz C, Bonewald LF. Both enantiomers of β-aminoisobutyric acid BAIBA regulate Fgf23 via MRGPRD receptor by activating distinct signaling pathways in osteocytes. Cell Rep 2024; 43:114397. [PMID: 38935499 PMCID: PMC11350516 DOI: 10.1016/j.celrep.2024.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
With exercise, muscle and bone produce factors with beneficial effects on brain, fat, and other organs. Exercise in mice increased fibroblast growth factor 23 (FGF23), urine phosphate, and the muscle metabolite L-β-aminoisobutyric acid (L-BAIBA), suggesting that L-BAIBA may play a role in phosphate metabolism. Here, we show that L-BAIBA increases in serum with exercise and elevates Fgf23 in osteocytes. The D enantiomer, described to be elevated with exercise in humans, can also induce Fgf23 but through a delayed, indirect process via sclerostin. The two enantiomers both signal through the same receptor, Mas-related G-protein-coupled receptor type D, but activate distinct signaling pathways; L-BAIBA increases Fgf23 through Gαs/cAMP/PKA/CBP/β-catenin and Gαq/PKC/CREB, whereas D-BAIBA increases Fgf23 indirectly through sclerostin via Gαi/NF-κB. In vivo, both enantiomers increased Fgf23 in bone in parallel with elevated urinary phosphate excretion. Thus, exercise-induced increases in BAIBA and FGF23 work together to maintain phosphate homeostasis.
Collapse
Affiliation(s)
- Eijiro Sakamoto
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Yukiko Kitase
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Alexander J Fitt
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Zewu Zhu
- Section of Endocrinology and Metabolism, Yale School of Medicine, New Haven, CT 06519, USA
| | - Kamal Awad
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington, Arlington, TX 76019, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington, Arlington, TX 76019, USA
| | - Kenneth E White
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Molecular and Medical Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Steven S Welc
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Yale School of Medicine, New Haven, CT 06519, USA
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
11
|
Lu C, Yang F, He S, Yu H, Wang Q, Li M, Zeng X, Leng X. Serum proteome analysis identifies a potential biomarker for axial psoriatic arthritis. Eur J Med Res 2024; 29:146. [PMID: 38429803 PMCID: PMC10908212 DOI: 10.1186/s40001-024-01731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND To identify potential serum biomarkers for differentiating between axial psoriatic arthritis (axPsA) and peripheral psoriatic arthritis (pPsA). METHODS Serum samples were collected from patients with PsA to create a biomarker discovery cohort and a verification cohort. Patients with PsA were classified into axial or peripheral subtypes based on imaging criteria. Untargeted proteomics technology was used in the discovery phase to screen for biomarkers, and candidate biomarkers were evaluated using enzyme-linked immunosorbent assay (ELISA) in the verification phase. RESULTS We identified 45 significantly differentially expressed proteins (DEPs) between axPsA (n = 20) and pPsA (n = 20) with liquid chromatography-mass spectrometry. Among these DEPs, serum pigment epithelium-derived factor (PEDF) was identified as a candidate biomarker using the Boruta algorithm and lasso regression. Results of ELISA further confirmed that the level of serum PEDF expression was significantly higher in axPsA (n = 37) than in pPsA (n = 51) at the verification cohort (37.9 ± 10.1 vs. 30.5 ± 8.9 μg/mL, p < 0.001). Receiver operating characteristics analysis showed that PEDF had an area under the curve (AUC) of 0.72. Serum PEDF was positively correlated with body mass index and C-reactive protein. Additionally, there was a tendency towards a positive correlation between PEDF and the Bath Ankylosing Spondylitis Disease Activity Index. CONCLUSIONS This study provided a comprehensive characterization of the proteome in axPsA and pPsA and identified a candidate biomarker, PEDF, that may contribute to early diagnosis for axPsA.
Collapse
Affiliation(s)
- Chaofan Lu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Fan Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Shihao He
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Hongxia Yu
- Department of Rheumatology, Guizhou Xingyi People's Hospital, Xingyi, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China.
| | - Xiaomei Leng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
12
|
Weidle UH, Nopora A. Hepatocellular Carcinoma: Up-regulated Circular RNAs Which Mediate Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2023; 20:500-521. [PMID: 37889063 PMCID: PMC10614070 DOI: 10.21873/cgp.20401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 10/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) ranges as number two with respect to the incidence of tumors and is associated with a dismal prognosis. The therapeutic efficacy of approved multi-tyrosine kinase inhibitors and checkpoint inhibitors is modest. Therefore, the identification of new therapeutic targets and entities is of paramount importance. We searched the literature for up-regulated circular RNAs (circRNAs) which mediate efficacy in preclinical in vivo models of HCC. Our search resulted in 14 circRNAs which up-regulate plasma membrane transmembrane receptors, while 5 circRNAs induced secreted proteins. Two circRNAs facilitated replication of Hepatitis B or C viruses. Three circRNAs up-regulated high mobility group proteins. Six circRNAs regulated components of the ubiquitin system. Seven circRNAs induced GTPases of the family of ras-associated binding proteins (RABs). Three circRNAs induced redox-related proteins, eight of them up-regulated metabolic enzymes and nine circRNAs induced signaling-related proteins. The identified circRNAs up-regulate the corresponding targets by sponging microRNAs. Identified circRNAs and their targets have to be validated by standard criteria of preclinical drug development. Identified targets can potentially be inhibited by small molecules or antibody-based moieties and circRNAs can be inhibited by small-interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) for therapeutic purposes.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
13
|
Li J, Cao H, Zhou X, Guo J, Zheng C. Advances in the study of traditional Chinese medicine affecting bone metabolism through modulation of oxidative stress. Front Pharmacol 2023; 14:1235854. [PMID: 38027015 PMCID: PMC10646494 DOI: 10.3389/fphar.2023.1235854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Bone metabolic homeostasis is dependent on coupled bone formation dominated by osteoblasts and bone resorption dominated by osteoclasts, which is a process of dynamic balance between bone formation and bone resorption. Notably, the formation of bone relies on the development of bone vasculature. Previous studies have shown that oxidative stress caused by disturbances in the antioxidant system of the whole organism is an important factor affecting bone metabolism. The increase in intracellular reactive oxygen species can lead to disturbances in bone metabolism, which can initiate multiple bone diseases, such as osteoporosis and osteoarthritis. Traditional Chinese medicine is considered to be an effective antioxidant. Cumulative evidence shows that the traditional Chinese medicine can alleviate oxidative stress-mediated bone metabolic disorders by modulating multiple signaling pathways, such as Nrf2/HO-1 signaling, PI3K/Akt signaling, Wnt/β-catenin signaling, NF-κB signaling, and MAPK signaling. In this paper, the potential mechanisms of traditional Chinese medicine to regulate bone me-tabolism through oxidative stress is summarized to provide direction and theoretical basis for future research related to the treatment of bone diseases with traditional Chinese medicine.
Collapse
Affiliation(s)
- Jiaying Li
- School of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Cao
- School of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xuchang Zhou
- School of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Chengqiang Zheng
- School of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Jiang H, Li D, Han Y, Li N, Tao X, Liu J, Zhang Z, Yu Y, Wang L, Yu S, Zhang N, Xiao H, Yang X, Zhang Y, Zhang G, Zhang BT. The role of sclerostin in lipid and glucose metabolism disorders. Biochem Pharmacol 2023; 215:115694. [PMID: 37481136 DOI: 10.1016/j.bcp.2023.115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Lipid and glucose metabolism are critical for human activities, and their disorders can cause diabetes and obesity, two prevalent metabolic diseases. Studies suggest that the bone involved in lipid and glucose metabolism is emerging as an endocrine organ that regulates systemic metabolism through bone-derived molecules. Sclerostin, a protein mainly produced by osteocytes, has been therapeutically targeted by antibodies for treating osteoporosis owing to its ability to inhibit bone formation. Moreover, recent evidence indicates that sclerostin plays a role in lipid and glucose metabolism disorders. Although the effects of sclerostin on bone have been extensively examined and reviewed, its effects on systemic metabolism have not yet been well summarized. In this paper, we provide a systemic review of the effects of sclerostin on lipid and glucose metabolism based on in vitro and in vivo evidence, summarize the research progress on sclerostin, and prospect its potential manipulation for obesity and diabetes treatment.
Collapse
Affiliation(s)
- Hewen Jiang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Dijie Li
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ying Han
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Nanxi Li
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaohui Tao
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jin Liu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zongkang Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yuanyuan Yu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Luyao Wang
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sifan Yu
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ning Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Huan Xiao
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Xin Yang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yihao Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ge Zhang
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Bao-Ting Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.
| |
Collapse
|
15
|
Diegel CR, Kramer I, Moes C, Foxa GE, McDonald MJ, Madaj ZB, Guth S, Liu J, Harris JL, Kneissel M, Williams BO. Inhibiting WNT secretion reduces high bone mass caused by Sost loss-of-function or gain-of-function mutations in Lrp5. Bone Res 2023; 11:47. [PMID: 37612291 PMCID: PMC10447437 DOI: 10.1038/s41413-023-00278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/09/2023] [Accepted: 07/03/2023] [Indexed: 08/25/2023] Open
Abstract
Proper regulation of Wnt signaling is critical for normal bone development and homeostasis. Mutations in several Wnt signaling components, which increase the activity of the pathway in the skeleton, cause high bone mass in human subjects and mouse models. Increased bone mass is often accompanied by severe headaches from increased intracranial pressure, which can lead to fatality and loss of vision or hearing due to the entrapment of cranial nerves. In addition, progressive forehead bossing and mandibular overgrowth occur in almost all subjects. Treatments that would provide symptomatic relief in these subjects are limited. Porcupine-mediated palmitoylation is necessary for Wnt secretion and binding to the frizzled receptor. Chemical inhibition of porcupine is a highly selective method of Wnt signaling inhibition. We treated three different mouse models of high bone mass caused by aberrant Wnt signaling, including homozygosity for loss-of-function in Sost, which models sclerosteosis, and two strains of mice carrying different point mutations in Lrp5 (equivalent to human G171V and A214V), at 3 months of age with porcupine inhibitors for 5-6 weeks. Treatment significantly reduced both trabecular and cortical bone mass in all three models. This demonstrates that porcupine inhibition is potentially therapeutic for symptomatic relief in subjects who suffer from these disorders and further establishes that the continued production of Wnts is necessary for sustaining high bone mass in these models.
