1
|
Haripriya E, Hemalatha K, Matada GSP, Pal R, Das PK, Ashadul Sk MD, Mounika S, Viji MP, Aayishamma I, Jayashree KR. Advancements of anticancer agents by targeting the Hippo signalling pathway: biological activity, selectivity, docking analysis, and structure-activity relationship. Mol Divers 2025; 29:2829-2862. [PMID: 39436581 DOI: 10.1007/s11030-024-11009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
The Hippo signalling pathway is prominent and governs cell proliferation and stem cell activity, acting as a growth regulator and tumour suppressor. Defects in Hippo signalling and hyperactivation of its downstream effector's Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) play roles in cancer development, implying that pharmacological inhibition of YAP and TAZ activity could be an effective cancer treatment strategy. Conversely, YAP and TAZ can also have beneficial effects in promoting tissue repair and regeneration following damage, therefore their activation may be therapeutically effective in certain instances. Recently, a complex network of intracellular and extracellular signalling mechanisms that affect YAP and TAZ activity has been uncovered. The YAP/TAZ-TEAD interaction leads to tumour development and the protein structure of YAP/TAZ-TEAD includes three interfaces and one hydrophobic pocket. There are clinical and preclinical trial drugs available to inhibit the hippo signalling pathway, but these drugs have moderate to severe side effects, so researchers are in search of novel, potent, and selective hippo signalling pathway inhibitors. In this review, we have discussed the hippo pathway in detail, including its structure, activation, and role in cancer. We have also provided the various inhibitors under clinical and preclinical trials, and advancement of small molecules their detailed docking analysis, structure-activity relationship, and biological activity. We anticipate that the current study will be a helpful resource for researchers.
Collapse
Affiliation(s)
- E Haripriya
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K Hemalatha
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M D Ashadul Sk
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - S Mounika
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M P Viji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - I Aayishamma
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K R Jayashree
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| |
Collapse
|
2
|
Hao Z, Zhao B, An F, Zhang W, Zhu X, Meng S, Wang B. Knockdown of BAP31 Suppresses Tumorigenesis and Stemness in Breast Cancer Cells via the Hippo Pathway. Int J Mol Sci 2025; 26:3576. [PMID: 40332113 PMCID: PMC12026861 DOI: 10.3390/ijms26083576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
The enhancement of stemness in cancer cells is correlated with the malignancy level in human cancers. B cell receptor-associated protein 31 (BAP31) has been implicated in tumor progression; however, its specific role in breast cancer remains unclear. This study aimed to elucidate the biological function and molecular mechanisms of BAP31 in tumorigenesis and cancer stemness. Cancer stemness was assessed through tumor sphere formation and flow cytometry assays. Western blot analysis was employed to examine alterations in core stemness factors in BAP31 knockdown cell lines, in order to explore potential underlying mechanisms. Finally, we explored the role of BAP31 by developing xenograft models using nude mice in vivo. Our findings revealed that BAP31 expression was elevated in breast cancer cells, and its knockdown led to a decrease in both sphere formation and the CD44+CD24- population. Furthermore, the knockdown of BAP31 significantly diminished the expression of core stemness factors, such as Sox2 and c-Myc, in breast cancer cells in vitro. Consistently, the suppression of BAP31 markedly inhibited the tumorigenicity and stemness of breast cancer in vivo. The functional analysis further indicated that the knockdown of BAP31 diminishes stemness by activating the Hippo pathway kinase MST1 and inhibiting the transcription factor YAP. Notably, our study was the first to demonstrate that BAP31 interacts with PCMT1, a direct negative regulator of MST1 kinase. These findings identify BAP31 as a regulator of the Hippo pathway, highlighting its critical role in breast cancer tumorigenesis and stemness. Consequently, BAP31 emerges as a potential therapeutic target for this malignancy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (Z.H.); (B.Z.); (F.A.); (W.Z.); (X.Z.); (S.M.)
| |
Collapse
|
3
|
Zhang F, Huang B, Xu Y, Cao G, Shen M, Liu C, Luo J. MISP Suppresses Ferroptosis via MST1/2 Kinases to Facilitate YAP Activation in Non-Small Cell Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415814. [PMID: 40019375 PMCID: PMC12021056 DOI: 10.1002/advs.202415814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/19/2025] [Indexed: 03/01/2025]
Abstract
Despite advances in non-small cell lung cancer (NSCLC) therapies, resistance remains a major challenge. Ferroptosis, a form of regulated cell death, plays a key role in cancer progression and treatment response. However, the mechanisms governing ferroptosis in NSCLC are not fully understood. The Hippo pathway, which regulates cell proliferation, has recently been implicated in ferroptosis regulation. In this study, we identify Mitotic Spindle Positioning (MISP) as a critical inhibitor of ferroptosis in NSCLC. MISP is upregulated in NSCLC tissues, and its loss sensitizes cells to ferroptosis, reducing cell proliferation in vitro and in vivo. Mechanistically, MISP binds to the SARAH domain of MST1/2 kinases, inhibiting their homodimerization and autophosphorylation, leading to sustained activation of YAP, a transcriptional coactivator in the Hippo pathway. YAP activation increases SLC7A11 expression, which protects cells from ferroptosis. We also identify a mutant MISP-R390/391A that disrupts MISP-MST1/2 binding, further illustrating the MST1/2-dependent inhibition of Hippo signaling. Notably, MISP is a target of YAP, creating a feedback loop that amplifies YAP signaling. Our findings suggest a novel MISP-YAP axis regulating ferroptosis, positioning MISP as a potential therapeutic target for NSCLC, especially in cases with dysregulated YAP.
Collapse
Affiliation(s)
- Fuquan Zhang
- Department of Thoracic and Cardiovascular SurgeryThe Second Affiliated Hospital of Nantong UniversityThe First People's Hospital of NantongNantong226000China
| | - Bingtao Huang
- Department of Thoracic SurgeryBinzhou Medical University HospitalBinzhou256600China
| | - Yiming Xu
- Department of Thoracic and Cardiovascular SurgeryThe Second Affiliated Hospital of Nantong UniversityThe First People's Hospital of NantongNantong226000China
| | - Guohong Cao
- Department of Thoracic SurgeryBinzhou Medical University HospitalBinzhou256600China
| | - Mingjing Shen
- Department of Cardiothoracic SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhou215004China
| | - Changmin Liu
- Department of Radiation OncologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Department of Radiation OncologyAnhui Provincial Cancer HospitalHefeiAnhui230031China
| | - Judong Luo
- Department of RadiotherapyTongji HospitalSchool of MedicineTongji UniversityShanghai200065China
| |
Collapse
|
4
|
Zhong B, Du J, Liu F, Sun S. The Role of Yes-Associated Protein in Inflammatory Diseases and Cancer. MedComm (Beijing) 2025; 6:e70128. [PMID: 40066231 PMCID: PMC11892025 DOI: 10.1002/mco2.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/17/2025] Open
Abstract
Yes-associated protein (YAP) plays a central role in the Hippo pathway, primarily governing cell proliferation, differentiation, and apoptosis. Its significance extends to tumorigenesis and inflammatory conditions, impacting disease initiation and progression. Given the increasing relevance of YAP in inflammatory disorders and cancer, this study aims to elucidate its pathological regulatory functions in these contexts. Specifically, we aim to investigate the involvement and molecular mechanisms of YAP in various inflammatory diseases and cancers. We particularly focus on how YAP activation, whether through Hippo-dependent or independent pathways, triggers the release of inflammation and inflammatory mediators in respiratory, cardiovascular, and digestive inflammatory conditions. In cancer, YAP not only promotes tumor cell proliferation and differentiation but also modulates the tumor immune microenvironment, thereby fostering tumor metastasis and progression. Additionally, we provide an overview of current YAP-targeted therapies. By emphasizing YAP's role in inflammatory diseases and cancer, this study aims to enhance our understanding of the protein's pivotal involvement in disease processes, elucidate the intricate pathological mechanisms of related diseases, and contribute to future drug development strategies targeting YAP.
Collapse
Affiliation(s)
- Bing Zhong
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jintao Du
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Feng Liu
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Silu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
5
|
Yu Lin MO, Sampath D, Bosykh DA, Wang C, Wang X, Subramaniam T, Han W, Hong W, Chakraborty S. YAP/TAZ Drive Agrin-Matrix Metalloproteinase 12-Mediated Diabetic Skin Wound Healing. J Invest Dermatol 2025; 145:155-170.e2. [PMID: 38810954 DOI: 10.1016/j.jid.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024]
Abstract
Macroscopic loss of extracellular matrix can lead to chronic defects in skin wound healing, but supplementation of extracellular matrix holds promise for facilitating wound closure, particularly in diabetic wound healing. We recently showed that the extracellular matrix proteoglycan agrin accelerates cutaneous wound healing by improving mechanoperception of migrating keratinocytes and allowing them to respond to mechanical stresses through matrix metalloproteinase 12 (MMP12). RNA-sequencing analysis revealed that in addition to a disorganized extracellular matrix, agrin-depleted skin cells have impaired YAP/TAZ transcriptional outcomes, leading us to hypothesize that YAP/TAZ, as central mechanosensors, drive the functionality of agrin-MMP12 signaling during cutaneous wound repair. In this study, we demonstrate that agrin activates YAP/TAZ during migration of keratinocytes after wounding in vitro and in vivo. Mechanistically, YAP/TAZ sustain agrin and MMP12 protein expression during migration after wounding through positive feedback. YAP/TAZ silencing abolishes agrin-MMP12-mediated force recognition and geometrical constraints. Importantly, soluble agrin therapy accelerates wound closure in diabetic mouse models by engaging MMP12-YAP. Because patients with diabetic foot ulcers and impaired wound healing have reduced expression of agrin-MMP12 that correlates with YAP/TAZ inactivation, we propose that timely activation of YAP/TAZ by soluble agrin therapy can accentuate mechanobiological microenvironments for efficient wound healing, under normal and diabetic conditions.
Collapse
Affiliation(s)
| | | | - Dmitriy A Bosykh
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Chengchun Wang
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Xiaomeng Wang
- Institute of Molecular and Cell Biology, Singapore, Singapore; Centre for Vision Research, Duke-NUS Medical School, Singapore, Singapore
| | - Tavintharan Subramaniam
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore; Division of Endocrinology, Department of Medicine, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Weiping Han
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Singapore, Singapore.
| | - Sayan Chakraborty
- Institute of Molecular and Cell Biology, Singapore, Singapore; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA.
| |
Collapse
|
6
|
Zhang L, Gao M, Wu Y, Liu H, Zhuang X, Zhou Y, Song Q, Bi S, Zhang W, Cui Y. MST1 interactomes profiling across cell death in esophageal squamous cell carcinoma. MEDICAL REVIEW (2021) 2024; 4:531-543. [PMID: 39664081 PMCID: PMC11629308 DOI: 10.1515/mr-2024-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/27/2024] [Indexed: 12/13/2024]
Abstract
Objectives Resistance to apoptosis in esophageal squamous cell carcinoma (ESCC) constitutes a significant impediment to treatment efficacy. Exploring alternative cell death pathways and their regulatory factors beyond apoptosis is crucial for overcoming drug resistance and enhancing therapeutic outcomes in ESCC. Methods Mammalian Ste 20-like kinase 1 (MST1) is implicated in regulating various cell deaths, including apoptosis, autophagy, and pyroptosis. Employing enhanced ascorbate peroxidase 2 (APEX2) proximity labeling coupled with immunoprecipitation-mass spectrometry (IP-MS), we elucidated the interactomes of MST1 across these three cell death paradigms. Results Proteomic profiling unveiled the functional roles and subcellular localization of MST1 and its interacting proteins during normal proliferation and various cell death processes. Notably, MST1 exhibited an expanded interactome during cell death compared to normal proliferation and chromosome remodeling functions consistently. In apoptosis, there was a notable increase of mitosis-associated proteins such as INCENP, ANLN, KIF23, SHCBP1 and SUPT16H, which interacted with MST1, alongside decreased expression of the pre-apoptotic protein STK3. During autophagy, the bindings of DNA repair-related proteins CBX8 and m6A reader YTHDC1 to MST1 were enhanced. In pyroptosis, LRRFIP2 and FLII which can inhibit pyroptosis increasingly binding to MST1. Conclusions Our findings delineate potential mechanisms through which MST1 and its interactomes regulate cell death, paving the way for further investigation to validate and consolidate these observations.
