1
|
Madhuri V, Ramesh S, Goos A, Paul TV, Nidugala Kesava S, Mathews V, Walther-Jallow L, Götherström C. Evaluation of safety and efficacy of multiple intravenous and intraosseous doses of foetal liver-derived mesenchymal stem cells in children with severe osteogenesis imperfecta : the BOOST2B clinical trial protocol. Bone Jt Open 2025; 6:361-372. [PMID: 40122106 PMCID: PMC11930377 DOI: 10.1302/2633-1462.63.bjo-2024-0115.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
Aims Current off-label bisphosphonate treatment for osteogenesis imperfecta (OI) does not induce healthy bone formation. Therefore, novel strategies to stimulate osteogenesis and reduce fractures are needed to meet the medical needs of these patients. Preclinical data and case studies show that multiple intravenous (IV) administrations of mesenchymal stem cells (MSCs) provide promising outcomes in the treatment of OI. In the Boost to Brittle Bones (BOOST2B) trial, we aim to assess the safety and tolerability of multiple IV and intraosseous (IO) administrations of foetal liver-derived MSCs in children aged one to five years diagnosed with severe OI. Methods A total of 15 children will receive four doses of foetal MSCs IV (3 × 106 cells per kg of body weight) and IO (0.1 × 106 cells per kg of body weight per long bone) at four-month intervals. As a secondary endpoint, the therapeutic effect of the four MSC doses will be assessed based on the annual fracture rate, time to first fracture, bone mineral density, growth, clinical status of OI, and biochemical bone turnover in peripheral blood. Exploratory parameters include quality of life and donor cell engraftment. Conclusion The BOOST2B trial has been approved by the regulatory agencies in India and is ongoing. It is the first clinical trial designed to evaluate IO administration of MSCs as a potential therapy for OI. Here, we describe the BOOST2B clinical trial protocol. The long-term data on safety and efficacy will be reported once completed.
Collapse
Affiliation(s)
- Vrisha Madhuri
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore, India
- Center for Stem Cell Research, (a unit of inStem, Bengaluru, Christian Medical College), Vellore, India
- Department of Orthopaedics, Amara Hospital, Tirupati, India
| | - Sowmya Ramesh
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore, India
- Center for Stem Cell Research, (a unit of inStem, Bengaluru, Christian Medical College), Vellore, India
| | - Annika Goos
- Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas V. Paul
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
| | | | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - Lilian Walther-Jallow
- Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Götherström
- Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
2
|
Hui WH, Chen YL, Chang SW. GraphLOGIC: Lethality prediction of osteogenesis imperfecta on type I collagen by a mechanics-informed graph neural network. Int J Biol Macromol 2025; 291:139001. [PMID: 39706395 DOI: 10.1016/j.ijbiomac.2024.139001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Collagen plays a crucial role in human bodies and has a significant presence in connective tissues. As such, the impact of collagen mutations can be devastating. Osteogenesis imperfecta (OI), a rare genetic disease affecting 1 in every 15,000 to 20,000 people, is one such example characterized by brittle bones. Severe cases of OI could lead to prenatal death. Previous studies have provided insights into the impact of mutations on collagen molecules and predictions of lethality. However, these discussions have focused mainly on mutations in the α1 chain, and some mutation types exhibit poor predictive performance. Coverage of α2 mutations is also limited. We propose a method to predict the risk of lethality for OI-inducing mutations, where a novel mechanics-informed graph representation of the collagen fibril is proposed based on full atomistic simulations to encode sequential and structural information. The method demonstrated improved accuracy in predicting the risk of lethality associated with mutations occurring on both α1 and α2chains. We also found a correlation between the sequences and the predicted OI lethality with the use of a variant of the Grad-CAM technique, where the results agree well with previous studies. Our findings provide insights into the molecular mechanism of collagen on OI lethality.
Collapse
Affiliation(s)
- Wei-Han Hui
- Department of Civil Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yen-Lin Chen
- Department of Civil Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Shu-Wei Chang
- Department of Civil Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
3
|
Özen S, Gökşen D, Evin F, Işık E, Onay H, Akgün B, Ata A, Atik T, Düzcan F, Özkınay F, Darcan Ş, Çoğulu Ö. Molecular Genetic Diagnosis with Targeted Next Generation Sequencing in a Cohort of Turkish Osteogenesis Imperfecta Patients and their Genotype-phenotype Correlation. J Clin Res Pediatr Endocrinol 2024; 16:431-442. [PMID: 38828893 PMCID: PMC11629724 DOI: 10.4274/jcrpe.galenos.2024.2022-12-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
Objective Osteogenesis imperfecta (OI) consists of a group of phenotypically and genetically heterogeneous connective tissue disorders that share similar skeletal anomalies causing bone fragility and deformation. The aim was to investigate the molecular genetic etiology and determine the relationship between genotype and phenotype in OI patients using targeted next-generation sequencing (NGS). Methods A targeted NGS analysis panel (Illumina TruSight One) containing genes involved in collagen/bone synthesis was performed on the Illumina Nextseq550 platform in patients with a confirmed diagnosis of OI. Results Fifty-six patients (female/male: 25/31) from 46 different families were included. Consanguinity was noted in 15 (32.6%) families. Based on Sillence classification 18 (33.1%) were type 1 OI, 1 (1.7%) type 2, 26 (46.4%) type 3 and 11 (19.6%) type 4. Median body weight was -1.1 (-6.8, - 2.5) standard deviation scores (SDS), and height was -2.3 (-7.6, - 1.2) SDS. Bone deformity affected 30 (53.5%), while 31 (55.4%) were evaluated as mobile. Thirty-six (60.7%) had blue sclera, 13 (23.2%) had scoliosis, 12 (21.4%) had dentinogenesis imperfecta (DI), and 2 (3.6%) had hearing loss. Disease-causing variants in COL1A1 and COL1A2 were found in 24 (52.1%) and 6 (13%) families, respectively. In 8 (17.3%) of the remaining 16 (34.7%) families, the NGS panel revealed disease-causing variants in three different genes (FKBP10, SERPINF1, and P3H1). Nine (23.6%) of the variants detected by NGS panel had not previously been reported and were also classified as pathogenic based on American College of Medical Genetics guidelines pathogenity scores. In ten (21.7%) families, a disease-related variant was not found in any of the 13 OI genes on the panel. Conclusion Genetic etiology was found in 38 (82.6%) of 46 families by targeted NGS analysis. Furthermore, nine new variants were identified in known OI genes which were classified as pathogenic by standard guidelines.
Collapse
Affiliation(s)
- Samim Özen
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, İzmir, Turkey
| | - Damla Gökşen
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, İzmir, Turkey
| | - Ferda Evin
- Bakırçay University, Çiğli Training and Research Hospital, Clinic of Pediatric Endocrinology, İzmir, Turkey
| | - Esra Işık
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Genetics, İzmir, Turkey
| | - Hüseyin Onay
- Ege University Faculty of Medicine, Department of Medical Genetics, İzmir, Turkey
| | - Bilçağ Akgün
- Ege University Faculty of Medicine, Department of Medical Genetics, İzmir, Turkey
| | - Aysun Ata
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, İzmir, Turkey
| | - Tahir Atik
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Genetics, İzmir, Turkey
| | - Füsun Düzcan
- Tınaztepe University Faculty of Medicine, Department of Medical Genetics, İzmir, Turkey
| | - Ferda Özkınay
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Genetics, İzmir, Turkey
| | - Şükran Darcan
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, İzmir, Turkey
| | - Özgür Çoğulu
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Genetics, İzmir, Turkey
| |
Collapse
|
4
|
Misof BM, Fratzl-Zelman N. Bone Quality and Mineralization and Effects of Treatment in Osteogenesis Imperfecta. Calcif Tissue Int 2024; 115:777-804. [PMID: 39231826 DOI: 10.1007/s00223-024-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/10/2024] [Indexed: 09/06/2024]
Abstract
Osteogenesis imperfecta (OI) is a rare congenital bone dysplasia characterized by high fracture rates and broad variations in clinical manifestations ranging from mild to increasingly severe and perinatal lethal forms. The underlying mutations affect either the synthesis or processing of the type I procollagen molecule itself or proteins that are involved in the formation and mineralization of the collagen matrix. Consequently, the collagen forming cells, the osteoblasts, become broadly dysfunctional in OI. Strikingly, hypermineralized bone matrix seems to be a frequent feature in OI, despite the variability in clinical severity and mutations in the so far studied different forms of human OI. While the causes of the increased mineral content of the bone matrix are not fully understood yet, there is evidence that the descendants of the osteoblasts, the osteocytes, which play a critical role not only in bone remodeling, but also in mineralization and sensing of mechanical loads, are also highly dysregulated and might be of major importance in the pathogenesis of OI. In this review article, we firstly summarize findings of cellular abnormalities in osteoblasts and osteocytes, alterations of the organic matrix, as well as of the microstructural organization of bone. Secondly, we focus on the hypermineralization of the bone matrix in OI as observed in several different forms of human OI as well as in animal models, its measurement and potential mechanical implications and its effect on the bone mineral density measured by dual X-ray absorptiometry. Thirdly, we give an overview of established medication treatments of OI and new approaches with a focus of their known or possible effects on the bone material, particularly on bone matrix mineralization.
Collapse
Affiliation(s)
- Barbara M Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria.
- Vienna Bone and Growth Center, Vienna, Austria.
| |
Collapse
|
5
|
Jovanovic M, Marini JC. Update on the Genetics of Osteogenesis Imperfecta. Calcif Tissue Int 2024; 115:891-914. [PMID: 39127989 PMCID: PMC11607015 DOI: 10.1007/s00223-024-01266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous heritable skeletal dysplasia characterized by bone fragility and deformity, growth deficiency, and other secondary connective tissue defects. OI is now understood as a collagen-related disorder caused by defects of genes whose protein products interact with collagen for folding, post-translational modification, processing and trafficking, affecting bone mineralization and osteoblast differentiation. This review provides the latest updates on genetics of OI, including new developments in both dominant and rare OI forms, as well as the signaling pathways involved in OI pathophysiology. There is a special emphasis on discoveries of recessive mutations in TENT5A, MESD, KDELR2 and CCDC134 whose causality of OI types XIX, XX, XXI and XXI, respectively, is now established and expends the complexity of mechanisms underlying OI to overlap LRP5/6 and MAPK/ERK pathways. We also review in detail new discoveries connecting the known OI types to each other, which may underlie an eventual understanding of a final common pathway in OI cellular and bone biology.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Section on Adolescent Bone and Body Composition, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Aksornthong S, Patel P, Komarova SV. Osteoclast indices in osteogenesis imperfecta: systematic review and meta-analysis. JBMR Plus 2024; 8:ziae112. [PMID: 39372603 PMCID: PMC11450326 DOI: 10.1093/jbmrpl/ziae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Osteogenesis imperfecta (OI) is a rare bone fragility disorder caused by mutations in genes encoding collagen type I or that affect its processing. Alterations in osteoclasts were suggested to contribute to OI pathophysiology. We aimed to systematically identify studies reporting measures of osteoclast formation and function in patients and mouse models of OI, to quantify OI-induced changes. The systematic search of Medline, Ovid, and Web of Science identified 798 unique studies. After screening, we included 23 studies for meta-analysis, reporting osteoclast parameters in 310 patients with OI of 9 different types and 16 studies reporting osteoclast parameters in 406 animals of 11 different OI mouse models. The standardized mean difference with 95% confidence interval (CI) was used as the effect size, and random-effects meta-analysis was performed. In patients with OI, collagen degradation markers were significantly higher compared with age-matched controls, with an effect size of 1.23 (CI: 0.36, 2.10]. Collagen degradation markers were the most elevated in the 3- to 7-year-old age group and in patients with more severe forms of OI. Bone histomorphometry demonstrated the trends for higher osteoclast numbers (1.16; CI: -0.22, 2.55) and osteoclast surface (0.43; CI: -0.63, 1.49), and significantly higher eroded surface (3.24; CI: 0.51, 5.96) compared with age-matched controls. In OI mice, meta-analysis demonstrated significant increases in collagen degradation markers (1.59; CI: 1.07, 2.11), in osteoclast numbers (0.94; CI: 0.50, 1.39), osteoclast surface (0.73; CI: 0.22, 1.23), and eroded surface (1.31; CI: 0.54, 2.08). The largest differences were in OI mice with the mutations in Col1a1 and Col1a2 genes. There were no differences between males and females in clinical or animal studies. Quantitative estimates of changes in osteoclast indices and their variance for patients with OI are important for planning future studies. We confirmed that similar changes are observed in mice with OI, supporting their translational utility.
Collapse
Affiliation(s)
- Sirion Aksornthong
- Department of Experimental Surgery, McGill University, Montreal, Quebec H3G 1A4, Canada
- Shriners Hospital for Children—Canada, Montreal, Quebec H4A 0A9, Canada
| | - Priyesh Patel
- Shriners Hospital for Children—Canada, Montreal, Quebec H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Svetlana V Komarova
- Department of Experimental Surgery, McGill University, Montreal, Quebec H3G 1A4, Canada
- Shriners Hospital for Children—Canada, Montreal, Quebec H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec H3A 1G1, Canada
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
7
|
Westerheim I, Cormier-Daire V, Gilbert S, O'Malley S, Keen R. Osteogenesis Imperfecta: A study of the patient journey in 13 European countries. Orphanet J Rare Dis 2024; 19:331. [PMID: 39252130 PMCID: PMC11386111 DOI: 10.1186/s13023-024-03345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
INTRODUCTION Osteogenesis imperfecta (OI) is a heritable skeletal disorder and comprises various subtypes that differ in clinical presentation, with Type I considered the least severe and Types III/IV the most severe forms. The study aim was to understand the OI patient diagnostic and treatment journey across Europe. METHODS We conducted a qualitative, descriptive study to understand the OI patient journey. A selection of people with OI/their caregivers and clinicians involved in OI-patient care from across Europe were interviewed using a specially developed questionnaire. RESULTS Between May 2022 and July 2022, 22 people with OI/caregivers and 22 clinicians (endocrinologists, orthopaedic surgeons, geneticists and metabolic specialists) from across Europe were interviewed. Our study showed various areas of concerns for the OI community. Timely diagnosis of OI is essential; misdiagnoses and a delay to treatment initiation are all too common. There are a lack of consensus guidelines regarding optimal treatments (including when bisphosphonate therapy should be initiated and the route of administration) and patient management throughout the duration of the patient's life. Adult OI patients do not have a medical home and are often managed by endocrinologists and rheumatologists. Adult care is often reactive based on the development of new symptoms. The psychosocial burden of OI impacts on the patient's quality of life. CONCLUSIONS There is an urgent need for increased awareness about OI and its wide range of symptoms. In particular, there is a need for consensus guidelines outlining the optimum care throughout the duration of the OI patient's life.
