1
|
Han D, Yu Z, Zhang K, Gai C, Zhang P, Chai X, Zhuo X, Zhao Q, Zou Y, Zhu L. Design, synthesis, and antitumor activity of stapled peptide inhibitors targeting the RAS-RAF interactions. Eur J Med Chem 2025; 290:117568. [PMID: 40153928 DOI: 10.1016/j.ejmech.2025.117568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/12/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
RAS-RAF interactions play a vital role in the RAS-RAF-MEK-ERK signaling pathway, significantly regulating cell proliferation, differentiation, and survival. Some small molecule inhibitors targeting various components of this pathway, such as MRTX849 and AMG 510, have been introduced for clinical application. However, peptide-based drugs encounter several challenges, such as poor cell permeability, low biological stability, and rapid in vivo clearance, which hinder their application. Herein, based on co-crystal complex structures and RAS-RAF interaction hotspots, we identified four linear peptides-Raf-0 to Raf-2 and CRD-0-derived from the α-helical regions of the RAS-binding domain (RBD) and the cysteine-rich domain (CRD) of CRAF. Raf-1 was selected for further modification using a hydrocarbon stapling strategy, capping it with stearic acid at the N-terminal due to its highest binding affinity in the SPR assay. As a result, Sraf-2-1 and Sraf-7-1 bound to KRASG12C with Kd values of 3.56 μM and 2.62 μM, respectively, demonstrating robust anticancer activity in the CCK8 assay. Additionally, Sraf-2-1 and Sraf-7-1 reduced AKT phosphorylation, induced cancer cell apoptosis in a concentration-dependent manner, and effectively inhibited cancer cell migration, showing improved α-helix stability and cell permeability. In summary, our findings indicate that the hydrocarbon stapling strategy and stearic acid tagging enhanced the therapeutic potential of peptide inhibitors, offering methods for targeting RAS in cancer therapy.
Collapse
Affiliation(s)
- Dan Han
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China; Department of Burn Plastic Surgery, The Second Affiliated Hospital of Second Military Medical University, Shanghai, 200003, PR China
| | - Zhou Yu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, PR China
| | - Kai Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, PR China
| | - Conghao Gai
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, PR China
| | - Peichao Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, PR China
| | - Xiaoyun Chai
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, PR China
| | - Xiaobing Zhuo
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, PR China
| | - Qingjie Zhao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, PR China.
| | - Yan Zou
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, PR China.
| | - Lie Zhu
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China; Department of Burn Plastic Surgery, The Second Affiliated Hospital of Second Military Medical University, Shanghai, 200003, PR China.
| |
Collapse
|
2
|
Soudah N, Baskin A, Darash-Yahana M, Darlyuk-Saadon I, Smorodinsky-Atias K, Shalit T, Yu WP, Savidor A, Pikarsky E, Engelberg D. Erk1 R84H is an oncoprotein that causes hepatocellular carcinoma in mice and imposes a rigorous negative feedback loop. Oncogene 2025:10.1038/s41388-025-03437-6. [PMID: 40394416 DOI: 10.1038/s41388-025-03437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/14/2025] [Accepted: 05/06/2025] [Indexed: 05/22/2025]
Abstract
The receptor tyrosine kinase (RTK)-Ras-Raf-MEK-Erk cascade is frequently mutated in cancer, but it is not known whether Erk is a sole mediator of the pathway's oncogenicity, and what degree of Erk activity is required for oncogenicity. Also, it is assumed that high Erk activity is required to impose and maintain oncogenicity, but the exact degree of required activity is not clear. We report that induced expression of the intrinsically active variant Erk1R84H in mouse liver gave rise to hepatocellular carcinoma (HCC). Intriguingly, the phosphorylated/active form of Erk1R84H was dramatically downregulated during HCC development, and became almost undetectable in mature tumors. Similarly, in Erk1R84H-transformed NIH3T3 cells, the phosphorylated/active form of Erk1R84H was undetectable. Thus, 1) Erk1 could by itself cause HCC in mice, suggesting that it is the major or even the sole mediator of the cascade's oncogenicity. 2) Erk1R84H-induced tumors (and other tumors) are maintained by a minimal Erk activity. 3) Erk1R84H is probably the driver of the malignancy in patients that carry the R84H mutation.
Collapse
Affiliation(s)
- Nadine Soudah
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexey Baskin
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Merav Darash-Yahana
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilona Darlyuk-Saadon
- CREATE-NUS-HUJ Mechanisms of Liver Inflammatory Diseases, National University of Singapore, 1 CREATE WAY, Innovation Wing, Singapore, Singapore
- Department of Microbiology, Yong loo lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Karina Smorodinsky-Atias
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv-Yafo, 6997801, Israel
| | - Tali Shalit
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Wei-Ping Yu
- Animal Gene Editing Laboratory (AGEL), Biological Resource Centre, Agency for Science, Technology and Research (A*STAR), Proteos, 138673, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 138673, Singapore, Singapore
| | - Alon Savidor
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eli Pikarsky
- Department of Immunology and Cancer Research and Department of Pathology, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - David Engelberg
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
- CREATE-NUS-HUJ Mechanisms of Liver Inflammatory Diseases, National University of Singapore, 1 CREATE WAY, Innovation Wing, Singapore, Singapore.
- Department of Microbiology, Yong loo lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Toifl S, Didusch S, Ehrenreiter K, Desideri E, Dorard C, Baccarini M. RAF1 kinase contributes to autophagic lysosome reformation. Cell Rep 2025; 44:115490. [PMID: 40184255 DOI: 10.1016/j.celrep.2025.115490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/03/2025] [Accepted: 03/07/2025] [Indexed: 04/06/2025] Open
Abstract
Autophagic lysosome reformation (ALR) is crucial for lysosomal homeostasis and therefore for different autophagic processes. Despite recent advances, the signaling mechanisms regulating ALR are incompletely understood. We show that RAF1, a member of the RAS/RAF/MEK/ERK pathway initiated by growth factors, has an essential, kinase-dependent role in lysosomal biology. RAF1 ablation impairs autophagy, and a proxisome screen identifies several proteins involved in autophagic and lysosomal pathways in the RAF1 molecular space. Two of these, SPG11 and the lipid phosphatase MTMR4, are RAF1 substrates. RAF1 ablation causes the appearance of enlarged autolysosomes and alters the phosphoinositide composition of autolysosomes. RAF1 and MTMR4 colocalize on autolysosomes, and overexpression of a MTMR4 mutant mimicking phosphorylation of the RAF1-dependent site rescues the lysosomal phenotypes induced by RAF1 ablation. Our data identify an RAF1 function in lysosomal homeostasis and a substrate through which the kinase regulates phospholipid metabolism at the lysosome, ALR, and autophagy.
Collapse
Affiliation(s)
- Stefanie Toifl
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria; Vienna Biocenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Sebastian Didusch
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria; Vienna Biocenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Karin Ehrenreiter
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria
| | - Enrico Desideri
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria
| | - Coralie Dorard
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria
| | - Manuela Baccarini
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria.
| |
Collapse
|
4
|
Ye F, Xu Y, Zhu X, Ding Q, Wang Y, Lu S, Chen Y. The mechanism of E3 ubiquitin ligase HERC1 regulating ferroptosis in lung adenocarcinoma cells. Cancer Genet 2025; 292-293:92-99. [PMID: 39983667 DOI: 10.1016/j.cancergen.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/08/2025] [Accepted: 02/01/2025] [Indexed: 02/23/2025]
Abstract
OBJECTIVE Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer. Herein, we probed into the role of E3 ubiquitin protein ligase family member 1 (HERC1) in promoting ferroptosis and inhibiting LUAD cell proliferation by regulating RAF proto-oncogene serine/threonine-protein kinase (C-RAF). METHODS In cultured human normal lung epithelial cells and non-small cell lung adenocarcinoma cell lines, HERC1 expression was determined by RT-qPCR and Western blot tests. PC-9 and Calu-3 cells were transfected with oe-HERC1, oe-C-RAF or their negative controls. Reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and Fe2+ levels were assessed by biochemical assays. Cell viability, death, and proliferation were evaluated by CCK-8, LDH and colony formation assays, followed by assessments of HERC1-C-RAF interaction, C-RAF ubiquitin level, and C-RAF protein stability. RESULTS HERC1 was poorly expressed in LUAD cells. HERC1 promoted LUAD cell ferroptosis and repressed their proliferation and migration, corresponding to reduced levels of system xc-, GPX4, and GSH, as well as elevated levels of ROS, MDA, Fe2+, and ACSL4. LUAD cells overexpressing HERC1 displayed decreased C-RAF protein level, HERC1-C-RAF interaction, elevated C-RAF ubiquitin level, and accelerated C-RAF protein degradation, indicating that HERC1 facilitated C-RAF ubiquitin degradation and attenuated C-RAF protein stability via interaction with C-RAF. C-RAF overexpression partially abrogated the regulatory impact of HERC1 on LUAD cell ferroptosis and proliferation. CONCLUSION HERC1 expedites C-RAF ubiquitin degradation by interacting with C-RAF, which consequently promotes ferroptosis, thereby inhibiting LUAD cell proliferation.
Collapse
Affiliation(s)
- Fei Ye
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Yi Xu
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Xujuan Zhu
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Qifeng Ding
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Yifei Wang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Songhua Lu
- Haian People's Hospital Department of Thoracic Surgery, Nantong, 226000, Jiangsu, China
| | - Yongbing Chen
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
5
|
Ge Z, Fan Z, He W, Zhou G, Zhou Y, Zheng M, Zhang S. Recent advances in targeted degradation in the RAS pathway. Future Med Chem 2025; 17:693-708. [PMID: 40065567 PMCID: PMC11938967 DOI: 10.1080/17568919.2025.2476387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/12/2025] [Indexed: 03/26/2025] Open
Abstract
RAS (rat sarcoma) is one of the most frequently mutated gene families in cancer, encoding proteins classified as small GTPases. Mutations in RAS proteins result in abnormal activation of the RAS signaling pathway, a key driver in the initiation and progression of various malignancies. Consequently, targeting RAS proteins and the RAS signaling pathway has become a critical strategy in anticancer therapy. While RAS was historically considered an "undruggable" target, recent breakthroughs have yielded inhibitors specifically targeting KRASG12C and KRASG12D mutations, which have shown clinical efficacy in patients. However, these inhibitors face limitations due to rapid acquired resistance and the toxic effects of combination therapies in clinical settings. Targeted protein degradation (TPD) strategies, such as PROTACs and molecular glues, provide a novel approach by selectively degrading RAS proteins, or their upstream and downstream regulatory factors, to block aberrant signaling pathways. These degraders offer a promising alternative to traditional inhibitors by potentially circumventing resistance and enhancing therapeutic precision. This review discusses recent advancements in RAS pathway degraders, with an emphasis on targeting RAS mutations as well as their upstream regulators and downstream effectors for potential cancer treatments.