Collapse
Affiliation(s)
- Li Zhang
- Cancer Institute, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Mingwei Gao
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yueguang Wu
- Cancer Institute, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Huijuan Liu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xuehan Zhuang
- Cancer Institute, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Yan Zhou
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Qiqin Song
- Cancer Institute, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Shanshan Bi
- Cancer Institute, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Weimin Zhang
- Cancer Institute, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Yongping Cui
- Cancer Institute, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Park JJ, Lee SJ, Baek M, Lee OJ, Nam S, Kim J, Kim JY, Shin EY, Kim EG. FRMD6 determines the cell fate towards senescence: involvement of the Hippo-YAP-CCN3 axis. Cell Death Differ 2024; 31:1398-1409. [PMID: 38926528 PMCID: PMC11519602 DOI: 10.1038/s41418-024-01333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Cellular senescence, a hallmark of aging, is pathogenically linked to the development of aging-related diseases. This study demonstrates that FRMD6, an upstream component of the Hippo/YAP signaling cascade, is a key regulator of senescence. Proteomic analysis revealed that FRMD6 is upregulated in senescent IMR90 fibroblasts under various senescence-inducing conditions. Silencing FRMD6 mitigated the senescence of IMR90 cells, suggesting its requirement in senescence. Conversely, the overexpression of FRMD6 alone induced senescence in cells and in lung tissue, establishing a causal link. The elevated FRMD6 levels correlated well with increased levels of the inhibitory phosphorylated YAP/TAZ. We identified cellular communication network factor 3 (CCN3), a key component of the senescence-associated secretory phenotype regulated by YAP, whose administration attenuated FRMD6-induced senescence in a dose-dependent manner. Mechanistically, FRMD6 interacted with and activated MST kinase, which led to YAP/TAZ inactivation. The expression of FRMD6 was regulated by the p53 and SMAD transcription factors in senescent cells. Accordingly, the expression of FRMD6 was upregulated by TGF-β treatment that activates those transcription factors. In TGF-β-treated IMR90 cells, FRMD6 mainly segregated with p21, a senescence marker, but rarely segregated with α-SMA, a myofibroblast marker, which suggests that FRMD6 has a role in directing cells towards senescence. Similarly, in TGF-β-enriched environments, such as fibroblastic foci (FF) from patients with idiopathic pulmonary fibrosis, FRMD6 co-localized with p16 in FF lining cells, while it was rarely detected in α-SMA-positive myofibroblasts that are abundant in FF. In sum, this study identifies FRMD6 as a novel regulator of senescence and elucidates the contribution of the FRMD6-Hippo/YAP-CCN3 axis to senescence.
Collapse
Affiliation(s)
- Jung-Jin Park
- Department of Biochemistry, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea
| | - Su Jin Lee
- Department of Biochemistry, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea
| | - Minwoo Baek
- Department of Biochemistry, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea
| | - Ok-Jun Lee
- Department of Pathology, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea
| | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21565, Republic of Korea
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Eun-Young Shin
- Department of Biochemistry, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea.
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
8
|
Xi H, Wang Z, Li M, Duan X, Li Y. Paeoniflorin Promotes Ovarian Development in Mice by Activating Mitophagy and Preventing Oxidative Stress. Int J Mol Sci 2024; 25:8355. [PMID: 39125927 PMCID: PMC11313479 DOI: 10.3390/ijms25158355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
During the development of animal organs, various adverse stimuli or toxic environments can induce oxidative stress and delay ovarian development. Paeoniflorin (PF), the main active ingredient of the traditional Chinese herb Paeonia lactiflora Pall., has protective effects on various diseases by preventing oxidative stress. However, the mechanism by which PF attenuates oxidative damage in mouse ovaries remains unclear. We evaluated the protective effects of PF on ovaries in an H2O2-induced mouse oxidative stress model. The H2O2-induced mouse ovarian oxidative stress model was used to explore the protective effect of PF on ovarian development. Histology and follicular development were observed. We then detected related indicators of cell apoptosis, oxidative stress, and autophagy in mouse ovaries. We found that PF inhibited H2O2-induced ovarian cell apoptosis and ferroptosis and promoted granulosa cell proliferation. PF prevented oxidative stress by increasing nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression levels. In addition, the autophagic flux of ovarian cells was activated and was accompanied by increased lysosomal biogenesis. Moreover, PF-mediated autophagy was involved in clearing mitochondria damaged by H2O2. Importantly, PF administration significantly increased the number of primordial follicles, primary follicles, secondary follicles, and antral follicles. PF administration improved ovarian sizes compared with the H2O2 group. The present study suggested that PF administration reversed H2O2-induced ovarian developmental delay and promoted follicle development. PF-activated mitophagy is crucial for preventing oxidative stress and improving mitochondrial quality.
Collapse
Affiliation(s)
| | | | | | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; (H.X.)
| | - Yuan Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; (H.X.)
| |
Collapse
|
9
|
Nita A, Moroishi T. Hippo pathway in cell-cell communication: emerging roles in development and regeneration. Inflamm Regen 2024; 44:18. [PMID: 38566194 PMCID: PMC10986044 DOI: 10.1186/s41232-024-00331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
The Hippo pathway is a central regulator of tissue growth that has been widely studied in mammalian organ development, regeneration, and cancer biology. Although previous studies have convincingly revealed its cell-autonomous functions in controlling cell fate, such as cell proliferation, survival, and differentiation, accumulating evidence in recent years has revealed its non-cell-autonomous functions. This pathway regulates cell-cell communication through direct interactions, soluble factors, extracellular vesicles, and the extracellular matrix, providing a range of options for controlling diverse biological processes. Consequently, the Hippo pathway not only dictates the fate of individual cells but also triggers multicellular responses involving both tissue-resident cells and infiltrating immune cells. Here, we have highlighted the recent understanding of the molecular mechanisms by which the Hippo pathway controls cell-cell communication and discuss its importance in tissue homeostasis, especially in development and regeneration.
Collapse
Affiliation(s)
- Akihiro Nita
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
10
|
Kumar R, Hong W. Hippo Signaling at the Hallmarks of Cancer and Drug Resistance. Cells 2024; 13:564. [PMID: 38607003 PMCID: PMC11011035 DOI: 10.3390/cells13070564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Originally identified in Drosophila melanogaster in 1995, the Hippo signaling pathway plays a pivotal role in organ size control and tumor suppression by inhibiting proliferation and promoting apoptosis. Large tumor suppressors 1 and 2 (LATS1/2) directly phosphorylate the Yki orthologs YAP (yes-associated protein) and its paralog TAZ (also known as WW domain-containing transcription regulator 1 [WWTR1]), thereby inhibiting their nuclear localization and pairing with transcriptional coactivators TEAD1-4. Earnest efforts from many research laboratories have established the role of mis-regulated Hippo signaling in tumorigenesis, epithelial mesenchymal transition (EMT), oncogenic stemness, and, more recently, development of drug resistances. Hippo signaling components at the heart of oncogenic adaptations fuel the development of drug resistance in many cancers for targeted therapies including KRAS and EGFR mutants. The first U.S. food and drug administration (US FDA) approval of the imatinib tyrosine kinase inhibitor in 2001 paved the way for nearly 100 small-molecule anti-cancer drugs approved by the US FDA and the national medical products administration (NMPA). However, the low response rate and development of drug resistance have posed a major hurdle to improving the progression-free survival (PFS) and overall survival (OS) of cancer patients. Accumulating evidence has enabled scientists and clinicians to strategize the therapeutic approaches of targeting cancer cells and to navigate the development of drug resistance through the continuous monitoring of tumor evolution and oncogenic adaptations. In this review, we highlight the emerging aspects of Hippo signaling in cross-talk with other oncogenic drivers and how this information can be translated into combination therapy to target a broad range of aggressive tumors and the development of drug resistance.
Collapse
Affiliation(s)
- Ramesh Kumar
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore;
| | | |
Collapse
|
11
|
Zhou Q, Qi F, Zhou C, Ji J, Jiang J, Wang C, Zhao Q, Jin Y, Wu J, Cai Q, Tian H, Zhang J. VPS35 promotes gastric cancer progression through integrin/FAK/SRC signalling-mediated IL-6/STAT3 pathway activation in a YAP-dependent manner. Oncogene 2024; 43:106-122. [PMID: 37950040 PMCID: PMC10774127 DOI: 10.1038/s41388-023-02885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
VPS35 is a key subunit of the retromer complex responsible for recognising cytosolic retrieval signals in cargo and is involved in neurodegenerative disease and tumour progression. However, the function and molecular mechanism of VPS35 in gastric cancer (GC) remains largely unknown. Here, we demonstrated that VPS35 was significantly upregulated in GC, which was associated with poor survival. VPS35 promoted GC cell proliferation and metastasis both in vitro and in vivo. Mechanistically, VPS35 activated FAK-SRC kinases through integrin-mediated outside-in signalling, leading to the activation of YAP and subsequent IL-6 expression induction in tumour cells. What's more, combined mass spectrometry analysis of MGC-803 cell and bioinformatic analysis, we found that phosphorylation of VPS35 was enhanced in GC cells, and phosphorylated VPS35 has enhanced interaction with ITGB3. VPS35 interacted with ITGB3 and affected the recycling of ITGB3 in GC cells. Gain- and loss-of-function experiments revealed that VPS35 promoted tumour proliferation and metastasis via the IL-6/STAT3 pathway. Interestingly, we also found that STAT3 directly bound to the VPS35 promoter and increased VPS35 transcription, thereby establishing a positive regulatory feedback loop. In addition, we demonstrated that VPS35 knockdown sensitised GC cells to 5-FU and cisplatin. These findings provide evidence that VPS35 promotes tumour proliferation and metastasis, and highlight the potential of targeting VPS35- and IL-6/STAT3-mediated tumour interactions as promising therapeutic strategies for GC.
Collapse
Affiliation(s)
- Qingqing Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Feng Qi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chenfei Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Ji
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chao Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qianfu Zhao
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yangbing Jin
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junwei Wu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
12
|
Deng H, Jia Q, Ming X, Sun Y, Lu Y, Liu L, Zhou J. Hippo pathway in intestinal diseases: focusing on ferroptosis. Front Cell Dev Biol 2023; 11:1291686. [PMID: 38130953 PMCID: PMC10734691 DOI: 10.3389/fcell.2023.1291686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The incidence of intestinal diseases, such as inflammatory bowel disease, gastric cancer, and colorectal cancer, has steadily increased over the past decades. The Hippo pathway is involved in cell proliferation, tissue and organ damage, energy metabolism, tumor formation, and other physiologic processes. Ferroptosis is a form of programmed cell death characterized by the accumulation of iron and lipid peroxides. The Hippo pathway and ferroptosis are associated with various intestinal diseases; however, the crosstalk between them is unclear. This review elaborates on the current research on the Hippo pathway and ferroptosis in the context of intestinal diseases. We summarized the connection between the Hippo pathway and ferroptosis to elucidate the underlying mechanism by which these pathways influence intestinal diseases. We speculate that a mutual regulatory mechanism exists between the Hippo pathway and ferroptosis and these two pathways interact in several ways to regulate intestinal diseases.