Collapse
Affiliation(s)
- Ingunn Westerheim
- Osteogenesis Imperfecta Federation Europe (OIFE), Schotelveldstraat 17, Heffen, 2801, Belgium.
| | - Valerie Cormier-Daire
- Reference Center for Skeletal Dysplasia, Paris Cité University, INSERM UMR 1163, Imagine Institute, Hôpital Necker-Enfants Malades, 149 rue de Sévres, Paris, 75015, France
| | - Scott Gilbert
- , Putnam Associates, 22-24 Torrington Place Fitzrovia, London, WC1E 7HJ, UK
| | - Sean O'Malley
- , Putnam Associates, 22-24 Torrington Place Fitzrovia, London, WC1E 7HJ, UK
| | - Richard Keen
- Royal National Orthopaedic Hospital NHS Trust, Brockley Hill, Stanmore, Middlesex, HA7 4LP, UK
| |
Collapse
|
8
|
Aliyeva L, Ongen YD, Eren E, Sarisozen MB, Alemdar A, Temel SG, Sag SO. Genotype and Phenotype Correlation of Patients with Osteogenesis Imperfecta. J Mol Diagn 2024; 26:754-769. [PMID: 39025364 DOI: 10.1016/j.jmoldx.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/17/2024] [Accepted: 05/16/2024] [Indexed: 07/20/2024] Open
Abstract
Osteogenesis imperfecta (OI) is the most common inherited connective tissue disease of the bone, characterized by recurrent fractures and deformities. In patients displaying the OI phenotype, genotype-phenotype correlation is used to screen multiple genes swiftly, identify new variants, and distinguish between differential diagnoses and mild subtypes. This study evaluated variants identified through next-generation sequencing in 58 patients with clinical characteristics indicative of OI. The cohort included 18 adults, 37 children, and 3 fetuses. Clinical classification revealed 25 patients as OI type I, three patients as OI type II, 18 as OI type III, and 10 as OI type IV. Fifteen variants in COL1A1 were detected in 19 patients, 9 variants in COL1A2 (n = 19), 5 variants in LEPRE1/P3H1 (n = 7), 3 variants in FKBP10 (n = 4), 3 variants in SERPINH1 (n = 2), 1 variant in IFITM5 (n = 1), and 1 variant in PLS3 (n = 1). In total, 37 variants (18 pathogenic, 14 likely pathogenic, and 5 variants of uncertain significance), including 16 novel variants, were identified in 43 (37 probands, 6 family members) of the 58 patients analyzed. This study highlights the efficacy of panel testing in the molecular diagnosis of OI, the significance of the next-generation sequencing technique, and the importance of genotype-phenotype correlation.
Collapse
Affiliation(s)
- Lamiya Aliyeva
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey; Department of Medical Genetics, Atakent Hospital, Acibadem Health Group, Istanbul, Türkiye
| | - Yasemin Denkboy Ongen
- Department of Pediatric Endocrinology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Erdal Eren
- Department of Pediatric Endocrinology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Mehmet B Sarisozen
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Adem Alemdar
- Department of Translational Medicine, Health Sciences Institute, Bursa Uludag University, Bursa, Türkiye
| | - Sehime G Temel
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey; Department of Histology and Embryology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey; Department of Translational Medicine, Health Sciences Institute, Bursa Uludag University, Bursa, Türkiye.
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| |
Collapse
|
9
|
Alshamsi MAH, Mosa KA, Khan AA, Mousa M, Ali MA, Soliman SSM, Semreen MH. Biosynthesized Silver Nanoparticles from Cyperus conglomeratus Root Extract Inhibit Osteogenic Differentiation of Immortalized Mesenchymal Stromal Cells. Curr Pharm Biotechnol 2024; 25:1333-1347. [PMID: 37612859 DOI: 10.2174/1389201024666230823094412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Silver nanoparticles (AgNPs) are a focus of huge interest in biological research, including stem cell research. AgNPs synthesized using Cyperus conglomeratus root extract have been previously reported but their effects on mesenchymal stromal cells have yet to be investigated. OBJECTIVES The aim of this study is to investigate the effects of C. conglomeratus-derived AgNPs on adipogenesis and osteogenesis of mesenchymal stromal cells. METHODS AgNPs were synthesized using C. conglomeratus root extract, and the phytochemicals involved in AgNPs synthesis were analyzed using gas chromatography-mass spectrometry (GCMS). The cytotoxicity of the AgNPs was tested on telomerase-transformed immortalized human bone marrow-derived MSCs-hTERT (iMSC3) and human osteosarcoma cell line (MG-63) using MTT and apoptosis assays. The uptake of AgNPs by both cells was confirmed using inductively coupled plasma-optical emission spectrometry (ICP-OES). Furthermore, the effect of AgNPs on iMSC3 adipogenesis and osteogenesis was analyzed using stain quantification and reverse transcription- quantitative polymerase chain reaction (RT-qPCR). RESULTS The phytochemicals predominately identified in both the AgNPs and C. conglomeratus root extract were carbohydrates. The AgNP concentrations tested using MTT and apoptosis assays (0.5-64 µg/ml and 1,4 and 32 µg/ml, respectively) showed no significant cytotoxicity on iMSC3 and MG-63. The AgNPs were internalized in a concentration-dependent manner in both cell types. Additionally, the AgNPs exhibited a significant negative effect on osteogenesis but not on adipogenesis. CONCLUSION C. conglomeratus-derived AgNPs had an impact on the differentiation capacity of iMSC3. Our results indicated that C. conglomeratus AgNPs and the associated phytochemicals could exhibit potential medical applications.
Collapse
Affiliation(s)
- Mohamed A H Alshamsi
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Kareem A Mosa
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Amir Ali Khan
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Muath Mousa
- Research Institute of Science and Engineering (RISE), University of Sharjah, Sharjah, United Arab Emirates
| | - Muna A Ali
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Sameh S M Soliman
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad H Semreen
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
10
|
Danyukova T, Alimy AR, Velho RV, Yorgan TA, Di Lorenzo G, von Kroge S, Tidow H, Wiegert JS, Hermans-Borgmeyer I, Schinke T, Rolvien T, Pohl S. Mice heterozygous for an osteogenesis imperfecta-linked MBTPS2 variant display a compromised subchondral osteocyte lacunocanalicular network associated with abnormal articular cartilage. Bone 2023; 177:116927. [PMID: 37797712 DOI: 10.1016/j.bone.2023.116927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Missense variants in the MBTPS2 gene, located on the X chromosome, have been associated with an X-linked recessive form of osteogenesis imperfecta (X-OI), an inherited bone dysplasia characterized by multiple and recurrent bone fractures, short stature, and various skeletal deformities in affected individuals. The role of site-2 protease, encoded by MBTPS2, and the molecular pathomechanism underlying the disease are to date elusive. This study is the first to report on the generation of two Mbtps2 mouse models, a knock-in mouse carrying one of the disease-causative MBTPS2 variants (N455S) and a Mbtps2 knock-out (ko) mouse. Because both loss-of-function variants lead to embryonic lethality in hemizygous male mutant mice, we performed a comprehensive skeletal analysis of heterozygous Mbtps2+/N455S and Mbtps2+/ko female mice. Both models displayed osteochondral abnormalities such as thinned subchondral bone, altered subchondral osteocyte interconnectivity as well as thickened articular cartilage with chondrocyte clustering, altogether resembling an early osteoarthritis (OA) phenotype. However, distant from the joints, no alterations in the bone mass and turnover could be detected in either of the mutant mice. Based on our findings we conclude that MBTPS2 haploinsufficiency results in early OA-like alterations in the articular cartilage and underlying subchondral bone, which likely precede the development of typical OI phenotype in bone. Our study provides first evidence for a potential role of site-2 protease for maintaining homeostasis of both bone and cartilage.
Collapse
Affiliation(s)
- Tatyana Danyukova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Assil-Ramin Alimy
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Renata Voltolini Velho
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Giorgia Di Lorenzo
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Henning Tidow
- The Hamburg Advanced Research Center for Bioorganic Chemistry (HARBOR), Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
| | - J Simon Wiegert
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Irm Hermans-Borgmeyer
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Tim Rolvien
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
11
|
Alao MA, Sobande OJ, Borokinni AM, Akindolire AE, Ayede AI, Tongo OO. Active Euthanasia for Perinatal Osteogenesis Imperfecta; An Ethical Dilemma in a Tertiary Facility in Southwestern Nigeria: A Case Report. Niger Med J 2023; 64:704-711. [PMID: 38962105 PMCID: PMC11218853 DOI: 10.60787/nmj-64-5-347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Managing a newborn with lethal congenital anomalies is challenging but handling a parent's request for doctors under oath to terminate the baby's life is another major ethical dilemma requiring cautious evaluation. We present a term male neonate who presented on the 7th day of life, with a dark-blue sclera, multiple limb deformities, long bone fractures, beaded ribs, a flattened forehead, a narrow chest, and respiratory distress. A Diagnosis of Type II Osteogenesis imperfecta was made and he was managed by a multidisciplinary team including neonatologists, geneticists/endocrinologists, orthopaedic surgeons, nurses, and medical social workers. Supplemental oxygen, intravenous fluids and antibiotics, analgesia, and bisphosphonates were offered as supportive care. The main concern was the challenges of managing a newborn with lethal OI and balancing the demand for euthanasia by the parents to end the baby's misery. In providing care, the rights of the child to life, the morals of the physician, the best interests of the baby, and the family's role in decision-making in a setting of out-of-pocket expenditures must be weighed. Following extensive multidisciplinary team meetings, it was ultimately decided to allow nature to take her course. Baby subsequently had progressive respiratory distress from pulmonary hypoplasia and died of respiratory failure on the twelfth day of life. In Conclusion, Osteogenesis imperfecta of the perinatal type is usually a lethal disease, with death often occurring within the perinatal period. The physician must, therefore, balance the parental rights, the oath of office, and the existing legal framework to avoid charges of murder or manslaughter.
Collapse
Affiliation(s)
- Michael Abel Alao
- Department of Pediatrics, College of Medicine University of Ibadan & University College Hospital, Ibadan, Oyo State, Nigeria
| | | | | | - Abimbola Ellen Akindolire
- Department of Pediatrics, College of Medicine University of Ibadan & University College Hospital, Ibadan, Oyo State, Nigeria
| | - Adejumoke Idowu Ayede
- Department of Pediatrics, College of Medicine University of Ibadan & University College Hospital, Ibadan, Oyo State, Nigeria
| | - Olukemi Oluwatoyin Tongo
- Department of Pediatrics, College of Medicine University of Ibadan & University College Hospital, Ibadan, Oyo State, Nigeria
| |
Collapse
|
12
|
Xu RH, Zhu L, Sun R, Zou S, Dong D. Impact of caregiver's eHealth literacy, financial well-being, and mental health on quality of life of pediatric patients with osteogenesis imperfecta. Health Qual Life Outcomes 2023; 21:67. [PMID: 37420281 DOI: 10.1186/s12955-023-02148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023] Open
Abstract
OBJECTIVE This study assesses the association between health-related quality of life (HRQoL) for pediatric patients with osteogenesis imperfecta (OI) and their caregivers' eHealth literacy (eHL), financial well-being, and mental health along with the impact of eHealth literacy on the financial well-being and mental health of OI caregivers. METHODS Participants were recruited from a member pool of two OI patient organizations in China. Information about patients' HRQoL and their caregivers' eHL, financial well-being, and mental health was collected. Structure equation modeling (SEM) was used to estimate the relationship between the measures. The robust weighted least square mean and variance adjusted estimator was used. Three criteria, the comparative fit index, the Tucker-Lewis index, and the root mean square error of approximation, were used to evaluate the goodness-of-fit of the model. RESULTS A total of 166 caregivers completed the questionnaires. Around 28.3% indicated that pediatric OI patients experienced problems related to mobility, and 25.3% reported difficulty doing usual activities. Around 52.4% of caregivers reported that their care receivers have some emotional problems while 8.4% reported that their care receivers have "a lot of" emotional problems. 'Some problems' on all dimensions on EQ-5D-Y was the most frequently reported health state (13.9%), and around 10.0% have no problems on all dimensions on EQ-5D-Y. Caregivers tended to show a significantly high eHL, financial well-being, and mental health when their care receivers reported no problems with usual activities and emotions. The SEM demonstrated a significant and positive relationship between eHL, financial well-being, and mental health. CONCLUSION OI caregivers with high eHL reported satisfactory financial well-being and mental health; their care receivers rarely reported living with poor HRQoL. Providing multicomponent and easy-to-learn training to improve caregivers' eHL should be highly encouraged.
Collapse
Affiliation(s)
- Richard Huan Xu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Liling Zhu
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rongjia Sun
- The Illness Challenge Foundation, Beijing, China
| | - Sainan Zou
- Department of Intensive Care Unit, The Sith Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Dong Dong
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
13
|
Verdonk SJE, Storoni S, Zhytnik L, Zhong W, Pals G, van Royen BJ, Elting MW, Maugeri A, Eekhoff EMW, Micha D. Medical Care Use Among Patients with Monogenic Osteoporosis Due to Rare Variants in LRP5, PLS3, or WNT1. Calcif Tissue Int 2023:10.1007/s00223-023-01101-3. [PMID: 37277619 PMCID: PMC10371905 DOI: 10.1007/s00223-023-01101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Abstract
Pathogenic variants in the LRP5, PLS3, or WNT1 genes can significantly affect bone mineral density, causing monogenic osteoporosis. Much remains to be discovered about the phenotype and medical care needs of these patients. The purpose of this study was to examine the use of medical care among Dutch individuals identified between 2014 and 2021 with a pathogenic or suspicious rare variant in LRP5, PLS3, or WNT1. In addition, the aim was to compare their medical care utilization to both the overall Dutch population and the Dutch Osteogenesis Imperfecta (OI) population. The Amsterdam UMC Genome Database was used to match 92 patients with the Statistics Netherlands (CBS) cohort. Patients were categorized based on their harbored variants: LRP5, PLS3, or WNT1. Hospital admissions, outpatient visits, medication data, and diagnosis treatment combinations (DTCs) were compared between the variant groups and, when possible, to the total population and OI population. Compared to the total population, patients with an LRP5, PLS3, or WNT1 variant had 1.63 times more hospital admissions, 2.0 times more opened DTCs, and a greater proportion using medication. Compared to OI patients, they had 0.62 times fewer admissions. Dutch patients with an LRP5, PLS3, or WNT1 variant appear to require on average more medical care than the total population. As expected, they made higher use of care at the surgical and orthopedic departments. Additionally, they used more care at the audiological centers and the otorhinolaryngology (ENT) department, suggesting a higher risk of hearing-related problems.
