1
|
Desai O, Rathore M, Boutros CS, Wright M, Bryson E, Curry K, Wang R. HER3: Unmasking a twist in the tale of a previously unsuccessful therapeutic pursuit targeting a key cancer survival pathway. Genes Dis 2025; 12:101354. [PMID: 40290122 PMCID: PMC12022662 DOI: 10.1016/j.gendis.2024.101354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 04/30/2025] Open
Abstract
HER3, formally referred to as ERB-B2 receptor tyrosine kinase 3, is a member of the ErbB receptor tyrosine kinases (also known as EGFR) family. HER3 plays a significant pro-cancer role in various types of cancer due to its overexpression and abnormal activation, which initiates downstream signaling pathways crucial in cancer cell survival and progression. As a result, numerous monoclonal antibodies have been developed to block HER3 activation and subsequent signaling pathways. While pre-clinical investigations have effectively showcased significant anti-cancer effects of HER3-targeted therapies, these therapies have had little impact on cancer patient outcomes in the clinic, except for patients with rare NRG1 fusion mutations. This review offers a comprehensive description of the oncogenic functions of HER3, encompassing its structure and mediating signaling pathways. More importantly, it provides an in-depth exploration of past and ongoing clinical trials investigating HER3-targeted therapies for distinct types of cancer and discusses the tumor microenvironment and other critical determinants that may contribute to the observed suboptimal outcomes in most clinical studies using HER3-targeted therapies. Lastly, we suggest alternative approaches and the exploration of novel strategies to potentially improve the efficacy of targeting the pivotal oncogenic HER3 signaling pathway in future translational investigations.
Collapse
Affiliation(s)
- Omkar Desai
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Moeez Rathore
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Christina S. Boutros
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Michel'le Wright
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Elizabeth Bryson
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kimberly Curry
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rui Wang
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Garrett JT, Tendler S, Feroz W, Kilroy MK, Yu H. Emerging importance of HER3 in tumorigenesis and cancer therapy. Nat Rev Clin Oncol 2025; 22:348-370. [PMID: 40087402 DOI: 10.1038/s41571-025-01008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
HER3 is a member of the HER/ErbB family of receptor tyrosine kinases, together with EGFR (HER1), HER2 and HER4. Despite having only weak intrinsic kinase activity, HER3 can contribute to oncogenic signalling via ligand-induced heterodimerization with other HER family members. Evidence indicates that HER3 is altered or aberrantly expressed across a variety of tumour types and can be associated with poor clinical outcomes. Whereas anticancer agents targeting EGFR and HER2 have been approved for decades, no drug targeting HER3 had been approved until very recently. Initial targeting of HER3 with monoclonal antibodies as single agents or in combination with other therapeutics produced disappointing clinical results. Subsequently, efforts have been made to target HER3 with novel agents such as antibody-drug conjugates and bispecific antibodies, with promising efficacy observed in several trials encompassing various tumour types. In December 2024, the HER3 × HER2 bispecific antibody zenocutuzumab was granted FDA Accelerated Approval for the treatment of non-small-cell lung cancers or pancreatic cancers harbouring fusions involving NRG1, the gene encoding the high-affinity HER3 ligand neuregulin 1. In this Review, we provide an essential guide to HER3 signalling and oncogenesis, HER3 expression in cancer and its prognostic implications, oncogenic HER3 somatic mutations as well as rare NRG1 fusions that might depend on HER3 signalling, and the roles of HER3 in resistance to cancer therapies. We also highlight efforts to target HER3 with diverse therapeutic strategies and the potential interplay between HER3 and the antitumour immune response.
Collapse
Affiliation(s)
- Joan T Garrett
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA.
| | - Salomon Tendler
- Department of Medicine, Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wasim Feroz
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Mary Kate Kilroy
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Helena Yu
- Department of Medicine, Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Liu D, Jee J, Drilon A, Heilmann AM, Allen JM, Schrock AB, Keller-Evans RB, Li BT. Diverse ERBB2/ERBB3 Activating Alterations and Coalterations Have Implications for HER2/3-Targeted Therapies across Solid Tumors. CANCER RESEARCH COMMUNICATIONS 2025; 5:680-693. [PMID: 40178042 PMCID: PMC12022956 DOI: 10.1158/2767-9764.crc-24-0620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/06/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
SIGNIFICANCE CGP provides genomic context for HER2 status beyond the information provided by IHC and FISH, including detection of ERBB2 mutations and co-alterations that may suggest sensitivity/resistance to HER2-directed therapies, and is therefore crucial for guiding treatment choice and understanding individual patient response.
Collapse
Affiliation(s)
- Dazhi Liu
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Justin Jee
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander Drilon
- Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | | | | | | | | | - Bob T. Li
- Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
4
|
Babaei Khorzoughi S, Tavakoli M, Mortazavi M, Jafarnejad Z, Malekpour A, Kopaiee Malek T, Kargar F. A review of recombinant HER3 affibodies with an effective diagnostic view of cancer cells. J Drug Target 2025; 33:316-327. [PMID: 39485069 DOI: 10.1080/1061186x.2024.2420202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Breast cancer is one of the leading causes of cancer-related deaths among women globally. Factors like increased expression of HER family members contribute to its development, with elevated HER3 levels-especially in conjunction with tyrosine kinase receptors like HER2-playing a critical role in activating cancer pathways essential for cell survival and proliferation. Detecting high HER3 levels is vital for effective treatment. Affibody proteins, a class that includes antibodies, are used to identify elevated HER3 expression due to their high binding affinity. These innovative non-immune probes show promise in therapy, diagnostics, and biotechnology because of their exceptional specificity and affinity for target proteins. The design of recombinant affibodies enhances HER3 detection accuracy and supports the development of targeted therapies. Advanced engineering techniques optimize these affibodies for stability and binding efficacy, making them suitable for clinical applications. Additionally, their versatility allows integration with imaging technologies for real-time monitoring of HER3 expression and therapeutic responses. This comprehensive approach could lead to more personalized treatment options for patients with HER3-positive breast cancers, improving patient management and outcomes. This study presents recombinant affibodies designed to bind HER3 for cancer cell identification and introduces novel methods for producing various affibody molecules.
Collapse
Affiliation(s)
- Sahar Babaei Khorzoughi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mehrnoosh Tavakoli
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Zahra Jafarnejad
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | | | - Tara Kopaiee Malek
- Department of Cell and Molecular Biology, Faculty of Science, Azad University of Damghan, Damghan, Iran
| | - Farzane Kargar
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Piha-Paul SA, Tseng C, Tran HT, Naing A, Dumbrava EE, Karp DD, Rodon J, Yap TA, Raghav KP, Damodaran S, Le X, Soliman PT, Lim J, Meric-Bernstam F. Phase I trial of the combination of the pan-ErbB inhibitor neratinib and mTOR inhibitor everolimus in advanced cancer patients with ErbB family gene alterations. ESMO Open 2025; 10:104136. [PMID: 39908697 PMCID: PMC11847258 DOI: 10.1016/j.esmoop.2025.104136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/25/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND The ErbB family of receptor tyrosine kinases are key targets for antitumor therapy. Although neratinib, a pan-ErbB kinase inhibitor, is approved in ErbB2-positive breast cancer, drug resistance is common. Preclinical data suggest that combining neratinib with the mTOR inhibitor everolimus may overcome such resistance. PATIENTS AND METHODS Our trial evaluated this combination's safety and efficacy in advanced cancers with ErbB alterations. We conducted a phase I dose-escalation trial of neratinib and everolimus. Primary objectives were to assess safety, tolerability, and dose-limiting toxicities (DLTs) and establish the maximum tolerated dose (MTD). Secondary objectives included objective response by RECIST v1.1 and pharmacokinetic analyses. RESULTS Twenty-two patients (median age 61, median of four prior therapies) with ErbB alterations (mutations 63.6%, amplification 36.3%, or ErbB2-overexpressed by immunohistochemistry 9.1%) were enrolled. Common tumor types included breast (31.8%), colorectal (18.2%), cervical (9.1%), and endometrial (9.1%) cancers. Frequent grade (G) 3 treatment-related adverse events were diarrhea (18.2%), anemia (9.1%), mucositis (9.1%), and acute kidney injury (9.1%). DLTs included G3 mucositis and diarrhea at dose level (DL) 5, and G3 increased creatinine at DL4. The MTD was DL4: neratinib 240 mg with everolimus 7.5 mg. The objective response rate was 19% with partial response in four patients. Stable disease ≥16 weeks was seen in two patients (9.5%), resulting in a clinical benefit rate of 28.6%. CONCLUSION Pharmacokinetic data indicated reduced neratinib clearance possibly due to CYP3A4 pathway saturation by everolimus. Combination therapy with neratinib and everolimus has a tolerable safety profile and clinical activity in ErbB-altered patients. ErbB family receptors and the PI3K pathway are commonly implicated in oncogenesis. This clinical study of neratinib and everolimus demonstrated favorable clinical activity and tolerability.
Collapse
Affiliation(s)
- S A Piha-Paul
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, USA.
| | - C Tseng
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, USA
| | - H T Tran
- Department of Thoracic, Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - A Naing
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, USA
| | - E E Dumbrava
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, USA
| | - D D Karp
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, USA
| | - J Rodon
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, USA; The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, USA
| | - T A Yap
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, USA; The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, USA; Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, USA
| | - K P Raghav
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - S Damodaran
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - X Le
- Department of Thoracic, Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - P T Soliman
- Gynecologic Oncology & Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, USA
| | - J Lim
- Pharmacy Clinic Programs, Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, USA
| | - F Meric-Bernstam
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, USA; The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, USA; Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
6
|
Yamaguchi K, Abdelbaky S, Yu L, Oakes CC, Abruzzo LV, Coombes KR. PLASMA: Partial LeAst Squares for Multiomics Analysis. Cancers (Basel) 2025; 17:287. [PMID: 39858069 PMCID: PMC11763701 DOI: 10.3390/cancers17020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Recent growth in the number and applications of high-throughput "omics" technologies has created a need for better methods to integrate multiomics data. Much progress has been made in developing unsupervised methods, but supervised methods have lagged behind. Methods: Here we present the first algorithm, PLASMA, that can learn to predict time-to-event outcomes from multiomics data sets, even when some samples have only been assayed on a subset of the omics data sets. PLASMA uses two layers of existing partial least squares algorithms to first select components that covary with the outcome and then construct a joint Cox proportional hazards model. Results: We apply PLASMA to the stomach adenocarcinoma (STAD) data from The Cancer Genome Atlas. We validate the model both by splitting the STAD data into training and test sets and by applying them to the subset of esophageal cancer (ESCA) containing adenocarcinomas. We use the other half of the ESCA data, which contains squamous cell carcinomas dissimilar to STAD, as a negative comparison. Our model successfully separates both the STAD test set (p = 2.73 × 10-8) and the independent ESCA adenocarcinoma data (p = 0.025) into high-risk and low-risk patients. It does not separate the negative comparison data set (ESCA squamous cell carcinomas, p = 0.57). The performance of the unified multiomics model is superior to that of individually trained models and is also superior to an unsupervised method (Multi-Omics Factor Analysis; MOFA), which finds latent factors to be used as putative predictors in a post hoc survival analysis. Conclusions: Many of the factors that contribute strongly to the PLASMA model can be justified from the biological literature.
Collapse
Affiliation(s)
- Kyoko Yamaguchi
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA (C.C.O.)
| | - Salma Abdelbaky
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA (C.C.O.)
| | - Lianbo Yu
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA
| | - Christopher C. Oakes
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA (C.C.O.)
| | - Lynne V. Abruzzo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kevin R. Coombes
- Department of Biostatistics, Data Science, and Epidemiology, School of Public Health, Georgia Cancer Center at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Ortiz Gómez LD, Contreras Martínez HJ, Galvis Pareja DA, Vélez Gómez S, Salazar Flórez JE, Monroy FP, Peláez Sánchez RG. Mutations in the PIK3C2B, ERBB3, KIT, and MLH1 Genes and Their Relationship with Resistance to Temozolomide in Patients with High-Grade Gliomas. Biomedicines 2024; 12:2777. [PMID: 39767683 PMCID: PMC11673431 DOI: 10.3390/biomedicines12122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION The treatment for patients with high-grade gliomas includes surgical resection of tumor, radiotherapy, and temozolomide chemotherapy. However, some patients do not respond to temozolomide due to a methylation reversal mechanism by the enzyme O6-methylguanine-DNA-methyltransferase (MGMT). In patients receiving treatment with temozolomide, this biomarker has been used as a prognostic factor. However, not all patients respond in the same way, which suggests the existence of other proteins involved in resistance to temozolomide chemotherapy. METHODS A group of thirty-one patients was recruited who were clinically and pathologically diagnosed with high-grade gliomas. The sequencing of 324 genes related to different types of cancer was performed to detect mutations. Subsequently, a statistical analysis was conducted to determine the mutated genes that were most related to resistance to treatment. RESULTS According to the Stupp protocol and metronomic dose of the temozolomide treatment, the mutated genes related to the second relapse of patients with high-grade glioma were PIK3C2B, KIT, ERBB3, and MLH1. CONCLUSIONS Considering the results obtained, we suggest that mutations in the four genes and methylation of the gene promoter that codes for the MGMT protein could be related to response to treatment with temozolomide.