Collapse
Affiliation(s)
- Zhiming Ge
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zisheng Fan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Wei He
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Guizhen Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Yidi Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingyue Zheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Sulin Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Sobhani N, Pittacolo M, D’Angelo A, Marchegiani G. Recent Anti-KRAS G12D Therapies: A "Possible Impossibility" for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2025; 17:704. [PMID: 40002297 PMCID: PMC11853620 DOI: 10.3390/cancers17040704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer, able to thrive in a challenging tumor microenvironment. Current standard therapies, including surgery, radiation, chemotherapy, and chemoradiation, have shown a dismal survival prognosis, resulting in less than a year of life in the metastatic setting. Methods: The pressing need to find better therapeutic methods brought about the discovery of new targeted therapies against the infamous KRAS mutations, the major oncological drivers of PDAC. Results: The most common KRAS mutation is KRASG12D, which causes a conformational change in the protein that constitutively activates downstream signaling pathways driving cancer hallmarks. Novel anti-KRASG12D therapies have been developed for solid-organ tumors, including small compounds, pan-RAS inhibitors, protease inhibitors, chimeric T cell receptors, and therapeutic vaccines. Conclusions: This comprehensive review summarizes current knowledge on the biology of KRAS-driven PDAC, the latest therapeutic options that have been experimentally validated, and developments in ongoing clinical trials.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matteo Pittacolo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy;
| | - Alberto D’Angelo
- Department of Medicine, Northern General Hospital, Sheffield S5 7AT, UK;
| | - Giovanni Marchegiani
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy;
| |
Collapse
|
7
|
Han D, Li A, Zhu L, Zhuang C, Zhao Q, Zou Y. Peptide inhibitors targeting Ras and Ras-associated protein-protein interactions. Eur J Med Chem 2024; 279:116878. [PMID: 39326269 DOI: 10.1016/j.ejmech.2024.116878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Peptides represent attractive molecules for targeting protein-protein interactions, and peptide drug development has made great progress during the last decades. Ras protein, the most promising target in cancer therapy, is one of the major growth drivers in various cancers. Although many small molecule inhibitors have been reported to effectively target Ras protein and some inhibitors (such as MRTX849 and AMG 510) have been translated into clinical application, just a few peptide inhibitors have been reported. Here we summarize different types of peptide inhibitors, including monocyclic peptides, bicyclic peptides, stapled peptides, and proteomimetic inhibitors, developed in recent years; emphasize the limits and achievements; and discuss the outlook and challenges associated with future research in peptide inhibitors. This review aims to provide a reference for the discovery of Ras peptide inhibitors.
Collapse
Affiliation(s)
- Dan Han
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China; School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Anpeng Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China; 92805 Military Hospital, Qingdao, PR China
| | - Lie Zhu
- Department of Burn Plastic Surgery, The Second Affiliated Hospital of Second Military Medical University, Shanghai, 200003, PR China
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China.
| | - Qingjie Zhao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China.
| | - Yan Zou
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China.
| |
Collapse
|
8
|
Healy FM, Turner AL, Marensi V, MacEwan DJ. Mediating kinase activity in Ras-mutant cancer: potential for an individualised approach? Front Pharmacol 2024; 15:1441938. [PMID: 39372214 PMCID: PMC11450236 DOI: 10.3389/fphar.2024.1441938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
It is widely acknowledged that there is a considerable number of oncogenic mutations within the Ras superfamily of small GTPases which are the driving force behind a multitude of cancers. Ras proteins mediate a plethora of kinase pathways, including the MAPK, PI3K, and Ral pathways. Since Ras was considered undruggable until recently, pharmacological targeting of pathways downstream of Ras has been attempted to varying success, though drug resistance has often proven an issue. Nuances between kinase pathway activation in the presence of various Ras mutants are thought to contribute to the resistance, however, the reasoning behind activation of different pathways in different Ras mutational contexts is yet to be fully elucidated. Indeed, such disparities often depend on cancer type and disease progression. However, we are in a revolutionary age of Ras mutant targeted therapy, with direct-targeting KRAS-G12C inhibitors revolutionising the field and achieving FDA-approval in recent years. However, these are only beneficial in a subset of patients. Approximately 90% of Ras-mutant cancers are not KRAS-G12C mutant, and therefore raises the question as to whether other distinct amino acid substitutions within Ras may one day be targetable in a similar manner, and indeed whether better understanding of the downstream pathways these various mutants activate could further improve therapy. Here, we discuss the favouring of kinase pathways across an array of Ras-mutant oncogenic contexts and assess recent advances in pharmacological targeting of various Ras mutants. Ultimately, we will examine the utility of individualised pharmacological approaches to Ras-mediated cancer.
Collapse
Affiliation(s)
- Fiona M. Healy
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Amy L. Turner
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Vanessa Marensi
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Chester Medical School, University of Chester, Chester, United Kingdom
| | - David J. MacEwan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
9
|
Casacuberta-Serra S, González-Larreategui Í, Capitán-Leo D, Soucek L. MYC and KRAS cooperation: from historical challenges to therapeutic opportunities in cancer. Signal Transduct Target Ther 2024; 9:205. [PMID: 39164274 PMCID: PMC11336233 DOI: 10.1038/s41392-024-01907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
RAS and MYC rank amongst the most commonly altered oncogenes in cancer, with RAS being the most frequently mutated and MYC the most amplified. The cooperative interplay between RAS and MYC constitutes a complex and multifaceted phenomenon, profoundly influencing tumor development. Together and individually, these two oncogenes regulate most, if not all, hallmarks of cancer, including cell death escape, replicative immortality, tumor-associated angiogenesis, cell invasion and metastasis, metabolic adaptation, and immune evasion. Due to their frequent alteration and role in tumorigenesis, MYC and RAS emerge as highly appealing targets in cancer therapy. However, due to their complex nature, both oncogenes have been long considered "undruggable" and, until recently, no drugs directly targeting them had reached the clinic. This review aims to shed light on their complex partnership, with special attention to their active collaboration in fostering an immunosuppressive milieu and driving immunotherapeutic resistance in cancer. Within this review, we also present an update on the different inhibitors targeting RAS and MYC currently undergoing clinical trials, along with their clinical outcomes and the different combination strategies being explored to overcome drug resistance. This recent clinical development suggests a paradigm shift in the long-standing belief of RAS and MYC "undruggability", hinting at a new era in their therapeutic targeting.
Collapse
Affiliation(s)
| | - Íñigo González-Larreategui
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Daniel Capitán-Leo
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
10
|
Mozzarelli AM, Simanshu DK, Castel P. Functional and structural insights into RAS effector proteins. Mol Cell 2024; 84:2807-2821. [PMID: 39025071 PMCID: PMC11316660 DOI: 10.1016/j.molcel.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
RAS proteins are conserved guanosine triphosphate (GTP) hydrolases (GTPases) that act as molecular binary switches and play vital roles in numerous cellular processes. Upon GTP binding, RAS GTPases adopt an active conformation and interact with specific proteins termed RAS effectors that contain a conserved ubiquitin-like domain, thereby facilitating downstream signaling. Over 50 effector proteins have been identified in the human proteome, and many have been studied as potential mediators of RAS-dependent signaling pathways. Biochemical and structural analyses have provided mechanistic insights into these effectors, and studies using model organisms have complemented our understanding of their role in physiology and disease. Yet, many critical aspects regarding the dynamics and biological function of RAS-effector complexes remain to be elucidated. In this review, we discuss the mechanisms and functions of known RAS effector proteins, provide structural perspectives on RAS-effector interactions, evaluate their significance in RAS-mediated signaling, and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Alessandro M Mozzarelli
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
11
|
Abstract
RAF family protein kinases are a key node in the RAS/RAF/MAP kinase pathway, the signaling cascade that controls cellular proliferation, differentiation, and survival in response to engagement of growth factor receptors on the cell surface. Over the past few years, structural and biochemical studies have provided new understanding of RAF autoregulation, RAF activation by RAS and the SHOC2 phosphatase complex, and RAF engagement with HSP90-CDC37 chaperone complexes. These studies have important implications for pharmacologic targeting of the pathway. They reveal RAF in distinct regulatory states and show that the functional RAF switch is an integrated complex of RAF with its substrate (MEK) and a 14-3-3 dimer. Here we review these advances, placing them in the context of decades of investigation of RAF regulation. We explore the insights they provide into aberrant activation of the pathway in cancer and RASopathies (developmental syndromes caused by germline mutations in components of the pathway).
Collapse
Affiliation(s)
- Hyesung Jeon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Emre Tkacik
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Bosso G, Cintra Herpst AC, Laguía O, Adetchessi S, Serrano R, Blasco MA. Differential contribution for ERK1 and ERK2 kinases in BRAF V600E-triggered phenotypes in adult mouse models. Cell Death Differ 2024; 31:804-819. [PMID: 38698060 PMCID: PMC11165013 DOI: 10.1038/s41418-024-01300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
The BRAF gene is mutated in a plethora of human cancers. The majority of such molecular lesions result in the expression of a constitutively active BRAF variant (BRAFV600E) which continuously bolsters cell proliferation. Although we recently addressed the early effects triggered by BRAFV600E-activation, the specific contribution of ERK1 and ERK2 in BRAFV600E-driven responses in vivo has never been explored. Here we describe the first murine model suitable for genetically dissecting the ERK1/ERK2 impact in multiple phenotypes induced by ubiquitous BRAFV600E-expression. We unveil that ERK1 is dispensable for BRAFV600E-dependent lifespan shortening and for BRAFV600E-driven tumor growth. We show that BRAFV600E-expression provokes an ERK1-independent lymphocyte depletion which does not rely on p21CIP1-induced cell cycle arrest and is unresponsive to ERK-chemical inhibition. Moreover, we also reveal that ERK1 is dispensable for BRAFV600E-triggered cytotoxicity in lungs and that ERK-chemical inhibition abrogates some of these detrimental effects, such as DNA damage, in Club cells but not in pulmonary lymphocytes. Our data suggest that ERK1/ERK2 contribution to BRAFV600E-driven phenotypes is dynamic and varies dependently on cell type, the biological function, and the level of ERK-pathway activation. Our findings also provide useful insights into the comprehension of BRAFV600E-driven malignancies pathophysiology as well as the consequences in vivo of novel ERK pathway-targeted anti-cancer therapies.
Collapse
Affiliation(s)
- Giuseppe Bosso
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Ana Carolina Cintra Herpst
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Oscar Laguía
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Sarah Adetchessi
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Rosa Serrano
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain.
| |
Collapse
|
13
|
Scardaci R, Berlinska E, Scaparone P, Vietti Michelina S, Garbo E, Novello S, Santamaria D, Ambrogio C. Novel RAF-directed approaches to overcome current clinical limits and block the RAS/RAF node. Mol Oncol 2024; 18:1355-1377. [PMID: 38362705 PMCID: PMC11161739 DOI: 10.1002/1878-0261.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in the RAS-RAF-MEK-ERK pathway are frequent alterations in cancer and RASopathies, and while RAS oncogene activation alone affects 19% of all patients and accounts for approximately 3.4 million new cases every year, less frequent alterations in the cascade's downstream effectors are also involved in cancer etiology. RAS proteins initiate the signaling cascade by promoting the dimerization of RAF kinases, which can act as oncoproteins as well: BRAFV600E is the most common oncogenic driver, mutated in the 8% of all malignancies. Research in this field led to the development of drugs that target the BRAFV600-like mutations (Class I), which are now utilized in clinics, but cause paradoxical activation of the pathway and resistance development. Furthermore, they are ineffective against non-BRAFV600E malignancies that dimerize and could be either RTK/RAS independent or dependent (Class II and III, respectively), which are still lacking an effective treatment. This review discusses the recent advances in anti-RAF therapies, including paradox breakers, dimer-inhibitors, immunotherapies, and other novel approaches, critically evaluating their efficacy in overcoming the therapeutic limitations, and their putative role in blocking the RAS pathway.