Collapse
Affiliation(s)
- S J E Verdonk
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Rare Bone Disease Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands
| | - S Storoni
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Rare Bone Disease Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands
| | - L Zhytnik
- Rare Bone Disease Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Department of Traumatology and Orthopedics, University of Tartu, Tartu, Estonia
| | - W Zhong
- Rare Bone Disease Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - G Pals
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - B J van Royen
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam UMC Location University of Amsterdam and Location Vrije Universiteit Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health, Amsterdam, The Netherlands
| | - M W Elting
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - A Maugeri
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - E M W Eekhoff
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Rare Bone Disease Center Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands.
| | - D Micha
- Rare Bone Disease Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Majid N, Khan RH. Protein aggregation: Consequences, mechanism, characterization and inhibitory strategies. Int J Biol Macromol 2023; 242:125123. [PMID: 37270122 DOI: 10.1016/j.ijbiomac.2023.125123] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/01/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Proteins play a major role in the regulation of various cellular functions including the synthesis of structural components. But proteins are stable under physiological conditions only. A slight variation in environmental conditions can cost them huge in terms of conformational stability ultimately leading to aggregation. Under normal conditions, aggregated proteins are degraded or removed from the cell by a quality control system including ubiquitin-proteasomal machinery and autophagy. But they are burdened under diseased conditions or are impaired by the aggregated proteins leading to the generation of toxicity. The misfolding and aggregation of protein such as amyloid-β, α-synuclein, human lysozyme etc., are responsible for certain diseases including Alzheimer, Parkinson, and non- neuropathic systemic amyloidosis respectively. Extensive research has been done to find the therapeutics for such diseases but till now we have got only symptomatic treatment that will reduce the disease severity but will not target the initial formation of nucleus responsible for disease progression and propagation. Hence there is an urgent need to develop the drugs targeting the cause of the disease. For this, a wide knowledge related to misfolding and aggregation under the same heading is required as described in this review alongwith the strategies hypothesized and implemented till now. This will contribute a lot to the work of researchers in the field of neuroscience.
Collapse
Affiliation(s)
- Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
15
|
Chen Y, Li G, Wei L, Weng J, Liu S, Gu M, Liu P, Zhu Y, Xiong A, Zeng H, Yu F. Tibial plateau fracture and RNA sequencing with osteogenesis imperfecta: a case report. Front Endocrinol (Lausanne) 2023; 14:1164386. [PMID: 37229455 PMCID: PMC10203611 DOI: 10.3389/fendo.2023.1164386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/10/2023] [Indexed: 05/27/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a hereditary skeletal dysplasia with an incidence of approximately 1:15,000 to 20,000. OI is usually caused by the mutation of COL1A1 and COL1A2, which would encode the α-chain of type I collagen. OI is clinically characterized by decreased bone mass, increased risk of bone fragility, blue sclerae, and dentinogenesis. Case presentation A 29-year-old male patient was diagnosed with right tibial plateau fracture caused by slight violence. Physical examination revealed the following: height, 140 cm; weight, 70 kg; body mass index (BMI), 35.71 kg/m2; blue sclera and barrel chest were observed. X-ray examination showed left convex deformity of the thoracic vertebrae with reduced thoracic volume. Laboratory examinations revealed a decrease in both vitamin D and blood calcium levels. Bone mineral density (BMD) was lower than the normal range. After the preoperative preparation was completed, the open reduction and internal fixation of the right tibial plateau fracture were performed. Meanwhile, whole blood samples of this OI patient and the normal control were collected for RNA transcriptome sequencing. The RNA sequence analysis revealed that there were 513 differentially expressed genes (DEGs) between this OI patient and the normal control. KEGG-enriched signaling pathways were significantly enriched in extracellular matrix (ECM)-receptor interactions. Conclusion In this case, DEGs between this OI patient and the normal control were identified by RNA transcriptome sequencing. Moreover, the possible pathogenesis of OI was also explored, which may provide new evidence for the treatment of OI.
Collapse
Affiliation(s)
- Yixiao Chen
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guoqing Li
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Liangchen Wei
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Weng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Su Liu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Mingxi Gu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Pei Liu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuanchao Zhu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ao Xiong
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hui Zeng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Yu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
16
|
Mc Donald D, Mc Donnell T, Martin-Grace J, Mc Manus G, Crowley RK. Systematic review of health related-quality of life in adults with osteogenesis imperfecta. Orphanet J Rare Dis 2023; 18:36. [PMID: 36814291 PMCID: PMC9945612 DOI: 10.1186/s13023-023-02643-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/12/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a rare, connective tissue disorder characterised by bone fragility, resulting in recurrent fractures and skeletal deformities. Extra-skeletal manifestations include dentinogenesis imperfecta, hearing abnormalities and lung disease. These co-morbidities combined with recurrent fractures can exert a significant impact on health-related quality of life (HR-QOL). It is important to assess HR-QOL throughout adulthood because the prevalence of some OI-specific complications increases with age. METHODS PubMed, EMBASE and CENTRAL databases were searched on 2nd February 2022 to identify studies reporting quantitative assessments of HR-QOL in adults with OI. The primary endpoint was to determine the impact of an OI diagnosis on adult's HR-QOL. Secondary endpoints were to (i) examine how frequently various HR-QOL assessment tools were used (ii) identify differences in HR-QOL between OI types and (iii) investigate the determinants of HR-QOL in adults with OI. Search results were exported to Endnote where two reviewers independently conducted title/abstract and full-text reviews. Data from accepted studies were extracted into Microsoft Excel. A narrative synthesis was then undertaken. RESULTS The review identified 17 studies with a total of 1,648 adults. The Short Form-36 (SF-36) was the most frequently reported HR-QOL assessment tool and was used in nine studies. Physical HR-QOL was reduced in adults with OI. Physical component scores (PCS) or individual physical domains of the SF-36 were lower in eight of nine studies. Mental component scores (MCS) were preserved in all six studies, however individual mental health domains of the SF-36 were reduced in some studies. The prevalence of anxiety/depression was relatively low in adults with OI. Those with type III OI had lower physical and respiratory HR-QOL but preserved mental HR-QOL compared with type I. The prevalence of fatigue and pain was higher in adults with OI compared with reference populations. Age and cardio-pulmonary co-morbidities were associated with lower HR-QOL. CONCLUSION OI in adulthood has a wide-ranging negative impact on HR-QOL. Physical and respiratory HR-QOL were lower, while the prevalence of pain and fatigue were higher than in reference populations. Mental HR-QOL was relatively preserved, although some deficits were identified. Age and cardio-pulmonary co-morbidities were associated with lower HR-QOL.
Collapse
Affiliation(s)
- Darran Mc Donald
- Department of Endocrinology, St Vincent's University Hospital, Dublin, Ireland.
| | - Tara Mc Donnell
- Academic Department of Endocrinology, Beaumont Hospital, Dublin, Ireland
| | - Julie Martin-Grace
- Academic Department of Endocrinology, Beaumont Hospital, Dublin, Ireland
| | - Gerry Mc Manus
- Department of Informatics, St Vincent's University Hospital, Dublin, Ireland
| | - Rachel K Crowley
- Department of Endocrinology, St Vincent's University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- Rare Disease Clinical Trial Network, Dublin, Ireland
| |
Collapse
|
17
|
Валеева ДИ, Тюрин АВ. ИССЛЕДОВАНИЕ СОСТОЯНИЯ КОСТНОЙ ТКАНИ У ЛИЦ С НЕСОВЕРШЕННЫМ ОСТЕОГЕНЕЗОМ МОЛОДОГО ВОЗРАСТА. OSTEOPOROSIS AND BONE DISEASES 2023. [DOI: 10.14341/osteo12992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Д. И. Валеева
- ФГБОУ ВО Башкирский государственный медицинский университет
| | - А. В. Тюрин
- ФГБОУ ВО Башкирский государственный медицинский университет
| |
Collapse
|
18
|
Craig SEL, Michalski MN, Williams BO. Got WNTS? Insight into bone health from a WNT perspective. Curr Top Dev Biol 2023; 153:327-346. [PMID: 36967199 DOI: 10.1016/bs.ctdb.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
WNT signaling, essential for many aspects of development, is among the most commonly altered pathways associated with human disease. While initially studied in cancer, dysregulation of WNT signaling has been determined to be essential for skeletal development and the maintenance of bone health throughout life. In this review, we discuss the role of Wnt signaling in bone development and disease with a particular focus on two areas. First, we discuss the roles of WNT signaling pathways in skeletal development, with an emphasis on congenital and idiopathic skeletal syndromes and diseases that are associated with genetic variations in WNT signaling components. Next, we cover a topic that has long been an interest of our laboratory, how high and low levels of WNT signaling affects the establishment and maintenance of healthy bone mass. We conclude with a discussion of the status of WNT-based therapeutics in the treatment of skeletal disease.
Collapse
Affiliation(s)
- Sonya E L Craig
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Megan N Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Bart O Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|
19
|
Xu RH, Zhu L, Sun R, Tan RLY, Luo N, Zou S, Dong D. Investigating the psychometric properties of the EQ-5D-Y-3L, EQ-5D-Y-5L, CHU-9D, and PedsQL in children and adolescents with osteogenesis imperfecta. Eur J Pediatr 2022; 181:4049-4058. [PMID: 36156120 DOI: 10.1007/s00431-022-04626-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
Abstract
UNLABELLED The objective of this study was to evaluate and compare the psychometric properties of the EQ-5D-Y-3L, EQ-5D-Y-5L, CHU-9D, and PedsQL, in a sample of children and adolescents with osteogenesis imperfecta (OI). A web-based cross-sectional survey was conducted among Chinese children and adolescents with OI in 2021. The EQ-5D-Y-3L, EQ-5D-Y-5L, CHU-9D, and PedsQL were used to assess the health-related quality of life for the participants. Construct validity, including convergent and divergent validity, known-group validity, and test-retest reliability, was examined to assess the psychometric properties of the measures. A total of 157 pediatric OI patients self-completed the questionnaire. Few of them reported the full health status. A strong ceiling effect was observed for all dimensions on the EQ-5D-Y and most on CHU-9D. Most dimensions of the EQ-5D-Y and CHU-9D showed statistically significant correlations with the hypothesized PedsQL subscales. The test-retest reliability for the EQ-5D-Y-3L, EQ-5D-Y-5L, and CHU-9D was acceptable. The EQ-5D-Y-5L showed a better known-group validity than EQ-5D-Y-3L, CHU-9D, and PedsQL in differentiating patients in risk groups. CONCLUSION The results confirmed that the EQ-5D-Y and CHU-9D are reliable and valid in pediatric OI patients. The EQ-5D-Y-5L performed better than EQ-5D-Y-3L regarding acceptability, convergent validity, and discriminatory power. WHAT IS KNOWN • Performance of the preference-based measures has never been reported in patients with Osteogenesis imperfecta. WHAT IS NEW • The EQ-5D-Y demonstrated higher sensitivity and discriminatory power than the CHU-9D in patients with osteogenesis Imperfecta • The EQ-5D-Y-3L performed slightly better than EQ-5D-Y-5L regarding convergent validity and discriminant ability.
Collapse
Affiliation(s)
- Richard Huan Xu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China.,JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liling Zhu
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rongjia Sun
- The Illness Challenge Foundation, Beijing, China
| | - Rachel Lee-Yin Tan
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Nan Luo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Sainan Zou
- Department of Intensive Care Unit, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Dong Dong
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
20
|
Lv F, Cai X, Ji L. An Update on Animal Models of Osteogenesis Imperfecta. Calcif Tissue Int 2022; 111:345-366. [PMID: 35767009 DOI: 10.1007/s00223-022-00998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous disorder characterized by bone fragility, multiple fractures, bone deformity, and short stature. In recent years, the application of next generation sequencing has triggered the discovery of many new genetic causes for OI. Until now, more than 25 genetic causes of OI and closely related disorders have been identified. However, the mechanisms of many genes on skeletal fragility in OI are not entirely clear. Animal models of OI could help to understand the cellular, signaling, and metabolic mechanisms contributing to the disease, and how targeting these pathways can provide therapeutic targets. To date, a lot of animal models, mainly mice and zebrafish, have been described with defects in 19 OI-associated genes. In this review, we summarize the known genetic causes and animal models that recapitulate OI with a main focus on engineered mouse and zebrafish models. Additionally, we briefly discuss domestic animals with naturally occurring OI phenotypes. Knowledge of the specific molecular basis of OI will advance clinical diagnosis and potentially stimulate targeted therapeutic approaches.
Collapse
Affiliation(s)
- Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Beijing, 100044, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Beijing, 100044, China.
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Beijing, 100044, China.
| |
Collapse
|
21
|
Sutkowska-Skolimowska J, Brańska-Januszewska J, Strawa JW, Ostrowska H, Botor M, Gawron K, Galicka A. Rosemary Extract-Induced Autophagy and Decrease in Accumulation of Collagen Type I in Osteogenesis Imperfecta Skin Fibroblasts. Int J Mol Sci 2022; 23:ijms231810341. [PMID: 36142253 PMCID: PMC9499644 DOI: 10.3390/ijms231810341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous connective tissue disease mainly caused by structural mutations in type I collagen. Mutant collagen accumulates intracellularly, causing cellular stress that has recently been shown to be phenotype-related. Therefore, the aim of the study was to search for potential drugs reducing collagen accumulation and improving OI fibroblast homeostasis. We found that rosemary extract (RE), which is of great interest to researchers due to its high therapeutic potential, at concentrations of 50 and 100 µg/mL significantly reduced the level of accumulated collagen in the fibroblasts of four patients with severe and lethal OI. The decrease in collagen accumulation was associated with RE-induced autophagy as was evidenced by an increase in the LC3-II/LC3-I ratio, a decrease in p62, and co-localization of type I collagen with LC3-II and LAMP2A by confocal microscopy. The unfolded protein response, activated in three of the four tested cells, and the level of pro-apoptotic markers (Bax, CHOP and cleaved caspase 3) were attenuated by RE. In addition, the role of RE-modulated proteasome in the degradation of unfolded procollagen chains was investigated. This study provides new insight into the beneficial effects of RE that may have some implications in OI therapy targeting cellular stress.