Collapse
Affiliation(s)
- Hongwei Deng
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Qiuting Jia
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Xin Ming
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuxin Sun
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Yuxuan Lu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Zhou
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
13
|
Bai W, Zhu T, Zuo J, Li Y, Huang X, Li G. Delivery of SAV-siRNA via Exosomes from Adipose-Derived Stem Cells for the Treatment of Myocardial Infarction. Tissue Eng Regen Med 2023; 20:1063-1077. [PMID: 37801227 PMCID: PMC10645647 DOI: 10.1007/s13770-023-00588-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Myocardial infarction (MI) leads to cardiomyocyte death, poor cardiac remodeling, and heart failure, making it a major cause of mortality and morbidity. To restore cardiac pumping function, induction of cardiomyocyte regeneration has become a focus of academic interest. The Hippo pathway is known to regulate cardiomyocyte proliferation and heart size, and its inactivation allows adult cardiomyocytes to re-enter the cell cycle. METHODS In this study, we investigated whether exosomes from adipose-derived stem cells (ADSCs) could effectively transfer siRNA for the Hippo pathway regulator Salvador (SAV) into cardiomyocytes to induce cardiomyocyte regeneration in a mouse model of MI. RESULTS Our results showed that exosomes loaded with SAV-siRNA effectively transferred siRNA into cardiomyocytes and induced cardiomyocyte re-entry into the cell cycle, while retaining the previously demonstrated therapeutic efficacy of ADSC-derived exosomes to improve post-infarction cardiac function through anti-fibrotic, pro-angiogenic, and other effects. CONCLUSIONS Our findings suggest that siRNA delivery via ADSC-derived exosomes may be a promising approach for the treatment of MI.
Collapse
Affiliation(s)
- Weizhe Bai
- Department of Cardiac Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Tianchuan Zhu
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Jiebin Zuo
- Department of Cardiac Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Yang Li
- Department of Cardiac Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Xi Huang
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Zhuhai, Guangdong, People's Republic of China.
| | - Gang Li
- Department of Cardiac Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Zhuhai, Guangdong, People's Republic of China.
| |
Collapse
|
14
|
Simonov YP, Tatarskiy VV, Georgieva SG, Soshnikova NV. Contact Inhibition of Proliferation Is Accompanied by Expression of the PHF10D Subunit of the Chromatin Remodeling Complex PBAF in Mouse and Human Cell Lines. DOKL BIOCHEM BIOPHYS 2023; 513:S18-S22. [PMID: 38189884 DOI: 10.1134/s1607672923700667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 01/09/2024]
Abstract
PHF10 is a subunit of the PBAF complex, which regulates the expression of many genes in developing and maturing organisms. PHF10 has four isoforms that differ in domain structure. The PHF10A isoform, containing a DPF domain at the C-terminus and 46 amino acids at the N-terminus, is necessary for the expression of proliferation genes; the functions of the other isoforms are less studied. In this work, we have established that, upon contact inhibition of mouse and human cell proliferation caused by the establishment of a tight junction and adherence junction between cells, the expression of the PHF10A isoform stops and instead the PHF10D isoform is expressed, which does not contain DPF-domain and N-terminal sequence. The function of the PHF10D isoform may be associated with the establishment of intercellular contacts.
Collapse
Affiliation(s)
- Yu P Simonov
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - V V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - S G Georgieva
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - N V Soshnikova
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
15
|
Kiselev EI, Pflug F, von Haeseler A. Critical Growth of Cerebral Tissue in Organoids: Theory and Experiments. PHYSICAL REVIEW LETTERS 2023; 131:178402. [PMID: 37955473 DOI: 10.1103/physrevlett.131.178402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/30/2023] [Indexed: 11/14/2023]
Abstract
We develop a Fokker-Planck theory of tissue growth with three types of cells (symmetrically dividing, asymmetrically dividing, and nondividing) as main agents to study the growth dynamics of human cerebral organoids. Fitting the theory to lineage tracing data obtained in next generation sequencing experiments, we show that the growth of cerebral organoids is a critical process. We derive analytical expressions describing the time evolution of clonal lineage sizes and show how power-law distributions arise in the limit of long times due to the vanishing of a characteristic growth scale. We discuss that the independence of critical growth on initial conditions could be biologically advantageous.
Collapse
Affiliation(s)
- Egor I Kiselev
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories, University of Vienna and Medical University of Vienna, Vienna Bio Center (VBC), 1030 Vienna, Austria
- Physics Department, Technion, 320003 Haifa, Israel
| | - Florian Pflug
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories, University of Vienna and Medical University of Vienna, Vienna Bio Center (VBC), 1030 Vienna, Austria
- Biological Complexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories, University of Vienna and Medical University of Vienna, Vienna Bio Center (VBC), 1030 Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
16
|
Su D, Li Y, Zhang W, Gao H, Cheng Y, Hou Y, Li J, Ye Y, Lai Z, Li Z, Huang H, Li J, Li J, Cheng M, Nian C, Wu N, Zhou Z, Xing Y, Zhao Y, Liu H, Tang J, Chen Q, Hong L, Li W, Peng Z, Zhao B, Johnson RL, Liu P, Hong W, Chen L, Zhou D. SPTAN1/NUMB axis senses cell density to restrain cell growth and oncogenesis through Hippo signaling. J Clin Invest 2023; 133:e168888. [PMID: 37843276 PMCID: PMC10575737 DOI: 10.1172/jci168888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023] Open
Abstract
The loss of contact inhibition is a key step during carcinogenesis. The Hippo-Yes-associated protein (Hippo/YAP) pathway is an important regulator of cell growth in a cell density-dependent manner. However, how Hippo signaling senses cell density in this context remains elusive. Here, we report that high cell density induced the phosphorylation of spectrin α chain, nonerythrocytic 1 (SPTAN1), a plasma membrane-stabilizing protein, to recruit NUMB endocytic adaptor protein isoforms 1 and 2 (NUMB1/2), which further sequestered microtubule affinity-regulating kinases (MARKs) in the plasma membrane and rendered them inaccessible for phosphorylation and inhibition of the Hippo kinases sterile 20-like kinases MST1 and MST2 (MST1/2). WW45 interaction with MST1/2 was thereby enhanced, resulting in the activation of Hippo signaling to block YAP activity for cell contact inhibition. Importantly, low cell density led to SPTAN1 dephosphorylation and NUMB cytoplasmic location, along with MST1/2 inhibition and, consequently, YAP activation. Moreover, double KO of NUMB and WW45 in the liver led to appreciable organ enlargement and rapid tumorigenesis. Interestingly, NUMB isoforms 3 and 4, which have a truncated phosphotyrosine-binding (PTB) domain and are thus unable to interact with phosphorylated SPTAN1 and activate MST1/2, were selectively upregulated in liver cancer, which correlated with YAP activation. We have thus revealed a SPTAN1/NUMB1/2 axis that acts as a cell density sensor to restrain cell growth and oncogenesis by coupling external cell-cell contact signals to intracellular Hippo signaling.
Collapse
Affiliation(s)
- Dongxue Su
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yuxi Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Weiji Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Huan Gao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yao Cheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yongqiang Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Junhong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yi Ye
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Zhangjian Lai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Zhe Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Haitao Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Jiaxin Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Jinhuan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Mengyu Cheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Cheng Nian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Na Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Zhien Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yunzhi Xing
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yu Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - He Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Jiayu Tang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Qinghua Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Lixin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Wengang Li
- Department of Hepatobiliary and Pancreatic and Organ Transplantation Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhihai Peng
- Department of Hepatobiliary and Pancreatic and Organ Transplantation Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Randy L. Johnson
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Pingguo Liu
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Department of Hepatobiliary Surgery, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| |
Collapse
|
17
|
Wang Y, Deng B. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers. Cancer Metastasis Rev 2023; 42:629-652. [PMID: 36729264 DOI: 10.1007/s10555-023-10084-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy and one of the leading causes of cancer-related death. The biological process of HCC is complex, with multiple factors leading to the broken of the balance of inactivation and activation of tumor suppressor genes and oncogenes, the abnormal activation of molecular signaling pathways, the differentiation of HCC cells, and the regulation of angiogenesis. Due to the insidious onset of HCC, at the time of first diagnosis, less than 30% of HCC patients are candidates for radical treatment. Systematic antitumor therapy is the hope for the treatment of patients with middle-advanced HCC. Despite the emergence of new systemic therapies, survival rates for advanced HCC patients remain low. The complex pathogenesis of HCC has inspired researchers to explore a variety of biomolecular targeted therapeutics targeting specific targets. Correct understanding of the molecular mechanism of HCC occurrence is key to seeking effective targeted therapy. Research on biomarkers for HCC treatment is also advancing. Here, we explore the molecular mechanism that are associated with HCC development, summarize targeted therapies for HCC, and discuss potential biomarkers that may drive therapies.
Collapse
Affiliation(s)
- Yu Wang
- Department of Infectious Diseases, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Baocheng Deng
- Department of Infectious Diseases, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
18
|
Osama M, Essibayi MA, Osama M, Ibrahim IA, Nasr Mostafa M, Şakir Ekşi M. The impact of interaction between verteporfin and yes-associated protein 1/transcriptional coactivator with PDZ-binding motif-TEA domain pathway on the progression of isocitrate dehydrogenase wild-type glioblastoma. J Cent Nerv Syst Dis 2023; 15:11795735231195760. [PMID: 37600236 PMCID: PMC10439684 DOI: 10.1177/11795735231195760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Verteporfin and 5-ALA are used for visualizing malignant tissue components in different body tumors and as photodynamic therapy in treating isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM). Additionally, verteporfin interferes with Yes-associated protein 1 (YAP)/Transcriptional coactivator with PDZ-binding motif - TEA domain (TAZ-TEAD) pathway, thus inhibiting the downstream effect of these oncogenes and reducing the malignant properties of GBM. Animal studies have shown verteporfin to be successful in increasing survival rates, which have led to the conduction of phase 1 and 2 clinical trials to further investigate its efficacy in treating GBM. In this article, we aimed to review the novel mechanism of verteporfin's action, the impact of its interaction with YAP/TAZ-TEAD, its effect on glioblastoma stem cells, and its role in inducing ferroptosis.
Collapse
Affiliation(s)
- Mahmoud Osama
- Department of Neurosurgery, Nasser Institute for Research and Treatment, Cairo, Egypt
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Muhammed Amir Essibayi
- Department of Neurosurgery, Albert Einstein College of Medicine, New York City, NY, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Mona Osama
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ismail A. Ibrahim
- Department of Physical Therapy and Rehabilitation, Fenerbahce University, Istanbul, Turkey
| | | | - Murat Şakir Ekşi
- Neurosurgery Clinic, FSM Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
19
|
Dabbagh Ohadi MA, Aleyasin MS, Samiee R, Bordbar S, Maroufi SF, Bayan N, Hanaei S, Smith TR. Micro RNAs as a Diagnostic Marker between Glioma and Primary CNS Lymphoma: A Systematic Review. Cancers (Basel) 2023; 15:3628. [PMID: 37509289 PMCID: PMC10377645 DOI: 10.3390/cancers15143628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Differentiating glioma from primary central nervous system lymphoma (PCNSL) can be challenging, and current diagnostic measures such as MRI and biopsy are of limited efficacy. Liquid biopsies, which detect circulating biomarkers such as microRNAs (miRs), may provide valuable insights into diagnostic biomarkers for improved discrimination. This review aimed to investigate the role of specific miRs in diagnosing and differentiating glioma from PCNSL. A systematic search was conducted of PubMed, Scopus, Web of Science, and Embase for articles on liquid biopsies as a diagnostic method for glioma and PCNSL. Sixteen dysregulated miRs were identified with significantly different levels in glioma and PCNSL, including miR-21, which was the most prominent miR with higher levels in PCNSL, followed by glioma, including glioblastoma (GBM), and control groups. The lowest levels of miR-16 and miR-205 were observed in glioma, followed by PCNSL and control groups, whereas miR-15b and miR-301 were higher in both tumor groups, with the highest levels observed in glioma patients. The levels of miR-711 were higher in glioma (including GBM) and downregulated in PCNSL compared to the control group. This review suggests that using these six circulating microRNAs as liquid biomarkers with unique changing patterns could aid in better discrimination between glioma, especially GBM, and PCNSL.