Collapse
Affiliation(s)
- Cassandra R Diegel
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA
| | - Ina Kramer
- Diseases of Aging and Regenerative Medicine, Novartis Institutes for Biomedical Research, CH-4002, Basel, Switzerland
| | - Charles Moes
- Diseases of Aging and Regenerative Medicine, Novartis Institutes for Biomedical Research, CH-4002, Basel, Switzerland
| | - Gabrielle E Foxa
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA
| | - Mitchell J McDonald
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA
| | - Zachary B Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA
| | - Sabine Guth
- Diseases of Aging and Regenerative Medicine, Novartis Institutes for Biomedical Research, CH-4002, Basel, Switzerland
| | - Jun Liu
- Oncology, Novartis Institutes for Biomedical Research, San Diego, CA, 92121, USA
| | - Jennifer L Harris
- Oncology, Novartis Institutes for Biomedical Research, San Diego, CA, 92121, USA
| | - Michaela Kneissel
- Diseases of Aging and Regenerative Medicine, Novartis Institutes for Biomedical Research, CH-4002, Basel, Switzerland
| | - Bart O Williams
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
16
|
Jones IC, Carnagarin R, Armstrong J, Lin DPL, Baxter-Holland M, Elahy M, Dass CR. Pigment Epithelium-Derived Factor: Inhibition of Phosphorylation of Insulin Receptor (IR)/IR Substrate (IRS), Osteogeneration from Adipocytes, and Increased Levels Due to Doxorubicin Exposure. Pharmaceutics 2023; 15:1960. [PMID: 37514146 PMCID: PMC10384968 DOI: 10.3390/pharmaceutics15071960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVES Pigment epithelium-derived factor (PEDF) has been recently linked to insulin resistance and is capable of differentiating myocytes to bone. We examined in more detail the intricate signalling of the insulin pathway influenced by PEDF in skeletal myocytes. We tested whether this serpin is also capable of generating de novo bone from adipocytes in vitro and in vivo, and how the anticancer drug doxorubicin links with PEDF and cellular metabolism. METHODS AND KEY FINDINGS We demonstrate that PEDF can inhibit phosphorylation of insulin receptor (IR) and insulin receptor substrate (IRS) in skeletal myocytes. PEDF constitutively activates p42/44 MAPK/Erk, but paradoxically does not affect mitogenic signalling. PEDF did not perturb either mitochondrial activity or proliferation in cells representing mesenchymal stem cells, cardiomyocytes, and skeletal myocytes and adipocytes. PEDF induced transdifferentiation of adipocytes to osteoblasts, promoting bone formation in cultured adipocytes in vitro and gelfoam fatpad implants in vivo. Bone formation in white adipose tissue (WAT) was better than in brown adipose tissue (BAT). The frontline anticancer drug doxorubicin increased levels of PEDF in a human breast cancer cell line, mirroring the in vivo finding where cardiac muscle tissue was stained increasingly for PEDF as the dose of doxorubicin increased in mice. PEDF also increased levels of reactive oxygen species (ROS) and glutathione (GSH) in the breast cancer cell line. CONCLUSIONS PEDF may be used to regenerate bone from adipose tissue in cases of trauma such as fractures or bone cancers. The increased presence of PEDF in doxorubicin-treated tumour cells need further exploration, and could be useful therapeutically in future. The safety of PEDF administration in vivo was further demonstrated in this study.
Collapse
Affiliation(s)
- Isobel C Jones
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
- School of Medicine, University of Notre Dame, Fremantle, WA 6160, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, University of Western Australia, Perth, WA 6009, Australia
- School of Pharmacy, Curtin University, Bentley, WA 6102, Australia
| | - Jo Armstrong
- School of Pharmacy, Curtin University, Bentley, WA 6102, Australia
| | - Daphne P L Lin
- School of Pharmacy, Curtin University, Bentley, WA 6102, Australia
| | - Mia Baxter-Holland
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Mina Elahy
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
- School of Pharmacy, Curtin University, Bentley, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
17
|
Sheng X, Li C, Wang Z, Xu Y, Sun Y, Zhang W, Liu H, Wang J. Advanced applications of strontium-containing biomaterials in bone tissue engineering. Mater Today Bio 2023; 20:100636. [PMID: 37441138 PMCID: PMC10333686 DOI: 10.1016/j.mtbio.2023.100636] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 07/15/2023] Open
Abstract
Strontium (Sr) and strontium ranelate (SR) are commonly used therapeutic drugs for patients suffering from osteoporosis. Researches have showed that Sr can significantly improve the biological activity and physicochemical properties of materials in vitro and in vivo. Therefore, a large number of strontium containing biomaterials have been developed for repairing bone defects and promoting osseointegration. In this review, we provide a comprehensive overview of Sr-containing biomaterials along with the current state of their clinical use. For this purpose, the different types of biomaterials including calcium phosphate, bioactive glass, and polymers are discussed and provided future outlook on the fabrication of the next-generation multifunctional and smart biomaterials.
Collapse
Affiliation(s)
| | | | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yu Xu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yang Sun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Weimin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| |
Collapse
|
18
|
Li J, Liu Z, Ren Y, Shao H, Li S. LRP5-/6 gene polymorphisms and its association with risk of abnormal bone mass in postmenopausal women. J Orthop Surg Res 2023; 18:369. [PMID: 37202775 DOI: 10.1186/s13018-023-03829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023] Open
Abstract
OBJECTIVES To assess LRP5-/6 gene polymorphisms and its association with risk of abnormal bone mass (ABM) in postmenopausal women. METHODS The study recruited 166 patients with ABM (case group) and 106 patients with normal bone mass (control group) based on bone mineral density (BMD) results. Multi-factor dimensionality reduction (MDR) was used to analyze the interaction between the Low-density lipoprotein receptor-related protein 5 (LRP5) gene (rs41494349, rs2306862) and the Low-density lipoprotein receptor-related protein 6 (LRP6) gene (rs10743980, rs2302685) and the subjects' clinical characteristics of age and menopausal years. RESULTS (1) Logistic regression analysis showed that the subjects with the CT or TT genotype at rs2306862 had a higher risk of ABM than those with the CC genotype (OR = 2.353, 95%CI = 1.039-6.186; OR = 2.434, 95%CI = 1.071, 5.531; P < 0.05). The subjects with the TC genotype at rs2302685 had a higher risk of ABM than those with the TT genotype (OR = 2.951, 95%CI = 1.030-8.457, P < 0.05). (2) When taking the three Single-nucleotide polymorphisms (SNPs) together, the accuracy was the highest with the cross-validation consistency of 10/10 (OR = 1.504, 95%CI:1.092-2.073, P < 0.05), indicating that the LRP5 rs41494349 and LRP6 rs10743980, rs2302685 were interactively associated with the risk of ABM. (3) Linkage disequilibrium (LD) results revealed that the LRP5 (rs41494349,rs2306862) were in strong LD (D' > 0.9, r2 > 0.3). AC and AT haplotypes were significantly more frequently distributed in the ABM group than in the control group, indicating that subjects carrying the AC and AT haplotypes were associated with an increased risk of ABM (P < 0.01). (4) MDR showed that rs41494349 & rs2302685 & rs10743980 & age were the best model for ABM prediction. The risk of ABM in "high-risk combination" was 1.00 times that of "low-risk combination"(OR = 1.005, 95%CI: 1.002-1.008, P < 0.05). (5) MDR showed that there was no significant association between any of the SNPs and menopausal years and ABM susceptibility. CONCLUSION These findings indicate that LRP5-rs2306862 and LRP6-rs2302685 polymorphisms and gene-gene and gene-age interactions may increase the risk of ABM in postmenopausal women. There was no significant association between any of the SNPs and menopausal years and ABM susceptibility.
Collapse
Affiliation(s)
- Jun Li
- The First Affiliated Hospital of Shihezi University, 107 North Second Road, Hongshan Sub-District, Shihezi City, 832000, Xinjiang Uygur Autonomous Region, People's Republic of China.
| | - Zebing Liu
- The First Affiliated Hospital of Shihezi University, 107 North Second Road, Hongshan Sub-District, Shihezi City, 832000, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yanxia Ren
- The First Affiliated Hospital of Shihezi University, 107 North Second Road, Hongshan Sub-District, Shihezi City, 832000, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Han Shao
- School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Siyuan Li
- School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang Uygur Autonomous Region, People's Republic of China
| |
Collapse
|
19
|
Riddle RC. Endocrine Functions of Sclerostin. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2023; 28:10.1016/j.coemr.2022.100433. [PMID: 36713826 PMCID: PMC9881182 DOI: 10.1016/j.coemr.2022.100433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sclerostin, the product of the SOST gene has primarily been studied for its profound impact on bone mass. By interacting with LRP5 and LRP6, the glycoprotein suppresses the propagation of Wnt signals to β-catenin and thereby suppresses new bone formation. In this review, we discuss emerging data which suggest that sclerostin also acts outside the skeleton to influence metabolism. In humans, serum sclerostin levels are associated with body mass index and indices of metabolic function. Likewise, genetic mouse models of Sost gene deficiency indicate sclerostin influences adipocyte development and insulin signaling. These data raise the possibility that sclerostin neutralization may be effective at treating two epidemic conditions: osteoporosis and obesity.
Collapse
Affiliation(s)
- Ryan C. Riddle
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA.,Address Correspondence to: Ryan C. Riddle, Ph.D., Department of Orthopaedics, University of Maryland School of Medicine, 660 W. Redwood Street, Room 592, Baltimore, MD 21201, USA, , Ph: 410-706-0422
| |
Collapse
|
20
|
Li H, Liu S, Miao C, Lv Y, Hu Y. Integration of metabolomics and transcriptomics provides insights into enhanced osteogenesis in Ano5Cys360Tyr knock-in mouse model. Front Endocrinol (Lausanne) 2023; 14:1117111. [PMID: 36742392 PMCID: PMC9895949 DOI: 10.3389/fendo.2023.1117111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Gnathodiaphyseal dysplasia (GDD; OMIM#166260) is a rare autosomal dominant disorder characterized by diaphyseal sclerosis of tubular bones and cemento-osseous lesions in mandibles. GDD is caused by point mutations in the ANO5 gene. However, the mechanisms underlying GDD have not been disclosed. We previously generated the first knock-in mouse model for GDD expressing a human mutation (p.Cys360Tyr) in ANO5 and homozygous Ano5 knock-in (Ano5KI/KI ) mice exhibited representative traits of human GDD especially including enhanced osteogenesis. METHODS Metabolomics and transcriptomics analyses were conducted for wildtype (Ano5+/+ ) and Ano5KI/KI mature mouse calvarial osteoblasts (mCOBs) grown in osteogenic cultures for 14 days to identify differential intracellular metabolites and genes involved in GDD. Subsequently, related differential genes were validated by qRT-PCR. Cell proliferation was confirmed by CCK8 assay and calcium content in mineral nodules was detected using SEM-EDS. RESULTS Metabolomics identified 42 differential metabolites that are primarily involved in amino acid and pyrimidine metabolism, and endocrine and other factor-regulated calcium reabsorption. Concomitantly, transcriptomic analysis revealed 407 differentially expressed genes in Ano5KI/KI osteoblasts compared with wildtype. Gene ontology and pathway analysis indicated that Ano5Cys360Tyr mutation considerably promoted cell cycle progression and perturbed calcium signaling pathway, which were confirmed by validated experiments. qRT-PCR and CCK-8 assays manifested that proliferation of Ano5KI/KI mCOBs was enhanced and the expression of cell cycle regulating genes (Mki67, Ccnb1, and Ccna2) was increased. In addition, SEM-EDS demonstrated that Ano5KI/KI mCOBs developed higher calcium contents in mineral nodules than Ano5+/+ mCOBs, while some calcium-related genes (Cacna1, Slc8a1, and Cyp27b1) were significantly up-regulated. Furthermore, osteocalcin which has been proved to be an osteoblast-derived metabolic hormone was upregulated in Ano5KI/KI osteoblast cultures. DISCUSSION Our data demonstrated that the Ano5Cys360Tyr mutation could affect the metabolism of osteoblasts, leading to unwonted calcium homeostasis and cellular proliferation that can contribute to the underlying pathogenesis of GDD disorders.