Collapse
Affiliation(s)
| | | | - Jakub W. Strawa
- Department of Pharmacognosy, Medical University of Bialystok, Mickiewicza 2A, 15-230 Bialystok, Poland
| | - Halina Ostrowska
- Department of Biology, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland
| | - Malwina Botor
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18, 40-475 Katowice, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18, 40-475 Katowice, Poland
| | - Anna Galicka
- Department of Medical Chemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland
- Correspondence:
| |
Collapse
|
22
|
Takeda R, Yamaguchi T, Hayashi S, Sano S, Kawame H, Kanki S, Taketani T, Yoshimura H, Nakamura Y, Kosho T. Clinical and molecular features of patients with COL1-related disorders: Implications for the wider spectrum and the risk of vascular complications. Am J Med Genet A 2022; 188:2560-2575. [PMID: 35822426 PMCID: PMC9545637 DOI: 10.1002/ajmg.a.62887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/14/2022] [Accepted: 06/19/2022] [Indexed: 01/24/2023]
Abstract
Abnormalities in type I procollagen genes (COL1A1 and COL1A2) are responsible for hereditary connective tissue disorders including osteogenesis imperfecta (OI), specific types of Ehlers-Danlos syndrome (EDS), and COL1-related overlapping disorder (C1ROD). C1ROD is a recently proposed disorder characterized by predominant EDS symptoms of joint and skin laxity and mild OI symptoms of bone fragility and blue sclera. Patients with C1ROD do not carry specific variants for COL1-related EDS, including classical, vascular, cardiac-valvular, and arthrochalasia types. We describe clinical and molecular findings of 23 Japanese patients with pathogenic or likely pathogenic variants of COL1A1 or COL1A2, who had either OI-like or EDS-like phenotypes. The final diagnoses were OI in 17 patients, classical EDS in one, and C1ROD in five. The OI group predominantly experienced recurrent bone fractures, and the EDS group primarily showed joint hypermobility and skin hyperextensibility, though various clinical and molecular overlaps between OI, COL1-related EDS, and C1ROD as well as intrafamilial phenotypic variabilities were present. Notably, life-threatening vascular complications (vascular dissections, arterial aneurysms, subarachnoidal hemorrhages) occurred in seven patients (41% of those aged >20 years) with OI or C1ROD. Careful lifelong surveillance and intervention regarding bone and vascular fragility could be required.
Collapse
Affiliation(s)
- Ryojun Takeda
- Department of Medical GeneticsShinshu University School of MedicineMatsumotoJapan,Division of Medical GeneticsNagano Children's HospitalAzuminoJapan,Life Science Research CenterNagano Children's HospitalAzuminoJapan
| | - Tomomi Yamaguchi
- Department of Medical GeneticsShinshu University School of MedicineMatsumotoJapan,Center for Medical GeneticsShinshu University HospitalMatsumotoJapan,Division of Clinical SequencingShinshu University School of MedicineMatsumotoJapan
| | | | - Shinichirou Sano
- Division of Endocrinology and MetabolismShizuoka Children's HospitalShizuokaJapan
| | - Hiroshi Kawame
- Division of Genomic Medicine Support and Genetic Counseling, Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan,Miyagi Children's HospitalSendaiJapan,Division of Clinical GeneticsJikei University HospitalTokyoJapan
| | - Sachiko Kanki
- Department of Thoracic and Cardiovascular SurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Takeshi Taketani
- Department of PediatricsShimane University Faculty of MedicineIzumoJapan
| | - Hidekane Yoshimura
- Department of OtorhinolaryngologyShinshu University School of MedicineMatsumotoJapan
| | - Yukio Nakamura
- Department of Orthopaedic SurgeryShinshu University School of MedicineMatsumotoJapan
| | - Tomoki Kosho
- Department of Medical GeneticsShinshu University School of MedicineMatsumotoJapan,Division of Medical GeneticsNagano Children's HospitalAzuminoJapan,Center for Medical GeneticsShinshu University HospitalMatsumotoJapan,Division of Clinical SequencingShinshu University School of MedicineMatsumotoJapan,Research Center for Supports to Advanced ScienceShinshu UniversityMatsumotoJapan
| |
Collapse
|
23
|
De Nova-García MJ, Bernal-Barroso F, Mourelle-Martínez MR, Gallardo-López NE, Diéguez-Pérez M, Feijoo-García G, Burgueño-Torres L. Evaluation of the Severity of Malocclusion in Children with Osteogenesis Imperfecta. J Clin Med 2022; 11:jcm11164862. [PMID: 36013101 PMCID: PMC9410483 DOI: 10.3390/jcm11164862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Occlusion is the way in which the dental arches are related to each other and depends on craniofacial growth and development. It is affected in patients with Osteogenesis Imperfecta (OI) who present altered craniofacial development. The malocclusion present in 49 patients diagnosed with different types of OI aged between 4 and 18 was studied. The control group of healthy people was matched for age, sex, and molar class. To study the mixed and permanent dentition, the American Board of Orthodontics (ABO) discrepancy Index was applied. The primary dentition was evaluated with a Temporary Dentition Occlusion Analysis proposed for this study. The OI group obtained higher scores in the Discrepancy Index than the control group, indicating a high difficulty of treatment. The most significant differences were found in types III and IV of the disease. Regarding the variables studied, the greatest differences were found in the presence of lateral open bite in patients with OI, and in the variable "others" (agenesis and ectopic eruption). The analysis of primary dentition did not show significant differences between the OI and control groups. Patients with OI have more severe malocclusions than their healthy peers. Malocclusion is related to the severity of the disease and may progress with age.
Collapse
|
24
|
Erbaş İM, İlgün Gürel D, Manav Kabayeğit Z, Koç A, Ünüvar T, Abacı A, Böber E, Anık A. Clinical, genetic characteristics and treatment outcomes of children and adolescents with osteogenesis imperfecta: a two-center experience. Connect Tissue Res 2022; 63:349-358. [PMID: 34107839 DOI: 10.1080/03008207.2021.1932853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Osteogenesis imperfecta (OI), is a heritable, heterogeneous connective tissue disorder, characterized by fragile bones. There are conflicting results about genotype-phenotype correlations and efficiency of bisphosphonate treatment in this disorder. AIM We aimed to evaluate the clinical, genetic characteristics, and long-term follow-up results of children and adolescents with OI. MATERIALS AND METHODS A two-center retrospective study was conducted using demographic, clinical, and genetic data obtained from the medical records of the patients. RESULTS Twenty-nine patients (62% male, median age; 3.6 years) with OI diagnosis from 26 families were included in the study. Thirteen different variants (nine were novel) were described in 16 patients in COL1A1, COL1A2, and P3H1 genes. Our siblings with homozygous P3H1 variants had a severe phenotype with intrauterine and neonatal fractures. Twenty-two patients were treated with bisphosphonates (17 of them with pamidronate, five with alendronate) with a median duration of 3.0 (1.6-4.8) years. Eleven patients (50%) suffered from fractures after the treatment. Haploinsufficiency variants in COL1A1 caused a milder skeletal phenotype with less fracture count and better treatment outcomes than structural variants. When compared with the anthropometric measurements at the initial diagnosis time, height Z-scores were lower on the last clinical follow-up (p = 0.009). CONCLUSIONS We could not find an obvious genotype-phenotype correlation in Turkish OI patients with COL1A1 or COL1A2 variants. Treatment with pamidronate was effective in reducing fracture counts, without any long-term adverse effects.
Collapse
Affiliation(s)
- İbrahim Mert Erbaş
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Deniz İlgün Gürel
- Department of Pediatrics, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Zehra Manav Kabayeğit
- Department of Medical Genetics, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Altuğ Koç
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Tolga Ünüvar
- Division of Pediatric Endocrinology, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Ayhan Abacı
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Ece Böber
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Ahmet Anık
- Division of Pediatric Endocrinology, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
25
|
Shanas N, Querido W, Oswald J, Jepsen K, Carter E, Raggio C, Pleshko N. Infrared Spectroscopy-Determined Bone Compositional Changes Associated with Anti-Resorptive Treatment of the oim/oim Mouse Model of Osteogenesis Imperfecta. APPLIED SPECTROSCOPY 2022; 76:416-427. [PMID: 34643134 DOI: 10.1177/00037028211055477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Applications of vibrational spectroscopy to assess bone disease and therapeutic interventions are continually advancing, with tissue mineral and protein composition frequently investigated. Here, we used two spectroscopic approaches for determining bone composition in a mouse model (oim) of the brittle bone disease osteogenesis imperfecta (OI) with and without antiresorptive agent treatment (alendronate, or ALN, and RANK-Fc). Near-infrared (NIR) spectral analysis using a fiber optic probe and attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR) mode were applied to investigate bone composition, including water, mineral, and protein content. Spectral parameters revealed differences among the control wildtype (WT) and OIM groups. NIR spectral analysis of protein and water showed that OIM mouse humerii had ∼50% lower protein and ∼50% higher overall water content compared to WT bone. Moreover, some OIM-treated groups showed a reduction in bone water compared to OIM controls, approximating values observed in WT bone. Differences in bone quality based on increased mineral content and reduced carbonate content were also found between some groups of treated OIM and WT bone, but crystallinity did not differ among all groups. The spectroscopically determined parameters were evaluated for correlations with gold-standard mechanical testing values to gain insight into how composition influenced bone strength. As expected, bone mechanical strength parameters were consistently up to threefold greater in WT mice compared to OIM groups, except for stiffness in the ALN-treated OIM groups. Furthermore, bone stiffness, maximum load, and post-yield displacement showed the strongest correlations with NIR-determined protein content (positive correlations) and bound-water content (negative correlations). These results demonstrate that in this study, NIR spectral parameters were more sensitive to bone composition differences than ATR parameters, highlighting the potential of this nondestructive approach for screening of bone diseases and therapeutic efficacy in pre-clinical models.
Collapse
Affiliation(s)
- No'ad Shanas
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - William Querido
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Jack Oswald
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Karl Jepsen
- Department of Orthopaedic Surgery and Bioengineering. University of Michigan, Ann Arbor, MI, USA
| | - Erin Carter
- Kathryn O. and Alan C. Greenberg Center for Skeletal Dysplasias, 25062Hospital for Special Surgery, New York City, NY, USA
| | - Cathleen Raggio
- Kathryn O. and Alan C. Greenberg Center for Skeletal Dysplasias, 25062Hospital for Special Surgery, New York City, NY, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
26
|
Choi JUA, Kijas AW, Lauko J, Rowan AE. The Mechanosensory Role of Osteocytes and Implications for Bone Health and Disease States. Front Cell Dev Biol 2022; 9:770143. [PMID: 35265628 PMCID: PMC8900535 DOI: 10.3389/fcell.2021.770143] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Bone homeostasis is a dynamic equilibrium between bone-forming osteoblasts and bone-resorbing osteoclasts. This process is primarily controlled by the most abundant and mechanosensitive bone cells, osteocytes, that reside individually, within chambers of porous hydroxyapatite bone matrix. Recent studies have unveiled additional functional roles for osteocytes in directly contributing to local matrix regulation as well as systemic roles through endocrine functions by communicating with distant organs such as the kidney. Osteocyte function is governed largely by both biochemical signaling and the mechanical stimuli exerted on bone. Mechanical stimulation is required to maintain bone health whilst aging and reduced level of loading are known to result in bone loss. To date, both in vivo and in vitro approaches have been established to answer important questions such as the effect of mechanical stimuli, the mechanosensors involved, and the mechanosensitive signaling pathways in osteocytes. However, our understanding of osteocyte mechanotransduction has been limited due to the technical challenges of working with these cells since they are individually embedded within the hard hydroxyapatite bone matrix. This review highlights the current knowledge of the osteocyte functional role in maintaining bone health and the key regulatory pathways of these mechanosensitive cells. Finally, we elaborate on the current therapeutic opportunities offered by existing treatments and the potential for targeting osteocyte-directed signaling.
Collapse
Affiliation(s)
- Jung Un Ally Choi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda W Kijas
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
27
|
Song IW, Nagamani SC, Nguyen D, Grafe I, Sutton VR, Gannon FH, Munivez E, Jiang MM, Tran A, Wallace M, Esposito P, Musaad S, Strudthoff E, McGuire S, Thornton M, Shenava V, Rosenfeld S, Shypailo R, Orwoll E, Lee B. Targeting transforming growth factor- β (TGF-β) for treatment of osteogenesis imperfecta. J Clin Invest 2022; 132:152571. [PMID: 35113812 PMCID: PMC8970679 DOI: 10.1172/jci152571] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Currently, there is no disease-specific therapy for osteogenesis imperfecta (OI). Preclinical studies have shown that excessive TGF-β signaling is a driver of pathogenesis in OI. Here, we evaluated TGF-β signaling in children with OI and translated this discovery by conducting a phase 1 clinical trial of TGF-β inhibition in adults with OI. METHODS Histology and RNASeq were performed on bones obtained from children affected (n=10) and unaffected (n=4) by OI. Gene Ontology (GO) enrichment assay, gene set enrichment analysis (GSEA), and Ingenuity Pathway Analysis (IPA) were used to identify key dysregulated pathways. Reverse-phase protein array (RPPA), Western blot (WB), and Immunohistochemistry (IHC) were performed to evaluate changes at the protein level. A phase 1 study with a single administration of fresolimumab, a pan-anti-TGF-β neutralizing antibody, was conducted in 8 adults with OI. Safety and effects of fresolimumab on bone remodeling markers and lumbar spine areal bone mineral density (LS aBMD) were assessed. RESULTS OI bone demonstrated woven structure, increased osteocyte density, high turnover, and reduced bone maturation. SMAD phosphorylation was the most significantly up-regulated GO molecular event. GSEA identified TGF-β pathway as top activated signaling pathway in OI. IPA showed that TGF-β was the most significant activated upstream regulator mediating the global changes identified in OI bone. Treatment with fresolimumab was well-tolerated and associated with increase in LS aBMD in participants with OI type IV, while those with more severe OI type III and VIII had unchanged or decreased LS aBMD. CONCLUSIONS Our data confirm that TGF-β signaling is a driver pathogenic mechanism in OI bone and that anti-TGF-β therapy could be a potential disease-specific therapy with dose-dependent effects on bone mass and turnover. TRIAL REGISTRATION NCT03064074 FUNDING. This work was supported by the Brittle Bone Disorders Consortium (BBDC) (U54AR068069). The BBDC is a part of the National Center for Advancing Translational Science's (NCATS') RDCRN. The BBDC is funded through a collaboration between the Office of Rare Disease Research (ORDR) of NCATS, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institute of Dental and Craniofacial Research (NIDCR), National Institute of Mental Health (NIMH) and National Institute of Child Health and Human Development (NICHD). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The BBDC was also supported by the OI Foundation. The work was supported by The Clinical Translational Core of BCM IDDRC (P50HD103555) from the Eunice Kennedy Shriver NICHD. Funding from the USDA/ARS under Cooperative Agreement No. 58-6250-6-001 also facilitated analysis for the study procedures. The contents of this publication do not necessarily reflect the views or policies of the USDA, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government. The study was supported by a research agreement with Sanofi Genzyme.