Collapse
Affiliation(s)
- Mohammad Amin Dabbagh Ohadi
- Department of Pediatric Neurological Surgery, Children's Medical Center, Tehran University of Medical Sciences, Tehran 1419733151, Iran
- Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran 1417755331, Iran
| | - Mir Sajjad Aleyasin
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417755331, Iran
| | - Reza Samiee
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417755331, Iran
| | - Sanaz Bordbar
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417755331, Iran
| | - Seyed Farzad Maroufi
- Department of Pediatric Neurological Surgery, Children's Medical Center, Tehran University of Medical Sciences, Tehran 1419733151, Iran
| | - Nikoo Bayan
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417755331, Iran
| | - Sara Hanaei
- Neurosurgery Department, Imam Khomeini Hospital Complex (IKHC), Tehran University of Medical Sciences, Tehran 1419733151, Iran
| | - Timothy R Smith
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
20
|
Barbosa IAM, Gopalakrishnan R, Mercan S, Mourikis TP, Martin T, Wengert S, Sheng C, Ji F, Lopes R, Knehr J, Altorfer M, Lindeman A, Russ C, Naumann U, Golji J, Sprouffske K, Barys L, Tordella L, Schübeler D, Schmelzle T, Galli GG. Cancer lineage-specific regulation of YAP responsive elements revealed through large-scale functional epigenomic screens. Nat Commun 2023; 14:3907. [PMID: 37400441 DOI: 10.1038/s41467-023-39527-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
YAP is a key transcriptional co-activator of TEADs, it regulates cell growth and is frequently activated in cancer. In Malignant Pleural Mesothelioma (MPM), YAP is activated by loss-of-function mutations in upstream components of the Hippo pathway, while, in Uveal Melanoma (UM), YAP is activated in a Hippo-independent manner. To date, it is unclear if and how the different oncogenic lesions activating YAP impact its oncogenic program, which is particularly relevant for designing selective anti-cancer therapies. Here we show that, despite YAP being essential in both MPM and UM, its interaction with TEAD is unexpectedly dispensable in UM, limiting the applicability of TEAD inhibitors in this cancer type. Systematic functional interrogation of YAP regulatory elements in both cancer types reveals convergent regulation of broad oncogenic drivers in both MPM and UM, but also strikingly selective programs. Our work reveals unanticipated lineage-specific features of the YAP regulatory network that provide important insights to guide the design of tailored therapeutic strategies to inhibit YAP signaling across different cancer types.
Collapse
Affiliation(s)
- Inês A M Barbosa
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Rajaraman Gopalakrishnan
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
- Alltrna Inc., One Kendall Square, Cambridge, MA, USA
| | - Samuele Mercan
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Thanos P Mourikis
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Typhaine Martin
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Simon Wengert
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
- Helmholtz Pioneer Campus, Helmholtz Zentrum München GmbH German Research Center for Environmental Health, Neuherberg, Germany
| | - Caibin Sheng
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Fei Ji
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Rui Lopes
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
- Roche Pharmaceutical Research and Early Development, Basel, Switzerland
| | - Judith Knehr
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Marc Altorfer
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Alicia Lindeman
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Carsten Russ
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Ulrike Naumann
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Javad Golji
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Kathleen Sprouffske
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Louise Barys
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Luca Tordella
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Tobias Schmelzle
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Giorgio G Galli
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
21
|
Mokhtari RB, Ashayeri N, Baghaie L, Sambi M, Satari K, Baluch N, Bosykh DA, Szewczuk MR, Chakraborty S. The Hippo Pathway Effectors YAP/TAZ-TEAD Oncoproteins as Emerging Therapeutic Targets in the Tumor Microenvironment. Cancers (Basel) 2023; 15:3468. [PMID: 37444578 DOI: 10.3390/cancers15133468] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Various cancer cell-associated intrinsic and extrinsic inputs act on YAP/TAZ proteins to mediate the hyperactivation of the TEAD transcription factor-based transcriptome. This YAP/TAZ-TEAD activity can override the growth-limiting Hippo tumor-suppressor pathway that maintains normal tissue homeostasis. Herein, we provide an integrated summary of the contrasting roles of YAP/TAZ during normal tissue homeostasis versus tumor initiation and progression. In addition to upstream factors that regulate YAP/TAZ in the TME, critical insights on the emerging functions of YAP/TAZ in immune suppression and abnormal vasculature development during tumorigenesis are illustrated. Lastly, we discuss the current methods that intervene with the YAP/TAZ-TEAD oncogenic signaling pathway and the emerging applications of combination therapies, gut microbiota, and epigenetic plasticity that could potentiate the efficacy of chemo/immunotherapy as improved cancer therapeutic strategies.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Neda Ashayeri
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Leili Baghaie
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kosar Satari
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Dmitriy A Bosykh
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sayan Chakraborty
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
22
|
Wang J, Qi Z, Wu Y, Wang A, Liu Q, Zou F, Wang B, Qi S, Cao J, Hu C, Shi C, Liang Q, Wang L, Liu J, Wang W, Liu Q. Discovery of IHMT-MST1-39 as a novel MST1 kinase inhibitor and AMPK activator for the treatment of diabetes mellitus. Signal Transduct Target Ther 2023; 8:143. [PMID: 37015918 PMCID: PMC10073293 DOI: 10.1038/s41392-023-01352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/03/2023] [Accepted: 02/01/2023] [Indexed: 04/06/2023] Open
Abstract
Insulin-producing pancreatic β cell death is the fundamental cause of type 1 diabetes (T1D) and a contributing factor to type 2 diabetes (T2D). Moreover, metabolic disorder is another hallmark of T2D. Mammalian sterile 20-like kinase 1 (MST1) contributes to the progression of diabetes mellitus through apoptosis induction and acceleration of pancreatic β cell dysfunction. AMP-activated protein kinase (AMPK) is an energy sensing kinase and its activation has been suggested as a treatment option for metabolic diseases. Thus, pharmacological inhibition of MST1 and activation of AMPK simultaneously represents a promising approach for diabetes therapy. Here, we discovered a novel selective MST1 kinase inhibitor IHMT-MST1-39, which exhibits anti-apoptosis efficacy and improves the survival of pancreatic β cells under diabetogenic conditions, as well as primary pancreatic islets in an ex vivo disease model. Mechanistically, IHMT-MST1-39 activated AMPK signaling pathway in hepatocytes in vitro, combination of IHMT-MST1-39 and metformin synergistically prevented hyperglycemia and significantly ameliorated glucose tolerance and insulin resistance in diabetic mice. Taken together, IHMT-MST1-39 is a promising anti-diabetic candidate as a single agent or in combination therapy for both T1D and T2D.
Collapse
Affiliation(s)
- Junjie Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Yun Wu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Aoli Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Qingwang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Shuang Qi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Jiangyan Cao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chen Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Chenliang Shi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qianmao Liang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Li Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, P. R. China.
| |
Collapse
|
23
|
Gromowski T, Lukacs-Kornek V, Cisowski J. Current view of liver cancer cell-of-origin and proposed mechanisms precluding its proper determination. Cancer Cell Int 2023; 23:3. [PMID: 36609378 PMCID: PMC9824961 DOI: 10.1186/s12935-022-02843-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Hepatocellular carcinoma and intrahepatic cholangiocarcinoma are devastating primary liver cancers with increasing prevalence in many parts of the world. Despite intense investigation, many aspects of their biology are still largely obscure. For example, numerous studies have tackled the question of the cell-of-origin of primary liver cancers using different experimental approaches; they have not, however, provided a clear and undisputed answer. Here, we will review the evidence from animal models supporting the role of all major types of liver epithelial cells: hepatocytes, cholangiocytes, and their common progenitor as liver cancer cell-of-origin. Moreover, we will also propose mechanisms that promote liver cancer cell plasticity (dedifferentiation, transdifferentiation, and epithelial-to-mesenchymal transition) which may contribute to misinterpretation of the results and which make the issue of liver cancer cell-of-origin particularly complex.
Collapse
Affiliation(s)
- Tomasz Gromowski
- grid.5522.00000 0001 2162 9631Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Veronika Lukacs-Kornek
- grid.10388.320000 0001 2240 3300Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Jaroslaw Cisowski
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
24
|
Bunker J, Bashir M, Bailey S, Boodram P, Perry A, Delaney R, Tsachaki M, Sprecher SG, Nelson E, Call GB, Rister J. Blimp-1/PRDM1 and Hr3/RORβ specify the blue-sensitive photoreceptor subtype in Drosophila by repressing the hippo pathway. Front Cell Dev Biol 2023; 11:1058961. [PMID: 36960411 PMCID: PMC10027706 DOI: 10.3389/fcell.2023.1058961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
During terminal differentiation of the mammalian retina, transcription factors control binary cell fate decisions that generate functionally distinct subtypes of photoreceptor neurons. For instance, Otx2 and RORβ activate the expression of the transcriptional repressor Blimp-1/PRDM1 that represses bipolar interneuron fate and promotes rod photoreceptor fate. Moreover, Otx2 and Crx promote expression of the nuclear receptor Nrl that promotes rod photoreceptor fate and represses cone photoreceptor fate. Mutations in these four transcription factors cause severe eye diseases such as retinitis pigmentosa. Here, we show that a post-mitotic binary fate decision in Drosophila color photoreceptor subtype specification requires ecdysone signaling and involves orthologs of these transcription factors: Drosophila Blimp-1/PRDM1 and Hr3/RORβ promote blue-sensitive (Rh5) photoreceptor fate and repress green-sensitive (Rh6) photoreceptor fate through the transcriptional repression of warts/LATS, the nexus of the phylogenetically conserved Hippo tumor suppressor pathway. Moreover, we identify a novel interaction between Blimp-1 and warts, whereby Blimp-1 represses a warts intronic enhancer in blue-sensitive photoreceptors and thereby gives rise to specific expression of warts in green-sensitive photoreceptors. Together, these results reveal that conserved transcriptional regulators play key roles in terminal cell fate decisions in both the Drosophila and the mammalian retina, and the mechanistic insights further deepen our understanding of how Hippo pathway signaling is repurposed to control photoreceptor fates for Drosophila color vision.
Collapse
Affiliation(s)
- Joseph Bunker
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, MA, United States
| | - Mhamed Bashir
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, MA, United States
| | - Sydney Bailey
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, MA, United States
| | - Pamela Boodram
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, MA, United States
- NYU Langone Medical Center, New York, NY, United States
| | - Alexis Perry
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, MA, United States
| | - Rory Delaney
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, MA, United States
| | - Maria Tsachaki
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Simon G. Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Erik Nelson
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States
| | - Gerald B. Call
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Jens Rister
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, MA, United States
- *Correspondence: Jens Rister,
| |
Collapse
|
25
|
Zeng Z, Gu SS, Ouardaoui N, Tymm C, Yang L, Wong CJ, Li D, Zhang W, Wang X, Weirather JL, Rodig SJ, Hodi FS, Brown M, Liu XS. Hippo Signaling Pathway Regulates Cancer Cell-Intrinsic MHC-II Expression. Cancer Immunol Res 2022; 10:1559-1569. [PMID: 36219700 DOI: 10.1158/2326-6066.cir-22-0227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/02/2022] [Accepted: 10/06/2022] [Indexed: 01/10/2023]
Abstract
MHC-II is known to be mainly expressed on the surface of antigen-presenting cells. Evidence suggests MHC-II is also expressed by cancer cells and may be associated with better immunotherapy responses. However, the role and regulation of MHC-II in cancer cells remain unclear. In this study, we leveraged data mining and experimental validation to elucidate the regulation of MHC-II in cancer cells and its role in modulating the response to immunotherapy. We collated an extensive collection of omics data to examine cancer cell-intrinsic MHC-II expression and its association with immunotherapy outcomes. We then tested the functional relevance of cancer cell-intrinsic MHC-II expression using a syngeneic transplantation model. Finally, we performed data mining to identify pathways potentially involved in the regulation of MHC-II expression, and experimentally validated candidate regulators. Analyses of preimmunotherapy clinical samples in the CheckMate 064 trial revealed that cancer cell-intrinsic MHC-II protein was positively correlated with more favorable immunotherapy outcomes. Comprehensive meta-analyses of multiomics data from an exhaustive collection of data revealed that MHC-II is heterogeneously expressed in various solid tumors, and its expression is particularly high in melanoma. Using a syngeneic transplantation model, we further established that melanoma cells with high MHC-II responded better to anti-PD-1 treatment. Data mining followed by experimental validation revealed the Hippo signaling pathway as a potential regulator of melanoma MHC-II expression. In summary, we identified the Hippo signaling pathway as a novel regulator of cancer cell-intrinsic MHC-II expression. These findings suggest modulation of MHC-II in melanoma could potentially improve immunotherapy response.