Collapse
Affiliation(s)
- León Darío Ortiz Gómez
- Doctoral Program in Health Sciences, Graduate School, CES University, Medellín 050021, Colombia;
- Cancer Institute, Las Americas-AUNA Clinic, Medellín 050023, Colombia
| | | | - David Andrés Galvis Pareja
- Pharmaceutical Sciences Research Group (ICIF), CES University, Medellín 050021, Colombia; (H.J.C.M.); (D.A.G.P.)
| | - Sara Vélez Gómez
- Life and Health Sciences Research Group, Graduate School, CES University, Medellín 050021, Colombia;
| | | | - Fernando P. Monroy
- Department of Biological Sciences, Northern Arizona University, Flagstaff Arizona, AZ 85721, USA;
| | | |
Collapse
|
8
|
Gao L, Zhang Y, Feng M, Shen M, Yang L, Wei B, Zhou Y, Zhang Z. HER3: Updates and current biology function, targeted therapy and pathologic detecting methods. Life Sci 2024; 357:123087. [PMID: 39366553 DOI: 10.1016/j.lfs.2024.123087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
Being a member of the EGFR tyrosine kinase family, HER3 has been shown to be overexpressed in a number of cancers, including breast cancer (BC). The kinase activity of HER3 is extremely low, and it forms heterodimers with partners, HER2 in particular, that promote biological processes like cell migration, survival, and proliferation by activating downstream carcinogenic signaling pathways. The overexpression of HER3 is also directly linked to tumor invasion, metastasis, and a poor prognosis. Despite the relatively low expression of HER3 compared to EGFR and HER2, a lot of targeted drugs are making their way into clinical trials and seem to have a bright further. This review aims to summarize the relationship between HER3 overexpression, mutations, and carcinogenicity and drug resistance, starting from the unique structure and kinase activity of HER3. Simultaneously, numerous approaches to HER3 targeted therapy are enumerated, and the clinical detection methods for HER3 that are commonly employed in pathology are sorted and contrasted to offer physicians a range of options. We think that a better knowledge of the mechanisms underlying HER3 in tumors and the advancement of targeted HER3 therapy will contribute to an improved prognosis for cancer patients and an increase in the efficacy of anticancer therapies.
Collapse
Affiliation(s)
- Leyi Gao
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Yu Zhang
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Mengna Feng
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Mengjia Shen
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Libo Yang
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Bing Wei
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Yongjie Zhou
- Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China.
| |
Collapse
|
9
|
Bian JS, Chen J, Zhang J, Tan J, Chen Y, Yang X, Li Y, Deng L, Chen R, Nie X. ErbB3 Governs Endothelial Dysfunction in Hypoxia-Induced Pulmonary Hypertension. Circulation 2024; 150:1533-1553. [PMID: 38214194 DOI: 10.1161/circulationaha.123.067005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Pulmonary hypertension, characterized by vascular remodeling, currently lacks curative therapeutic options. The dysfunction of pulmonary artery endothelial cells plays a pivotal role in the initiation and progression of pulmonary hypertension (PH). ErbB3 (human epidermal growth factor receptor 3), also recognized as HER3, is a member of the ErbB family of receptor tyrosine kinases. METHODS Microarray, immunofluorescence, and Western blotting analyses were conducted to investigate the pathological role of ErbB3. Blood samples were collected for biomarker examination from healthy donors or patients with hypoxic PH. The pathological functions of ErbB3 were further validated in rodents subjected to chronic hypoxia- and Sugen-induced PH, with or without adeno-associated virus-mediated ErbB3 overexpression, systemic deletion, or endothelial cell-specific ErbB3 knockdown. Primary human pulmonary artery endothelial cells and pulmonary artery smooth muscle cells were used to elucidate the underlying mechanisms. RESULTS ErbB3 exhibited significant upregulation in the serum, lungs, distal pulmonary arteries, and pulmonary artery endothelial cells isolated from patients with PH compared with those from healthy donors. ErbB3 overexpression stimulated hypoxia-induced endothelial cell proliferation, exacerbated pulmonary artery remodeling, elevated systolic pressure in the right ventricle, and promoted right ventricular hypertrophy in murine models of PH. Conversely, systemic deletion or endothelial cell-specific knockout of ErbB3 yielded opposite effects. Coimmunoprecipitation and proteomic analysis identified YB-1 (Y-box binding protein 1) as a downstream target of ErbB3. ErbB3 induced nuclear translocation of YB-1 and subsequently promoted hypoxia-inducible factor 1/2α transcription. A positive loop involving ErbB3-periostin-hypoxia-inducible factor 1/2α was identified to mediate the progressive development of this disease. MM-121, a human anti-ErbB3 monoclonal antibody, exhibited both preventive and therapeutic effects against hypoxia-induced PH. CONCLUSIONS Our study reveals, for the first time, that ErbB3 serves as a novel biomarker and a promising target for the treatment of PH.
Collapse
MESH Headings
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/etiology
- Animals
- Humans
- Receptor, ErbB-3/metabolism
- Receptor, ErbB-3/genetics
- Hypoxia/metabolism
- Mice
- Male
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Vascular Remodeling
- Mice, Inbred C57BL
- Rats
- Cells, Cultured
- Mice, Knockout
- Disease Models, Animal
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Endothelium, Vascular/pathology
- Female
Collapse
Affiliation(s)
- Jin-Song Bian
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College, Jinan University), China (J.-S.B., J.Z., Y.L., R.C., X.N.)
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, China (J.-S.B., L.D.)
| | - Jingyu Chen
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, China (J.C., J.T., Y.C., X.Y.)
| | - Junting Zhang
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College, Jinan University), China (J.-S.B., J.Z., Y.L., R.C., X.N.)
| | - Jianxin Tan
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, China (J.C., J.T., Y.C., X.Y.)
| | - Yuan Chen
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, China (J.C., J.T., Y.C., X.Y.)
| | - Xusheng Yang
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, China (J.C., J.T., Y.C., X.Y.)
| | - Yiying Li
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College, Jinan University), China (J.-S.B., J.Z., Y.L., R.C., X.N.)
| | - Lin Deng
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, China (J.-S.B., L.D.)
| | - Rongchang Chen
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College, Jinan University), China (J.-S.B., J.Z., Y.L., R.C., X.N.)
| | - Xiaowei Nie
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College, Jinan University), China (J.-S.B., J.Z., Y.L., R.C., X.N.)
| |
Collapse
|
10
|
Agaimy A, Dermawan JK, Haller F, Semrau S, Meidenbauer N, Stoehr R, Lax S, Hartmann A, Zou YS, Xing D, Tögel L, Gross JM, Michal M. ERBB2/ ERBB3-mutated S100/ SOX10-positive unclassified high-grade uterine sarcoma: first detailed description of a novel entity. Virchows Arch 2024; 485:805-813. [PMID: 39196362 PMCID: PMC11564289 DOI: 10.1007/s00428-024-03908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 07/25/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
With the increasing use of innovative next generation sequencing (NGS) platforms in routine diagnostic and research settings, the genetic landscape of uterine sarcomas has been dynamically evolving during the last two decades. Notably, the majority of recently recognized genotypes in uterine sarcomas represent gene fusions, while recurrent oncogene mutations of diagnostic and/ or therapeutic value have been rare. Recently, a distinctive aggressive uterine sarcoma expressing S100 and SOX10, but otherwise lacking diagnostic morphological, immunophenotypic and molecular features of other uterine malignancies has been presented in a scientific abstract form (USCAP, 2023), but detailed description and delineation of the entity is still missing. We herein describe two high-grade unclassified uterine sarcomas characterized by spindle to round cell morphology and diffuse expression of S100 and SOX10, originating in the uterine body and cervix of 53- and 45-year-old women and carrying an ERBB3 (p.Glu928Gly) and an ERBB2 (p.Val777Leu) mutation, respectively. Both tumors harbored in addition genomic HER2 amplification, ATRX mutation and CDKN2A deletion. Methylation studies revealed a methylome most similar to MPNST-like tumors, but distinct from melanoma, MPNST, clear cell sarcoma, and endometrial stromal sarcoma. Case 1 died of progressive peritoneal metastases after multiple trials of chemotherapy 47 months after diagnosis. Case 2 is a recent case who presented with a cervical mass, which was biopsied. This study defines a novel heretofore unrecognized aggressive uterine sarcoma with unique phenotypic and genotypic features. Given the potential value of targeting HER2, recognizing this tumor type is mandatory for appropriate therapeutic strategies and for better future delineation of the entity.
Collapse
Affiliation(s)
- Abbas Agaimy
- Institute of Pathology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany.
- Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Erlangen, Germany.
| | - Josephine K Dermawan
- Department of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Florian Haller
- Institute of Pathology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
- Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Erlangen, Germany
| | - Sabine Semrau
- Department of Radiation Oncology, University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Norbert Meidenbauer
- Department of Internal Medicine 5-Hematology and Oncology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Robert Stoehr
- Institute of Pathology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
- Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Erlangen, Germany
| | - Sigurd Lax
- Department of Pathology, Hospital Graz II, Academic Teaching Hospital of the Medical University Graz, Graz, Austria
- School of Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Arndt Hartmann
- Institute of Pathology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
- Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Erlangen, Germany
| | - Ying S Zou
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Deyin Xing
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lars Tögel
- Institute of Pathology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
- Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Erlangen, Germany
| | - John M Gross
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Michal
- Department of Pathology, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
- Biotical Laboratory, Ltd, Plzeň, Czech Republic
| |
Collapse
|
11
|
Chen Y, Lu A, Hu Z, Li J, Lu J. ERBB3 targeting: A promising approach to overcoming cancer therapeutic resistance. Cancer Lett 2024; 599:217146. [PMID: 39098760 DOI: 10.1016/j.canlet.2024.217146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Human epidermal growth factor receptor-3 (ERBB3) is a member of the ERBB receptor tyrosine kinases (RTKs) and is expressed in many malignancies. Along with other ERBB receptors, ERBB3 is associated with regulating normal cell proliferation, apoptosis, differentiation, and survival, and has received increased research attention for its involvement in cancer therapies. ERBB3 expression or co-expression levels have been investigated as predictive factors for cancer prognosis and drug sensitivity. Additionally, the association between the elevated expression of ERBB3 and treatment failure in cancer therapy further established ERBB3-targeting therapy as a crucial therapeutic approach. This review delves into the molecular mechanisms of ERBB3-driven resistance to targeted therapeutics against ERBB2 and EGFR and other signal transduction inhibitors, endocrine therapy, chemotherapy, and radiotherapy. Using preclinical and clinical evidence, we synthesise and explicate how various aspects of aberrant ERBB3 activities-such as compensatory activation, signal crosstalk interactions, dysregulation in the endocytic pathway, mutations, ligand-independent activation, intrinsic kinase activity, and homodimerisation-can lead to resistance development and/or treatment failures. Several ERBB3-directed monoclonal antibodies, bispecific antibodies, and the emerging antibody-drug conjugate demonstrate encouraging clinical outcomes for improving therapeutic efficacy and overcoming resistance, especially when combined with other anti-cancer approaches. More research efforts are needed to identify appropriate biomarkers tailored for ERBB3-targeted therapies.
Collapse
Affiliation(s)
- Yutao Chen
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1142, New Zealand
| | - Anni Lu
- Pinehurst School, Albany, Auckland, New Zealand
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jinyao Li
- College of Life Sciences, Xijiang University, Urumqi, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1142, New Zealand; College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, China; College of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi Province, China; Department of Food and Agriculture Technology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314006, China.
| |
Collapse
|
12
|
Mishra R, Kilroy MK, Feroz W, Patel H, Garrett JT. HER3 V104 mutations regulate cell signaling, growth, and drug sensitivity in cancer. Mol Carcinog 2024; 63:1528-1541. [PMID: 38751013 DOI: 10.1002/mc.23743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 07/10/2024]
Abstract
HER3 is mutated in ~2%-10% of cancers depending on the cancer type. We found the HER3-V104L mutation to be activating from patient-derived mutations introduced via lentiviral transduction in HER3KO HER2 + HCC1569 breast cancer cells in which endogenous HER3 was eliminated by CRISPR/Cas9. Cells expressing HER3-V104L showed higher p-HER3 and p-ERK1/2 expression versus cells expressing wild-type HER3 or HER3-V104M. Patients whose tumor expressed the HER3 V104L variant had a reduced probability of overall survival compared to patients lacking a HER3 mutation whereas we did not find a statistically significant difference in overall survival of various cancer patients with the HER3 V104M mutation. Our data showed that HER2 inhibitors suppressed cell growth of HCC1569HER3KO cells stably expressing the HER3-V104L mutation. Cancer cell lines (SNU407, UC15 and DV90) with endogenous HER3-V104M mutation showed reduced cell proliferation and p-HER2/p-ERK1/2 expression with HER2 inhibitor treatment. Knock down of HER3 abrogated cell proliferation in the above cell lines which were overall more sensitive to the ERK inhibitor SCH779284 versus PI3K inhibitors. HER3-V104L mutation stabilized HER3 protein expression in COS7 and SNUC5 cells. COS7 cells transiently transfected with the HER3-V104L mutation in the presence of HER binding partners showed higher expression of p-HER3, p-ERK1/2 versus HER3-WT in a NRG-independent manner without any change in AKT signaling. Overall, this study shows the clinical relevance of the HER3 V104L and the V104M mutations and its response to HER2, PI3K and ERK inhibitors.
Collapse
Affiliation(s)
- Rosalin Mishra
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mary Kate Kilroy
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Wasim Feroz
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hima Patel
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Joan T Garrett
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
13
|
Koivu MKA, Chakroborty D, Airenne TT, Johnson MS, Kurppa KJ, Elenius K. Trans-activating mutations of the pseudokinase ERBB3. Oncogene 2024; 43:2253-2265. [PMID: 38806620 PMCID: PMC11245391 DOI: 10.1038/s41388-024-03070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Genetic changes in the ERBB family of receptor tyrosine kinases serve as oncogenic driver events and predictive biomarkers for ERBB inhibitor drugs. ERBB3 is a pseudokinase member of the family that, although lacking a fully active kinase domain, is well known for its potent signaling activity as a heterodimeric complex with ERBB2. Previous studies have identified few transforming ERBB3 mutations while the great majority of the hundreds of different somatic ERBB3 variants observed in different cancer types remain of unknown significance. Here, we describe an unbiased functional genetics screen of the transforming potential of thousands of ERBB3 mutations in parallel. The screen based on a previously described iSCREAM (in vitro screen of activating mutations) platform, and addressing ERBB3 pseudokinase signaling in a context of ERBB3/ERBB2 heterodimers, identified 18 hit mutations. Validation experiments in Ba/F3, NIH 3T3, and MCF10A cell backgrounds demonstrated the presence of both previously known and unknown transforming ERBB3 missense mutations functioning either as single variants or in cis as a pairwise combination. Drug sensitivity assays with trastuzumab, pertuzumab and neratinib indicated actionability of the transforming ERBB3 variants.
