1
|
Dhanyalayam D, Thangavel H, Sidrat T, Oswal N, Lizardo K, Mauro M, Zhao X, Xue HH, Desai JV, Nagajyothi JF. The Influence of Body Fat Dynamics on Pulmonary Immune Responses in Murine Tuberculosis: Unraveling Sex-Specific Insights. Int J Mol Sci 2024; 25:6823. [PMID: 38999932 PMCID: PMC11241512 DOI: 10.3390/ijms25136823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The World Health Organization (WHO) highlights a greater susceptibility of males to tuberculosis (TB), a vulnerability attributed to sex-specific variations in body fat and dietary factors. Our study delves into the unexplored terrain of how alterations in body fat influence Mycobacterium tuberculosis (Mtb) burden, lung pathology, immune responses, and gene expression, with a focus on sex-specific dynamics. Utilizing a low-dose Mtb-HN878 clinical strain infection model, we employ transgenic FAT-ATTAC mice with modulable body fat to explore the impact of fat loss (via fat ablation) and fat gain (via a medium-fat diet, MFD). Firstly, our investigation unveils that Mtb infection triggers severe pulmonary pathology in males, marked by shifts in metabolic signaling involving heightened lipid hydrolysis and proinflammatory signaling driven by IL-6 and localized pro-inflammatory CD8+ cells. This stands in stark contrast to females on a control regular diet (RD). Secondly, our findings indicate that both fat loss and fat gain in males lead to significantly elevated (1.6-fold (p ≤ 0.01) and 1.7-fold (p ≤ 0.001), respectively) Mtb burden in the lungs compared to females during Mtb infection (where fat loss and gain did not alter Mtb load in the lungs). This upsurge is associated with impaired lung lipid metabolism and intensified mitochondrial oxidative phosphorylation-regulated activity in lung CD8+ cells during Mtb infection. Additionally, our research brings to light that females exhibit a more robust systemic IFNγ (p ≤ 0.001) response than males during Mtb infection. This heightened response may either prevent active disease or contribute to latency in females during Mtb infection. In summary, our comprehensive analysis of the interplay between body fat changes and sex bias in Mtb infection reveals that alterations in body fat critically impact pulmonary pathology in males. Specifically, these changes significantly reduce the levels of pulmonary CD8+ T-cells and increase the Mtb burden in the lungs compared to females. The reduction in CD8+ cells in males is linked to an increase in mitochondrial oxidative phosphorylation and a decrease in TNFα, which are essential for CD8+ cell activation.
Collapse
Affiliation(s)
- Dhanya Dhanyalayam
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Hariprasad Thangavel
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Tabinda Sidrat
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Neelam Oswal
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kezia Lizardo
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Michael Mauro
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Jigar V Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Jyothi F Nagajyothi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
2
|
Zhu XL, Zhang HW, Peng WJ, Gao S, Yang ZL, Zhang JQ, Liu XS. Autophagy impairment is involved in midazolam-induced lipid droplet accumulation and consequent phagocytosis decrease in BV2 cells. Biochem Biophys Res Commun 2023; 643:147-156. [PMID: 36609155 DOI: 10.1016/j.bbrc.2022.12.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
An increasing number of experimental and clinical observation suggest that the use of anaesthetics is closely associated with postoperative central nervous system (CNS) complications, such as delirium and cognitive dysfunction. Brain energy rescue is an emerging therapeutic strategy for central nervous system disease (CNSDs). However, the effect of anaesthetics on nerve cell energy utilisation, especially microglia, and its potential effects on cell function still unclear. Elucidating the effects of anaesthetics on lipid droplets, which are specific lipid storage organs, and phagocytosis of microglia is crucial to discover a new therapeutic concept for postoperative CNS complications. Here, we studied the effects of the commonly used anaesthetic midazolam on lipid droplets and phagocytosis in immortalised microglial BV2 cells. Lipid droplets were assessed by flow cytometry and triglyceride quantification. The phagocytosis of BV2 cells was evaluated by detecting their phagocytosis by latex beads. Additionally, the autophagy of BV2 cells was evaluated by western blot and observation under microscopy. Our results showed that midazolam caused lipid droplet accumulation and reduced phagocytosis in BV2 cells, and inhibition of lipid droplet accumulation partially restored phagocytosis. Furthermore, midazolam blocks autophagic degradation by increasing phosphorylated TFEB in BV2 cells, inhibition of midazolam-increased phosphorylated TFEB might contribute to the improvement of autophagic flux by rapamycin. Moreover, promoting autophagy reverse the lipid droplet accumulation and phagocytosis decrease. This study suggests autophagy is a target for attenuating lipid droplet accumulation, normal degradation of lipid droplets is important for maintaining microglia phagocytosis and attenuating the side effects of midazolam on the CNS.
