1
|
Orciani C, Foret MK, Cuello AC, Do Carmo S. Long-term nucleus basalis cholinergic lesions alter the structure of cortical vasculature, astrocytic density and microglial activity in Wistar rats. Neurobiol Aging 2025; 150:132-145. [PMID: 40121723 DOI: 10.1016/j.neurobiolaging.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Basal forebrain cholinergic neurons (BFCNs) are the sole source of cholinergic innervation to the cerebral cortex and hippocampus in humans and the primary source in rodents. This system undergoes early degeneration in Alzheimer's disease. BFCNs terminal synapses are involved in the regulation of the cerebral blood flow by making classical synaptic contacts with other neurons. Additionally, they are located in proximity to cortical cerebral blood vessels, forming connections with various cell types of the neurovascular unit (NVU), including vascular smooth muscle cells, endothelial cells, and astrocytic end-feet. However, the effects of the BFCNs input on NVU components remain unresolved. To address this issue, we immunolesioned the nucleus basalis by administering bilateral stereotaxic injections of the cholinergic immunotoxin 192-IgG-Saporin in 2.5-month-old Wistar rats. Seven months post-lesion, we observed a significant reduction in cortical vesicular acetylcholine transporter-immunoreactive synapses. This was accompanied by changes in the diameter of cortical capillaries and precapillary arterioles, as well as lower levels of vascular endothelial growth factor A (VEGF-A). Additionally, the cholinergic immunolesion increased the density of cortical astrocytes and microglia in the cortex. At these post-BFCN-lesion stages, astrocytic end-feet exhibited an increased co-localization with arterioles. The number of microglia in the parietal cortex correlated with cholinergic loss and exhibited morphological changes indicative of an intermediate activation state. This was supported by decreased levels of proinflammatory mediators IFN-γ, IL-1β, and KC/GRO (CXCL1), and by increased expression of M2 markers SOCS3, IL4Rα, YM1, ARG1, and Fizz1. Our findings offer a novel insight: that the loss of nucleus basalis cholinergic input negatively impacts cortical blood vessels, NVU components, and microglia phenotype.
Collapse
Affiliation(s)
- Chiara Orciani
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Morgan K Foret
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - A Claudio Cuello
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Anatomy & Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada; Department of Pharmacology, Oxford University, Oxford, UK.
| | - Sonia Do Carmo
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
2
|
Banerjee O, Paul T, Singh S, Maji BK, Mukherjee S. Individual and combined antagonism of aryl hydrocarbon receptor (AhR) and estrogen receptors (ERs) offers distinct level of protection against Bisphenol A (BPA)-induced pancreatic islet cell toxicity in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3939-3954. [PMID: 39377923 DOI: 10.1007/s00210-024-03506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Bisphenol A (BPA), a pervasive endocrine-disrupting chemical, is known to convey harmful impact on pancreatic islets through estrogen receptors (ERs). Conversely, BPA can activate aryl hydrocarbon receptor (AhR) in certain contexts and has raised concerns about potential toxicological effects. However, BPA-AhR interaction in the context of pancreatic islet toxicity is yet to be reported. We demonstrated the specific role of AhR and its interaction with ERs to mediate BPA toxicity in pancreatic islets. In vitro, isolated islet cells treated with BPA (1 nM), with or without CH22319 (10 mM) and ICI182780 (1 mM) and insulin release, glucose-stimulated insulin secretion (GSIS), cell viability, and pERK1/2 and pAkt expression were measured. In vivo, mice were treated with BPA (10 and 100 µg/kg body weight/day for 21 days) with or without intraperitonial co-treatment of CH22319 (AhR antagonist, 10mg/kg), and ICI182780 (ER antagonist, 500 µg/kg). Glucose homeostasis, insulin resistance, oxidative stress, and inflammatory markers were measured. In vitro data revealed the involvement of AhR in the BPA-mediated alteration in insulin secretion, GSIS, and pERK1/2 and pAkt expression which were counteracted by CH223191 (AhR antagonist) alone or with ICI182780 (ER antagonist). Further, CH223191 alone or with ICI182780 modulated BPA-induced oxidative stress and pro-inflammatory cytokines and alleviated islet cell dysfunction and impaired insulin secretion. In conclusion, therapeutic targeting of AhR and ER combined might be a promising target against diabetogenic action of BPA.
Collapse
Affiliation(s)
- Oly Banerjee
- Department of Physiology, Serampore College, 9 William Carey Road, Serampore, Hooghly, 712201, West Bengal, India
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Swami Vivekananda University, Bara Kanthalia, West Bengal, 700121, India
| | - Tiyesh Paul
- Department of Physiology, Serampore College, 9 William Carey Road, Serampore, Hooghly, 712201, West Bengal, India
| | - Siddhartha Singh
- Department of Physiology, Serampore College, 9 William Carey Road, Serampore, Hooghly, 712201, West Bengal, India
| | - Bithin Kumar Maji
- Department of Physiology, Serampore College, 9 William Carey Road, Serampore, Hooghly, 712201, West Bengal, India
| | - Sandip Mukherjee
- Department of Physiology, Serampore College, 9 William Carey Road, Serampore, Hooghly, 712201, West Bengal, India.
| |
Collapse
|
3
|
Togre NS, Mekala N, Bhoj PS, Mogadala N, Winfield M, Trivedi J, Grove D, Kotnala S, Rom S, Sriram U, Persidsky Y. Neuroinflammatory responses and blood-brain barrier injury in chronic alcohol exposure: role of purinergic P2 × 7 Receptor signaling. J Neuroinflammation 2024; 21:244. [PMID: 39342243 PMCID: PMC11439317 DOI: 10.1186/s12974-024-03230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Alcohol consumption leads to neuroinflammation and blood‒brain barrier (BBB) damage, resulting in neurological impairment. We previously demonstrated that ethanol-induced disruption of barrier function in human brain endothelial cells was associated with mitochondrial injury, increased ATP and extracellular vesicle (EV) release, and purinergic receptor P2 × 7R activation. Therefore, we aimed to evaluate the effect of P2 × 7R blockade on peripheral and neuro-inflammation in ethanol-exposed mice. In a chronic intermittent ethanol (CIE)-exposed mouse model, P2 × 7R was inhibited by two different methods: Brilliant Blue G (BBG) or gene knockout. We assessed blood ethanol concentration (BEC), brain microvessel gene expression by using RT2 PCR array, plasma P2 × 7R and P-gp, serum ATP, EV-ATP, number of EVs, and EV mtDNA copy numbers. An RT2 PCR array of brain microvessels revealed significant upregulation of proinflammatory genes involved in apoptosis, vasodilation, and platelet activation in CIE-exposed wild-type animals, which were decreased 15-50-fold in BBG-treated-CIE-exposed animals. Plasma P-gp levels and serum P2 × 7R shedding were significantly increased in CIE-exposed animals. Pharmacological or genetic suppression of P2 × 7R decreased receptor shedding to levels equivalent to those in control group. The increase in EV number and EV-ATP content in the CIE-exposed mice was significantly reduced by P2 × 7R inhibition. CIE mice showed augmented EV-mtDNA copy numbers which were reduced in EVs after P2 × 7R inhibition or receptor knockout. These observations suggested that P2 × 7R signaling plays a critical role in ethanol-induced brain injury. Increased extracellular ATP, EV-ATP, EV numbers, and EV-mtDNA copy numbers highlight a new mechanism of brain injury during alcohol exposure via P2 × 7R and biomarkers of such damage. In this study, for the first time, we report the in vivo involvement of P2 × 7R signaling in CIE-induced brain injury.
Collapse
Affiliation(s)
- Namdev S Togre
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| | - Naveen Mekala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Priyanka S Bhoj
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Nikhita Mogadala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Malika Winfield
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayshil Trivedi
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Deborah Grove
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sudhir Kotnala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
4
|
Togre NS, Melaka N, Bhoj PS, Mogadala N, Winfield M, Trivedi J, Grove D, Kotnala S, Rom SS, Sriram U, Persidsky Y. Neuroinflammatory Responses and Blood-Brain Barrier Injury in Chronic Alcohol Exposure: Role of Purinergic P2X7 Receptor Signaling. RESEARCH SQUARE 2024:rs.3.rs-4350949. [PMID: 38766082 PMCID: PMC11100971 DOI: 10.21203/rs.3.rs-4350949/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Alcohol consumption leads to neuroinflammation and blood-brain barrier (BBB) damage, resulting in neurological impairment. We previously demonstrated that ethanol-induced disruption of barrier function in human brain endothelial cells was associated with mitochondrial injury, increased ATP and extracellular vesicle (EV) release, and purinergic receptor P2X7R activation. Therefore, we aimed to evaluate the effect of P2X7r blockade on peripheral and neuro-inflammation in EtOH-exposed mice. In a chronic intermittent ethanol (CIE)-exposed mouse model, P2X7R was inhibited by two different methods: Brilliant Blue G (BBG) or gene knockout. We assessed blood ethanol concentration (BEC), plasma P2X7R and P-gp, number of extra-cellular vesicles (EV), serum ATP and EV-ATP levels. Brain microvessel gene expression and EV mtDNA copy numbers were measured by RT2 PCR array and digital PCR, respectively. A RT2 PCR array of brain microvessels revealed significant upregulation of proinflammatory genes involved in apoptosis, vasodilation, and platelet activation in CIE-exposed animals, which were decreased 15-50-fold in BBG-treated CIE-exposed animals. Plasma P-gp levels and serum P2X7R shedding were significantly increased in CIE-exposed animals. Pharmacological or genetic suppression of P2X7R decreased P2X7R shedding to levels equivalent to those in control group. The increase in EV number and EV-ATP content in the CIE-exposed mice was significantly reduced by P2X7R inhibition. CIE mice showed augmented EV-mtDNA copy numbers which were reduced in EVs after P2X7R inhibition or receptor knockout. These observations suggested that P2X7R signaling plays a critical role in ethanol-induced brain injury. Increased eATP, EV-ATP, EV numbers, and EV-mtDNA copy numbers highlight a new mechanism of brain injury during alcohol exposure via P2X7R and biomarkers of such damage. In this study, for the first time, we report the in vivo involvement of P2X7R signaling in CIE-induced brain injury.
Collapse
|
5
|
Banerjee O, Singh S, Prasad SK, Bhattacharjee A, Seal T, Mandal J, Sinha S, Banerjee A, Maji BK, Mukherjee S. Exploring aryl hydrocarbon receptor (AhR) as a target for Bisphenol-A (BPA)-induced pancreatic islet toxicity and impaired glucose homeostasis: Protective efficacy of ethanol extract of Centella asiatica. Toxicology 2023; 500:153693. [PMID: 38042274 DOI: 10.1016/j.tox.2023.153693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
The estrogenic impact of Bisphenol-A (BPA), a widely recognized endocrine disruptor, causes disruption of pancreatic β-cell function through estrogen receptors (ERs). While BPA's binding affinity for ERs is significantly lower than that of its natural counterpart, estrogen, recent observations of BPA's affinity for aryl hydrocarbon receptor (AhR) in specific cellular contexts have sparked a specific question: does AhR play a role in BPA's toxicological effects within the endocrine pancreas? To explore this question, we investigated BPA's (10 and 100 μg/ kg body weight/day for 21 days) potential to activate AhR within pancreatic islets and assessed the protective role of ethanol extract of Centella asiatica (CA) (200 and 400 mg/kg body weight/day for 21 days) against BPA-mediated toxicity in mouse model. Our results indicate that BPA effectively triggers the activation of AhR and modulates its target genes within pancreatic islets. In contrast, CA activates AhR but directs downstream pathways differentially and activates Nrf2. Additionally, CA was observed to counteract the disruption caused by BPA in glucose homeostasis and insulin sensitivity. Furthermore, BPA-induced oxidative stress and exaggerated production of proinflammatory cytokines were effectively counteracted by CA supplementation. In summary, our study suggests that CA influenced AhR signaling to mitigate the disrupted pancreatic endocrine function in BPA exposed mice. By shedding light on how BPA interacts with AhR, our research provides valuable insights into the mechanisms involved in the diabetogenic actions of BPA.
