1
|
Ponti D. The Nucleolus: A Central Hub for Ribosome Biogenesis and Cellular Regulatory Signals. Int J Mol Sci 2025; 26:4174. [PMID: 40362410 PMCID: PMC12071546 DOI: 10.3390/ijms26094174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/18/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The nucleolus is the most prominent nuclear domain in eukaryotic cells, primarily responsible for ribosome biogenesis. It synthesizes and processes precursor ribosomal RNA (pre-rRNA) into mature rRNAs, assembling the 40S and 60S ribosomal subunits, which later form the 80S ribosome-the essential molecular machine for protein synthesis. Beyond ribosome production, the nucleolus lacks a delimiting membrane, allowing it to rapidly regulate cellular homeostasis by sequestering key stress response factors. This adaptability enables dynamic changes in size, number, and protein composition in response to cellular stress and signaling. Recent research highlights the nucleolus as a critical regulator of chemoresistance. Given its central role in cell survival and stress adaptation, the nucleolus has become an attractive therapeutic target, particularly in cancer treatment. A deeper understanding of nucleolar metabolism could pave the way for novel therapeutic strategies against various human diseases.
Collapse
Affiliation(s)
- Donatella Ponti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso Della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
2
|
Pereira ABM, Gontijo BA, Tanaka SCSV, de Vito FB, de Souza HM, da Silva PR, Rogerio ADP. Aspirin-triggered RvD1 (AT-RvD1) modulates epithelial-mesenchymal transition on bronchial epithelial cells stimulated with cigarette smoke extract. Prostaglandins Other Lipid Mediat 2025; 177:106968. [PMID: 39984154 DOI: 10.1016/j.prostaglandins.2025.106968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
The epithelial-mesenchymal transition (EMT) plays significant role in airway remodeling during chronic obstructive pulmonary disease (COPD) and lung cancer. Aspirin-triggered resolvin D1 (AT-RvD1) presents anti-inflammatory and pro-resolution effects, via lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2). In addition, AT-RvD1 prevented TGF-β1-induced EMT in lung cancer cells (A549 cells). Here, we extend these results and evaluated the role of AT-RvD1 in cigarette smoke extract (CSE)-induced EMT on bronchial epithelial cells (BEAS-2B). CSE decreased E-cadherin expression, an epithelial marker, and increased ROS and TGF-β1 productions, and expressions of mesenchymal markers (N-cadherin, vimentin, smad2/3 and slug). Furthermore, CSE induced an increase in the ALX/FPR2 receptor expression. AT-RvD1 restored the expression of E-cadherin and reduced the N-cadherin, Vimentin, smad2/3 and ALX/FPR2 expressions as well as ROS and TGF-β1 productions on CSE-stimulated cells. In conclusion, AT-RvD1 has the potential to control epithelial-mesenchymal transition induced by smoking in the normal lung epithelial cells.
Collapse
Affiliation(s)
- Aline Beatriz Mahler Pereira
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil.
| | - Bethânia Alves Gontijo
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil.
| | | | | | - Hélio Moraes de Souza
- Laboratory of Hematological Research, Triângulo Mineiro Federal University, Uberaba 38025-350, Brazil.
| | - Paulo Roberto da Silva
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil.
| | - Alexandre de Paula Rogerio
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil.
| |
Collapse
|
3
|
Monteagudo M, Calsina B, Salazar-Hidalgo ME, Martínez-Montes ÁM, Piñeiro-Yáñez E, Caleiras E, Martín MC, Rodríguez-Perales S, Letón R, Gil E, Buffet A, Burnichon N, Fernández-Sanromán Á, Díaz-Talavera A, Mellid S, Arroba E, Reglero C, Martínez-Puente N, Roncador G, Del Olmo MI, Corrales PJP, Oliveira CL, Álvarez-Escolá C, Gutiérrez MC, López-Fernández A, García NP, Regojo RM, Díaz LR, Laorden NR, Guadarrama OS, Bechmann N, Beuschlein F, Canu L, Eisenhofer G, Fassnacht M, Nölting S, Quinkler M, Rapizzi E, Remde H, Timmers HJ, Favier J, Gimenez-Roqueplo AP, Rodriguez-Antona C, Currás-Freixes M, Al-Shahrour F, Cascón A, Leandro-García LJ, Montero-Conde C, Robledo M. MAML3-fusions modulate vascular and immune tumour microenvironment and confer high metastatic risk in pheochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 2024; 38:101931. [PMID: 39218714 DOI: 10.1016/j.beem.2024.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pheochromocytomas and paragangliomas are rare neuroendocrine tumours. Around 20-25 % of patients develop metastases, for which there is an urgent need of prognostic markers and therapeutic stratification strategies. The presence of a MAML3-fusion is associated with increased metastatic risk, but neither the processes underlying disease progression, nor targetable vulnerabilities have been addressed. We have compiled a cohort of 850 patients, which has shown a 3.65 % fusion prevalence and represents the largest MAML3-positive series reported to date. While MAML3-fusions mainly cause single pheochromocytomas, we also observed somatic post-zygotic events, resulting in multiple tumours in the same patient. MAML3-tumours show increased expression of neuroendocrine-to-mesenchymal transition markers, MYC-targets, and angiogenesis-related genes, leading to a distinct tumour microenvironment with unique vascular and immune profiles. Importantly, our findings have identified MAML3-tumours specific vulnerabilities beyond Wnt-pathway dysregulation, such as a rich vascular network, and overexpression of PD-L1 and CD40, suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- María Monteagudo
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, Madrid, Spain
| | - Bruna Calsina
- Familial Cancer Clinical Unit, Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Milton E Salazar-Hidalgo
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ángel M Martínez-Montes
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Piñeiro-Yáñez
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Core Unit Biotechnology Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria Carmen Martín
- Molecular Citogenetic Unit Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Citogenetic Unit Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Rocío Letón
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eduardo Gil
- Familial Cancer Clinical Unit, Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alexandre Buffet
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France
| | - Nelly Burnichon
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France
| | - Ángel Fernández-Sanromán
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alberto Díaz-Talavera
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Sara Mellid
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ester Arroba
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Clara Reglero
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Natalia Martínez-Puente
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, Madrid, Spain
| | - Giovanna Roncador
- Monoclonal Antibodies Core Unit Biotechnology Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria Isabel Del Olmo
- Department of Endocrinology and Nutrition, University Hospital La Fe, Valencia, Spain
| | | | - Cristina Lamas Oliveira
- Department of Endocrinology and Nutrition Albacete University Hospital, SESCAM, Albacete, Spain
| | | | | | | | | | | | - Luis Robles Díaz
- Department of Oncology, 12 de Octubre University Hospital, Madrid, Spain
| | | | | | - Nicole Bechmann
- Institute for Clinical Chemistry and Laboratory Medicine Faculty of Medicine and University Hospital Carl Gustav Carus Technische Universität Dresden, Dresden Germany, Germany
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV Klinikum der Universität München, Munich, Germany; Klinik für Endokrinologie Diabetologie und Klinische Ernährung UniversitätsSpital Zürich, Zürich, Switzerland; LOOP Zurich - Medical Research Center, Zurich, Switzerland
| | - Letizia Canu
- Department of Experimental and Clinical Medicine University of Florence, Florence, Italy
| | - Graeme Eisenhofer
- Department of Medicine III University Hospital Carl Gustav Carus Technische Universität Dresden, Dresden, Germany
| | - Martin Fassnacht
- Department of Internal Medicine I Division of Endocrinology and Diabetes University Hospital Würzburg University of Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken University of Würzburg, Würzburg, Germany
| | - Svenja Nölting
- Klinik für Endokrinologie Diabetologie und Klinische Ernährung UniversitätsSpital Zürich, Zürich, Switzerland
| | - Marcus Quinkler
- Endocrinology in Charlottenburg Stuttgarter Platz 1, Berlin, Germany
| | - Elena Rapizzi
- Department of Experimental and Clinical Medicine University of Florence, Florence, Italy
| | - Hanna Remde
- Comprehensive Cancer Center Mainfranken University of Würzburg, Würzburg, Germany
| | - Henri J Timmers
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Judith Favier
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France
| | - Cristina Rodriguez-Antona
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria Currás-Freixes
- Familial Cancer Clinical Unit, Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Fatima Al-Shahrour
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alberto Cascón
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Luis J Leandro-García
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
4
|
Dwyer S, Ruth J, Seidel HE, Raz AA, Chodosh LA. Autophagy is required for mammary tumor recurrence by promoting dormant tumor cell survival following therapy. Breast Cancer Res 2024; 26:143. [PMID: 39425240 PMCID: PMC11488247 DOI: 10.1186/s13058-024-01878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/02/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Mortality from breast cancer is principally due to tumor recurrence. Recurrent breast cancers arise from the pool of residual tumor cells, termed minimal residual disease, that survive treatment and may exist in a dormant state for 20 years or more following treatment of the primary tumor. As recurrent breast cancer is typically incurable, understanding the mechanisms underlying dormant tumor cell survival is a critical priority in breast cancer research. The importance of this goal is further underscored by emerging evidence suggesting that targeting dormant residual tumor cells in early-stage breast cancer patients may be a means to prevent tumor recurrence and its associated mortality. In this regard, the role of autophagy in dormant tumor cell survival and recurrence remains unresolved, with conflicting reports of both pro-survival/recurrence-promoting and pro-death/recurrence-suppressing effects of autophagy inhibition in dormant tumor cells. Resolving this question has important clinical implications. METHODS We used genetically engineered mouse models that faithfully recapitulate key features of human breast cancer progression, including minimal residual disease, tumor dormancy, and recurrence. We used genetic and pharmacological approaches to inhibit autophagy, including treatment with chloroquine, genetic knockdown of ATG5 or ATG7, or deletion of BECN and determined their effects on dormant tumor cell survival and recurrence. RESULTS We demonstrate that the survival and recurrence of dormant mammary tumor cells following therapy is dependent upon autophagy. We find that autophagy is induced in vivo following HER2 downregulation and remains activated in dormant residual tumor cells. Using genetic and pharmacological approaches we show that inhibiting autophagy by chloroquine administration, ATG5 or ATG7 knockdown, or deletion of a single allele of the tumor suppressor Beclin 1 is sufficient to inhibit mammary tumor recurrence, and that autophagy inhibition results in the death of dormant mammary tumor cells in vivo. CONCLUSIONS Our findings demonstrate a pro-tumorigenic role for autophagy in tumor dormancy and recurrence following therapy, reveal that dormant tumor cells are uniquely reliant upon autophagy for their survival, and indicate that targeting dormant residual tumor cells by inhibiting autophagy impairs tumor recurrence. These studies identify a pharmacological target for a cellular state that is resistant to commonly used anti-neoplastic agents and suggest autophagy inhibition as an approach to reduce dormant minimal residual disease in order to prevent lethal tumor recurrence.
Collapse
Affiliation(s)
- Samantha Dwyer
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Room 614 BRB II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-6160, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jason Ruth
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Room 614 BRB II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-6160, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hans E Seidel
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Room 614 BRB II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-6160, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amelie A Raz
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Room 614 BRB II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-6160, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lewis A Chodosh
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Room 614 BRB II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-6160, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Ryu KJ, Lee KW, Park SH, Kim T, Hong KS, Kim H, Kim M, Ok DW, Kwon GNB, Park YJ, Kwon HK, Hwangbo C, Kim KD, Lee JE, Yoo J. Chaperone-mediated autophagy modulates Snail protein stability: implications for breast cancer metastasis. Mol Cancer 2024; 23:227. [PMID: 39390584 PMCID: PMC11468019 DOI: 10.1186/s12943-024-02138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Breast cancer remains a significant health concern, with triple-negative breast cancer (TNBC) being an aggressive subtype with poor prognosis. Epithelial-mesenchymal transition (EMT) is important in early-stage tumor to invasive malignancy progression. Snail, a central EMT component, is tightly regulated and may be subjected to proteasomal degradation. We report a novel proteasomal independent pathway involving chaperone-mediated autophagy (CMA) in Snail degradation, mediated via its cytosolic interaction with HSC70 and lysosomal targeting, which prevented its accumulation in luminal-type breast cancer cells. Conversely, Snail predominantly localized to the nucleus, thus evading CMA-mediated degradation in TNBC cells. Starvation-induced CMA activation downregulated Snail in TNBC cells by promoting cytoplasmic translocation. Evasion of CMA-mediated Snail degradation induced EMT, and enhanced metastatic potential of luminal-type breast cancer cells. Our findings elucidate a previously unrecognized role of CMA in Snail regulation, highlight its significance in breast cancer, and provide a potential therapeutic target for clinical interventions.
Collapse
Affiliation(s)
- Ki-Jun Ryu
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Ki Won Lee
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Seung-Ho Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Taeyoung Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Keun-Seok Hong
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Hyemin Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Minju Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Dong Woo Ok
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Gu Neut Bom Kwon
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hyuk-Kwon Kwon
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Cheol Hwangbo
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - J Eugene Lee
- Division of Biometrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Korea
| | - Jiyun Yoo
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea.