Collapse
Affiliation(s)
- Rossella Scardaci
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Ewa Berlinska
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Pietro Scaparone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Edoardo Garbo
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - Silvia Novello
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - David Santamaria
- Centro de Investigación del CáncerCSIC‐Universidad de SalamancaSpain
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| |
Collapse
|
14
|
Mehrabipour M, Nakhaei-Rad S, Dvorsky R, Lang A, Verhülsdonk P, Ahmadian MR, Piekorz RP. SIRT4 as a novel interactor and candidate suppressor of C-RAF kinase in MAPK signaling. Life Sci Alliance 2024; 7:e202302507. [PMID: 38499327 PMCID: PMC10948936 DOI: 10.26508/lsa.202302507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024] Open
Abstract
Cellular responses leading to development, proliferation, and differentiation depend on RAF/MEK/ERK signaling, which integrates and amplifies signals from various stimuli for downstream cellular responses. C-RAF activation has been reported in many types of tumor cell proliferation and developmental disorders, necessitating the discovery of potential C-RAF protein regulators. Here, we identify a novel and specific protein interaction between C-RAF among the RAF kinase paralogs, and SIRT4 among the mitochondrial sirtuin family members SIRT3, SIRT4, and SIRT5. Structurally, C-RAF binds to SIRT4 through the N-terminal cysteine-rich domain, whereas SIRT4 predominantly requires the C-terminus for full interaction with C-RAF. Interestingly, SIRT4 specifically interacts with C-RAF in a pre-signaling inactive (serine 259-phosphorylated) state. Consistent with this finding, the expression of SIRT4 in HEK293 cells results in an up-regulation of pS259-C-RAF levels and a concomitant reduction in MAPK signaling as evidenced by strongly decreased phospho-ERK signals. Thus, we propose an additional extra-mitochondrial function of SIRT4 as a cytosolic tumor suppressor of C-RAF-MAPK signaling, besides its metabolic tumor suppressor role of glutamate dehydrogenase and glutamate levels in mitochondria.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Saeideh Nakhaei-Rad
- Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Lang
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Patrick Verhülsdonk
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
15
|
Yin H, Tang Q, Xia H, Bi F. Targeting RAF dimers in RAS mutant tumors: From biology to clinic. Acta Pharm Sin B 2024; 14:1895-1923. [PMID: 38799634 PMCID: PMC11120325 DOI: 10.1016/j.apsb.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 02/20/2024] [Indexed: 05/29/2024] Open
Abstract
RAS mutations occur in approximately 30% of tumors worldwide and have a poor prognosis due to limited therapies. Covalent targeting of KRAS G12C has achieved significant success in recent years, but there is still a lack of efficient therapeutic approaches for tumors with non-G12C KRAS mutations. A highly promising approach is to target the MAPK pathway downstream of RAS, with a particular focus on RAF kinases. First-generation RAF inhibitors have been authorized to treat BRAF mutant tumors for over a decade. However, their use in RAS-mutated tumors is not recommended due to the paradoxical ERK activation mainly caused by RAF dimerization. To address the issue of RAF dimerization, type II RAF inhibitors have emerged as leading candidates. Recent clinical studies have shown the initial effectiveness of these agents against RAS mutant tumors. Promisingly, type II RAF inhibitors in combination with MEK or ERK inhibitors have demonstrated impressive efficacy in RAS mutant tumors. This review aims to clarify the importance of RAF dimerization in cellular signaling and resistance to treatment in tumors with RAS mutations, as well as recent progress in therapeutic approaches to address the problem of RAF dimerization in RAS mutant tumors.
Collapse
Affiliation(s)
- Huanhuan Yin
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiulin Tang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongwei Xia
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Bi
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Diaz-Jimenez A, Ramos M, Helm B, Chocarro S, Frey DL, Agrawal S, Somogyi K, Klingmüller U, Lu J, Sotillo R. Concurrent inhibition of ALK and SRC kinases disrupts the ALK lung tumor cell proteome. Drug Resist Updat 2024; 74:101081. [PMID: 38521003 DOI: 10.1016/j.drup.2024.101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/23/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Precision oncology has revolutionized the treatment of ALK-positive lung cancer with targeted therapies. However, an unmet clinical need still to address is the treatment of refractory tumors that contain drug-induced resistant mutations in the driver oncogene or exhibit resistance through the activation of diverse mechanisms. In this study, we established mouse tumor-derived cell models representing the two most prevalent EML4-ALK variants in human lung adenocarcinomas and characterized their proteomic profiles to gain insights into the underlying resistance mechanisms. We showed that Eml4-Alk variant 3 confers a worse response to ALK inhibitors, suggesting its role in promoting resistance to targeted therapy. In addition, proteomic analysis of brigatinib-treated cells revealed the upregulation of SRC kinase, a protein frequently activated in cancer. Co-targeting of ALK and SRC showed remarkable inhibitory effects in both ALK-driven murine and ALK-patient-derived lung tumor cells. This combination induced cell death through a multifaceted mechanism characterized by profound perturbation of the (phospho)proteomic landscape and a synergistic suppressive effect on the mTOR pathway. Our study demonstrates that the simultaneous inhibition of ALK and SRC can potentially overcome resistance mechanisms and enhance clinical outcomes in ALK-positive lung cancer patients. ONE SENTENCE SUMMARY: Co-targeting ALK and SRC enhances ALK inhibitor response in lung cancer by affecting the proteomic profile, offering hope for overcoming resistance and improving clinical outcomes.
Collapse
Affiliation(s)
- Alberto Diaz-Jimenez
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany; Ruprecht Karls University of Heidelberg, Heidelberg 69120, Germany
| | - Maria Ramos
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany; Ruprecht Karls University of Heidelberg, Heidelberg 69120, Germany
| | - Barbara Helm
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany; German Center for Lung Research (DZL) and Translational Lung Research Center Heidelberg (TLRC), Germany
| | - Sara Chocarro
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany; Ruprecht Karls University of Heidelberg, Heidelberg 69120, Germany
| | - Dario Lucas Frey
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Shubham Agrawal
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg 69120, Germany
| | - Kalman Somogyi
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Ursula Klingmüller
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany; German Center for Lung Research (DZL) and Translational Lung Research Center Heidelberg (TLRC), Germany
| | - Junyan Lu
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg 69120, Germany
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany; German Center for Lung Research (DZL) and Translational Lung Research Center Heidelberg (TLRC), Germany.
| |
Collapse
|
17
|
Cooke SF, Wright TA, Sin YY, Ling J, Kyurkchieva E, Phanthaphol N, Mcskimming T, Herbert K, Rebus S, Biankin AV, Chang DK, Baillie GS, Blair CM. Disruption of the pro-oncogenic c-RAF-PDE8A complex represents a differentiated approach to treating KRAS-c-RAF dependent PDAC. Sci Rep 2024; 14:8998. [PMID: 38637546 PMCID: PMC11026450 DOI: 10.1038/s41598-024-59451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered the third leading cause of cancer mortality in the western world, offering advanced stage patients with few viable treatment options. Consequently, there remains an urgent unmet need to develop novel therapeutic strategies that can effectively inhibit pro-oncogenic molecular targets underpinning PDACs pathogenesis and progression. One such target is c-RAF, a downstream effector of RAS that is considered essential for the oncogenic growth and survival of mutant RAS-driven cancers (including KRASMT PDAC). Herein, we demonstrate how a novel cell-penetrating peptide disruptor (DRx-170) of the c-RAF-PDE8A protein-protein interaction (PPI) represents a differentiated approach to exploiting the c-RAF-cAMP/PKA signaling axes and treating KRAS-c-RAF dependent PDAC. Through disrupting the c-RAF-PDE8A protein complex, DRx-170 promotes the inactivation of c-RAF through an allosteric mechanism, dependent upon inactivating PKA phosphorylation. DRx-170 inhibits cell proliferation, adhesion and migration of a KRASMT PDAC cell line (PANC1), independent of ERK1/2 activity. Moreover, combining DRx-170 with afatinib significantly enhances PANC1 growth inhibition in both 2D and 3D cellular models. DRx-170 sensitivity appears to correlate with c-RAF dependency. This proof-of-concept study supports the development of DRx-170 as a novel and differentiated strategy for targeting c-RAF activity in KRAS-c-RAF dependent PDAC.
Collapse
Affiliation(s)
- Sean F Cooke
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Thomas A Wright
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Yuan Yan Sin
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Jiayue Ling
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Elka Kyurkchieva
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Nattaporn Phanthaphol
- Siriraj Centre of Research Excellence for Cancer Immunotherapy, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thomas Mcskimming
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Katharine Herbert
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Selma Rebus
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - George S Baillie
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Connor M Blair
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| |
Collapse
|
18
|
Molina-Arcas M, Downward J. Exploiting the therapeutic implications of KRAS inhibition on tumor immunity. Cancer Cell 2024; 42:338-357. [PMID: 38471457 DOI: 10.1016/j.ccell.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
Over the past decade, RAS oncogenic proteins have transitioned from being deemed undruggable to having two clinically approved drugs, with several more in advanced stages of development. Despite the initial benefit of KRAS-G12C inhibitors for patients with tumors harboring this mutation, the rapid emergence of drug resistance underscores the urgent need to synergize these inhibitors with other therapeutic approaches to improve outcomes. RAS mutant tumor cells can create an immunosuppressive tumor microenvironment (TME), suggesting an increased susceptibility to immunotherapies following RAS inhibition. This provides a rationale for combining RAS inhibitory drugs with immune checkpoint blockade (ICB). However, achieving this synergy in the clinical setting has proven challenging. Here, we explore how understanding the impact of RAS mutant tumor cells on the TME can guide innovative approaches to combining RAS inhibition with immunotherapies, review progress in both pre-clinical and clinical stages, and discuss challenges and future directions.
Collapse
Affiliation(s)
| | - Julian Downward
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
19
|
Shanderson RL, Ferguson ID, Siprashvili Z, Ducoli L, Li AM, Miao W, Srinivasan S, Velasco MG, Li Y, Ye J, Khavari PA. Mitochondrial Raf1 Regulates Glutamine Catabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.581297. [PMID: 38496616 PMCID: PMC10942467 DOI: 10.1101/2024.03.08.581297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Raf kinases play vital roles in normal mitogenic signaling and cancer, however, the identities of functionally important Raf-proximal proteins throughout the cell are not fully known. Raf1 proximity proteomics/BioID in Raf1-dependent cancer cells unexpectedly identified Raf1-adjacent proteins known to reside in the mitochondrial matrix. Inner-mitochondrial localization of Raf1 was confirmed by mitochondrial purification and super-resolution microscopy. Inside mitochondria, Raf1 associated with glutaminase (GLS) in diverse human cancers and enabled glutaminolysis, an important source of biosynthetic precursors in cancer. These impacts required Raf1 kinase activity and were independent of canonical MAP kinase pathway signaling. Kinase-dead mitochondrial matrix-localized Raf1 impaired glutaminolysis and tumorigenesis in vivo. These data indicate that Raf1 localizes inside mitochondria where it interacts with GLS to engage glutamine catabolism and support tumorigenesis.