Collapse
|
21
|
Liu Z, Li C, Liu M, Song Z, Moyer MP, Su D. The Low-density Lipoprotein Receptor-related Protein 6 Pathway in the Treatment of Intestinal Barrier Dysfunction Induced by Hypoxia and Intestinal Microbiota through the Wnt/β-catenin Pathway. Int J Biol Sci 2022; 18:4469-4481. [PMID: 35864969 PMCID: PMC9295061 DOI: 10.7150/ijbs.72283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/03/2022] [Indexed: 11/12/2022] Open
Abstract
Our study is to explore the key molecular of Low-density lipoprotein receptor-related protein 6 (LRP6) and the related Wnt/β-catenin pathway regulated by LRP6 during the intestinal barrier dysfunction. Colorectal protein profile analysis showed that LRP6 expression was decreased in dextran sulfate sodium (DSS)-induced colitis mice, and mice received fecal bacteria transplantation from stroke patients. Mice with intestinal hypoxia and intestinal epithelial cells cultured in hypoxia showed decreased expression of LRP6. Overexpression of LPR6 or its N-terminus rescued the Wnt/β-catenin signaling pathway which was inhibited by hypoxia and endoplasmic reticulum stress. In mice overexpressing of LRP6, the expression of β-catenin and DKK1 increased, Bcl2 decreased, and Bax increased. Mice with LRP6 knockout showed an opposite trend, and the expression of Claudin2, Occludin and ZO-1 decreased. Two drugs, curcumin and auranofin could alleviate intestinal barrier damage in DSS-induced colitis mice by targeting LRP-6. Therefore, gut microbiota dysbiosis and hypoxia can inhibit the LRP6 and Wnt/β-catenin pathway, and drugs targeting LRP6 can protect the intestinal barrier.
Collapse
Affiliation(s)
- Zhihua Liu
- Department of Anorectal Surgery, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University
| | - Chao Li
- Department of Anorectal Surgery, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University
| | - Min Liu
- Department of Anorectal Surgery, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University
| | - Zhen Song
- Department of Anorectal Surgery, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University
| | | | - Dan Su
- Department of Anorectal Surgery, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University.,INCELL Corporation, San Antonio, Texas, 78249, USA.,Department of Anorectal surgery. The Sixth Affiliated Hospital of Sun Yatsen University, Guangzhou 510665, China
| |
Collapse
|
22
|
Li MCM, Chow SKH, Wong RMY, Chen B, Cheng JCY, Qin L, Cheung WH. Osteocyte-specific dentin matrix protein 1 : the role of mineralization regulation in low-magnitude high-frequency vibration enhanced osteoporotic fracture healing. Bone Joint Res 2022; 11:465-476. [PMID: 35787000 PMCID: PMC9350691 DOI: 10.1302/2046-3758.117.bjr-2021-0476.r2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aims There is an increasing concern of osteoporotic fractures in the ageing population. Low-magnitude high-frequency vibration (LMHFV) was shown to significantly enhance osteoporotic fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). Dentin matrix protein 1 (DMP1) in osteocytes is known to be responsible for maintaining the LCN and mineralization. This study aimed to investigate the role of osteocyte-specific DMP1 during osteoporotic fracture healing augmented by LMHFV. Methods A metaphyseal fracture was created in the distal femur of ovariectomy-induced osteoporotic Sprague Dawley rats. Rats were randomized to five different groups: 1) DMP1 knockdown (KD), 2) DMP1 KD + vibration (VT), 3) Scramble + VT, 4) VT, and 5) control (CT), where KD was performed by injection of short hairpin RNA (shRNA) into marrow cavity; vibration treatment was conducted at 35 Hz, 0.3 g; 20 minutes/day, five days/week). Assessments included radiography, micro-CT, dynamic histomorphometry and immunohistochemistry on DMP1, sclerostin, E11, and fibroblast growth factor 23 (FGF23). In vitro, murine long bone osteocyte-Y4 (MLO-Y4) osteocyte-like cells were randomized as in vivo groupings. DMP1 KD was performed by transfecting cells with shRNA plasmid. Assessments included immunocytochemistry on osteocyte-specific markers as above, and mineralized nodule staining. Results Healing capacities in DMP1 KD groups were impaired. Results showed that DMP1 KD significantly abolished vibration-enhanced fracture healing at week 6. DMP1 KD significantly altered the expression of osteocyte-specific markers. The lower mineralization rate in DMP1 KD groups indicated that DMP1 knockdown was associated with poor fracture healing process. Conclusion The blockage of DMP1 would impair healing outcomes and negate LMHFV-induced enhancement on fracture healing. These findings reveal the importance of DMP1 in response to the mechanical signal during osteoporotic fracture healing. Cite this article: Bone Joint Res 2022;11(7):465–476.
Collapse
Affiliation(s)
- Meng C M Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon K-H Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald M Y Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Bailing Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jack C Y Cheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
23
|
Aryana IGPS, Rini SS, Soejono CH. The Importance of on Sclerostin as Bone-Muscle Mediator Crosstalk. Ann Geriatr Med Res 2022; 26:72-82. [PMID: 35599457 PMCID: PMC9271392 DOI: 10.4235/agmr.22.0036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/14/2022] [Indexed: 11/12/2022] Open
Abstract
Loss of bone and muscle mass is a frequent aging condition and has become a growing public health problem. The term “osteosarcopenia” denotes close links between bone and muscle. Mechanical exercise was once thought to be the only mechanism of crosstalk between muscle and bone. Sclerostin is an important player in the process of unloading-induced bone loss and plays an important role in mechanotransduction in the bone. Furthermore, bones and muscles are categorized as endocrine organs because they produce hormone-like substances, resulting in “bone-muscle crosstalk.” Sclerostin, an inhibitor of bone development, has recently been shown to play a role in myogenesis. This review discusses the importance of sclerostin in bone-muscle crosstalk.
Collapse
Affiliation(s)
- I Gusti Putu Suka Aryana
- Division of Geriatric Medicine, Department of Internal Medicine, Sanglah Hospital–Faculty of Medicine Udayana University, Bali, Indonesia
- Corresponding Author: I Gusti Putu Suka Aryana, MD, PhD Division of Geriatrics, Department of Internal Medicine, Sanglah Hospital–Faculty of Medicine Udayana University, Jl. Pulau Tarakan No.1, Denpasar 80114, Bali, Indonesia E-mail:
| | - Sandra Surya Rini
- Department of Internal Medicine, North Lombok Regional Hospital, West Nusa Tenggara, Indonesia
| | - Czeresna Heriawan Soejono
- Division of Geriatric Medicine, Department of Internal Medicine, Cipto Mangunkusumo Hospital–Faculty of Medicine University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
24
|
Lin C, Liu D, Liu B, Gu J. Distribution of Acute and Chronic Lesions in the Sacroiliac Joints of Patients with Axial Spondyloarthritis. Int J Gen Med 2022; 15:79-86. [PMID: 35018115 PMCID: PMC8742677 DOI: 10.2147/ijgm.s347133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/16/2021] [Indexed: 12/17/2022] Open
Abstract
Objective In this study, we aimed to investigate whether there was a pattern of distribution of acute and chronic lesions in the sacroiliac joints (SIJ) of patients with axial spondyloarthritis (axSpA). Methods A total of 96 patients diagnosed as axSpA were retrospectively included in this study. The Spondyloarthritis Research Consortium of Canada sacroiliac joint inflammation score (SIS) and structural score (SSS) were used to evaluate the acute and chronic lesions in the SIJs. Scores representing the distribution of bone marrow edema, fatty lesions and erosions were extracted respectively. By dividing the SIJs into sacral or iliac sections, upper or lower sections, anterior and posterior levels, differences of scores representing acute and chronic lesions were analyzed by Kruskal Wallis’ tests. Results SIS scores were not significantly different in sacral or iliac sections, in upper or lower sections, on anterior or posterior levels. SSS scores were also not significantly different in different sections, except for higher occurrence rates of erosions in the iliac sections. Post-hoc analysis showed that there was a higher erosion score in the left ilium than left sacrum, as well as in right ilium than left sacrum. Conclusion There was no specific distribution pattern of acute or chronic lesions in the SIJs in patients with axSpA. A bigger study sample was needed to confirm the distribution of erosions in sacral or iliac sections.