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Korea.
| |
Collapse
|
6
|
Chen RY, Ding LJ, Liu YJ, Shi JJ, Yu J, Li CY, Lu JF, Yang GJ, Chen J. Marine Staurosporine Analogues: Activity and Target Identification in Triple-Negative Breast Cancer. Mar Drugs 2024; 22:459. [PMID: 39452867 PMCID: PMC11509616 DOI: 10.3390/md22100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with high mortality and drug resistance and no targeted drug available at present. Compound 4, a staurosporine alkaloid derived from Streptomyces sp. NBU3142 in a marine sponge, exhibits potent anti-TNBC activity. This research investigated its impact on MDA-MB-231 cells and their drug-resistant variants. The findings highlighted that compound 4 inhibits breast cancer cell migration, induces apoptosis, arrests the cell cycle, and promotes cellular senescence in both regular and paclitaxel-resistant MDA-MB-231 cells. Additionally, this study identified mitogen-activated protein kinase kinase kinase 11 (MAP3K11) as a target of compound 4, implicating its role in breast tumorigenesis by affecting cell proliferation, migration, and cell cycle progression.
Collapse
Affiliation(s)
- Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Li-Jian Ding
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo 315211, China;
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| |
Collapse
|
7
|
Šitum Čeprnja Z, Kelam N, Ogorevc M, Racetin A, Vukoja M, Čeprnja T, Filipović N, Saraga-Babić M, Vukojević K. Expression of LOXL3, NES, and SNAI1 in Melanoma Genesis and Progression. Cells 2024; 13:1450. [PMID: 39273022 PMCID: PMC11394338 DOI: 10.3390/cells13171450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Melanoma is the most severe type of skin cancer and among the most malignant neoplasms in humans. With the growing incidence of melanoma, increased numbers of therapeutic options, and the potential to target specific proteins, understanding the basic mechanisms underlying the disease's progression and resistance to treatment has never been more important. LOXL3, SNAI1, and NES are key factors in melanoma genesis, regulating tumor growth, metastasis, and cellular differentiation. In our study, we explored the potential role of LOXL3, SNAI1, and NES in melanoma progression and metastasis among patients with dysplastic nevi, melanoma in situ, and BRAF+ and BRAF- metastatic melanoma, using immunofluorescence and qPCR analysis. Our results reveal a significant increase in LOXL3 expression and the highest NES expression in BRAF+ melanoma compared to BRAF-, dysplastic nevi, and melanoma in situ. As for SNAI1, the highest expression was observed in the metastatic melanoma group, without significant differences among groups. We found co-expression of LOXL3 and SNAI1 in the perinuclear area of all investigated subgroups and NES and SNAI1 co-expression in melanoma cells. These findings suggest a codependence or collaboration between these markers in melanoma EMT, suggesting new potential therapeutic interventions to block the EMT cascade that could significantly affect survival in many melanoma patients.
Collapse
Affiliation(s)
- Zdenka Šitum Čeprnja
- Department of Dermatovenerology, University Hospital of Split, 21000 Split, Croatia;
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (N.K.); (M.O.); (A.R.); (N.F.); (K.V.)
| | - Marin Ogorevc
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (N.K.); (M.O.); (A.R.); (N.F.); (K.V.)
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (N.K.); (M.O.); (A.R.); (N.F.); (K.V.)
| | - Martina Vukoja
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina;
| | - Toni Čeprnja
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia;
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (N.K.); (M.O.); (A.R.); (N.F.); (K.V.)
| | - Mirna Saraga-Babić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (N.K.); (M.O.); (A.R.); (N.F.); (K.V.)
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (N.K.); (M.O.); (A.R.); (N.F.); (K.V.)
- Center for Translational Research in Biomedicine, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
8
|
Zhang J, Ye CX, Chen HT, Li T, Ma LT, Guo Y. Jianpi-Tiaoqi decoction inhibits tumour proliferation and lung metastasis in tumour-bearing mice with triple-negative breast cancer. Clin Exp Pharmacol Physiol 2024; 51:e13900. [PMID: 38843865 DOI: 10.1111/1440-1681.13900] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 04/09/2025]
Abstract
Traditional Chinese medicine, specifically the Jianpi Tiaoqi (JPTQ) decoction, has been explored for its role in treating breast cancer, particularly in inhibiting lung metastasis in affected mice. Our study evaluated the effects of JPTQ on several factors, including tumour growth, apoptosis, angiogenesis, epithelial-to-mesenchymal transition (EMT) and immune microenvironment regulation. We used bioluminescence imaging to observe in situ tumour growth and potential lung metastasis. Transcriptomic analysis provided insights into gene expression, whereas flow cytometry was used to examine changes in specific immune cells, such as CD4+ T cells and myeloid-derived suppressor cells. Several essential proteins and genes, including vascular endothelial growth factor (VEGF), matrix metalloprotein-9 (MMP-9) and B-cell lymphoma 2 (Bcl-2), were assessed through quantitative real-time polymerase chain reaction, western blotting and immunohistochemistry. Our findings showed that JPTQ treatment inhibited tumour proliferation in cancer-bearing mice. Bioluminescence imaging and pathological analysis indicated a reduction in lung metastasis. Transcriptome analysis of lung and tumour tissues indicated that the genes associated with EMT, angiogenesis, proliferation and apoptosis were regulated in the JPTQ-treated group. Kyoto Encyclopedia of Genes and Genomes analysis suggested enrichment of immune-related pathways. Flow cytometry indicated that JPTQ treatment reduced the proportion of monocyte-myeloid-derived suppressor cells in the lung and increased the number of CD4+ T cells in the peripheral blood and the number of T helper 1 (Th1) cells in the spleen (P < 0.05). E-cadherin and cleaved caspase 3 were upregulated, whereas Snail, Bcl-2, Ki67 and VEGF were downregulated in the lung and tumour tissues; moreover, the expression of MMP-9 was downregulated in the lung tissue (P < 0.05). In essence, JPTQ not only inhibits tumour growth in affected mice, but also promotes positive immune responses, reduces angiogenesis, boosts tumour cell apoptosis, reverses EMT and decreases breast cancer lung metastasis.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumour Diagnosis and Treatment in Shaanxi Province, Xi'an, China
| | - Chen-Xiao Ye
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hai-Tao Chen
- Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumour Diagnosis and Treatment in Shaanxi Province, Xi'an, China
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
MacFawn I, Farris J, Pifer P, Margaryan NV, Akhter H, Wang L, Dziadowicz S, Denvir J, Hu G, Frisch SM. Grainyhead-like-2, an epithelial master programmer, promotes interferon induction and suppresses breast cancer recurrence. Mol Immunol 2024; 170:156-169. [PMID: 38692097 PMCID: PMC11106721 DOI: 10.1016/j.molimm.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Type-I and -III interferons play a central role in immune rejection of pathogens and tumors, thus promoting immunogenicity and suppressing tumor recurrence. Double strand RNA is an important ligand that stimulates tumor immunity via interferon responses. Differentiation of embryonic stem cells to pluripotent epithelial cells activates the interferon response during development, raising the question of whether epithelial vs. mesenchymal gene signatures in cancer potentially regulate the interferon pathway as well. Here, using genomics and signaling approaches, we show that Grainyhead-like-2 (GRHL2), a master programmer of epithelial cell identity, promotes type-I and -III interferon responses to double-strand RNA. GRHL2 enhanced the activation of IRF3 and relA/NF-kB and the expression of IRF1; a functional GRHL2 binding site in the IFNL1 promoter was also identified. Moreover, time to recurrence in breast cancer correlated positively with GRHL2 protein expression, indicating that GRHL2 is a tumor recurrence suppressor, consistent with its enhancement of interferon responses. These observations demonstrate that epithelial cell identity supports interferon responses in the context of cancer.
Collapse
Affiliation(s)
- Ian MacFawn
- Department of Immunology, University of Pittsburgh, 5051 Centre Avenue, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Joshua Farris
- Wake Forest University, Department of Radiation Oncology, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Phillip Pifer
- Department of Radiation Oncology, WVU Cancer Institute, 1 Medical Drive, Morgantown, WV, USA
| | - Naira V Margaryan
- WVU Cancer Institute, West Virginia University, 64 Medical Center Drive, Morgantown, WV 26506, USA
| | - Halima Akhter
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA
| | - Lei Wang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA
| | - Sebastian Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA
| | - James Denvir
- Byrd Biotechnology Center, Marshall University, One John Marshall Drive, Huntington, WV 25701, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA.
| | - Steven M Frisch
- Department of Biochemistry and Molecular Medicine, 64 Medical Center Drive, Box 9142, West Virginia University, Morgantown, WV 26506.
| |
Collapse
|
10
|
Khan AQ, Hasan A, Mir SS, Rashid K, Uddin S, Steinhoff M. Exploiting transcription factors to target EMT and cancer stem cells for tumor modulation and therapy. Semin Cancer Biol 2024; 100:1-16. [PMID: 38503384 DOI: 10.1016/j.semcancer.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Transcription factors (TFs) are essential in controlling gene regulatory networks that determine cellular fate during embryogenesis and tumor development. TFs are the major players in promoting cancer stemness by regulating the function of cancer stem cells (CSCs). Understanding how TFs interact with their downstream targets for determining cell fate during embryogenesis and tumor development is a critical area of research. CSCs are increasingly recognized for their significance in tumorigenesis and patient prognosis, as they play a significant role in cancer initiation, progression, metastasis, and treatment resistance. However, traditional therapies have limited effectiveness in eliminating this subset of cells, allowing CSCs to persist and potentially form secondary tumors. Recent studies have revealed that cancer cells and tumors with CSC-like features also exhibit genes related to the epithelial-to-mesenchymal transition (EMT). EMT-associated transcription factors (EMT-TFs) like TWIST and Snail/Slug can upregulate EMT-related genes and reprogram cancer cells into a stem-like phenotype. Importantly, the regulation of EMT-TFs, particularly through post-translational modifications (PTMs), plays a significant role in cancer metastasis and the acquisition of stem cell-like features. PTMs, including phosphorylation, ubiquitination, and SUMOylation, can alter the stability, localization, and activity of EMT-TFs, thereby modulating their ability to drive EMT and stemness properties in cancer cells. Although targeting EMT-TFs holds potential in tackling CSCs, current pharmacological approaches to do so directly are unavailable. Therefore, this review aims to explore the role of EMT- and CSC-TFs, their connection and impact in cellular development and cancer, emphasizing the potential of TF networks as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Khalid Rashid
- Department of Urology,Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India; Laboratory Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
11
|
Sun K, Liao S, Yao X, Yao F. USP30 promotes the progression of breast cancer by stabilising Snail. Cancer Gene Ther 2024; 31:472-483. [PMID: 38146008 PMCID: PMC10940155 DOI: 10.1038/s41417-023-00718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023]
Abstract
Breast cancer (BC) is the most prevalent tumour in women worldwide. USP30 is a deubiquitinase that has been previously reported to promote tumour progression and lipid synthesis in hepatocellular carcinoma. However, the role of USP30 in breast cancer remains unclear. Therefore, we investigated its biological action and corresponding mechanisms in vitro and in vivo. In our study, we found that USP30 was highly expressed in breast cancer samples and correlated with a poor patient prognosis. Knockdown of USP30 significantly suppressed the proliferation, invasion and migration abilities of BC cells in vitro and tumour growth in vivo, whereas overexpression of USP30 exhibited the opposite effect. Mechanistically, we verified that USP30 interacts with and stabilises Snail to promote its protein expression through deubiquitination by K48-linked polyubiquitin chains and then accelerates the EMT program. More importantly, USP30 reduced the chemosensitivity of BC cells to paclitaxel (PTX). Collectively, these data demonstrate that USP30 promotes the BC cell EMT program by stabilising Snail and attenuating chemosensitivity to PTX and may be a potential therapeutic target in BC.
Collapse
Affiliation(s)
- Kai Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Shichong Liao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Xinrui Yao
- School of Science, University of Sydney, Sydney, Australia
| | - Feng Yao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China.
| |
Collapse
|
12
|
Luo L, Xu N, Fan W, Wu Y, Chen P, Li Z, He Z, Liu H, Lin Y, Zheng G. The TGFβ2-Snail1-miRNA TGFβ2 Circuitry is Critical for the Development of Aggressive Functions in Breast Cancer. Clin Transl Med 2024; 14:e1558. [PMID: 38299307 PMCID: PMC10831563 DOI: 10.1002/ctm2.1558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
There have been contradictory reports on the biological role of transforming growth factor-βs (TGFβs) in breast cancer (BC), especially with regard to their ability to promote epithelial-mesenchymal transition (EMT). Here, we show that TGFβ2 is preferentially expressed in mesenchymal-like BCs and maintains the EMT phenotype, correlating with cancer stem cell-like characteristics, growth, metastasis and chemo-resistance and predicting worse clinical outcomes. However, this is only true in ERα- BC. In ERα+ luminal-type BC, estrogen receptor interacts with p-Smads to block TGFβ signalling. Furthermore, we also identify a microRNAs (miRNAs) signature (miRNAsTGFβ2 ) that is weakened in TGFβ2-overexpressing BC cells. We discover that TGFβ2-Snail1 recruits enhancer of zeste homolog-2 to convert miRNAsTGFβ2 promoters from an active to repressive chromatin configuration and then repress miRNAsTGFβ2 transcription, forming a negative feedback loop. On the other hand, miRNAsTGFβ2 overexpression reverses the mesenchymal-like traits in agreement with the inhibition of TGFβ2-Snail1 signalling in BC cells. These findings clarify the roles of TGFβ2 in BC and suggest novel therapeutic strategies based on the TGFβ2-Snail1-miRNAsTGFβ2 loop for a subset type of human BCs.