Collapse
Affiliation(s)
- Oly Banerjee
- Department of Physiology, Serampore College, 9 William Carey Road, Hooghly, 712201, India; Department of Medical Laboratory Technology, School of Allied Health Sciences, Swami Vivekananda University, Bara Kanthalia, West Bengal 700121, India
| | - Siddhartha Singh
- Department of Physiology, Serampore College, 9 William Carey Road, Hooghly, 712201, India
| | - Shilpi Kumari Prasad
- Department of Physiology, Serampore College, 9 William Carey Road, Hooghly, 712201, India
| | - Ankita Bhattacharjee
- Department of Physiology, Serampore College, 9 William Carey Road, Hooghly, 712201, India
| | - Tapan Seal
- Plant Chemistry Department, Botanical Survey of India, Shibpur, Howrah 711103, India
| | - Jayanta Mandal
- Department of Botany, Vivekananda Mahavidyalaya, Haripal, Hooghly, 712405, India
| | - Sangram Sinha
- Department of Botany, Vivekananda Mahavidyalaya, Haripal, Hooghly, 712405, India
| | - Anindita Banerjee
- Department of Physiology, Serampore College, 9 William Carey Road, Hooghly, 712201, India
| | - Bithin Kumar Maji
- Department of Physiology, Serampore College, 9 William Carey Road, Hooghly, 712201, India
| | - Sandip Mukherjee
- Department of Physiology, Serampore College, 9 William Carey Road, Hooghly, 712201, India.
| |
Collapse
|
6
|
Kameyama T, Miyata M, Shiotani H, Adachi J, Kakuta S, Uchiyama Y, Mizutani K, Takai Y. Heterogeneity of perivascular astrocyte endfeet depending on vascular regions in the mouse brain. iScience 2023; 26:108010. [PMID: 37829206 PMCID: PMC10565786 DOI: 10.1016/j.isci.2023.108010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Astrocytes interact with not only synapses but also brain blood vessels through perivascular astrocyte endfeet (PV-AEF) to form the neurovascular unit (NVU). However, PV-AEF components have not been fully identified. Here, we biochemically isolated blood vessels from mouse brain homogenates and purified PV-AEF. The purified PV-AEF were observed in different sizes, similar to PV-AEF on brain blood vessels. Mass spectrometry analysis identified 9,762 proteins in the purified PV-AEF, including cell adhesion molecules, nectin-2δ, Kirrel2, and podoplanin. Immunofluorescence microscopic analysis revealed that nectin-2δ and podoplanin were concentrated mainly in arteries/arterioles and veins/venules of the mouse brain, whereas Kirrel2 was mainly in arteries/arterioles. Nectin-2α/δ, Kirrel2, and podoplanin were preferentially observed in large sizes of the purified PV-AEF. Furthermore, Kirrel2 potentially has cell adhesion activity of cultured astrocytes. Collectively, these results indicate that PV-AEF have heterogeneity in sizes and molecular components, implying different roles of PV-AEF in NVU function depending on vascular regions.
Collapse
Affiliation(s)
- Takeshi Kameyama
- Division of Pathogenetic Signaling, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
- Division of Pathogenetic Signaling, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hajime Shiotani
- Division of Pathogenetic Signaling, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
- Division of Pathogenetic Signaling, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Soichiro Kakuta
- Laboratory of Morphology and Image Analysis, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Cellular Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yasuo Uchiyama
- Department of Cellular Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
- Division of Pathogenetic Signaling, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| |
Collapse
|
7
|
Aging decreases docosahexaenoic acid transport across the blood-brain barrier in C57BL/6J mice. PLoS One 2023; 18:e0281946. [PMID: 36795730 PMCID: PMC9934487 DOI: 10.1371/journal.pone.0281946] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/05/2023] [Indexed: 02/17/2023] Open
Abstract
Nutrients are actively taken up by the brain via various transporters at the blood-brain barrier (BBB). A lack of specific nutrients in the aged brain, including decreased levels of docosahexaenoic acid (DHA), is associated with memory and cognitive dysfunction. To compensate for decreased brain DHA, orally supplied DHA must be transported from the circulating blood to the brain across the BBB through transport carriers, including major facilitator superfamily domain-containing protein 2a (MFSD2A) and fatty acid-binding protein 5 (FABP5) that transport esterified and non-esterified DHA, respectively. Although it is known that the integrity of the BBB is altered during aging, the impact of aging on DHA transport across the BBB has not been fully elucidated. We used 2-, 8-, 12-, and 24-month-old male C57BL/6 mice to evaluate brain uptake of [14C]DHA, as the non-esterified form, using an in situ transcardiac brain perfusion technique. Primary culture of rat brain endothelial cells (RBECs) was used to evaluate the effect of siRNA-mediated MFSD2A knockdown on cellular uptake of [14C]DHA. We observed that the 12- and 24-month-old mice exhibited significant reductions in brain uptake of [14C]DHA and decreased MFSD2A protein expression in the brain microvasculature compared with that of the 2-month-old mice; nevertheless, FABP5 protein expression was up-regulated with age. Brain uptake of [14C]DHA was inhibited by excess unlabeled DHA in 2-month-old mice. Transfection of MFSD2A siRNA into RBECs decreased the MFSD2A protein expression levels by 30% and reduced cellular uptake of [14C]DHA by 20%. These results suggest that MFSD2A is involved in non-esterified DHA transport at the BBB. Therefore, the decreased DHA transport across the BBB that occurs with aging could be due to age-related down-regulation of MFSD2A rather than FABP5.
Collapse
|
8
|
Identification of Nanoparticle Properties for Optimal Drug Delivery across a Physiological Cell Barrier. Pharmaceutics 2023; 15:pharmaceutics15010200. [PMID: 36678829 PMCID: PMC9865979 DOI: 10.3390/pharmaceutics15010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Nanoparticles (NPs) represent an attractive strategy to overcome difficulties associated with the delivery of therapeutics. Knowing the optimal properties of NPs to address these issues could allow for improved in vivo responses. This work investigated NPs prepared from 5 materials of 3 sizes and 3 concentrations applied to a cell barrier model. The NPs permeability across a cell barrier and their effects on cell barrier integrity and cell viability were evaluated. The properties of these NPs, as determined in water (traditional) vs. media (realistic), were compared to cell responses. It was found that for all cellular activities, NP properties determined in media was the best predictor of the cell response. Notably, ZnO NPs caused significant alterations to cell viability across all 3 cell lines tested. Importantly, we report that the zeta potential of NPs correlates significantly with NP permeability and NP-induced changes in cell viability. NPs with physiological-based zeta potential of -12 mV result in good cell barrier penetration without considerable changes in cell viability.
Collapse
|
9
|
Murata Y, Neuhoff S, Rostami-Hodjegan A, Takita H, Al-Majdoub ZM, Ogungbenro K. In Vitro to In Vivo Extrapolation Linked to Physiologically Based Pharmacokinetic Models for Assessing the Brain Drug Disposition. AAPS J 2022; 24:28. [PMID: 35028763 PMCID: PMC8817058 DOI: 10.1208/s12248-021-00675-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022] Open
Abstract
Drug development for the central nervous system (CNS) is a complex endeavour with low success rates, as the structural complexity of the brain and specifically the blood-brain barrier (BBB) poses tremendous challenges. Several in vitro brain systems have been evaluated, but the ultimate use of these data in terms of translation to human brain concentration profiles remains to be fully developed. Thus, linking up in vitro-to-in vivo extrapolation (IVIVE) strategies to physiologically based pharmacokinetic (PBPK) models of brain is a useful effort that allows better prediction of drug concentrations in CNS components. Such models may overcome some known aspects of inter-species differences in CNS drug disposition. Required physiological (i.e. systems) parameters in the model are derived from quantitative values in each organ. However, due to the inability to directly measure brain concentrations in humans, compound-specific (drug) parameters are often obtained from in silico or in vitro studies. Such data are translated through IVIVE which could be also applied to preclinical in vivo observations. In such exercises, the limitations of the assays and inter-species differences should be adequately understood in order to verify these predictions with the observed concentration data. This report summarizes the state of IVIVE-PBPK-linked models and discusses shortcomings and areas of further research for better prediction of CNS drug disposition. Graphical abstract ![]()
Collapse
Affiliation(s)
- Yukiko Murata
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, University of Manchester, Manchester, M13 9PT, UK.,Sohyaku.Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-0033, Japan
| | - Sibylle Neuhoff
- Certara UK Ltd, Simcyp Division, 1 Concourse Way, Level 2-Acero, Sheffield, S1 2BJ, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, University of Manchester, Manchester, M13 9PT, UK.,Certara UK Ltd, Simcyp Division, 1 Concourse Way, Level 2-Acero, Sheffield, S1 2BJ, UK
| | - Hiroyuki Takita
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, University of Manchester, Manchester, M13 9PT, UK.,Development Planning, Clinical Development Center, Asahi Kasei Pharma Corporation, Hibiya Mitsui Tower, 1-1-2 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, University of Manchester, Manchester, M13 9PT, UK
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
10
|
Szczepkowska A, Harazin A, Barna L, Deli MA, Skipor J. Identification of Reference Genes for Circadian Studies on Brain Microvessels and Choroid Plexus Samples Isolated from Rats. Biomolecules 2021; 11:biom11081227. [PMID: 34439891 PMCID: PMC8394446 DOI: 10.3390/biom11081227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022] Open
Abstract
Delivery of putative compounds of therapeutic value to the brain is limited by brain barriers: the blood–brain barrier located in the endothelium of the brain microvessels (BrMV) and the blood–cerebrospinal fluid barrier located in the epithelium of the choroid plexus (ChP). Understanding their function and modulation by the circadian clock may enhance the efficacy of brain-targeting therapies. The aim of the present study was to evaluate the stability of 10 reference genes in the BrMV and ChP, isolated from male and female rats at six time points (ZT1, 5, 9, 13, 17, and 21). Gene evaluations were performed by qPCR, analyzed by RefFinder tool, and verified by analyzing the expression of the brain and muscle ARNT-like 1 (Bmal1) using the qPCR and digital PCR methods. We identified as the most stable genes for circadian studies tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (Ywhaz) and apolipoprotein E (Apoe) for BrMV, and beta actin (Actb) and hypoxanthine-guanine phosphoribosyltransferase (Hprt1) for ChP. After verification, ribosomal protein (Rps18) was also included as a sufficient reference gene. Additionally, the observed gender difference in the Bmal1 oscillations in both BrMV and ChP suggests that separate studies for each gender are recommended.
Collapse
Affiliation(s)
- Aleksandra Szczepkowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
- Correspondence: (A.S.); (M.A.D.); Tel.: +48-89-539-3125 (A.S.); +36-62-599602 (M.A.D.)
| | - András Harazin
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (A.H.); (L.B.)
| | - Lilla Barna
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (A.H.); (L.B.)
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (A.H.); (L.B.)
- Correspondence: (A.S.); (M.A.D.); Tel.: +48-89-539-3125 (A.S.); +36-62-599602 (M.A.D.)
| | - Janina Skipor
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| |
Collapse
|
11
|
Isolation of Primary Human and Rodent Brain Microvascular Endothelial Cells: Culturing, Characterization, and High-Efficiency Transfection. Methods Mol Biol 2021. [PMID: 34033087 DOI: 10.1007/978-1-0716-1437-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Studies of blood-brain barrier (BBB) require developing of a novel and convenient in vitro endothelial cell model. We isolated primary human and rodent brain microvascular endothelial cells and developed methods for culturing, characterization, and high-efficiency transfection of endothelial cells. Here, we describe the improved methods to obtain in vitro human and rodent BBB models to study expression of endogenous and exogenous genes of interest.
Collapse
|
12
|
Santander N, Arnold TD. Enrichment of Vascular Fragments from Mouse Embryonic Brains for Endothelial Cell Analysis. Bio Protoc 2021; 11:e4058. [PMID: 34263001 DOI: 10.21769/bioprotoc.4058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/03/2021] [Accepted: 03/17/2021] [Indexed: 11/02/2022] Open
Abstract
Endothelial cells in the brain interact with other cell types, forming the blood-brain barrier. This barrier controls the movement of solutes into and out of the brain, regulating pathophysiological processes and drug delivery to the brain. Common isolation methods used to study these cells during embryonic development involve enzymatic treatment and cell sorting using specific markers. This process modifies the cell state and produces minute amounts of sample. Here, we describe a protocol for the enrichment of vascular cells from embryonic brains based on dextran separation. In this method, the brain is lightly disrupted with a pestle and then resuspended in a dextran solution. Low-speed centrifugation permits the separation of the parenchymal and vascular fractions. Further centrifugation steps improve fractionation. This method is simple and fast and produces enough sample for biochemical assays. Graphic abstract: Purification of vascular fragments from an embryonic brain.
Collapse
Affiliation(s)
- Nicolas Santander
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Thomas D Arnold
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Li Y, Faiz A, Moshage H, Schubert R, Schilling L, Kamps JA. Comparative transcriptome analysis of inner blood-retinal barrier and blood-brain barrier in rats. Sci Rep 2021; 11:12151. [PMID: 34108511 PMCID: PMC8190099 DOI: 10.1038/s41598-021-91584-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/13/2021] [Indexed: 11/15/2022] Open
Abstract
Although retinal microvessels (RMVs) and brain microvessels (BMVs) are closely related in their developmental and share similar blood-neural barriers, studies have reported markedly different responses to stressors such as diabetes. Therefore, we hypothesized that RMVs and BMVs will display substantial differences in gene expression levels even though they are of the same embryological origin. In this study, both RMVs and BMVs were mechanically isolated from rats. Full retinal and brain tissue samples (RT, BT) were collected for comparisons. Total RNA extracted from these four groups were processed on Affymetrix rat 2.0 microarray Chips. The transcriptional profiles of these tissues were then analyzed. In the present paper we looked at differentially expressed genes (DEGs) in RMVs (against RT) and BMVs (against BT) using a rather conservative threshold value of ≥ ± twofold change and a false discovery rate corrected for multiple comparisons (p < 0.05). In RMVs a total of 1559 DEGs were found, of which 1004 genes were higher expressed in RMVs than in RT. Moreover, 4244 DEGs between BMVs and BT were identified, of which 1956 genes were ≥ twofold enriched in BMVs. Using these DEGs, we comprehensively analyzed the actual expression levels and highlighted their involvement in critical functional structures in RMVs and BMVs, such as junctional complex, transporters and signaling pathways. Our work provides for the first time the transcriptional profiles of rat RMVs and BMVs. These results may help to understand why retina and brain microvasculature show different susceptibilities to stressors, and they might even provide new insight for pharmacological interventions.