Collapse
Affiliation(s)
- Churong Lin
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Dong Liu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Budian Liu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jieruo Gu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
25
|
Lawson LY, Brodt MD, Migotsky N, Chermside-Scabbo CJ, Palaniappan R, Silva MJ. Osteoblast-Specific Wnt Secretion Is Required for Skeletal Homeostasis and Loading-Induced Bone Formation in Adult Mice. J Bone Miner Res 2022; 37:108-120. [PMID: 34542191 PMCID: PMC8770559 DOI: 10.1002/jbmr.4445] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/10/2021] [Accepted: 08/28/2021] [Indexed: 01/03/2023]
Abstract
Wnt signaling is critical to many aspects of skeletal regulation, but the importance of Wnt ligands in the bone anabolic response to mechanical loading is not well established. Recent transcriptome profiling studies by our laboratory and others show that mechanical loading potently induces genes encoding Wnt ligands, including Wnt1 and Wnt7b. Based on these findings, we hypothesized that mechanical loading stimulates adult bone formation by inducing Wnt ligand expression. To test this hypothesis, we inhibited Wnt ligand secretion in adult (5 months old) mice using a systemic (drug) and a bone-targeted (conditional gene knockout) approach, and subjected them to axial tibial loading to induce lamellar bone formation. Mice treated with the Wnt secretion inhibitor WNT974 exhibited a decrease in bone formation in non-loaded bones as well as a 54% decline in the periosteal bone formation response to tibial loading. Next, osteoblast-specific Wnt secretion was inhibited by dosing 5-month-old Osx-CreERT2; WlsF/F mice with tamoxifen. Within 1 to 2 weeks of Wls deletion, skeletal homeostasis was altered with decreased bone formation and increased resorption, and the anabolic response to loading was reduced 65% compared to control (WlsF/F ). Together, these findings show that Wnt ligand secretion is required for adult bone homeostasis, and furthermore establish a role for osteoblast-derived Wnts in mediating the bone anabolic response to tibial loading. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lisa Y. Lawson
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Michael D. Brodt
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Nicole Migotsky
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| | - Christopher J. Chermside-Scabbo
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Ramya Palaniappan
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Matthew J. Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| |
Collapse
|
26
|
Holubiac IȘ. Strength training program for postmenopausal women with osteoporosis. BIOMEDICAL ENGINEERING APPLICATIONS FOR PEOPLE WITH DISABILITIES AND THE ELDERLY IN THE COVID-19 PANDEMIC AND BEYOND 2022:185-196. [DOI: 10.1016/b978-0-323-85174-9.00022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Moharrer Y, Boerckel JD. Tunnels in the rock: Dynamics of osteocyte morphogenesis. Bone 2021; 153:116104. [PMID: 34245936 PMCID: PMC8478866 DOI: 10.1016/j.bone.2021.116104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022]
Abstract
Osteocytes are dynamic, bone matrix-remodeling cells that form an intricate network of interconnected projections through the bone matrix, called the lacunar-canalicular system. Osteocytes are the dominant mechanosensory cells in bone and their mechanosensory and mechanotransductive functions follow their morphological form. During osteocytogenesis and development of the osteocyte lacunar-canalicular network, osteocytes must dramatically remodel both their cytoskeleton and their extracellular matrix. In this review, we summarize our current understanding of the mechanisms that govern osteocyte differentiation, cytoskeletal morphogenesis, mechanotransduction, and matrix remodeling. We postulate that the physiologic activation of matrix remodeling in adult osteocytes, known as perilacunar/canalicular remodeling (PLR) represents a re-activation of the developmental program by which the osteocyte network is first established. While much of osteocyte biology remains unclear, new tools and approaches make the present moment a particularly fruitful and exciting time to study the development of these remarkable cells.
Collapse
Affiliation(s)
- Yasaman Moharrer
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States of America; Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Joel D Boerckel
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States of America; Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, United States of America; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
28
|
Jackson E, Lara-Castillo N, Akhter MP, Dallas M, Scott JM, Ganesh T, Johnson ML. Osteocyte Wnt/β-catenin pathway activation upon mechanical loading is altered in ovariectomized mice. Bone Rep 2021; 15:101129. [PMID: 34584905 PMCID: PMC8455641 DOI: 10.1016/j.bonr.2021.101129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/09/2021] [Indexed: 11/23/2022] Open
Abstract
Estrogen levels decline in both sexes with age, but more dramatically in females. Activation of the Wnt/β-catenin signaling pathway is central to the regulation of bone mass accrual and maintenance and in response to mechanical loading. Using the ovariectomized mouse model we examined the effect of estrogen loss on the osteocyte's ability to activate the Wnt/β-catenin pathway following mechanical loading. Female TOPGAL mice underwent ovariectomy (OVX) (n = 10) or sham surgery (n = 10) at 16 weeks of age. Four weeks post-surgery, a single loading session (global strain of 2200 με for 100 cycles at 2 Hz) was performed on the right forearm with the left as a non-loaded control. Mice (n = 5) were sacrificed at 1 or 24 hr post-load. Ulnae were stained for β-catenin activation, femurs were used for μCT and 3-pt bending/biomechanical testing, and tibiae were used for histology analysis and to determine osteocyte lacunar size using SEM and high resolution micro-XCT. A 2.2-fold increase in β-catenin signaling activation was observed 24 hr post-load in the Sham group but did not occur in the OVX group. The OVX group versus control had significant losses (p < 0.05) in trabecular BMD (−8%), BV/TV (−35%) and thickness (−23%), along with cortical thickness (−6%) and periosteal perimeter (−4%). The OVX group had significantly higher trabecular bone osteoclast numbers (63%), OCS/BS (77%) and N.OC/BPm (94%) and a significant decrease in osteoblast number (53%), OBS/BS (37%) and N.OB/BPm (40%) compared to the sham group (p < 0.05). Cortical bone lacunar number/lacunar volume and bone biomechanical properties did not change between groups. Given that the ulna is a cortical bone loading model and the lack of changes in osteocyte lacunar number/volume in cortical bone, which would alter strains experienced by osteocytes, these data suggest the absence of estrogen resulted in intrinsic changes in the ability of the osteocyte to respond to mechanical load, rather than changes in the biomechanical and architectural properties of bone. In vivo mechanical loading activates β-catenin signaling in osteocytes. Ovariectomy induced estrogen loss attenuates in vivo loading induced β-catenin signaling in osteocytes. Changes in bone material and architectural properties do not appear to explain attenuated pathway activation. Our data suggests estrogen loss alters the intrinsic ability of the osteocyte to respond to mechanical load.
Collapse
Affiliation(s)
- Erica Jackson
- UMKC, School of Dentistry, Kansas City, MO 64108, United States of America
| | | | - Mohammed P. Akhter
- Creighton University, Osteoporosis Research Center, Omaha, NE 68122, United States of America
| | - Mark Dallas
- UMKC, School of Dentistry, Kansas City, MO 64108, United States of America
| | - JoAnna M. Scott
- UMKC, School of Dentistry, Kansas City, MO 64108, United States of America
| | - Thiagarajan Ganesh
- UMKC, School of Computing and Engineering, Kansas City, MO 64110, United States of America
| | - Mark L. Johnson
- UMKC, School of Dentistry, Kansas City, MO 64108, United States of America
- Corresponding author.
| |
Collapse
|
29
|
Li MCM, Chow SKH, Wong RMY, Qin L, Cheung WH. The role of osteocytes-specific molecular mechanism in regulation of mechanotransduction - A systematic review. J Orthop Translat 2021; 29:1-9. [PMID: 34036041 PMCID: PMC8138679 DOI: 10.1016/j.jot.2021.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/15/2021] [Accepted: 04/11/2021] [Indexed: 11/29/2022] Open
Abstract
Background Osteocytes, composing over 90% of bone cells, are well known for their mechanosensing abilities. Aged osteocytes with impaired morphology and function are less efficient in mechanotransduction which will disrupt bone turnover leading to osteoporosis. The aim of this systematic review is to delineate the mechanotransduction mechanism at different stages in order to explore potential target for therapeutic drugs. Methods A systematic literature search was performed in PubMed and Web of Science. Original animal, cell and clinical studies with available English full-text were included. Information was extracted from the included studies for review. Results The 26 studies included in this review provided evidence that mechanical loading are sensed by osteocytes via various sensing proteins and transduced to different signaling molecules which later initiate various biochemical responses. Studies have shown that osteocyte plasma membrane and cytoskeletons are emerging key players in initiating mechanotransduction. Bone regulating genes expressions are altered in response to load sensed by osteocytes, but the genes involved different signaling pathways and the spatiotemporal expression pattern had made mechanotransduction mechanism complicated. Most of the included studies described the important role of osteocytes in pathways that regulate mechanosensing and bone remodeling. Conclusions This systematic review provides an up-to-date insight to different steps of mechanotransduction. A better understanding of the mechanotransduction mechanism is beneficial in search of new potential treatment for osteoporotic patients. By delineating the unique morphology of osteocytes and their interconnected signaling network new targets can be discovered for drug development. Translational potential of this article This systematic review provides an up-to-date sequential overview and highlights the different osteocyte-related pathways and signaling molecules during mechanotransduction. This allows a better understanding of mechanotransduction for future development of new therapeutic interventions to treat patients with impaired mechanosensitivity.
Collapse
Affiliation(s)
- Meng Chen Michelle Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon Kwoon Ho Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Ronald Man Yeung Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
- Corresponding author.Department of Orthopaedics and Traumatology, 5/F, Clinical Sciences Building, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
30
|
He S, Guan Y, Wu Y, Zhu L, Yan B, Honda H, Yang J, Liu W. DEC1 deficiency results in accelerated osteopenia through enhanced DKK1 activity and attenuated PI3KCA/Akt/GSK3β signaling. Metabolism 2021; 118:154730. [PMID: 33607194 PMCID: PMC8311383 DOI: 10.1016/j.metabol.2021.154730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Human differentiated embryonic chondrocyte expressed gene 1 (DEC1) has been implicated in enhancing osteogenesis, a desirable outcome to counteract against deregulated bone formation such as retarded bone development, osteopenia and osteoporosis. METHODS AND RESULTS DEC1 knockout (KO) and the age-matched wild-type (WT) mice were tested for the impact of DEC1 deficiency on bone development and osteopenia as a function of age. DEC1 deficiency exhibited retarded bone development at the age of 4 weeks and osteopenic phenotype in both 4- and 24-week old mice. However, the osteopenia was more severe in the 24-week age groups. Mechanistically, DEC1 deficiency downregulated the expression of bone-enhancing genes such as Runx2 and β-catenin accompanied by upregulating DKK1, an inhibitor of the Wnt/β-catenin signaling pathway. Consistently, DEC1 deficiency favored the attenuation of the integrated PI3KCA/Akt/GSK3β signaling, a pathway targeting β-catenin for degradation. Likewise, the attenuation was greater in the 24-week age group. These changes, however, were reversed by in vivo treatment with lithium chloride, a stabilizer of β-catenin, and confirmed by gain-of-function study with DEC1 transfection into DEC1 KO bone marrow mesenchymal stem cells and loss-of-function study with siDEC1 lentiviral infection into the corresponding WT cells. CONCLUSION DEC1 is a positive regulator with a broad activity spectrum in both bone development and maintenance, and the osteopenic phenotype accelerated by DEC1 deficiency is achieved by enhanced DKK1 activity and attenuated PI3KCA/Akt/GSK3β signaling.