Collapse
Affiliation(s)
- Liyun Luo
- Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityState Key Laboratory of Respiratory DiseaseGuangzhouChina
| | - Ning Xu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityState Key Laboratory of Respiratory DiseaseGuangzhouChina
| | - Weina Fan
- Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityState Key Laboratory of Respiratory DiseaseGuangzhouChina
| | - Yixuan Wu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityState Key Laboratory of Respiratory DiseaseGuangzhouChina
| | - Pingping Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityState Key Laboratory of Respiratory DiseaseGuangzhouChina
| | - Zhihui Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityState Key Laboratory of Respiratory DiseaseGuangzhouChina
| | - Zhimin He
- Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityState Key Laboratory of Respiratory DiseaseGuangzhouChina
| | - Hao Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityState Key Laboratory of Respiratory DiseaseGuangzhouChina
| | - Ying Lin
- Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityState Key Laboratory of Respiratory DiseaseGuangzhouChina
| | - Guopei Zheng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityState Key Laboratory of Respiratory DiseaseGuangzhouChina
| |
Collapse
|
13
|
Sreekumar A, Lu M, Choudhury B, Pan TC, Pant DK, Lawrence-Paul MR, Sterner CJ, Belka GK, Toriumi T, Benz BA, Escobar-Aguirre M, Marino FE, Esko JD, Chodosh LA. B3GALT6 promotes dormant breast cancer cell survival and recurrence by enabling heparan sulfate-mediated FGF signaling. Cancer Cell 2024; 42:52-69.e7. [PMID: 38065100 PMCID: PMC10872305 DOI: 10.1016/j.ccell.2023.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024]
Abstract
Breast cancer mortality results from incurable recurrences thought to be seeded by dormant, therapy-refractory residual tumor cells (RTCs). Understanding the mechanisms enabling RTC survival is therefore essential for improving patient outcomes. Here, we derive a dormancy-associated RTC signature that mirrors the transcriptional response to neoadjuvant therapy in patients and is enriched for extracellular matrix-related pathways. In vivo CRISPR-Cas9 screening of dormancy-associated candidate genes identifies the galactosyltransferase B3GALT6 as a functional regulator of RTC fitness. B3GALT6 is required for glycosaminoglycan (GAG) linkage to proteins to generate proteoglycans, and its germline loss of function in patients causes skeletal dysplasias. We find that B3GALT6-mediated biosynthesis of heparan sulfate GAGs predicts poor patient outcomes and promotes tumor recurrence by enhancing dormant RTC survival in multiple contexts, and does so via a B3GALT6-heparan sulfate/HS6ST1-heparan 6-O-sulfation/FGF1-FGFR2 signaling axis. These findings implicate B3GALT6 in cancer and nominate FGFR2 inhibition as a promising approach to eradicate dormant RTCs and prevent recurrence.
Collapse
Affiliation(s)
- Amulya Sreekumar
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michelle Lu
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Biswa Choudhury
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tien-Chi Pan
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dhruv K Pant
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Lawrence-Paul
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher J Sterner
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George K Belka
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takashi Toriumi
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian A Benz
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matias Escobar-Aguirre
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francesco E Marino
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lewis A Chodosh
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Ma X, Wan R, Wen Y, Liu T, Song Y, Zhu Y. Deubiquitinating enzyme OTUD4 regulates metastasis in triple-negative breast cancer by stabilizing Snail1. Exp Cell Res 2024; 434:113864. [PMID: 38040050 DOI: 10.1016/j.yexcr.2023.113864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Metastasis is the primary cause of cancer-related deaths and remains poorly understood. Deubiquitinase OTU domain containing 4 (OTUD4) has been reported to regulate antiviral immune responses and resistance to radio- or chemo-therapies in certain cancers. However, the role of OTUD4 in cancer metastasis remain unknown. Here, we demonstrate that the depletion of OTUD4 in triple-negative breast cancer (TNBC) cells markedly suppress cell clonogenic ability, migration, invasion and cancer stem cell population in vitro as well as metastasis in vivo. Mechanistically, the tumor promoting function of OTUD4 is mainly mediated by deuiquitinating and stabilizing Snail1, one key transcriptional factor in the epithelial-mesenchymal transition. The inhibitory effect of targeting OTUD4 could be largely reversed by the reconstitution of Snail1 in OTUD4-deficient cells. Overall, our study establishes the OTUD4-Snail1 axis as an important regulatory mechanism of breast cancer metastasis and provides a rationale for potential therapeutic interventions in the treatment of TNBC.
Collapse
Affiliation(s)
- Xiuqing Ma
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Rui Wan
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Yalei Wen
- Guangdong Second Provincial General Hospital, Research Institute for Maternal and Child Health, Jinan University, Guangzhou, China
| | - Tongzheng Liu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China.
| | - Yan Song
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical, Sciences and Peking Union Medical College, Beijing, China.
| | - Yingjie Zhu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China.
| |
Collapse
|
15
|
Yan L, Cui Y, Feng J. Biology of Pellino1: a potential therapeutic target for inflammation in diseases and cancers. Front Immunol 2023; 14:1292022. [PMID: 38179042 PMCID: PMC10765590 DOI: 10.3389/fimmu.2023.1292022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Pellino1 (Peli1) is a highly conserved E3 Ub ligase that exerts its biological functions by mediating target protein ubiquitination. Extensive evidence has demonstrated the crucial role of Peli1 in regulating inflammation by modulating various receptor signaling pathways, including interleukin-1 receptors, Toll-like receptors, nuclear factor-κB, mitogen-activated protein kinase, and phosphoinositide 3-kinase/AKT pathways. Peli1 has been implicated in the development of several diseases by influencing inflammation, apoptosis, necrosis, pyroptosis, autophagy, DNA damage repair, and glycolysis. Peli1 is a risk factor for most cancers, including breast cancer, lung cancer, and lymphoma. Conversely, Peli1 protects against herpes simplex virus infection, systemic lupus erythematosus, esophageal cancer, and toxic epidermolysis bullosa. Therefore, Peli1 is a potential therapeutic target that warrants further investigation. This comprehensive review summarizes the target proteins of Peli1, delineates their involvement in major signaling pathways and biological processes, explores their role in diseases, and discusses the potential clinical applications of Peli1-targeted therapy, highlighting the therapeutic prospects of Peli1 in various diseases.
Collapse
Affiliation(s)
| | | | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Suzuki T, Sakai S, Ota K, Yoshida M, Uchida C, Niida H, Suda T, Kitagawa M, Ohhata T. Expression of Tumor Suppressor FHIT Is Regulated by the LINC00173-SNAIL Axis in Human Lung Adenocarcinoma. Int J Mol Sci 2023; 24:17011. [PMID: 38069335 PMCID: PMC10707390 DOI: 10.3390/ijms242317011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play a critical role in a variety of human diseases such as cancer. Here, to elucidate a novel function of a lncRNA called LINC00173, we investigated its binding partner, target gene, and its regulatory mechanism in lung adenocarcinoma, including the A549 cell line and patients. In the A549 cell line, RNA immunoprecipitation (RIP) assays revealed that LINC00173 efficiently binds to SNAIL. RNA-seq and RT-qPCR analyses revealed that the expression of FHIT was decreased upon LINC00173 depletion, indicating that FHIT is a target gene of LINC00173. Overexpression of SNAIL suppressed and depletion of SNAIL increased the expression of FHIT, indicating that SNAIL negatively regulates FHIT. The downregulation of FHIT expression upon LINC00173 depletion was restored by additional SNAIL depletion, revealing a LINC00173-SNAIL-FHIT axis for FHIT regulation. Data from 501 patients with lung adenocarcinoma also support the existence of a LINC00173-SNAIL-FHIT axis, as FHIT expression correlated positively with LINC00173 (p = 1.75 × 10-6) and negatively with SNAIL (p = 7.00 × 10-5). Taken together, we propose that LINC00173 positively regulates FHIT gene expression by binding to SNAIL and inhibiting its function in human lung adenocarcinoma. Thus, this study sheds light on the LINC00173-SNAIL-FHIT axis, which may be a key mechanism for carcinogenesis and progression in human lung adenocarcinoma.
Collapse
Grants
- 19H03501 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 22H02901 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 20K07569 Ministry of Education, Culture, Sports, Science and Technology of Japan
- NA Project Mirai Cancer Research Grants, the Princes Takamatsu Cancer Research Foundation
- NA The Smoking Research Foundation
- NA Hamamatsu University School of Medicine Grant-in-Aid
Collapse
Affiliation(s)
- Takahito Suzuki
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kosuke Ota
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Mika Yoshida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Chiharu Uchida
- Advanced Research Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| |
Collapse
|
17
|
Wang H, Guo Q, Wang M, Liu C, Tian Z. PCSK9 promotes tumor cell proliferation and migration by facilitating CCL25 secretion in esophageal squamous cell carcinoma. Oncol Lett 2023; 26:500. [PMID: 37854863 PMCID: PMC10579978 DOI: 10.3892/ol.2023.14086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/06/2023] [Indexed: 10/20/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) serves an important role in maintaining plasma cholesterol levels, and fatty acid metabolism is involved in the progression of various types of cancer. In the present study, the role of PCSK9 in the development of esophageal squamous cell carcinoma (ESCC) was investigated. PCSK9 expression was compared between ESCC and normal esophageal epithelial tissues using reverse transcription-quantitative PCR. In addition, the association between PCSK9 expression and clinical staging and prognosis was assessed by immunohistochemistry. The effects of PCSK9 overexpression or knockdown on cell proliferation was evaluated using Cell Counting Kit-8 and colony formation assays. The invasion and migration of cancer cells was assessed using wound healing and Transwell assays. Western blotting was performed to evaluate changes in the expression levels of epithelial-mesenchymal transition (EMT)-related proteins. ELISA was performed to detect the effects of PCSK9 on chemokine (C-C motif) ligand 25 (CCL25) secretion. The results revealed that PCSK9 was highly expressed in ESCC tissues compared with that in normal esophageal tissues, and the high expression of PCSK9 was associated with a poor prognosis. Furthermore, PCSK9 could promote the proliferation, migration and invasion of ESCC cells in vitro. Mechanistically, PCSK9 could promote EMT by secreting CCL25. In conclusion, patients with ESCC may benefit from a novel therapeutic strategy based on these findings.
Collapse
Affiliation(s)
- Haijun Wang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050010, P.R. China
- Department of Thoracic Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Qiang Guo
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050010, P.R. China
| | - Mingbo Wang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050010, P.R. China
| | - Changjiang Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050010, P.R. China
| | - Ziqiang Tian
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050010, P.R. China
| |
Collapse
|
18
|
Lu D, Long X, Fu W, Liu B, Zhou X, Sun S. Predictive value of machine learning for breast cancer recurrence: a systematic review and meta-analysis. J Cancer Res Clin Oncol 2023; 149:10659-10674. [PMID: 37302114 DOI: 10.1007/s00432-023-04967-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
PURPOSE Recurrence of breast cancer leads to a high lifetime risk and a low 5 year survival rate. Researchers have used machine learning to predict the risk of recurrence in patients with breast cancer, but the predictive performance of machine learning remains controversial. Hence, this study aimed to explore the accuracy of machine learning in predicting breast cancer recurrence risk and aggregate predictive variables to provide guidance for the development of subsequent risk scoring systems. METHODS We searched Pubmed, EMBASE, Cochrane, and Web of Science. The risk of bias in the included studies was evaluated using prediction model risk of bias assessment tool (PROBAST). Meta-regression was adopted to explore whether there was a significant difference in the recurrence time by machine learning. RESULTS Thirty-four studies involving 67,560 subjects were included, among whom 8695 experienced breast cancer recurrence. The c-index of prediction models was 0.814 (95%CI 0.802-0.826) and 0.770 (95%CI 0.737-0.803) in the training and validation sets, respectively; the sensitivity and specificity were 0.69 (95% CI 0.64-0.74), 0.89 (95% CI 0.86-0.92) in the training, and 0.64 (95% CI 0.58-0.70), 0.88 (95% CI 0.82-0.92) in the validation, respectively. Age, histological grading, and lymph node status are the most commonly used variables in model construction. Attention should be paid to unhealthy lifestyles such as drinking, smoking and BMI as modeling variables. Risk prediction models based on machine learning have long-term monitoring value for breast cancer population, and subsequent studies should consider using large-sample and multi-center data to establish risk equations for verification. CONCLUSION Machine learning may be used as a predictive tool for breast cancer recurrence. Currently, there is a lack of effective and universally applicable machine learning models in clinical practice. We expect to incorporate multi-center studies in the future and attempt to develop tools for predicting breast cancer recurrence risk, so as to effectively identify populations at high risk of recurrence and develop personalized follow-up strategies and prognostic interventions to reduce the risk of recurrence.