Collapse
Affiliation(s)
- Zexian Zeng
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Shengqing Stan Gu
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nofal Ouardaoui
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Carly Tymm
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Lin Yang
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Cheryl J Wong
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | - Dian Li
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Wubing Zhang
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xiaoqing Wang
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jason L Weirather
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Scott J Rodig
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - X Shirley Liu
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
26
|
Suvorov A. Modalities of aging in organisms with different strategies of resource allocation. Ageing Res Rev 2022; 82:101770. [PMID: 36330930 PMCID: PMC10435286 DOI: 10.1016/j.arr.2022.101770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/17/2022] [Accepted: 10/24/2022] [Indexed: 01/31/2023]
Abstract
Although the progress of aging research relies heavily on a theoretical framework, today there is no consensus on many critical questions in aging biology. I hypothesize that a systematic analysis of the intersection of different evolutionary mechanisms of aging with diverse resource allocation strategies in different organisms may reconcile aging hypotheses. The application of disposable soma, mutation accumulation, antagonistic pleiotropy, and life-history theory is considered across organisms with asexual reproduction, organisms with sexual reproduction and indeterminate growth in different conditions of extrinsic mortality, and organisms with determinate growth, with endotherms/homeotherms as a subgroup. This review demonstrates that different aging mechanisms are complementary to each other, and in organisms with different resource allocation strategies they form aging modalities ranging from immortality to suicidal programs. It also revamps the role of growth arrest in aging. Growth arrest evolved in many different groups of organisms as a result of resource reallocation from growth to reproduction (e.g., semelparous animals, holometabolic insects), or from growth to nutrient storage (endotherms/homeotherms). Growth arrest in different animal lineages has similar molecular mechanisms and similar consequences for longevity due to the conflict between growth-promoting and growth-suppressing programs and suppression of regenerative capacity.
Collapse
Affiliation(s)
- Alexander Suvorov
- Environmental Health Sciences, University of Massachusetts, Amherst 240B Goessmann, 686 Noth Pleasant Str., Amherst, MA 01003, USA.
| |
Collapse
|
27
|
Xu J, Sun S, Zhang W, Dong J, Huang C, Wang X, Jia M, Yang H, Wang Y, Jiang Y, Cao L, Huang Z. Irigenin inhibits glioblastoma progression through suppressing YAP/β-catenin signaling. Front Pharmacol 2022; 13:1027577. [PMID: 36532767 PMCID: PMC9748621 DOI: 10.3389/fphar.2022.1027577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/16/2022] [Indexed: 09/14/2024] Open
Abstract
Glioblastoma (GBM) is the most malignant glioma in brain tumors with low survival and high recurrence rate. Irigenin, as an isoflavone compound extracted from Shegan, has shown many pharmacological functions such as antioxidant, anti-inflammatory and anti-tumor. However, the effects of irigenin on GBM cells and the related molecular mechanisms remain unexplored. In this study, we found that irigenin inhibited the proliferation of GBM cells in a dose-dependent manner by several assays in vitro. Subsequently, we found that irigenin arrested cell cycle at G2/M phase and induced apoptosis of GBM cells in vitro. In addition, irigenin inhibited the migration of GBM cells. Mechanically, we found that irigenin treatment decreased the expression of YAP (yes-associated protein), suppressed β-catenin signaling. Furthermore, overexpression of YAP partially restored the anti-tumor effects of irigenin on GBM cells in vitro. Finally, we found that irigenin inhibited the growth of tumor in GBM xenograft mice model through inactivation of YAP. Taken together, these results suggest that irigenin exerts its anticancer effects on GBM via inhibiting YAP/β-catenin signaling, which may provide a new strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Jiayun Xu
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shanshan Sun
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wei Zhang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jianhong Dong
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Changgang Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xin Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mengxian Jia
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Hao Yang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yongjie Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yuanyuan Jiang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liying Cao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Zhihui Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Chauhan N, Manojkumar A, Jaggi M, Chauhan SC, Yallapu MM. microRNA-205 in prostate cancer: Overview to clinical translation. Biochim Biophys Acta Rev Cancer 2022; 1877:188809. [PMID: 36191828 PMCID: PMC9996811 DOI: 10.1016/j.bbcan.2022.188809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
Abstract
Prostate cancer (PrCa) is the most common type of cancer among men in the United States. The metastatic and advanced PrCa develops drug resistance to current regimens which accounts for the poor management. microRNAs (miRNAs) have been well-documented for their diagnostic, prognostic, and therapeutic roles in various human cancers. Recent literature confirmed that microRNA-205 (miR-205) has been established as one of the tumor suppressors in PrCa. miR-205 regulates number of cellular functions, such as proliferation, invasion, migration/metastasis, and apoptosis. It is also evident that miR-205 can serve as a key biomarker in diagnostic, prognostic, and therapy of PrCa. Therefore, in this review, we will provide an overview of tumor suppressive role of miR-205 in PrCa. This work also outlines miR-205's specific role in targeted mechanisms for chemosensitization and radiosensitization in PrCa. A facile approach of delivery paths for successful clinical translation is documented. Together, all these studies provide a novel insight of miR-205 as an adjuvant agent for reducing the widening gaps in clinical outcome of PrCa patients.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anjali Manojkumar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
29
|
Kohno T, Kojima T. Atypical Macropinocytosis Contributes to Malignant Progression: A Review of Recent Evidence in Endometrioid Endometrial Cancer Cells. Cancers (Basel) 2022; 14:cancers14205056. [PMID: 36291839 PMCID: PMC9599675 DOI: 10.3390/cancers14205056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary A novel type of macropinocytosis has been identified as a trigger for the malignant progression of endometrial cancer. Transiently reducing epithelial barrier homeostasis leads to macropinocytosis by splitting between adjacent cells in endometrioid endometrial cancer. Macropinocytosis causes morphological changes in well-differentiated to poorly differentiated cancer cells. Inhibition of macropinocytosis promotes a persistent dormant state in the intrinsic KRAS-mutated cancer cell line Sawano. This review focuses on the mechanisms of atypical macropinocytosis and its effects on cellular function, and it describes the physiological processes involved in inducing resting conditions in endometrioid endometrial cancer cells. Abstract Macropinocytosis is an essential mechanism for the non-specific uptake of extracellular fluids and solutes. In recent years, additional functions have been identified in macropinocytosis, such as the intracellular introduction pathway of drugs, bacterial and viral infection pathways, and nutritional supplement pathway of cancer cells. However, little is known about the changes in cell function after macropinocytosis. Recently, it has been reported that macropinocytosis is essential for endometrial cancer cells to initiate malignant progression in a dormant state. Macropinocytosis is formed by a temporary split of adjacent bicellular junctions of epithelial sheets, rather than from the apical surface or basal membrane, as a result of the transient reduction of tight junction homeostasis. This novel type of macropinocytosis has been suggested to be associated with the malignant pathology of endometriosis and endometrioid endometrial carcinoma. This review outlines the induction of malignant progression of endometrial cancer cells by macropinocytosis based on a new mechanism and the potential preventive mechanism of its malignant progression.
Collapse
|
30
|
Ruoff F, Kersten N, Anderle N, Jerbi S, Stahl A, Koch A, Staebler A, Hartkopf A, Brucker SY, Hahn M, Schenke-Layland K, Schmees C, Templin MF. Protein Profiling of Breast Carcinomas Reveals Expression of Immune-Suppressive Factors and Signatures Relevant for Patient Outcome. Cancers (Basel) 2022; 14:cancers14184542. [PMID: 36139700 PMCID: PMC9496820 DOI: 10.3390/cancers14184542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
In cancer, the complex interplay between tumor cells and the tumor microenvironment results in the modulation of signaling processes. By assessing the expression of a multitude of proteins and protein variants in cancer tissue, wide-ranging information on signaling pathway activation and the status of the immunological landscape is obtainable and may provide viable information on the treatment response. Archived breast cancer tissues from a cohort of 84 patients (no adjuvant therapy) were analyzed by high-throughput Western blotting, and the expression of 150 proteins covering central cancer pathways and immune cell markers was examined. By assessing CD8α, CD11c, CD16 and CD68 expression, immune cell infiltration was determined and revealed a strong correlation between event-free patient survival and the infiltration of immune cells. The presence of tumor-infiltrating lymphocytes was linked to the pronounced activation of the Jak/Stat signaling pathway and apoptotic processes. The elevated phosphorylation of PPARγ (pS112) in non-immune-infiltrated tumors suggests a novel immune evasion mechanism in breast cancer characterized by increased PPARγ phosphorylation. Multiplexed immune cell marker assessment and the protein profiling of tumor tissue provide functional signaling data facilitating breast cancer patient stratification.
Collapse
Affiliation(s)
- Felix Ruoff
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Nicolas Kersten
- FZI Research Center for Information Technology, Intelligent Systems and Production Engineering (ISPE), 76131 Karlsruhe, Germany
- Interfaculty Institute for Biomedical Informatics (IBMI), University of Tuebingen, 72076 Tuebingen, Germany
| | - Nicole Anderle
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Sandra Jerbi
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Aaron Stahl
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - André Koch
- Department of Women’s Health, University of Tuebingen, 72076 Tuebingen, Germany
| | - Annette Staebler
- Institute of Pathology and Neuropathology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Andreas Hartkopf
- Department of Women’s Health, University of Tuebingen, 72076 Tuebingen, Germany
- Department of Women’s Health, University of Ulm, 89081 Ulm, Germany
| | - Sara Y. Brucker
- Department of Women’s Health, University of Tuebingen, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Markus Hahn
- Department of Women’s Health, University of Tuebingen, 72076 Tuebingen, Germany
| | - Katja Schenke-Layland
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tuebingen, 72076 Tuebingen, Germany
| | - Christian Schmees
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Markus F. Templin
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
- Correspondence: ; Tel.: +49-7121-51530-828
| |
Collapse
|
31
|
Gu Y, Wang Y, Sha Z, He C, Zhu Y, Li J, Yu A, Zhong Z, Wang X, Sun Y, Lan F, Yu FX. Transmembrane protein KIRREL1 regulates Hippo signaling via a feedback loop and represents a therapeutic target in YAP/TAZ-active cancers. Cell Rep 2022; 40:111296. [PMID: 36044856 DOI: 10.1016/j.celrep.2022.111296] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/05/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
The Hippo tumor-suppressor pathway is frequently dysregulated in human cancers and represents a therapeutic target. However, strategies targeting the mammalian Hippo pathway are limited because of the lack of a well-established cell-surface regulator. Here, we show that transmembrane protein KIRREL1, by interacting with both SAV1 and LATS1/2, promotes LATS1/2 activation by MST1/2 (Hippo kinases), and LATS1/2 activation, in turn, inhibits activity of YAP/TAZ oncoproteins. Conversely, YAP/TAZ directly induce the expression of KIRREL1 in a TEAD1-4-dependent manner. Indeed, KIRREL1 expression positively correlates with canonical YAP/TAZ target gene expression in clinical tumor specimens and predicts poor prognosis. Moreover, transgenic expression of KIRREL1 effectively blocks tumorigenesis in a mouse intrahepatic cholangiocarcinoma model, indicating a tumor-suppressor role of KIRREL1. Hence, KIRREL1 constitutes a negative feedback mechanism regulating the Hippo pathway and serves as a cell-surface marker and potential drug target in cancers with YAP/TAZ dependency.