Collapse
Affiliation(s)
- I-Wen Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States of America
| | - Sandesh Cs Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States of America
| | - Dianne Nguyen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States of America
| | - Ingo Grafe
- Department of Medicine and Center of Healthy Aging, University Clinic Dresden, Dresden, Germany
| | - Vernon Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States of America
| | - Francis H Gannon
- Pathology and Immunology and Orthopedic Surgery, Baylor College of Medicine, Houston, United States of America
| | - Elda Munivez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States of America
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States of America
| | - Alyssa Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States of America
| | - Maegen Wallace
- Orthopaedic Surgery, University of Nebraska Medical Center, Omaha, United States of America
| | - Paul Esposito
- Orthopaedic Surgery, University of Nebraska Medical Center, Omaha, United States of America
| | - Salma Musaad
- Department of Pediatrics-Nutrition, Baylor College of Medicine, Houston, United States of America
| | - Elizabeth Strudthoff
- Orthopaedic Surgery, University of Nebraska Medical Center, Omaha, United States of America
| | - Sharon McGuire
- Orthopaedic Surgery, University of Nebraska Medical Center, Omaha, United States of America
| | - Michele Thornton
- Orthopaedic Surgery, University of Nebraska Medical Center, Omaha, United States of America
| | - Vinitha Shenava
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, United States of America
| | - Scott Rosenfeld
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, United States of America
| | - Roman Shypailo
- Department of Pediatrics, Baylor College of Medicine, Houston, United States of America
| | - Eric Orwoll
- Department of Medicine, Oregon Health & Science University, Portland, United States of America
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States of America
| |
Collapse
|
28
|
Tüysüz B, Elkanova L, Uludağ Alkaya D, Güleç Ç, Toksoy G, Güneş N, Yazan H, Bayhan AI, Yıldırım T, Yeşil G, Uyguner ZO. Osteogenesis imperfecta in 140 Turkish families: Molecular spectrum and, comparison of long-term clinical outcome of those with COL1A1/A2 and biallelic variants. Bone 2022; 155:116293. [PMID: 34902613 DOI: 10.1016/j.bone.2021.116293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous group of diseases characterized by increased bone fragility and deformities. Although most patients with OI have heterozygous mutations in COL1A1 or COL1A2, 17 genes have been reported to cause OI, most of which are autosomal recessive (AR) inherited, during the last years. The aim of this study is to determine the mutation spectrum in Turkish OI cohort and to investigate the genotype-phenotype correlation. METHODS 150 patients from 140 Turkish families with OI phenotype were included in this study. Mutations in OI-related genes were identified using targeted gene panel, MLPA analysis for COL1A1 and whole exome sequencing. 113 patients who had OI disease-causing variants were followed for 1-20 years. RESULTS OI disease-causing variants were detected in 117 families, of which 62.4% in COL1A1/A2, 35.9% in AR-related genes. A heterozygous variant in IFITM5 and a hemizygous in MBTPS2 were also described, one in each patient. Eighteen biallelic variants (13 novel) were identified in nine genes (FKBP10, P3H1, SERPINF1, TMEM38B, WNT1, BMP1, CRTAP, FAM46A, MESD) among which FKBP10, P3H1 and SERPINF1 were most common. The most severe phenotypes were in patients with FKBP10, SERPINF1, CRTAP, FAM46A and MESD variants. P3H1 patients had moderate, while BMP1 had the mild phenotype. Clinical phenotypes were variable in patients with WNT1 and TMEM38B mutations. We also found mutations in ten genes (PLS3, LRP5, ANO5, SLC34A1, EFEMP2, PRDM5, GORAB, OCRL1, TNFRSF11B, DPH1) associated with diseases presenting clinical features which overlap OI, in eleven families. CONCLUSION We identified disease-causing mutations in 83.6% in a large Turkish pediatric OI cohort. 40 novel variants were described. Clinical features and long-term follow-up findings of AR inherited OI types and especially very rare biallelic variants were presented for the first time. Unlike previously reported studies, the mutations that we found in P3H1 were all missense, causing a moderate phenotype.
Collapse
Affiliation(s)
- Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey.
| | - Leyla Elkanova
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Dilek Uludağ Alkaya
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Çağrı Güleç
- Department of Medical Genetics, Istanbul University, Medical Faculty, Istanbul, Turkey
| | - Güven Toksoy
- Department of Medical Genetics, Istanbul University, Medical Faculty, Istanbul, Turkey
| | - Nilay Güneş
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Hakan Yazan
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - A Ilhan Bayhan
- Department of Orthopedics and Traumatology, University of Health Sciences Turkey, Baltalimani Bone Diseases Training and Research Center, Istanbul, Turkey
| | - Timur Yıldırım
- Department of Orthopedics and Traumatology, University of Health Sciences Turkey, Baltalimani Bone Diseases Training and Research Center, Istanbul, Turkey
| | - Gözde Yeşil
- Department of Medical Genetics, Bezmialem University, Istanbul, Turkey
| | - Z Oya Uyguner
- Department of Medical Genetics, Istanbul University, Medical Faculty, Istanbul, Turkey
| |
Collapse
|
29
|
Simon M, Indermaur M, Schenk D, Hosseinitabatabaei S, Willie BM, Zysset P. Fabric-elasticity relationships of tibial trabecular bone are similar in osteogenesis imperfecta and healthy individuals. Bone 2022; 155:116282. [PMID: 34896360 DOI: 10.1016/j.bone.2021.116282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/02/2022]
Abstract
Osteogenesis Imperfecta (OI) is an inherited form of bone fragility characterised by impaired synthesis of type I collagen, altered trabecular bone architecture and reduced bone mass. High resolution peripheral computed tomography (HR-pQCT) is a powerful method to investigate bone morphology at peripheral sites including the weight-bearing distal tibia. The resulting 3D reconstructions can be used as a basis of micro-finite element (FE) or homogenized finite element (hFE) models for bone strength estimation. The hFE scheme uses homogenized local bone volume fraction (BV/TV) and anisotropy information (fabric) to compute healthy bone strength within a reasonable computation time using fabric-elasticity relationships. However, it is unclear if these relationships quantified previously for healthy controls are valid for trabecular bone from OI patients. Thus, the aim of this study is to investigate fabric-elasticity relationships in OI trabecular bone compared to healthy controls. In the present study, the morphology of distal tibiae from 50 adults with OI were compared to 120 healthy controls using second generation HR-pQCT. Six cubic regions of interest (ROIs) were selected per individual in a common anatomical region. A first matching between OI and healthy control group was performed by selecting similar individuals to obtain identical mean and median age and sex distribution. It allowed us to perform a first morphometric analysis and compare the outcome with literature. Then, stiffness tensors of the ROIs were computed using μFE and multiple linear regressions were performed with the Zysset-Curnier orthotropic fabric-elasticity model. An initial fit was performed on both the OI group and the healthy control group using all extracted ROIs. Then, data was filtered according to a fixed threshold for a defined coefficient of variation (CV) assessing ROI heterogeneity and additional linear regressions were performed on these filtered data sets. These full and filtered data were in turn compared with previous results from μCT reconstructions obtained in other anatomical locations. Finally, the ROIs of both groups were matched according to their BV/TV and degree of anisotropy (DA). Linear regressions were performed using these matched data to detect statistical differences between the two groups. Compared to healthy controls, we found the OI samples to have significantly lower BV/TV and trabecular number (Tb.N.), significantly higher CV, trabecular separation (Tb.Sp.) and trabecular separation standard deviation (Tb.Sp.SD), but no differences in trabecular thickness (Tb.Th.). These results are in agreement with previous studies. The stiffnesses of highly heterogeneous ROIs were randomly lower with respect to the fabric-elasticity relationships, which reflects the limit of validity of the computational homogenisation methodology. This limitation does not challenge the fabric-elasticity relationship, which extrapolation to heterogeneous ROIs is probably reasonable but can simply not be evaluated with the employed homogenisation methodology. Moreover, due to their low BV/TV, the potential (unknown) errors on these heterogeneous ROIs would have negligible influence on whole bone stiffness in comparison to homogeneous ROIs which are orders of magnitude stiffer. The filtering of highly heterogeneous ROIs removed these low stiffness ROIs and led to similar correlation coefficients for both OI and healthy groups. Finally, the BV/TV and DA matched data revealed no significant differences in fabric-elasticity parameters between OI and healthy individuals. Moreover, the filtering step did not exclude a particular OI type. Compared to previous studies, the stiffness constants from the 61 μm resolution HR-pQCT ROIs were lower than for the 36 μm resolution μCT ROIs. In conclusion, OI trabecular bone of the distal tibia was shown to be significantly more heterogeneous and have a lower BV/TV than healthy controls. Despite the reduced linear regression parameters found for HR-pQCT images, the fabric-elasticity relationships between OI and healthy individuals are similar when the trabecular bone ROIs are sufficiently homogeneous to perform the computational stiffness analysis. Accordingly, the elastic properties used for FEA of healthy bones are also valid for OI bones.
Collapse
Affiliation(s)
- Mathieu Simon
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland.
| | - Michael Indermaur
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Denis Schenk
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Seyedmahdi Hosseinitabatabaei
- Research Centre, Shriners Hospital for Children, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - Philippe Zysset
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
Han Y, Wu J, Gong Z, Zhou Y, Li H, Chen Y, Qian Q. Identification and development of the novel 7-genes diagnostic signature by integrating multi cohorts based on osteoarthritis. Hereditas 2022; 159:10. [PMID: 35093162 PMCID: PMC8801091 DOI: 10.1186/s41065-022-00226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/29/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
A chronic progressive degenerative joint disease, such as osteoarthritis (OA) is positively related to age. The medical economy is facing a major burden, because of the high disability rate seen in patients with OA. Therefore, to prevent and treat OA, exploring the diagnostic biomarkers of OA will be of great significance.
Methods
Differentially expressed genes (DEGs) were obtained from the Gene Expression Omnibus database using the RobustRankAggreg R package, and a protein–protein interaction network was constructed. The module was obtained from Cytoscape, and the four algorithms of degree, MNC, closeness, and MCC in CytoHubba were used to identify the hub genes. A diagnostic model was constructed using Support Vector Machines (SVM), and the ability of the model to predict was evaluated by other cohorts.
Results
From normal and OA samples, 136 DEGs were identified, out of which 45 were downregulated in the normal group and 91 were upregulated in the OA group. These genes were associated with the extracellular matrix-receptor interactions, the PI3K-Akt signaling pathway, and the protein digestion and absorption pathway, as per a functional enrichment analysis. Finally, we identified the 7 hub genes (COL6A3, COL1A2, COL1A1, MMP2, COL3A1, POST, and FN1). These genes have important roles and are widely involved in the immune response, apoptosis, inflammation, and bone development. These 7 genes were used to construct a diagnostic model by SVM, and it performed well in different cohorts. Additionally, we verified the methylation expression of these hub genes.
Conclusions
The 7-genes signature can be used for the diagnosis of OA and can provide new ideas in the clinical decision-making for patients with OA.
Collapse
|
31
|
Bravo Vázquez LA, Moreno Becerril MY, Mora Hernández EO, de León Carmona GG, Aguirre Padilla ME, Chakraborty S, Bandyopadhyay A, Paul S. The Emerging Role of MicroRNAs in Bone Diseases and Their Therapeutic Potential. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010211. [PMID: 35011442 PMCID: PMC8746945 DOI: 10.3390/molecules27010211] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) are a class of small (20-24 nucleotides), highly conserved, non-coding RNA molecules whose main function is the post-transcriptional regulation of gene expression through sequence-specific manners, such as mRNA degradation or translational repression. Since these key regulatory molecules are implicated in several biological processes, their altered expression affects the preservation of cellular homeostasis and leads to the development of a wide range of pathologies. Over the last few years, relevant investigations have elucidated that miRNAs participate in different stages of bone growth and development. Moreover, the abnormal expression of these RNA molecules in bone cells and tissues has been significantly associated with the progression of numerous bone diseases, including osteoporosis, osteosarcoma, osteonecrosis and bone metastasis, among others. In fact, miRNAs regulate multiple pathological mechanisms, including altering either osteogenic or osteoblast differentiation, metastasis, osteosarcoma cell proliferation, and bone loss. Therefore, in this present review, aiming to impulse the research arena of the biological implications of miRNA transcriptome in bone diseases and to explore their potentiality as a theragnostic target, we summarize the recent findings associated with the clinical significance of miRNAs in these ailments.
Collapse
Affiliation(s)
- Luis Alberto Bravo Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico; (L.A.B.V.); (M.Y.M.B.); (G.G.d.L.C.); (M.E.A.P.)
| | - Mariana Yunuen Moreno Becerril
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico; (L.A.B.V.); (M.Y.M.B.); (G.G.d.L.C.); (M.E.A.P.)
| | - Erick Octavio Mora Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Mexico City, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, Mexico City 14380, Mexico;
| | - Gabriela García de León Carmona
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico; (L.A.B.V.); (M.Y.M.B.); (G.G.d.L.C.); (M.E.A.P.)
| | - María Emilia Aguirre Padilla
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico; (L.A.B.V.); (M.Y.M.B.); (G.G.d.L.C.); (M.E.A.P.)
| | - Samik Chakraborty
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Anindya Bandyopadhyay
- International Rice Research Institute, Manila 4031, Philippines;
- Reliance Industries Ltd., Navi Mumbai 400701, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico; (L.A.B.V.); (M.Y.M.B.); (G.G.d.L.C.); (M.E.A.P.)