Collapse
Affiliation(s)
- Dongmei Lu
- Radiology Department, Gansu Provincial Hospital, No. 204, Donggang West Road, Gansu, Lanzhou, China
| | - Xiaozhou Long
- Radiology Department, Gansu Provincial Hospital, No. 204, Donggang West Road, Gansu, Lanzhou, China
| | - Wenjie Fu
- Radiology Department, Gansu Provincial Hospital, No. 204, Donggang West Road, Gansu, Lanzhou, China
| | - Bo Liu
- Radiology Department, Gansu Provincial Hospital, No. 204, Donggang West Road, Gansu, Lanzhou, China
| | - Xing Zhou
- Radiology Department, Gansu Provincial Hospital, No. 204, Donggang West Road, Gansu, Lanzhou, China
| | - Shaoqin Sun
- Radiology Department, Gansu Provincial Hospital, No. 204, Donggang West Road, Gansu, Lanzhou, China.
| |
Collapse
|
19
|
Oza PP, Kashfi K. The Triple Crown: NO, CO, and H 2S in cancer cell biology. Pharmacol Ther 2023; 249:108502. [PMID: 37517510 PMCID: PMC10529678 DOI: 10.1016/j.pharmthera.2023.108502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are three endogenously produced gases with important functions in the vasculature, immune defense, and inflammation. It is increasingly apparent that, far from working in isolation, these three exert many effects by modulating each other's activity. Each gas is produced by three enzymes, which have some tissue specificities and can also be non-enzymatically produced by redox reactions of various substrates. Both NO and CO share similar properties, such as activating soluble guanylate cyclase (sGC) to increase cyclic guanosine monophosphate (cGMP) levels. At the same time, H2S both inhibits phosphodiesterase 5A (PDE5A), an enzyme that metabolizes sGC and exerts redox regulation on sGC. The role of NO, CO, and H2S in the setting of cancer has been quite perplexing, as there is evidence for both tumor-promoting and pro-inflammatory effects and anti-tumor and anti-inflammatory activities. Each gasotransmitter has been found to have dual effects on different aspects of cancer biology, including cancer cell proliferation and apoptosis, invasion and metastasis, angiogenesis, and immunomodulation. These seemingly contradictory actions may relate to each gas having a dual effect dependent on its local flux. In this review, we discuss the major roles of NO, CO, and H2S in the context of cancer, with an effort to highlight the dual nature of each gas in different events occurring during cancer progression.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York 10091, USA.
| |
Collapse
|
20
|
Berdiaki A, Giatagana EM, Tzanakakis G, Nikitovic D. The Landscape of Small Leucine-Rich Proteoglycan Impact on Cancer Pathogenesis with a Focus on Biglycan and Lumican. Cancers (Basel) 2023; 15:3549. [PMID: 37509212 PMCID: PMC10377491 DOI: 10.3390/cancers15143549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer development is a multifactorial procedure that involves changes in the cell microenvironment and specific modulations in cell functions. A tumor microenvironment contains tumor cells, non-malignant cells, blood vessels, cells of the immune system, stromal cells, and the extracellular matrix (ECM). The small leucine-rich proteoglycans (SLRPs) are a family of nineteen proteoglycans, which are ubiquitously expressed among mammalian tissues and especially abundant in the ECM. SLRPs are divided into five canonical classes (classes I-III, containing fourteen members) and non-canonical classes (classes IV-V, including five members) based on their amino-acid structural sequence, chromosomal organization, and functional properties. Variations in both the protein core structure and glycosylation status lead to SLRP-specific interactions with cell membrane receptors, cytokines, growth factors, and structural ECM molecules. SLRPs have been implicated in the regulation of cancer growth, motility, and invasion, as well as in cancer-associated inflammation and autophagy, highlighting their crucial role in the processes of carcinogenesis. Except for the class I SLRP decorin, to which an anti-tumorigenic role has been attributed, other SLPRs' roles have not been fully clarified. This review will focus on the functions of the class I and II SLRP members biglycan and lumican, which are correlated to various aspects of cancer development.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - George Tzanakakis
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
21
|
Wang W, Jin J, Zhou Z, Wang Y, Min K, Zuo X, Jiang J, Zhou Y, Shi J. Snail inhibits metastasis via regulation of E‑cadherin and is associated with prognosis in colorectal cancer. Oncol Lett 2023; 25:271. [PMID: 37216162 PMCID: PMC10193364 DOI: 10.3892/ol.2023.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/28/2023] [Indexed: 05/24/2023] Open
Abstract
The overall survival (OS) rate of patients with colorectal cancer (CRC) remains low due to the lack of clear prognostic markers. Therefore, the identification of valuable prognostic markers is urgently required. Snail and E-Cadherin (E-Cad) are important protein molecules in the EMT process and play a crucial role in tumor invasion and metastasis. The present study investigated the clinical significance of Snail and E-cad expression in CRC. Compared with those in adjacent tissue, the expression levels of Snail and E-cad were significantly increased and decreased, respectively, in CRC. Moreover, low Snail and high E-cad expression were associated with clinicopathological features and longer OS time. Furthermore, Snail and E-cad could predict the prognosis of patients with CRC. Reverse transcription-qPCR, Western blotting, Wound scratch assay, High content cell migration experiment, which showed that low Snail or high E-cad expression inhibited invasion and metastasis of CRC. In conclusion, Snail can promote CRC invasion and metastasis by regulating E-cad. Snail and E-cad expression constitute a novel prognostic marker for CRC, and the present study revealed a greater combined effect of Snail and E-cad as effective prognostic markers in CRC for the first time.
Collapse
Affiliation(s)
- Weimin Wang
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu 214200, P.R. China
- Institute of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jun Jin
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu 214200, P.R. China
| | - Zhen Zhou
- Department of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yunfan Wang
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu 214200, P.R. China
| | - Ke Min
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu 214200, P.R. China
| | - Xin Zuo
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu 214200, P.R. China
| | - Jiaping Jiang
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu 214200, P.R. China
| | - Yan Zhou
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu 214200, P.R. China
- Institute of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jun Shi
- Department of General Surgery, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yangzhou University, Yixing, Jiangsu 214200, P.R. China
| |
Collapse
|
22
|
Ceyhan Y, Garcia NMG, Alvarez JV. Immune cells in residual disease and recurrence. Trends Cancer 2023:S2405-8033(23)00057-2. [PMID: 37150627 DOI: 10.1016/j.trecan.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023]
Abstract
Tumor recurrence following potentially curative therapy constitutes a major obstacle to achieving cures in patients with cancer. Recurrent tumors frequently arise from a population of residual cancer cells - also referred to as minimal residual disease (RD) or persister cells - that survive therapy and persist for prolonged periods prior to tumor relapse. While there has been significant recent progress in deciphering tumor-cell-intrinsic pathways that regulate residual cancer cell survival and recurrence, much less is known about how the tumor microenvironment (TME) of residual tumors impacts persister cancer cells or tumor recurrence. In this review, we highlight recent studies exploring the regulation and function of immune cells in RD and discuss therapeutic opportunities to target immune cells in residual tumors.
Collapse
Affiliation(s)
- Yasemin Ceyhan
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Nina Marie G Garcia
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James V Alvarez
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
23
|
Ang HL, Mohan CD, Shanmugam MK, Leong HC, Makvandi P, Rangappa KS, Bishayee A, Kumar AP, Sethi G. Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Med Res Rev 2023. [PMID: 36929669 DOI: 10.1002/med.21948] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 12/19/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a complex process with a primordial role in cellular transformation whereby an epithelial cell transforms and acquires a mesenchymal phenotype. This transformation plays a pivotal role in tumor progression and self-renewal, and exacerbates resistance to apoptosis and chemotherapy. EMT can be initiated and promoted by deregulated oncogenic signaling pathways, hypoxia, and cells in the tumor microenvironment, resulting in a loss-of-epithelial cell polarity, cell-cell adhesion, and enhanced invasive/migratory properties. Numerous transcriptional regulators, such as Snail, Slug, Twist, and ZEB1/ZEB2 induce EMT through the downregulation of epithelial markers and gain-of-expression of the mesenchymal markers. Additionally, signaling cascades such as Wnt/β-catenin, Notch, Sonic hedgehog, nuclear factor kappa B, receptor tyrosine kinases, PI3K/AKT/mTOR, Hippo, and transforming growth factor-β pathways regulate EMT whereas they are often deregulated in cancers leading to aberrant EMT. Furthermore, noncoding RNAs, tumor-derived exosomes, and epigenetic alterations are also involved in the modulation of EMT. Therefore, the regulation of EMT is a vital strategy to control the aggressive metastatic characteristics of tumor cells. Despite the vast amount of preclinical data on EMT in cancer progression, there is a lack of clinical translation at the therapeutic level. In this review, we have discussed thoroughly the role of the aforementioned transcription factors, noncoding RNAs (microRNAs, long noncoding RNA, circular RNA), signaling pathways, epigenetic modifications, and tumor-derived exosomes in the regulation of EMT in cancers. We have also emphasized the contribution of EMT to drug resistance and possible therapeutic interventions using plant-derived natural products, their semi-synthetic derivatives, and nano-formulations that are described as promising EMT blockers.
Collapse
Affiliation(s)
- Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hin Chong Leong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia Centre for Materials Interface, Pontedera, Pisa, Italy
| | | | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
24
|
Paul MC, Schneeweis C, Falcomatà C, Shan C, Rossmeisl D, Koutsouli S, Klement C, Zukowska M, Widholz SA, Jesinghaus M, Heuermann KK, Engleitner T, Seidler B, Sleiman K, Steiger K, Tschurtschenthaler M, Walter B, Weidemann SA, Pietsch R, Schnieke A, Schmid RM, Robles MS, Andrieux G, Boerries M, Rad R, Schneider G, Saur D. Non-canonical functions of SNAIL drive context-specific cancer progression. Nat Commun 2023; 14:1201. [PMID: 36882420 PMCID: PMC9992512 DOI: 10.1038/s41467-023-36505-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/03/2023] [Indexed: 03/09/2023] Open
Abstract
SNAIL is a key transcriptional regulator in embryonic development and cancer. Its effects in physiology and disease are believed to be linked to its role as a master regulator of epithelial-to-mesenchymal transition (EMT). Here, we report EMT-independent oncogenic SNAIL functions in cancer. Using genetic models, we systematically interrogated SNAIL effects in various oncogenic backgrounds and tissue types. SNAIL-related phenotypes displayed remarkable tissue- and genetic context-dependencies, ranging from protective effects as observed in KRAS- or WNT-driven intestinal cancers, to dramatic acceleration of tumorigenesis, as shown in KRAS-induced pancreatic cancer. Unexpectedly, SNAIL-driven oncogenesis was not associated with E-cadherin downregulation or induction of an overt EMT program. Instead, we show that SNAIL induces bypass of senescence and cell cycle progression through p16INK4A-independent inactivation of the Retinoblastoma (RB)-restriction checkpoint. Collectively, our work identifies non-canonical EMT-independent functions of SNAIL and unravel its complex context-dependent role in cancer.
Collapse
Affiliation(s)
- Mariel C Paul
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Christian Schneeweis
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Chiara Falcomatà
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Chuan Shan
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Daniel Rossmeisl
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Stella Koutsouli
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Goethe Str. 31, 80336, Munich, Germany
| | - Christine Klement
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.,Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675, Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Munich, Munich, Germany
| | - Magdalena Zukowska
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sebastian A Widholz
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.,Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675, Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Munich, Munich, Germany
| | - Moritz Jesinghaus
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.,Institute of Pathology, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Institute of Pathology, University Hospital Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Konstanze K Heuermann
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Thomas Engleitner
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.,Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675, Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Munich, Munich, Germany
| | - Barbara Seidler
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Katia Sleiman
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Markus Tschurtschenthaler
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Benjamin Walter
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sören A Weidemann
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Regina Pietsch
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Angelika Schnieke
- Livestock Biotechnology, School of Life Sciences, Technische Universität München, Liesel-Beckmann Str. 1, 85354, Freising, Germany
| | - Roland M Schmid
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Maria S Robles
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Goethe Str. 31, 80336, Munich, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106, Freiburg, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.,Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675, Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Munich, Munich, Germany
| | - Günter Schneider
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.,University Medical Center Göttingen, Department of General, Visceral and Pediatric Surgery, 37075, Göttingen, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany. .,Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany. .,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
25
|
Tomasik B, Bieńkowski M, Górska Z, Gutowska K, Kumięga P, Jassem J, Duchnowska R. Molecular aspects of brain metastases in breast cancer. Cancer Treat Rev 2023; 114:102521. [PMID: 36736124 DOI: 10.1016/j.ctrv.2023.102521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Brain metastases (BM) are a common and devastating manifestation of breast cancer (BC). BM are particularly frequent in the HER2-positive and triple-negative breast cancer phenotypes and usually occur following the metastatic spread to extracranial sites. Several genes mediating BM and biomarkers predicting their risk in BC have been reported in the past decade. These findings have advanced the understanding of BM pathobiology and paved the way for developing new therapeutic strategies but they still warrant a thorough clinical validation. Hence, a better understanding of the mechanistic aspects of BM and delineating the interactions of tumor cells with the brain microenvironment are of utmost importance. This review discusses the molecular basis of the metastatic cascade: the epithelial-mesenchymal transition, cancer, and tumor microenvironment interaction and intravasation, priming of the metastatic niche in the brain, and survival in the new site. We also outline the postulated mechanisms of BC cells' brain tropism. Finally, we discuss advances in the field of biomarkers (both tissue-based and liquid-based) that predict BM from BC.