Collapse
Affiliation(s)
- Xiao-Ling Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China
| | - Hui-Wen Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China
| | - Wen-Jing Peng
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China
| | - Shan Gao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhi-Lai Yang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China
| | - Ji-Qian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China.
| | - Xue-Sheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China.
| |
Collapse
|
3
|
Alijagic A, Scherbak N, Kotlyar O, Karlsson P, Wang X, Odnevall I, Benada O, Amiryousefi A, Andersson L, Persson A, Felth J, Andersson H, Larsson M, Hedbrant A, Salihovic S, Hyötyläinen T, Repsilber D, Särndahl E, Engwall M. A Novel Nanosafety Approach Using Cell Painting, Metabolomics, and Lipidomics Captures the Cellular and Molecular Phenotypes Induced by the Unintentionally Formed Metal-Based (Nano)Particles. Cells 2023; 12:281. [PMID: 36672217 PMCID: PMC9856453 DOI: 10.3390/cells12020281] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Additive manufacturing (AM) or industrial 3D printing uses cutting-edge technologies and materials to produce a variety of complex products. However, the effects of the unintentionally emitted AM (nano)particles (AMPs) on human cells following inhalation, require further investigations. The physicochemical characterization of the AMPs, extracted from the filter of a Laser Powder Bed Fusion (L-PBF) 3D printer of iron-based materials, disclosed their complexity, in terms of size, shape, and chemistry. Cell Painting, a high-content screening (HCS) assay, was used to detect the subtle morphological changes elicited by the AMPs at the single cell resolution. The profiling of the cell morphological phenotypes, disclosed prominent concentration-dependent effects on the cytoskeleton, mitochondria, and the membranous structures of the cell. Furthermore, lipidomics confirmed that the AMPs induced the extensive membrane remodeling in the lung epithelial and macrophage co-culture cell model. To further elucidate the biological mechanisms of action, the targeted metabolomics unveiled several inflammation-related metabolites regulating the cell response to the AMP exposure. Overall, the AMP exposure led to the internalization, oxidative stress, cytoskeleton disruption, mitochondrial activation, membrane remodeling, and metabolic reprogramming of the lung epithelial cells and macrophages. We propose the approach of integrating Cell Painting with metabolomics and lipidomics, as an advanced nanosafety methodology, increasing the ability to capture the cellular and molecular phenotypes and the relevant biological mechanisms to the (nano)particle exposure.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Nikolai Scherbak
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| | - Oleksandr Kotlyar
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
- Centre for Applied Autonomous Sensor Systems (AASS), Mobile Robotics and Olfaction Lab (MRO), Örebro University, SE-701 82 Örebro, Sweden
| | - Patrik Karlsson
- Department of Mechanical Engineering, Örebro University, SE-701 82 Örebro, Sweden
| | - Xuying Wang
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden
| | - Inger Odnevall
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden
- AIMES—Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Oldřich Benada
- Institute of Microbiology of the Czech Academy of Sciences, 140 00 Prague, Czech Republic
| | - Ali Amiryousefi
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Lena Andersson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
- Department of Occupational and Environmental Medicine, Örebro University Hospital, SE-701 85 Örebro, Sweden
| | - Alexander Persson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | | | | | - Maria Larsson
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| | - Alexander Hedbrant
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Samira Salihovic
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Tuulia Hyötyläinen
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| | - Dirk Repsilber
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
4
|
Hirose H, Maekawa M, Ida H, Kuriyama M, Takahashi Y, Futaki S. A noncanonical endocytic pathway is involved in the internalization of 3 μm polystyrene beads into HeLa cells. Biomater Sci 2022; 10:7093-7102. [PMID: 36326722 DOI: 10.1039/d2bm01353c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Extracellular fine particles of various sizes and origins can be taken up by cells, affecting their function. Understanding the cellular uptake processes is crucial for understanding the cellular effects of these particles and the development of means to control their internalization. Although macropinocytosis is a possible pathway for the cellular uptake of particles larger than 0.2 μm, its contribution to cellular uptake in non-phagocytic cells is controversial. Using 3 μm polystyrene beads as a model particle, we aimed to assess the detailed modes of their cellular uptake by non-phagocytic HeLa cells. Cellular uptake was assessed using confocal, scanning electron, and scanning ion conductance microscopy analyses, together with inhibitor studies. Our results revealed that 3 μm beads were taken up by HeLa cells by an actin-, cholesterol-, and membrane protrusions-dependent noncanonical endocytic pathway, different from the canonical macropinocytic and phagocytic pathways. Our work provides a framework for studying the cellular uptake of extracellular fine particles.