Collapse
Affiliation(s)
- Ronald L. Shanderson
- Program in Cancer Biology, Stanford University, Stanford, CA, 94305, USA
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
| | - Ian D. Ferguson
- Program in Cancer Biology, Stanford University, Stanford, CA, 94305, USA
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
| | - Luca Ducoli
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
| | - Albert M. Li
- Program in Cancer Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Weili Miao
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
| | - Suhas Srinivasan
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
| | | | - Yang Li
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Jiangbin Ye
- Program in Cancer Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Paul A. Khavari
- Program in Cancer Biology, Stanford University, Stanford, CA, 94305, USA
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, 94304, USA
| |
Collapse
|
20
|
Cooke SF, Blair CM. Exploiting c-RAF dependency in RAS mutant cancer: beyond catalytic activity. Expert Rev Anticancer Ther 2024; 24:95-100. [PMID: 38362755 DOI: 10.1080/14737140.2024.2319035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Affiliation(s)
- Sean F Cooke
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Connor M Blair
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
21
|
Rosell R, Codony-Servat J, González J, Santarpia M, Jain A, Shivamallu C, Wang Y, Giménez-Capitán A, Molina-Vila MA, Nilsson J, González-Cao M. KRAS G12C-mutant driven non-small cell lung cancer (NSCLC). Crit Rev Oncol Hematol 2024; 195:104228. [PMID: 38072173 DOI: 10.1016/j.critrevonc.2023.104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 02/20/2024] Open
Abstract
KRAS G12C mutations in non-small cell lung cancer (NSCLC) partially respond to KRAS G12C covalent inhibitors. However, early adaptive resistance occurs due to rewiring of signaling pathways, activating receptor tyrosine kinases, primarily EGFR, but also MET and ligands. Evidence indicates that treatment with KRAS G12C inhibitors (sotorasib) triggers the MRAS:SHOC2:PP1C trimeric complex. Activation of MRAS occurs from alterations in the Scribble and Hippo-dependent pathways, leading to YAP activation. Other mechanisms that involve STAT3 signaling are intertwined with the activation of MRAS. The high-resolution MRAS:SHOC2:PP1C crystallization structure allows in silico analysis for drug development. Activation of MRAS:SHOC2:PP1C is primarily Scribble-driven and downregulated by HUWE1. The reactivation of the MRAS complex is carried out by valosin containing protein (VCP). Exploring these pathways as therapeutic targets and their impact on different chemotherapeutic agents (carboplatin, paclitaxel) is crucial. Comutations in STK11/LKB1 often co-occur with KRAS G12C, jeopardizing the effect of immune checkpoint (anti-PD1/PDL1) inhibitors.
Collapse
Affiliation(s)
- Rafael Rosell
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain; IOR, Hospital Quiron-Dexeus, Barcelona, Spain.
| | | | - Jessica González
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Italy
| | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, India
| | - Chandan Shivamallu
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Yu Wang
- Genfleet Therapeutics, Shanghai, China
| | | | | | - Jonas Nilsson
- Department Radiation Sciences, Oncology, Umeå University, Sweden
| | | |
Collapse
|
22
|
Riaud M, Maxwell J, Soria-Bretones I, Dankner M, Li M, Rose AAN. The role of CRAF in cancer progression: from molecular mechanisms to precision therapies. Nat Rev Cancer 2024; 24:105-122. [PMID: 38195917 DOI: 10.1038/s41568-023-00650-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
The RAF family of kinases includes key activators of the pro-tumourigenic mitogen-activated protein kinase pathway. Hyperactivation of RAF proteins, particularly BRAF and CRAF, drives tumour progression and drug resistance in many types of cancer. Although BRAF is the most studied RAF protein, partially owing to its high mutation incidence in melanoma, the role of CRAF in tumourigenesis and drug resistance is becoming increasingly clinically relevant. Here, we summarize the main known regulatory mechanisms and gene alterations that contribute to CRAF activity, highlighting the different oncogenic roles of CRAF, and categorize RAF1 (CRAF) mutations according to the effect on kinase activity. Additionally, we emphasize the effect that CRAF alterations may have on drug resistance and how precision therapies could effectively target CRAF-dependent tumours. Here, we discuss preclinical and clinical findings that may lead to improved treatments for all types of oncogenic RAF1 alterations in cancer.
Collapse
Affiliation(s)
- Melody Riaud
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Jennifer Maxwell
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Isabel Soria-Bretones
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Matthew Dankner
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Meredith Li
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - April A N Rose
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada.
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
23
|
Pandey A, Shen C, Feng S, Enosi Tuipulotu D, Ngo C, Liu C, Kurera M, Mathur A, Venkataraman S, Zhang J, Talaulikar D, Song R, Wong JJL, Teoh N, Kaakoush NO, Man SM. Ku70 senses cytosolic DNA and assembles a tumor-suppressive signalosome. SCIENCE ADVANCES 2024; 10:eadh3409. [PMID: 38277448 PMCID: PMC10816715 DOI: 10.1126/sciadv.adh3409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 12/26/2023] [Indexed: 01/28/2024]
Abstract
The innate immune response contributes to the development or attenuation of acute and chronic diseases, including cancer. Microbial DNA and mislocalized DNA from damaged host cells can activate different host responses that shape disease outcomes. Here, we show that mice and humans lacking a single allele of the DNA repair protein Ku70 had increased susceptibility to the development of intestinal cancer. Mechanistically, Ku70 translocates from the nucleus into the cytoplasm where it binds to cytosolic DNA and interacts with the GTPase Ras and the kinase Raf, forming a tripartite protein complex and docking at Rab5+Rab7+ early-late endosomes. This Ku70-Ras-Raf signalosome activates the MEK-ERK pathways, leading to impaired activation of cell cycle proteins Cdc25A and CDK1, reducing cell proliferation and tumorigenesis. We also identified the domains of Ku70, Ras, and Raf involved in activating the Ku70 signaling pathway. Therapeutics targeting components of the Ku70 signalosome could improve the treatment outcomes in cancer.
Collapse
Affiliation(s)
- Abhimanu Pandey
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Cheng Shen
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Shouya Feng
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Chinh Ngo
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Cheng Liu
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
- School of Medicine, University of Queensland, Herston, Australia
- Mater Pathology, Mater Hospital, South Brisbane, Australia
| | - Melan Kurera
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Anukriti Mathur
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Shweta Venkataraman
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Jing Zhang
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Dipti Talaulikar
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Haematology Translational Research Unit, ACT Pathology, Canberra Health Services, Canberra, Australian Capital Territory, Australia
- Department of Human Genomics, ACT Pathology, Canberra, Australian Capital Territory, Australia
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Justin J.-L. Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Narci Teoh
- Gastroenterology and Hepatology Unit, The Australian National University Medical School at The Canberra Hospital, The Australian National University, Canberra, Australia
| | - Nadeem O. Kaakoush
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
24
|
Nissley DV, Stephen AG, Yi M, McCormick F. Progress in Targeting KRAS Directly. Methods Mol Biol 2024; 2797:1-12. [PMID: 38570448 DOI: 10.1007/978-1-0716-3822-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
RAS research has entered the world of translational and clinical science. Progress has been based on our appreciation of the role of RAS mutations in different types of cancer and the effects of these mutations on the biochemical, structural, and biophysical properties of the RAS proteins themselves, particularly KRAS, on which most attention has been focused. This knowledge base, while still growing, has enabled creative chemical approaches to targeting KRAS directly. Our understanding of RAS signaling pathways in normal and cancer cells plays an important role for developing RAS inhibitors but also continues to reveal new approaches to targeting RAS through disruption of signaling complexes and downstream pathways.
Collapse
Affiliation(s)
- Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ming Yi
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
25
|
Deschênes-Simard X, Malleshaiah M, Ferbeyre G. Extracellular Signal-Regulated Kinases: One Pathway, Multiple Fates. Cancers (Basel) 2023; 16:95. [PMID: 38201521 PMCID: PMC10778234 DOI: 10.3390/cancers16010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
This comprehensive review delves into the multifaceted aspects of ERK signaling and the intricate mechanisms underlying distinct cellular fates. ERK1 and ERK2 (ERK) govern proliferation, transformation, epithelial-mesenchymal transition, differentiation, senescence, or cell death, contingent upon activation strength, duration, and context. The biochemical mechanisms underlying these outcomes are inadequately understood, shaped by signaling feedback and the spatial localization of ERK activation. Generally, ERK activation aligns with the Goldilocks principle in cell fate determination. Inadequate or excessive ERK activity hinders cell proliferation, while balanced activation promotes both cell proliferation and survival. Unraveling the intricacies of how the degree of ERK activation dictates cell fate requires deciphering mechanisms encompassing protein stability, transcription factors downstream of ERK, and the chromatin landscape.
Collapse
Affiliation(s)
- Xavier Deschênes-Simard
- Montreal University Hospital Center (CHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Mohan Malleshaiah
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Gerardo Ferbeyre
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
- Montreal Cancer Institute, CR-CHUM, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
26
|
Wang P, Laster K, Jia X, Dong Z, Liu K. Targeting CRAF kinase in anti-cancer therapy: progress and opportunities. Mol Cancer 2023; 22:208. [PMID: 38111008 PMCID: PMC10726672 DOI: 10.1186/s12943-023-01903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
The RAS/mitogen-activated protein kinase (MAPK) signaling cascade is commonly dysregulated in human malignancies by processes driven by RAS or RAF oncogenes. Among the members of the RAF kinase family, CRAF plays an important role in the RAS-MAPK signaling pathway, as well as in the progression of cancer. Recent research has provided evidence implicating the role of CRAF in the physiological regulation and the resistance to BRAF inhibitors through MAPK-dependent and MAPK-independent mechanisms. Nevertheless, the effectiveness of solely targeting CRAF kinase activity remains controversial. Moreover, the kinase-independent function of CRAF may be essential for lung cancers with KRAS mutations. It is imperative to develop strategies to enhance efficacy and minimize toxicity in tumors driven by RAS or RAF oncogenes. The review investigates CRAF alterations observed in cancers and unravels the distinct roles of CRAF in cancers propelled by diverse oncogenes. This review also seeks to summarize CRAF-interacting proteins and delineate CRAF's regulation across various cancer hallmarks. Additionally, we discuss recent advances in pan-RAF inhibitors and their combination with other therapeutic approaches to improve treatment outcomes and minimize adverse effects in patients with RAF/RAS-mutant tumors. By providing a comprehensive understanding of the multifaceted role of CRAF in cancers and highlighting the latest developments in RAF inhibitor therapies, we endeavor to identify synergistic targets and elucidate resistance pathways, setting the stage for more robust and safer combination strategies for cancer treatment.