Collapse
Affiliation(s)
- Marika K A Koivu
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland
- Turku Doctoral Programme of Molecular Medicine, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Deepankar Chakroborty
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland
- Turku Doctoral Programme of Molecular Medicine, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Tomi T Airenne
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Mark S Johnson
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Kari J Kurppa
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland
| | - Klaus Elenius
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland.
- Department of Oncology, Turku University Hospital, Turku, 20521, Finland.
| |
Collapse
|
14
|
Dessaux C, Ganier L, Guiraud L, Borg JP. Recent insights into the therapeutic strategies targeting the pseudokinase PTK7 in cancer. Oncogene 2024; 43:1973-1984. [PMID: 38773263 PMCID: PMC11196218 DOI: 10.1038/s41388-024-03060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
The generation of drugs counteracting deregulated protein kinases has been a major focus in cancer therapy development. Breakthroughs in this effort have produced many therapeutic agents to the benefit of patients, mostly through the development of chemical or antibody-based drugs targeting active kinases. These strategies are challenged when considering catalytically inactive protein kinases (or pseudokinases), which represent 10% of the human kinome with many of relevance in cancer. Among the so-called pseudotyrosine kinases, the PTK7 receptor tyrosine kinase (RTK) stands as a bona fide target overexpressed in several solid tumors and hematological malignancies and linked to metastasis, poor prognosis, and resistance to treatment. Despite the lack of catalytic activity, PTK7 has signaling capacities through heterodimerization with active RTKs and offers pharmacological targeting opportunities through its inactive kinase domain. Moreover, PTK7-targeting strategies based on antibody-drug conjugates, aptamers, and CAR-T cell-based therapies have demonstrated encouraging results in preclinical and clinical settings. We review the most recent data assigning to PTK7 a prominent role in cancer progression as well as current preclinical and clinical targeting strategies against RTK family pseudokinases including PTK7.
Collapse
Affiliation(s)
- Charlotte Dessaux
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Laetitia Ganier
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
- adMare BioInnovations, Vancouver, BC, Canada
| | - Louis Guiraud
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Jean-Paul Borg
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
15
|
Dreikhausen L, Klupsch A, Wiest I, Xiao Q, Schulte N, Betge J, Boch T, Brochhausen C, Gaiser T, Hofheinz RD, Ebert M, Zhan T. Clinical impact of panel gene sequencing on therapy of advanced cancers of the digestive system: a retrospective, single center study. BMC Cancer 2024; 24:526. [PMID: 38664720 PMCID: PMC11046933 DOI: 10.1186/s12885-024-12261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Panel gene sequencing is an established diagnostic tool for precision oncology of solid tumors, but its utility for the treatment of cancers of the digestive system in clinical routine is less well documented. METHODS We retrospectively identified patients with advanced or metastatic gastrointestinal, pancreaticobiliary or hepatic cancers who received panel gene sequencing at a tertiary university hospital from 2015 to 2022. For these cases, we determined the spectrum of genetic alterations, clinicopathological parameters and treatment courses. Assessment of actionability of genetic alterations was based on the OncoKB database, cancer-specific ESMO treatment guidelines, and recommendations of the local molecular tumor board. RESULTS In total, 155 patients received panel gene sequencing using either the Oncomine Focus (62 cases), Comprehensive (91 cases) or Childhood Cancer Research Assay (2 cases). The mean age of patients was 61 years (range 24-90) and 37% were female. Most patients suffered from either colorectal cancer (53%) or cholangiocellular carcinoma (19%). 327 genetic alterations were discovered in 123 tumor samples, with an average number of 2.1 alterations per tumor. The most frequently altered genes were TP53, KRAS and PIK3CA. Actionable gene alterations were detected in 13.5-56.8% of tumors, according to ESMO guidelines or the OncoKB database, respectively. Thirteen patients were treated with targeted therapies based on identified molecular alterations, with a median progression-free survival of 8.8 months. CONCLUSIONS Actionable genetic alterations are frequently detected by panel gene sequencing in patients with advanced cancers of the digestive tract, providing clinical benefit in selected cases. However, for the majority of identified actionable alterations, sufficient clinical evidence for targeted treatments is still lacking.
Collapse
Affiliation(s)
- Lena Dreikhausen
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anna Klupsch
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Isabella Wiest
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Qiyun Xiao
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadine Schulte
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johannes Betge
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center, Heidelberg, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Medical Faculty Mannheim, DKFZ-Hector Cancer Institute, Heidelberg University, Mannheim, Germany
| | - Tobias Boch
- Department of Medicine III, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Medical Faculty Mannheim, DKFZ-Hector Cancer Institute, Heidelberg University, Mannheim, Germany
| | - Christoph Brochhausen
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Timo Gaiser
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ralf-Dieter Hofheinz
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Medicine III, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Medical Faculty Mannheim, DKFZ-Hector Cancer Institute, Heidelberg University, Mannheim, Germany
| | - Tianzuo Zhan
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Medical Faculty Mannheim, DKFZ-Hector Cancer Institute, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
16
|
Liu K, Chen R, Zhang M, Gong Y, Wang Y, Cai W. ERBB3 deficiency causes a multisystemic syndrome in human patient and zebrafish. Clin Genet 2024; 105:283-293. [PMID: 38009810 DOI: 10.1111/cge.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
The Erb-B2 receptor tyrosine kinase 3 (ERBB3) gene was first identified as a cause of lethal congenital contracture syndrome (OMIM 607598), while a recent study reported six additional patients carrying ERBB3 variants which exhibited distinct clinical features with evident intestinal dysmotility (OMIM 243180). The potential connection between these phenotypes remains unknown, and the ERBB3-related phenotype spectrum needs to be better characterized. Here, we described a patient presenting with a multisystemic syndrome including skip segment Hirschsprung disease, bilateral clubfoot deformity, and cardiac defect. Trio-whole exome sequencing revealed a novel compound heterozygous variant (c.1914-7C>G; c.2942_2945del) in the patient's ERBB3 gene. RT-PCR and in vitro minigene analysis demonstrated that variant c.1914-7C>G caused aberrant mRNA splicing. Both variants resulted in premature termination codon and complete loss of ERBB3 function. erbb3b knockdown in zebrafish simultaneously caused a reduction in enteric neurons in the distal intestine, craniofacial cartilage defects, and micrognathia, which phenotypically mimics ERBB3-related intestinal dysmotility and some features of lethal congenital contracture syndrome in human patients. These findings provide further patient and animal evidence supporting that ERBB3 deficiency causes a complex syndrome involving multiple systems with phenotypic variability among distinct individuals.
Collapse
Affiliation(s)
- Keqiang Liu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Ru Chen
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minzhong Zhang
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiming Gong
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wang
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
17
|
Odintsov I, Sholl LM. Prognostic and predictive biomarkers in non-small cell lung carcinoma. Pathology 2024; 56:192-204. [PMID: 38199926 DOI: 10.1016/j.pathol.2023.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/12/2024]
Abstract
Lung cancer is the most common cause of cancer-related deaths globally, with the highest mortality rates among both men and women. Most lung cancers are diagnosed at late stages, necessitating systemic therapy. Modern clinical management of lung cancer relies heavily upon application of biomarkers, which guide the selection of systemic treatment. Here, we provide an overview of currently approved and emerging biomarkers of non-small cell lung cancer (NSCLC), including EGFR, ALK, ROS1, RET, NTRK1-3, KRAS, BRAF, MET, ERBB2/HER2, NRG1, PD-L1, TROP2, and CEACAM5. For practical purposes, we divide these biomarkers into genomic and protein markers, based on the tested substrate. We review the biology and epidemiology of the genomic and proteomic biomarkers, discuss optimal diagnostic assays for their detection, and highlight their contribution to the contemporary clinical management of NSCLC.
Collapse
Affiliation(s)
- Igor Odintsov
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Blas PE, Rodriguez ESR, Williams HL, Levin MK, Bell JSK, Pierobon M, Barrett AS, Petricoin EF, O'Shaughnessy JA. Targeting HER2/HER3 co-mutations in metastatic breast cancer: Case reports of exceptional responders to trastuzumab and pertuzumab therapy. Cancer Rep (Hoboken) 2024; 7:e1954. [PMID: 38441358 PMCID: PMC10913072 DOI: 10.1002/cnr2.1954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Overexpression of HER2 plays an important role in cancer progression and is the target of multiple therapies in HER2-positive breast cancer. Recent studies have also highlighted the presence of activating mutations in HER2, and HER3 that are predicted to enhance HER2 downstream pathway activation in a HER2-dependent manner. METHODS In this report, we present two exceptional responses in hormone receptor-positive, HER2-nonamplified, HER2/HER3 co-mutated metastatic breast cancer patients who were treated with the anti-HER2-directed monoclonal antibodies, trastuzumab and pertuzumab. RESULTS Both patients acheived exceptional responses to treatment, suggesting that combined trastuzumab, pertuzumab, and endocrine therapy could be a highly effective therapy for these patients and our observations could help prioritize trastuzumab deruxtecan as an early therapeutic choice for patients whose cancers have activating mutations in HER2.
Collapse
Affiliation(s)
- Page E. Blas
- Clinical Oncology Research CoordinationBaylor Scott and White Research InstituteDallasTexasUSA
| | | | - Heather L. Williams
- Clinical Oncology Research CoordinationBaylor Scott and White Research InstituteDallasTexasUSA
| | - Maren K. Levin
- Clinical Oncology Research CoordinationBaylor Scott and White Research InstituteDallasTexasUSA
| | - Joshua S. K. Bell
- Department of Translational ScienceTempus Labs Inc.ChicagoIllinoisUSA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | | | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | - Joyce A. O'Shaughnessy
- Breast Cancer Research ProgramBaylor University Medical Center, Texas Oncology, US OncologyDallasTexasUSA
| |
Collapse
|
19
|
Sayin AZ, Abali Z, Senyuz S, Cankara F, Gursoy A, Keskin O. Conformational diversity and protein-protein interfaces in drug repurposing in Ras signaling pathway. Sci Rep 2024; 14:1239. [PMID: 38216592 PMCID: PMC10786864 DOI: 10.1038/s41598-023-50913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024] Open
Abstract
We focus on drug repurposing in the Ras signaling pathway, considering structural similarities of protein-protein interfaces. The interfaces formed by physically interacting proteins are found from PDB if available and via PRISM (PRotein Interaction by Structural Matching) otherwise. The structural coverage of these interactions has been increased from 21 to 92% using PRISM. Multiple conformations of each protein are used to include protein dynamics and diversity. Next, we find FDA-approved drugs bound to structurally similar protein-protein interfaces. The results suggest that HIV protease inhibitors tipranavir, indinavir, and saquinavir may bind to EGFR and ERBB3/HER3 interface. Tipranavir and indinavir may also bind to EGFR and ERBB2/HER2 interface. Additionally, a drug used in Alzheimer's disease can bind to RAF1 and BRAF interface. Hence, we propose a methodology to find drugs to be potentially used for cancer using a dataset of structurally similar protein-protein interface clusters rather than pockets in a systematic way.
Collapse
Affiliation(s)
- Ahenk Zeynep Sayin
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, Rumeli Feneri Yolu Sariyer, 34450, Istanbul, Turkey
| | - Zeynep Abali
- Graduate School of Science and Engineering, Computational Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Simge Senyuz
- Graduate School of Science and Engineering, Computational Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Fatma Cankara
- Graduate School of Science and Engineering, Computational Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, 34450, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, Rumeli Feneri Yolu Sariyer, 34450, Istanbul, Turkey.
| |
Collapse
|
20
|
Honkanen TJ, Luukkainen MEK, Koivunen JP. Role of human epidermal growth factor receptor 3 in treatment resistance of anaplastic lymphoma kinase translocated non-small cell lung cancer. Cancer Biol Ther 2023; 24:2256906. [PMID: 37722715 PMCID: PMC10512822 DOI: 10.1080/15384047.2023.2256906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND ALK tyrosine kinase inhibitors (TKI) have revolutionized the treatment of ALK+ non-small cell lung cancer (NSCLC), and therapy resistance occurs in virtually all patients. Multiple TKI resistance mechanisms have been characterized, including ERBB receptor coactivation. In this study, we investigated the role of HER3 in ALK TKI resistance. METHODS In vitro studies were carried out using ALK+ NSCLC cell lines H3122, H2228, and DFCI032. Pharmacological co-targeting of ALK and HER3 was investigated with ALK and ERBB TKIs, and HER3 knockdown was achieved using the CRISPR-Cas9 system. Co-localization of ALK and HER3 was investigated by immunoprecipitation (IP) and proximity ligation assay (PLA) in vitro and in vivo using six ALK+ NSCLC tumor samples. RESULTS In all tested cell lines, combined targeting with ALK and pan-ERBB TKI resulted in marked inhibition of colony formation and long-term (72 h) downregulation of pAKT levels. HER3 knockdown resulted in multiple effects on ALK+ cell lines, including the downregulation of ALK expression and visible morphological changes (H2228). Co-immunoprecipitation (IP) and proximation ligation assay (PLA) experiments provided evidence that both ALK and HER3 could interact in vitro, and this finding was verified by PLA using ALK+ NSCLC tumors. CONCLUSIONS This study provides evidence that HER3 may mediate TKI resistance in ALK+ NSCLC. Interestingly, we were able to show that both translocated ALK and HER3 could interact. Joint targeting of ALK and HER3 could be further investigate in ALK+ NSCLC.