Collapse
Affiliation(s)
- Y Li
- Division of Neurosurgical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A Faiz
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - H Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - R Schubert
- European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Physiology, Institute of Theoretical Medicine, Medical Faculty, Augsburg University, Augsburg, Germany
| | - L Schilling
- Division of Neurosurgical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. .,European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - J A Kamps
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
14
|
Ogata S, Ito S, Masuda T, Ohtsuki S. Efficient isolation of brain capillary from a single frozen mouse brain for protein expression analysis. J Cereb Blood Flow Metab 2021; 41:1026-1038. [PMID: 32703112 PMCID: PMC8054721 DOI: 10.1177/0271678x20941449] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Isolated brain capillaries are essential for analyzing the changes of protein expressions at the blood-brain barrier (BBB) under pathological conditions. The standard brain capillary isolation methods require the use of at least five mouse brains in order to obtain a sufficient amount and purity of brain capillaries. The purpose of this study was to establish a brain capillary isolation method from a single mouse brain for protein expression analysis. We successfully isolated brain capillaries from a single frozen mouse brain by using a bead homogenizer in the brain homogenization step and combination of cell strainers and glass beads in the purification step. Western blot and proteomic analysis showed that proteins expressed at the BBB in mouse brain capillaries isolated by the developed method were more enriched than those isolated from a pool of five mouse brains by the standard method. By using the developed method, we further verified the changes in expression of BBB proteins in Glut1-deficient mouse. The developed method is useful for the analysis of various mice models with low numbers and enables us to understand, in more detail, the physiology and pathology of BBB.
Collapse
Affiliation(s)
- Seiryo Ogata
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
15
|
Taccola C, Barneoud P, Cartot-Cotton S, Valente D, Schussler N, Saubaméa B, Chasseigneaux S, Cochois V, Mignon V, Curis E, Lochus M, Nicolic S, Dodacki A, Cisternino S, Declèves X, Bourasset F. Modifications of physical and functional integrity of the blood-brain barrier in an inducible mouse model of neurodegeneration. Neuropharmacology 2021; 191:108588. [PMID: 33940010 DOI: 10.1016/j.neuropharm.2021.108588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 12/28/2022]
Abstract
The inducible p25 overexpression mouse model recapitulate many hallmark features of Alzheimer's disase including progressive neuronal loss, elevated Aβ, tau pathology, cognitive dysfunction, and impaired synaptic plasticity. We chose p25 mice to evaluate the physical and functional integrity of the blood-brain barrier (BBB) in a context of Tau pathology (pTau) and severe neurodegeneration, at an early (3 weeks ON) and a late (6 weeks ON) stage of the pathology. Using in situ brain perfusion and confocal imaging, we found that the brain vascular surface area and the physical integrity of the BBB were unaltered in p25 mice. However, there was a significant 14% decrease in cerebrovascular volume in 6 weeks ON mice, possibly explained by a significant 27% increase of collagen IV in the basement membrane of brain capillaries. The function of the BBB transporters GLUT1 and LAT1 was evaluated by measuring brain uptake of d-glucose and phenylalanine, respectively. In 6 weeks ON p25 mice, d-glucose brain uptake was significantly reduced by about 17% compared with WT, without any change in the levels of GLUT1 protein or mRNA in brain capillaries. The brain uptake of phenylalanine was not significantly reduced in p25 mice compared with WT. Lack of BBB integrity, impaired BBB d-glucose transport have been observed in several mouse models of AD. In contrast, reduced cerebrovascular volume and an increased basement membrane thickness may be more specifically associated with pTau in mouse models of neurodegeneration.
Collapse
Affiliation(s)
- Camille Taccola
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine & Early Development, Sanofi, 3 Digue d'Alfortville, 94140, Alfortville, France; INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Pascal Barneoud
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, 1 Avenue Pierre Brossolette, 91380, Chilly-Mazarin, France
| | - Sylvaine Cartot-Cotton
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine & Early Development, Sanofi, 3 Digue d'Alfortville, 94140, Alfortville, France
| | - Delphine Valente
- Drug Metabolism & Pharmacokinetics, Research platform, Sanofi, 3 Digue d'Alfortville, 94140, Alfortville, France
| | - Nathalie Schussler
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, 1 Avenue Pierre Brossolette, 91380, Chilly-Mazarin, France
| | - Bruno Saubaméa
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Stéphanie Chasseigneaux
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Véronique Cochois
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Virginie Mignon
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Emmanuel Curis
- Laboratoire de biomathématiques, plateau iB(2), EA 7537 « BioSTM », UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France; Service de bioinformatique et statistique médicale, hôpital Saint-Louis, APHP, 1, avenue Claude Vellefaux, 75010, Paris, France
| | - Murielle Lochus
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Sophie Nicolic
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Agnès Dodacki
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Salvatore Cisternino
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Xavier Declèves
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Fanchon Bourasset
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000, Besançon, France.
| |
Collapse
|
16
|
Cikic S, Chandra PK, Harman JC, Rutkai I, Katakam PV, Guidry JJ, Gidday JM, Busija DW. Sexual differences in mitochondrial and related proteins in rat cerebral microvessels: A proteomic approach. J Cereb Blood Flow Metab 2021; 41:397-412. [PMID: 32241204 PMCID: PMC8370005 DOI: 10.1177/0271678x20915127] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sex differences in mitochondrial numbers and function are present in large cerebral arteries, but it is unclear whether these differences extend to the microcirculation. We performed an assessment of mitochondria-related proteins in cerebral microvessels (MVs) isolated from young, male and female, Sprague-Dawley rats. MVs composed of arterioles, capillaries, and venules were isolated from the cerebrum and used to perform a 3 versus 3 quantitative, multiplexed proteomics experiment utilizing tandem mass tags (TMT), coupled with liquid chromatography/mass spectrometry (LC/MS). MS data and bioinformatic analyses were performed using Proteome Discoverer version 2.2 and Ingenuity Pathway Analysis. We identified a total of 1969 proteins, of which 1871 were quantified by TMT labels. Sixty-four proteins were expressed significantly (p < 0.05) higher in female samples compared with male samples. Females expressed more mitochondrial proteins involved in energy production, mitochondrial membrane structure, anti-oxidant enzyme proteins, and those involved in fatty acid oxidation. Conversely, males had higher expression levels of mitochondria-destructive proteins. Our findings reveal, for the first time, the full extent of sexual dimorphism in the mitochondrial metabolic protein profiles of MVs, which may contribute to sex-dependent cerebrovascular and neurological pathologies.
Collapse
Affiliation(s)
- Sinisa Cikic
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jarrod C Harman
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Prasad Vg Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Jessie J Guidry
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Proteomics Core Facility, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Jeffrey M Gidday
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| |
Collapse
|
17
|
Cohen-Salmon M, Slaoui L, Mazaré N, Gilbert A, Oudart M, Alvear-Perez R, Elorza-Vidal X, Chever O, Boulay AC. Astrocytes in the regulation of cerebrovascular functions. Glia 2020; 69:817-841. [PMID: 33058289 DOI: 10.1002/glia.23924] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Astrocytes are the most numerous type of neuroglia in the brain and have a predominant influence on the cerebrovascular system; they control perivascular homeostasis, the integrity of the blood-brain barrier, the dialogue with the peripheral immune system, the transfer of metabolites from the blood, and blood vessel contractility in response to neuronal activity. These regulatory processes occur in a specialized interface composed of perivascular astrocyte extensions that almost completely cover the cerebral blood vessels. Scientists have only recently started to study how this interface is formed and how it influences cerebrovascular functions. Here, we review the literature on the astrocytes' role in the regulation of the cerebrovascular system. We cover the anatomy and development of the gliovascular interface, the known gliovascular functions, and molecular factors, the latter's implication in certain pathophysiological situations, and recent cutting-edge experimental tools developed to examine the astrocytes' role at the vascular interface. Finally, we highlight some open questions in this field of research.
Collapse
Affiliation(s)
- Martine Cohen-Salmon
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Leila Slaoui
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Noémie Mazaré
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Alice Gilbert
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Marc Oudart
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Rodrigo Alvear-Perez
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Xabier Elorza-Vidal
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Oana Chever
- Normandie University, UNIROUEN, INSERM, DC2N, IRIB, Rouen, France
| | - Anne-Cécile Boulay
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| |
Collapse
|
18
|
Bernstein DL, Zuluaga-Ramirez V, Gajghate S, Reichenbach NL, Polyak B, Persidsky Y, Rom S. miR-98 reduces endothelial dysfunction by protecting blood-brain barrier (BBB) and improves neurological outcomes in mouse ischemia/reperfusion stroke model. J Cereb Blood Flow Metab 2020; 40:1953-1965. [PMID: 31601141 PMCID: PMC7786850 DOI: 10.1177/0271678x19882264] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most neurological diseases, including stroke, lead to some degree of blood-brain barrier (BBB) dysfunction. A significant portion of BBB injury is caused by inflammation, due to pro-inflammatory factors produced in the brain, and by leukocyte engagement of the brain endothelium. Recently, microRNAs (miRNAs) have appeared as major regulators of inflammation-induced changes to gene expression in the microvascular endothelial cells (BMVEC) that comprise the BBB. However, miRNAs' role during cerebral ischemia/reperfusion is still underexplored. Endothelial levels of miR-98 were significantly altered following ischemia/reperfusion insults, both in vivo and in vitro, transient middle cerebral artery occlusion (tMCAO), and oxygen-glucose deprivation (OGD), respectively. Overexpression of miR-98 reduced the mouse's infarct size after tMCAO. Further, miR-98 lessened infiltration of proinflammatory Ly6CHI leukocytes into the brain following stroke and diminished the prevalence of M1 (activated) microglia within the impacted area. miR-98 attenuated BBB permeability, as demonstrated by changes to fluorescently-labeled dextran penetration in vivo and improved transendothelial electrical resistance (TEER) in vitro. Treatment with miR-98 improved significantly the locomotor impairment. Our study provides identification and functional assessment of miRNAs in brain endothelium and lays the groundwork for improving therapeutic approaches for patients suffering from ischemic attacks.
Collapse
Affiliation(s)
- David L Bernstein
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, USA
| | | | - Sachin Gajghate
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, USA
| | - Nancy L Reichenbach
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, USA
| | - Boris Polyak
- Department of Surgery, Drexel University College of Medicine, PA, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
19
|
Francisco DMF, Marchetti L, Rodríguez-Lorenzo S, Frías-Anaya E, Figueiredo RM, Winter P, Romero IA, de Vries HE, Engelhardt B, Bruggmann R. Advancing brain barriers RNA sequencing: guidelines from experimental design to publication. Fluids Barriers CNS 2020; 17:51. [PMID: 32811511 PMCID: PMC7433166 DOI: 10.1186/s12987-020-00207-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND RNA sequencing (RNA-Seq) in its varied forms has become an indispensable tool for analyzing differential gene expression and thus characterization of specific tissues. Aiming to understand the brain barriers genetic signature, RNA seq has also been introduced in brain barriers research. This has led to availability of both, bulk and single-cell RNA-Seq datasets over the last few years. If appropriately performed, the RNA-Seq studies provide powerful datasets that allow for significant deepening of knowledge on the molecular mechanisms that establish the brain barriers. However, RNA-Seq studies comprise complex workflows that require to consider many options and variables before, during and after the proper sequencing process. MAIN BODY In the current manuscript, we build on the interdisciplinary experience of the European PhD Training Network BtRAIN ( https://www.btrain-2020.eu/ ) where bioinformaticians and brain barriers researchers collaborated to analyze and establish RNA-Seq datasets on vertebrate brain barriers. The obstacles BtRAIN has identified in this process have been integrated into the present manuscript. It provides guidelines along the entire workflow of brain barriers RNA-Seq studies starting from the overall experimental design to interpretation of results. Focusing on the vertebrate endothelial blood-brain barrier (BBB) and epithelial blood-cerebrospinal-fluid barrier (BCSFB) of the choroid plexus, we provide a step-by-step description of the workflow, highlighting the decisions to be made at each step of the workflow and explaining the strengths and weaknesses of individual choices made. Finally, we propose recommendations for accurate data interpretation and on the information to be included into a publication to ensure appropriate accessibility of the data and reproducibility of the observations by the scientific community. CONCLUSION Next generation transcriptomic profiling of the brain barriers provides a novel resource for understanding the development, function and pathology of these barrier cells, which is essential for understanding CNS homeostasis and disease. Continuous advancement and sophistication of RNA-Seq will require interdisciplinary approaches between brain barrier researchers and bioinformaticians as successfully performed in BtRAIN. The present guidelines are built on the BtRAIN interdisciplinary experience and aim to facilitate collaboration of brain barriers researchers with bioinformaticians to advance RNA-Seq study design in the brain barriers community.