Collapse
Affiliation(s)
- Penglei Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Kyle Laster
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Xuechao Jia
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, China-US (Henan) Hormel Cancer Institute, AMS, College of Medicine, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, China-US (Henan) Hormel Cancer Institute, AMS, College of Medicine, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
- Basic Medicine Sciences Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
27
|
Boumelha J, Molina-Arcas M, Downward J. Facts and Hopes on RAS Inhibitors and Cancer Immunotherapy. Clin Cancer Res 2023; 29:5012-5020. [PMID: 37581538 PMCID: PMC10722141 DOI: 10.1158/1078-0432.ccr-22-3655] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
Although the past decade has seen great strides in the development of immunotherapies that reactivate the immune system against tumors, there have also been major advances in the discovery of drugs blocking oncogenic drivers of cancer growth. However, there has been very little progress in combining immunotherapies with drugs that target oncogenic driver pathways. Some of the most important oncogenes in human cancer encode RAS family proteins, although these have proven challenging to target. Recently drugs have been approved that inhibit a specific mutant form of KRAS: G12C. These have improved the treatment of patients with lung cancer harboring this mutation, but development of acquired drug resistance after initial responses has limited the impact on overall survival. Because of the immunosuppressive nature of the signaling network controlled by oncogenic KRAS, targeted KRAS G12C inhibition can indirectly affect antitumor immunity, and does so without compromising the critical role of normal RAS proteins in immune cells. This serves as a rationale for combination with immune checkpoint blockade, which can provide additional combinatorial therapeutic benefit in some preclinical cancer models. However, in clinical trials, combination of KRAS G12C inhibitors with PD-(L)1 blockade has yet to show improved outcome, in part due to treatment toxicities. A greater understanding of how oncogenic KRAS drives immune evasion and how mutant-specific KRAS inhibition impacts the tumor microenvironment can lead to novel approaches to combining RAS inhibition with immunotherapies.
Collapse
|
28
|
Figueiredo J, Djavaheri-Mergny M, Ferret L, Mergny JL, Cruz C. Harnessing G-quadruplex ligands for lung cancer treatment: A comprehensive overview. Drug Discov Today 2023; 28:103808. [PMID: 38414431 DOI: 10.1016/j.drudis.2023.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 02/29/2024]
Abstract
Lung cancer (LC) remains a leading cause of mortality worldwide, and new therapeutic strategies are urgently needed. One such approach revolves around the utilization of four-stranded nucleic acid secondary structures, known as G-quadruplexes (G4), which are formed by G-rich sequences. Ligands that bind selectively to G4 structures present a promising strategy for regulating crucial cellular processes involved in the progression of LC, rendering them potent agents for lung cancer treatment. In this review, we offer a summary of recent advancements in the development of G4 ligands capable of targeting specific genes associated with the development and progression of lung cancer.
Collapse
Affiliation(s)
- Joana Figueiredo
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Mojgan Djavaheri-Mergny
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe Labellisée par la Ligue contre le Cancer, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
| | - Lucille Ferret
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe Labellisée par la Ligue contre le Cancer, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France; Faculté de Médecine, Université de Paris Saclay, Paris, France
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, Institut Polytechnique de Paris, CNRS, INSERM, Université Paris-Saclay, 91120 Palaiseau, France.
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; Departamento de Química, Faculdade de Ciências da Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal.
| |
Collapse
|
29
|
Montenegro MF, Martí-Díaz R, Navarro A, Tolivia J, Sánchez-Del-Campo L, Cabezas-Herrera J, Rodríguez-López JN. Targeting protein methylation in pancreatic cancer cells results in KRAS signaling imbalance and inhibition of autophagy. Cell Death Dis 2023; 14:761. [PMID: 37996408 PMCID: PMC10667277 DOI: 10.1038/s41419-023-06288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Pancreatic cancer cells with mutant KRAS require strong basal autophagy for viability and growth. Here, we observed that some processes that allow the maintenance of basal autophagy in pancreatic cancer cells are controlled by protein methylation. Thus, by maintaining the methylation status of proteins such as PP2A and MRAS, these cells can sustain their autophagic activity. Protein methylation disruption by a hypomethylating treatment (HMT), which depletes cellular S-adenosylmethionine levels while inducing S-adenosylhomocysteine accumulation, resulted in autophagy inhibition and endoplasmic reticulum stress-induced apoptosis in pancreatic cancer cells. We observed that by reducing the membrane localization of MRAS, hypomethylation conditions produced an imbalance in KRAS signaling, resulting in the partial inactivation of ERK and hyperactivation of the PI3K/AKT-mTORC1 pathway. Interestingly, HMT impeded CRAF activation by disrupting the ternary SHOC2 complex (SHOC2/MRAS/PP1), which functions as a CRAF-S259 holophosphatase. The demethylation events that resulted in PP2A inactivation also favored autophagy inhibition by preventing ULK1 activation while restoring the cytoplasmic retention of the MiT/TFE transcription factors. Since autophagy provides pancreatic cancer cells with metabolic plasticity to cope with various metabolic stress conditions, while at the same time promoting their pathogenesis and resistance to KRAS pathway inhibitors, this hypomethylating treatment could represent a therapeutic opportunity for pancreatic adenocarcinomas.
Collapse
Affiliation(s)
- María F Montenegro
- Department of Biochemistry and Molecular Biology A, School of Biology, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain.
| | - Román Martí-Díaz
- Department of Biochemistry and Molecular Biology A, School of Biology, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Ana Navarro
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Grupo GECYEN del Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Jorge Tolivia
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Grupo GECYEN del Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Luis Sánchez-Del-Campo
- Department of Biochemistry and Molecular Biology A, School of Biology, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Juan Cabezas-Herrera
- Molecular Therapy and Biomarkers Research Group, University Hospital Virgen de la Arrixaca, IMIB, Murcia, Spain
| | - José Neptuno Rodríguez-López
- Department of Biochemistry and Molecular Biology A, School of Biology, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain.
| |
Collapse
|
30
|
Virtual screening, pharmacokinetic, and DFT studies of anticancer compounds as potential V600E-BRAF kinase inhibitors. J Taibah Univ Med Sci 2023; 18:933-946. [PMID: 36875340 PMCID: PMC9976450 DOI: 10.1016/j.jtumed.2023.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/12/2022] [Accepted: 01/24/2023] [Indexed: 02/07/2023] Open
Abstract
Objectives V600E-BRAF kinase is an essential therapeutic target in melanoma and other types of tumors. Because of its resistance to known inhibitors and the adverse effects of some identified inhibitors, investigation of new potent inhibitors is necessary. Methods In the present work, in silico strategies such as molecular docking simulation, pharmacokinetic evaluation, and density functional theory (DFT) computations were used to identify potential V600E-BRAF inhibitors from a set of 72 anticancer compounds in the PubChem database. Results Five top-ranked molecules (12, 15, 30, 31, and 35) with excellent docking scores (MolDock score ≥90 kcal mol-1, Rerank score ≥60 kcal mol-1) were selected. Several potential binding interactions were discovered between the molecules and V600E-BRAF. The formation of H-bonds and hydrophobic interactions with essential residues of V600E-BRAF suggested the high stability of these complexes. The selected compounds had excellent pharmacological properties according to the drug likeness rules (bioavailability) and pharmacokinetic properties. Similarly, the energy for the frontier molecular orbitals, such as the HOMO, LUMO, energy gap, and other reactivity parameters, was computed with DFT. The frontier molecular orbital surfaces and electrostatic potentials were investigated to demonstrate the charge-density distributions potentially associated with anticancer activity. Conclusion The identified compounds were found to be potent hit compounds for V600E-BRAF inhibition with superior pharmacokinetic properties; therefore, they may be promising cancer drug candidates.
Collapse
|
31
|
Özgü E, Aydin E, Adibi A, Tokat ÜM, Tutar O, Hu J, Demiray I, Kurzrock R, Demiray M. Exceptional Response to MEK Inhibition in a Patient With RAF1-Mutant Myxofibrosarcoma: Case Report and Mechanistic Overview. JCO Precis Oncol 2023; 7:e2300299. [PMID: 38127827 PMCID: PMC10752463 DOI: 10.1200/po.23.00299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/25/2023] [Accepted: 10/11/2023] [Indexed: 12/23/2023] Open
Abstract
Complete response to Trametinib in a heavily-pretreated sarcoma: RAF1 as a predictor of MEKi Response
Collapse
Affiliation(s)
- Eylül Özgü
- Medicana International Atasehir Hospital, Demiray Precision Oncology Center, Istanbul, Turkey
| | - Esranur Aydin
- Medicana International Atasehir Hospital, Demiray Precision Oncology Center, Istanbul, Turkey
| | - Ashkan Adibi
- Medicana International Atasehir Hospital, Demiray Precision Oncology Center, Istanbul, Turkey
- Istanbul University, Institute of Oncology, Department of Basic Oncology, Division of Cancer Genetics, Istanbul, Turkey
| | - Ünal Metin Tokat
- Medicana International Atasehir Hospital, Demiray Precision Oncology Center, Istanbul, Turkey
| | - Onur Tutar
- İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Internal Medicine, Istanbul, Turkey
| | - Jiancheng Hu
- Division of Cellular and Molecular Research, Singapore, Singapore
- Cancer and Stem Cell Program, Duke-NUS Medical School, Singapore, Singapore
| | - Irem Demiray
- Koc University, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Razelle Kurzrock
- Medical College of Wisconsin, Milwaukee, WI
- WIN Consortium, Paris, France
| | - Mutlu Demiray
- Medicana International Atasehir Hospital, Demiray Precision Oncology Center, Istanbul, Turkey
| |
Collapse
|
32
|
Yang Z, Guo H, Zhang K, Jiang Z, Jin R, Guo D, Li Z, Wang Y, Meng L. The Design, Synthesis, and Evaluation of Evodiamine Derivatives with
Hydroxy Groups. LETT DRUG DES DISCOV 2023; 20:1135-1146. [DOI: 10.2174/1570180819666220903150621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
Background:
Most of the structural modifications to evodiamine (EVO) have focused on the
3- and 10-positions, while structural modifications to the EVO 2-position have not yet been reported. In
this study, we investigated the scaffold diversity and bioactivity of EVO from position 2 to gain more
insight into the influence of the chemical space around EVO on bioactivity.
Objective:
The study aims to synthesize two derivatives of EVO with hydroxy groups, 8a and 8b, and to
investigate the antitumor activity of EVO derivatives with hydroxy groups compared to EVO.
Methods:
The synthesized compounds were structurally characterized by 1H NMR, 13C NMR, and mass
spectrometry. The effects of compounds 8a, 8b, and EVO on the proliferation of H460, A549, and Eca109
cells in vitro were determined by MTT. The effect of EVO, 8a and 8b on apoptosis of H460 cells was
investigated by the annexed V-FITC/propidium iodide (PI) combination assay. The expression of EVO,
8a and 8b on apoptosis-related proteins was examined by Western blot analysis. To simulate the binding
ability between small molecules and proteins, molecular docking calculations of EGFRWT and EGFRT790M
with 8a and 8b, respectively, were performed using Schrödinger software.
Results:
In the cytotoxicity assay, compound 8b showed lower IC50 values for the three tumor cell lines
(6.69 μM for H460 cells, 20.02 μM for A549 cells, and 16.47 μM for Eca109 cells) compared to compound
8a and EVO, and 8b induced apoptosis by affecting apoptosis-related proteins CRAF, AKT, and
ERK in a late apoptotic manner. The molecular docking results showed that 8b has a good binding ability
to EGFR upstream of apoptosis-related proteins.
Conclusion:
These findings suggest that 8b has significantly higher antitumor biological activity than
EVO and 8a. This antitumor effect has important implications for the study of EVO derivatives in antitumor
models.