Collapse
Affiliation(s)
- Tiia J Honkanen
- Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, Oulu, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
| | - Milla E K Luukkainen
- Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, Oulu, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
| | - Jussi P Koivunen
- Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, Oulu, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
21
|
Kojima Y, Yoshida H, Okuya T, Okuma HS, Nishikawa T, Tanioka M, Sudo K, Noguchi E, Shimoi T, Tamura K, Tanase Y, Uno M, Ishikawa M, Arakaki M, Ichikawa H, Yagishita S, Hamada A, Fujiwara Y, Yonemori K, Kato T. Therapeutic target biomarkers of patient-derived xenograft models of gastric-type cervical adenocarcinoma. Gynecol Oncol Rep 2023; 50:101302. [PMID: 38054200 PMCID: PMC10694048 DOI: 10.1016/j.gore.2023.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 12/07/2023] Open
Abstract
Background Most cervical adenocarcinomas are associated with human papillomavirus (HPV). Gastric-type cervical adenocarcinoma (GAS), an HPV-independent adenocarcinoma, shows an aggressive clinical feature, resulting in a poor prognosis. Resistance to chemotherapy poses a difficulty in managing patients with metastatic GAS. We aimed to establish patient-derived xenografts (PDXs) of tumors from two patients with GAS and evaluated protein biomarkers for drug development using immunohistochemistry. Methods Two PDXs were established 78 and 48 days after transplanting the patient's tumor tissues into immunodeficient mice, respectively. PDX and patient's tumor samples were stained for HER2, HER3, PMS2, MSH6, PanTrk, and ARID1A to evaluate biomarkers for therapeutic targets. In addition, whole exome sequencing and RNA sequencing were performed on available samples. Results The pathological findings in morphological features and immunohistochemical profiles from the established PDXs were similar to those from the patients' surgical tumor specimens. HER3 was overexpressed in the patient's tumors, and the corresponding PDX tumors and HER2 was weakly stained in both types of tumor samples. In all PDX and patient tumor samples, PMS2, MSH6, and ARID1A were retained, and PanTrk was not expressed. In addition, a total of 10 samples, including tumor tissue samples from 8 other GAS patients, were evaluated for HER3 expression scores, all of which were 2 + or higher. Conclusions In summary, we evaluated biomarkers for therapeutic targets using newly established PDX models of GAS. Frequent HER3 overexpression and HER2 expression in GAS tumors suggest the possibility of new treatments for patients with GAS by targeting HER3 and HER2.
Collapse
Affiliation(s)
- Yuki Kojima
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
- Department of Molecular Pharmacology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Toshihiro Okuya
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Hitomi S Okuma
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Tadaaki Nishikawa
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Maki Tanioka
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Kazuki Sudo
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Emi Noguchi
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Tatsunori Shimoi
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Kenji Tamura
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Yasuhito Tanase
- Department of Gynecology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Masaya Uno
- Department of Gynecology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Mitsuya Ishikawa
- Department of Gynecology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Motoko Arakaki
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Hitoshi Ichikawa
- Department of Clinical Genomics, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Shigehiro Yagishita
- Department of Molecular Pharmacology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Akinobu Hamada
- Department of Molecular Pharmacology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Yasuhiro Fujiwara
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
22
|
Drury F, Grover M, Hintze M, Saunders J, Fasseas MK, Constantinou C, Barkoulas M. A PAX6-regulated receptor tyrosine kinase pairs with a pseudokinase to activate immune defense upon oomycete recognition in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2023; 120:e2300587120. [PMID: 37725647 PMCID: PMC10523662 DOI: 10.1073/pnas.2300587120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Abstract
Oomycetes were recently discovered as natural pathogens of Caenorhabditis elegans, and pathogen recognition alone was shown to be sufficient to activate a protective transcriptional program characterized by the expression of multiple chitinase-like (chil) genes. However, the molecular mechanisms underlying oomycete recognition in animals remain fully unknown. We performed here a forward genetic screen to uncover regulators of chil gene induction and found several independent loss-of-function alleles of old-1 and flor-1, which encode receptor tyrosine kinases belonging to the C. elegans-specific KIN-16 family. We report that OLD-1 and FLOR-1 are both necessary for mounting the immune response and act in the epidermis. FLOR-1 is a pseudokinase that acts downstream of the active kinase OLD-1 and regulates OLD-1 levels at the plasma membrane. Interestingly, the old-1 locus is adjacent to the chil genes in the C. elegans genome, thereby revealing a genetic cluster important for oomycete resistance. Furthermore, we demonstrate that old-1 expression at the anterior side of the epidermis is regulated by the VAB-3/PAX6 transcription factor, well known for its role in visual system development in other animals. Taken together, our study reveals both conserved and species-specific factors shaping the activation and spatial characteristics of the immune response to oomycete recognition.
Collapse
Affiliation(s)
- Florence Drury
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| | - Manish Grover
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| | - Mark Hintze
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| | - Jonathan Saunders
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| | - Michael K. Fasseas
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| | - Charis Constantinou
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| | - Michalis Barkoulas
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| |
Collapse
|
23
|
Piha-Paul SA, Tseng C, Tran HT, Gao M, Karp DD, Subbiah V, Tsimberidou AM, Kawedia JD, Fu S, Pant S, Yap TA, Morris VK, Kee BK, Blum Murphy M, Lim J, Meric-Bernstam F. A phase I trial of the pan-ERBB inhibitor neratinib combined with the MEK inhibitor trametinib in patients with advanced cancer with EGFR mutation/amplification, HER2 mutation/amplification, HER3/4 mutation or KRAS mutation. Cancer Chemother Pharmacol 2023; 92:107-118. [PMID: 37314501 PMCID: PMC10326142 DOI: 10.1007/s00280-023-04545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/09/2023] [Indexed: 06/15/2023]
Abstract
PURPOSE Aberrant alterations of ERBB receptor tyrosine kinases lead to tumorigenesis. Single agent therapy targeting EGFR or HER2 has shown clinical successes, but drug resistance often develops due to aberrant or compensatory mechanisms. Herein, we sought to determine the feasibility and safety of neratinib and trametinib in patients with EGFR mutation/amplification, HER2 mutation/amplification, HER3/4 mutation and KRAS mutation. METHODS Patients with actionable somatic mutations or amplifications in ERBB genes or actionable KRAS mutations were enrolled to receive neratinib and trametinib in this phase I dose escalation trial. The primary endpoint was determination of the maximum tolerated dose (MTD) and dose-limiting toxicity (DLT). Secondary endpoints included pharmacokinetic analysis and preliminary anti-tumor efficacy. RESULTS Twenty patients were enrolled with a median age of 50.5 years and a median of 3 lines of prior therapy. Grade 3 treatment-related toxicities included: diarrhea (25%), vomiting (10%), nausea (5%), fatigue (5%) and malaise (5%). The MTD was dose level (DL) minus 1 (neratinib 160 mg daily with trametinib 1 mg, 5 days on and 2 days off) given 2 DLTs of grade 3 diarrhea in DL1 (neratinib 160 mg daily with trametinib 1 mg daily). The treatment-related toxicities of DL1 included: diarrhea (100%), nausea (55.6%) and rash (55.6%). Pharmacokinetic data showed trametinib clearance was significantly reduced leading to high drug exposures of trametinib. Two patients achieved stable disease (SD) ≥ 4 months. CONCLUSION Neratinib and trametinib combination was toxic and had limited clinical efficacy. This may be due to suboptimal drug dosing given drug-drug interactions. TRIAL REGISTRATION ID NCT03065387.
Collapse
Affiliation(s)
- Sarina A Piha-Paul
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA.
| | - Chieh Tseng
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
| | - Hai T Tran
- Department of Thoracic, Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meng Gao
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
| | - Daniel D Karp
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
| | - Apostolia Maria Tsimberidou
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
| | - Jitesh D Kawedia
- Pharmacy Pharmacology Research, Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
- Department of Thoracic, Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Van K Morris
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bryan K Kee
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mariela Blum Murphy
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - JoAnn Lim
- Pharmacy Clinical Programs, Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
- Department of Breast Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
Moody TW, Ramos-Alvarez I, Jensen RT. Peptide G-Protein-Coupled Receptors and ErbB Receptor Tyrosine Kinases in Cancer. BIOLOGY 2023; 12:957. [PMID: 37508387 PMCID: PMC10376828 DOI: 10.3390/biology12070957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
The ErbB RTKs (EGFR, HER2, HER3, and HER4) have been well-studied in cancer. EGFR, HER2, and HER3 stimulate cancer proliferation, principally by activating the phosphatidylinositol-3-kinase and extracellular signal-regulated kinase (ERK) pathways, resulting in increased cancer cell survival and proliferation. Cancer cells have high densities of the EGFR, HER2, and HER3 causing phosphorylation of tyrosine amino acids on protein substrates and tyrosine amino acids near the C-terminal of the RTKs. After transforming growth factor (TGF) α binds to the EGFR, homodimers or EGFR heterodimers form. HER2 forms heterodimers with the EGFR, HER3, and HER4. The EGFR, HER2, and HER3 are overexpressed in lung cancer patient tumors, and monoclonal antibodies (mAbs), such as Herceptin against HER2, are used to treat breast cancer patients. Patients with EGFR mutations are treated with tyrosine kinase inhibitors, such as gefitinib or osimertinib. Peptide GPCRs, such as NTSR1, are present in many cancers, and neurotensin (NTS) stimulates the growth of cancer cells. Lung cancer proliferation is impaired by SR48692, an NTSR1 antagonist. SR48692 is synergistic with gefitinib at inhibiting lung cancer growth. Adding NTS to lung cancer cells increases the shedding of TGFα, which activates the EGFR, or neuregulin-1, which activates HER3. The transactivation process is impaired by SRC, matrix metalloprotease, and reactive oxygen species inhibitors. While the transactivation process is complicated, it is fast and occurs within minutes after adding NTS to cancer cells. This review emphasizes the use of tyrosine kinase inhibitors and SR48692 to impair transactivation and cancer growth.
Collapse
Affiliation(s)
- Terry W Moody
- Center for Cancer Training, NCI, and Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Irene Ramos-Alvarez
- Center for Cancer Training, NCI, and Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Robert T Jensen
- Center for Cancer Training, NCI, and Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Li Y, Liu Z, Zhao Y, Yang J, Xiao TS, Conlon RA, Wang Z. PD-L1 expression is regulated by ATP-binding of the ERBB3 pseudokinase domain. Genes Dis 2023; 10:1702-1713. [PMID: 37397533 PMCID: PMC10311099 DOI: 10.1016/j.gendis.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 12/13/2022] Open
Abstract
How PD-L1 expression is regulated in cancer is poorly understood. Here, we report that the ATP-binding activity of ERBB3 pseudokinase regulates PD-L1 gene expression in colorectal cancers (CRCs). ERBB3 is one of the four members of the EGF receptor family, all with protein tyrosine kinase domains. ERBB3 is a pseudokinase with a high binding affinity to ATP. We showed that ERBB3 ATP-binding inactivation mutant reduces tumorigenicity in genetically engineered mouse models and impairs xenograft tumor growth of CRC cell lines. The ERBB3 ATP-binding mutant cells dramatically reduce IFN-γ-induced PD-L1 expression. Mechanistically, ERBB3 regulates IFN-γ-induced PD-L1 expression through the IRS1-PI3K-PDK1-RSK-CREB signaling axis. CREB is the transcription factor that regulates PD-L1 gene expression in CRC cells. Knockin of a tumor-derived ERBB3 mutation located in the kinase domain sensitizes mouse colon cancers to anti-PD1 antibody therapy, suggesting that ERBB3 mutations could be predictive biomarkers for tumors amenable to immune checkpoint therapy.
Collapse
Affiliation(s)
- Yamu Li
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zhonghua Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yiqing Zhao
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jie Yang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ronald A. Conlon
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zhenghe Wang
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
26
|
Dey P, Gadewal N, De A. Pathogenic HER3 dimerization domain mutations create a structural bias towards un-conventional EGFR-HER3 signalling axis in breast cancer. Int J Biol Macromol 2023; 242:124765. [PMID: 37156315 DOI: 10.1016/j.ijbiomac.2023.124765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/31/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Among the EGFR family of receptors, HER3 is considered as a pseudo-kinase which primarily interacts with HER2 in presence of heregulin-1β. We identified two hotspot mutations i.e. G284R and D297Y and one double mutant HER2-S310F/HER3-G284R in breast cancer patients. Long term MDS (7.5 μs) revealed that HER3-D297Y and HER2-S310F:HER3-G284R do not allow the interaction with HER2 as these mutations cause dramatic conformational changes in its flanking regions. This results in formation of an unstable HER2-WT:HER3-D297Y heterodimer, thereby abrogating the downstream signalling by AKT. We found that His228 and Ser300 of HER3-D297Y form stable interactions with Glu245 and Tyr270 of EGFR-WT, in the presence of either EGF or heregulin-1β. Applying TRIM-ing mediated direct knockdown of endogenous EGFR protein, specificity of the unconventional EGFR:HER3-D297Y interaction was validated. Due to this unusual ligand mediated interaction, cancer cells were found susceptible to EGFR targeted therapeutics i.e. Gefitinib and Erlotinib. Further, in TCGA analysis, BC patients harbouring HER3-D297Y mutation showed increased p-EGFR levels as compared to the patients harbouring HER3-WT and HER3-G284R mutations. For the first time, this comprehensive study showed the importance of specific hotspot mutations in HER3 dimerization domain can defy the Trastuzumab therapy, rather cells become susceptible to the EGFR inhibitors.
Collapse
Affiliation(s)
- Pranay Dey
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Faculty of Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Nikhil Gadewal
- Bioinformatics unit, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Faculty of Life Sciences, Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
27
|
Totoki Y, Saito-Adachi M, Shiraishi Y, Komura D, Nakamura H, Suzuki A, Tatsuno K, Rokutan H, Hama N, Yamamoto S, Ono H, Arai Y, Hosoda F, Katoh H, Chiba K, Iida N, Nagae G, Ueda H, Shihang C, Sekine S, Abe H, Nomura S, Matsuura T, Sakai E, Ohshima T, Rino Y, Yeoh KG, So J, Sanghvi K, Soong R, Fukagawa A, Yachida S, Kato M, Seto Y, Ushiku T, Nakajima A, Katai H, Tan P, Ishikawa S, Aburatani H, Shibata T. Multiancestry genomic and transcriptomic analysis of gastric cancer. Nat Genet 2023; 55:581-594. [PMID: 36914835 DOI: 10.1038/s41588-023-01333-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/06/2023] [Indexed: 03/16/2023]
Abstract
Gastric cancer is among the most common malignancies worldwide, characterized by geographical, epidemiological and histological heterogeneity. Here, we report an extensive, multiancestral landscape of driver events in gastric cancer, involving 1,335 cases. Seventy-seven significantly mutated genes (SMGs) were identified, including ARHGAP5 and TRIM49C. We also identified subtype-specific drivers, including PIGR and SOX9, which were enriched in the diffuse subtype of the disease. SMGs also varied according to Epstein-Barr virus infection status and ancestry. Non-protein-truncating CDH1 mutations, which are characterized by in-frame splicing alterations, targeted localized extracellular domains and uniquely occurred in sporadic diffuse-type cases. In patients with gastric cancer with East Asian ancestry, our data suggested a link between alcohol consumption or metabolism and the development of RHOA mutations. Moreover, mutations with potential roles in immune evasion were identified. Overall, these data provide comprehensive insights into the molecular landscape of gastric cancer across various subtypes and ancestries.