- Correspondence:
| |
Collapse
|
32
|
Chen Y, Yang S, Lovisa S, Ambrose CG, McAndrews KM, Sugimoto H, Kalluri R. Type-I collagen produced by distinct fibroblast lineages reveals specific function during embryogenesis and Osteogenesis Imperfecta. Nat Commun 2021; 12:7199. [PMID: 34893625 PMCID: PMC8664945 DOI: 10.1038/s41467-021-27563-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 11/16/2021] [Indexed: 01/15/2023] Open
Abstract
Type I collagen (Col1) is the most abundant protein in mammals. Col1 contributes to 90% of the total organic component of bone matrix. However, the precise cellular origin and functional contribution of Col1 in embryogenesis and bone formation remain unknown. Single-cell RNA-sequencing analysis identifies Fap+ cells and Fsp1+ cells as the major contributors of Col1 in the bone. We generate transgenic mouse models to genetically delete Col1 in various cell lineages. Complete, whole-body Col1 deletion leads to failed gastrulation and early embryonic lethality. Specific Col1 deletion in Fap+ cells causes severe skeletal defects, with hemorrhage, edema, and prenatal lethality. Specific Col1 deletion in Fsp1+ cells results in Osteogenesis Imperfecta-like phenotypes in adult mice, with spontaneous fractures and compromised bone healing. This study demonstrates specific contributions of mesenchymal cell lineages to Col1 production in organogenesis, skeletal development, and bone formation/repair, with potential insights into cell-based therapy for patients with Osteogenesis Imperfecta.
Collapse
Affiliation(s)
- Yang Chen
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 USA
| | - Sujuan Yang
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 USA
| | - Sara Lovisa
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 USA
| | - Catherine G. Ambrose
- grid.267308.80000 0000 9206 2401Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Kathleen M. McAndrews
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 USA
| | - Hikaru Sugimoto
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA. .,Department of Bioengineering, Rice University, Houston, TX, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
33
|
Hu X, Li B, Wu F, Liu X, Liu M, Wang C, Shi Y, Ye L. GPX7 Facilitates BMSCs Osteoblastogenesis via ER Stress and mTOR Pathway. J Cell Mol Med 2021; 25:10454-10465. [PMID: 34626080 PMCID: PMC8581313 DOI: 10.1111/jcmm.16974] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence indicates extensive oxidative stress is a consequence of obesity which impairs bone formation. Glutathione peroxidase 7 (GPX7) is a conserved endoplasmic reticulum (ER) retention protein, lacking of which causes accumulation of reactive oxygen species (ROS) and promotes adipogenesis. Since the imbalance between osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cell (BMSC) leads to severe bone diseases such as osteoporosis, it is critical to investigate the potential protective role of Gpx7 in osteogenesis. Here, we provide evidence that deficiency of Gpx7 reduces osteogenesis, but increases adipogenesis in both human BMSCs (hBMSCs) and mouse mesenchymal stem cell line. Interestingly, further studies indicate this defect can be alleviated by the ER stress antagonist, but not the ROS inhibitor, unveiling an unexpected finding that, unlike adipogenesis, lacking of Gpx7 inhibits osteogenesis mediating by induced ER stress instead of enhanced ROS. Furthermore, the mTOR signalling pathway is found down‐regulation during osteogenic differentiation in Gpx7‐deficient condition, which can be rescued by relief of ER stress. Taken together, for the first time we identify a novel function of Gpx7 in BMSCs’ osteogenic differentiation and indicate that Gpx7 may protect against osteoporotic deficits in humans through ER stress and mTOR pathway interplay.
Collapse
Affiliation(s)
- Xuchen Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boer Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengyu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Taqi D, Moussa H, Schwinghamer T, Vieira AR, Dagdeviren D, Retrouvey JM, Rauch F, Tamimi F. Missing and unerupted teeth in osteogenesis imperfecta. Bone 2021; 150:116011. [PMID: 34020077 DOI: 10.1016/j.bone.2021.116011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/02/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Osteogenesis imperfecta (OI) is a genetic disorder characterized by bone fragility and craniofacial and dental abnormalities such as congenitally missing teeth and teeth that failed to erupt which are believed to be doubled in OI patients than normal populations and were associated with low oral health quality of life. However, the etiology of these abnormalities remains unclear. To understand the factors influencing missing and unerupted teeth, we investigated their prevalence in a cohort of OI patients as a function of the clinical phenotype (OI type), the genetic variant type, the tooth type and the onset of bisphosphonate treatment. METHOD A total of 144 OI patients were recruited from The Shriners Hospital, Montreal, Canada, between 2016 and 2017. Patients were evaluated using intraoral photographs and panoramic radiographs. Missing teeth were evaluated in all patients, and unerupted teeth were assessed only in patients ≥15 years old (n = 82). RESULTS On average, each OI patient had 2.4 missing teeth and 0.8 unerupted teeth, and the most common missing and unerupted teeth were the premolars and the upper second molars, respectively. These phenomena were more prominent in OI type III and IV than in OI type I, and were not sex or age-related. Missing teeth were significantly more common in patients with C-propeptide variants than all other variants (p-value <0.05). Unerupted teeth were significantly more common in patients with α1 and α2 glycine variants or substitutions than in those with haploinsufficiency variants. Early-onset of bisphosphonate treatment would significantly increase the risk of unerupted teeth in patients with OI types III and IV (OR = 1.68, 95% CI (1.15-1.53)). CONCLUSION The prevalence of missing and unerupted teeth at the tooth type level in OI patients varies according to the nature of the collagen variants and the OI type. These findings highlight the role of collagen in tooth development and eruption.
Collapse
Affiliation(s)
- Doaa Taqi
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.
| | - Hanan Moussa
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Faculty of Dentistry, Benghazi university, Libya.
| | | | | | - Didem Dagdeviren
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.
| | - Jean-Marc Retrouvey
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; School of Dentistry, University of Missouri, Kansas City, USA.
| | - Frank Rauch
- Shriners Hospital for Children, Montreal, Quebec, Canada.
| | - Faleh Tamimi
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; College of Dental Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
35
|
Durkin A, DeVile C, Arundel P, Bull M, Walsh J, Bishop NJ, Hupin E, Parekh S, Nadarajah R, Offiah AC, Calder A, Brock J, Baker D, Balasubramanian M. Expanding the phenotype of SPARC-related osteogenesis imperfecta: clinical findings in two patients with pathogenic variants in SPARC and literature review. J Med Genet 2021; 59:810-816. [PMID: 34462290 DOI: 10.1136/jmedgenet-2021-107942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/01/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Secreted protein, acidic, cysteine rich (SPARC)-related osteogenesis imperfecta (OI), also referred to as OI type XVII, was first described in 2015, since then there has been only one further report of this form of OI. SPARC is located on chromosome 5 between bands q31 and q33. The encoded protein is necessary for calcification of the collagen in bone, synthesis of extracellular matrix and the promotion of changes to cell shape. METHODS We describe a further two patients with previously unreported homozygous SPARC variants with OI: one splice site; one nonsense pathogenic variant. We present detailed information on the clinical and radiological phenotype and correlate this with their genotype. There are only two previous reports by Mendozo-Londono et al and Hayat et al with clinical descriptions of patients with SPARC variants. RESULTS From the data we have obtained, common clinical features in individuals with OI type XVII caused by SPARC variants include scoliosis (5/5), vertebral compression fractures (5/5), multiple long bone fractures (5/5) and delayed motor development (3/3). Interestingly, 2/4 patients also had abnormal brain MRI, including high subcortical white matter changes, abnormal fluid-attenuated inversion in the para-atrial white matter and a large spinal canal from T10 to L1. Of significance, both patients reported here presented with significant neuromuscular weakness prompting early workup. CONCLUSION Common phenotypic expressions include delayed motor development with neuromuscular weakness, scoliosis and multiple fractures. The data presented here broaden the phenotypic spectrum establishing similar patterns of neuromuscular presentation with a presumed diagnosis of 'myopathy'.
Collapse
Affiliation(s)
- Anna Durkin
- The University of Sheffield Medical School, Sheffield, UK
| | - Catherine DeVile
- Highly Specialised OI Service, Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Paul Arundel
- Highly Specialised OI Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Mary Bull
- Metabolic Bone Centre, Northern General Hospital, Sheffield, UK
| | - Jennifer Walsh
- Metabolic Bone Centre, Northern General Hospital, Sheffield, UK.,Department of Oncology & Metabolism, The University of Sheffield, Sheffield, UK
| | - Nicholas J Bishop
- Highly Specialised OI Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK.,Department of Oncology & Metabolism, The University of Sheffield, Sheffield, UK
| | - Emilie Hupin
- Highly Specialised OI Service, Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Susan Parekh
- Eastman Dental Institute, University College London, London, UK
| | - Ramesh Nadarajah
- Highly Specialised OI Service, Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Amaka C Offiah
- Highly Specialised OI Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK.,Department of Oncology & Metabolism, The University of Sheffield, Sheffield, UK
| | - Alistair Calder
- Radiology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Joanna Brock
- Connective Tissue Disorders Service, Sheffield Diagnostic Genetics Service, Sheffield Children's Hospital, Sheffield, UK
| | - Duncan Baker
- Connective Tissue Disorders Service, Sheffield Diagnostic Genetics Service, Sheffield Children's Hospital, Sheffield, UK
| | - Meena Balasubramanian
- Highly Specialised OI Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK .,Department of Oncology & Metabolism, The University of Sheffield, Sheffield, UK.,Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
36
|
SWATH-MS Quantitative Proteomic Analysis of Deer Antler from Two Regenerating and Mineralizing Sections. BIOLOGY 2021; 10:biology10070679. [PMID: 34356534 PMCID: PMC8301299 DOI: 10.3390/biology10070679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023]
Abstract
Simple Summary Deer antler is a unique and astonishing case of annual regeneration in mammalians. Several studies have pointed out the potential for use of velvet antler extract as a nutraceutical supplement, among others, because of its anti-cancer activity. The study of antler regeneration and growth allow us to identify the main proteins and regulatory pathways involved in cell differentiation and regeneration. For this purpose, two sections of antlers (tips and middle sections) using ribs as controls were analyzed from a proteomic point of view. A total of 259 proteins mainly associated with antioxidant mechanisms and Wnt signalling pathways could be responsible for deer antler regeneration and these proteins may be linked to human health benefits. Further studies should be focused on discovering which proteins from velvet antler extracts are associated with these beneficial effects. Abstract Antlers are the only organ in the mammalian body that regenerates each year. They can reach growth rates of 1–3 cm/day in length and create more than 20 cm2/day of skin in the antler tips (their growth centers). Previous proteomic studies regarding antlers have focused on antler growth centers (tips) compared to the standard bone to detect the proteins involved in tissue growth. However, proteins of cell differentiation and regeneration will be more accurately detected considering more growing tissues. Thus, we set out to compare proteins expressed in antler tips (the highest metabolism rate and cell differentiation) vs. middle sections (moderate cell growth involving bone calcification), using ribs as controls. Samples were obtained in mid-June with antlers’ phenology corresponding to the middle of their growth period. Quantitative proteomic analysis identified 259 differentially abundant proteins mainly associated with antioxidant metabolic mechanisms, protein formation and Wnt signalling pathway, meanwhile, the mid antler section was linked to blood proteins. The high metabolic rate and subsequent risk of oxidative stress also seem to have resulted in strong antioxidant mechanisms. These results suggest that redox regulation of proteins is a key factor in the model of deer antler regeneration.
Collapse
|
37
|
Hill M, Hammond J, Sharmin M, Lewis C, Heathfield M, Crowe B, Götherström C, Chitty LS, DeVile C. Living with Osteogenesis Imperfecta: A qualitative study exploring experiences and psychosocial impact from the perspective of patients, parents and professionals. Disabil Health J 2021; 15:101168. [PMID: 34266787 DOI: 10.1016/j.dhjo.2021.101168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Osteogenesis Imperfecta (OI) is a rare genetic condition characterised by increased bone fragility. Recurrent fractures, pain and fatigue have a considerable impact on many aspects of the life of a person affected with OI and their families. OBJECTIVE To improve our understanding of the impact of OI on the daily lives of individuals and families and consider how the condition is managed so that support needs can be better addressed. METHODS Semi-structured qualitative interviews (n = 56) were conducted with adults affected with OI, with (n = 9) and without children (n = 8), parents of children affected with OI (n = 8), health professionals (n = 29) and patient advocates (n = 2). Interviews were digitally recorded, transcribed verbatim and analysed using thematic analysis. RESULTS Three overarching themes are described: OI is not just a physical condition, parenting and family functioning and managing the condition. Fractures, chronic pain and tiredness impact on daily life and emotional well-being. For parents with OI, pain, tiredness and mobility issues can limit interactions and activities with their children. Specialist paediatric health services for OI were highly valued. The need for more emotional support and improved coordination of adult health services was highlighted. CONCLUSIONS Our findings allow a better understanding of the day-to-day experiences of individuals and families affected with OI. Supporting emotional well-being needs greater attention from policy makers and researchers. Improvements to the coordination of health services for adults with OI are needed and an in-depth exploration of young people's support needs is warranted with research focused on support through the teenage years.