Collapse
Affiliation(s)
- Bartłomiej Tomasik
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 17 Smoluchowskiego St., 80-214 Gdansk, Poland.
| | - Michał Bieńkowski
- Department of Pathology, Medical University of Gdańsk, 17 Smoluchowskiego St., 80-214 Gdańsk, Poland.
| | - Zuzanna Górska
- Department of Oncology, Military Institute of Medicine, 128 Szaserów St., 04-141 Warsaw, Poland.
| | - Klaudia Gutowska
- Department of Internal Diseases and Endocrinology, Medical University of Warsaw, 02-091 Warsaw, Poland; Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland.
| | - Paulina Kumięga
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland.
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 17 Smoluchowskiego St., 80-214 Gdansk, Poland.
| | - Renata Duchnowska
- Department of Oncology, Military Institute of Medicine, 128 Szaserów St., 04-141 Warsaw, Poland.
| |
Collapse
|
26
|
Epithelial-to-Mesenchymal Transition and Phenotypic Marker Evaluation in Human, Canine, and Feline Mammary Gland Tumors. Animals (Basel) 2023; 13:ani13050878. [PMID: 36899736 PMCID: PMC10000046 DOI: 10.3390/ani13050878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process by which epithelial cells acquire mesenchymal properties. EMT has been closely associated with cancer cell aggressiveness. The aim of this study was to evaluate the mRNA and protein expression of EMT-associated markers in mammary tumors of humans (HBC), dogs (CMT), and cats (FMT). Real-time qPCR for SNAIL, TWIST, and ZEB, and immunohistochemistry for E-cadherin, vimentin, CD44, estrogen receptor (ER), progesterone receptor (PR), ERBB2, Ki-67, cytokeratin (CK) 8/18, CK5/6, and CK14 were performed. Overall, SNAIL, TWIST, and ZEB mRNA was lower in tumors than in healthy tissues. Vimentin was higher in triple-negative HBC (TNBC) and FMTs than in ER+ HBC and CMTs (p < 0.001). Membranous E-cadherin was higher in ER+ than in TNBCs (p < 0.001), whereas cytoplasmic E-cadherin was higher in TNBCs when compared with ER+ HBC (p < 0.001). A negative correlation between membranous and cytoplasmic E-cadherin was found in all three species. Ki-67 was higher in FMTs than in CMTs (p < 0.001), whereas CD44 was higher in CMTs than in FMTs (p < 0.001). These results confirmed a potential role of some markers as indicators of EMT, and suggested similarities between ER+ HBC and CMTs, and between TNBC and FMTs.
Collapse
|
27
|
Chen S, Paul MR, Sterner CJ, Belka GK, Wang D, Xu P, Sreekumar A, Pan TC, Pant DK, Makhlin I, DeMichele A, Mesaros C, Chodosh LA. PAQR8 promotes breast cancer recurrence and confers resistance to multiple therapies. Breast Cancer Res 2023; 25:1. [PMID: 36597146 PMCID: PMC9811758 DOI: 10.1186/s13058-022-01559-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/04/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Breast cancer mortality is principally due to recurrent disease that becomes resistant to therapy. We recently identified copy number (CN) gain of the putative membrane progesterone receptor PAQR8 as one of four focal CN alterations that preferentially occurred in recurrent metastatic tumors compared to primary tumors in breast cancer patients. Whether PAQR8 plays a functional role in cancer is unknown. Notably, PAQR8 CN gain in recurrent tumors was mutually exclusive with activating ESR1 mutations in patients treated with anti-estrogen therapies and occurred in > 50% of both patients treated with anti-estrogen therapies and those treated with chemotherapy or anti-Her2 agents. METHODS We used orthotopic mouse models to determine whether PAQR8 overexpression or deletion alters breast cancer dormancy or recurrence following therapy. In vitro studies, including assays for colony formation, cell viability, and relative cell fitness, were employed to identify effects of PAQR8 in the context of therapy. Cell survival and proliferation were quantified by immunofluorescence staining for markers of apoptosis and proliferation. Sphingolipids were quantified by liquid chromatography-high resolution mass spectrometry. RESULTS We show that PAQR8 is necessary and sufficient for efficient mammary tumor recurrence in mice, spontaneously upregulated and CN gained in recurrent tumors that arise following therapy in multiple mouse models, and associated with poor survival following recurrence as well as poor overall survival in breast cancer patients. PAQR8 promoted resistance to therapy by enhancing tumor cell survival following estrogen receptor pathway inhibition by fulvestrant or estrogen deprivation, Her2 pathway blockade by lapatinib or Her2 downregulation, and treatment with chemotherapeutic agents. Pro-survival effects of PAQR8 were mediated by a Gi protein-dependent reduction in cAMP levels, did not require progesterone, and involved a PAQR8-dependent decrease in ceramide levels and increase in sphingosine-1-phosphate levels, suggesting that PAQR8 may possess ceramidase activity. CONCLUSIONS Our data provide in vivo evidence that PAQR8 plays a functional role in cancer, implicate PAQR8, cAMP, and ceramide metabolism in breast cancer recurrence, and identify a novel mechanism that may commonly contribute to the acquisition of treatment resistance in breast cancer patients.
Collapse
Affiliation(s)
- Saisai Chen
- grid.25879.310000 0004 1936 8972Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Room 614 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160 USA ,grid.25879.310000 0004 1936 8972Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Matt R. Paul
- grid.25879.310000 0004 1936 8972Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Room 614 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160 USA ,grid.25879.310000 0004 1936 89722-PREVENT Translational Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Christopher J. Sterner
- grid.25879.310000 0004 1936 8972Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Room 614 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160 USA ,grid.25879.310000 0004 1936 89722-PREVENT Translational Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - George K. Belka
- grid.25879.310000 0004 1936 8972Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Room 614 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160 USA ,grid.25879.310000 0004 1936 89722-PREVENT Translational Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Dezhen Wang
- grid.25879.310000 0004 1936 8972Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Peining Xu
- grid.25879.310000 0004 1936 8972Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Amulya Sreekumar
- grid.25879.310000 0004 1936 8972Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Room 614 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160 USA ,grid.25879.310000 0004 1936 8972Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Tien-chi Pan
- grid.25879.310000 0004 1936 8972Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Room 614 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160 USA ,grid.25879.310000 0004 1936 89722-PREVENT Translational Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Dhruv K. Pant
- grid.25879.310000 0004 1936 8972Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Room 614 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160 USA ,grid.25879.310000 0004 1936 89722-PREVENT Translational Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Igor Makhlin
- grid.25879.310000 0004 1936 89722-PREVENT Translational Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Angela DeMichele
- grid.25879.310000 0004 1936 89722-PREVENT Translational Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Clementina Mesaros
- grid.25879.310000 0004 1936 8972Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Lewis A. Chodosh
- grid.25879.310000 0004 1936 8972Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Room 614 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160 USA ,grid.25879.310000 0004 1936 89722-PREVENT Translational Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
28
|
Mannion AJ, Odell AF, Baker SM, Matthews LC, Jones PF, Cook GP. Pro- and anti-tumour activities of CD146/MCAM in breast cancer result from its heterogeneous expression and association with epithelial to mesenchymal transition. Front Cell Dev Biol 2023; 11:1129015. [PMID: 37138793 PMCID: PMC10150653 DOI: 10.3389/fcell.2023.1129015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/13/2023] [Indexed: 05/05/2023] Open
Abstract
CD146, also known as melanoma cell adhesion molecule (MCAM), is expressed in numerous cancers and has been implicated in the regulation of metastasis. We show that CD146 negatively regulates transendothelial migration (TEM) in breast cancer. This inhibitory activity is reflected by a reduction in MCAM gene expression and increased promoter methylation in tumour tissue compared to normal breast tissue. However, increased CD146/MCAM expression is associated with poor prognosis in breast cancer, a characteristic that is difficult to reconcile with inhibition of TEM by CD146 and its epigenetic silencing. Single cell transcriptome data revealed MCAM expression in multiple cell types, including the malignant cells, tumour vasculature and normal epithelium. MCAM expressing malignant cells were in the minority and expression was associated with epithelial to mesenchymal transition (EMT). Furthermore, gene expression signatures defining invasiveness and a stem cell-like phenotype were most strongly associated with mesenchymal-like tumour cells with low levels of MCAM mRNA, likely to represent a hybrid epithelial/mesenchymal (E/M) state. Our results show that high levels of MCAM gene expression are associated with poor prognosis in breast cancer because they reflect tumour vascularisation and high levels of EMT. We suggest that high levels of mesenchymal-like malignant cells reflect large populations of hybrid E/M cells and that low CD146 expression on these hybrid cells is permissive for TEM, aiding metastasis.
Collapse
Affiliation(s)
- Aarren J. Mannion
- Leeds Institute of Medical Research, University of Leeds School of Medicine, St. James’s University Hospital, Leeds, United Kingdom
| | - Adam F. Odell
- Leeds Institute of Medical Research, University of Leeds School of Medicine, St. James’s University Hospital, Leeds, United Kingdom
| | - Syed Murtuza Baker
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Laura C. Matthews
- Leeds Institute of Medical Research, University of Leeds School of Medicine, St. James’s University Hospital, Leeds, United Kingdom
| | - Pamela F. Jones
- Leeds Institute of Medical Research, University of Leeds School of Medicine, St. James’s University Hospital, Leeds, United Kingdom
| | - Graham P. Cook
- Leeds Institute of Medical Research, University of Leeds School of Medicine, St. James’s University Hospital, Leeds, United Kingdom
- *Correspondence: Graham P. Cook,
| |
Collapse
|
29
|
Rajput S, Sharma PK, Malviya R. Biomarkers and Treatment Strategies for Breast Cancer Recurrence. Curr Drug Targets 2023; 24:1209-1220. [PMID: 38164731 DOI: 10.2174/0113894501258059231103072025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/14/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024]
Abstract
Despite recent treatment advancements, breast cancer remains a life-threatening disease. Although treatment is successful in the early stages, a significant proportion of individuals with breast cancer eventually experience a recurrence of the disease. Breast tumour recurrence poses a significant medical issue. Despite tumours being a primary cause of mortality, there remains a limited understanding of the fundamental mechanisms underlying tumour recurrence. The majority of the time, after surgery or medical treatment, this metastatic disease manifests itself after the disease is undiagnosed for a considerable amount of time. This phenomenon is commonly referred to as a relapse or recurrence. Metastatic breast cancer has the potential to recur at varying intervals, ranging from a few months to several decades following the initial diagnosis and treatment. This article aimed to summarise the primary causes of breast cancer recurrence and highlight the key issues that need to be addressed in order to effectively decrease the mortality rate among breast cancer patients. This article discusses various therapeutic approaches currently employed and emerging treatment strategies that hold the potential for the complete cure of cancer.