Collapse
Affiliation(s)
- Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Mihoko Saito-Adachi
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiromi Nakamura
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Akihiro Suzuki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan.,Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kenji Tatsuno
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Rokutan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Natsuko Hama
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Shogo Yamamoto
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hanako Ono
- Division of Bioinformatics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Fumie Hosoda
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Naoko Iida
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Genta Nagae
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroki Ueda
- Biological Data Science, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Chen Shihang
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shigeki Sekine
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Matsuura
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Eiji Sakai
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Takashi Ohshima
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Kanagawa, Japan
| | - Yasushi Rino
- Department of Surgery, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Khay Guan Yeoh
- Dept of Medicine, National University of Singapore, Singapore, Singapore
| | - Jimmy So
- Dept of Surgery, National University of Singapore, Singapore, Singapore
| | - Kaushal Sanghvi
- Dept of Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Richie Soong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Akihiko Fukagawa
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan.,Division of Genomic Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Mamoru Kato
- Division of Bioinformatics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Hitoshi Katai
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Patrick Tan
- Cancer and Stem Cell Biology, Duke-NUS Medical School Singapore, Singapore, Singapore.,Epigenomic and Epitranscriptomic Regulation, Genome Institute of Singapore, Singapore, Singapore
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan. .,Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
28
|
Basu D, Pal R, Sarkar M, Barma S, Halder S, Roy H, Nandi S, Samadder A. To Investigate Growth Factor Receptor Targets and Generate Cancer Targeting Inhibitors. Curr Top Med Chem 2023; 23:2877-2972. [PMID: 38164722 DOI: 10.2174/0115680266261150231110053650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024]
Abstract
Receptor tyrosine kinase (RTK) regulates multiple pathways, including Mitogenactivated protein kinases (MAPKs), PI3/AKT, JAK/STAT pathway, etc. which has a significant role in the progression and metastasis of tumor. As RTK activation regulates numerous essential bodily processes, including cell proliferation and division, RTK dysregulation has been identified in many types of cancers. Targeting RTK is a significant challenge in cancer due to the abnormal upregulation and downregulation of RTK receptors subfamily EGFR, FGFR, PDGFR, VEGFR, and HGFR in the progression of cancer, which is governed by multiple RTK receptor signalling pathways and impacts treatment response and disease progression. In this review, an extensive focus has been carried out on the normal and abnormal signalling pathways of EGFR, FGFR, PDGFR, VEGFR, and HGFR and their association with cancer initiation and progression. These are explored as potential therapeutic cancer targets and therefore, the inhibitors were evaluated alone and merged with additional therapies in clinical trials aimed at combating global cancer.
Collapse
Affiliation(s)
- Debroop Basu
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Riya Pal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, IndiaIndia
| | - Maitrayee Sarkar
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Soubhik Barma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sumit Halder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Harekrishna Roy
- Nirmala College of Pharmacy, Vijayawada, Guntur, Andhra Pradesh, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| | - Asmita Samadder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| |
Collapse
|
29
|
Zheng L, Wang Y, Zhang Y, Chai Z, Liu S, Wang B, Dai B, Zhang D. Investigation of PM 2.5-induced carcinogenic effects through mediation of ErbB family based on DNA methylation and transcriptomics analysis by a lung-mimicking microfluidic platform. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114318. [PMID: 36442402 DOI: 10.1016/j.ecoenv.2022.114318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Fine particle (PM2.5, less than 2.5 micrometers in diameter) is regarded as a harmful carcinogen. However, the molecular mechanisms of the carcinogenic effects of ambient fine particles have not been fully elucidated, and therapeutic options to address this major public health challenge are lacking. Here, we present global gene-specific DNA methylation and transcriptomic (RNA-Seq) analyses after HBE cells were exposed to fine particles on a portable, small, and all-in-one organ-level lung-mimicking air-liquid interface exposure (MALIE) microfluidic platform. A series of cancer-related signal transduction pathways were activated. ErbB1, ErbB2, and ErbB3 gene expression altered by fine particle exposure was the result of changes in the cellular DNA methylome. The protein expression of ErbB family was inhibited by drugs and could regulate downstream Grb2/Raf pathway and Akt/MDM2 pathway. All of the above results indicated that ErbB family may be promising drug targets for air pollution-related diseases and that inhibitor drugs can be used as therapeutic options to treat these diseases.
Collapse
Affiliation(s)
- Lulu Zheng
- Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yuwen Wang
- Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yule Zhang
- Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Sixiu Liu
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Bo Wang
- Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Bo Dai
- Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; Shanghai Institute of Intelligent Science and Technology, Tongji University, China.
| |
Collapse
|
30
|
Kilroy MK, Park S, Feroz W, Patel H, Mishra R, Alanazi S, Garrett JT. HER3 Alterations in Cancer and Potential Clinical Implications. Cancers (Basel) 2022; 14:cancers14246174. [PMID: 36551663 PMCID: PMC9776947 DOI: 10.3390/cancers14246174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, the third member of the HER family, kinase impaired HER3, has become a target of interest in cancer as there is accumulating evidence that HER3 plays a role in tumor growth and progression. This review focuses on HER3 activation in bladder, breast, colorectal, and lung cancer disease progression. HER3 mutations occur at a rate up to ~10% of tumors dependent on the tumor type. With patient tumors routinely sequenced for gene alterations in recent years, we have focused on HER3 mutations in bladder, breast, colon, and lung cancers particularly in response to targeted therapies and the potential to become a resistance mechanism. There are currently several HER3 targeting drugs in the pipeline, possibly improving outcomes for cancer patients with tumors containing HER3 activation and/or alterations.
Collapse
Affiliation(s)
- Mary Kate Kilroy
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - SoYoung Park
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
- Cancer Research Scholars Program, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Wasim Feroz
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Hima Patel
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Samar Alanazi
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Joan T. Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
31
|
Gandullo-Sánchez L, Ocaña A, Pandiella A. HER3 in cancer: from the bench to the bedside. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:310. [PMID: 36271429 PMCID: PMC9585794 DOI: 10.1186/s13046-022-02515-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
Abstract
The HER3 protein, that belongs to the ErbB/HER receptor tyrosine kinase (RTK) family, is expressed in several types of tumors. That fact, together with the role of HER3 in promoting cell proliferation, implicate that targeting HER3 may have therapeutic relevance. Furthermore, expression and activation of HER3 has been linked to resistance to drugs that target other HER receptors such as agents that act on EGFR or HER2. In addition, HER3 has been associated to resistance to some chemotherapeutic drugs. Because of those circumstances, efforts to develop and test agents targeting HER3 have been carried out. Two types of agents targeting HER3 have been developed. The most abundant are antibodies or engineered antibody derivatives that specifically recognize the extracellular region of HER3. In addition, the use of aptamers specifically interacting with HER3, vaccines or HER3-targeting siRNAs have also been developed. Here we discuss the state of the art of the preclinical and clinical development of drugs aimed at targeting HER3 with therapeutic purposes.
Collapse
Affiliation(s)
- Lucía Gandullo-Sánchez
- grid.428472.f0000 0004 1794 2467Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Alberto Ocaña
- grid.411068.a0000 0001 0671 5785Hospital Clínico San Carlos and CIBERONC, 28040 Madrid, Spain
| | - Atanasio Pandiella
- grid.428472.f0000 0004 1794 2467Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
32
|
Sheetz JB, Lemmon MA. Looking lively: emerging principles of pseudokinase signaling. Trends Biochem Sci 2022; 47:875-891. [PMID: 35585008 PMCID: PMC9464697 DOI: 10.1016/j.tibs.2022.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Progress towards understanding catalytically 'dead' protein kinases - pseudokinases - in biology and disease has hastened over the past decade. An especially lively area for structural biology, pseudokinases appear to be strikingly similar to their kinase relatives, despite lacking key catalytic residues. Distinct active- and inactive-like conformation states, which are crucial for regulating bona fide protein kinases, are conserved in pseudokinases and appear to be essential for function. We discuss recent structural data on conformational transitions and nucleotide binding by pseudokinases, from which some common principles emerge. In both pseudokinases and bona fide kinases, a conformational toggle appears to control the ability to interact with signaling effectors. We also discuss how biasing this conformational toggle may provide opportunities to target pseudokinases pharmacologically in disease.
Collapse
Affiliation(s)
- Joshua B Sheetz
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06505, USA; Yale Cancer Biology Institute, Yale West Campus, West Haven, CT 06516, USA.
| | - Mark A Lemmon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06505, USA; Yale Cancer Biology Institute, Yale West Campus, West Haven, CT 06516, USA.
| |
Collapse
|
33
|
Drago JZ, Ferraro E, Abuhadra N, Modi S. Beyond HER2: Targeting the ErbB receptor family in breast cancer. Cancer Treat Rev 2022; 109:102436. [PMID: 35870237 PMCID: PMC10478787 DOI: 10.1016/j.ctrv.2022.102436] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022]
Abstract
Targeting the HER2 oncogene represents one of the greatest advances in the treatment of breast cancer. HER2 is one member of the ERBB-receptor family, which includes EGFR (HER1), HER3 and HER4. In the presence or absence of underling genomic aberrations such as mutations or amplification events, intricate interactions between these proteins on the cell membrane lead to downstream signaling that encourages cancer growth and proliferation. In this Review, we contextualize efforts to pharmacologically target the ErbB receptor family beyond HER2, with a focus on EGFR and HER3. Preclinical and clinical efforts are synthesized. We discuss successes and failures of this approach to date, summarize lessons learned, and propose a way forward that invokes new therapeutic modalities such as antibody drug conjugates (ADCs), combination strategies, and patient selection through rational biomarkers.
Collapse
Affiliation(s)
- Joshua Z Drago
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weil Cornell Medicine, New York, NY, USA.
| | - Emanuela Ferraro
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nour Abuhadra
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weil Cornell Medicine, New York, NY, USA
| | - Shanu Modi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weil Cornell Medicine, New York, NY, USA
| |
Collapse
|
34
|
Wang Z, Li J, Zhang P, Zhao L, Huang B, Xu Y, Wu G, Xia Q. The Role of ERBB Signaling Pathway-Related Genes in Kidney Renal Clear Cell Carcinoma and Establishing a Prognostic Risk Assessment Model for Patients. Front Genet 2022; 13:862210. [PMID: 35903358 PMCID: PMC9314565 DOI: 10.3389/fgene.2022.862210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: We aimed to investigate the potential role of ERBB signaling pathway-related genes in kidney renal clear cell carcinoma (KIRC) and establish a new predictive risk model using various bioinformatics methods. Methods: We downloaded the KIRC dataset and clinicopathological information from The Cancer Genome Atlas database. Univariate Cox analysis was used to identify essential genes significantly associated with KIRC progression. Next, we used the STRING website to construct a protein-protein interaction network of ERBB signaling pathway-related molecules. We then used the least the absolute shrinkage and selection operator (LASSO) regression analysis to build a predictive risk model for KIRC patients. Next, we used multiple bioinformatics methods to analyze the copy number variation, single-nucleotide variation, and overall survival of these risk model genes in pan-cancer. At last, we used the Genomics of Drug Sensitivity in Cancer to investigate the correlation between the mRNA expression of genes associated with this risk model gene and drug sensitivity. Results: Through the LASSO regression analysis, we constructed a novel KIRC prognosis-related risk model using 12 genes: SHC1, GAB1, SOS2, SRC, AKT3, EREG, EIF4EBP1, ERBB3, MAPK3, transforming growth factor-alpha, CDKN1A, and PIK3CD. Based on this risk model, the overall survival rate of KIRC patients in the low-risk group was significantly higher than that in the high-risk group (p = 1.221 × 10-15). Furthermore, this risk model was associated with cancer metastasis, tumor size, node, stage, grade, sex, and fustat in KIRC patients. The receiver operating characteristic curve results showed that the model had better prediction accuracy. Multivariate Cox regression analysis showed that the model's risk score was an independent risk factor for KIRC. The Human Protein Atlas database was used to validate the protein expression of risk model-associated molecules in tumors and adjacent normal tissues. The validation results were consistent with our previous findings. Conclusions: We successfully established a prognostic-related risk model for KIRC, which will provide clinicians with a helpful reference for future disease diagnosis and treatment.
Collapse
Affiliation(s)
- Zicheng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jiayi Li
- School of Business, Hanyang University, Seoul, South Korea
| | - Peizhi Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Leizuo Zhao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Urology, Dongying People’s Hospital, Dongying, China
| | - Bingyin Huang
- Department of Pathology, The First People’s Hospital of Zhoukou, Zhoukou, China
| | - Yingkun Xu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
35
|
Drug Resistance in Colorectal Cancer: From Mechanism to Clinic. Cancers (Basel) 2022; 14:cancers14122928. [PMID: 35740594 PMCID: PMC9221177 DOI: 10.3390/cancers14122928] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of death worldwide. The 5-year survival rate is 90% for patients with early CRC, 70% for patients with locally advanced CRC, and 15% for patients with metastatic CRC (mCRC). In fact, most CRC patients are at an advanced stage at the time of diagnosis. Although chemotherapy, molecularly targeted therapy and immunotherapy have significantly improved patient survival, some patients are initially insensitive to these drugs or initially sensitive but quickly become insensitive, and the emergence of such primary and secondary drug resistance is a significant clinical challenge. The most direct cause of resistance is the aberrant anti-tumor drug metabolism, transportation or target. With more in-depth research, it is found that cell death pathways, carcinogenic signals, compensation feedback loop signal pathways and tumor immune microenvironment also play essential roles in the drug resistance mechanism. Here, we assess the current major mechanisms of CRC resistance and describe potential therapeutic interventions.