Collapse
Affiliation(s)
- Yuan Gu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032 China
| | - Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhao Sha
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chenxi He
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuwen Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jian Li
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Aijuan Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xuefei Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032 China
| | - Yihong Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032 China
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
32
|
Li Y, Nie JJ, Yang Y, Li J, Li J, Wu X, Liu X, Chen DF, Yang Z, Xu FJ, Yang Y. Redox-Unlockable Nanoparticle-Based MST1 Delivery System to Attenuate Hepatic Steatosis via the AMPK/SREBP-1c Signaling Axis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34328-34341. [PMID: 35858286 PMCID: PMC9353777 DOI: 10.1021/acsami.2c05889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
To date, few effective treatments have been licensed for nonalcoholic fatty liver disease (NAFLD), which a kind of chronic liver disease. Mammalian sterile 20-like kinase 1 (MST1) is reported to be involved in the development of NAFLD. Thus, we evaluated the suitability of a redox-unlockable polymeric nanoparticle Hep@PGEA vector to deliver MST1 or siMST1 (HCP/MST1 or HCP/siMST1) for NAFLD therapy. The Hep@PGEA vector can efficiently deliver the condensed functional nucleic acids MST1 or siMST1 into NAFLD-affected mouse liver to upregulate or downregulate MST1 expression. The HCP/MST1 complexes significantly improved liver insulin resistance sensitivity and reduced liver damage and lipid accumulation by the AMPK/SREBP-1c pathway without significant adverse events. Instead, HCP/siMST1 delivery exacerbates the NAFLD. The analysis of NAFLD patient samples further clarified the role of MST1 in the development of hepatic steatosis in patients with NAFLD. The MST1-based gene intervention is of considerable potential for clinical NAFLD therapy, and the Hep@PGEA vector provides a promising option for NAFLD gene therapy.
Collapse
Affiliation(s)
- Yuhan Li
- School
of Basic Medical Sciences, Ningxia Medical
University, Yinchuan 750004, China
- Beijing
Engineering Research Center for Experimental Animal Models of Human
Critical Diseases, Institute of Laboratory Animal Science, Chinese
Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| | - Jing-Jun Nie
- Key
Lab of Biomedical Materials of Natural Macromolecules (Ministry of
Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Laboratory
of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials,
Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yuhui Yang
- Capital
Medical University, Beijing 100035, China
| | - Jianning Li
- School
of Basic Medical Sciences, Ningxia Medical
University, Yinchuan 750004, China
| | - Jiarui Li
- School
of Basic Medical Sciences, Ningxia Medical
University, Yinchuan 750004, China
| | - Xianxian Wu
- Beijing
Engineering Research Center for Experimental Animal Models of Human
Critical Diseases, Institute of Laboratory Animal Science, Chinese
Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| | - Xing Liu
- Beijing
Engineering Research Center for Experimental Animal Models of Human
Critical Diseases, Institute of Laboratory Animal Science, Chinese
Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| | - Da-Fu Chen
- Laboratory
of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials,
Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Zhiwei Yang
- Beijing
Engineering Research Center for Experimental Animal Models of Human
Critical Diseases, Institute of Laboratory Animal Science, Chinese
Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| | - Fu-Jian Xu
- Key
Lab of Biomedical Materials of Natural Macromolecules (Ministry of
Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yi Yang
- School
of Basic Medical Sciences, Ningxia Medical
University, Yinchuan 750004, China
| |
Collapse
|
33
|
Brown SZ, McCarthy GA, Carroll JR, Di Niro R, Pelz C, Jain A, Sutton TL, Holly HD, Nevler A, Schultz CW, McCoy MD, Cozzitorto JA, Jiang W, Yeo CJ, Dixon DA, Sears RC, Brody JR. The RNA-Binding Protein HuR Posttranscriptionally Regulates the Protumorigenic Activator YAP1 in Pancreatic Ductal Adenocarcinoma. Mol Cell Biol 2022; 42:e0001822. [PMID: 35703534 PMCID: PMC9302082 DOI: 10.1128/mcb.00018-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/31/2022] [Accepted: 05/19/2022] [Indexed: 01/26/2023] Open
Abstract
Yes-associated protein 1 (YAP1) is indispensable for the development of mutant KRAS-driven pancreatic ductal adenocarcinoma (PDAC). High YAP1 mRNA is a prognostic marker for worse overall survival in patient samples; however, the regulatory mechanisms that mediate its overexpression are not well understood. YAP1 genetic alterations are rare in PDAC, suggesting that its dysregulation is likely not due to genetic events. HuR is an RNA-binding protein whose inhibition impacts many cancer-associated pathways, including the "conserved YAP1 signature" as demonstrated by gene set enrichment analysis. Screening publicly available and internal ribonucleoprotein immunoprecipitation (RNP-IP) RNA sequencing (RNA-Seq) data sets, we discovered that YAP1 is a high-confidence target, which was validated in vitro with independent RNP-IPs and 3' untranslated region (UTR) binding assays. In accordance with our RNA sequencing analysis, transient inhibition (e.g., small interfering RNA [siRNA] and small-molecular inhibition) and CRISPR knockout of HuR significantly reduced expression of YAP1 and its transcriptional targets. We used these data to develop a HuR activity signature (HAS), in which high expression predicts significantly worse overall and disease-free survival in patient samples. Importantly, the signature strongly correlates with YAP1 mRNA expression. These findings highlight a novel mechanism of YAP1 regulation, which may explain how tumor cells maintain YAP1 mRNA expression at dynamic times during pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Samantha Z. Brown
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Philadelphia, Pennsylvania, USA
- Department of Surgery, Oregon Health & Science University, Portland, Oregon, USA
- Brenden-Colson Center for Pancreatic Care, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Grace A. McCarthy
- Department of Surgery, Oregon Health & Science University, Portland, Oregon, USA
- Brenden-Colson Center for Pancreatic Care, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - James R. Carroll
- Department of Surgery, Oregon Health & Science University, Portland, Oregon, USA
- Brenden-Colson Center for Pancreatic Care, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Roberto Di Niro
- Department of Surgery, Oregon Health & Science University, Portland, Oregon, USA
- Brenden-Colson Center for Pancreatic Care, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Carl Pelz
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Aditi Jain
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Philadelphia, Pennsylvania, USA
| | - Thomas L. Sutton
- Department of Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Hannah D. Holly
- Brenden-Colson Center for Pancreatic Care, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Avinoam Nevler
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Philadelphia, Pennsylvania, USA
| | - Christopher W. Schultz
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Philadelphia, Pennsylvania, USA
| | - Matthew D. McCoy
- Department of Oncology, Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA
| | - Joseph A. Cozzitorto
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Philadelphia, Pennsylvania, USA
| | - Wei Jiang
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Charles J. Yeo
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Philadelphia, Pennsylvania, USA
| | - Dan A. Dixon
- Department of Molecular Biosciences, University of Kansas Cancer Center, University of Kansas, Lawrence, Kansas, USA
| | - Rosalie C. Sears
- Brenden-Colson Center for Pancreatic Care, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Jonathan R. Brody
- Department of Surgery, Oregon Health & Science University, Portland, Oregon, USA
- Brenden-Colson Center for Pancreatic Care, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
34
|
Lv T, Xu J, Yuan H, Wang J, Jiang X. Dual Function of Par3 in Tumorigenesis. Front Oncol 2022; 12:915957. [PMID: 35875120 PMCID: PMC9305838 DOI: 10.3389/fonc.2022.915957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Cell maintenance and the establishment of cell polarity involve complicated interactions among multiple protein complexes as well as the regulation of different signaling pathways. As an important cell polarity protein, Par3 is evolutionarily conserved and involved in tight junction formation as well as tumorigenesis. In this review, we aimed to explore the function of Par3 in tumorigenesis. Research has shown that Par3 exhibits dual functions in human cancers, both tumor-promoting and tumor-suppressive. Here, we focus on the activities of Par3 in different stages and types of tumors, aiming to offer a new perspective on the molecular mechanisms that regulate the functions of Par3 in tumor development. Tumor origin, tumor microenvironment, tumor type, cell density, cell–cell contact, and the synergistic effect of Par3 and other tumor-associated signaling pathways may be important reasons for the dual function of Par3. The important role of Par3 in mammalian tumorigenesis and potential signaling pathways is context dependent.
Collapse
Affiliation(s)
- Tao Lv
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, China
- Key Laboratory of Yunnan Province Universities of Qujing Natural History and Early Vertebrate Evolution, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Jiashun Xu
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Hemei Yuan
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Jianling Wang
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, China
- *Correspondence: Jianling Wang, ; Xinni Jiang,
| | - Xinni Jiang
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
- *Correspondence: Jianling Wang, ; Xinni Jiang,
| |
Collapse
|
35
|
Xin H, Liu Y, Chen P, Yin T, Wang M, Liu T, Wen Z, Cheng Y. CD155 promotes radioresistance and malignancy of esophageal cancer by regulating Hippo-YAP pathway. Discov Oncol 2022; 13:53. [PMID: 35768666 PMCID: PMC9243211 DOI: 10.1007/s12672-022-00515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022] Open
Abstract
The expression of CD155 has been observed to increase in various human cancers, but its role in the development of esophageal cancer (EC) is unclear. Radiotherapy is one of the primary therapeutic options for EC. However, radioresistance is still a severe issue in EC treatment. In this study, Oncomine database mining, immunohistochemistry, and survival analysis showed that higher expression of CD155 in patients with EC than in healthy controls. In vitro and in vivo, we found for the first time that irradiation increased the expression of CD155 in EC cells. CD155 knockdown inhibited cell proliferation and migration and tumor formation, and significantly increased radiosensitivity in EC. The in vivo model with high CD155 expression significantly promoted the proliferation and migration of EC cells. Furthermore, increased CD155 expression was associated with poor prognosis in patients with EC. CD155 regulated the Hippo-Yap pathway, influencing cell proliferation and migration. Therefore, CD155 is essential for the proliferation, migration, and radioresistance of EC. CD155 inhibition may be a viable strategy for improving radiation treatment efficacy in individuals with EC.
Collapse
Affiliation(s)
- Huixian Xin
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China
| | - Yuchen Liu
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China
| | - Pengxiang Chen
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China
| | - Tianwen Yin
- Department of Radiation Oncology, Shandong Cancer Hospital, and Institute, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Meijie Wang
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China
| | - Tianyu Liu
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China
| | - Zhihua Wen
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China.
| | - Yufeng Cheng
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China.
| |
Collapse
|
36
|
Role of Yes-Associated Protein in Psoriasis and Skin Tumor Pathogenesis. J Pers Med 2022; 12:jpm12060978. [PMID: 35743763 PMCID: PMC9225571 DOI: 10.3390/jpm12060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Psoriasis and skin tumors (such as basal cell carcinoma, squamous cell carcinoma, and melanoma) are chronic diseases that endanger physical and mental health, and yet the causes are largely unknown and treatment options limited. The development of targeted drugs requires a better understanding of the exact pathogenesis of these diseases, and Yes-associated protein (YAP), a member of the Hippo signaling pathway, is believed to play an important role. Psoriasis and skin tumors are characterized by excessive cell proliferation, abnormal differentiation, vasodilation, and proliferation. Here, we review the literature related to YAP-associated disease mechanisms and discuss the latest research. YAP regulates cell apoptosis, proliferation, and differentiation; inhibits cell density and intercellular contacts and angiogenesis; and maintains the three-dimensional structure of the skin. These mechanisms may be associated with the occurrence and development of psoriasis and skin tumors. The results of recent studies have shown that YAP expression is increased in psoriasis and skin tumors. High expression of YAP in psoriasis and skin tumors may indicate its positive functions in skin inflammation and malignancies and may play an important role in disease pathogenesis. The study of new drugs targeting YAP can provide novel approaches for the treatment of skin diseases.
Collapse
|
37
|
YAP inhibits ERα and ER + breast cancer growth by disrupting a TEAD-ERα signaling axis. Nat Commun 2022; 13:3075. [PMID: 35654829 PMCID: PMC9163075 DOI: 10.1038/s41467-022-30831-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
Hippo signaling restricts tissue growth by inhibiting the transcriptional effector YAP. Here we uncover a role of Hippo signaling and a tumor suppressor function of YAP in estrogen receptor positive (ER+) breast cancer. We find that inhibition of Hippo/MST1/2 or activation of YAP blocks the ERα transcriptional program and ER+ breast cancer growth. Mechanistically, the Hippo pathway transcription factor TEAD physically interacts with ERα to increase its promoter/enhancer occupancy whereas YAP inhibits ERα/TEAD interaction, decreases ERα occupancy on its target promoters/enhancers, and promotes ERα degradation by the proteasome. Furthermore, YAP inhibits hormone-independent transcription of ERα gene (ESR1). Consistently, high levels of YAP correlate with good prognosis of ER+ breast cancer patients. Finally, we find that pharmacological inhibition of Hippo/MST1/2 impeded tumor growth driven by hormone therapy resistant ERα mutants, suggesting that targeting the Hippo-YAP-TEAD signaling axis could be a potential therapeutical strategy to overcome endocrine therapy resistance conferred by ERα mutants.