Collapse
Affiliation(s)
- Shivam Rajput
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
30
|
Long X, Wang D, Wu Z, Liao Z, Xu J. Circular RNA hsa_circ_0004689 (circSWT1) promotes NSCLC progression via the miR‐370‐3p/SNAIL axis by inducing cell epithelial‐mesenchymal transition (EMT). Cancer Med 2022; 12:8289-8305. [PMID: 36530171 PMCID: PMC10134258 DOI: 10.1002/cam4.5527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Previous studies have reported the role of circular RNAs (circRNAs) in the progression of non-small-cell lung cancer (NSCLC). SWT1-derived circRNAs were confirmed to affect the apoptosis of cardiomyocytes; however, the biological functions of SWT1-derived circRNAs in cancers are still unknown. Here, we investigated the potential role of SWT1-derived circRNAs in NSCLC. METHODS We used quantitative real-time polymerase chain reaction (qRT-PCR) to measure the expression of circSWT1 in NSCLC tissues and paired normal tissues. The potential functions of circSWT1 in tumor progression were assessed by CCK-8, colony formation, wound healing, and matrigel transwell assays in vitro and by xenograft tumor models in vivo. Next, epithelial-mesenchymal transition (EMT) was evaluated by western blotting, immunofluorescence, and immunohistochemistry (IHC). Moreover, circRIP, RNA pulldown assays, luciferase reporter gene assays, and FISH were conducted to illuminate the molecular mechanisms of circSWT1 via the miR-370-3p/SNAIL signal pathway. Then, we knocked out SNAIL in A549 and H1299 cells to identify the roles of circSWT1 in the progression and EMT of NSCLC through SNAIL. Finally, circSWT1 functions were confirmed in vivo using xenograft tumor models. RESULTS CircSWT1 expression was significantly upregulated in NSCLC tissues, and high expression of circSWT1 predicted poor prognosis in NSCLC via survival analysis. In addition, overexpression of circSWT1 promoted the invasion and migration of NSCLC cells. Subsequently, we found that overexpression of circSWT1 induced EMT and that knockdown of circSWT1 inhibited EMT in NSCLC cells. Mechanistically, circSWT1 relieved the inhibition of downstream SNAIL by sponging miR-370-3p. Moreover, we found that these effects could be reversed by knocking out SNAIL. Finally, we verified that circSWT1 promoted NSCLC progression and EMT in xenograft tumor models. CONCLUSION CircSWT1 promoted the invasion, migration, and EMT of NSCLC. CircSWT1 could serve as a potential biomarker and a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiang Long
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| | - Ding‐Guo Wang
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| | - Zhi‐Bo Wu
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| | - Zhong‐Min Liao
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| | - Jian‐Jun Xu
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| |
Collapse
|
31
|
Metabolomic and Mitochondrial Fingerprinting of the Epithelial-to-Mesenchymal Transition (EMT) in Non-Tumorigenic and Tumorigenic Human Breast Cells. Cancers (Basel) 2022; 14:cancers14246214. [PMID: 36551699 PMCID: PMC9776482 DOI: 10.3390/cancers14246214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is key to tumor aggressiveness, therapy resistance, and immune escape in breast cancer. Because metabolic traits might be involved along the EMT continuum, we investigated whether human breast epithelial cells engineered to stably acquire a mesenchymal phenotype in non-tumorigenic and H-RasV12-driven tumorigenic backgrounds possess unique metabolic fingerprints. We profiled mitochondrial-cytosolic bioenergetic and one-carbon (1C) metabolites by metabolomic analysis, and then questioned the utilization of different mitochondrial substrates by EMT mitochondria and their sensitivity to mitochondria-centered inhibitors. "Upper" and "lower" glycolysis were the preferred glucose fluxes activated by EMT in non-tumorigenic and tumorigenic backgrounds, respectively. EMT in non-tumorigenic and tumorigenic backgrounds could be distinguished by the differential contribution of the homocysteine-methionine 1C cycle to the transsulfuration pathway. Both non-tumorigenic and tumorigenic EMT-activated cells showed elevated mitochondrial utilization of glycolysis end-products such as lactic acid, β-oxidation substrates including palmitoyl-carnitine, and tricarboxylic acid pathway substrates such as succinic acid. Notably, mitochondria in tumorigenic EMT cells distinctively exhibited a significant alteration in the electron flow intensity from succinate to mitochondrial complex III as they were highly refractory to the inhibitory effects of antimycin A and myxothiazol. Our results show that the bioenergetic/1C metabolic signature, the utilization rates of preferred mitochondrial substrates, and sensitivity to mitochondrial drugs significantly differs upon execution of EMT in non-tumorigenic and tumorigenic backgrounds, which could help to resolve the relationship between EMT, malignancy, and therapeutic resistance in breast cancer.
Collapse
|
32
|
Patra P, Gao YQ. Sequence-Specific Structural Features and Solvation Properties of Transcription Factor Binding DNA Motifs: Insights from Molecular Dynamics Simulation. J Phys Chem B 2022; 126:9187-9206. [PMID: 36322688 DOI: 10.1021/acs.jpcb.2c05749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Sequence-specific recognition of transcription factor (TF) binding motifs in the target site of DNA over the vast amount of non-target DNA is of primary importance for the transcriptional regulation of gene expression by the TFs. Binding of TFs to the target site of DNA relies not only on the direct contact formation but also on the structural and conformational features of DNA. Recognition of DNA structural features or shape readout by proteins is an important factor in the context of TF-DNA interaction. Based on the atomistic molecular simulation, here we report the sequence-dependent unique structural features, solvation, and ion-binding properties of biologically relevant AT- and GC-rich human TF binding motifs in DNA. Counterion and water distribution around the motif is found to be sensitive to the motif sequence, which is accompanied with the DNA shape features. The motif sequence affects the electrostatic potential along the grooves, and cytosine methylation alters the DNA shape features. Characteristic solvation properties of TF binding motif DNA fragments infer that an ionic environment and hydration influences are essential to describe TF-DNA interactions.
Collapse
Affiliation(s)
- Piya Patra
- Shenzhen Bay Laboratory, Institute of Systems and Physical Biology, Shenzhen 518107, China
| | - Yi Qin Gao
- Shenzhen Bay Laboratory, Institute of Systems and Physical Biology, Shenzhen 518107, China.,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
| |
Collapse
|
33
|
Saliem SS, Bede SY, Cooper PR, Abdulkareem AA, Milward MR, Abdullah BH. Pathogenesis of periodontitis - A potential role for epithelial-mesenchymal transition. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:268-278. [PMID: 36159185 PMCID: PMC9489739 DOI: 10.1016/j.jdsr.2022.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 02/06/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a process comprising cellular and molecular events which result in cells shifting from an epithelial to a mesenchymal phenotype. Periodontitis is a destructive chronic disease of the periodontium initiated in response to a dysbiotic microbiome, and dominated by Gram-negative bacteria in the subgingival niches accompanied by an aberrant immune response in susceptible subjects. Both EMT and periodontitis share common risk factors and drivers, including Gram-negative bacteria, excess inflammatory cytokine production, smoking, oxidative stress and diabetes mellitus. In addition, periodontitis is characterized by down-regulation of key epithelial markers such as E-cadherin together with up-regulation of transcriptional factors and mesenchymal proteins, including Snail1, vimentin and N-cadherin, which also occur in the EMT program. Clinically, these phenotypic changes may be reflected by increases in microulceration of the pocket epithelial lining, granulation tissue formation, and fibrosis. Both in vitro and in vivo data now support the potential involvement of EMT as a pathogenic mechanism in periodontal diseases which may facilitate bacterial invasion into the underlying gingival tissues and propagation of inflammation. This review surveys the available literature and provides evidence linking EMT to periodontitis pathogenesis.
Collapse
Affiliation(s)
- Saif S Saliem
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| | - Salwan Y Bede
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| | - Paul R Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Ali A Abdulkareem
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| | - Michael R Milward
- ŌSchool of Dentistry, University of Birmingham, 5 Mill Pool Way, B5 7EG Birmingham, UK
| | - Bashar H Abdullah
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| |
Collapse
|
34
|
In vivo metabolic imaging identifies lipid vulnerability in a preclinical model of Her2+/Neu breast cancer residual disease and recurrence. NPJ Breast Cancer 2022; 8:111. [PMID: 36163365 PMCID: PMC9512922 DOI: 10.1038/s41523-022-00481-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/16/2022] [Indexed: 11/08/2022] Open
Abstract
Recurrent cancer cells that evade therapy is a leading cause of death in breast cancer patients. This risk is high for women showing an overexpression of human epidermal growth factor receptor 2 (Her2). Cells that persist can rely on different substrates for energy production relative to their primary tumor counterpart. Here, we characterize metabolic reprogramming related to tumor dormancy and recurrence in a doxycycline-induced Her2+/Neu model of breast cancer with varying times to recurrence using longitudinal fluorescence microscopy. Glucose uptake (2-NBDG) and mitochondrial membrane potential (TMRE) imaging metabolically phenotype mammary tumors as they transition to regression, dormancy, and recurrence. “Fast-recurrence” tumors (time to recurrence ~55 days), transition from glycolysis to mitochondrial metabolism during regression and this persists upon recurrence. “Slow-recurrence” tumors (time to recurrence ~100 days) rely on both glycolysis and mitochondrial metabolism during recurrence. The increase in mitochondrial activity in fast-recurrence tumors is attributed to a switch from glucose to fatty acids as the primary energy source for mitochondrial metabolism. Consequently, when fast-recurrence tumors receive treatment with a fatty acid inhibitor, Etomoxir, tumors report an increase in glucose uptake and lipid synthesis during regression. Treatment with Etomoxir ultimately prolongs survival. We show that metabolic reprogramming reports on tumor recurrence characteristics, particularly at time points that are essential for actionable targets. The temporal characteristics of metabolic reprogramming will be critical in determining the use of an appropriate timing for potential therapies; namely, the notion that metabolic-targeted inhibition during regression reports long-term therapeutic benefit.
Collapse
|
35
|
Milan KL, Jayasuriya R, Harithpriya K, Anuradha M, Sarada DVL, Siti Rahayu N, Ramkumar KM. Vitamin D resistant genes - promising therapeutic targets of chronic diseases. Food Funct 2022; 13:7984-7998. [PMID: 35856462 DOI: 10.1039/d2fo00822j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vitamin D is an essential vitamin indispensable for calcium and phosphate metabolism, and its deficiency has been implicated in several extra-skeletal pathologies, including cancer and chronic kidney disease. Synthesized endogenously in the layers of the skin by the action of UV-B radiation, the vitamin maintains the integrity of the bones, teeth, and muscles and is involved in cell proliferation, differentiation, and immunity. The deficiency of Vit-D is increasing at an alarming rate, with nearly 32% of children and adults being either deficient or having insufficient levels. This has been attributed to Vit-D resistant genes that cause a reduction in circulatory Vit-D levels through a set of signaling pathways. CYP24A1, SMRT, and SNAIL are three genes responsible for Vit-D resistance as their activity either lowers the circulatory levels of Vit-D or reduces its availability in target tissues. The hydroxylase CYP24A1 inactivates analogs and prohormonal and/or hormonal forms of calcitriol. Elevation of the expression of CYP24A1 is the major cause of exacerbation of several diseases. CYP24A1 is rate-limiting, and its induction has been correlated with increased prognosis of diseases, while loss of function mutations cause hypersensitivity to Vit-D. The silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and its corepressor are involved in the transcriptional repression of VDR-target genes. SNAIL1 (SNAIL), SNAIL2 (Slug), and SNAIL3 (Smuc) are involved in transcriptional repression and binding to histone deacetylases and methyltransferases in addition to recruiting polycomb repressive complexes to the target gene promoters. An inverse relationship between the levels of calcitriol and the epithelial-to-mesenchymal transition is reported. Studies have demonstrated a strong association between Vit-D deficiency and chronic diseases, including cardiovascular diseases, diabetes, cancers, autoimmune diseases, infectious diseases, etc. Vit-D resistant genes associated with the aforementioned chronic diseases could serve as potential therapeutic targets. This review focuses on the basic structures and mechanisms of the repression of Vit-D regulated genes and highlights the role of Vit-D resistant genes in chronic diseases.
Collapse
Affiliation(s)
- Kunnath Lakshmanan Milan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Murugesan Anuradha
- Department of Obstetrics & Gynaecology, SRM Medical College Hospital and Research Centre, Kattankulathur 603 203, Tamil Nadu, India
| | - Dronamraju V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Nadhiroh Siti Rahayu
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Indonesia
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
36
|
The crosstalk of the human microbiome in breast and colon cancer: A metabolomics analysis. Crit Rev Oncol Hematol 2022; 176:103757. [PMID: 35809795 DOI: 10.1016/j.critrevonc.2022.103757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
The human microbiome's role in colon and breast cancer is described in this review. Understanding how the human microbiome and metabolomics interact with breast and colon cancer is the chief area of this study. First, the role of the gut and distal microbiome in breast and colon cancer is investigated, and the direct relationship between microbial dysbiosis and breast and colon cancer is highlighted. This work also focuses on the many metabolomic techniques used to locate prospective biomarkers, make an accurate diagnosis, and research new therapeutic targets for cancer treatment. This review clarifies the influence of anti-tumor medications on the microbiota and the proactive measures that can be taken to treat cancer using a variety of therapies, including radiotherapy, chemotherapy, next-generation biotherapeutics, gene-based therapy, integrated omics technology, and machine learning.