Collapse
Affiliation(s)
- Melissa Hill
- NHS North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK.
| | - Jennifer Hammond
- NHS North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mithila Sharmin
- BSc Paediatrics and Child Health, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Celine Lewis
- NHS North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mark Heathfield
- Osteogenesis Imperfecta Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Belinda Crowe
- Osteogenesis Imperfecta Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Cecilia Götherström
- Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| | - Lyn S Chitty
- NHS North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Catherine DeVile
- Osteogenesis Imperfecta Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
38
|
Claeys L, Storoni S, Eekhoff M, Elting M, Wisse L, Pals G, Bravenboer N, Maugeri A, Micha D. Collagen transport and related pathways in Osteogenesis Imperfecta. Hum Genet 2021; 140:1121-1141. [PMID: 34169326 PMCID: PMC8263409 DOI: 10.1007/s00439-021-02302-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022]
Abstract
Osteogenesis Imperfecta (OI) comprises a heterogeneous group of patients who share bone fragility and deformities as the main characteristics, albeit with different degrees of severity. Phenotypic variation also exists in other connective tissue aspects of the disease, complicating disease classification and disease course prediction. Although collagen type I defects are long established as the primary cause of the bone pathology, we are still far from comprehending the complete mechanism. In the last years, the advent of next generation sequencing has triggered the discovery of many new genetic causes for OI, helping to draw its molecular landscape. It has become clear that, in addition to collagen type I genes, OI can be caused by multiple proteins connected to different parts of collagen biosynthesis. The production of collagen entails a complex process, starting from the production of the collagen Iα1 and collagen Iα2 chains in the endoplasmic reticulum, during and after which procollagen is subjected to a plethora of posttranslational modifications by chaperones. After reaching the Golgi organelle, procollagen is destined to the extracellular matrix where it forms collagen fibrils. Recently discovered mutations in components of the retrograde transport of chaperones highlight its emerging role as critical contributor of OI development. This review offers an overview of collagen regulation in the context of recent gene discoveries, emphasizing the significance of transport disruptions in the OI mechanism. We aim to motivate exploration of skeletal fragility in OI from the perspective of these pathways to identify regulatory points which can hint to therapeutic targets.
Collapse
Affiliation(s)
- Lauria Claeys
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Silvia Storoni
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marelise Eekhoff
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mariet Elting
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lisanne Wisse
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gerard Pals
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam /UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alessandra Maugeri
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dimitra Micha
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Lim J, Lietman C, Grol MW, Castellon A, Dawson B, Adeyeye M, Rai J, Weis M, Keene DR, Schweitzer R, Park D, Eyre DR, Krakow D, Lee BH. Localized chondro-ossification underlies joint dysfunction and motor deficits in the Fkbp10 mouse model of osteogenesis imperfecta. Proc Natl Acad Sci U S A 2021; 118:e2100690118. [PMID: 34161280 PMCID: PMC8237619 DOI: 10.1073/pnas.2100690118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a genetic disorder that features wide-ranging defects in both skeletal and nonskeletal tissues. Previously, we and others reported that loss-of-function mutations in FK506 Binding Protein 10 (FKBP10) lead to skeletal deformities in conjunction with joint contractures. However, the pathogenic mechanisms underlying joint dysfunction in OI are poorly understood. In this study, we have generated a mouse model in which Fkbp10 is conditionally deleted in tendons and ligaments. Fkbp10 removal substantially reduced telopeptide lysyl hydroxylation of type I procollagen and collagen cross-linking in tendons. These biochemical alterations resulting from Fkbp10 ablation were associated with a site-specific induction of fibrosis, inflammation, and ectopic chondrogenesis followed by joint deformities in postnatal mice. We found that the ectopic chondrogenesis coincided with enhanced Gli1 expression, indicating dysregulated Hedgehog (Hh) signaling. Importantly, genetic inhibition of the Hh pathway attenuated ectopic chondrogenesis and joint deformities in Fkbp10 mutants. Furthermore, Hh inhibition restored alterations in gait parameters caused by Fkbp10 loss. Taken together, we identified a previously unappreciated role of Fkbp10 in tendons and ligaments and pathogenic mechanisms driving OI joint dysfunction.
Collapse
Affiliation(s)
- Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Caressa Lietman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Matthew W Grol
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Alexis Castellon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Mary Adeyeye
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Jyoti Rai
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195
| | - MaryAnn Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195
| | - Douglas R Keene
- Research Division, Shriners Hospital for Children, Portland, OR 97239
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, OR 97239
| | - Dongsu Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - David R Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030;
| |
Collapse
|
40
|
Tse MY, Porter IR, Demeter E, Behling-Kelly E, Wakshlag JJ, Miller AD. Osteogenesis Imperfecta in Two Finnish Lapphund Puppies. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2021; 12:177-185. [PMID: 34168973 PMCID: PMC8216744 DOI: 10.2147/vmrr.s308418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022]
Abstract
Two 8-week-old Finnish Lapphund dogs presented with pain on manipulation, abnormal long bone conformation, retrognathism, and stunted growth compared to their litter mates. Multiple long bone fractures were evident on radiographs. Clinical pathology showed an atypically normal serum alkaline phosphatase activity for dogs this age. Due to poor quality of life, the dogs were humanely euthanized and subjected to a complete necropsy. On necropsy, all bones were soft and easily broken. Histologic examination revealed that the secondary spongiosa was diminished with abnormal bony trabeculae embedded in abundant loose vascular stroma. No Haversian canals were observed and the cortices contained abundant woven bone separated by fibrovascular tissue consistent with the diagnosis of osteogenesis imperfecta (OI). Inbreeding of the sire and female offspring led to a suspicion of recessive inheritance and the particular genetic collagen disorder remains to be identified in this breed.
Collapse
Affiliation(s)
- Ming Yi Tse
- City University of Hong Kong, Jockey Club College of Veterinary Medicine and Life Sciences, Hong Kong, 999077, People’s Republic of China
| | - Ian R Porter
- Cornell University College of Veterinary Medicine, Department of Clinical Sciences, Ithaca, NY, 14850, USA
| | - Elena Demeter
- Cornell University College of Veterinary Medicine, Department of Biomedical Sciences, Section of Anatomic Pathology, Ithaca, NY, 14853, USA
| | - Erica Behling-Kelly
- Cornell University College of Veterinary Medicine, Department of Population Medicine, Ithaca, NY, 14853, USA
| | - Joseph J Wakshlag
- Cornell University College of Veterinary Medicine, Department of Clinical Sciences, Ithaca, NY, 14850, USA
| | - Andrew D Miller
- Cornell University College of Veterinary Medicine, Department of Biomedical Sciences, Section of Anatomic Pathology, Ithaca, NY, 14853, USA
| |
Collapse
|
41
|
Kolovos S, Javaid MK, Pinedo-Villanueva R. Hospital admissions of patients with osteogenesis imperfecta in the English NHS. Osteoporos Int 2021; 32:1207-1216. [PMID: 33411004 PMCID: PMC8128734 DOI: 10.1007/s00198-020-05755-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/18/2020] [Indexed: 01/25/2023]
Abstract
UNLABELLED Hospital use by patients with osteogenesis imperfecta was largely unknown. This study found that the English NHS provides a significant number of hospital admissions to these patients, translating into large costs to the NHS. Admissions and costs both increased over time. Children under 14 years old accounted for more of the admissions and costs than any other age group. INTRODUCTION The aim of this study was to characterise hospital use by patients with osteogenesis imperfecta (OI) in the English National Health Service (NHS). METHODS Routinely collected aggregate data about all inpatient hospital records from patients with OI were used for the period 1 April 2014 to 31 March 2018. Information was extracted on number of admissions, number of patients, length of stay, and costs. Hospital use was summarised using descriptive statistics, categorising patients into 5-year age groups. RESULTS There were 16,245 hospital admissions for OI patients during the analysis period, with a total cost to the NHS of £24,052,451. Of the 4370 patients involved, 2700 (62%) were female. Female patients averaged 3.3 admissions per year and male patients 4.4 admissions per year. Patients aged 0 to 14 years old accounted for 54% of all admissions. Those aged 90 to 94 years had the longest average length of stay per admission (10.5 days) of any age group. Elective admissions cost on average £1260 and non-elective admissions £2529. Over the 4-year study period, number of admissions increased on average by 2.1% per year and number of patients by 6.4% per year. CONCLUSION The treatment of patients with OI is associated with a significant number of hospital admissions at an important cost for the NHS, with both number of admissions and costs increasing over time. Children below the age of 14 years had more admissions at a greater total cost than other ages, while the oldest adults had longer average stays and higher costs per admission.
Collapse
Affiliation(s)
- S Kolovos
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - M K Javaid
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - R Pinedo-Villanueva
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
42
|
Grol MW, Haelterman NA, Lim J, Munivez EM, Archer M, Hudson DM, Tufa SF, Keene DR, Lei K, Park D, Kuzawa CD, Ambrose CG, Eyre DR, Lee BH. Tendon and motor phenotypes in the Crtap-/- mouse model of recessive osteogenesis imperfecta. eLife 2021; 10:e63488. [PMID: 34036937 PMCID: PMC8186905 DOI: 10.7554/elife.63488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/24/2021] [Indexed: 01/22/2023] Open
Abstract
Osteogenesis imperfecta (OI) is characterized by short stature, skeletal deformities, low bone mass, and motor deficits. A subset of OI patients also present with joint hypermobility; however, the role of tendon dysfunction in OI pathogenesis is largely unknown. Using the Crtap-/- mouse model of severe, recessive OI, we found that mutant Achilles and patellar tendons were thinner and weaker with increased collagen cross-links and reduced collagen fibril size at 1- and 4-months compared to wildtype. Patellar tendons from Crtap-/- mice also had altered numbers of CD146+CD200+ and CD146-CD200+ progenitor-like cells at skeletal maturity. RNA-seq analysis of Achilles and patellar tendons from 1-month Crtap-/- mice revealed dysregulation in matrix and tendon marker gene expression concomitant with predicted alterations in TGF-β, inflammatory, and metabolic signaling. At 4-months, Crtap-/- mice showed increased αSMA, MMP2, and phospho-NFκB staining in the patellar tendon consistent with excess matrix remodeling and tissue inflammation. Finally, a series of behavioral tests showed severe motor impairments and reduced grip strength in 4-month Crtap-/- mice - a phenotype that correlates with the tendon pathology.
Collapse
Affiliation(s)
- Matthew William Grol
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Nele A Haelterman
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Elda M Munivez
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Marilyn Archer
- Department of Orthopaedics and Sports Medicine, University of WashingtonSeattleUnited States
| | - David M Hudson
- Department of Orthopaedics and Sports Medicine, University of WashingtonSeattleUnited States
| | - Sara F Tufa
- Shriners Hospital for ChildrenPortlandUnited States
| | | | - Kevin Lei
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Dongsu Park
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Cole D Kuzawa
- Department of Orthopaedic Surgery, UT Health Sciences CenterHoustonUnited States
| | - Catherine G Ambrose
- Department of Orthopaedic Surgery, UT Health Sciences CenterHoustonUnited States
| | - David R Eyre
- Department of Orthopaedics and Sports Medicine, University of WashingtonSeattleUnited States
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
43
|
Abstract
BACKGROUND Osteogenesis imperfecta (OI) can develop a protrusio acetabuli deformity. However, the authors observed a pseudo-protrusio-type acetabular deformity (PPAD) on 3-dimensional computed tomography (3D-CT). Hence, we systematically reviewed 3D-CT and pelvis radiographs of OI patients and report the incidence and patterns of acetabular deformity in OI patients and the associated radiographic signs. METHODS The study included 590 hips of 295 OI patients, who were older than 5 years, and did not have a pelvic fracture. The incidence of a deformed acetabulum (center-edge angle >40 degrees) and its correlation with disease severity were investigated. In 40 hips for which 3D-CT was available, 3-dimensional morphology of the acetabular deformity was analyzed to delineate PPAD. On plain radiographs, PPAD-related signs were determined, focusing on the contour of ilioischial line, iliopectineal line, acetabular line, and their relationship. These radiographic signs were also evaluated in the remaining hips with deformed acetabula that did not have 3D-CT. RESULTS One hundred twenty-three hips of 590 hips (21%) showed deformed acetabula. The incidence of deformed acetabula was significantly associated with disease severity (P<0.001). Three-dimensional analysis showed that 10 hips had protrusio acetabuli, whereas 17 had PPAD, which showed that the hemipelvis was crumpled, the acetabular roof was rotated upwardly and medially, and the hip center migrated superiorly, uncovering the anterior femoral head. Among the PPAD-related signs, superomedial bulging of the iliopectineal line was the most predictive radiographic sign (73% sensitivity and 100% specificity). This sign was also observed in almost one third of deformed acetabula of those investigated only with plain radiographs. CONCLUSIONS This study showed that acetabular deformity is common in OI patients and is associated with disease severity. A substantial number of hips showed PPAD, which may not cause femoroacetabular impingement but result in anterior uncovering of the hip joint. Superomedial bulging of the iliopectineal line suggests this pattern of acetabular deformity. LEVEL OF EVIDENCE Lever IV-prognostic studies.
Collapse
|
44
|
Maghsoudi-Ganjeh M, Samuel J, Ahsan AS, Wang X, Zeng X. Intrafibrillar mineralization deficiency and osteogenesis imperfecta mouse bone fragility. J Mech Behav Biomed Mater 2021; 117:104377. [PMID: 33636677 DOI: 10.1016/j.jmbbm.2021.104377] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 01/25/2023]
Abstract
Osteogenesis imperfecta (OI), a brittle bone disease, is known to result in severe bone fragility. However, its ultrastructural origins are still poorly understood. In this study, we hypothesized that deficient intrafibrillar mineralization is a key contributor to the OI induced bone brittleness. To test this hypothesis, we explored the mechanical and ultrastructural changes in OI bone using the osteogenesis imperfecta murine (oim) model. Synchrotron X-ray scattering experiments indicated that oim bone had much less intrafibrillar mineralization than wild type bone, thus verifying that the loss of mineral crystals indeed primarily occurred in the intrafibrillar space of oim bone. It was also found that the mineral crystals were organized from preferentially in longitudinal axis in wild type bone to more randomly in oim bone. Moreover, it revealed that the deformation of mineral crystals was more coordinated with collagen fibrils in wild type than in oim bone, suggesting that the load transfer deteriorated between the two phases in oim bone. The micropillar test revealed that the compression work to fracture of oim bone (8.2 ± 0.9 MJ/m3) was significantly smaller (p < 0.05) than that of wild type bone (13.9 ± 2.7 MJ/m3), while the bone strength was not statistically different (p > 0.05) between the two genotype groups. In contrast, the uniaxial tensile test showed that the ultimate strength of wild type bone (50 ± 4.5 MPa) was significantly greater (p < 0.05) than that of oim bone (38 ± 5.3 MPa). Furthermore, the nanoscratch test showed that the toughness of oim bone was much less than that of wild type bone (6.6 ± 2.2 GJ/m3 vs. 12.6 ± 1.4 GJ/m3). Finally, in silico simulations using a finite element model of sub-lamellar bone confirmed the links between the reduced intrafibrillar mineralization and the observed changes in the mechanical behavior of OI bone. Taken together, these results provide important mechanistic insights into the underlying cause of poor mechanical quality of OI bone, thus pave the way toward future treatments of this brittle bone disease.