Collapse
|
38
|
Ren H, Chen Y, Ao Z, Cheng Q, Yang X, Tao H, Zhao L, Shen A, Li P, Fu Q. PDE4D binds and interacts with YAP to cooperatively promote HCC progression. Cancer Lett 2022; 541:215749. [PMID: 35597479 DOI: 10.1016/j.canlet.2022.215749] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 11/02/2022]
Abstract
The role of cAMP in the development of hepatocellular carcinoma (HCC) is controversial and the biological function of cAMP-hydrolysing enzyme phosphodiesterase 4D (PDE4D) in HCC remains unclear. In this study, we observed markedly higher PDE4D expression in HCC patients with poor survival. PDE4D bound to yes-associated protein (YAP), and PDE4D expression positively correlated with YAP expression in HCC. Overexpression of PDE4D increased YAP dephosphorylation and activity and promoted HCC cell growth in vitro and in vivo, which was attenuated by the YAP inhibitor verteporfin. In contrast, silencing PDE4D reduced YAP expression and HCC cell growth. Notably, forced expression of YAP promoted PDE4D and YAP target gene expression and cell growth, which were abrogated by the PDE4D inhibitor roflumilast. Mechanistically, silencing of YAP caused PDE4D downregulation and HCC cell apoptosis via extracellular signal-regulated kinase (ERK) activation. Roflumilast activated cAMP-PKA signaling and induced cAMP-PKA-dependent YAP phosphorylation at serine 127, resulting in YAP degradation and suppression of HCC growth, which were reversed by the PKA inhibitor PKI. Additionally, transfection of the YAP-S127A mutant reversed roflumilast-mediated suppression of YAP and cell growth. Taken together, our findings indicate that PDE4D binds to and interacts with YAP to promote HCC progression. Targeting the PDE4D-YAP interaction with roflumilast may be an effective strategy for HCC treatment.
Collapse
Affiliation(s)
- Huili Ren
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingxiang Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Ao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Cheng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Hua Tao
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lixin Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ao Shen
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Peiyuan Li
- Department of Gastroenterology, Wenchang People's Hospital, Hainan, China; Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.
| |
Collapse
|
39
|
Basak T, Ain R. Molecular regulation of trophoblast stem cell self-renewal and giant cell differentiation by the Hippo components YAP and LATS1. Stem Cell Res Ther 2022; 13:189. [PMID: 35526072 PMCID: PMC9080189 DOI: 10.1186/s13287-022-02844-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/22/2022] [Indexed: 11/25/2022] Open
Abstract
Background Trophoblast stem cells (TSCs), the precursors of trophoblast cells of placenta, possess the potential to differentiate into various trophoblastic subtypes in vitro. Establishment of extraembryonic trophoblastic lineage is preceded by the “outside versus inside” positional information in preimplantation embryos, critically synchronized by the Hippo components. Abundant expression of Hippo effector YAP in TSCs and differentiated cells with paucity of information on Hippo regulation of TSC proliferation/differentiation led us test the hypothesis that Hippo dynamics is one of the regulators of TSC proliferation/differentiation. Methods Blastocyst-derived murine TSCs were used. Dynamics of Hippo components were analyzed using immunofluorescence, western blotting, immunoprecipitation, qRT-PCR. Interaction studies were performed using full-length and deletion constructs. BrdU incorporation assay, flow cytometry-based polyploidy analysis and confocal microscopy were used to decipher the underlying mechanism. Results YAP translocates to the nucleus in TSCs and utilizes its WW2 domain to interact with the PPQY motif of the stemness factor, CDX2. YAP limits TSC proliferation with associated effect on CDX2 target CyclinD1. Trophoblast giant cells (TGC) differentiation is associated with cytoplasmic retention of YAP, heightened pYAPSer127, decrease in the level of the core Hippo component, LATS1, which thereby impedes LATS1-LIMK2 association. Decreased LATS1-LIMK2 complex formation in TGCs was associated with elevated pLIMK2Thr505 as well as its target pCOFILINSer3. Precocious overexpression of LATS1 during trophoblast differentiation decreased TGC marker, Prl2c2, diminished pLIMK2Thr505 and inactive COFILIN (pCOFILINSer3) while COFILIN-phosphatase, CHRONOPHIN remained unchanged. LATS1 overexpression inhibited trophoblast endoreduplication with smaller-sized TGC-nuclei, lower ploidy level and disintegrated actin filaments. Inhibition of LIMK2 activity recapitulated the effects of LATS1 overexpression in trophoblast cells. Conclusion These results unveil a multilayered regulation of trophoblast self-renewal and differentiation by the Hippo components. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02844-w.
Collapse
Affiliation(s)
- Trishita Basak
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
40
|
Faraji F, Ramirez SI, Anguiano Quiroz PY, Mendez-Molina AN, Gutkind JS. Genomic Hippo Pathway Alterations and Persistent YAP/TAZ Activation: New Hallmarks in Head and Neck Cancer. Cells 2022; 11:1370. [PMID: 35456049 PMCID: PMC9028246 DOI: 10.3390/cells11081370] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents a highly prevalent and deadly malignancy worldwide. The prognosis for locoregionally advanced HNSCC has not appreciably improved over the past 30 years despite advances in surgical, radiation, and targeted therapies and less than 20% of HNSCC patients respond to recently approved immune checkpoint inhibitors. The Hippo signaling pathway, originally discovered as a mechanism regulating tissue growth and organ size, transduces intracellular and extracellular signals to regulate the transcriptional co-activators YAP and TAZ. Alterations in the Hippo pathway resulting in persistent YAP and TAZ activation have emerged as major oncogenic drivers. Our analysis of the human HNSCC oncogenome revealed multiple genomic alterations impairing Hippo signaling and activating YAP and TAZ, which in turn contribute to HNSCC development. This includes mutations and deletions of the FAT1 gene (29%) and amplification of the WWTR1 (encoding TAZ, 14%) and YAP1 genes (8%), together representing one of the most genetically altered signaling mechanisms in this malignancy. Here, we discuss key elements of the mammalian Hippo pathway, detail mechanisms by which perturbations in Hippo signaling promote HNSCC initiation and progression and outline emerging strategies to target Hippo signaling vulnerabilities as part of novel multimodal precision therapies for HNSCC.
Collapse
Affiliation(s)
- Farhoud Faraji
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, La Jolla, CA 92093, USA
- Gleiberman Head and Neck Cancer Center, University of California San Diego Health, La Jolla, CA 92093, USA
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
| | - Sydney I. Ramirez
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Disease and Global Public Health, Department of Internal Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | | | | | - J. Silvio Gutkind
- Gleiberman Head and Neck Cancer Center, University of California San Diego Health, La Jolla, CA 92093, USA
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
| |
Collapse
|
41
|
Moon S, Hwang S, Kim B, Lee S, Kim H, Lee G, Hong K, Song H, Choi Y. Hippo Signaling in the Endometrium. Int J Mol Sci 2022; 23:ijms23073852. [PMID: 35409214 PMCID: PMC8998929 DOI: 10.3390/ijms23073852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
The uterus is essential for embryo implantation and fetal development. During the estrous cycle, the uterine endometrium undergoes dramatic remodeling to prepare for pregnancy. Angiogenesis is an essential biological process in endometrial remodeling. Steroid hormones regulate the series of events that occur during such remodeling. Researchers have investigated the potential factors, including angiofactors, involved in endometrial remodeling. The Hippo signaling pathway discovered in the 21st century, plays important roles in various cellular functions, including cell proliferation and cell death. However, its role in the endometrium remains unclear. In this review, we describe the female reproductive system and its association with the Hippo signaling pathway, as well as novel Hippo pathway genes and potential target genes.
Collapse
|
42
|
Chen T, Sun D, Wang Q, Zhou T, Tan J, Xu C, Cheng H, Shen W. α-Hederin Inhibits the Proliferation of Hepatocellular Carcinoma Cells via Hippo-Yes-Associated Protein Signaling Pathway. Front Oncol 2022; 12:839603. [PMID: 35311132 PMCID: PMC8927085 DOI: 10.3389/fonc.2022.839603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/10/2022] [Indexed: 12/30/2022] Open
Abstract
Aims Yes-associated protein (YAP), a downstream protein in the Hippo signaling pathway, plays an important role in tumor proliferation, including in hepatocellular carcinoma (HCC). α-hederin, a monodesmosidic triterpenoid saponin isolated from Fructus akebiae, displayed anti-cancer effects on several cancer cell lines but the precise mechanism has not been ascertained. In the present study, we explored the effects of α-hederin on cell proliferation and apoptosis in human HCC cell lines and the underlying mechanisms. Main Method Cell proliferation and apoptosis were assessed using 5-ethynyl-2’-deoxyuridine staining, colony formation, flow cytometry. The expression patterns of components of Hippo signaling pathway and apoptotic genes were further examined via RT-qPCR and immunoblotting. A xenograft tumor model in nude mice was used to evaluate the anti-HCC effects of α-hederin in vivo. Results α-hederin promoted the apoptosis and inhibited the proliferation of SMMC-7721 and HepG2 cells in vitro, and remarkably inhibited the tumor size and weight in the xenograft mouse model. Additionally, α-hederin increased the expression of pro-apoptosis proteins and suppressed the expression of anti-apoptosis proteins. Moreover, α-hederin treatment upregulated the expression of Hippo signaling pathway-related proteins and genes, while, effectively reduced the level of nuclear YAP, which resulted in the inhibition of proliferation and the induction of apoptosis of HCC cells. Finally, the effects of α-hederin on HCC cell proliferation and apoptosis were alleviated by XMU-MP-1, a Mst1/2 inhibitor in vitro. Significance We identified α-hederin is a novel agonist of Hippo signaling pathway and possesses an anti-HCC efficacy through inhibiting YAP activity.
Collapse
Affiliation(s)
- Tongqing Chen
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Dongdong Sun
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Qijuan Wang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Tingting Zhou
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Jiani Tan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Changliang Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Weixing Shen
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu, China
| |
Collapse
|
43
|
Zheng X, Liu X, Lei Y, Wang G, Liu M. Glypican-3: A Novel and Promising Target for the Treatment of Hepatocellular Carcinoma. Front Oncol 2022; 12:824208. [PMID: 35251989 PMCID: PMC8889910 DOI: 10.3389/fonc.2022.824208] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Glypican-3 (GPC3) is a membrane-associated proteoglycan that is specifically up-regulated in hepatocellular carcinoma (HCC) although rarely or not expressed in normal liver tissues, making it a perfect diagnostic and treatment target for HCC. Several GPC3-based clinical trials are ongoing and recently several innovative GPC3-targeted therapeutic methods have emerged with exciting results, including GPC3 vaccine, anti-GPC3 immunotoxin, combined therapy with immune checkpoint blockades (ICBs), and chimeric antigen receptor (CAR) T or NK cells. Here, we review the value of GPC3 in the diagnosis and prognosis of HCC, together with its signaling pathways, with a specific focus on GPC3-targeted treatments of HCC and some prospects for the future GPC3-based therapeutic strategies in HCC.