Collapse
Affiliation(s)
- Shuangcheng He
- Department of Pharmacology, Nanjing Medical University, China
| | - Yu Guan
- Department of Pharmacology, Nanjing Medical University, China
| | - Yichen Wu
- Department of Pharmacology, Nanjing Medical University, China
| | - Ling Zhu
- Department of Pharmacology, Nanjing Medical University, China
| | - Bingfang Yan
- James L. Winkle College of Pharmacy University of Cincinnati, Cincinnati, OH 45229, USA
| | - Hiroaki Honda
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, China
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, China
| |
Collapse
|
31
|
The Osteocyte: From "Prisoner" to "Orchestrator". J Funct Morphol Kinesiol 2021; 6:jfmk6010028. [PMID: 33802907 PMCID: PMC8006231 DOI: 10.3390/jfmk6010028] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Osteocytes are the most abundant bone cells, entrapped inside the mineralized bone matrix. They derive from osteoblasts through a complex series of morpho-functional modifications; such modifications not only concern the cell shape (from prismatic to dendritic) and location (along the vascular bone surfaces or enclosed inside the lacuno-canalicular cavities, respectively) but also their role in bone processes (secretion/mineralization of preosseous matrix and/or regulation of bone remodeling). Osteocytes are connected with each other by means of different types of junctions, among which the gap junctions enable osteocytes inside the matrix to act in a neuronal-like manner, as a functional syncytium together with the cells placed on the vascular bone surfaces (osteoblasts or bone lining cells), the stromal cells and the endothelial cells, i.e., the bone basic cellular system (BBCS). Within the BBCS, osteocytes can communicate in two ways: by means of volume transmission and wiring transmission, depending on the type of signals (metabolic or mechanical, respectively) received and/or to be forwarded. The capability of osteocytes in maintaining skeletal and mineral homeostasis is due to the fact that it acts as a mechano-sensor, able to transduce mechanical strains into biological signals and to trigger/modulate the bone remodeling, also because of the relevant role of sclerostin secreted by osteocytes, thus regulating different bone cell signaling pathways. The authors want to emphasize that the present review is centered on the morphological aspects of the osteocytes that clearly explain their functional implications and their role as bone orchestrators.
Collapse
|
32
|
Masuda Y, Sakagami H, Yokose S, Udagawa N. Effect of Small-molecule GSK3 Antagonist on Differentiation of Rat Dental Pulp Cells into Odontoblasts. In Vivo 2021; 34:1071-1075. [PMID: 32354894 DOI: 10.21873/invivo.11877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND It has been reported that glycogen synthase kinase 3 (GSK3) antagonist promoted the reparative formation of dentin. The aim of the present study was to evaluate whether treatment schedule of Tidegrusib® (TG), a small-molecule GSK3 antagonist, affected in vitro differentiation of dental pulp cells toward odontoblast-like cells. MATERIALS AND METHODS Pulp cells isolated from rat incisors were repeatedly exposed to TG for the first 6 h (intermittent exposure) or the full 48 h (continuous exposure) of each 48-h incubation cycle. Histological analysis of alkaline phosphatase and von Kossa staining were performed. The expression of dentin sialophosphoprotein (Dspp) and osteocalcin (Ocn) mRNA were examined by real-time polymerase chain reaction. Western blotting assays were used to monitor the expression of β-catenin and its phosphorylated form. RESULTS When pulp cells were intermittently exposed to TG for only the first 6 h of each incubation cycle, pulp cells differentiated into odontoblast-like cells, characterized by an increase in alkaline phosphatase activity, nodule formation, and mRNA expression of Dspp. and Ocn; this did not occur under the continuous exposure. Phosphorylation of β-catenin was enhanced by continuous exposure to TG compared with intermittent exposure. CONCLUSION These results suggest that the TG-induced odontoblast-like cell differentiation reflects in vivo reparative dentin formation and depends on the exposure time.
Collapse
Affiliation(s)
- Yoshiko Masuda
- Department of Operative Dentistry, Matsumoto Dental University, Nagano, Japan
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), Meikai University School of Dentistry, Saitama, Japan
| | - Satoshi Yokose
- Division of Endodontics and Operative Dentistry, Meikai University School of Dentistry, Saitama, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Nagano, Japan
| |
Collapse
|
33
|
Voluntary Wheel Running Partially Compensates for the Effects of Global Estrogen Receptor-α Knockout on Cortical Bone in Young Male Mice. Int J Mol Sci 2021; 22:ijms22041734. [PMID: 33572215 PMCID: PMC7915374 DOI: 10.3390/ijms22041734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 01/09/2023] Open
Abstract
Estrogen receptor-α knockout (ERKO) in female, but not male, mice results in an impaired osteogenic response to exercise, but the mechanisms behind this ability in males are unknown. We explored the main and interactive effects of ERKO and exercise on cortical geometry, trabecular microarchitecture, biomechanical strength, and sclerostin expression in male mice. At 12 weeks of age, male C57BL/6J ERKO and WT animals were randomized into two groups: exercise treatment (EX) and sedentary (SED) controls, until 22 weeks of age. Cortical geometry and trabecular microarchitecture were measured via μCT; biomechanical strength was assessed via three-point bending; sclerostin expression was measured via immunohistochemistry. Two-way ANOVA was used to assess sclerostin expression and trabecular microarchitecture; two-way ANCOVA with body weight was used to assess cortical geometry and biomechanical strength. ERKO positively impacted trabecular microarchitecture, and exercise had little effect on these outcomes. ERKO significantly impaired cortical geometry, but exercise was able to partially reverse these negative alterations. EX increased cortical thickness regardless of genotype. There were no effects of genotype or exercise on sclerostin expression. In conclusion, male ERKO mice retain the ability to build bone in response to exercise, but altering sclerostin expression is not one of the mechanisms involved.
Collapse
|
34
|
Brance ML, Brun LR, Cóccaro NM, Aravena A, Duan S, Mumm S, Whyte MP. High bone mass from mutation of low-density lipoprotein receptor-related protein 6 (LRP6). Bone 2020; 141:115550. [PMID: 32730923 DOI: 10.1016/j.bone.2020.115550] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/04/2020] [Indexed: 12/22/2022]
Abstract
Wnt/β-catenin signaling is important for skeletal development and health. Eleven heterozygous gain-of-function missense mutations within the first β-propeller of low-density lipoprotein receptor-related protein 5 (LRP5) are known to cause the autosomal dominant disorder called high bone mass (HBM). In 2019, different heterozygous LRP6 missense mutations were identified in two American families with the HBM phenotype but including absent lateral maxillary and mandibular incisors. We report a 19-year-old Argentinian man referred for "osteopetrosis" and nine years of generalized, medium-intensity bone pain and arthralgias of both knees. His jaw and nasal bridge were broad and several teeth were missing. Routine biochemical testing, including of mineral homeostasis, was normal. Urinary deoxypyridinoline and serum CTX were slightly increased. Radiographic skeletal survey showed diffusely increased radiodensity. DXA revealed substantially elevated BMD Z-scores. Digital orthopantomography confirmed agenesis of his maxillary and mandibular lateral incisors and his second left superior premolar. Cranial magnetic resonance imaging showed diffuse thickening of the calvarium and skull base, dilation of the sheath of the optic nerves containing increased fluid and associated with subtle stenosis of the optic canal, and narrow internal auditory canals. Mutation analyses identified a heterozygous indel mutation in exon 4 of LRP6 involving a single nucleotide change and 6-nucleotide deletion (c.678T>Adel679-684, p.His226Gln-del227-228ProPhe) leading to a missense change and 2-amino acid deletion that would compromise the first β-propeller of LRP6. Experience to date indicates LRP6 HBM is indistinguishable from LRP5 HBM without mutation analysis, although in LRP6 HBM absence of adult lateral incisors may prove to be a unique feature.
Collapse
Affiliation(s)
- María Lorena Brance
- Reumatología y Enfermedades Óseas, Rosario, Argentina; Bone Biology Laboratory, School of Medicine, Rosario National University, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina.
| | - Lucas R Brun
- Bone Biology Laboratory, School of Medicine, Rosario National University, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina.
| | - Nicolás M Cóccaro
- Servicio de Diagnóstico por Imágenes, Sanatorio Británico, Rosario, Argentina
| | - Andrés Aravena
- Bone Biology Laboratory, School of Medicine, Rosario National University, Argentina
| | - Shenghui Duan
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children, St. Louis, MO, USA.
| | - Steven Mumm
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children, St. Louis, MO, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA.
| | - Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children, St. Louis, MO, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA.
| |
Collapse
|
35
|
Li D, Yang C, Yin C, Zhao F, Chen Z, Tian Y, Dang K, Jiang S, Zhang W, Zhang G, Qian A. LncRNA, Important Player in Bone Development and Disease. Endocr Metab Immune Disord Drug Targets 2020; 20:50-66. [PMID: 31483238 DOI: 10.2174/1871530319666190904161707] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/26/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Bone is an important tissue and its normal function requires tight coordination of transcriptional networks and signaling pathways, and many of these networks/ pathways are dysregulated in pathological conditions affecting cartilage and bones. Long non-coding RNA (lncRNA) refers to a class of RNAs with a length of more than 200 nucleotides, lack of protein-coding potential, and exhibiting a wide range of biological functions. Although studies on lcnRNAs are still in their infancy, they have emerged as critical players in bone biology and bone diseases. The functions and exact mechanism of bone-related lncRNAs have not been fully classified yet. OBJECTIVE The objective of this article is to summarize the current literature on lncRNAs on the basis of their role in bone biology and diseases, focusing on their emerging molecular mechanism, pathological implications and therapeutic potential. DISCUSSION A number of lncRNAs have been identified and shown to play important roles in multiple bone cells and bone disease. The function and mechanism of bone-related lncRNA remain to be elucidated. CONCLUSION At present, majority of knowledge is limited to cellular levels and less is known on how lncRNAs could potentially control the development and homeostasis of bone. In the present review, we highlight some lncRNAs in the field of bone biology and bone disease. We also delineate some lncRNAs that might have deep impacts on understanding bone diseases and providing new therapeutic strategies to treat these diseases.