Collapse
Affiliation(s)
- Zheng Yang
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine,
Xian Yang, Shaanxi 712046, China
| | - Hui Guo
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine,
Xian Yang, Shaanxi 712046, China
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an, 710049,
P.R. China
| | - Keyao Zhang
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine,
Xian Yang, Shaanxi 712046, China
| | - Zebo Jiang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering
Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong
Province, 519000, China
| | - Ruyi Jin
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine,
Xian Yang, Shaanxi 712046, China
| | - Dongyan Guo
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine,
Xian Yang, Shaanxi 712046, China
| | - Zhi Li
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine,
Xian Yang, Shaanxi 712046, China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine,
Xian Yang, Shaanxi 712046, China
| | - Lingjie Meng
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an, 710049,
P.R. China
| |
Collapse
|
33
|
Liu C, Ye D, Yang H, Chen X, Su Z, Li X, Ding M, Liu Y. RAS-targeted cancer therapy: Advances in drugging specific mutations. MedComm (Beijing) 2023; 4:e285. [PMID: 37250144 PMCID: PMC10225044 DOI: 10.1002/mco2.285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Rat sarcoma (RAS), as a frequently mutated oncogene, has been studied as an attractive target for treating RAS-driven cancers for over four decades. However, it is until the recent success of kirsten-RAS (KRAS)G12C inhibitor that RAS gets rid of the title "undruggable". It is worth noting that the therapeutic effect of KRASG12C inhibitors on different RAS allelic mutations or even different cancers with KRASG12C varies significantly. Thus, deep understanding of the characteristics of each allelic RAS mutation will be a prerequisite for developing new RAS inhibitors. In this review, the structural and biochemical features of different RAS mutations are summarized and compared. Besides, the pathological characteristics and treatment responses of different cancers carrying RAS mutations are listed based on clinical reports. In addition, the development of RAS inhibitors, either direct or indirect, that target the downstream components in RAS pathway is summarized as well. Hopefully, this review will broaden our knowledge on RAS-targeting strategies and trigger more intensive studies on exploiting new RAS allele-specific inhibitors.
Collapse
Affiliation(s)
- Cen Liu
- Beijing University of Chinese MedicineBeijingChina
| | - Danyang Ye
- Beijing University of Chinese MedicineBeijingChina
| | - Hongliu Yang
- Beijing University of Chinese MedicineBeijingChina
| | - Xu Chen
- Beijing University of Chinese MedicineBeijingChina
| | - Zhijun Su
- Beijing University of Chinese MedicineBeijingChina
| | - Xia Li
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Mei Ding
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yonggang Liu
- Beijing University of Chinese MedicineBeijingChina
| |
Collapse
|
34
|
Dorard C, Madry C, Buhard O, Toifl S, Didusch S, Ratovomanana T, Letourneur Q, Dolznig H, Garnett MJ, Duval A, Baccarini M. RAF1 contributes to cell proliferation and STAT3 activation in colorectal cancer independently of microsatellite and KRAS status. Oncogene 2023; 42:1649-1660. [PMID: 37020037 PMCID: PMC10181936 DOI: 10.1038/s41388-023-02683-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023]
Abstract
More than 30% of all human cancers are driven by RAS mutations and activating KRAS mutations are present in 40% of colorectal cancer (CRC) in the two main CRC subgroups, MSS (Microsatellite Stable) and MSI (Microsatellite Instable). Studies in RAS-driven tumors have shown essential roles of the RAS effectors RAF and specifically of RAF1, which can be dependent or independent of RAF's ability to activate the MEK/ERK module. In this study, we demonstrate that RAF1, but not its kinase activity, plays a crucial role in the proliferation of both MSI and MSS CRC cell line-derived spheroids and patient-derived organoids, and independently of KRAS mutation status. Moreover, we could define a RAF1 transcriptomic signature which includes genes that contribute to STAT3 activation, and could demonstrate that RAF1 ablation decreases STAT3 phosphorylation in all CRC spheroids tested. The genes involved in STAT3 activation as well as STAT3 targets promoting angiogenesis were also downregulated in human primary tumors expressing low levels of RAF1. These results indicate that RAF1 could be an attractive therapeutic target in both MSI and MSS CRC regardless of their KRAS status and support the development of selective RAF1 degraders rather than RAF1 inhibitors for clinical use in combination therapies.
Collapse
Affiliation(s)
- Coralie Dorard
- Department of Microbiology, Immunology and Genetics, Center of Molecular Biology, University of Vienna, Max Perutz Labs, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria.
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine (CRSA), Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, F-75012, Paris, France.
| | - Claire Madry
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine (CRSA), Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, F-75012, Paris, France
| | - Olivier Buhard
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine (CRSA), Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, F-75012, Paris, France
| | - Stefanie Toifl
- Department of Microbiology, Immunology and Genetics, Center of Molecular Biology, University of Vienna, Max Perutz Labs, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Sebastian Didusch
- Department of Microbiology, Immunology and Genetics, Center of Molecular Biology, University of Vienna, Max Perutz Labs, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Toky Ratovomanana
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine (CRSA), Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, F-75012, Paris, France
| | - Quentin Letourneur
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine (CRSA), Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, F-75012, Paris, France
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Straße 10, A-1090, Vienna, Austria
| | | | - Alex Duval
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine (CRSA), Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, F-75012, Paris, France
| | - Manuela Baccarini
- Department of Microbiology, Immunology and Genetics, Center of Molecular Biology, University of Vienna, Max Perutz Labs, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria
| |
Collapse
|
35
|
Assi M, Kimmelman AC. Impact of context-dependent autophagy states on tumor progression. NATURE CANCER 2023; 4:596-607. [PMID: 37069394 PMCID: PMC10542907 DOI: 10.1038/s43018-023-00546-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/20/2023] [Indexed: 04/19/2023]
Abstract
Macroautophagy is a cellular quality-control process that degrades proteins, protein aggregates and damaged organelles. Autophagy plays a fundamental role in cancer where, in the presence of stressors (for example, nutrient starvation, hypoxia, mechanical pressure), tumor cells activate it to degrade intracellular substrates and provide energy. Cell-autonomous autophagy in tumor cells and cell-nonautonomous autophagy in the tumor microenvironment and in the host converge on mechanisms that modulate metabolic fitness, DNA integrity and immune escape and, consequently, support tumor growth. In this Review, we will discuss insights into the tumor-modulating roles of autophagy in different contexts and reflect on how future studies using physiological culture systems may help to understand the complexity and open new therapeutic avenues.
Collapse
Affiliation(s)
- Mohamad Assi
- Department of Radiation Oncology, New York University Langone Health, New York, NY, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Alec C Kimmelman
- Department of Radiation Oncology, New York University Langone Health, New York, NY, USA.
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
36
|
Mertens S, Huismans MA, Verissimo CS, Ponsioen B, Overmeer R, Proost N, van Tellingen O, van de Ven M, Begthel H, Boj SF, Clevers H, Roodhart JML, Bos JL, Snippert HJG. Drug-repurposing screen on patient-derived organoids identifies therapy-induced vulnerability in KRAS-mutant colon cancer. Cell Rep 2023; 42:112324. [PMID: 37000626 DOI: 10.1016/j.celrep.2023.112324] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 01/06/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
Patient-derived organoids (PDOs) are widely heralded as a drug-screening platform to develop new anti-cancer therapies. Here, we use a drug-repurposing library to screen PDOs of colorectal cancer (CRC) to identify hidden vulnerabilities within therapy-induced phenotypes. Using a microscopy-based screen that accurately scores drug-induced cell killing, we have tested 414 putative anti-cancer drugs for their ability to switch the EGFRi/MEKi-induced cytostatic phenotype toward cytotoxicity. A majority of validated hits (9/37) are microtubule-targeting agents that are commonly used in clinical oncology, such as taxanes and vinca-alkaloids. One of these drugs, vinorelbine, is consistently effective across a panel of >25 different CRC PDOs, independent of RAS mutational status. Unlike vinorelbine alone, its combination with EGFR/MEK inhibition induces apoptosis at all stages of the cell cycle and shows tolerability and effective anti-tumor activity in vivo, setting the basis for a clinical trial to treat patients with metastatic RAS-mutant CRC.
Collapse
Affiliation(s)
- Sander Mertens
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maarten A Huismans
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Carla S Verissimo
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bas Ponsioen
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rene Overmeer
- Hubrecht Organoid Technology (HUB), Utrecht, the Netherlands
| | - Natalie Proost
- Mouse Clinic for Cancer and Aging Research (MCCA), Preclinical Intervention Unit, the Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Olaf van Tellingen
- Mouse Clinic for Cancer and Aging Research (MCCA), Preclinical Intervention Unit, the Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Division of Clinical Pharmacology, the Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging Research (MCCA), Preclinical Intervention Unit, the Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Harry Begthel
- Oncode Institute, Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sylvia F Boj
- Hubrecht Organoid Technology (HUB), Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeanine M L Roodhart
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Johannes L Bos
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hugo J G Snippert
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
37
|
Salmón M, Álvarez-Díaz R, Fustero-Torre C, Brehey O, Lechuga CG, Sanclemente M, Fernández-García F, López-García A, Martín-Guijarro MC, Rodríguez-Perales S, Bousquet-Mur E, Morales-Cacho L, Mulero F, Al-Shahrour F, Martínez L, Domínguez O, Caleiras E, Ortega S, Guerra C, Musteanu M, Drosten M, Barbacid M. Kras oncogene ablation prevents resistance in advanced lung adenocarcinomas. J Clin Invest 2023; 133:e164413. [PMID: 36928090 PMCID: PMC10065067 DOI: 10.1172/jci164413] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/16/2023] [Indexed: 03/17/2023] Open
Abstract
KRASG12C inhibitors have revolutionized the clinical management of patients with KRASG12C-mutant lung adenocarcinoma. However, patient exposure to these inhibitors leads to the rapid onset of resistance. In this study, we have used genetically engineered mice to compare the therapeutic efficacy and the emergence of tumor resistance between genetic ablation of mutant Kras expression and pharmacological inhibition of oncogenic KRAS activity. Whereas Kras ablation induces massive tumor regression and prevents the appearance of resistant cells in vivo, treatment of KrasG12C/Trp53-driven lung adenocarcinomas with sotorasib, a selective KRASG12C inhibitor, caused a limited antitumor response similar to that observed in the clinic, including the rapid onset of resistance. Unlike in human tumors, we did not observe mutations in components of the RAS-signaling pathways. Instead, sotorasib-resistant tumors displayed amplification of the mutant Kras allele and activation of xenobiotic metabolism pathways, suggesting that reduction of the on-target activity of KRASG12C inhibitors is the main mechanism responsible for the onset of resistance. In sum, our results suggest that resistance to KRAS inhibitors could be prevented by achieving a more robust inhibition of KRAS signaling mimicking the results obtained upon Kras ablation.