Collapse
Affiliation(s)
- Xiufeng Zheng
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xun Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yanna Lei
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Hu Y, Zhang P, Shi Y, Dong X, Wu Y, Dong D, Li E, Fan Y. Inhibition of Ras protein activator like 2 produces antitumor effects in gastric cancer via the suppression of YAP1 activation. ENVIRONMENTAL TOXICOLOGY 2022; 37:527-538. [PMID: 34826200 DOI: 10.1002/tox.23418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/28/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Ras protein activator like 2 (RASAL2) has a cancer-related function, but plays inconsistent roles in different malignancies. This project was designed to determine the role of RASAL2 in carcinogenesis in gastric cancer. The Cancer Genome Atlas data revealed high levels of RASAL2 in gastric cancer tissue, which was confirmed in clinical specimens of gastric cancer via real-time quantitative PCR and western blotting assays. High RASAL2 was correlated with a reduced survival rate in gastric cancer patients. In gastric cancer cell lines, the silencing of RASAL2 restrained cellular proliferation, invasion and epithelial-to-mesenchymal transition, while enhancing chemosensitivity to cisplatin. Mechanistically, the silencing of RASAL2 was found to inhibit the activation of Yes-associated protein 1 (YAP1), a pro-oncogenic protein in gastric cancer, and decrease the expression of YAP1 target genes. The re-expression of constitutively active YAP1 substantially reversed RASAL2-silencing-produced antitumor effects. Moreover, treatment with YAP1 inhibitors could diminish RASAL2-overexpression-evoked oncogenic effects in gastric cancer cells. Additionally, gastric cancer cells with RASAL2 silencing exhibited a reduced ability to form xenograft tumors in nude mice. Collectively, our data demonstrate that the silencing of RASAL2 has noteworthy antitumor effects in gastric cancer cells via the suppression of YAP1 activation. This project underscores a vital role of the RASAL2/YAP1 axis in gastric progression and indicates that targeting this oncogenic axis may be applied as a potential therapeutic option for gastric cancer.
Collapse
Affiliation(s)
- Yuan Hu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Pengchuang Zhang
- Department of Gynecologic Cancer, Shaanxi Provincial Tumor Hospital, China
| | - Yu Shi
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Xuyuan Dong
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yinying Wu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Danfeng Dong
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Enxiao Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yangwei Fan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, China
| |
Collapse
|
45
|
YAP ISGylation increases its stability and promotes its positive regulation on PPP by stimulating 6PGL transcription. Cell Death Dis 2022; 8:59. [PMID: 35149670 PMCID: PMC8837792 DOI: 10.1038/s41420-022-00842-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022]
Abstract
Yes-associated protein (YAP) activation is crucial for tumor formation and development, and its stability is regulated by ubiquitination. ISGylation is a type of ubiquitination like post-translational modification, whereas whether YAP is ISGylated and how ISGylation influences YAP ubiquitination-related function remains uncovered. In addition, YAP can activate glucose metabolism by activating the hexosamine biosynthesis pathway (HBP) and glycolysis, and generate a large number of intermediates to promote tumor proliferation. However, whether YAP stimulates the pentose phosphate pathway (PPP), another tumor-promoting glucose metabolism pathway, and the relationship between this stimulation and ISGylation needs further investigation. Here, we found that YAP was ISGylated and this ISGylation inhibited YAP ubiquitination, proteasome degradation, interaction with-beta-transducin repeat containing E3 ubiquitin-protein ligase (βTrCP) to promote YAP stability. However, ISGylation-induced pro-YAP effects were abolished by YAP K497R (K, lysine; R, arginine) mutation, suggesting K497 could be the major YAP ISGylation site. In addition, YAP ISGylation promoted cell viability, cell-derived xenograft (CDX) and patient-derived xenograft (PDX) tumor formation. YAP ISGylation also increased downstream genes transcription, including one of the key enzymes of PPP, 6-phosphogluconolactonase (6PGL). Mechanistically, YAP promoted 6PGL transcription by simultaneously recruiting SMAD family member 2 (SMAD2) and TEA domain transcription factor 4 (TEAD4) binding to the 6PGL promoter to activate PPP. In clinical lung adenocarcinoma (LUAD) specimens, we found that YAP ISGylation degree was positively associated with 6PGL mRNA level, especially in high glucose LUAD tissues compared to low glucose LUAD tissues. Collectively, this study suggested that YAP ISGylation is critical for maintaining its stability and further activation of PPP. Targeting ISGylated YAP might be a new choice for hyperglycemia cancer treatment.
Collapse
|
46
|
Qiu T, Zhang D, Xu J, Li X, Wang D, Zhao F, Qian Y, Xu J, Xu T, Zhang H, Chen X. Yes-associated protein gene overexpression regulated by β-catenin promotes gastric cancer cell tumorigenesi. Technol Health Care 2022; 30:425-440. [PMID: 35124617 PMCID: PMC9028613 DOI: 10.3233/thc-thc228039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Yes-associated protein (YAP) has been reported to act as a candidate human oncogene and played a critical role in the development of multiple cancer types. OBJECTIVE: We aimed to investigate the expression, function, and underlying mechanisms of YAP in gastric cancer (GC). METHODS: Expression levels of YAP in gastric tissues were tested. CCK8 assay, clonogenic assay, apoptosis assay, transwell assay, cell scratch assay and animal study were conducted to explore the function of YAP. Chromatin immunoprecipitation (ChIP) assay and luciferase reporter assay were performed to explore the underlying mechanism. Survival analysis was carried out to reveal the relationship between YAP and clinical outcome. RESULTS: YAP was upregulated in gastric cancer tissues and correlates with poor prognosis. YAP could promote GC cells proliferation, metastatic capacity, inhibit GC cells apoptosis in vitro and in vivo. Bothβ-catenin and YAP were mainly localized withi the tumor cell nuclei. β-catenincould upregulate YAP expression by binding to the promotor region of YAP. Patients with both YAP and β-catenin negetive expression had a better prognosis than others. CONCLUSIONS: YAP overexpression is driven by aberrant Wnt β-catenin signalingand then contributed to the GC tumorigenesis and progression. Thus, YAP might be a potential target for GC treatment.
Collapse
Affiliation(s)
- Tianzhu Qiu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Diancai Zhang
- Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Xu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Li
- Department of Pathology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Deqiang Wang
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fengjiao Zhao
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yingying Qian
- Department of Respiratory, Nanjing First Hospital, Nanjing Medical University Nanjing, Jiangsu, China
| | - Jin Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tongpeng Xu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaofeng Chen
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oncology, PuKou Branch Hospital of Jiangsu Province Hospital (NanJing PuKou Central Hospital), Nanjing, Jiangsu, China
| |
Collapse
|
47
|
Kilanowska A, Ziółkowska A. Apoptosis in Type 2 Diabetes: Can It Be Prevented? Hippo Pathway Prospects. Int J Mol Sci 2022; 23:636. [PMID: 35054822 PMCID: PMC8775644 DOI: 10.3390/ijms23020636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus is a heterogeneous disease of complex etiology and pathogenesis. Hyperglycemia leads to many serious complications, but also directly initiates the process of β cell apoptosis. A potential strategy for the preservation of pancreatic β cells in diabetes may be to inhibit the implementation of pro-apoptotic pathways or to enhance the action of pancreatic protective factors. The Hippo signaling pathway is proposed and selected as a target to manipulate the activity of its core proteins in therapy-basic research. MST1 and LATS2, as major upstream signaling kinases of the Hippo pathway, are considered as target candidates for pharmacologically induced tissue regeneration and inhibition of apoptosis. Manipulating the activity of components of the Hippo pathway offers a wide range of possibilities, and thus is a potential tool in the treatment of diabetes and the regeneration of β cells. Therefore, it is important to fully understand the processes involved in apoptosis in diabetic states and completely characterize the role of this pathway in diabetes. Therapy consisting of slowing down or stopping the mechanisms of apoptosis may be an important direction of diabetes treatment in the future.
Collapse
Affiliation(s)
- Agnieszka Kilanowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-001 Zielona Gora, Poland;
| | | |
Collapse
|
48
|
Kuyyamudi C, Menon SN, Casares F, Sinha S. Disorder in cellular packing can alter proliferation dynamics to regulate growth. Phys Rev E 2021; 104:L052401. [PMID: 34942790 DOI: 10.1103/physreve.104.l052401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
The mechanisms by which an organ regulates its growth are not yet fully understood, especially when the cells are closely packed as in epithelial tissues. We explain growth arrest as a collective dynamical transition in coupled oscillators on disordered lattices. As the cellular morphologies become homogeneous over the course of development, the signals induced by cell-cell contact increase beyond a critical value that triggers coordinated cessation of the cell-cycle oscillators driving cell division. Thus, control of cell proliferation is causally related to the geometry of cellular packing.
Collapse
Affiliation(s)
- Chandrashekar Kuyyamudi
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Shakti N Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| | - Fernando Casares
- CABD, CSIC-Universidad Pablo de Olavide-JA, 41013 Seville, Spain
| | - Sitabhra Sinha
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
49
|
Servidei T, Lucchetti D, Navarra P, Sgambato A, Riccardi R, Ruggiero A. Cell-of-Origin and Genetic, Epigenetic, and Microenvironmental Factors Contribute to the Intra-Tumoral Heterogeneity of Pediatric Intracranial Ependymoma. Cancers (Basel) 2021; 13:6100. [PMID: 34885210 PMCID: PMC8657076 DOI: 10.3390/cancers13236100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Intra-tumoral heterogeneity (ITH) is a complex multifaceted phenomenon that posits major challenges for the clinical management of cancer patients. Genetic, epigenetic, and microenvironmental factors are concurrent drivers of diversity among the distinct populations of cancer cells. ITH may also be installed by cancer stem cells (CSCs), that foster unidirectional hierarchy of cellular phenotypes or, alternatively, shift dynamically between distinct cellular states. Ependymoma (EPN), a molecularly heterogeneous group of tumors, shows a specific spatiotemporal distribution that suggests a link between ependymomagenesis and alterations of the biological processes involved in embryonic brain development. In children, EPN most often arises intra-cranially and is associated with an adverse outcome. Emerging evidence shows that EPN displays large intra-patient heterogeneity. In this review, after touching on EPN inter-tumoral heterogeneity, we focus on the sources of ITH in pediatric intra-cranial EPN in the framework of the CSC paradigm. We also examine how single-cell technology has shed new light on the complexity and developmental origins of EPN and the potential impact that this understanding may have on the therapeutic strategies against this deadly pediatric malignancy.
Collapse
Affiliation(s)
- Tiziana Servidei
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (R.R.); (A.R.)
| | - Donatella Lucchetti
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.L.); (A.S.)
| | - Pierluigi Navarra
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Alessandro Sgambato
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.L.); (A.S.)
- Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Riccardo Riccardi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (R.R.); (A.R.)
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (R.R.); (A.R.)
| |
Collapse
|
50
|
Li X, Lin YY, Tan JY, Liu KL, Shen XL, Hu YJ, Yang RY. Lappaol F, an anticancer agent, inhibits YAP via transcriptional and post-translational regulation. PHARMACEUTICAL BIOLOGY 2021; 59:619-628. [PMID: 34010589 PMCID: PMC8143639 DOI: 10.1080/13880209.2021.1923759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/09/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT Lappaol F (LAF), a natural lignan from Arctium lappa Linné (Asteraceae), inhibits tumour cell growth by inducing cell cycle arrest. However, its underlying anticancer mechanism remains unclear. OBJECTIVE The effects of LAF on the Hippo-Yes-associated protein (YAP) signalling pathway, which plays an important role in cancer progression, were explored in this study. MATERIALS AND METHODS Cervical (HeLa), colorectal (SW480), breast (MDA-MB-231) and prostate (PC3) cancer cell lines were treated with LAF at different concentrations and different durations. BALB/c nude mice bearing colon xenografts were intravenously injected with vehicle, LAF (10 or 20 mg/kg) or paclitaxel (10 mg/kg) for 15 days. The expression and nuclear localisation of YAP were analysed using transcriptome sequencing, quantitative PCR, western blotting and immunofluorescence. RESULTS LAF suppressed the proliferation of HeLa, MDA-MB-231, SW480 and PC3 cells (IC50 values of 41.5, 26.0, 45.3 and 42.9 μmol/L, respectively, at 72 h), and this was accompanied by significant downregulation in the expression of YAP and its downstream target genes at both the mRNA and protein levels. The expression of 14-3-3σ, a protein that causes YAP cytoplasmic retention and degradation, was remarkably increased, resulting in a decrease in YAP nuclear localisation. Knockdown of 14-3-3σ with small interfering RNA partially blocked LAF-induced YAP inhibition and anti-proliferation effects. In colon xenografts, treatment with LAF led to reduced YAP expression, increased tumour cell apoptosis and tumour growth inhibition. CONCLUSION LAF was shown to be an inhibitor of YAP. It exerts anticancer activity by inhibiting YAP at the transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Xiao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Ying Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia-Yi Tan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kang-Lun Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ling Shen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying-Jie Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui-Yi Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|