Collapse
Affiliation(s)
- Dijie Li
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chaofei Yang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chong Yin
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Fan Zhao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zhihao Chen
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ye Tian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Kai Dang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Shanfeng Jiang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Wenjuan Zhang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
36
|
Liu H, Guo Y, Zhu R, Wang L, Chen B, Tian Y, Li R, Ma R, Jia Q, Zhang H, Xia B, Li Y, Wang X, Zhu X, Zhang R, Brӧmme D, Gao S, Zhang D, Pei X. Fructus Ligustri Lucidi
preserves bone quality through induction of canonical Wnt/β‐catenin signaling pathway in ovariectomized rats. Phytother Res 2020; 35:424-441. [DOI: 10.1002/ptr.6817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/09/2020] [Accepted: 07/02/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Haixia Liu
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Yubo Guo
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Ruyuan Zhu
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Lili Wang
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Beibei Chen
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Yimiao Tian
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Rui Li
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Rufeng Ma
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Qiangqiang Jia
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Hao Zhang
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Bingke Xia
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Yu Li
- Department of Histology and Embryology, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
- Sino‐Canada Anti‐Fibrosis Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Xinxiang Wang
- Center for Experimental Medicine The Second Affiliated Hospital of Beijing University of Chinese Medicine Beijing China
| | - Xiaofeng Zhu
- Department of Chinese Medicine The First Affiliated Hospital of Jinan University Guangzhou China
| | - Ronghua Zhang
- Department of Chinese Medicine The First Affiliated Hospital of Jinan University Guangzhou China
| | - Dieter Brӧmme
- Faculty of Dentistry University of British Columbia Vancouver British Columbia Canada
| | - Sihua Gao
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Dongwei Zhang
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
- Sino‐Canada Anti‐Fibrosis Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Xiaohua Pei
- The Fangshan Hospital of BUCM Beijing University of Chinese Medicine Beijing China
| |
Collapse
|
37
|
Qin L, Liu W, Cao H, Xiao G. Molecular mechanosensors in osteocytes. Bone Res 2020; 8:23. [PMID: 32550039 PMCID: PMC7280204 DOI: 10.1038/s41413-020-0099-y] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Osteocytes, the most abundant and long-lived cells in bone, are the master regulators of bone remodeling. In addition to their functions in endocrine regulation and calcium and phosphate metabolism, osteocytes are the major responsive cells in force adaptation due to mechanical stimulation. Mechanically induced bone formation and adaptation, disuse-induced bone loss and skeletal fragility are mediated by osteocytes, which sense local mechanical cues and respond to these cues in both direct and indirect ways. The mechanotransduction process in osteocytes is a complex but exquisite regulatory process between cells and their environment, between neighboring cells, and between different functional mechanosensors in individual cells. Over the past two decades, great efforts have focused on finding various mechanosensors in osteocytes that transmit extracellular mechanical signals into osteocytes and regulate responsive gene expression. The osteocyte cytoskeleton, dendritic processes, Integrin-based focal adhesions, connexin-based intercellular junctions, primary cilium, ion channels, and extracellular matrix are the major mechanosensors in osteocytes reported so far with evidence from both in vitro and in vitro studies. This review aims to give a systematic introduction to osteocyte mechanobiology, provide details of osteocyte mechanosensors, and discuss the roles of osteocyte mechanosensitive signaling pathways in the regulation of bone homeostasis.
Collapse
Affiliation(s)
- Lei Qin
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Wen Liu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Huiling Cao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 China
| |
Collapse
|
38
|
Sapunarova K, Goranova-Marinova V, Georgiev P, Deneva T, Tsvetkova S, Grudeva-Popova Z. Associations of serum sclerostin with bone mineral density, markers of bone metabolism and thalassaemia characteristics in adult patients with transfusion-dependent beta-thalassaemia. Ann Med 2020; 52:94-108. [PMID: 32212941 PMCID: PMC7877979 DOI: 10.1080/07853890.2020.1744708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/23/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022] Open
Abstract
Aim of the study: To assess serum sclerostin in transfusion-dependent beta-thalassaemia patients versus healthy controls and to examine its associations with bone mineral density, bone metabolism markers and beta thalassaemia alterations.Material and methods: Sixty-two transfusion-dependent beta-thalassaemia (TDßT) patients and 30 healthy controls were evaluated for serum sclerostin, osteocalcin, beta-cross laps, osteoprotegerin and serum level of receptor activator of nuclear factor kappa-Β ligand (sRANKL). Bone mineral density was measured at the lumbar spine and femoral neck. Thalassaemia characteristics were collected from the patients' medical records.Results: A significantly higher sclerostin level (median 565.50 pmol/L) was observed in the transfusion-dependent beta-thalassaemia patients vs. the healthy controls (median 48.65 pmol/L, p < .001). Sclerostin showed significant associations with the Z-scores at the lumbar spine and femoral neck, osteocalcin, beta-cross laps, osteoprotegerin, sRANKL, pretransfusion haemoglobin, liver iron concentration and female gonadal state. Significantly higher levels of sclerostin were observed in splenectomized TDßT patients and in those with fragility fractures. Age, sex, body mass index, disease severity, serum ferritin, cardiac T2* and male gonadal state did not show significant associations with sclerostin.Conclusion: Sclerostin may play a role in the bone pathophysiology of beta-thalassaemia patients and could serve as a marker of severe osteoporosis.KEY MЕSSAGESSerum sclerostin is more than 10-fold higher in adult patients with transfusion-dependent beta-thalassaemia compared to healthy controls.Serum sclerostin is negatively associated with bone mineral density and the bone synthesis markers and positively with the bone resorption indices.Serum sclerostin is significantly associated with pre-transfusion haemoglobin, liver iron concentration, splenectomy status and fragility fracture events in adult patients with transfusion-dependent beta-thalassaemia.Serum sclerostin could serve as a marker of severe osteoporosis in beta-thalassaemia patients.
Collapse
Affiliation(s)
- Katya Sapunarova
- First Department of Internal Medicine, Department of Hematology, Medical University, Plovdiv, Bulgaria
- Clinic of Clinical Hematology, University Hospital “Sv. Georgi”, Plovdiv, Bulgaria
| | - Vesselina Goranova-Marinova
- First Department of Internal Medicine, Department of Hematology, Medical University, Plovdiv, Bulgaria
- Clinic of Clinical Hematology, University Hospital “Sv. Georgi”, Plovdiv, Bulgaria
| | - Pencho Georgiev
- First Department of Internal Medicine, Department of Hematology, Medical University, Plovdiv, Bulgaria
- Clinic of Clinical Hematology, University Hospital “Sv. Georgi”, Plovdiv, Bulgaria
| | - Tanya Deneva
- Department of Clinical Laboratory, University Hospital “Sv. Georgi”, Plovdiv, Bulgaria
| | - Silvia Tsvetkova
- Department of Imaging Diagnostics, Medical University, Plovdiv, Bulgaria
| | - Zhanet Grudeva-Popova
- Clinic of Clinical Hematology, University Hospital “Sv. Georgi”, Plovdiv, Bulgaria
- Department of Medical Oncology, University Hospital “Sv. Georgi”, Plovdiv, Bulgaria
| |
Collapse
|
39
|
RANKL/RANK/OPG Pathway: A Mechanism Involved in Exercise-Induced Bone Remodeling. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6910312. [PMID: 32149122 PMCID: PMC7053481 DOI: 10.1155/2020/6910312] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
Bones as an alive organ consist of about 70% mineral and 30% organic component. About 200 million people are suffering from osteopenia and osteoporosis around the world. There are multiple ways of protecting bone from endogenous and exogenous risk factors. Planned physical activity is another useful way for protecting bone health. It has been investigated that arranged exercise would effectively regulate bone metabolism. Until now, a number of systems have discovered how exercise could help bone health. Previous studies reported different mechanisms of the effect of exercise on bone health by modulation of bone remodeling. However, the regulation of RANKL/RANK/OPG pathway in exercise and physical performance as one of the most important remodeling systems is not considered comprehensive in previous evidence. Therefore, the aim of this review is to clarify exercise influence on bone modeling and remodeling, with a concentration on its role in regulating RANKL/RANK/OPG pathway.
Collapse
|
40
|
Gingery A, Subramaniam M, Pitel KS, Li X, Ke HZ, Turner RT, Iwaniec UT, Hawse JR. Sclerostin antibody treatment rescues the osteopenic bone phenotype of TGFβ inducible early gene-1 knockout female mice. J Cell Physiol 2020; 235:5679-5688. [PMID: 31975377 DOI: 10.1002/jcp.29500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022]
Abstract
Deletion of TGFβ inducible early gene-1 (TIEG) in mice results in an osteopenic phenotype that exists only in female animals. Molecular analyses on female TIEG knockout (KO) mouse bones identified increased expression of sclerostin, an effect that was confirmed at the protein level in serum. Sclerostin antibody (Scl-Ab) therapy has been shown to elicit bone beneficial effects in multiple animal model systems and human clinical trials. For these reasons, we hypothesized that Scl-Ab therapy would reverse the low bone mass phenotype of female TIEG KO mice. In this study, wildtype (WT) and TIEG KO female mice were randomized to either vehicle control (Veh, n = 12/group) or Scl-Ab therapy (10 mg/kg, 1×/wk, s.c.; n = 12/group) and treated for 6 weeks. Following treatment, bone imaging analyses revealed that Scl-Ab therapy significantly increased cancellous and cortical bone in the femur of both WT and TIEG KO mice. Similar effects also occurred in the vertebra of both WT and TIEG KO animals. Additionally, histomorphometric analyses revealed that Scl-Ab therapy resulted in increased osteoblast perimeter/bone perimeter in both WT and TIEG KO animals, with a concomitant increase in P1NP, a serum marker of bone formation. In contrast, osteoclast perimeter/bone perimeter and CTX-1 serum levels were unaffected by Scl-Ab therapy, irrespective of mouse genotype. Overall, our findings demonstrate that Scl-Ab therapy elicits potent bone-forming effects in both WT and TIEG KO mice and effectively increases bone mass in female TIEG KO mice.
Collapse
Affiliation(s)
- Anne Gingery
- Department of Orthopedics, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | | | - Kevin S Pitel
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Xiaodong Li
- Department of Metabolic Disorders, Amgen, Inc., Thousand Oaks, California
| | | | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
41
|
Abstract
Most studies show a positive association between higher tea intake and bone mineral density (BMD), while associations with fracture are inconclusive. Although a few studies have investigated the potential effects of rooibos tea on the bone cell metabolism, only 1 or 2 doses were tested or specific flavonoids were evaluated in isolation. A dose-response study is needed to comprehensively identify whether a level that modulates bone cell activity is associated with dietary or supplemental levels of red rooibos (RR) tea. We investigated if RR tea stimulates mineralization in a dose-dependent manner. Mineralization was induced in Saos-2 cells in the presence of RR tea (0.1–10 µg/mL of polyphenols) or control (dH2O) for 5 days. Cell activity, mRNA, protein expression and activity of key regulators of mineralization were measured. A positive dose-dependent relationship was observed between RR tea concentration and mineralization accompanied with similar trends in cell activity. With high concentrations of tea, protein expression of enzymes directly regulating mineralization (ALP and NPP1) were unchanged but ALP activity was significantly elevated. Osteopontin (OPN) was significantly downregulated midway through mineralization while sclerostin (SOST) was upregulated in response to higher concentrations of RR tea. In conclusion, RR tea stimulated osteoblast mineralization in a dose-dependent manner and were accompanied with downregulation of OPN, increased ALP activity, and increased cell activity.