Collapse
Affiliation(s)
- Marina Salmón
- Experimental Oncology Group, Molecular Oncology Program
| | | | | | - Oksana Brehey
- Experimental Oncology Group, Molecular Oncology Program
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sagrario Ortega
- Mouse Genome Editing Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Carmen Guerra
- Experimental Oncology Group, Molecular Oncology Program
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Monica Musteanu
- Experimental Oncology Group, Molecular Oncology Program
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Matthias Drosten
- Experimental Oncology Group, Molecular Oncology Program
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas–Universidad de Salamanca (CSIC-USAL), Salamanca, Spain
| | - Mariano Barbacid
- Experimental Oncology Group, Molecular Oncology Program
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
38
|
Wang P, Jia X, Lu B, Huang H, Liu J, Liu X, Wu Q, Hu Y, Li P, Wei H, Liu T, Zhao D, Zhang L, Tian X, Jiang Y, Qiao Y, Nie W, Ma X, Bai R, Peng C, Dong Z, Liu K. Erianin suppresses constitutive activation of MAPK signaling pathway by inhibition of CRAF and MEK1/2. Signal Transduct Target Ther 2023; 8:96. [PMID: 36872366 PMCID: PMC9986241 DOI: 10.1038/s41392-023-01329-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/26/2022] [Accepted: 01/18/2023] [Indexed: 03/07/2023] Open
Abstract
Constitutive activation of RAS-RAF-MEK-ERK signaling pathway (MAPK pathway) frequently occurs in many cancers harboring RAS or RAF oncogenic mutations. Because of the paradoxical activation induced by a single use of BRAF or MEK inhibitors, dual-target RAF and MEK treatment is thought to be a promising strategy. In this work, we evaluated erianin is a novel inhibitor of CRAF and MEK1/2 kinases, thus suppressing constitutive activation of the MAPK signaling pathway induced by BRAF V600E or RAS mutations. KinaseProfiler enzyme profiling, surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), cellular thermal shift assay, computational docking, and molecular dynamics simulations were utilized to screen and identify erianin binding to CRAF and MEK1/2. Kinase assay, luminescent ADP detection assay, and enzyme kinetics assay were investigated to identify the efficiency of erianin in CRAF and MEK1/2 kinase activity. Notably, erianin suppressed BRAF V600E or RAS mutant melanoma and colorectal cancer cell by inhibiting MEK1/2 and CRAF but not BRAF kinase activity. Moreover, erianin attenuated melanoma and colorectal cancer in vivo. Overall, we provide a promising leading compound for BRAF V600E or RAS mutant melanoma and colorectal cancer through dual targeting of CRAF and MEK1/2.
Collapse
Affiliation(s)
- Penglei Wang
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Xuechao Jia
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Bingbing Lu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Han Huang
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Jialin Liu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Xuejiao Liu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Qiong Wu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Yamei Hu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Pan Li
- China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Huifang Wei
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Tingting Liu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Dengyun Zhao
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Lingwei Zhang
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Xueli Tian
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Yanan Jiang
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China
| | - Yan Qiao
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China
| | - Wenna Nie
- China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Xinli Ma
- China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Ruihua Bai
- The Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Zigang Dong
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China. .,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, 450000, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, 450000, Zhengzhou, China. .,Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China.
| | - Kangdong Liu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China. .,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, 450000, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, 450000, Zhengzhou, China. .,Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
39
|
Karimi N, Moghaddam SJ. KRAS-Mutant Lung Cancer: Targeting Molecular and Immunologic Pathways, Therapeutic Advantages and Restrictions. Cells 2023; 12:749. [PMID: 36899885 PMCID: PMC10001046 DOI: 10.3390/cells12050749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
RAS mutations are among the most common oncogenic mutations in human cancers. Among RAS mutations, KRAS has the highest frequency and is present in almost 30% of non-small-cell lung cancer (NSCLC) patients. Lung cancer is the number one cause of mortality among cancers as a consequence of outrageous aggressiveness and late diagnosis. High mortality rates have been the reason behind numerous investigations and clinical trials to discover proper therapeutic agents targeting KRAS. These approaches include the following: direct KRAS targeting; synthetic lethality partner inhibitors; targeting of KRAS membrane association and associated metabolic rewiring; autophagy inhibitors; downstream inhibitors; and immunotherapies and other immune-modalities such as modulating inflammatory signaling transcription factors (e.g., STAT3). The majority of these have unfortunately encountered limited therapeutic outcomes due to multiple restrictive mechanisms including the presence of co-mutations. In this review we plan to summarize the past and most recent therapies under investigation, along with their therapeutic success rate and potential restrictions. This will provide useful information to improve the design of novel agents for treatment of this deadly disease.
Collapse
Affiliation(s)
- Nastaran Karimi
- Faculty of Medicine, Marmara University, Istanbul 34899, Turkey
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
40
|
MEK1 drives oncogenic signaling and interacts with PARP1 for genomic and metabolic homeostasis in malignant pleural mesothelioma. Cell Death Discov 2023; 9:55. [PMID: 36765038 PMCID: PMC9918536 DOI: 10.1038/s41420-023-01307-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 02/12/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a lethal malignancy etiologically caused by asbestos exposure, for which there are few effective treatment options. Although asbestos carcinogenesis is associated with reactive oxygen species (ROS), the bona fide oncogenic signaling pathways that regulate ROS homeostasis and bypass ROS-evoked apoptosis in MPM are poorly understood. In this study, we demonstrate that the mitogen-activated protein kinase (MAPK) pathway RAS-RAF-MEK-ERK is hyperactive and a molecular driver of MPM, independent of histological subtypes and genetic heterogeneity. Suppression of MAPK signaling by clinically approved MEK inhibitors (MEKi) elicits PARP1 to protect MPM cells from the cytotoxic effects of MAPK pathway blockage. Mechanistically, MEKi induces impairment of homologous recombination (HR) repair proficiency and mitochondrial metabolic activity, which is counterbalanced by pleiotropic PARP1. Consequently, the combination of MEK with PARP inhibitors enhances apoptotic cell death in vitro and in vivo that occurs through coordinated upregulation of cytotoxic ROS in MPM cells, suggesting a mechanism-based, readily translatable strategy to treat this daunting disease. Collectively, our studies uncover a previously unrecognized scenario that hyperactivation of the MAPK pathway is an essential feature of MPM and provide unprecedented evidence that MAPK signaling cooperates with PARP1 to homeostatically maintain ROS levels and escape ROS-mediated apoptosis.
Collapse
|
41
|
Phosphoproteomics reveals the BRAF-ERK1/2 axis as an important pathogenic signaling node in cartilage degeneration. Osteoarthritis Cartilage 2022; 30:1443-1454. [PMID: 36100125 DOI: 10.1016/j.joca.2022.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) causes gradual cellular alterations, structural anomalies and joint dysfunction. Progressive decline of chondrocyte function plays a vital role on OA pathogenesis. Although protein phosphorylation controls cartilage metabolism, its regulation mechanism in OA remains unclear. Thus, proteomic methods were used to investigate phosphorylation changes in preserved and OA articular cartilage samples, and to explore the intervention targets of phosphorylated kinase. METHODS Preserved (control) and lesioned (OA) cartilage samples from OA cases were assessed by phosphoproteomics. Immobilized metal affinity chromatography was performed for phosphopeptide enrichment. Quantitated phosphosites were comparatively assessed in the cartilage sample pair. Kinase-substrate enrichment analyses were carried out for identifying OA-related kinases. BRAF expression in cartilage tissues was assessed by immunohistochemical staining. The effects of BRAF inhibitor on cartilage degeneration were examined in mouse chondrocytes and OA mouse model. RESULTS High-sensitivity mass spectrometry-based proteomics revealed 7,471 peptides and 4,375 phosphorylated peptides differing between preserved and lesioned cartilage samples, which represented the significant alteration of kinase hubs and transduction pathways. Phosphoproteomics identified BRAF may be involved in developing OA. BRAF regulated the downstream ERK signaling pathway. In addition, BRAF was upregulated in human OA cartilage as shown by immunohistochemistry. Remarkably, BRAF inhibition alleviated cartilage degradation in a mouse model of OA through its downstream of ERK pathway activation. CONCLUSIONS Jointly, these findings provide an overview of phosphoproteomic alterations occurring during cartilage degeneration, identifying the BRAF-ERK1/2 Axis signaling as a potential signaling pathway involved in OA.
Collapse
|
42
|
Poulikakos PI, Sullivan RJ, Yaeger R. Molecular Pathways and Mechanisms of BRAF in Cancer Therapy. Clin Cancer Res 2022; 28:4618-4628. [PMID: 35486097 PMCID: PMC9616966 DOI: 10.1158/1078-0432.ccr-21-2138] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/08/2022] [Accepted: 03/30/2022] [Indexed: 01/24/2023]
Abstract
With the identification of activating mutations in BRAF across a wide variety of malignancies, substantial effort was placed in designing safe and effective therapeutic strategies to target BRAF. These efforts have led to the development and regulatory approval of three BRAF inhibitors as well as five combinations of a BRAF inhibitor plus an additional agent(s) to manage cancer such as melanoma, non-small cell lung cancer, anaplastic thyroid cancer, and colorectal cancer. To date, each regimen is effective only in patients with tumors harboring BRAFV600 mutations and the duration of benefit is often short-lived. Further limitations preventing optimal management of BRAF-mutant malignancies are that treatments of non-V600 BRAF mutations have been less profound and combination therapy is likely necessary to overcome resistance mechanisms, but multi-drug regimens are often too toxic. With the emergence of a deeper understanding of how BRAF mutations signal through the RAS/MAPK pathway, newer RAF inhibitors are being developed that may be more effective and potentially safer and more rational combination therapies are being tested in the clinic. In this review, we identify the mechanics of RAF signaling through the RAS/MAPK pathway, present existing data on single-agent and combination RAF targeting efforts, describe emerging combinations, summarize the toxicity of the various agents in clinical testing, and speculate as to where the field may be headed.
Collapse
Affiliation(s)
- Poulikos I. Poulikakos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ryan J. Sullivan
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
43
|
“RB-reactivator screening” as a novel cell-based assay for discoveries of molecular targeting agents including the first-in-class MEK inhibitor trametinib (trade name: Mekinist). Pharmacol Ther 2022; 236:108234. [DOI: 10.1016/j.pharmthera.2022.108234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 01/10/2023]
|
44
|
Avery TY, Köhler N, Zeiser R, Brummer T, Ruess DA. Onco-immunomodulatory properties of pharmacological interference with RAS-RAF-MEK-ERK pathway hyperactivation. Front Oncol 2022; 12:931774. [PMID: 35965494 PMCID: PMC9363660 DOI: 10.3389/fonc.2022.931774] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/30/2022] [Indexed: 12/25/2022] Open
Abstract
Hyperactivation of the RAS-RAF-MEK-ERK cascade - a mitogen-activated protein kinase pathway – has a well-known association with oncogenesis of leading tumor entities, including non-small cell lung cancer, colorectal carcinoma, pancreatic ductal adenocarcinoma, and malignant melanoma. Increasing evidence shows that genetic alterations leading to RAS-RAF-MEK-ERK pathway hyperactivation mediate contact- and soluble-dependent crosstalk between tumor, tumor microenvironment (TME) and the immune system resulting in immune escape mechanisms and establishment of a tumor-sustaining environment. Consequently, pharmacological interruption of this pathway not only leads to tumor-cell intrinsic disruptive effects but also modification of the TME and anti-tumor immunomodulation. At the same time, the importance of ERK signaling in immune cell physiology and potentiation of anti-tumor immune responses through ERK signaling inhibition within immune cell subsets has received growing appreciation. Specifically, a strong case was made for targeted MEK inhibition due to promising associated immune cell intrinsic modulatory effects. However, the successful transition of therapeutic agents interrupting RAS-RAF-MEK-ERK hyperactivation is still being hampered by significant limitations regarding durable efficacy, therapy resistance and toxicity. We here collate and summarize the multifaceted role of RAS-RAF-MEK-ERK signaling in physiology and oncoimmunology and outline the rationale and concepts for exploitation of immunomodulatory properties of RAS-RAF-MEK-ERK inhibition while accentuating the role of MEK inhibition in combinatorial and intermittent anticancer therapy. Furthermore, we point out the extensive scientific efforts dedicated to overcoming the challenges encountered during the clinical transition of various therapeutic agents in the search for the most effective and safe patient- and tumor-tailored treatment approach.