Collapse
Affiliation(s)
| | - Jitin Samuel
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Abu Saleh Ahsan
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xiaodu Wang
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| | - Xiaowei Zeng
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
45
|
Schwebach CL, Kudryashova E, Kudryashov DS. Plastin 3 in X-Linked Osteoporosis: Imbalance of Ca 2+-Dependent Regulation Is Equivalent to Protein Loss. Front Cell Dev Biol 2021; 8:635783. [PMID: 33553175 PMCID: PMC7859272 DOI: 10.3389/fcell.2020.635783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Osteogenesis imperfecta is a genetic disorder disrupting bone development and remodeling. The primary causes of osteogenesis imperfecta are pathogenic variants of collagen and collagen processing genes. However, recently variants of the actin bundling protein plastin 3 have been identified as another source of osteogenesis imperfecta. Plastin 3 is a highly conserved protein involved in several important cellular structures and processes and is controlled by intracellular Ca2+ which potently inhibits its actin-bundling activity. The precise mechanisms by which plastin 3 causes osteogenesis imperfecta remain unclear, but recent advances have contributed to our understanding of bone development and the actin cytoskeleton. Here, we review the link between plastin 3 and osteogenesis imperfecta highlighting in vitro studies and emphasizing the importance of Ca2+ regulation in the localization and functionality of plastin 3.
Collapse
Affiliation(s)
- Christopher L Schwebach
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
46
|
Gistelinck C, Weis M, Rai J, Schwarze U, Niyazov D, Song KM, Byers PH, Eyre DR. Abnormal Bone Collagen Cross-Linking in Osteogenesis Imperfecta/Bruck Syndrome Caused by Compound Heterozygous PLOD2 Mutations. JBMR Plus 2021; 5:e10454. [PMID: 33778323 PMCID: PMC7990156 DOI: 10.1002/jbm4.10454] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Bruck syndrome (BS) is a congenital disorder characterized by joint flexion contractures, skeletal dysplasia, and increased bone fragility, which overlaps clinically with osteogenesis imperfecta (OI). On a genetic level, BS is caused by biallelic mutations in either FKBP10 or PLOD2. PLOD2 encodes the lysyl hydroxylase 2 (LH2) enzyme, which is responsible for the hydroxylation of cross‐linking lysine residues in fibrillar collagen telopeptide domains. This modification enables collagen to form chemically stable (permanent) intermolecular cross‐links in the extracellular matrix. Normal bone collagen develops a unique mix of such stable and labile lysyl‐oxidase–mediated cross‐links, which contribute to bone strength, resistance to microdamage, and crack propagation, as well as the ordered deposition of mineral nanocrystals within the fibrillar collagen matrix. Bone from patients with BS caused by biallelic FKBP10 mutations has been shown to have abnormal collagen cross‐linking; however, to date, no direct studies of human bone from BS caused by PLOD2 mutations have been reported. Here the results from a study of a 4‐year‐old boy with BS caused by compound heterozygous mutations in PLOD2 are discussed. Diminished hydroxylation of type I collagen telopeptide lysines but normal hydroxylation at triple‐helical sites was found. Consequently, stable trivalent cross‐links were essentially absent. Instead, allysine aldol dimeric cross‐links dominated as in normal skin collagen. Furthermore, in contrast to the patient's bone collagen, telopeptide lysines in cartilage type II collagen cross‐linked peptides from the patient's urine were normally hydroxylated. These findings shed light on the complex mechanisms that control the unique posttranslational chemistry and cross‐linking of bone collagen, and how, when defective, they can cause brittle bones and related connective tissue problems. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Charlotte Gistelinck
- Department of Orthopaedics and Sports Medicine University of Washington Seattle WA
| | - MaryAnn Weis
- Department of Orthopaedics and Sports Medicine University of Washington Seattle WA
| | - Jyoti Rai
- Department of Orthopaedics and Sports Medicine University of Washington Seattle WA
| | - Ulrike Schwarze
- Department of Laboratory Medicine and Pathology University of Washington Seattle WA
| | - Dmitriy Niyazov
- Department of Pediatrics Ochsner Hospital for Children New Orleans LA
| | - Kit M Song
- Department of Orthopaedic Surgery, David Geffen School of Medicine UCLA Health Los Angeles CA
| | - Peter H Byers
- Departments of Pathology and Medicine (Medical Genetics) University of Washington Seattle WA
| | - David R Eyre
- Department of Orthopaedics and Sports Medicine University of Washington Seattle WA
| |
Collapse
|
47
|
Takeyari S, Kubota T, Ohata Y, Fujiwara M, Kitaoka T, Taga Y, Mizuno K, Ozono K. 4-Phenylbutyric acid enhances the mineralization of osteogenesis imperfecta iPSC-derived osteoblasts. J Biol Chem 2021; 296:100027. [PMID: 33154166 PMCID: PMC7948972 DOI: 10.1074/jbc.ra120.014709] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 01/10/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a heritable brittle bone disease mainly caused by mutations in the two type I collagen genes. Collagen synthesis is a complex process including trimer formation, glycosylation, secretion, extracellular matrix (ECM) formation, and mineralization. Using OI patient-derived fibroblasts and induced pluripotent stem cells (iPSCs), we investigated the effect of 4-phenylbutyric acid (4-PBA) on collagen synthesis to test its potential as a new treatment for OI. Endoplasmic reticulum (ER) retention of type I collagen was observed by immunofluorescence staining in OI patient-derived fibroblasts with glycine substitution and exon skipping mutations. Liquid chromatography-mass spectrometry analysis revealed excessive glycosylation of secreted type I collagen at the specific sites in OI cells. The misfolding of the type I collagen triple helix in the ECM was demonstrated by the incorporation of heat-dissociated collagen hybridizing peptide in OI cells. Type I collagen was produced excessively by OI fibroblasts with a glycine mutation, but this excessive production was normalized when OI fibroblasts were cultured on control fibroblast-derived ECM. We also found that mineralization was impaired in osteoblasts differentiated from OI iPSCs. In summary, treatment with 4-PBA normalizes the excessive production of type I collagen, reduces ER retention, partially improves misfolding of the type I collagen helix in ECM, and improves osteoblast mineralization. Thus, 4-PBA may improve not only ER retention, but also type I collagen synthesis and mineralization in human cells from OI patients.
Collapse
Affiliation(s)
- Shinji Takeyari
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
48
|
Darbà J, Marsà A. Hospital incidence, management and direct cost of osteogenesis imperfecta in Spain: a retrospective database analysis. J Med Econ 2020; 23:1435-1440. [PMID: 33030390 DOI: 10.1080/13696998.2020.1834402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The objective of this study was to analyse hospital incidence of osteogenesis imperfecta (OI) in Spanish hospitals and the associated medical costs from a healthcare system perspective. METHODS To this aim, a retrospective multicentre study was designed analysing admission records from patients admitted with OI in specialized care settings in Spain between 2000 and 2017. Direct medical costs were calculated based on the diagnosis-related group-based hospital payment systems, determined by the Spanish Ministry of Health. RESULTS Overall, 3,747 admissions were reviewed, corresponding to 998 patients, 48.20% of which were males and 51.80% females. Hospital incidence was 5.64 per 100,000 patients (95% CI, 4.80-6.60) over the study period, whereas incidence at birth was 10.14 per 100,000 (95% CI, 8.16-12.05). In-hospital mortality appeared primarily associated to neonatal conditions and acute respiratory failure. Mean length of hospital stay was 2.83 days, decreasing significantly during the study period (p < 0.0001). Readmission rate was significantly higher in younger patients (p = 0.0110). In most hospital admissions other disorders of bone and cartilage (osteoporosis and pathologic fractures) were registered, together with delayed growth and hypocalcaemia. The mean annual direct medical cost per hospital admission was €2,571, increasing significantly over the study period (p < 0.0001). CONCLUSIONS Overall, this study provides data that should be taken into account for the development of improved and more efficient treatment protocols, and in reducing the burden of OI at the healthcare system level.
Collapse
Affiliation(s)
- Josep Darbà
- Department of Economics, Universitat de Barcelona, Barcelona, Spain
| | - Alicia Marsà
- Department of Health Economics, BCN Health Economics & Outcomes Research S.L., Barcelona, Spain
| |
Collapse
|
49
|
Barad M, Csukasi F, Bosakova M, Martin JH, Zhang W, Paige Taylor S, Lachman RS, Zieba J, Bamshad M, Nickerson D, Chong JX, Cohn DH, Krejci P, Krakow D, Duran I. Biallelic mutations in LAMA5 disrupts a skeletal noncanonical focal adhesion pathway and produces a distinct bent bone dysplasia. EBioMedicine 2020; 62:103075. [PMID: 33242826 PMCID: PMC7695969 DOI: 10.1016/j.ebiom.2020.103075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Background Beyond its structural role in the skeleton, the extracellular matrix (ECM), particularly basement membrane proteins, facilitates communication with intracellular signaling pathways and cell to cell interactions to control differentiation, proliferation, migration and survival. Alterations in extracellular proteins cause a number of skeletal disorders, yet the consequences of an abnormal ECM on cellular communication remains less well understood Methods Clinical and radiographic examinations defined the phenotype in this unappreciated bent bone skeletal disorder. Exome analysis identified the genetic alteration, confirmed by Sanger sequencing. Quantitative PCR, western blot analyses, immunohistochemistry, luciferase assay for WNT signaling were employed to determine RNA, proteins levels and localization, and dissect out the underlying cell signaling abnormalities. Migration and wound healing assays examined cell migration properties. Findings This bent bone dysplasia resulted from biallelic mutations in LAMA5, the gene encoding the alpha-5 laminin basement membrane protein. This finding uncovered a mechanism of disease driven by ECM-cell interactions between alpha-5-containing laminins, and integrin-mediated focal adhesion signaling, particularly in cartilage. Loss of LAMA5 altered β1 integrin signaling through the non-canonical kinase PYK2 and the skeletal enriched SRC kinase, FYN. Loss of LAMA5 negatively impacted the actin cytoskeleton, vinculin localization, and WNT signaling. Interpretation This newly described mechanism revealed a LAMA5-β1 Integrin-PYK2-FYN focal adhesion complex that regulates skeletogenesis, impacted WNT signaling and, when dysregulated, produced a distinct skeletal disorder. Funding Supported by NIH awards R01 AR066124, R01 DE019567, R01 HD070394, and U54HG006493, and Czech Republic grants INTER-ACTION LTAUSA19030, V18-08-00567 and GA19-20123S.
Collapse
Affiliation(s)
- Maya Barad
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States
| | - Fabiana Csukasi
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States; Laboratory of Bioengineering and Tissue Regeneration-LABRET, Department of Cell Biology, Genetics and Physiology, University of Málaga, IBIMA, Málaga 29071, Spain
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 65691, Czech Republic
| | - Jorge H Martin
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States
| | - Wenjuan Zhang
- Department of Molecular, Cell and Developmental Biology, University of California- Los Angeles, Los Angeles, CA 90095, United States
| | - S Paige Taylor
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States
| | - Ralph S Lachman
- International Skeletal Dysplasia Registry, University of California, Los Angeles, CA 90095 United States
| | - Jennifer Zieba
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States
| | - Michael Bamshad
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, WA 98195 United States
| | - Deborah Nickerson
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, WA 98195 United States
| | - Jessica X Chong
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, WA 98195 United States
| | - Daniel H Cohn
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States; Department of Molecular, Cell and Developmental Biology, University of California- Los Angeles, Los Angeles, CA 90095, United States; Orthopaedic Institute for Children, University of California-Los Angeles, Los Angeles, CA 90095, United States
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 65691, Czech Republic
| | - Deborah Krakow
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States; International Skeletal Dysplasia Registry, University of California, Los Angeles, CA 90095 United States; Orthopaedic Institute for Children, University of California-Los Angeles, Los Angeles, CA 90095, United States; Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA 90095, United States; Department of Obstetrics and Gynecology, University of California-Los Angeles, Los Angeles, CA 90095, United States.
| | - Ivan Duran
- Department of Orthopaedic Surgery, University of California-Los Angeles, 615 Charles E. Young Drive South, BSRB 512, Los Angeles, CA 90095, United States; Laboratory of Bioengineering and Tissue Regeneration-LABRET, Department of Cell Biology, Genetics and Physiology, University of Málaga, IBIMA, Málaga 29071, Spain; Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Severo Ochoa 35, Málaga 29590, Spain
| |
Collapse
|
50
|
Yamaguchi H, Terajima M, Kitami M, Wang J, He L, Saeki M, Yamauchi M, Komatsu Y. IFT20 is critical for collagen biosynthesis in craniofacial bone formation. Biochem Biophys Res Commun 2020; 533:739-744. [PMID: 32988591 DOI: 10.1016/j.bbrc.2020.09.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
Intraflagellar transport (IFT) is essential for assembling primary cilia required for bone formation. Disruption of IFT frequently leads to bone defects in humans. While it has been well studied about the function of IFT in osteogenic cell proliferation and differentiation, little is known about its role in collagen biosynthesis during bone formation. Here we show that IFT20, the smallest IFT protein in the IFT-B complex, is important for collagen biosynthesis in mice. Deletion of Ift20 in craniofacial osteoblasts displayed bone defects in the face. While collagen protein levels are unaffected by loss of Ift20, collagen cross-linking was significantly altered. In both Ift20:Wnt1-Cre and Ift20:Ocn-Cre mice the bones exhibit increased hydroxylysine-aldehyde deived cross-linking, and decreased lysine-aldehyde derived cross-linking. To obtain insight into the molecular mechanisms, we examined the expression levels of telopeptidyl lysyl hydroxylase 2 (LH2), and associated chaperone complexes. The results demonstrated that, while LH2 levels were unaffected by loss of Ift20, its chaperone, FKBP65, was significantly increased in Ift20:Wnt1-Cre and Ift20:Ocn-Cre mouse calvaria as well as femurs. These results suggest that IFT20 plays a pivotal role in collagen biosynthesis by regulating, in part, telopeptidyl lysine hydroxylation and cross-linking in bone. To the best of our knowledge, this is the first to demonstrate that the IFT components control collagen post-translational modifications. This provides a novel insight into the craniofacial bone defects associated with craniofacial skeletal ciliopathies.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | - Masahiko Terajima
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Megumi Kitami
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan; Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan
| | - Jianbo Wang
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | - Li He
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | - Makio Saeki
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Yoshihiro Komatsu
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, 77030, USA; Graduate Program in Genetics and Epigenetics, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA.
| |
Collapse
|