Collapse
|
37
|
Han JH, Kim YK, Kim H, Lee J, Oh MJ, Kim SB, Kim M, Kim KH, Yoon HJ, Lee MS, Minna JD, White MA, Kim HS. Snail acetylation by autophagy-derived acetyl-coenzyme A promotes invasion and metastasis of KRAS-LKB1 co-mutated lung cancer cells. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:716-749. [PMID: 35838183 PMCID: PMC9395322 DOI: 10.1002/cac2.12332] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/21/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
Abstract
Background Autophagy is elevated in metastatic tumors and is often associated with active epithelial‐to‐mesenchymal transition (EMT). However, the extent to which EMT is dependent on autophagy is largely unknown. This study aimed to identify the mechanisms by which autophagy facilitates EMT. Methods We employed a liquid chromatography‐based metabolomic approach with kirsten rat sarcoma viral oncogene (KRAS) and liver kinase B1 (LKB1) gene co‐mutated (KL) cells that represent an autophagy/EMT‐coactivated invasive lung cancer subtype for the identification of metabolites linked to autophagy‐driven EMT activation. Molecular mechanisms of autophagy‐driven EMT activation were further investigated by quantitative real‐time polymerase chain reaction (qRT‐PCR), Western blotting analysis, immunoprecipitation, immunofluorescence staining, and metabolite assays. The effects of chemical and genetic perturbations on autophagic flux were assessed by two orthogonal approaches: microtubule‐associated protein 1A/1B‐light chain 3 (LC3) turnover analysis by Western blotting and monomeric red fluorescent protein‐green fluorescent protein (mRFP‐GFP)‐LC3 tandem fluorescent protein quenching assay. Transcription factor EB (TFEB) activity was measured by coordinated lysosomal expression and regulation (CLEAR) motif‐driven luciferase reporter assay. Experimental metastasis (tail vein injection) mouse models were used to evaluate the impact of calcium/calmodulin‐dependent protein kinase kinase 2 (CAMKK2) or ATP citrate lyase (ACLY) inhibitors on lung metastasis using IVIS luciferase imaging system. Results We found that autophagy in KL cancer cells increased acetyl‐coenzyme A (acetyl‐CoA), which facilitated the acetylation and stabilization of the EMT‐inducing transcription factor Snail. The autophagy/acetyl‐CoA/acetyl‐Snail axis was further validated in tumor tissues and in autophagy‐activated pancreatic cancer cells. TFEB acetylation in KL cancer cells sustained pro‐metastatic autophagy in a mammalian target of rapamycin complex 1 (mTORC1)‐independent manner. Pharmacological inhibition of this axis via CAMKK2 inhibitors or ACLY inhibitors consistently reduced the metastatic capacity of KL cancer cells in vivo. Conclusions This study demonstrates that autophagy‐derived acetyl‐CoA promotes Snail acetylation and thereby facilitates invasion and metastasis of KRAS‐LKB1 co‐mutated lung cancer cells and that inhibition of the autophagy/acetyl‐CoA/acetyl‐Snail axis using CAMKK2 or ACLY inhibitors could be a potential therapeutic strategy to suppress metastasis of KL lung cancer.
Collapse
Affiliation(s)
- Jang Hee Han
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.,Department of Medical Science, Yonsei University Graduate School, Seoul, 03722, Korea.,Department of Urology, Seoul National University Hospital, Seoul, 03722, Korea
| | - Yong Keon Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hakhyun Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jooyoung Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.,Checkmate Therapeutics Inc., Seoul, 07207, Korea
| | - Myung Joon Oh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Sang Bum Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Minjee Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Kook Hwan Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyun Ju Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Michael A White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Hyun Seok Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.,Checkmate Therapeutics Inc., Seoul, 07207, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| |
Collapse
|
38
|
Liang M, Li JW, Luo H, Lulu S, Calbay O, Shenoy A, Tan M, Law BK, Huang S, Xiao TS, Chen H, Wu L, Chang J, Lu J. Epithelial-Mesenchymal Transition Suppresses AMPK and Sensitizes Cancer Cells to Pyroptosis under Energy Stress. Cells 2022; 11:cells11142208. [PMID: 35883651 PMCID: PMC9322750 DOI: 10.3390/cells11142208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 12/25/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is implicated in tumor metastasis and therapeutic resistance. It remains a challenge to target cancer cells that have undergone EMT. The Snail family of key EMT-inducing transcription factors directly binds to and transcriptionally represses not only epithelial genes but also a myriad of additional genomic targets that may carry out significant biological functions. Therefore, we reasoned that EMT inherently causes various concomitant phenotypes, some of which may create targetable vulnerabilities for cancer treatment. In the present study, we found that Snail transcription factors bind to the promoters of multiple genes encoding subunits of the AMP-activated protein kinase (AMPK) complex, and expression of AMPK genes was markedly downregulated by EMT. Accordingly, high AMPK expression in tumors correlated with epithelial cell markers and low AMPK expression in tumors was strongly associated with adverse prognosis. AMPK is the principal sensor of cellular energy status. In response to energy stress, AMPK is activated and critically reprograms cellular metabolism to restore energy homeostasis and maintain cell survival. We showed that activation of AMPK by energy stress was severely impaired by EMT. Consequently, EMT cancer cells became hypersensitive to a variety of energy stress conditions and primarily underwent pyroptosis, a regulated form of necrotic cell death. Collectively, the study suggests that EMT impedes the activation of AMPK signaling induced by energy stress and sensitizes cancer cells to pyroptotic cell death under energy stress conditions. Therefore, while EMT promotes malignant progression, it concurrently induces collateral vulnerabilities that may be therapeutically exploited.
Collapse
Affiliation(s)
- Mingwei Liang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.L.); (J.W.L.); (H.L.); (S.L.); (A.S.)
| | - Jennifer W. Li
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.L.); (J.W.L.); (H.L.); (S.L.); (A.S.)
| | - Huacheng Luo
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.L.); (J.W.L.); (H.L.); (S.L.); (A.S.)
| | - Sarah Lulu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.L.); (J.W.L.); (H.L.); (S.L.); (A.S.)
| | - Ozlem Calbay
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (O.C.); (S.H.)
| | - Anitha Shenoy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.L.); (J.W.L.); (H.L.); (S.L.); (A.S.)
| | - Ming Tan
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan;
| | - Brian K. Law
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Shuang Huang
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (O.C.); (S.H.)
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Hao Chen
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China;
| | - Lizi Wu
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Jia Chang
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.L.); (J.W.L.); (H.L.); (S.L.); (A.S.)
- Correspondence:
| |
Collapse
|
39
|
Basu B, Ghosh MK. Ubiquitination and deubiquitination in the regulation of epithelial-mesenchymal transition in cancer: Shifting gears at the molecular level. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119261. [PMID: 35307468 DOI: 10.1016/j.bbamcr.2022.119261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The process of conversion of non-motile epithelial cells to their motile mesenchymal counterparts is known as epithelial-mesenchymal transition (EMT), which is a fundamental event during embryonic development, tissue repair, and for the maintenance of stemness. However, this crucial process is hijacked in cancer and becomes the means by which cancer cells acquire further malignant properties such as increased invasiveness, acquisition of stem cell-like properties, increased chemoresistance, and immune evasion ability. The switch from epithelial to mesenchymal phenotype is mediated by a wide variety of effector molecules such as transcription factors, epigenetic modifiers, post-transcriptional and post-translational modifiers. Ubiquitination and de-ubiquitination are two post-translational processes that are fundamental to the ubiquitin-proteasome system (UPS) of the cell, and the shift in equilibrium between these two processes during cancer dictates the suppression or activation of different intracellular processes, including EMT. Here, we discuss the complex and dynamic relationship between components of the UPS and EMT in cancer.
Collapse
Affiliation(s)
- Bhaskar Basu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
40
|
Kohan L, Mirhosseini M, Mortazavizadeh SM. The risk of relapse in breast cancer patients is associated with MMP-9 gene polymorphism: a prospective study in a sample of the Iranian population. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:1012-1023. [PMID: 35776084 DOI: 10.1080/15257770.2022.2094946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 06/06/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
We investigated the association of MMP-9 rs1056628 and rs17576 polymorphisms with breast cancer (BC) relapse in a cohort of prospectively observed BC patients. The polymorphisms were genotyped in 200 BC subjects with(case) and without(control) relapse by Tetra-primer Amplification Refractory Mutation System-Polymerase Chain Reaction (T-ARMS-PCR) method. A significant association was found between the rs1056628C allele and increased risk of BC relapse (OR = 1.8, P = 0.006). Also, rs17576 allele and genotypes were shown protective effects against BC relapse. Increased risk of relapse was observed in haplotype CG (OR = 2.1, P = 0.001). Our results suggest for the first time that rs1056628 and rs17576 polymorphisms may influence BC relapse.
Collapse
Affiliation(s)
- Leila Kohan
- Department of biology, Islamic Azad University, Arsanjan branch, Arsanjan, Iran
- Young Researchers and Elite Club, Islamic Azad University, Arsanjan, Iran
| | - Mahdis Mirhosseini
- Department of biology, Islamic Azad University, Arsanjan branch, Arsanjan, Iran
| | | |
Collapse
|
41
|
Moasser MM. Inactivating amplified HER2: challenges, dilemmas, and future directions. Cancer Res 2022; 82:2811-2820. [PMID: 35731927 DOI: 10.1158/0008-5472.can-22-1121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/10/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
The pharmaceutical inactivation of driver oncogenes has revolutionized the treatment of cancer replacing cytotoxic chemotherapeutic approaches with kinase inhibitor therapies for many types of cancers. This approach has not yet been realized for the treatment of HER2-amplified cancers. The monotherapy activities associated with HER2-targeting antibodies and kinase inhibitors are modest, and their clinical use has been in combination with, and not in replacement of cytotoxic chemotherapies. This stands in sharp contrast to achievements in the treatment of many other oncogene-driven cancers. The mechanism-based treatment hypothesis regarding the inactivation of HER2 justifies expectations far beyond what is currently realized. Overcoming this barrier requires mechanistic insights that can fuel new directions for pursuit, but scientific investigation of this treatment hypothesis, particularly with regards to trastuzumab, has been complicated by conflicting and confusing data sets, ironclad dogma, and mechanistic conclusions that have repeatedly failed to translate clinically. We are now approaching a point of convergence regarding the challenges and resiliency in this tumor driver, and I will provide here a review and opinion to inform where we currently stand with this treatment hypothesis and where the future potential lies.
Collapse
Affiliation(s)
- Mark M Moasser
- University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
42
|
Kim SK, Cho SW. The Evasion Mechanisms of Cancer Immunity and Drug Intervention in the Tumor Microenvironment. Front Pharmacol 2022; 13:868695. [PMID: 35685630 PMCID: PMC9171538 DOI: 10.3389/fphar.2022.868695] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/08/2022] [Indexed: 12/17/2022] Open
Abstract
Recently, in the field of cancer treatment, the paradigm has changed to immunotherapy that activates the immune system to induce cancer attacks. Among them, immune checkpoint inhibitors (ICI) are attracting attention as excellent and continuous clinical results. However, it shows not only limitations such as efficacy only in some patients or some indications, but also side-effects and resistance occur. Therefore, it is necessary to understand the factors of the tumor microenvironment (TME) that affect the efficacy of immunotherapy, that is, the mechanism by which cancer grows while evading or suppressing attacks from the immune system within the TME. Tumors can evade attacks from the immune system through various mechanisms such as restricting antigen recognition, inhibiting the immune system, and inducing T cell exhaustion. In addition, tumors inhibit or evade the immune system by accumulating specific metabolites and signal factors within the TME or limiting the nutrients available to immune cells. In order to overcome the limitations of immunotherapy and develop effective cancer treatments and therapeutic strategies, an approach is needed to understand the functions of cancer and immune cells in an integrated manner based on the TME. In this review, we will examine the effects of the TME on cancer cells and immune cells, especially how cancer cells evade the immune system, and examine anti-cancer strategies based on TME.
Collapse
Affiliation(s)
- Seong Keun Kim
- Cellus Inc., Seoul, South Korea
- *Correspondence: Seong Keun Kim, ; Sun Wook Cho,
| | - Sun Wook Cho
- Cellus Inc., Seoul, South Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- *Correspondence: Seong Keun Kim, ; Sun Wook Cho,
| |
Collapse
|
43
|
Gu Y, Bui T, Muller WJ. Exploiting Mouse Models to Recapitulate Clinical Tumor Dormancy and Recurrence in Breast Cancer. Endocrinology 2022; 163:6585026. [PMID: 35560214 DOI: 10.1210/endocr/bqac055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/19/2022]
Abstract
Breast cancer recurrence and metastasis from activated dormant tumors remain the leading causes in disease morbidity. Estrogen receptor positive breast cancer that accounts for nearly 80% of all cases face a life-long risk of relapse after initial treatment. The biology of dormant tumors and dormant cancer cells that give rise to recurrent disease and metastasis remain to be understood for us to overcome the clinical challenges that they bring. The selection and optimization of pre-clinical models to recapitulate dormancy and recurrence in patients is critical for studying the underlying cellular and environmental factors. Here, we provide a brief review of studies that utilize mouse models to dissect the mechanisms of dormancy and therapeutic strategies to avert recurrence. This review specifically accentuates the versatility and benefits of immunocompetent transgenic mouse models that can be manipulated to recapitulate primary dormancy, metastatic dormancy, and post-therapy dormancy.