Collapse
Affiliation(s)
- Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Masashi Maekawa
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Hiroki Ida
- Department of Electrical Engineering, Graduate School of Engineering, Nagoya University, Aichi 464-8601, Japan.,The Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi 980-8578, Japan.,Precursory Research for Embryonic Science and Technology, Science and Technology Agency (JST), Saitama 332-0012, Japan.,Advanced Institute for Materials Research, Tohoku University, Miyagi 980-8577, Japan.,Graduate School of Environmental Studies, Tohoku University, Miyagi 980-8579, Japan
| | - Masashi Kuriyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Yasufumi Takahashi
- Department of Electrical Engineering, Graduate School of Engineering, Nagoya University, Aichi 464-8601, Japan.,WPI Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Ishikawa 920-1192, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
5
|
Tretiakova DS, Vodovozova EL. Liposomes as Adjuvants and Vaccine Delivery Systems. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES A, MEMBRANE AND CELL BIOLOGY 2022; 16:1-20. [PMID: 35194485 PMCID: PMC8853224 DOI: 10.1134/s1990747822020076] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022]
Abstract
The review considers liposomes as systems of substantial interest as adjuvant carriers in vaccinology due to their versatility and maximal biocompatibility. Research and development on the use of liposomes and lipid nanoparticles to create subunit vaccines for the prevention and treatment of infectious diseases has been going on for several decades. In recent years, the area has seen serious progress due to the improvement of the technology of industrial production of various high-grade lipids suitable for parenteral administration and the emergence of new technologies and equipment for the production of liposomal preparations. When developing vaccines, it is necessary to take into account how the body’s immune system (innate and adaptive immunity) functions. The review briefly describes some of the fundamental mechanisms underlying the mobilization of immunity when encountering an antigen, as well as the influence of liposome carriers on the processes of internalization of antigens by immunocompetent cells and ways of immune response induction. The results of the studies on the interactions of liposomes with antigen-presenting cells in function of the liposome size, charge, and phase state of the bilayer, which depends on the lipid composition, are often contradictory and should be verified in each specific case. The introduction of immunostimulant components into the composition of liposomal vaccine complexes—ligands of the pathogen-associated molecular pattern receptors—permits modulation of the strength and type of the immune response. The review briefly discusses liposome-based vaccines approved for use in the clinic for the treatment and prevention of infectious diseases, including mRNA-loaded lipid nanoparticles. Examples of liposomal vaccines that undergo various stages of clinical trials are presented.
Collapse
Affiliation(s)
- D S Tretiakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - E L Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
6
|
Chen JX, Han YS, Zhang SQ, Li ZB, Chen J, Yi WJ, Huang H, Jiang TT, Li JC. Novel therapeutic evaluation biomarkers of lipid metabolism targets in uncomplicated pulmonary tuberculosis patients. Signal Transduct Target Ther 2021; 6:22. [PMID: 33462176 PMCID: PMC7814055 DOI: 10.1038/s41392-020-00427-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/31/2020] [Accepted: 11/15/2020] [Indexed: 02/05/2023] Open
Abstract
Currently, the management of pulmonary tuberculosis (TB) lacks potent medications and accurate efficacy evaluation biomarkers. In view of the fact that the host lipids are the important energy source of Mycobacterium tuberculosis (Mtb), UPLC-MS/MS based on lipid metabolism was used to monitor the plasma lipid spectrum of TB patients from the initial diagnosis to cured. The analysis showed that TB patients presented aberrant metabolism of phospholipids, glycerides, and sphingolipids. Upon the treatment, the abnormal expression of Cer (d18:1/24:0), CerP (d18:1/20:3), LPE (0:0/22:0), LPA (0:0/16:0), and LPA (0:0/18:0) in TB patients were gradually normalized, indicating that the intervention of lipid metabolism could block energy metabolism and inhibit the cell wall synthesis of Mtb. Furthermore, the increase in ceramide (Cer) levels could promote autophagosome-lysosome fusion. LPA (0:0/16:0) and LPA (0:0/18:0) had a great potential in the early diagnosis (both sensitivity and specificity were 100%) and efficacy evaluation (both sensitivity and specificity were 100%) of TB, indicating that the above lipid metabolites could be used as potential biomarkers for TB.