Collapse
|
36
|
Targeting the HER3 pseudokinase domain with small molecule inhibitors. Methods Enzymol 2022; 667:455-505. [PMID: 35525551 DOI: 10.1016/bs.mie.2022.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HER3 is a potent oncogenic growth factor receptor belonging to the human epidermal growth factor (HER/EGFR) family of receptor tyrosine kinases. In contrast to other EGFR family members, HER3 is a pseudokinase, lacking functional kinase activity. As such, efforts to develop small molecule tyrosine kinase inhibitors against this family member have been limited. In response to HER3-specific growth factors such as neuregulin (NRG, also known as heregulin or HRG), HER3 must couple with catalytically active family members, including its preferred partner HER2. Dimerization of the intracellular HER2:HER3 kinase domains is a critical part of the activation mechanism and HER3 plays a specialized role as an allosteric activator of the active HER2 kinase partner. Intriguingly, many pseudokinases retain functionally important nucleotide binding capacity, despite loss of kinase activity. We demonstrated that occupation of the nucleotide pocket of the pseudokinase HER3 retains functional importance for growth factor signaling through oncogenic HER2:HER3 heterodimers. Mutation of the HER3 nucleotide pocket both disrupts signaling and disrupts HER2:HER3 dimerization. Conversely, ATP competitive drugs which bind to HER3, but not HER2, can stabilize HER2:HER3 dimers, induce signaling and promote cell growth in breast cancer models. This indicates a nucleotide-dependent conformational role for the HER3 kinase domain. Critically, our recent proof-of-concept work demonstrated that HER3-directed small molecule inhibitors can also disrupt HER2:HER3 dimerization and signaling, supporting the prospect that HER3 can be a direct drug target despite its lack of intrinsic activity. In this chapter we will describe methods for identifying and validating small molecule inhibitors against the HER3 pseudokinase.
Collapse
|
37
|
Koyama K, Ishikawa H, Abe M, Shiose Y, Ueno S, Qiu Y, Nakamaru K, Murakami M. Patritumab deruxtecan (HER3-DXd), a novel HER3 directed antibody drug conjugate, exhibits in vitro activity against breast cancer cells expressing HER3 mutations with and without HER2 overexpression. PLoS One 2022; 17:e0267027. [PMID: 35503762 PMCID: PMC9064083 DOI: 10.1371/journal.pone.0267027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Abstract
ErbB3 (HER3), a member of the HER family, is overexpressed in various cancers and plays an important role in cell proliferation and survival. Certain HER3 mutations have also been identified as oncogenic drivers, making them potential therapeutic targets. In the current study, antitumor activity of patritumab deruxtecan (HER3-DXd), a HER3 directed antibody drug conjugate, was evaluated in tumor models with clinically reported HER3 mutations. MDA-MB-231, a HER3-negative human triple-negative breast cancer cell line, was transduced with lentiviral vectors encoding HER3 wild type (HER3WT), one of 11 HER3 mutations, or HER3 empty vector (HER3EV), in the presence/absence of HER2 overexpression. Targeted delivery of HER3-DXd was assessed using cell-surface binding, lysosomal trafficking, and cell-growth inhibition assays. HER3-DXd bound to the surface of HER3WT and mutant cells in a similar, concentration-dependent manner but not to HER3EV. HER3-DXd was translocated to the lysosome, where time- and concentration-dependent signals were observed in the HER3 mutant and HER3WT cells. HER3-DXd inhibited the growth of HER3WT and HER3 mutant cells. HER3-DXd activity was observed in the presence and absence of HER2 overexpression. These data suggest that HER3-DXd may have activity against tumors expressing wild type HER3 or clinically observed HER3 mutations, supporting further clinical evaluation.
Collapse
Affiliation(s)
- Kumiko Koyama
- Translational Science Department I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
- * E-mail:
| | - Hirokazu Ishikawa
- Translational Research Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo, Japan
| | - Manabu Abe
- Specialty Medicine Research Laboratories II, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yoshinobu Shiose
- Translational Science Department I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Suguru Ueno
- Cell Therapy Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yang Qiu
- Daiichi Sankyo, Inc., Basking Ridge, NJ, United States of America
| | - Kenji Nakamaru
- Translational Science Department I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Masato Murakami
- Daiichi Sankyo, Inc., Basking Ridge, NJ, United States of America
| |
Collapse
|
38
|
Miano C, Morselli A, Pontis F, Bongiovanni C, Sacchi F, Da Pra S, Romaniello D, Tassinari R, Sgarzi M, Pantano E, Ventura C, Lauriola M, D’Uva G. NRG1/ERBB3/ERBB2 Axis Triggers Anchorage-Independent Growth of Basal-like/Triple-Negative Breast Cancer Cells. Cancers (Basel) 2022; 14:1603. [PMID: 35406375 PMCID: PMC8997077 DOI: 10.3390/cancers14071603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 01/12/2023] Open
Abstract
ERBB3, also known as HER3, is a tyrosine kinase transmembrane receptor of the ERBB family. Upon binding to neuregulin 1 (NRG1), ERBB3 preferentially dimerizes with HER2 (ERBB2), in turn inducing aggressive features in several cancer types. The analysis of a dataset of breast cancer patients unveiled that higher ERBB3 mRNA expression correlates with shorter relapse-free survival in basal-like breast cancers, despite low ERBB3 expression in this breast cancer subtype. Administration of neuregulin 1 beta (NRG1β) significantly affected neither cellular proliferation nor the basal migratory ability of basal-like/triple-negative quasi-normal MCF10A breast cells, cultured in mono-layer conditions. Furthermore, no significant regulation in cell morphology or in the expression of basal/myoepithelial and luminal markers was observed upon stimulation with NRG1β. In non-adherent conditions, NRG1β administration to MCF10A cells did not significantly influence cell survival; however, it robustly induced cell growth as spheroids (3D growth). Intriguingly, a remarkable upregulation of ERBB3 and ERBB2 protein abundance was observed in 3D compared to 2D cell cultures, and NRG1β-induced 3D cell growth was efficiently prevented by the anti-HER2 monoclonal antibody pertuzumab. Similar results were obtained by the analysis of basal-like/triple-negative breast cancer cellular models, MDA-MB-468 and MDA-MB-231 cells, in which NRG1β induced anchorage-independent cell growth that in turn was prevented or reduced by the simultaneous administration of anti-HER2 neutralizing antibodies. Finally, the ability of pertuzumab in suppressing NRG1β-induced 3D growth was also evaluated and confirmed in MCF10A engineered with HER2-overexpression. We suggest that the NRG1/ERBB3/ERBB2 pathway promotes the anchorage-independent growth of basal-like breast cancer cells. Importantly, we provide evidence that ERBB2 neutralization, in particular by pertuzumab, robustly inhibits this process. Our results pave the way towards the development of novel anticancer strategies for basal-like breast cancer patients based on the interception of the NRG1/ERBB3/ERBB2 signaling axis.
Collapse
Affiliation(s)
- Carmen Miano
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), 40129 Bologna, Italy; (C.M.); (C.B.); (F.S.); (S.D.P.); (R.T.); (C.V.)
- Centre for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Alessandra Morselli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (A.M.); (D.R.); (M.S.); (M.L.)
| | - Francesca Pontis
- Scientific and Technological Pole, IRCCS MultiMedica, 20138 Milan, Italy; (F.P.); (E.P.)
| | - Chiara Bongiovanni
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), 40129 Bologna, Italy; (C.M.); (C.B.); (F.S.); (S.D.P.); (R.T.); (C.V.)
- Centre for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (A.M.); (D.R.); (M.S.); (M.L.)
| | - Francesca Sacchi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), 40129 Bologna, Italy; (C.M.); (C.B.); (F.S.); (S.D.P.); (R.T.); (C.V.)
- Centre for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (A.M.); (D.R.); (M.S.); (M.L.)
| | - Silvia Da Pra
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), 40129 Bologna, Italy; (C.M.); (C.B.); (F.S.); (S.D.P.); (R.T.); (C.V.)
- Centre for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (A.M.); (D.R.); (M.S.); (M.L.)
| | - Donatella Romaniello
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (A.M.); (D.R.); (M.S.); (M.L.)
| | - Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), 40129 Bologna, Italy; (C.M.); (C.B.); (F.S.); (S.D.P.); (R.T.); (C.V.)
| | - Michela Sgarzi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (A.M.); (D.R.); (M.S.); (M.L.)
| | - Elvira Pantano
- Scientific and Technological Pole, IRCCS MultiMedica, 20138 Milan, Italy; (F.P.); (E.P.)
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), 40129 Bologna, Italy; (C.M.); (C.B.); (F.S.); (S.D.P.); (R.T.); (C.V.)
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (A.M.); (D.R.); (M.S.); (M.L.)
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (A.M.); (D.R.); (M.S.); (M.L.)
| | - Gabriele D’Uva
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), 40129 Bologna, Italy; (C.M.); (C.B.); (F.S.); (S.D.P.); (R.T.); (C.V.)
- Centre for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (A.M.); (D.R.); (M.S.); (M.L.)
| |
Collapse
|
39
|
Savino L, Di Marcantonio MC, Moscatello C, Cotellese R, Centurione L, Muraro R, Aceto GM, Mincione G. Effects of H 2O 2 Treatment Combined With PI3K Inhibitor and MEK Inhibitor in AGS Cells: Oxidative Stress Outcomes in a Model of Gastric Cancer. Front Oncol 2022; 12:860760. [PMID: 35372019 PMCID: PMC8966616 DOI: 10.3389/fonc.2022.860760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer is worldwide the fifth and third cancer for incidence and mortality, respectively. Stomach wall is daily exposed to oxidative stress and BER system has a key role in the defense from oxidation-induced DNA damage, whilst ErbB receptors have important roles in the pathogenesis of cancer. We used AGS cells as an aggressive gastric carcinoma cell model, treated with H2O2 alone or combined with ErbB signaling pathway inhibitors, to evaluate the effects of oxidative stress in gastric cancer, focusing on the modulation of ErbB signaling pathways and their eventual cross-talk with BER system. We showed that treatment with H2O2 combined with PI3K/AKT and MEK inhibitors influenced cell morphology and resulted in a reduction of cancer cell viability. Migration ability was reduced after H2O2 treatment alone or combined with MEK inhibitor and after PI3K/AKT inhibitor alone. Western blotting analysis showed that oxidative stress stimulated EGFR pathway favoring the MAPKs activation at the expense of PI3K/AKT pathway. Gene expression analysis by RT-qPCR showed ErbB2 and OGG1 increase under oxidative stress conditions. Therefore, we suggest that in AGS cells a pro-oxidant treatment can reduce gastric cancer cell growth and migration via a different modulation of PI3K and MAPKs pathways. Moreover, the observed ErbB2 and OGG1 induction is a cellular response to protect the cells from H2O2-induced cell death. In conclusion, to tailor specific combinations of therapies and to decide which strategy to use, administration of a chemotherapy that increases intracellular ROS to toxic levels, might not only be dependent on the tumor type, but also on the molecular targeting therapy used.
Collapse
Affiliation(s)
- Luca Savino
- Department of Innovative Technologies in Medicine and Dentistry, University ‘G. d’Annunzio’ of Chieti–Pescara, Chieti, Italy
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine and Dentistry, University ‘G. d’Annunzio’ of Chieti–Pescara, Chieti, Italy
| | - Carmelo Moscatello
- Department of Medical, Oral and Biotechnological Sciences, University ‘G. d’Annunzio’ of Chieti–Pescara, Chieti, Italy
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, University ‘G. d’Annunzio’ of Chieti–Pescara, Chieti, Italy
| | - Lucia Centurione
- Department of Medicine and Aging Sciences, University ‘G. d’Annunzio’ of Chieti–Pescara, Chieti, Italy
| | - Raffaella Muraro
- Department of Innovative Technologies in Medicine and Dentistry, University ‘G. d’Annunzio’ of Chieti–Pescara, Chieti, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, University ‘G. d’Annunzio’ of Chieti–Pescara, Chieti, Italy
| | - Gabriella Mincione
- Department of Innovative Technologies in Medicine and Dentistry, University ‘G. d’Annunzio’ of Chieti–Pescara, Chieti, Italy
| |
Collapse
|
40
|
Glioblastoma mutations alter EGFR dimer structure to prevent ligand bias. Nature 2022; 602:518-522. [PMID: 35140400 DOI: 10.1038/s41586-021-04393-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) is frequently mutated in human cancer1,2, and is an important therapeutic target. EGFR inhibitors have been successful in lung cancer, where mutations in the intracellular tyrosine kinase domain activate the receptor1, but not in glioblastoma multiforme (GBM)3, where mutations occur exclusively in the extracellular region. Here we show that common extracellular GBM mutations prevent EGFR from discriminating between its activating ligands4. Different growth factor ligands stabilize distinct EGFR dimer structures5 that signal with different kinetics to specify or bias outcome5,6. EGF itself induces strong symmetric dimers that signal transiently to promote proliferation. Epiregulin (EREG) induces much weaker asymmetric dimers that drive sustained signalling and differentiation5. GBM mutations reduce the ability of EGFR to distinguish EREG from EGF in cellular assays, and allow EGFR to form strong (EGF-like) dimers in response to EREG and other low-affinity ligands. Using X-ray crystallography, we further show that the R84K GBM mutation symmetrizes EREG-driven extracellular dimers so that they resemble dimers normally seen with EGF. By contrast, a second GBM mutation, A265V, remodels key dimerization contacts to strengthen asymmetric EREG-driven dimers. Our results argue for an important role of altered ligand discrimination by EGFR in GBM, with potential implications for therapeutic targeting.