Collapse
Affiliation(s)
- David M F Francisco
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Luca Marchetti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Sabela Rodríguez-Lorenzo
- MS Center Amsterdam, Amsterdam Neuroscience, Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eduardo Frías-Anaya
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Ricardo M Figueiredo
- GenXPro GmbH, Frankfurt/Main, Germany
- Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | | | - Ignacio Andres Romero
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Helga E de Vries
- MS Center Amsterdam, Amsterdam Neuroscience, Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland.
| |
Collapse
|
20
|
Hyperglycemia and advanced glycation end products disrupt BBB and promote occludin and claudin-5 protein secretion on extracellular microvesicles. Sci Rep 2020; 10:7274. [PMID: 32350344 PMCID: PMC7190636 DOI: 10.1038/s41598-020-64349-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/15/2020] [Indexed: 12/17/2022] Open
Abstract
Cognitive impairment is a well-known complication of diabetes mellitus (DM). Microvascular compromise was described one DM complication. Recently we showed blood brain barrier (BBB) permeability and memory loss are associated with diminution of tight junctions (TJ) in brain endothelium and pericyte coverage and inflammation in cerebral microvessels and brain tissue paralleling hyperglycemia in mice of both DM types. The current study demonstrates that exposure of brain microvessels to hyperglycemic conditions or advanced glycation end products (AGEs) ex vivo resulted in significant abnormalities in membranous distribution of TJ proteins. We found significant increase in the amount of extracellular vesicles (EVs) isolated from DM mice and enhanced presence of TJ proteins, occludin and claudin-5, on EVs. Exposure of BMVECs to high glucose and AGEs led to significant augmentation of ICAM and VCAM expression, elevated leukocyte adhesion to and migration across BMVEC monolayers, and increased BBB permeability in vitro. Pericytes exposed to hyperglycemia and AGEs displayed diminished expression of integrin α1, PDGF-R1β and connexin-43. Our findings indicate BBB compromise in DM ex vivo, in vitro and in vivo models in association with BMVEC/pericyte dysfunction and inflammation. Prevention of BBB injury may be a new therapeutic approach to avert cognitive demise in DM.
Collapse
|
21
|
Chaves C, Campanelli F, Chapy H, Gomez-Zepeda D, Glacial F, Smirnova M, Taghi M, Pallud J, Perrière N, Declèves X, Menet MC, Cisternino S. An Interspecies Molecular and Functional Study of Organic Cation Transporters at the Blood-Brain Barrier: From Rodents to Humans. Pharmaceutics 2020; 12:pharmaceutics12040308. [PMID: 32231079 PMCID: PMC7238036 DOI: 10.3390/pharmaceutics12040308] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 01/11/2023] Open
Abstract
Organic cation transporters (OCTs) participate in the handling of compounds in kidneys and at the synaptic cleft. Their role at the blood-brain barrier (BBB) in brain drug delivery is still unclear. The presence of OCT1,2,3 (SLC22A1-3) in mouse, rat and human isolated brain microvessels was investigated by either qRT-PCR, quantitative proteomics and/or functional studies. BBB transport of the prototypical substrate [3H]-1-methyl-4-phenylpyridinium ([3H]-MPP+) was measured by in situ brain perfusion in six mouse strains and in Sprague Dawley rats, in primary human brain microvascular endothelial cells seeded on inserts, in the presence or absence of OCTs and a MATE1 (SLC49A1) inhibitor. The results show negligible OCT1 (SLC22A1) and OCT2 (SLC22A2) expression in either mice, rat or human brain microvessels, while OCT3 expression was identified in rat microvessels by qRT-PCR. The in vitro human cellular uptake of [3H]-MPP+ was not modified by OCTs/MATE-inhibitor. Brain transport of [3H]-MPP+ remains unchanged between 2- and 6-month old mice, and no alteration was observed in mice and rats with inhibitors. In conclusion, the evidenced lack of expression and/or functional OCTs and MATE at the BBB allows the maintenance of the brain homeostasis and function as it prevents an easy access of their neurotoxicant substrates to the brain parenchyma.
Collapse
Affiliation(s)
- Catarina Chaves
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - Federica Campanelli
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - Hélène Chapy
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - David Gomez-Zepeda
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - Fabienne Glacial
- BrainPlotting SAS, Institut du Cerveau et de la Moelle épinière, 75013 Paris, France; (F.G.); (N.P.)
| | - Maria Smirnova
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - Meryam Taghi
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - Johan Pallud
- Department of Neurosurgery, Sainte Anne Hospital, 75014 Paris, France;
- Inserm, U894, IMA-Brain, Centre de Psychiatrie et Neurosciences, 75013 Paris, France
| | - Nicolas Perrière
- BrainPlotting SAS, Institut du Cerveau et de la Moelle épinière, 75013 Paris, France; (F.G.); (N.P.)
| | - Xavier Declèves
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
- Assistance Publique-Hôpitaux de Paris, AP-HP, Hôpital Universitaire Cochin, Biologie du médicament et toxicologie, 75006 Paris, France
| | - Marie-Claude Menet
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
- Assistance Publique-Hôpitaux de Paris, AP-HP, Hôpital Universitaire Cochin, Hormonologie adulte, 75006 Paris, France
| | - Salvatore Cisternino
- Inserm, U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (C.C.); (F.C.); (H.C.); (M.S.); (M.T.); (X.D.); (M.-C.M.)
- Faculté de pharmacie, Université de Paris, UMR-S 1144, 4, Avenue de l’Observatoire, 75006 Paris, France
- Assistance Publique-Hôpitaux de Paris, AP-HP, Hôpital Universitaire Necker-Enfants Malades, Service de pharmacie, 75015 Paris, France
- Correspondence: ; Tel.: +33-1-444-951-91
| |
Collapse
|
22
|
Koehn LM. ABC efflux transporters at blood-central nervous system barriers and their implications for treating spinal cord disorders. Neural Regen Res 2020; 15:1235-1242. [PMID: 31960802 PMCID: PMC7047801 DOI: 10.4103/1673-5374.272568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The barriers present in the interfaces between the blood and the central nervous system form a major hurdle for the pharmacological treatment of central nervous system injuries and diseases. The family of ATP-binding cassette (ABC) transporters has been widely studied regarding efflux of medications at blood-central nervous system barriers. These efflux transporters include P-glycoprotein (abcb1), 'breast cancer resistance protein' (abcg2) and the various 'multidrug resistance-associated proteins' (abccs). Understanding which efflux transporters are present at the blood-spinal cord, blood-cerebrospinal fluid and cerebrospinal fluid-spinal cord barriers is necessary to determine their involvement in limiting drug transfer from blood to the spinal cord tissue. Recent developments in the blood-brain barrier field have shown that barrier systems are dynamic and the profile of barrier defenses can alter due to conditions such as age, disease and environmental challenge. This means that a true understanding of ABC efflux transporter expression and localization should not be one static value but instead a range that represents the complex patient subpopulations that exist. In the present review, the blood-central nervous system barrier literature is discussed with a focus on the impact of ABC efflux transporters on: (i) protecting the spinal cord from adverse effects of systemically directed drugs, and (ii) limiting centrally directed drugs from accessing their active sites within the spinal cord.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pharmacology and Therapeutics, the University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
23
|
Gomez-Zepeda D, Taghi M, Scherrmann JM, Decleves X, Menet MC. ABC Transporters at the Blood-Brain Interfaces, Their Study Models, and Drug Delivery Implications in Gliomas. Pharmaceutics 2019; 12:pharmaceutics12010020. [PMID: 31878061 PMCID: PMC7022905 DOI: 10.3390/pharmaceutics12010020] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/22/2022] Open
Abstract
Drug delivery into the brain is regulated by the blood-brain interfaces. The blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier (BCSFB), and the blood-arachnoid barrier (BAB) regulate the exchange of substances between the blood and brain parenchyma. These selective barriers present a high impermeability to most substances, with the selective transport of nutrients and transporters preventing the entry and accumulation of possibly toxic molecules, comprising many therapeutic drugs. Transporters of the ATP-binding cassette (ABC) superfamily have an important role in drug delivery, because they extrude a broad molecular diversity of xenobiotics, including several anticancer drugs, preventing their entry into the brain. Gliomas are the most common primary tumors diagnosed in adults, which are often characterized by a poor prognosis, notably in the case of high-grade gliomas. Therapeutic treatments frequently fail due to the difficulty of delivering drugs through the brain barriers, adding to diverse mechanisms developed by the cancer, including the overexpression or expression de novo of ABC transporters in tumoral cells and/or in the endothelial cells forming the blood-brain tumor barrier (BBTB). Many models have been developed to study the phenotype, molecular characteristics, and function of the blood-brain interfaces as well as to evaluate drug permeability into the brain. These include in vitro, in vivo, and in silico models, which together can help us to better understand their implication in drug resistance and to develop new therapeutics or delivery strategies to improve the treatment of pathologies of the central nervous system (CNS). In this review, we present the principal characteristics of the blood-brain interfaces; then, we focus on the ABC transporters present on them and their implication in drug delivery; next, we present some of the most important models used for the study of drug transport; finally, we summarize the implication of ABC transporters in glioma and the BBTB in drug resistance and the strategies to improve the delivery of CNS anticancer drugs.
Collapse
Affiliation(s)
- David Gomez-Zepeda
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- Correspondence: (D.G.-Z.); (M.-C.M.)
| | - Méryam Taghi
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
| | - Jean-Michel Scherrmann
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
| | - Xavier Decleves
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- UF Biologie du médicament et toxicologie, Hôpital Cochin, AP HP, 75006 Paris, France
| | - Marie-Claude Menet
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- UF Hormonologie adulte, Hôpital Cochin, AP HP, 75006 Paris, France
- Correspondence: (D.G.-Z.); (M.-C.M.)
| |
Collapse
|
24
|
Kirabali T, Rigotti S, Siccoli A, Liebsch F, Shobo A, Hock C, Nitsch RM, Multhaup G, Kulic L. The amyloid-β degradation intermediate Aβ34 is pericyte-associated and reduced in brain capillaries of patients with Alzheimer's disease. Acta Neuropathol Commun 2019; 7:194. [PMID: 31796114 PMCID: PMC6892233 DOI: 10.1186/s40478-019-0846-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
An impairment of amyloid β-peptide (Aβ) clearance is suggested to play a key role in the pathogenesis of sporadic Alzheimer’s disease (AD). Amyloid degradation is mediated by various mechanisms including fragmentation by enzymes like neprilysin, matrix metalloproteinases (MMPs) and a recently identified amyloidolytic activity of β-site amyloid precursor protein cleaving enzyme 1 (BACE1). BACE1 cleavage of Aβ40 and Aβ42 results in the formation of a common Aβ34 intermediate which was found elevated in cerebrospinal fluid levels of patients at the earliest disease stages. To further investigate the role of Aβ34 as a marker for amyloid clearance in AD, we performed a systematic and comprehensive analysis of Aβ34 immunoreactivity in hippocampal and cortical post-mortem brain tissue from AD patients and non-demented elderly individuals. In early Braak stages, Aβ34 was predominantly detectable in a subset of brain capillaries associated with pericytes, while in later disease stages, in clinically diagnosed AD, this pericyte-associated Aβ34 immunoreactivity was largely lost. Aβ34 was also detected in isolated human cortical microvessels associated with brain pericytes and its levels correlated with Aβ40, but not with Aβ42 levels. Moreover, a significantly decreased Aβ34/Aβ40 ratio was observed in microvessels from AD patients in comparison to non-demented controls suggesting a reduced proteolytic degradation of Aβ40 to Aβ34 in AD. In line with the hypothesis that pericytes at the neurovascular unit are major producers of Aβ34, biochemical studies in cultured human primary pericytes revealed a time and dose dependent increase of Aβ34 levels upon treatment with recombinant Aβ40 peptides while Aβ34 production was impaired when Aβ40 uptake was reduced or BACE1 activity was inhibited. Collectively, our findings indicate that Aβ34 is generated by a novel BACE1-mediated Aβ clearance pathway in pericytes of brain capillaries. As amyloid clearance is significantly reduced in AD, impairment of this pathway might be a major driver of the pathogenesis in sporadic AD.
Collapse
|
25
|
Lee YK, Uchida H, Smith H, Ito A, Sanchez T. The isolation and molecular characterization of cerebral microvessels. Nat Protoc 2019; 14:3059-3081. [PMID: 31586162 PMCID: PMC11571963 DOI: 10.1038/s41596-019-0212-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 06/17/2019] [Indexed: 11/09/2022]
Abstract
The study of cerebral microvessels is becoming increasingly important in a wide variety of conditions, such as stroke, sepsis, traumatic brain injury and neurodegenerative diseases. However, the molecular mechanisms underlying cerebral microvascular dysfunction in these conditions are largely unknown. The molecular characterization of cerebral microvessels in experimental disease models has been hindered by the lack of a standardized method to reproducibly isolate intact cerebral microvessels with consistent cellular compositions and without the use of enzymatic digestion, which causes undesirable molecular and metabolic changes. Herein, we describe an optimized protocol for microvessel isolation from mouse brain cortex that yields microvessel fragments with consistent populations of discrete blood-brain barrier (BBB) components (endothelial cells, pericytes and astrocyte end feet) while retaining high RNA integrity and protein post-translational modifications (e.g., phosphorylation). We demonstrate that this protocol allows the quantification of changes in gene expression in a disease model (stroke) and the activation of signaling pathways in mice subjected to drug administration in vivo. We also describe the isolation of genomic DNA (gDNA) and bisulfite treatment for the assessment of DNA methylation, as well as the optimization of chromatin extraction and shearing from cortical microvessels. This optimized protocol and the described applications should improve the understanding of the molecular mechanisms governing cerebral microvascular dysfunction, which may help in the development of novel therapies for stroke and other neurologic conditions.
Collapse
Affiliation(s)
- Yun-Kyoung Lee
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York, NY, USA
| | - Hiroki Uchida
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York, NY, USA
| | - Helen Smith
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York, NY, USA
| | - Akira Ito
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York, NY, USA
| | - Teresa Sanchez
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York, NY, USA.