Collapse
Affiliation(s)
- Thomas Yul Avery
- Department of General and Visceral Surgery, Center of Surgery, Medical Center University of Freiburg, Freiburg, Germany
- *Correspondence: Thomas Yul Avery, ; Dietrich Alexander Ruess,
| | - Natalie Köhler
- Department of Medicine I - Medical Center, Medical Center University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I - Medical Center, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium Deutsches Konsortium Translationale Krebsforschung (DKTK), partner site Freiburg, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Tilman Brummer
- German Cancer Consortium Deutsches Konsortium Translationale Krebsforschung (DKTK), partner site Freiburg, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine, Medical Center University of Freiburg, Freiburg, Germany
| | - Dietrich Alexander Ruess
- Department of General and Visceral Surgery, Center of Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium Deutsches Konsortium Translationale Krebsforschung (DKTK), partner site Freiburg, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- *Correspondence: Thomas Yul Avery, ; Dietrich Alexander Ruess,
| |
Collapse
|
45
|
Vav1 accelerates Ras-driven lung cancer and modulates its tumor microenvironment. Cell Signal 2022; 97:110395. [PMID: 35752351 DOI: 10.1016/j.cellsig.2022.110395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022]
Abstract
The potential impact of Vav1 on human cancer was only recently acknowledged, as it is detected as a mutant or an overexpressed gene in various cancers, including lung cancer. Vav1, which is normally and exclusively expressed in the hematopoietic system functions as a specific GDP/GTP nucleotide exchange factor (GEF), strictly regulated by tyrosine phosphorylation. To investigate whether Vav1 plays a causative or facilitating role in-vivo in lung cancer development and to examine whether it co-operates with other oncogenes, such as mutant K-Ras, we generated novel mouse strains that express: Vav1 or K-RasG12D in type II pneumocytes, as well as a transgenic mouse line that expresses both Vav1 and K-RasG12D in these cells. Coexpression of Vav1 and K-RasG12D in the lungs dramatically increased malignant lung cancer lesions, and did so significantly faster than K-RasG12D alone, strongly suggesting that these two oncogenes synergize to enhance lung tumor development. Vav1 expression alone had no apparent effects on lung tumorigenesis. The increase in lung cancer in K-RasG12D/Vav1 mice was accompanied by an increase in B-cell, T-cells, and monocyte infiltration in the tumor microenvironment. Concomitantly, ERK phosphorylation was highly elevated in the lungs of K-RasG12 D/Vav1 mice. Also, several cytokines such as IL-4 and IL-13 which play a significant role in the immune system, were elevated in lungs of Vav1 and K-RasG12 D/Vav1 mice. Our findings emphasize the contribution of Vav1 to lung tumor development through its signaling properties.
Collapse
|
46
|
Roman M, Hwang E, Sweet-Cordero EA. Synthetic Vulnerabilities in the KRAS Pathway. Cancers (Basel) 2022; 14:cancers14122837. [PMID: 35740503 PMCID: PMC9221492 DOI: 10.3390/cancers14122837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 02/06/2023] Open
Abstract
Mutations in Kristen Rat Sarcoma viral oncogene (KRAS) are among the most frequent gain-of-function genetic alterations in human cancer. Most KRAS-driven cancers depend on its sustained expression and signaling. Despite spectacular recent success in the development of inhibitors targeting specific KRAS alleles, the discovery and utilization of effective directed therapies for KRAS-mutant cancers remains a major unmet need. One potential approach is the identification of KRAS-specific synthetic lethal vulnerabilities. For example, while KRAS-driven oncogenesis requires the activation of a number of signaling pathways, it also triggers stress response pathways in cancer cells that could potentially be targeted for therapeutic benefit. This review will discuss how the latest advances in functional genomics and the development of more refined models have demonstrated the existence of molecular pathways that can be exploited to uncover synthetic lethal interactions with a promising future as potential clinical treatments in KRAS-mutant cancers.
Collapse
|
47
|
Mooz J, Riegel K, PS H, Sadanandam A, Marini F, Klein M, Werner U, Roth W, Wilken-Schmitz A, Tegeder I, Rajalingam K. ARAF suppresses ERBB3 expression and metastasis in a subset of lung cancers. SCIENCE ADVANCES 2022; 8:eabk1538. [PMID: 35302851 PMCID: PMC8932670 DOI: 10.1126/sciadv.abk1538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
RAF kinases are highly conserved serine/threonine kinases, and among the three RAF isoforms (ARAF, BRAF, and CRAF), the pathophysiological relevance of ARAF is not well defined. Here, we show that patients with lung cancer exhibit low expression of ARAF, which is associated with lymph node metastasis and poor patient survival. We uncover that depletion of ARAF promotes anchorage-independent growth and metastasis through activation of AKT signaling in a subset of lung cancer cells. We identified that loss of ARAF was associated with an increase in ERBB3 expression in a kinase-independent manner. ARAF suppressed the promoter activity of ERBB3, and reconstitution of ARAF in ARAF-depleted cells led to the reversal of enhanced ERBB3-AKT signaling. Furthermore, ARAF inhibited neuregulin 1 (hNRG1)-mediated AKT activation through controlling ERBB3 expression via the transcription factor KLF5. Our results disclose a critical dual role for ARAF kinase in the negative regulation of ERBB3-AKT signaling, thereby suppressing tumor metastasis.
Collapse
Affiliation(s)
- Juliane Mooz
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Kristina Riegel
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Hari PS
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Klein
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | | - Wilfried Roth
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Annett Wilken-Schmitz
- Institute of Clinical Pharmacology, Goethe-University, Medical Faculty, Frankfurt (Main), Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University, Medical Faculty, Frankfurt (Main), Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- University Cancer Center Mainz, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
48
|
Venkatanarayan A, Liang J, Yen I, Shanahan F, Haley B, Phu L, Verschueren E, Hinkle TB, Kan D, Segal E, Long JE, Lima T, Liau NPD, Sudhamsu J, Li J, Klijn C, Piskol R, Junttila MR, Shaw AS, Merchant M, Chang MT, Kirkpatrick DS, Malek S. CRAF dimerization with ARAF regulates KRAS-driven tumor growth. Cell Rep 2022; 38:110351. [PMID: 35139374 DOI: 10.1016/j.celrep.2022.110351] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 09/21/2021] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
KRAS, which is mutated in ∼30% of all cancers, activates the RAF-MEK-ERK signaling cascade. CRAF is required for growth of KRAS mutant lung tumors, but the requirement for CRAF kinase activity is unknown. Here, we show that subsets of KRAS mutant tumors are dependent on CRAF for growth. Kinase-dead but not dimer-defective CRAF rescues growth inhibition, suggesting that dimerization but not kinase activity is required. Quantitative proteomics demonstrates increased levels of CRAF:ARAF dimers in KRAS mutant cells, and depletion of both CRAF and ARAF rescues the CRAF-loss phenotype. Mechanistically, CRAF depletion causes sustained ERK activation and induction of cell-cycle arrest, while treatment with low-dose MEK or ERK inhibitor rescues the CRAF-loss phenotype. Our studies highlight the role of CRAF in regulating MAPK signal intensity to promote tumorigenesis downstream of mutant KRAS and suggest that disrupting CRAF dimerization or degrading CRAF may have therapeutic benefit.
Collapse
Affiliation(s)
| | - Jason Liang
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ivana Yen
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Frances Shanahan
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lilian Phu
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Erik Verschueren
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Trent B Hinkle
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - David Kan
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ehud Segal
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason E Long
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tony Lima
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nicholas P D Liau
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason Li
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christiaan Klijn
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Robert Piskol
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Melissa R Junttila
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Andrey S Shaw
- Department of Research Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mark Merchant
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Matthew T Chang
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Donald S Kirkpatrick
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Shiva Malek
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
49
|
Diehl JN, Hibshman PS, Ozkan-Dagliyan I, Goodwin CM, Howard SV, Cox AD, Der CJ. Targeting the ERK mitogen-activated protein kinase cascade for the treatment of KRAS-mutant pancreatic cancer. Adv Cancer Res 2022; 153:101-130. [PMID: 35101228 DOI: 10.1016/bs.acr.2021.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mutational activation of the KRAS oncogene is found in ~95% of pancreatic ductal adenocarcinoma (PDAC), the major form of pancreatic cancer. With substantial experimental evidence that continued aberrant KRAS function is essential for the maintenance of PDAC tumorigenic growth, the National Cancer Institute has identified the development of effective anti-KRAS therapies as one of four major initiatives for pancreatic cancer research. The recent clinical success in the development of an anti-KRAS therapy targeting one specific KRAS mutant (G12C) supports the significant potential impact of anti-KRAS therapies. However, KRASG12C mutations comprise only 2% of KRAS mutations in PDAC. Thus, there remains a dire need for additional therapeutic approaches for targeting the majority of KRAS-mutant PDAC. Among the different directions currently being pursued for anti-KRAS drug development, one of the most promising involves inhibitors of the key KRAS effector pathway, the three-tiered RAF-MEK-ERK mitogen-activated protein kinase (MAPK) cascade. We address the promises and challenges of targeting ERK MAPK signaling as an anti-KRAS therapy for PDAC. In particular, we also summarize the key role of the MYC transcription factor and oncoprotein in supporting ERK-dependent growth of KRAS-mutant PDAC.
Collapse
Affiliation(s)
- J Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Priya S Hibshman
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Irem Ozkan-Dagliyan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Craig M Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah V Howard
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Adrienne D Cox
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Channing J Der
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
50
|
Chou YT, Bivona TG. Inhibition of SHP2 as an approach to block RAS-driven cancers. Adv Cancer Res 2022; 153:205-236. [PMID: 35101231 DOI: 10.1016/bs.acr.2021.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The non-receptor protein tyrosine phosphatase SHP2 (encoded by PTPN11) is a critical component of RAS/MAPK signaling by acting upstream of RAS to promote oncogenic signaling and tumor growth. Over three decades, SHP2 was considered "undruggable" because enzymatic active-site inhibitors generally showed off-target inhibition of other proteins and low membrane permeability. More recently, allosteric SHP2 inhibitors with striking inhibitory potency have been developed. These small molecules effectively block the signal transduction between receptor tyrosine kinases (RTKs) and RAS/MAPK signaling and show efficacy in preclinical cancer models. Moreover, clinical evaluation of these allosteric SHP2 inhibitors is ongoing. RAS proteins which harbor transforming properties by gain-of-function mutations are present in various cancer types. While inhibitors of KRASG12C show early clinical promise, resistance remains a challenge and other forms of oncogenic RAS remain to be selectively inhibited. Here, we summarize the role of SHP2 in RAS-driven cancers and the therapeutic potential of allosteric SHP2 inhibitors as a strategy to block RAS-driven cancers.
Collapse
Affiliation(s)
- Yu-Ting Chou
- Department of Medicine, Division of Hematology and Oncology, and The Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, United States
| | - Trever G Bivona
- Department of Medicine, Division of Hematology and Oncology, and The Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, United States.
| |
Collapse
|