Collapse
|
41
|
Kumai T, Yamaki H, Kono M, Hayashi R, Wakisaka R, Komatsuda H. Antitumor Peptide-Based Vaccine in the Limelight. Vaccines (Basel) 2022; 10:vaccines10010070. [PMID: 35062731 PMCID: PMC8778374 DOI: 10.3390/vaccines10010070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
The success of the immune checkpoint blockade has provided a proof of concept that immune cells are capable of attacking tumors in the clinic. However, clinical benefit is only observed in less than 20% of the patients due to the non-specific activation of immune cells by the immune checkpoint blockade. Developing tumor-specific immune responses is a challenging task that can be achieved by targeting tumor antigens to generate tumor-specific T-cell responses. The recent advancements in peptide-based immunotherapy have encouraged clinicians and patients who are struggling with cancer that is otherwise non-treatable with current therapeutics. By selecting appropriate epitopes from tumor antigens with suitable adjuvants, peptides can elicit robust antitumor responses in both mice and humans. Although recent experimental data and clinical trials suggest the potency of tumor reduction by peptide-based vaccines, earlier clinical trials based on the inadequate hypothesis have misled that peptide vaccines are not efficient in eliminating tumor cells. In this review, we highlighted the recent evidence that supports the rationale of peptide-based antitumor vaccines. We also discussed the strategies to select the optimal epitope for vaccines and the mechanism of how adjuvants increase the efficacy of this promising approach to treat cancer.
Collapse
Affiliation(s)
- Takumi Kumai
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
- Correspondence: ; Tel.: +81-166-68-2554; Fax: +81-166-68-2559
| | - Hidekiyo Yamaki
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Ryusuke Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Risa Wakisaka
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Hiroki Komatsuda
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| |
Collapse
|
42
|
Borozan I, Zaidi SH, Harrison TA, Phipps AI, Zheng J, Lee S, Trinh QM, Steinfelder RS, Adams J, Banbury BL, Berndt SI, Brezina S, Buchanan DD, Bullman S, Cao Y, Farris AB, Figueiredo JC, Giannakis M, Heisler LE, Hopper JL, Lin Y, Luo X, Nishihara R, Mardis ER, Papadopoulos N, Qu C, Reid EEG, Thibodeau SN, Harlid S, Um CY, Hsu L, Gsur A, Campbell PT, Gallinger S, Newcomb PA, Ogino S, Sun W, Hudson TJ, Ferretti V, Peters U. Molecular and Pathology Features of Colorectal Tumors and Patient Outcomes Are Associated with Fusobacterium nucleatum and Its Subspecies animalis. Cancer Epidemiol Biomarkers Prev 2022; 31:210-220. [PMID: 34737207 PMCID: PMC8755593 DOI: 10.1158/1055-9965.epi-21-0463] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/27/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Fusobacterium nucleatum (F. nucleatum) activates oncogenic signaling pathways and induces inflammation to promote colorectal carcinogenesis. METHODS We characterized F. nucleatum and its subspecies in colorectal tumors and examined associations with tumor characteristics and colorectal cancer-specific survival. We conducted deep sequencing of nusA, nusG, and bacterial 16s rRNA genes in tumors from 1,994 patients with colorectal cancer and assessed associations between F. nucleatum presence and clinical characteristics, colorectal cancer-specific mortality, and somatic mutations. RESULTS F. nucleatum, which was present in 10.3% of tumors, was detected in a higher proportion of right-sided and advanced-stage tumors, particularly subspecies animalis. Presence of F. nucleatum was associated with higher colorectal cancer-specific mortality (HR, 1.97; P = 0.0004). This association was restricted to nonhypermutated, microsatellite-stable tumors (HR, 2.13; P = 0.0002) and those who received chemotherapy [HR, 1.92; confidence interval (CI), 1.07-3.45; P = 0.029). Only F. nucleatum subspecies animalis, the main subspecies detected (65.8%), was associated with colorectal cancer-specific mortality (HR, 2.16; P = 0.0016), subspecies vincentii and nucleatum were not (HR, 1.07; P = 0.86). Additional adjustment for tumor stage suggests that the effect of F. nucleatum on mortality is partly driven by a stage shift. Presence of F. nucleatum was associated with microsatellite instable tumors, tumors with POLE exonuclease domain mutations, and ERBB3 mutations, and suggestively associated with TP53 mutations. CONCLUSIONS F. nucleatum, and particularly subspecies animalis, was associated with a higher colorectal cancer-specific mortality and specific somatic mutated genes. IMPACT Our findings identify the F. nucleatum subspecies animalis as negatively impacting colorectal cancer mortality, which may occur through a stage shift and its effect on chemoresistance.
Collapse
Affiliation(s)
- Ivan Borozan
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Jiayin Zheng
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Stephen Lee
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Quang M Trinh
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Robert S Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Jeremy Adams
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Barbara L Banbury
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- The University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Familial Cancer Clinic, Genetic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine in St. Louis, St Louis, Missouri
| | - Alton B Farris
- Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - John L Hopper
- The University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Xuemei Luo
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Reiko Nishihara
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, Maryland
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Emma E G Reid
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sophia Harlid
- Oncology, Department of Radiation Sciences, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Caroline Y Um
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, University of Toronto, Toronto, Ontario, Canada
- General Surgery, Surgery and Critical Care Program, University Health Network Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Cancer Immunology Program, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
- Cancer Epidemiology Program, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Thomas J Hudson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Vincent Ferretti
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington.
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| |
Collapse
|
43
|
Diwanji D, Trenker R, Thaker TM, Wang F, Agard DA, Verba KA, Jura N. Structures of the HER2-HER3-NRG1β complex reveal a dynamic dimer interface. Nature 2021; 600:339-343. [PMID: 34759323 PMCID: PMC9298180 DOI: 10.1038/s41586-021-04084-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/29/2021] [Indexed: 02/04/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) and HER3 form a potent pro-oncogenic heterocomplex1-3 upon binding of growth factor neuregulin-1β (NRG1β). The mechanism by which HER2 and HER3 interact remains unknown in the absence of any structures of the complex. Here we isolated the NRG1β-bound near full-length HER2-HER3 dimer and, using cryo-electron microscopy, reconstructed the extracellulardomain module, revealing unexpected dynamics at the HER2-HER3 dimerization interface. We show that the dimerization arm of NRG1β-bound HER3 is unresolved because the apo HER2 monomer does not undergo a ligand-induced conformational change needed to establish a HER3 dimerization arm-binding pocket. In a structure of the oncogenic extracellular domain mutant HER2(S310F), we observe a compensatory interaction with the HER3 dimerization arm that stabilizes the dimerization interface. Both HER2-HER3 and HER2(S310F)-HER3 retain the capacity to bind to the HER2-directed therapeutic antibody trastuzumab, but the mutant complex does not bind to pertuzumab. Our structure of the HER2(S310F)-HER3-NRG1β-trastuzumab Fab complex reveals that the receptor dimer undergoes a conformational change to accommodate trastuzumab. Thus, similar to oncogenic mutations, therapeutic agents exploit the intrinsic dynamics of the HER2-HER3 heterodimer. The unique features of a singly liganded HER2-HER3 heterodimer underscore the allosteric sensing of ligand occupancy by the dimerization interface and explain why extracellular domains of HER2 do not homo-associate via a canonical active dimer interface.
Collapse
Affiliation(s)
- Devan Diwanji
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA,Medical Scientist Training Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Raphael Trenker
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Tarjani M. Thaker
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA,Department of Chemistry and Biochemistry, The University of Arizona, AZ 85721, USA
| | - Feng Wang
- Department of Biochemistry and Biophysics, University of California San Francisco, CA 94158, USA
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, CA 94158, USA
| | - Kliment A. Verba
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA,Correspondence should be addressed to K.A.V. () or N.J. ()
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA. .,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
44
|
Mantilla Rojas C, McGill MP, Salvador AC, Bautz D, Threadgill DW. Epithelial-specific ERBB3 deletion results in a genetic background-dependent increase in intestinal and colon polyps that is mediated by EGFR. PLoS Genet 2021; 17:e1009931. [PMID: 34843459 PMCID: PMC8659709 DOI: 10.1371/journal.pgen.1009931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/09/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
ERBB3 has gained attention as a potential therapeutic target to treat colorectal and other types of cancers. To confirm a previous study showing intestinal polyps are dependent upon ERBB3, we generated an intestinal epithelia-specific ERBB3 deletion in C57BL/6-ApcMin/+ mice. Contrary to the previous report showing a significant reduction in intestinal polyps with ablation of ERBB3 on a B6;129 mixed genetic background, we observed a significant increase in polyp number with ablation of ERBB3 on C57BL/6J compared to control littermates. We confirmed the genetic background dependency of ERBB3 by also analyzing polyp development on B6129 hybrid and B6;129 advanced intercross mixed genetic backgrounds, which showed that ERBB3 deficiency only reduced polyp number on the mixed background as previously reported. Increased polyp number with ablation of ERBB3 was also observed in C57BL/6J mice treated with azoxymethane showing the effect is model independent. Polyps forming in absence of ERBB3 were generally smaller than those forming in control mice, albeit the effect was greatest in genetic backgrounds with reduced polyp numbers. The mechanism for differential polyp number in the absence of ERBB3 was through altered proliferation. Backgrounds with increased polyp number with loss of ERBB3 showed an increase in cell proliferation even in non-tumor epithelia, while backgrounds showing reduced polyp number with loss of ERBB3 showed reduced cellular proliferation. Increase polyp number caused by loss of ERBB3 was mediated by increased epidermal growth factor receptor (EGFR) expression, which was confirmed by deletion of Egfr. Taken together, this study raises substantial implications on the use of ERBB3 inhibitors against colorectal cancer. The prediction is that some patients may have increased progression with ERBB3 inhibitor therapy, which is consistent with observations reported for ERBB3 inhibitor clinical trials.
Collapse
Affiliation(s)
- Carolina Mantilla Rojas
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America.,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Michael P McGill
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America.,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Anna C Salvador
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America.,Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| | - David Bautz
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - David W Threadgill
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America.,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America.,Department of Nutrition, Texas A&M University, College Station, Texas, United States of America.,Department of Biochemistry & Biophysics and Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
45
|
Guo L, Li X, Yang Y, Lu X, Han X, Lang G, Chen L, Shao Z, Hu X. Large-scale genomic sequencing reveals adaptive opportunity of targeting mutated-PI3Kα in early and advanced HER2-positive breast cancer. Clin Transl Med 2021; 11:e589. [PMID: 34842356 PMCID: PMC8567053 DOI: 10.1002/ctm2.589] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/16/2021] [Accepted: 09/14/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Few studies have discussed the contradictory roles of mutated-PI3Kα in HER2-positive (HER2+) breast cancer. Thus, we characterised the adaptive roles of PI3Kα mutations among HER2+ tumour progression. METHODS We conducted prospective clinical sequencing of 1923 Chinese breast cancer patients and illustrated the clinical significance of PIK3CA mutations in locally advanced and advanced HER2+ cohort. A high-throughput PIK3CA mutations-barcoding screen was performed to reveal impactful mutation sites in tumour growth and drug responses. RESULTS PIK3CA mutations acted as a protective factor in treatment-naïve patients; however, advanced/locally advanced patients harbouring mutated-PI3Kα exhibited a higher progressive disease rate (100% vs. 15%, p = .000053) and a lower objective response rate (81.7% vs. 95.4%, p = .0008) in response to trastuzumab-based therapy. Meanwhile, patients exhibiting anti-HER2 resistance had a relatively high variant allele fraction (VAF) of PIK3CA mutations; we defined the VAF > 12.23% as a predictor of poor anti-HER2 neoadjuvant treatment efficacy. Pooled mutations screen revealed that specific PI3Kα mutation alleles mediated own biological effects. PIK3CA functional mutations suppressed the growth of HER2+ cells, but conferred anti-HER2 resistance, which can be reversed by the PI3Kα-specific inhibitor BYL719. CONCLUSIONS We proposed adaptive treatment strategies that the mutated PIK3CA and amplified ERBB2 should be concomitantly inhibited when exposing to continuous anti-HER2 therapy, while the combination of anti-HER2 and anti-PI3Kα treatment was not essential for anti-HER2 treatment-naïve patients. These findings improve the understanding of genomics-guided treatment in the different progressions of HER2+ breast cancer.
Collapse
Affiliation(s)
- Lin‐Wei Guo
- Precision Cancer Medicine CenterDepartment of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiP.R. China
| | - Xiao‐Guang Li
- Precision Cancer Medicine CenterDepartment of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiP.R. China
| | - Yun‐Song Yang
- Precision Cancer Medicine CenterDepartment of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiP.R. China
| | - Xun‐Xi Lu
- Precision Cancer Medicine CenterDepartment of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiP.R. China
| | - Xiang‐Chen Han
- Precision Cancer Medicine CenterDepartment of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiP.R. China
| | - Guan‐Tian Lang
- Precision Cancer Medicine CenterDepartment of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiP.R. China
| | - Li Chen
- Precision Cancer Medicine CenterDepartment of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiP.R. China
| | - Zhi‐Ming Shao
- Precision Cancer Medicine CenterDepartment of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiP.R. China
| | - Xin Hu
- Precision Cancer Medicine CenterDepartment of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiP.R. China
| |
Collapse
|
46
|
Liang N, Liu L, Huang C, Liu H, Guo C, Li J, Wang W, Li N, Lin R, Wang T, Ding L, Mao L, Li S. Transcriptomic and Mutational Analysis Discovering Distinct Molecular Characteristics Among Chinese Thymic Epithelial Tumor Patients. Front Oncol 2021; 11:647512. [PMID: 34568003 PMCID: PMC8456088 DOI: 10.3389/fonc.2021.647512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Thymic epithelial tumors (TETs) are malignancies arising from the epithelium of the thymic gland, rare but with relatively favorable prognosis. TETs have different pathological subtypes: thymomas and thymic carcinoma, and they show different clinical characteristics regarding prognosis, pathology, and molecular profiles, etc. Although some studies have investigated the pathogenesis of TETs, more molecular data is still needed to further understand the underlying mechanisms among different TETs subtypes and populations. METHODS In this study, we performed targeted gene panel sequencing and whole transcriptome sequencing on the tumor tissues from 27 Chinese TET patients, including 24 thymomas (A, AB, and B subtypes) and 3 thymic squamous cell carcinomas. We analyzed the genetic variations and differentially expressed genes among multiple TET subtypes. Moreover, we compared our data with the published The Cancer Genome Atlas (TCGA) TET data on both the genetic and transcriptomic levels. RESULTS Compared with the TCGA TET genomic data, we found that NF1 and ATM were the most frequently mutated genes (each with a frequency of 11%, 3/27). These mutations were not mutually exclusive, since one B1 thymoma showed mutations of both genes. The GTF2I mutation was mainly enriched in subtype A and AB thymomas, consistent with the previous reports. RNA-seq results unveiled that the genes related to thymus development (FGF7, FGF10 and CLDN4) were highly expressed in certain TET subtypes, implicating that the developmental process of thymus might be linked to the tumorigenesis of these subtypes. We found high expression of CD274 (PD-L1) in B2 and B3 thymoma samples, and validated its expression using immunohistochemistry (IHC). Based on the expression profiles, we further established a machine learning model to predict the myasthenia gravis status of TET patients and achieved 90% sensitivity and 70.6% specificity in the testing cohort. CONCLUSION This study provides the first genomic and transcriptomic analysis of a Chinese TET cohort. The high expression of genes involved in thymus developmental processes suggests the potential association between tumorigenesis of TETs and dysregulation of developmental pathways. The high expression of PD-L1 in B2 and B3 thymomas support the potential application of immunotherapy on certain thymoma subtypes.