- Department of Neuroscience, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
26
|
Bourassa P, Tremblay C, Schneider JA, Bennett DA, Calon F. Beta-amyloid pathology in human brain microvessel extracts from the parietal cortex: relation with cerebral amyloid angiopathy and Alzheimer's disease. Acta Neuropathol 2019; 137:801-823. [PMID: 30729296 DOI: 10.1007/s00401-019-01967-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 01/13/2023]
Abstract
Several pieces of evidence suggest that blood-brain barrier (BBB) dysfunction is implicated in the pathophysiology of Alzheimer's disease (AD), exemplified by the frequent occurrence of cerebral amyloid angiopathy (CAA) and the defective clearance of Aβ peptides. However, the specific role of brain microvascular cells in these anomalies remains elusive. In this study, we validated by Western, ELISA and immunofluorescence analyses a procedure to generate microvasculature-enriched fractions from frozen samples of human cerebral cortex. We then investigated Aβ and proteins involved in its clearance or production in microvessel extracts generated from the parietal cortex of 60 volunteers in the Religious Orders Study. Volunteers were categorized as AD (n = 38) or controls (n = 22) based on the ABC scoring method presented in the revised guidelines for the neuropathological diagnosis of AD. Higher ELISA-determined concentrations of vascular Aβ40 and Aβ42 were found in persons with a neuropathological diagnosis of AD, in apoE4 carriers and in participants with advanced parenchymal CAA, compared to respective age-matched controls. Vascular levels of two proteins involved in Aβ clearance, ABCB1 and neprilysin, were lower in persons with AD and positively correlated with cognitive function, while being inversely correlated to vascular Aβ40. In contrast, BACE1, a protein necessary for Aβ production, was increased in individuals with AD and in apoE4 carriers, negatively correlated to cognitive function and positively correlated to Aβ40 in microvessel extracts. The present report indicates that concentrating microvessels from frozen human brain samples facilitates the quantitative biochemical analysis of cerebrovascular dysfunction in CNS disorders. Data generated overall show that microvessels extracted from individuals with parenchymal CAA-AD contained more Aβ and BACE1 and less ABCB1 and neprilysin, evidencing a pattern of dysfunction in brain microvascular cells contributing to CAA and AD pathology and symptoms.
Collapse
Affiliation(s)
- Philippe Bourassa
- Faculté de pharmacie, Université Laval, Quebec, QC, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705, Boulevard Laurier, Room T2-67, Quebec, QC, G1V 4G2, Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705, Boulevard Laurier, Room T2-67, Quebec, QC, G1V 4G2, Canada
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Quebec, QC, Canada.
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705, Boulevard Laurier, Room T2-67, Quebec, QC, G1V 4G2, Canada.
| |
Collapse
|
27
|
Billington S, Salphati L, Hop CECA, Chu X, Evers R, Burdette D, Rowbottom C, Lai Y, Xiao G, Humphreys WG, Nguyen TB, Prasad B, Unadkat JD. Interindividual and Regional Variability in Drug Transporter Abundance at the Human Blood-Brain Barrier Measured by Quantitative Targeted Proteomics. Clin Pharmacol Ther 2019; 106:228-237. [PMID: 30673124 DOI: 10.1002/cpt.1373] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/09/2019] [Indexed: 02/04/2023]
Abstract
For in vitro to in vivo extrapolation (IVIVE) of brain distribution of drugs that are transported at the human blood-brain barrier (BBB), it is important to quantify the interindividual and regional variability of drug transporter abundance at this barrier. Therefore, using quantitative targeted proteomics, we compared the abundance of adenosine triphosphate-binding cassette and solute carrier transporters in brain microvascular endothelial cells (BMECs) isolated from postmortem specimens of two matched brain regions, the occipital (Brodmann Area (BA)17) and parietal (BA39) lobe, from 30 adults. Of the quantifiable transporters, the abundance ranked: glucose transporter (GLUT)1 > breast cancer resistance protein > P-glycoprotein (P-gp) > equilibrative nucleoside transporter (ENT)1 > organic anion-transporting polypeptide (OATP)2B1. The abundance of multidrug resistance protein 1/2/3/4, OATP1A2, organic anion transporter (OAT)3, organic cation transporter (OCT)1/2, OCTN1/2, or ENT2 was below the limit of quantification. Transporter abundance per gram of tissue (scaled using GLUT1 abundance in BMEC vs. brain homogenate) in BA17 was 30-42% higher than BA39. The interindividual variability in transporter abundance (percentage of coefficient of variation (%CV)) was 35-57% (BA17) and 27-46% (BA39). These data can be used in proteomics-informed bottom-up IVIVE to predict human brain drug distribution.
Collapse
Affiliation(s)
- Sarah Billington
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Laurent Salphati
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Cornelis E C A Hop
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Xiaoyan Chu
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey, USA
| | - Raymond Evers
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey, USA
| | | | | | - Yurong Lai
- Department of Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California, USA
| | - Guangqing Xiao
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | | | - Tot Bui Nguyen
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
28
|
Rom S, Zuluaga-Ramirez V, Gajghate S, Seliga A, Winfield M, Heldt NA, Kolpakov MA, Bashkirova YV, Sabri AK, Persidsky Y. Hyperglycemia-Driven Neuroinflammation Compromises BBB Leading to Memory Loss in Both Diabetes Mellitus (DM) Type 1 and Type 2 Mouse Models. Mol Neurobiol 2019; 56:1883-1896. [PMID: 29974394 PMCID: PMC6320739 DOI: 10.1007/s12035-018-1195-5] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/26/2018] [Indexed: 12/18/2022]
Abstract
End organ injury in diabetes mellitus (DM) is driven by microvascular compromise (including diabetic retinopathy and nephropathy). Cognitive impairment is a well-known complication of DM types 1 and 2; however, its mechanism(s) is(are) not known. We hypothesized that blood-brain barrier (BBB) compromise plays a key role in cognitive decline in DM. Using a DM type 1 model (streptozotocin injected C57BL/6 mice) and type 2 model (leptin knockout obese db/db mice), we showed enhanced BBB permeability and memory loss (Y maze, water maze) that are associated with hyperglycemia. Gene profiling in isolated microvessels from DM type 1 animals demonstrated deregulated expression of 54 genes related to angiogenesis, inflammation, vasoconstriction/vasodilation, and platelet activation pathways by at least 2-fold (including eNOS, TNFα, TGFβ1, VCAM-1, E-selectin, several chemokines, and MMP9). Further, the magnitude of gene expression was linked to degree of cognitive decline in DM type 1 animals. Gene analysis in brain microvessels of DM type 2 db/db animals showed alterations of similar genes as in DM 1 model, some to an even greater extent. Neuropathologic analyses of brain tissue derived from DM mice showed microglial activation, expression of ICAM-1, and attenuated coverage of pericytes compared to controls. There was a significant upregulation of inflammatory genes in brain tissue in both DM models. Taken together, our findings indicate that BBB compromise in DM in vivo models and its association with memory deficits, gene alterations in brain endothelium, and neuroinflammation. Prevention of BBB injury may be a new therapeutic approach to prevent cognitive demise in DM.
Collapse
Affiliation(s)
- Slava Rom
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| | - Viviana Zuluaga-Ramirez
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sachin Gajghate
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Alecia Seliga
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Malika Winfield
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Nathan A Heldt
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Mikhail A Kolpakov
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Yulia V Bashkirova
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Abdel Karim Sabri
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
29
|
Al-Majdoub ZM, Al Feteisi H, Achour B, Warwood S, Neuhoff S, Rostami-Hodjegan A, Barber J. Proteomic Quantification of Human Blood-Brain Barrier SLC and ABC Transporters in Healthy Individuals and Dementia Patients. Mol Pharm 2019; 16:1220-1233. [PMID: 30735053 DOI: 10.1021/acs.molpharmaceut.8b01189] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB) maintains brain homeostasis by controlling traffic of molecules from the circulation into the brain. This function is predominantly dependent on proteins expressed at the BBB, especially transporters and tight junction proteins. Alterations to the level and function of BBB proteins can impact the susceptibility of the central nervous system to exposure to xenobiotics in the systemic circulation with potential consequent effects on brain function. In this study, expression profiles of drug transporters and solute carriers in the BBB were assessed in tissues from healthy individuals ( n = 12), Alzheimer's patients ( n = 5), and dementia with Lewy bodies patients ( n = 5), using targeted, accurate mass retention time (AMRT) and global proteomic methods. A total of 53 transporters were quantified, 19 for the first time in the BBB. A further 20 novel transporters were identified but not quantified. The global proteomic method identified another 3333 BBB proteins. Transporter abundances, taken together with the scaling factor, microvessel protein content per unit tissue (BMvPGB also measured here), can be used in quantitative systems pharmacology models predicting drug disposition in the brain and permitting dose adjustment (precision dosing) in special populations of patients, such as those with dementia. Even in this small study, we see differences in transporter profile between healthy and diseased brain tissue.
Collapse
Affiliation(s)
- Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research (CAPKR) , University of Manchester , Manchester M13 9PT , U.K
| | - Hajar Al Feteisi
- Centre for Applied Pharmacokinetic Research (CAPKR) , University of Manchester , Manchester M13 9PT , U.K
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research (CAPKR) , University of Manchester , Manchester M13 9PT , U.K
| | - Stacey Warwood
- Biological Mass Spectrometry Core Facility , University of Manchester , Manchester M13 9PT , U.K
| | - Sibylle Neuhoff
- Certara UK Limited , Simcyp Division , Level 2-Acero, 1 Concourse Way , Sheffield S1 2BJ , U.K
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research (CAPKR) , University of Manchester , Manchester M13 9PT , U.K.,Certara UK Limited , Simcyp Division , Level 2-Acero, 1 Concourse Way , Sheffield S1 2BJ , U.K
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research (CAPKR) , University of Manchester , Manchester M13 9PT , U.K
| |
Collapse
|
30
|
Gilbert A, Vidal XE, Estevez R, Cohen-Salmon M, Boulay AC. Postnatal development of the astrocyte perivascular MLC1/GlialCAM complex defines a temporal window for the gliovascular unit maturation. Brain Struct Funct 2019; 224:1267-1278. [PMID: 30684007 DOI: 10.1007/s00429-019-01832-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
Abstract
Astrocytes, the most abundant glial cells of the central nervous system are morphologically complex. They display numerous processes interacting with synapses and blood vessels. At the vascular interface, astrocyte endfeet-terminated processes almost entirely cover the blood vessel surface and participate to the gliovascular unit where important vascular properties of the brain are set such as the blood-brain barrier (BBB) integrity. How specific morphological and functional interactions between astrocytes and the vascular compartment develop has not been fully investigated. Here, we elaborated an original experimental strategy to study the postnatal development of astrocyte perivascular endfeet. Using purified gliovascular units, we focused on the postnatal expression of MLC1 and GlialCAM, two transmembrane proteins forming a complex enriched at the junction between mature astrocyte perivascular endfeet. We showed that MLC1 and GlialCAM were enriched and assembled into mature complexes in astrocyte perivascular endfeet between postnatal days 10 and 15, after the formation of astrocyte perivascular Aquaporin 4 water channels. These events correlated with the increased expression of Claudin-5 and P-gP, two endothelial-specific BBB components. These results illustrate for the first time that astrocyte perivascular endfeet differentiation is a complex and progressive process which correlates with BBB maturation. Moreover, our results suggest that maturation of the astrocyte endfeet MLC1/GlialCAM complex between postnatal days 10 and 15 might be a key event in the gliovascular unit maturation.
Collapse
Affiliation(s)
- Alice Gilbert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050, 11 place Marcelin Berthelot Paris, Paris Cedex 05, 75005, France
- Paris Science Lettre Research University, Paris, 75005, France
| | - Xabier Elorza Vidal
- Unitat de Fisiología, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Raul Estevez
- Unitat de Fisiología, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Martine Cohen-Salmon
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050, 11 place Marcelin Berthelot Paris, Paris Cedex 05, 75005, France.
- Paris Science Lettre Research University, Paris, 75005, France.
| | - Anne-Cécile Boulay
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050, 11 place Marcelin Berthelot Paris, Paris Cedex 05, 75005, France
- Paris Science Lettre Research University, Paris, 75005, France
| |
Collapse
|
31
|
Bourassa P, Alata W, Tremblay C, Paris-Robidas S, Calon F. Transferrin Receptor-Mediated Uptake at the Blood-Brain Barrier Is Not Impaired by Alzheimer's Disease Neuropathology. Mol Pharm 2019; 16:583-594. [PMID: 30609376 DOI: 10.1021/acs.molpharmaceut.8b00870] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The transferrin receptor (TfR) is highly expressed by brain capillary endothelial cells (BCECs) forming the blood-brain barrier (BBB) and is therefore considered as a potential target for brain drug delivery. Monoclonal antibodies binding to the TfR, such as clone Ri7, have been shown to internalize into BCECs in vivo. However, since Alzheimer's disease (AD) is accompanied by a BBB dysfunction, it raises concerns about whether TfR-mediated transport becomes inefficient during the progression of the disease. Measurements of TfR levels using Western blot analysis in whole homogenates from human post-mortem parietal cortex and hippocampus did not reveal any significant difference between individuals with or without a neuropathological diagnosis of AD (respectively, n = 19 and 22 for the parietal cortex and n = 12 and 14 for hippocampus). Similarly, TfR concentrations in isolated human brain microvessels from parietal cortex were similar between controls and AD cases. TfR levels in isolated murine brain microvessels were not significantly different between groups of 12- and 18-month-old NonTg and 3xTg-AD mice, the latter modeling Aβ and τ neuropathologies. In situ brain perfusion assays were then conducted to measure the brain uptake and internalization of fluorolabeled Ri7 in BCECs upon binding. Consistently, TfR-mediated uptake in BCECs was similar between 3xTg-AD mice and nontransgenic controls (∼0.3 μL·g-1·s-1) at 12, 18, and 22 months of age. Fluorescence microscopy analysis following intravenous administration of fluorolabeled Ri7 highlighted that the signal from the antibody was widely distributed throughout the cerebral vasculature but not in neurons or astrocytes. Overall, our data suggest that both TfR protein levels and TfR-dependent internalization mechanisms are preserved in the presence of Aβ and τ neuropathologies, supporting the potential of TfR as a vector target for drug delivery into BCECs in AD.