Collapse
|
42
|
Whyte MP, McAlister WH, Zhang F, Bijanki VN, Nenninger A, Gottesman GS, Lin EL, Huskey M, Duan S, Dahir K, Mumm S. New explanation for autosomal dominant high bone mass: Mutation of low-density lipoprotein receptor-related protein 6. Bone 2019; 127:228-243. [PMID: 31085352 DOI: 10.1016/j.bone.2019.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 01/10/2023]
Abstract
LRP5 encodes low-density lipoprotein receptor-related protein 5 (LRP5). When LRP5 with a Frizzled receptor join on the surface of an osteoblast and bind a member of the Wnt family of ligands, canonical Wnt/β-catenin signaling occurs and increases bone formation. Eleven heterozygous gain-of-function missense mutations within LRP5 are known to prevent the LRP5 inhibitory ligands sclerostin and dickkopf1 from attaching to LRP5's first β-propeller, and thereby explain the rare autosomal dominant (AD) skeletal disorder "high bone mass" (HBM). LRP6 is a cognate co-receptor of LRP5 and similarly controls Wnt signaling in osteoblasts, yet the consequences of increased LRP6-mediated signaling remain unknown. We investigated two multi-generational American families manifesting the clinical and routine laboratory features of LRP5 HBM but without an LRP5 defect and instead carrying a heterozygous LRP6 missense mutation that would alter the first β-propeller of LRP6. In Family 1 LRP6 c.602C>T, p.A201V was homologous to LRP5 HBM mutation c.641C>T, p.A214V, and in Family 2 LRP6 c.553A>C, p.N185H was homologous to LRP5 HBM mutation c.593A>G, p.N198S but predicting a different residue at the identical amino acid position. In both families the LRP6 mutation co-segregated with striking generalized osteosclerosis and hyperostosis. Clinical features shared by the seven LRP6 HBM family members and ten LRP5 HBM patients included a broad jaw, torus palatinus, teeth encased in bone and, reportedly, resistance to fracturing and inability to float in water. For both HBM disorders, all affected individuals were taller than average for Americans (Ps < 0.005), but with similar mean height Z-scores (P = 0.7606) and indistinguishable radiographic skeletal features. Absence of adult maxillary lateral incisors was reported by some LRP6 HBM individuals. In contrast, our 16 patients with AD osteopetrosis [i.e., Albers-Schönberg disease (A-SD)] had an unremarkable mean height Z-score (P = 0.9401) lower than for either HBM group (Ps < 0.05). DXA mean BMD Z-scores in LRP6 HBM versus LRP5 HBM were somewhat higher at the lumbar spine (+7.8 vs +6.5, respectively; P = 0.0403), but no different at the total hip (+7.9 vs +7.7, respectively; P = 0.7905). Among the three diagnostic groups, only the LRP6 HBM DXA BMD values at the spine seemed to increase with subject age (R = +0.7183, P = 0.0448). Total hip BMD Z-scores were not significantly different among the three disorders (Ps > 0.05), and showed no age effect (Ps > 0.1). HR-pQCT available only for LRP6 HBM revealed indistinct corticomedullary boundaries, high distal forearm and tibial total volumetric BMD, and finite element analysis predicted marked fracture resistance. Hence, we have discovered mutations of LRP6 that cause a dento-osseous disorder indistinguishable without mutation analysis from LRP5 HBM. LRP6 HBM seems associated with generally good health, providing some reassurance for the development of anabolic treatments aimed to enhance LRP5/LRP6-mediated osteogenesis.
Collapse
Affiliation(s)
- Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - William H McAlister
- Mallinckrodt Institute of Radiology, Washington University School of Medicine at St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| | - Fan Zhang
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Vinieth N Bijanki
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Angela Nenninger
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Gary S Gottesman
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Elizabeth L Lin
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Margaret Huskey
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Shenghui Duan
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Kathryn Dahir
- Department of Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Steven Mumm
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| |
Collapse
|
43
|
McKenzie J, Smith C, Karuppaiah K, Langberg J, Silva MJ, Ornitz DM. Osteocyte Death and Bone Overgrowth in Mice Lacking Fibroblast Growth Factor Receptors 1 and 2 in Mature Osteoblasts and Osteocytes. J Bone Miner Res 2019; 34:1660-1675. [PMID: 31206783 PMCID: PMC6744314 DOI: 10.1002/jbmr.3742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 01/11/2023]
Abstract
Fibroblast growth factor (FGF) signaling pathways have well-established roles in skeletal development, with essential functions in both chondrogenesis and osteogenesis. In mice, previous conditional knockout studies suggested distinct roles for FGF receptor 1 (FGFR1) signaling at different stages of osteogenesis and a role for FGFR2 in osteoblast maturation. However, the potential for redundancy among FGFRs and the mechanisms and consequences of stage-specific osteoblast lineage regulation were not addressed. Here, we conditionally inactivate Fgfr1 and Fgfr2 in mature osteoblasts with an Osteocalcin (OC)-Cre or Dentin matrix protein 1 (Dmp1)-CreER driver. We find that young mice lacking both receptors or only FGFR1 are phenotypically normal. However, between 6 and 12 weeks of age, OC-Cre Fgfr1/Fgfr2 double- and Fgfr1 single-conditional knockout mice develop a high bone mass phenotype with increased periosteal apposition, increased and disorganized endocortical bone with increased porosity, and biomechanical properties that reflect increased bone mass but impaired material properties. Histopathological and gene expression analyses show that this phenotype is preceded by a striking loss of osteocytes and accompanied by activation of the Wnt/β-catenin signaling pathway. These data identify a role for FGFR1 signaling in mature osteoblasts/osteocytes that is directly or indirectly required for osteocyte survival and regulation of bone mass during postnatal bone growth. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jennifer McKenzie
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.,Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Craig Smith
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kannan Karuppaiah
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua Langberg
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.,Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Ornitz
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
44
|
Ma ZP, Zhang ZF, Yang YF, Yang Y. Sesamin Promotes Osteoblastic Differentiation and Protects Rats from Osteoporosis. Med Sci Monit 2019; 25:5312-5320. [PMID: 31314750 PMCID: PMC6659468 DOI: 10.12659/msm.915529] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Osteoporosis is a common osteopathy, resulting in fractures, especially in elder people. Sesamin has many pharmacological effects, including supplying calcium. However, how sesamin might prevent osteoporosis is still under study. Material/Methods Bone marrow stromal cells (BMSCs) extracted from rat femur were induced for osteoblastic differentiation. Cell proliferation, alkaline phosphatase (ALP), osterix (OSX), SRY-box 9 (SOX9), runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), β-catenin, low density lipoprotein receptor-related protein 5 (LRP5), and glycogen synthase kinase-3β (GSK-3β) levels in BMSCs were detected in the presence or absence of sesamin (1 μM or 10 μM). In addition, FH535 (1 μM) was used to silence Wnt/β-catenin in vitro. Ovariectomized (OVX) rats were established and intragastrically administrated sesamin (80 mg/kg), and then the rat bones were analyzed by micro-computed tomography. Osteocalcin and collagen type I were measured in the rat femurs. Results Sesamin had no influence on BMSC proliferation. Higher sesamin concentration promoted Wnt/β-catenin activity and enhanced more expressions of ALP, OSX, SOX9, RUNX2, and OCN, gradually and significantly (P<0.05). Silencing Wnt/β-catenin weakened the enhancement on RUNX2 and OCN expression. Sesamin (80 mg/kg) promoted bone structure in ovariectomized rats, and significantly enhanced osteocalcin and collage type I expression (P<0.05). Conclusions Sesamin promoted osteoblastic differentiation of rat BMSCs by regulating the Wnt/β-catenin pathway, and improved rat bone structure. Sesamin could have therapeutic and preventive effects on osteoporosis.
Collapse
Affiliation(s)
- Zhong-Ping Ma
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Zhi-Feng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Yi-Feng Yang
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Yun Yang
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| |
Collapse
|
45
|
Li YP, Wu B, Liang J, Li F. Isopsoralen ameliorates H 2O 2-induced damage in osteoblasts via activating the Wnt/β-catenin pathway. Exp Ther Med 2019; 18:1899-1906. [PMID: 31410152 DOI: 10.3892/etm.2019.7741] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 05/16/2019] [Indexed: 01/03/2023] Open
Abstract
Osteoporosis is a disease with a worldwide prevalence that involves a severe loss of bone mineral density and decreased microarchitecture, which increases the risk of bone fracture. The present study evaluated the effects of isopsoralen on osteoblastic OB-6 cells following hydrogen peroxide (H2O2)-induced damage and investigated the molecular mechanisms involved in this process. For in vitro experiments, OB-6 osteoblasts were treated with H2O2 or H2O2 + isopsoralen then the cell viability, apoptosis, reactive oxygen species (ROS) production and calcium accumulation were determined. Results demonstrated that treatment with H2O2 reduced cell viability, runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) expression levels, and calcium deposition, whilst markedly increasing cell apoptosis and ROS production. However, isopsoralen (1 µM) provided significant protection against H2O2-induced alterations in osteoblasts. In addition, isopsoralen effectively upregulated protein expression of tankyrase and β-catenin which are the main transductors of the Wnt/β-catenin pathway. Of note, the protective effects of isopsoralen against H2O2-induced damage were attenuated in OB-6 cells treated with tankyrase inhibitor XAV-939. In conclusion, the present findings provided evidence that isopsoralen attenuated oxidative stress-induced injury in osteoblasts via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yu-Peng Li
- Department of Orthopedics, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Bin Wu
- Department of Orthopedics, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jie Liang
- Department of Orthopedics, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Fei Li
- Department of Orthopedics, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
46
|
Werner de Castro GR, Buss ZDS, Rosa JS, Facchin BM, Fröde TS. Evaluation of Bone Metabolism Biomarkers in Paget's Disease of Bone. Cureus 2019; 11:e4791. [PMID: 31384515 PMCID: PMC6679708 DOI: 10.7759/cureus.4791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Objective: To evaluate serum levels of bone metabolism biomarkers in patients with Paget's disease of bone (PDB). Methods: Serum levels of osteopontin, sclerostin, receptor activator of nuclear factor kappa-Β ligand (RANKL), osteoprotegerin, Dickkopf-related protein 1 (DKK-1), and soluble frizzled-related protein 1 (sFRP-1) were measured in 57 patients with Paget’s disease of bone and 24 controls with primary osteoarthritis. Subgroup analysis was employed to identify any differences in bone metabolism biomarker levels according to disease activity or current treatment. Results: Patients with PDB presented higher levels of osteopontin and RANKL. When compared with patients with inactive disease, patients with active disease presented higher levels of bone-specific alkaline phosphatase (BAP) and osteopontin. There was a significant correlation between serum levels of BAP and osteopontin. There was no significant correlation between levels of BAP and other bone metabolism biomarkers. Current disease extension on bone scintigraphy had a significant correlation with serum levels of osteopontin and BAP. There was no significant correlation between current disease extension and other bone metabolism biomarkers. Serum levels of osteopontin and RANKL were correlated to serum levels of BAP and disease extension. Conclusion: Patients with PDB presented higher levels of osteopontin and RANKL. Osteopontin could be a useful biomarker for activity and extension of PDB.