Collapse
Affiliation(s)
- Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Cheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongsheng Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Guo
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Weiwei Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Li
- Department of R&D, Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Rui Lin
- Department of R&D, Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Tao Wang
- Department of R&D, Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Lieming Ding
- Department of Medical, Betta Pharmaceuticals Co., Ltd., Hangzhou, China
| | - Li Mao
- Department of Medical, Betta Pharmaceuticals Co., Ltd., Hangzhou, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
47
|
Hanker AB, Brown BP, Meiler J, Marín A, Jayanthan HS, Ye D, Lin CC, Akamatsu H, Lee KM, Chatterjee S, Sudhan DR, Servetto A, Brewer MR, Koch JP, Sheehan JH, He J, Lalani AS, Arteaga CL. Co-occurring gain-of-function mutations in HER2 and HER3 modulate HER2/HER3 activation, oncogenesis, and HER2 inhibitor sensitivity. Cancer Cell 2021; 39:1099-1114.e8. [PMID: 34171264 PMCID: PMC8355076 DOI: 10.1016/j.ccell.2021.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/28/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
Activating mutations in HER2 (ERBB2) drive the growth of a subset of breast and other cancers and tend to co-occur with HER3 (ERBB3) missense mutations. The HER2 tyrosine kinase inhibitor neratinib has shown clinical activity against HER2-mutant tumors. To characterize the role of HER3 mutations in HER2-mutant tumors, we integrate computational structural modeling with biochemical and cell biological analyses. Computational modeling predicts that the frequent HER3E928G kinase domain mutation enhances the affinity of HER2/HER3 and reduces binding of HER2 to its inhibitor neratinib. Co-expression of mutant HER2/HER3 enhances HER2/HER3 co-immunoprecipitation and ligand-independent activation of HER2/HER3 and PI3K/AKT, resulting in enhanced growth, invasiveness, and resistance to HER2-targeted therapies, which can be reversed by combined treatment with PI3Kα inhibitors. Our results provide a mechanistic rationale for the evolutionary selection of co-occurring HER2/HER3 mutations and the recent clinical observations that HER3 mutations are associated with a poor response to neratinib in HER2-mutant cancers.
Collapse
MESH Headings
- Aminopyridines/administration & dosage
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Gain of Function Mutation
- Humans
- Mice, Nude
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Morpholines/administration & dosage
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors/administration & dosage
- Protein Multimerization
- Quinolines/administration & dosage
- Quinolines/chemistry
- Quinolines/metabolism
- Quinolines/pharmacology
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/chemistry
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/metabolism
- Trastuzumab/pharmacology
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Ariella B Hanker
- UTSW Simmons Comprehensive Cancer Center, Dallas, 5323 Harry Hines Boulevard, TX 75390, USA; Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Benjamin P Brown
- Chemical and Physical Biology Program, Center for Structural Biology, and Medical Scientist Training Program, Vanderbilt University, Nashville, TN 37240, USA
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA; Institute for Drug Discovery, Leipzig University Medical School, Leipzig, SAC 04103, Germany
| | - Arnaldo Marín
- UTSW Simmons Comprehensive Cancer Center, Dallas, 5323 Harry Hines Boulevard, TX 75390, USA; Doctoral Program in Medical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Harikrishna S Jayanthan
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Dan Ye
- UTSW Simmons Comprehensive Cancer Center, Dallas, 5323 Harry Hines Boulevard, TX 75390, USA
| | - Chang-Ching Lin
- UTSW Simmons Comprehensive Cancer Center, Dallas, 5323 Harry Hines Boulevard, TX 75390, USA
| | - Hiroaki Akamatsu
- UTSW Simmons Comprehensive Cancer Center, Dallas, 5323 Harry Hines Boulevard, TX 75390, USA
| | - Kyung-Min Lee
- UTSW Simmons Comprehensive Cancer Center, Dallas, 5323 Harry Hines Boulevard, TX 75390, USA; Department of Life Sciences, College of Natural Science, Hanyang University, Seoul 04736, Republic of Korea
| | - Sumanta Chatterjee
- UTSW Simmons Comprehensive Cancer Center, Dallas, 5323 Harry Hines Boulevard, TX 75390, USA
| | - Dhivya R Sudhan
- UTSW Simmons Comprehensive Cancer Center, Dallas, 5323 Harry Hines Boulevard, TX 75390, USA
| | - Alberto Servetto
- UTSW Simmons Comprehensive Cancer Center, Dallas, 5323 Harry Hines Boulevard, TX 75390, USA
| | - Monica Red Brewer
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - James P Koch
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jonathan H Sheehan
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jie He
- Foundation Medicine, Cambridge, MA 02141, USA
| | | | - Carlos L Arteaga
- UTSW Simmons Comprehensive Cancer Center, Dallas, 5323 Harry Hines Boulevard, TX 75390, USA; Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
48
|
McInerney-Leo AM, Chew HY, Inglis PL, Leo PJ, Joseph SR, Cooper CL, Okano S, Hassall T, Anderson L, Bowman RV, Gattas M, Harris JE, Marshall MS, Shaw JG, Wheeler L, Yang IA, Brown MA, Fong KM, Simpson F, Duncan EL. Germline ERBB3 mutation in familial non-small cell lung carcinoma: Expanding ErbB's role in oncogenesis. Hum Mol Genet 2021; 30:2393-2401. [PMID: 34274969 PMCID: PMC8643496 DOI: 10.1093/hmg/ddab172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022] Open
Abstract
Lung cancer is the commonest cause of cancer deaths worldwide. Although strongly associated with smoking, predisposition to lung cancer is also heritable, with multiple common risk variants identified. Rarely, dominantly inherited non-small-cell lung cancer (NSCLC) has been reported due to somatic mutations in EGFR/ErbB1 and ERBB2. Germline exome sequencing was performed in a multi-generation family with autosomal dominant NSCLC, including an affected child. Tumour samples were also sequenced. Full-length wild-type (wtErbB3) and mutant ERBB3 (mutErbB3) constructs were transfected into HeLa cells. Protein expression, stability, and subcellular localization were assessed, and cellular proliferation, pAkt/Akt and pERK levels determined. A novel germline variant in ERBB3 (c.1946 T > G: p.Iso649Arg), coding for receptor tyrosine-protein kinase erbB-3 (ErbB3), was identified, with appropriate segregation. There was no loss-of-heterozygosity in tumour samples. Both wtErbB3 and mutErbB3 were stably expressed. MutErbB3-transfected cells demonstrated an increased ratio of the 80 kDa form (which enhances proliferation) compared with the full-length (180 kDa) form. MutErbB3 and wtErbB3 had similar punctate cytoplasmic localization pre- and post-epidermal growth factor stimulation; however, epidermal growth factor receptor (EGFR) levels decreased faster post-stimulation in mutErbB3-transfected cells, suggesting more rapid processing of the mutErbB3/EGFR heterodimer. Cellular proliferation was increased in mutErbB3-transfected cells compared with wtErbB3 transfection. MutErbB3-transfected cells also showed decreased pAkt/tAkt ratios and increased pERK/tERK 30 min post-stimulation compared with wtErbB3 transfection, demonstrating altered signalling pathway activation. Cumulatively, these results support this mutation as tumorogenic. This is the first reported family with a germline ERBB3 mutation causing heritable NSCLC, furthering understanding of the ErbB family pathway in oncogenesis.
Collapse
Affiliation(s)
- Aideen M McInerney-Leo
- The Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102
| | - Hui Yi Chew
- The Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102
| | - Po-Ling Inglis
- Medical Oncology, Royal Brisbane and Women's Hospital, Herston, QLD, 4029
| | - Paul J Leo
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102
| | - Shannon R Joseph
- The Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102
| | - Caroline L Cooper
- Department of Anatomical Pathology, Pathology Queensland, Princess Alexandra Hospital, Brisbane.,UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006
| | - Satomi Okano
- The Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102
| | - Tim Hassall
- Queensland Children's Hospital, South Brisbane, QLD, 4101
| | - Lisa Anderson
- Medical Oncology, Royal Brisbane and Women's Hospital, Herston, QLD, 4029
| | - Rayleen V Bowman
- UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006.,Department of Thoracic Medicine, The Prince Charles Hospital, Rode Road, Chermside, QLD, 4032
| | - Michael Gattas
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, 4029
| | - Jessica E Harris
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102
| | - Mhairi S Marshall
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102
| | - Janet G Shaw
- UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006.,Department of Thoracic Medicine, The Prince Charles Hospital, Rode Road, Chermside, QLD, 4032
| | - Lawrie Wheeler
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102
| | - Ian A Yang
- UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006.,Department of Thoracic Medicine, The Prince Charles Hospital, Rode Road, Chermside, QLD, 4032
| | - Matthew A Brown
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102.,Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.,King's College London NIHR Biomedical Research Centre, King's College London, United Kingdom
| | - Kwun M Fong
- UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006.,Department of Thoracic Medicine, The Prince Charles Hospital, Rode Road, Chermside, QLD, 4032
| | - Fiona Simpson
- The Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102
| | - Emma L Duncan
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102.,UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006.,Department of Twin Research and Genetic Epidemiology, Faculty of Life Sciences and Medicine, King's College London, United Kingdom
| |
Collapse
|
49
|
ERBB3 overexpression due to miR-205 inactivation confers sensitivity to FGF, metabolic activation, and liability to ERBB3 targeting in glioblastoma. Cell Rep 2021; 36:109455. [PMID: 34320350 DOI: 10.1016/j.celrep.2021.109455] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 06/10/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
In glioblastoma (GBM), the most frequent and lethal brain tumor, therapies suppressing recurrently altered signaling pathways failed to extend survival. However, in patient subsets, specific genetic lesions can confer sensitivity to targeted agents. By exploiting an integrated model based on patient-derived stem-like cells, faithfully recapitulating the original GBMs in vitro and in vivo, here, we identify a human GBM subset (∼9% of all GBMs) characterized by ERBB3 overexpression and nuclear accumulation. ERBB3 overexpression is driven by inheritable promoter methylation or post-transcriptional silencing of the oncosuppressor miR-205 and sustains the malignant phenotype. Overexpressed ERBB3 behaves as a specific signaling platform for fibroblast growth factor receptor (FGFR), driving PI3K/AKT/mTOR pathway hyperactivation, and overall metabolic upregulation. As a result, ERBB3 inhibition by specific antibodies is lethal for GBM stem-like cells and xenotransplants. These findings highlight a subset of patients eligible for ERBB3-targeted therapy.
Collapse
|
50
|
Yang X, Miao Y, Wang J, Mi D. A pan-cancer analysis of the HER family gene and their association with prognosis, tumor microenvironment, and therapeutic targets. Life Sci 2021; 273:119307. [PMID: 33691171 DOI: 10.1016/j.lfs.2021.119307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
AIMS The human epidermal growth factor receptor (HER) family gene is involved in a wide range of biological functions in human cancers. Nevertheless, there is little research that comprehensively analysis the correlation between HER family members and prognosis, tumor microenvironment (TME) in different cancers. MATERIALS AND METHODS Based on updated public databases and integrated several bioinformatics analysis methods, we evaluated expression level, prognostic values of HER family gene and explore the association between expression of HER family gene and TME, Stemness score, immune subtype, drug sensitivity in pan-cancer. KEY FINDINGS EGFR, ERBB2, ERBB3, and ERBB4 were higher expressed in four cancers, five cancers, ten cancers, and two cancers, respectively. HER family gene expression is related to the prognosis in several cancers from TCGA and has a significant correlation with stromal and immune scores in pan-cancer also has a significant correlation with RNA stemness score and DNA stemness score in pan-cancer. Expression level of HER family gene is associated with immune subtype in head and neck squamous cell carcinoma and kidney renal clear cell carcinoma. EGFR expression was negatively associated with drug sensitivity of Pipamperone, Tamoxifen, Bafetinib and positively related to drug sensitivity of Dasatinib and Staurosporine. ERBB2 expression was negatively related to drug sensitivity of Ifosfamide, Imexon, and Oxaliplatin. ERBB4 expression was positively related to drug sensitivity of E-7820. SIGNIFICANCE These findings may elucidate the roles played by HER family gene in cancer progression and providing insights for further investigation of the HER family gene as potential targets in pan-cancer.
Collapse
Affiliation(s)
- Xiaolong Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Gansu Provincial Hospital, Lanzhou City, Gansu Province, PR China
| | - Yandong Miao
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, PR China.
| | - Jiangtao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, PR China
| | - Denghai Mi
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, PR China; Gansu Academy of Traditional Chinese Medicine, Lanzhou City, Gansu Province, PR China.
| |
Collapse
|