Collapse
Affiliation(s)
- Philippe Bourassa
- Faculté de Pharmacie , Université Laval , Québec , QC G1V 0A6 , Canada.,Axe Neurosciences , Centre de Recherche du CHU de Québec-Université Laval , Québec , QC G1V 4G2 , Canada
| | - Wael Alata
- Faculté de Pharmacie , Université Laval , Québec , QC G1V 0A6 , Canada.,Axe Neurosciences , Centre de Recherche du CHU de Québec-Université Laval , Québec , QC G1V 4G2 , Canada
| | - Cyntia Tremblay
- Axe Neurosciences , Centre de Recherche du CHU de Québec-Université Laval , Québec , QC G1V 4G2 , Canada
| | - Sarah Paris-Robidas
- Faculté de Pharmacie , Université Laval , Québec , QC G1V 0A6 , Canada.,Axe Neurosciences , Centre de Recherche du CHU de Québec-Université Laval , Québec , QC G1V 4G2 , Canada
| | - Frédéric Calon
- Faculté de Pharmacie , Université Laval , Québec , QC G1V 0A6 , Canada.,Axe Neurosciences , Centre de Recherche du CHU de Québec-Université Laval , Québec , QC G1V 4G2 , Canada
| |
Collapse
|
32
|
Wittenburg LA, Ramirez D, Conger H, Gustafson DL. Simultaneous absolute quantitation of ATP-binding cassette transporters in normal dog tissues by signature peptide analysis using a LC/MS/MS method. Res Vet Sci 2018; 122:93-101. [PMID: 30500618 DOI: 10.1016/j.rvsc.2018.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/29/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022]
Abstract
Membrane transport proteins are fundamental components of blood-tissue barriers and affect the absorption, distribution and elimination, and interactions of many of the drugs commonly used in veterinary medicine. A quantitative, simultaneous measurement of these proteins across dog tissues is not currently available, nor is it possible with current immune-based assays such as western blot. In the present study, we aimed to develop a sensitive and specific liquid chromatography tandem-mass spectrometry (LC/MS/MS) based quantitation method that can simultaneously quantitate 14 ATP-binding cassette transporters. We applied this method to a panel of normal canine tissues and compared the LC/MS/MS results with relative messenger RNA (mRNA) abundance using quantitative real-time polymerase chain reaction (qRT-PCR). Our LC/MS/MS method is sensitive, with lower limits of quantitation ranging from 5 to 10 fmol/μg of protein. We were able to detect and/or quantitate each of the 14 transporters in at least one normal dog tissue. Relative protein and mRNA abundance within tissues did not demonstrate a significant correlation in all cases. The results presented here will provide for more accurate predictions of drug movement in dogs through incorporation into physiologically based pharmacokinetic (PBPK) models; the method described here has wide applicability to the quantitation of virtually any proteins of interest in biologic samples where validated canine antibodies do not exist.
Collapse
Affiliation(s)
- Luke A Wittenburg
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, 300 West Drake Road, Fort Collins, Colorado 80525, United States.
| | - Dominique Ramirez
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, 300 West Drake Road, Fort Collins, Colorado 80525, United States
| | - Holly Conger
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, 300 West Drake Road, Fort Collins, Colorado 80525, United States
| | - Daniel L Gustafson
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, 300 West Drake Road, Fort Collins, Colorado 80525, United States
| |
Collapse
|
33
|
LC-MS/MS-based quantification of efflux transporter proteins at the BBB. J Pharm Biomed Anal 2018; 164:496-508. [PMID: 30453156 DOI: 10.1016/j.jpba.2018.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 01/18/2023]
Abstract
Targeted protein quantification using tandem mass spectrometry coupled to high performance chromatography (LC-MS/MS) has been used to quantify proteins involved in the absorption, distribution, metabolism and excretion (ADME) of xenobiotics to better understand these processes. At the blood-brain barrier (BBB), these proteins are particularly important for the maintenance of brain homeostasis, but also regulate the distribution of therapeutic drugs. Absolute quantification (AQUA) is achieved by using stable isotope labeled surrogate peptides specific to the target protein and analyzing the digested proteins in a triple-quadrupole mass spectrometer in multiple reaction monitoring (MRM) mode to achieve a high specificity, sensitivity, accuracy and reproducibility. The main objective in this work was to develop and validate an UHPLC-MS/MS method for quantification of the ATP-binding cassette (ABC) transporter proteins Bcrp and P-gp and Na+/K + ATPase pump at the BBB. Three isoforms of the α-subunit from this pump (Atp1a 1, 2 and 3) were quantified to evaluate the presence of non-endothelial cells in the BBB using one common and three isoform-specific peptides; while Bcrp ad P-gp were quantified using 2 and 3 peptides, respectively, to improve the confidence on their quantification. The protein digestion was optimized, and the analytical method was comprehensively validated according to the American Food and Drug Administration Bioanalytical Method Validation Guidance published in 2018. Linearity across four magnitude orders (0.125 to 510 pmol·mL-1) sub-pmol·mL-1 LOD and LOQ, accuracy and precision (deviation < 15% and CV < 15%) were proven for most of the peptides by analyzing calibration curves and four levels of quality controls in both a pure solution and a complex matrix of digested yeast proteins, to mimic the matrix effect. In addition, digestion performance and stability of the peptides was shown using standard peptides spiked in a yeast digest or mouse kidney plasma membrane proteins as a study case. The validated method was used to characterize mouse kidney plasma membrane proteins, mouse brain cortical vessels and rat brain cortical microvessels. Most of the results agree with previously reported values, although some differences are seen due to different sample treatment, heterogeneity of the sample or peptide used. Importantly, the use of three peptides allowed the quantification of P-gp in mouse kidney plasma membrane proteins which was below the limit of quantification of the previously NTTGALTTR peptide. The different levels obtained for each peptide highlight the importance and difficulty of choosing surrogate peptides for protein quantification. In addition, using isoform-specific peptides for the quantification of the Na+/K + ATPase pump, we evaluated the presence of neuronal and glial cells on rat and mouse brain cortical vessels in addition to endothelial cells. In mouse liver and kidney, only the alpha-1 isoform was detected.
Collapse
|
34
|
Hladky SB, Barrand MA. Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood-brain barrier. Fluids Barriers CNS 2018; 15:30. [PMID: 30340614 PMCID: PMC6194691 DOI: 10.1186/s12987-018-0113-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
This review considers efflux of substances from brain parenchyma quantified as values of clearances (CL, stated in µL g-1 min-1). Total clearance of a substance is the sum of clearance values for all available routes including perivascular pathways and the blood-brain barrier. Perivascular efflux contributes to the clearance of all water-soluble substances. Substances leaving via the perivascular routes may enter cerebrospinal fluid (CSF) or lymph. These routes are also involved in entry to the parenchyma from CSF. However, evidence demonstrating net fluid flow inwards along arteries and then outwards along veins (the glymphatic hypothesis) is still lacking. CLperivascular, that via perivascular routes, has been measured by following the fate of exogenously applied labelled tracer amounts of sucrose, inulin or serum albumin, which are not metabolized or eliminated across the blood-brain barrier. With these substances values of total CL ≅ 1 have been measured. Substances that are eliminated at least partly by other routes, i.e. across the blood-brain barrier, have higher total CL values. Substances crossing the blood-brain barrier may do so by passive, non-specific means with CLblood-brain barrier values ranging from < 0.01 for inulin to > 1000 for water and CO2. CLblood-brain barrier values for many small solutes are predictable from their oil/water partition and molecular weight. Transporters specific for glucose, lactate and many polar substrates facilitate efflux across the blood-brain barrier producing CLblood-brain barrier values > 50. The principal route for movement of Na+ and Cl- ions across the blood-brain barrier is probably paracellular through tight junctions between the brain endothelial cells producing CLblood-brain barrier values ~ 1. There are large fluxes of amino acids into and out of the brain across the blood-brain barrier but only small net fluxes have been observed suggesting substantial reuse of essential amino acids and α-ketoacids within the brain. Amyloid-β efflux, which is measurably faster than efflux of inulin, is primarily across the blood-brain barrier. Amyloid-β also leaves the brain parenchyma via perivascular efflux and this may be important as the route by which amyloid-β reaches arterial walls resulting in cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
35
|
Al Feteisi H, Al-Majdoub ZM, Achour B, Couto N, Rostami-Hodjegan A, Barber J. Identification and quantification of blood-brain barrier transporters in isolated rat brain microvessels. J Neurochem 2018; 146:670-685. [PMID: 29675872 DOI: 10.1111/jnc.14446] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/26/2018] [Accepted: 04/05/2018] [Indexed: 12/20/2022]
Abstract
The blood-brain barrier (BBB) maintains brain homeostasis by tightly regulating the exchange of molecules with systemic circulation. It consists primarily of microvascular endothelial cells surrounded by astrocytic endfeet, pericytes, and microglia. Understanding the make-up of transporters in rat BBB is essential to the translation of pharmacological and toxicological observations into humans. In this study, experimental workflows are presented in which the optimization of (a) isolation of rat brain microvessels (b) enrichment of endothelial cells, and (c) extraction and digestion of proteins were evaluated, followed by identification and quantification of BBB proteins. Optimization of microvessel isolation was indicated by 15-fold enrichment of endothelial cell marker Glut1 mRNA, whereas markers for other cell types were not enriched. Filter-aided sample preparation was shown to be superior to in-solution sample preparation (10251 peptides vs. 7533 peptides). Label-free proteomics was used to identify nearly 2000 proteins and quantify 1276 proteins in isolated microvessels. A combination of targeted and global proteomics was adopted to measure protein abundance of 6 ATP-binding cassette and 27 solute carrier transporters. Data analysis using proprietary Progenesis and open access MaxQuant software showed overall agreement; however, Abcb9 and Slc22a8 were quantified only by MaxQuant, whereas Abcc9 and Abcd3 were quantified only by Progenesis. Agreement between targeted and untargeted quantification was demonstrated for Abcb1 (19.7 ± 1.4 vs. 17.8 ± 2.3) and Abcc4 (2.2 ± 0.7 vs. 2.1 ± 0.4), respectively. Rigorous quantification of BBB proteins, as reported in this study, should assist with translational modeling efforts involving brain disposition of xenobiotics.
Collapse
Affiliation(s)
- Hajar Al Feteisi
- Centre for Applied Pharmacokinetic Research (CAPKR), University of Manchester, Manchester, UK
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research (CAPKR), University of Manchester, Manchester, UK
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research (CAPKR), University of Manchester, Manchester, UK
| | - Narciso Couto
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research (CAPKR), University of Manchester, Manchester, UK.,Simcyp Limited (a Certara Company), Sheffield, UK
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research (CAPKR), University of Manchester, Manchester, UK
| |
Collapse
|
36
|
Sure VN, Sakamuri SSVP, Sperling JA, Evans WR, Merdzo I, Mostany R, Murfee WL, Busija DW, Katakam PVG. A novel high-throughput assay for respiration in isolated brain microvessels reveals impaired mitochondrial function in the aged mice. GeroScience 2018; 40:365-375. [PMID: 30074132 PMCID: PMC6136296 DOI: 10.1007/s11357-018-0037-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
Cerebral blood flow (CBF) is uniquely regulated by the anatomical design of the cerebral vasculature as well as through neurovascular coupling. The process of directing the CBF to meet the energy demands of neuronal activity is referred to as neurovascular coupling. Microvasculature in the brain constitutes the critical component of the neurovascular coupling. Mitochondria provide the majority of ATP to meet the high-energy demand of the brain. Impairment of mitochondrial function plays a central role in several age-related diseases such as hypertension, ischemic brain injury, Alzheimer's disease, and Parkinson disease. Interestingly, microvessels and small arteries of the brain have been the focus of the studies implicating the vascular mechanisms in several age-related neurological diseases. However, the role of microvascular mitochondrial dysfunction in age-related diseases remains unexplored. To date, high-throughput assay for measuring mitochondrial respiration in microvessels is lacking. The current study presents a novel method to measure mitochondrial respiratory parameters in freshly isolated microvessels from mouse brain ex vivo using Seahorse XFe24 Analyzer. We validated the method by demonstrating impairments of mitochondrial respiration in cerebral microvessels isolated from old mice compared to the young mice. Thus, application of mitochondrial respiration studies in microvessels will help identify novel vascular mechanisms underlying a variety of age-related neurological diseases.