Collapse
Affiliation(s)
| | | | - Julia Salvan Rosa
- Clinical Analysis, Federal University of Santa Catarina, Florianopolis, BRA
| | - Bruno M Facchin
- Clinical Analysis, Federal University of Santa Catarina, Florianopolis, BRA
| | - Tania S Fröde
- Clinical Analysis, Federal University of Santa Catarina, Florianopolis, BRA
| |
Collapse
|
47
|
Bisson SK, Ung RV, Picard S, Valade D, Agharazii M, Larivière R, Mac-Way F. High calcium, phosphate and calcitriol supplementation leads to an osteocyte-like phenotype in calcified vessels and bone mineralisation defect in uremic rats. J Bone Miner Metab 2019; 37:212-223. [PMID: 29603070 DOI: 10.1007/s00774-018-0919-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 02/20/2018] [Indexed: 11/26/2022]
Abstract
A link between vascular calcification and bone anomalies has been suggested in chronic kidney disease (CKD) patients with low bone turnover disease. We investigated the vascular expression of osteocyte markers in relation to bone microarchitecture and mineralization defects in a model of low bone turnover CKD rats with vascular calcification. CKD with vascular calcification was induced by 5/6 nephrectomy followed by high calcium and phosphate diet, and vitamin D supplementation (Ca/P/VitD). CKD + Ca/P/VitD group (n = 12) was compared to CKD + normal diet (n = 12), control + normal diet (n = 8) and control + Ca/P/VitD supplementation (n = 8). At week 6, tibia, femurs and the thoracic aorta were analysed by Micro-Ct, histomorphometry and for expression of osteocyte markers. High Ca/P/VitD treatment induced vascular calcification only in CKD rats, suppressed serum parathyroid hormone levels and led to higher sclerostin, DKK1 and FGF23 serum levels. Expression of sclerostin, DKK1 and DMP1 but not FGF23 were increased in calcified vessels from CKD + Ca/P/VitD rats. Despite low parathyroid hormone levels, tibia bone cortical thickness was significantly lower in CKD + Ca/P/VitD rats as compared to control rats fed a normal diet, which is likely the result of radial growth impairment. Finally, Ca/P/VitD treatment in CKD rats induced a bone mineralization defect, which is likely explained by the high calcitriol dose. In conclusion, Ca/P/VitD supplementation in CKD rats induces expression of osteocyte markers in vessels and bone mineralisation anomalies. Further studies should evaluate the mechanisms of high dose calcitriol-induced bone mineralisation defects in CKD.
Collapse
Affiliation(s)
- Sarah-Kim Bisson
- Endocrinology and Nephrology Axis, Faculty and Department of Medicine, L'Hôtel-Dieu de Québec Hospital, CHU de Québec Research Center, Université Laval, 10 McMahon, Quebec City, QC, G1R 2J6, Canada
| | - Roth-Visal Ung
- Endocrinology and Nephrology Axis, Faculty and Department of Medicine, L'Hôtel-Dieu de Québec Hospital, CHU de Québec Research Center, Université Laval, 10 McMahon, Quebec City, QC, G1R 2J6, Canada
| | - Sylvain Picard
- Endocrinology and Nephrology Axis, Faculty and Department of Medicine, L'Hôtel-Dieu de Québec Hospital, CHU de Québec Research Center, Université Laval, 10 McMahon, Quebec City, QC, G1R 2J6, Canada
| | - Danika Valade
- Endocrinology and Nephrology Axis, Faculty and Department of Medicine, L'Hôtel-Dieu de Québec Hospital, CHU de Québec Research Center, Université Laval, 10 McMahon, Quebec City, QC, G1R 2J6, Canada
| | - Mohsen Agharazii
- Endocrinology and Nephrology Axis, Faculty and Department of Medicine, L'Hôtel-Dieu de Québec Hospital, CHU de Québec Research Center, Université Laval, 10 McMahon, Quebec City, QC, G1R 2J6, Canada
| | - Richard Larivière
- Endocrinology and Nephrology Axis, Faculty and Department of Medicine, L'Hôtel-Dieu de Québec Hospital, CHU de Québec Research Center, Université Laval, 10 McMahon, Quebec City, QC, G1R 2J6, Canada
| | - Fabrice Mac-Way
- Endocrinology and Nephrology Axis, Faculty and Department of Medicine, L'Hôtel-Dieu de Québec Hospital, CHU de Québec Research Center, Université Laval, 10 McMahon, Quebec City, QC, G1R 2J6, Canada.
| |
Collapse
|
48
|
Ferretti M, Cavani F, Roli L, Checchi M, Magarò MS, Bertacchini J, Palumbo C. Interaction among Calcium Diet Content, PTH (1-34) Treatment and Balance of Bone Homeostasis in Rat Model: The Trabecular Bone as Keystone. Int J Mol Sci 2019; 20:ijms20030753. [PMID: 30754633 PMCID: PMC6387065 DOI: 10.3390/ijms20030753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
The present study is the second step (concerning normal diet restoration) of the our previous study (concerning the calcium-free diet) to determine whether normal diet restoration, with/without concomitant PTH (1-34) administration, can influence amounts and deposition sites of the total bone mass. Histomorphometric evaluations and immunohistochemical analysis for Sclerostin expression were conducted on the vertebral bodies and femurs in the rat model. The final goals are (i) to define timing and manners of bone mass changes when calcium is restored to the diet, (ii) to analyze the different involvement of the two bony architectures having different metabolism (i.e., trabecular versus cortical bone), and (iii) to verify the eventual role of PTH (1-34) administration. Results evidenced the greater involvement of the trabecular bone with respect to the cortical bone, in response to different levels of calcium content in the diet, and the effect of PTH, mostly in the recovery of trabecular bony architecture. The main findings emerged from the present study are (i) the importance of the interplay between mineral homeostasis and skeletal homeostasis in modulating and guiding bone's response to dietary/metabolic alterations and (ii) the evidence that the more involved bony architecture is the trabecular bone, the most susceptible to the dynamical balance of the two homeostases.
Collapse
Affiliation(s)
- Marzia Ferretti
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Francesco Cavani
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Laura Roli
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL of Modena, 41126 Modena, Italy.
| | - Marta Checchi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Maria Sara Magarò
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Jessika Bertacchini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Carla Palumbo
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| |
Collapse
|
49
|
Samiei M, Janjić K, Cvikl B, Moritz A, Agis H. The role of sclerostin and dickkopf-1 in oral tissues - A review from the perspective of the dental disciplines. F1000Res 2019; 8:128. [PMID: 31031968 PMCID: PMC6468704 DOI: 10.12688/f1000research.17801.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2019] [Indexed: 12/17/2022] Open
Abstract
Wnt signaling is of high relevance in the development, homeostasis, and regeneration of oral tissues. Therefore, Wnt signaling is considered to be a potential target for therapeutic strategies. The action of Wnt is tightly controlled by the inhibitors sclerostin (SOST) and Dickkopf (DKK)-1. Given the impact of SOST and DKK-1 in hard tissue formation, related diseases and healing, it is of high relevance to understand their role in oral tissues. The clinical relevance of this knowledge is further underlined by systemic and local approaches which are currently in development for treating a variety of diseases such as osteoporosis and inflammatory hard tissue resorption. In this narrative review, we summarize the current knowledge and understanding on the Wnt signaling inhibitors SOST and DKK-1, and their role in physiology, pathology, and regeneration in oral tissues. We present this role from the perspective of the different specialties in dentistry, including endodontics, orthodontics, periodontics, and oral surgery.
Collapse
Affiliation(s)
- Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, 1090, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, 1200, Austria
| | - Klara Janjić
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, 1090, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, 1200, Austria
| | - Barbara Cvikl
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, 1090, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, 1200, Austria
| | - Andreas Moritz
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, 1090, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, 1200, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, 1090, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, 1200, Austria
| |
Collapse
|
50
|
Tao SC, Guo SC. Extracellular vesicles in bone: "dogrobbers" in the "eternal battle field". Cell Commun Signal 2019; 17:6. [PMID: 30658653 PMCID: PMC6339294 DOI: 10.1186/s12964-019-0319-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/06/2019] [Indexed: 02/07/2023] Open
Abstract
Throughout human life, bone is constantly in a delicate dynamic equilibrium of synthesis and resorption, hosting finely-tuned bone mineral metabolic processes for bone homeostasis by collaboration or symphony among several cell types including osteoclasts (OCs), osteoblasts (OBs), osteocytes (OYs), vascular endothelial cells (ECs) and their precursors. Beyond these connections, a substantial level of communication seems to occur between bone and other tissues, and together, they form an organic unit linked to human health and disease. However, the current hypothesis, which includes growth factors, hormones and specific protein secretion, incompletely explains the close connections among bone cells or between bone and other tissues. Extracellular vesicles (EVs) are widely-distributed membrane structures consisting of lipid bilayers, membrane proteins and intravesicular cargo (including proteins and nucleic acids), ranging from 30 nm to 1000 nm in diameter, and their characters have been highly conserved throughout evolution. EVs have targeting abilities and the potential to transmit multidimensional, abundant and complicated information, as powerful and substantial "dogrobbers" mediating intercellular communications. As research has progressed, EVs have gradually become thought of as "dogrobbers" in bone tissue-the "eternal battle field" -in a delicate dynamic balance of destruction and reconstruction. In the current review, we give a brief description of the major constituent cells in bone tissues and explore the progress of current research on bone-derived EVs. In addition, this review also discusses in depth not only potential directions for future research to breakthrough in this area but also problems existing in current research that need to be solved for a better understanding of bone tissues.
Collapse
Affiliation(s)
- Shi-Cong Tao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Shang-Chun Guo
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|