Collapse
Affiliation(s)
- Yu Gu
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Tung Bui
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
- Faculty of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
44
|
Weele LJ, Djomehri SI, Cai S, Antony J, Sikandar SS, Qian D, Ho WH, West R, Scheeren FA, Clarke MF. Mesenchymal tumor cells drive adaptive resistance of
Trp53
‐/‐
breast tumor cells to inactivated mutant
Kras. Mol Oncol 2022; 16:3128-3145. [PMID: 35398967 PMCID: PMC9441006 DOI: 10.1002/1878-0261.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/13/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Linda J. Weele
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
| | - Sabra I. Djomehri
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
| | - Shang Cai
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
- Westlake University Shilongshan St #18 Hangzhou, Xihu District Zhejiang Province China
| | - Jane Antony
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
| | - Shaheen S. Sikandar
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
- Department of Molecular, Cell and Developmental Biology University of California Santa Cruz CA 95064 USA
| | - Dalong Qian
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
| | - William H.D. Ho
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
- Department of Stem Cell Biotechnology California State University Channel Islands Camarillo CA 93012 USA
| | - Robert West
- Department Pathology Stanford University Medical Center Palo Alto CA 94304 USA
| | - Ferenc A. Scheeren
- Department of Medical Oncology Leiden University Medical Center Leiden RC 2300 The Netherlands
| | - Michael F. Clarke
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
| |
Collapse
|
45
|
Zhang Y, Donaher JL, Das S, Li X, Reinhardt F, Krall JA, Lambert AW, Thiru P, Keys HR, Khan M, Hofree M, Wilson MM, Yedier-Bayram O, Lack NA, Onder TT, Bagci-Onder T, Tyler M, Tirosh I, Regev A, Lees JA, Weinberg RA. Genome-wide CRISPR screen identifies PRC2 and KMT2D-COMPASS as regulators of distinct EMT trajectories that contribute differentially to metastasis. Nat Cell Biol 2022; 24:554-564. [PMID: 35411083 PMCID: PMC9037576 DOI: 10.1038/s41556-022-00877-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 02/07/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
Abstract
Epithelial-mesenchymal transition (EMT) programs operate within carcinoma cells, where they generate phenotypes associated with malignant progression. In their various manifestations, EMT programs enable epithelial cells to enter into a series of intermediate states arrayed along the E-M phenotypic spectrum. At present, we lack a coherent understanding of how carcinoma cells control their entrance into and continued residence in these various states, and which of these states favour the process of metastasis. Here we characterize a layer of EMT-regulating machinery that governs E-M plasticity (EMP). This machinery consists of two chromatin-modifying complexes, PRC2 and KMT2D-COMPASS, which operate as critical regulators to maintain a stable epithelial state. Interestingly, loss of these two complexes unlocks two distinct EMT trajectories. Dysfunction of PRC2, but not KMT2D-COMPASS, yields a quasi-mesenchymal state that is associated with highly metastatic capabilities and poor survival of patients with breast cancer, suggesting that great caution should be applied when PRC2 inhibitors are evaluated clinically in certain patient cohorts. These observations identify epigenetic factors that regulate EMP, determine specific intermediate EMT states and, as a direct consequence, govern the metastatic ability of carcinoma cells.
Collapse
Affiliation(s)
- Yun Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
| | | | - Sunny Das
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Xin Li
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Jordan A Krall
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Prathapan Thiru
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Heather R Keys
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Mehreen Khan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Molly M Wilson
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ozlem Yedier-Bayram
- Koç University School of Medicine, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkey
| | - Nathan A Lack
- Koç University School of Medicine, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkey
- Vancouver Prostate Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tamer T Onder
- Koç University School of Medicine, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkey
| | - Tugba Bagci-Onder
- Koç University School of Medicine, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkey
| | - Michael Tyler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Jacqueline A Lees
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- MIT Ludwig Center for Molecular Oncology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
46
|
Liu YY, Liu HY, Yu TJ, Lu Q, Zhang FL, Liu GY, Shao ZM, Li DQ. O-GlcNAcylation of MORC2 at threonine 556 by OGT couples TGF-β signaling to breast cancer progression. Cell Death Differ 2022; 29:861-873. [PMID: 34974534 PMCID: PMC8991186 DOI: 10.1038/s41418-021-00901-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
MORC family CW-type zinc finger 2 (MORC2) is a newly identified chromatin-remodeling enzyme involved in DNA damage response and gene transcription, and its dysregulation has been linked with Charcot-Marie-Tooth disease, neurodevelopmental disorder, and cancer. Despite its functional importance, how MORC2 is regulated remains enigmatic. Here, we report that MORC2 is O-GlcNAcylated by O-GlcNAc transferase (OGT) at threonine 556. Mutation of this site or pharmacological inhibition of OGT impairs MORC2-mediated breast cancer cell migration and invasion in vitro and lung colonization in vivo. Moreover, transforming growth factor-β1 (TGF-β1) induces MORC2 O-GlcNAcylation through enhancing the stability of glutamine-fructose-6-phosphate aminotransferase (GFAT), the rate-limiting enzyme for producing the sugar donor for OGT. O-GlcNAcylated MORC2 is required for transcriptional activation of TGF-β1 target genes connective tissue growth factor (CTGF) and snail family transcriptional repressor 1 (SNAIL). In support of these observations, knockdown of GFAT, SNAIL or CTGF compromises TGF-β1-induced, MORC2 O-GlcNAcylation-mediated breast cancer cell migration and invasion. Clinically, high expression of OGT, MORC2, SNAIL, and CTGF in breast tumors is associated with poor patient prognosis. Collectively, these findings uncover a previously unrecognized mechanistic role for MORC2 O-GlcNAcylation in breast cancer progression and provide evidence for targeting MORC2-dependent breast cancer through blocking its O-GlcNAcylation.
Collapse
Affiliation(s)
- Ying-Ying Liu
- grid.8547.e0000 0001 0125 2443Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Hong-Yi Liu
- grid.8547.e0000 0001 0125 2443Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
| | - Tian-Jian Yu
- grid.8547.e0000 0001 0125 2443Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Qin Lu
- grid.8547.e0000 0001 0125 2443Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
| | - Fang-Lin Zhang
- grid.8547.e0000 0001 0125 2443Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Guang-Yu Liu
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhi-Ming Shao
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
47
|
Design of hydroxyl- and thioether-functionalized iron-platinum dimetallacyclopentenone complexes. Crystal and electronic structures, Hirshfeld and docking analyses and anticancer activity evaluated by in silico simulation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
48
|
Alsafadi DB, Abdullah MS, Bawadi R, Ahram M. The Association of RGS2 and Slug in the Androgen-induced Acquisition of Mesenchymal Features of Breast MDA-MB-453 Cancer Cells. Endocr Res 2022; 47:64-79. [PMID: 35168462 DOI: 10.1080/07435800.2022.2036752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) of tumor cells is a prerequisite to cancer cell invasion and metastasis. This process involves a network of molecular alterations. Androgen receptor (AR) plays an important role in the biology of breast cancers, particularly those dependent on AR expression like luminal AR (LAR) breast cancer subtype. We have recently reported that the AR agonist, dihydrotestosterone (DHT), induces a mesenchymal transition of MDA-MB-453 cells, concomitant with transcriptional up-regulation of Slug and regulator of G protein signaling 2 (RGS2). OBJECTIVE The role of Slug and RGS2 in mediating the DHT-induced effects in these cells was investigated. METHODS MDA-MB-453 cells were used as a model system of LAR breast cancer. Immunofluorescence was used to examine cell morphology and protein localization. Protein expression was analyzed by immunoblotting. Protein localization was confirmed by cell fractionation followed by immunoblotting. Protein-protein interaction was confirmed by co-immunoprecipitation followed by immunoblotting. Transwell membranes were used to assess cell migration. Transfection of cells with siRNA molecules that target Slug and RGS2 mRNA was utilized to delineate the modes of action of these two molecules. RESULTS Treatment of MDA-MB-453 cells with DHT induced the expression of both proteins. In addition, AR-Slug, AR-RGS2, and Slug-RGS2 interactions were observed shortly after AR activation. Knocking down Slug abrogated the basal, but not the DHT-induced, cell migration and blocked DHT-induced mesenchymal transition. On the other hand, RGS2 knocked-down cells had an increased level of Slug protein and assumed mesenchymal cell morphology with induced migration, and the addition of DHT further elongated cell morphology and stimulated their migration. Inhibition of AR or β-catenin reverted the RGS2 knocked-down cells to the epithelial phenotype, but only inhibition of AR blocked their DHT-induced migration. CONCLUSIONS These results suggest the involvement of RGS2 and Slug in a complex molecular network regulating the DHT-induced mesenchymal features in MDA-MB-453 cells. The study may offer a better understanding of the biological role of AR in breast cancer toward devising AR-based therapeutic strategies.
Collapse
Affiliation(s)
- Dana B Alsafadi
- Department of Microbiology, Pathology, and Forensic Medicine, School of Medicine, the University of Jordan, Amman, Jordan
| | - Mohammad S Abdullah
- Department of Microbiology, Pathology, and Forensic Medicine, School of Medicine, the University of Jordan, Amman, Jordan
| | - Randa Bawadi
- Department of Physiology and Biochemistry, School of Medicine, the University of Jordan, Amman, Jordan
| | - Mamoun Ahram
- Department of Physiology and Biochemistry, School of Medicine, the University of Jordan, Amman, Jordan
| |
Collapse
|
49
|
Chauhan R, Bhat AA, Masoodi T, Bagga P, Reddy R, Gupta A, Sheikh ZA, Macha MA, Haris M, Singh M. Ubiquitin-specific peptidase 37: an important cog in the oncogenic machinery of cancerous cells. J Exp Clin Cancer Res 2021; 40:356. [PMID: 34758854 PMCID: PMC8579576 DOI: 10.1186/s13046-021-02163-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
Protein ubiquitination is one of the most crucial posttranslational modifications responsible for regulating the stability and activity of proteins involved in homeostatic cellular function. Inconsistencies in the ubiquitination process may lead to tumorigenesis. Ubiquitin-specific peptidases are attractive therapeutic targets in different cancers and are being evaluated for clinical development. Ubiquitin-specific peptidase 37 (USP37) is one of the least studied members of the USP family. USP37 controls numerous aspects of oncogenesis, including stabilizing many different oncoproteins. Recent work highlights the role of USP37 in stimulating the epithelial-mesenchymal transition and metastasis in lung and breast cancer by stabilizing SNAI1 and stimulating the sonic hedgehog pathway, respectively. Several aspects of USP37 biology in cancer cells are yet unclear and are an active area of research. This review emphasizes the importance of USP37 in cancer and how identifying its molecular targets and signalling networks in various cancer types can help advance cancer therapeutics.
Collapse
Affiliation(s)
- Ravi Chauhan
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Tariq Masoodi
- Department of Genomic Medicine, Genetikode, Mumbai, India
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Ashna Gupta
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Zahoor Ahmad Sheikh
- Department of Surgical Oncology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, India
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
50
|
Huang R, Yang L, Zhang Z, Liu X, Fei Y, Tong WM, Niu Y, Liang Z. RNA m 6A Demethylase ALKBH5 Protects Against Pancreatic Ductal Adenocarcinoma via Targeting Regulators of Iron Metabolism. Front Cell Dev Biol 2021; 9:724282. [PMID: 34733841 PMCID: PMC8558440 DOI: 10.3389/fcell.2021.724282] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Although RNA m6A regulators have been implicated in the tumorigenesis of several different types of tumors, including pancreatic cancer, their clinical relevance and intrinsic regulatory mechanism remain elusive. This study analyzed eight m6A regulators (METTL3, METTL14, WTAP, FTO, ALKBH5, and YTHDF1-3) in pancreatic ductal adenocarcinoma (PDAC) and found that only RNA m6A demethylase ALKBH5 serves as an independent favorable prognostic marker for this tumor. To better understand the molecular mechanism underlying the protective effect conferred by ALKBH5 against pancreatic tumorigenesis, we performed a transcriptome-wide analysis of m6A methylation, gene expression, and alternative splicing (AS) using the MIA PaCa-2 stable cell line with ALKBH5 overexpression. We demonstrated that ALKBH5 overexpression induced a reduction in RNA m6A levels globally. Furthermore, mRNAs encoding ubiquitin ligase FBXL5, and mitochondrial iron importers SLC25A28 and SLC25A37, were identified as substrates of ALKBH5. Mechanistically, the RNA stabilities of FBXL5 and SLC25A28, and the AS of SLC25A37 were affected, which led to their upregulation in pancreatic cancer cell line. Particularly, we observed that downregulation of FBXL5 in tumor samples correlated with shorter survival time of patients. Owing to FBXL5-mediated degradation, ALKBH5 overexpression incurred a significant reduction in iron-regulatory protein IRP2 and the modulator of epithelial-mesenchymal transition (EMT) SNAI1. Notably, ALKBH5 overexpression led to a significant reduction in intracellular iron levels as well as cell migratory and invasive abilities, which could be rescued by knocking down FBXL5. Overall, our results reveal a previously uncharacterized mechanism of ALKBH5 in protecting against PDAC through modulating regulators of iron metabolism and underscore the multifaceted role of m6A in pancreatic cancer.
Collapse
Affiliation(s)
- Rui Huang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Yang
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwen Zhang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoding Liu
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Fei
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiyong Liang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|