Collapse
Affiliation(s)
- Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Siva S V P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Jared A Sperling
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Wesley R Evans
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 1430 Tulane Avenue; Room 3554C, 8683, New Orleans, LA, 70112, USA
| | - Ivan Merdzo
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Pharmacology, University of Mostar School of Medicine, Mostar, Bosnia and Herzegovina
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 1430 Tulane Avenue; Room 3554C, 8683, New Orleans, LA, 70112, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 1430 Tulane Avenue; Room 3554C, 8683, New Orleans, LA, 70112, USA
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- Tulane Brain Institute, Tulane University, 1430 Tulane Avenue; Room 3554C, 8683, New Orleans, LA, 70112, USA.
| |
Collapse
|
37
|
Natarajan R, Mitchell CM, Harless N, Yamamoto BK. Cerebrovascular Injury After Serial Exposure to Chronic Stress and Abstinence from Methamphetamine Self-Administration. Sci Rep 2018; 8:10558. [PMID: 30002494 PMCID: PMC6043597 DOI: 10.1038/s41598-018-28970-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/04/2018] [Indexed: 01/19/2023] Open
Abstract
Cerebrovascular damage caused by either exposure to stress or the widely abused drug, methamphetamine (Meth) is known but stress and drug abuse frequently occur in tandem that may impact their individual cerebrovascular effects. This study examined their co-morbid cerebrovascular effects during abstinence from self-administered Meth after the exposure to chronic unpredictable stress (CUS). Exposure to CUS prior to unrestricted Meth self-administration had no effect on Meth intake in rats; however, the pro-inflammatory mediator cyclooxygenase-2 (COX-2) and the breakdown of cell-matrix adhesion protein β-dystroglycan in isolated cerebral cortical capillaries were increased after 3 days of abstinence and persisted for 7 days. These changes preceded decreases in occludin, a key structural protein component of the blood-brain barrier. The decrease in occludin was blocked by the COX-2 specific inhibitor nimesulide treatment during abstinence from Meth. The changes in COX-2, β-dystroglycan, and occludin were only evident following the serial exposure to stress and Meth but not after either one alone. These results suggest that stress and voluntary Meth intake can synergize and disrupt cerebrovasculature in a time-dependent manner during abstinence from chronic stress and Meth. Furthermore, COX-2 inhibition may be a viable pharmacological intervention to block vascular changes after Meth exposure.
Collapse
Affiliation(s)
- Reka Natarajan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine 635 Barnhill Drive MS A401, Indianapolis, IN, 46202, USA
| | - Carmen M Mitchell
- Department of Pharmacology and Toxicology, Indiana University School of Medicine 635 Barnhill Drive MS A401, Indianapolis, IN, 46202, USA
| | - Nicole Harless
- Department of Neurosciences, University of Toledo College of Medicine 3000 Arlington Avenue MS 1007, Toledo, OH, 43614, Spain
| | - Bryan K Yamamoto
- Department of Pharmacology and Toxicology, Indiana University School of Medicine 635 Barnhill Drive MS A401, Indianapolis, IN, 46202, USA.
| |
Collapse
|
38
|
Li Y, Lapina N, Weinzierl N, Bonde L, Boedtkjer E, Schubert R, Moshage H, Wohlfart P, Schilling L. A novel method to isolate retinal and brain microvessels from individual rats: Microscopic and molecular biological characterization and application in hyperglycemic animals. Vascul Pharmacol 2018; 110:24-30. [PMID: 30003960 DOI: 10.1016/j.vph.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/29/2018] [Accepted: 07/07/2018] [Indexed: 11/17/2022]
Abstract
Alterations in the retinal microvessel (RMV) compartment occurring in systemic disease states such as diabetes may eventually contribute to blindness. To specifically address the pathophysiological role of the microvasculature we developed a new method for RMV bulk isolation from individual rats. The extraction procedure performed in the cold throughout takes less than one hour. Slight modifications enable isolation of brain microvessels (BMVs) for comparison. Microscopically, RMVs and BMVs consisted mainly of capillaries of good structural integrity. The endothelial cell/pericyte ratio was approximately 1.8 in RMVs and 2.7 in BMVs, well in agreement with data from intact vascular beds. Total RNA extracted from individual rats amounted to approximately 7 ng in RMVs, 50 ng in BMVs, and 155 ng in pial arteries (which were also isolated) with highly preserved integrity throughout. Measurements using microfluidic card methodology revealed segregation of RMVs, BMVs, and pial arteries in distinct clusters based on principal component analysis. In all three vascular compartments endothelial cell-specific markers were significantly enriched. Similarly, pericyte-specific markers displayed accumulation in RMVs, BMVs, and pial arteries, the latter probably reflecting the common ontogenetic origin of pericytes and smooth muscle cells. Isolation of RMVs, BMVs, and pial arteries from rats suffering from 8-weeks hyperglycemia yielded expression patterns of endothelial cell- and pericyte-specific marker genes largely comparable to those obtained in control rats. Our newly developed protocols allow for selective studies of RMVs from individual rats to characterize reactive pathways, in comparison with the ontogenetically closely related BMVs. Moreover, our protocols with inclusion of pial arteries enable comparative studies of the macro- and microvasculature from the same organ.
Collapse
Affiliation(s)
- Youhai Li
- Division of Neurosurgical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Natalia Lapina
- Division of Neurosurgical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nina Weinzierl
- Division of Neurosurgical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lisbeth Bonde
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rudolf Schubert
- Cardiovascular Physiology, Center for Biomedicine and Medical Technology (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Han Moshage
- Department of Gastroenterology and Hepatology, Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Paulus Wohlfart
- Sanofi Aventis Deutschland GmbH, TA, Diabetes R&D, Industriepark Hoechst, Frankfurt, Germany
| | - Lothar Schilling
- Division of Neurosurgical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
39
|
Zellner A, Scharrer E, Arzberger T, Oka C, Domenga-Denier V, Joutel A, Lichtenthaler SF, Müller SA, Dichgans M, Haffner C. CADASIL brain vessels show a HTRA1 loss-of-function profile. Acta Neuropathol 2018; 136:111-125. [PMID: 29725820 DOI: 10.1007/s00401-018-1853-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/29/2018] [Accepted: 04/24/2018] [Indexed: 01/06/2023]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and a phenotypically similar recessive condition (CARASIL) have emerged as important genetic model diseases for studying the molecular pathomechanisms of cerebral small vessel disease (SVD). CADASIL, the most frequent and intensely explored monogenic SVD, is characterized by a severe pathology in the cerebral vasculature including the mutation-induced aggregation of the Notch3 extracellular domain (Notch3ECD) and the formation of protein deposits of insufficiently determined composition in vessel walls. To identify key molecules and pathways involved in this process, we quantitatively determined the brain vessel proteome from CADASIL patient and control autopsy samples (n = 6 for each group), obtaining 95 proteins with significantly increased abundance. Intriguingly, high-temperature requirement protein A1 (HTRA1), the extracellular protease mutated in CARASIL, was found to be strongly enriched (4.9-fold, p = 1.6 × 10-3) and to colocalize with Notch3ECD deposits in patient vessels suggesting a sequestration process. Furthermore, the presence of increased levels of several HTRA1 substrates in the CADASIL proteome was compatible with their reduced degradation as consequence of a loss of HTRA1 activity. Indeed, a comparison with the brain vessel proteome of HTRA1 knockout mice (n = 5) revealed a highly significant overlap of 18 enriched proteins (p = 2.2 × 10-16), primarily representing secreted and extracellular matrix factors. Several of them were shown to be processed by HTRA1 in an in vitro proteolysis assay identifying them as novel substrates. Our study provides evidence for a loss of HTRA1 function as a critical step in the development of CADASIL pathology linking the molecular mechanisms of two distinct SVD forms.
Collapse
Affiliation(s)
- Andreas Zellner
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Eva Scharrer
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Chio Oka
- Laboratory of Gene Function in Animals, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Valérie Domenga-Denier
- Department of Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, UMRS 1161, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Anne Joutel
- Department of Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, UMRS 1161, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Institute for Advanced Study, Technische Universität München, Garching, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christof Haffner
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
| |
Collapse
|
40
|
Dai M, Lin Y, El-Amouri SS, Kohls M, Pan D. Comprehensive evaluation of blood-brain barrier-forming micro-vasculatures: Reference and marker genes with cellular composition. PLoS One 2018; 13:e0197379. [PMID: 29763456 PMCID: PMC5953434 DOI: 10.1371/journal.pone.0197379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/01/2018] [Indexed: 01/04/2023] Open
Abstract
Primary brain microvessels (BrMV) maintain the cellular characters and molecular signatures as displayed in vivo, and serve as a vital tool for biomedical research of the blood-brain barrier (BBB) and the development/optimization of brain drug delivery. The variations of relative purities or cellular composition among different BrMV samples may have significant consequences in data interpretation and research outcome, especially for experiments with high-throughput genomics and proteomics technologies. In this study, we aimed to identify suitable reference gene (RG) for accurate normalization of real-time RT-qPCR analysis, and determine the proper marker genes (MG) for relative purity assessment in BrMV samples. Out of five housekeeping genes, β-actin was selected as the most suitable RG that was validated by quantifying mRNA levels of alpha-L-iduronidase in BrMV isolated from mice with one or two expressing alleles. Four marker genes highly/selectively expressed in BBB-forming capillary endothelial cells were evaluated by RT-qPCR for purity assessment, resulting in Cldn5 and Pecam1 as most suitable MGs that were further confirmed by immunofluorescent analysis of cellular components. Plvap proved to be an indicator gene for the presence of fenestrated vessels in BrMV samples. This study may contribute to the building blocks toward overarching research needs on the blood-brain barrier.
Collapse
Affiliation(s)
- Mei Dai
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yi Lin
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Salim S. El-Amouri
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Mara Kohls
- Department of Pediatrics, School of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Dao Pan
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, School of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
41
|
Brzica H, Abdullahi W, Reilly BG, Ronaldson PT. A Simple and Reproducible Method to Prepare Membrane Samples from Freshly Isolated Rat Brain Microvessels. J Vis Exp 2018. [PMID: 29782001 DOI: 10.3791/57698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The blood-brain barrier (BBB) is a dynamic barrier tissue that responds to various pathophysiological and pharmacological stimuli. Such changes resulting from these stimuli can greatly modulate drug delivery to the brain and, by extension, cause considerable challenges in the treatment of central nervous system (CNS) diseases. Many BBB changes that affect pharmacotherapy, involve proteins that are localized and expressed at the level of endothelial cells. Indeed, such knowledge on BBB physiology in health and disease has sparked considerable interest in the study of these membrane proteins. From a basic science research standpoint, this implies a requirement for a simple but robust and reproducible method for isolation of microvessels from brain tissue harvested from experimental animals. In order to prepare membrane samples from freshly isolated microvessels, it is essential that sample preparations be enriched in endothelial cells but limited in the presence of other cell types of the neurovascular unit (i.e., astrocytes, microglia, neurons, pericytes). An added benefit is the ability to prepare samples from individual animals in order to capture the true variability of protein expression in an experimental population. In this manuscript, details regarding a method that is utilized for isolation of rat brain microvessels and preparation of membrane samples are provided. Microvessel enrichment, from samples derived, is achieved by using four centrifugation steps where dextran is included in the sample buffer. This protocol can easily be adapted by other laboratories for their own specific applications. Samples generated from this protocol have been shown to yield robust experimental data from protein analysis experiments that can greatly aid the understanding of BBB responses to physiological, pathophysiological, and pharmacological stimuli.
Collapse
Affiliation(s)
- Hrvoje Brzica
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson
| | - Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson
| | - Bianca G Reilly
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson;
| |
Collapse
|
42
|
Pereira CD, Martins F, Wiltfang J, da Cruz e Silva OA, Rebelo S. ABC Transporters Are Key Players in Alzheimer’s Disease. J Alzheimers Dis 2017; 61:463-485. [DOI: 10.3233/jad-170639] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Cátia D. Pereira
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Jens Wiltfang
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Odete A.B. da Cruz e Silva
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Sandra Rebelo
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
43
|
Pascual-Pasto G, Olaciregui NG, Opezzo JA, Castillo-Ecija H, Cuadrado-Vilanova M, Paco S, Rivero EM, Vila-Ubach M, Restrepo-Perdomo CA, Torrebadell M, Suñol M, Schaiquevich P, Mora J, Bramuglia GF, Chantada GL, Carcaboso AM. Increased delivery of chemotherapy to the vitreous by inhibition of the blood-retinal barrier. J Control Release 2017; 264:34-44. [DOI: 10.1016/j.jconrel.2017.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/12/2022]
|
44
|
Osgood D, Miller MC, Messier AA, Gonzalez L, Silverberg GD. Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier. Neurobiol Aging 2017; 57:178-185. [PMID: 28654861 PMCID: PMC5728118 DOI: 10.1016/j.neurobiolaging.2017.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/22/2022]
Abstract
Decreased clearance of potentially toxic metabolites, due to aging changes, likely plays a significant role in the accumulation of amyloid-beta (Aβ) peptides and other macromolecules in the brain of the elderly and in the patients with Alzheimer's disease (AD). Aging is the single most important risk factor for AD development. Aβ transport receptor proteins expressed at the blood-brain barrier are significantly altered with age: the efflux transporters lipoprotein receptor-related protein 1 and P-glycoprotein are reduced, whereas the influx transporter receptor for advanced glycation end products is increased. These receptors play an important role in maintaining brain biochemical homeostasis. We now report that, in a rat model of aging, gene transcription is altered in aging, as measured by Aβ receptor gene messenger RNA (mRNA) at 3, 6, 9, 12, 15, 20, 30, and 36 months. Gene mRNA expression from isolated cerebral microvessels was measured by quantitative polymerase chain reaction. Lipoprotein receptor-related protein 1 and P-glycoprotein mRNA were significantly reduced in aging, and receptor for advanced glycation end products was increased, in parallel with the changes seen in receptor protein expression. Transcriptional changes appear to play a role in aging alterations in blood-brain barrier receptor expression and Aβ accumulation.
Collapse
Affiliation(s)
- Doreen Osgood
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, RI, USA; The Aldrich Laboratories, Rhode Island Hospital, Providence, RI, USA
| | - Miles C Miller
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, RI, USA; The Aldrich Laboratories, Rhode Island Hospital, Providence, RI, USA
| | - Arthur A Messier
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, RI, USA; The Aldrich Laboratories, Rhode Island Hospital, Providence, RI, USA
| | - Liliana Gonzalez
- Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI, USA
| | - Gerald D Silverberg
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, RI, USA; The Aldrich Laboratories, Rhode Island Hospital, Providence, RI, USA.
| |
Collapse
|
45
|
Gomez-Zepeda D, Chaves C, Taghi M, Sergent P, Liu WQ, Chhuon C, Vidal M, Picard M, Thioulouse E, Broutin I, Guerrera IC, Scherrmann JM, Parmentier Y, Decleves X, Menet MC. Targeted unlabeled multiple reaction monitoring analysis of cell markers for the study of sample heterogeneity in isolated rat brain cortical microvessels. J Neurochem 2017; 142:597-609. [DOI: 10.1111/jnc.14095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 12/30/2022]
Affiliation(s)
- David Gomez-Zepeda
- Inserm; UMR-S 1144; Variabilité de la réponse aux psychotropes; Paris France
- Université Paris Descartes; Paris France
- Université Paris Diderot; Paris France
| | - Catarina Chaves
- Inserm; UMR-S 1144; Variabilité de la réponse aux psychotropes; Paris France
- Université Paris Descartes; Paris France
- Université Paris Diderot; Paris France
| | - Méryam Taghi
- Inserm; UMR-S 1144; Variabilité de la réponse aux psychotropes; Paris France
- Université Paris Descartes; Paris France
- Université Paris Diderot; Paris France
| | - Philippe Sergent
- Technologie Servier; Département de recherche biopharmaceutique; Orléans France
| | - Wang-Qing Liu
- Université Paris Descartes; Paris France
- CNRS; UMR 8638; Chimie Organique; Médicinale et Extractive et Toxicologie Expérimentale; Paris France
| | - Cérina Chhuon
- Plateforme Protéomique 3P5-Necker; SFR Necker; US24; Université Paris Descartes; Paris France
| | - Michel Vidal
- Université Paris Descartes; Paris France
- CNRS; UMR 8638; Chimie Organique; Médicinale et Extractive et Toxicologie Expérimentale; Paris France
- UF Biologie du médicament et toxicologie; Hôpital Cochin, AP HP; Paris France
| | - Martin Picard
- Université Paris Descartes; Paris France
- CNRS, UMR 8015; Laboratoire de cristallographie et RMN biologiques; Paris France
- CNRS UMR 7099; Laboratoire de Biologie Physico-Chimique des Protéines Membranaires; Institut de Biologie Physico-Chimique (IBPC); Paris France
| | | | - Isabelle Broutin
- Université Paris Descartes; Paris France
- CNRS, UMR 8015; Laboratoire de cristallographie et RMN biologiques; Paris France
| | - Ida-Chiara Guerrera
- Plateforme Protéomique 3P5-Necker; SFR Necker; US24; Université Paris Descartes; Paris France
| | - Jean-Michel Scherrmann
- Inserm; UMR-S 1144; Variabilité de la réponse aux psychotropes; Paris France
- Université Paris Descartes; Paris France
- Université Paris Diderot; Paris France
| | - Yannick Parmentier
- Technologie Servier; Département de recherche biopharmaceutique; Orléans France
| | - Xavier Decleves
- Inserm; UMR-S 1144; Variabilité de la réponse aux psychotropes; Paris France
- Université Paris Descartes; Paris France
- Université Paris Diderot; Paris France
- UF Biologie du médicament et toxicologie; Hôpital Cochin, AP HP; Paris France
| | - Marie-Claude Menet
- Inserm; UMR-S 1144; Variabilité de la réponse aux psychotropes; Paris France
- Université Paris Descartes; Paris France
- Université Paris Diderot; Paris France
- Laboratoire d'hormonologie spécialisé et métabolisme; Hôpital Cochin; AP HP; Paris France
| |
Collapse
|
46
|
Brzica H, Abdullahi W, Ibbotson K, Ronaldson PT. Role of Transporters in Central Nervous System Drug Delivery and Blood-Brain Barrier Protection: Relevance to Treatment of Stroke. J Cent Nerv Syst Dis 2017; 9:1179573517693802. [PMID: 28469523 PMCID: PMC5392046 DOI: 10.1177/1179573517693802] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/22/2017] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality in the United States. The only approved pharmacologic treatment for ischemic stroke is thrombolysis via recombinant tissue plasminogen activator (r-tPA). A short therapeutic window and serious adverse events (ie, hemorrhage, excitotoxicity) greatly limit r-tPA therapy, which indicates an essential need to develop novel stroke treatment paradigms. Transporters expressed at the blood-brain barrier (BBB) provide a significant opportunity to advance stroke therapy via central nervous system delivery of drugs that have neuroprotective properties. Examples of such transporters include organic anion–transporting polypeptides (Oatps) and organic cation transporters (Octs). In addition, multidrug resistance proteins (Mrps) are transporter targets in brain microvascular endothelial cells that can be exploited to preserve BBB integrity in the setting of stroke. Here, we review current knowledge on stroke pharmacotherapy and demonstrate how endogenous BBB transporters can be targeted for improvement of ischemic stroke treatment.
Collapse
Affiliation(s)
- Hrvoje Brzica
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Wazir Abdullahi
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Kathryn Ibbotson
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
47
|
Acute effects of focused ultrasound-induced increases in blood-brain barrier permeability on rat microvascular transcriptome. Sci Rep 2017; 7:45657. [PMID: 28374753 PMCID: PMC5379491 DOI: 10.1038/srep45657] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
Abstract
Therapeutic treatment options for central nervous system diseases are greatly limited by the blood-brain barrier (BBB). Focused ultrasound (FUS), in conjunction with circulating microbubbles, can be used to induce a targeted and transient increase in BBB permeability, providing a unique approach for the delivery of drugs from the systemic circulation into the brain. While preclinical research has demonstrated the utility of FUS, there remains a large gap in our knowledge regarding the impact of sonication on BBB gene expression. This work is focused on investigating the transcriptional changes in dorsal hippocampal rat microvessels in the acute stages following sonication. Microarray analysis of microvessels was performed at 6 and 24 hrs post-FUS. Expression changes in individual genes and bioinformatic analysis suggests that FUS may induce a transient inflammatory response in microvessels. Increased transcription of proinflammatory cytokine genes appears to be short-lived, largely returning to baseline by 24 hrs. This observation may help to explain some previously observed bioeffects of FUS and may also be a driving force for the angiogenic processes and reduced drug efflux suggested by this work. While further studies are necessary, these results open up intriguing possibilities for novel FUS applications and suggest possible routes for pharmacologically modifying the technique.
Collapse
|
48
|
Monnier A, Prigent-Tessier A, Quirié A, Bertrand N, Savary S, Gondcaille C, Garnier P, Demougeot C, Marie C. Brain-derived neurotrophic factor of the cerebral microvasculature: a forgotten and nitric oxide-dependent contributor of brain-derived neurotrophic factor in the brain. Acta Physiol (Oxf) 2017; 219:790-802. [PMID: 27364224 DOI: 10.1111/apha.12743] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/16/2016] [Accepted: 06/28/2016] [Indexed: 12/14/2022]
Abstract
AIM Evidence that brain-derived neurotrophic factor (BDNF), a neurotrophin largely involved in cognition, is expressed by cerebral endothelial cells led us to explore in rats the contribution of the cerebral microvasculature to BDNF found in brain tissue and the link between cerebrovascular nitric oxide (NO) and BDNF production. METHODS Brain BDNF protein levels were measured before and after in situ removal of the cerebral endothelium that was achieved by brain perfusion with a 0.2% CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propane sulphonate) solution. BDNF protein and mRNA levels as well as levels of endothelial NO synthase phosphorylated at serine 1177 (P-eNOSser1177 ) were measured in cerebral microvessel-enriched fractions. These fractions were also exposed to glycerol trinitrate. Hypertension (spontaneously hypertensive rats) and physical exercise training were used as experimental approaches to modulate cerebrovascular endothelial NO production. RESULTS CHAPS perfusion resulted in a marked decrease in brain BDNF levels. Hypertension decreased and exercise increased P-eNOSser1177 and BDNF protein levels. However, BDNF mRNA levels that were increased by exercise did not change after hypertension. Finally, in vitro exposure of cerebral microvessel-enriched fractions to glycerol trinitrate enhanced BDNF production. CONCLUSION These data reveal that BDNF levels measured in brain homogenates correspond for a large part to BDNF present in cerebral endothelial cells and that cerebrovascular BDNF production is dependent on cerebrovascular endothelial eNOS activity. They provide a paradigm shift in the cellular source of brain BDNF and suggest a new approach to improve our understanding of the link between endothelial function and cognition.
Collapse
Affiliation(s)
- A. Monnier
- INSERM U1093 Cognition; Action et Plasticité Sensorimotrice; Univ. Bourgogne Franche-Comté; Dijon France
- Department of Rehabilitation; CHRU Dijon; Dijon France
| | - A. Prigent-Tessier
- INSERM U1093 Cognition; Action et Plasticité Sensorimotrice; Univ. Bourgogne Franche-Comté; Dijon France
| | - A. Quirié
- INSERM U1093 Cognition; Action et Plasticité Sensorimotrice; Univ. Bourgogne Franche-Comté; Dijon France
| | - N. Bertrand
- Département Génie Biologique; IUT; Dijon France
| | - S. Savary
- Département Génie Biologique; IUT; Dijon France
- Lab. Bio-PeroxIL; EA 7270; Univ. Bourgogne Franche-Comté; Dijon France
| | - C. Gondcaille
- Lab. Bio-PeroxIL; EA 7270; Univ. Bourgogne Franche-Comté; Dijon France
| | - P. Garnier
- INSERM U1093 Cognition; Action et Plasticité Sensorimotrice; Univ. Bourgogne Franche-Comté; Dijon France
- Département Génie Biologique; IUT; Dijon France
| | - C. Demougeot
- EA 4267 FDE; Univ. Bourgogne Franche-Comté; Besançon France
| | - C. Marie
- INSERM U1093 Cognition; Action et Plasticité Sensorimotrice; Univ. Bourgogne Franche-Comté; Dijon France
| |
Collapse
|
49
|
Sewduth RN, Kovacic H, Jaspard-Vinassa B, Jecko V, Wavasseur T, Fritsch N, Pernot M, Jeaningros S, Roux E, Dufourcq P, Couffinhal T, Duplàa C. PDZRN3 destabilizes endothelial cell-cell junctions through a PKCζ-containing polarity complex to increase vascular permeability. Sci Signal 2017; 10:10/464/eaag3209. [DOI: 10.1126/scisignal.aag3209] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
50
|
Wang W, Bodles-Brakhop AM, Barger SW. A Role for P-Glycoprotein in Clearance of Alzheimer Amyloid β -Peptide from the Brain. Curr Alzheimer Res 2017; 13:615-20. [PMID: 26971931 DOI: 10.2174/1567205013666160314151012] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/07/2016] [Indexed: 12/20/2022]
Abstract
Most data indicates that Alzheimer's disease involves an accumulation of amyloid β - peptide (Aβ) in the CNS and that sporadic cases arise from a deficiency in Aβ clearance. Considerable attention has been given to mechanisms by which Aβ might be transported between the brain and blood, and evidence suggests that p-glycoprotein, also known as the multi-drug resistance (MDR) protein (product of the ABCB1 gene), plays a role in Aβ transport across the blood-brain barrier (BBB). We tested this possibility through two approaches: First, wild-type and MDR1A-knockout mice were compared after intravenous injection of [(125)I]-labeled Aβ; after 60 min, homogenates of brain parenchyma were subjected to γ-counting of TCA-precipitable material, and histological sections of brain were subjected to autoradiography. Second, MDR1Aknockout mice were crossed with Tg2576 APP transgenic mice, a line that routinely accumulates Aβ in the brain; SDS and formic acid extracts of brain homogenates were assessed for Aβ levels by ELISA. Each of these approaches yielded data indicating that Aβ accumulates to a greater degree in mice lacking MDR1A. These findings confirm other reports linking p-glycoprotein to Aβ clearance across the BBB and have important implications for Alzheimer's disease genetics, pharmacology, and epidemiology.
Collapse
Affiliation(s)
| | | | - Steven W Barger
- Reynolds Institute on Aging, #807, 629 Jack Stephens Drive, Little Rock AR 72205, USA.
| |
Collapse
|