Collapse
Affiliation(s)
- Jia-Xi Chen
- Institute of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- The Medical Research Center of Yue Bei People's Hospital, Shantou University Medical College, 512025, Shaoguan, China
- Department of Histology and Embryology, Shaoguan University School of Medicine, 512025, Shaoguan, China
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, 318050, Taizhou, China
| | - Yu-Shuai Han
- Institute of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Shan-Qiang Zhang
- The Medical Research Center of Yue Bei People's Hospital, Shantou University Medical College, 512025, Shaoguan, China
| | - Zhi-Bin Li
- Institute of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Jing Chen
- Institute of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Wen-Jing Yi
- Institute of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- The Medical Research Center of Yue Bei People's Hospital, Shantou University Medical College, 512025, Shaoguan, China
| | - Huai Huang
- Institute of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- The Medical Research Center of Yue Bei People's Hospital, Shantou University Medical College, 512025, Shaoguan, China
| | - Ting-Ting Jiang
- The Medical Research Center of Yue Bei People's Hospital, Shantou University Medical College, 512025, Shaoguan, China
- Department of Histology and Embryology, Shaoguan University School of Medicine, 512025, Shaoguan, China
| | - Ji-Cheng Li
- Institute of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- The Medical Research Center of Yue Bei People's Hospital, Shantou University Medical College, 512025, Shaoguan, China.
- Department of Histology and Embryology, Shaoguan University School of Medicine, 512025, Shaoguan, China.
| |
Collapse
|
7
|
Poerio N, De Santis F, Rossi A, Ranucci S, De Fino I, Henriquez A, D’Andrea MM, Ciciriello F, Lucidi V, Nisini R, Bragonzi A, Fraziano M. Liposomes Loaded With Phosphatidylinositol 5-Phosphate Improve the Antimicrobial Response to Pseudomonas aeruginosa in Impaired Macrophages From Cystic Fibrosis Patients and Limit Airway Inflammatory Response. Front Immunol 2020; 11:532225. [PMID: 33117337 PMCID: PMC7562816 DOI: 10.3389/fimmu.2020.532225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/10/2020] [Indexed: 01/02/2023] Open
Abstract
Despite intensive antimicrobial and anti-inflammatory therapies, cystic fibrosis (CF) patients are subjected to chronic infections due to opportunistic pathogens, including multidrug resistant (MDR) Pseudomonas aeruginosa. Macrophages from CF patients show many evidences of reduced phagocytosis in terms of internalization capability, phagosome maturation, and intracellular bacterial killing. In this study, we investigated if apoptotic body-like liposomes (ABLs) loaded with phosphatidylinositol 5-phosphate (PI5P), known to regulate actin dynamics and vesicular trafficking, could restore phagocytic machinery while limiting inflammatory response in in vitro and in vivo models of MDR P. aeruginosa infection. Our results show that the in vitro treatment with ABL carrying PI5P (ABL/PI5P) enhances bacterial uptake, ROS production, phagosome acidification, and intracellular bacterial killing in human monocyte-derived macrophages (MDMs) with pharmacologically inhibited cystic fibrosis transmembrane conductance regulator channel (CFTR), and improve uptake and intracellular killing of MDR P. aeruginosa in CF macrophages with impaired bactericidal activity. Moreover, ABL/PI5P stimulation of CFTR-inhibited MDM infected with MDR P. aeruginosa significantly reduces NF-κB activation and the production of TNF-α, IL-1β, and IL-6, while increasing IL-10 and TGF-β levels. The therapeutic efficacy of ABL/PI5P given by pulmonary administration was evaluated in a murine model of chronic infection with MDR P. aeruginosa. The treatment with ABL/PI5P significantly reduces pulmonary neutrophil infiltrate and the levels of KC and MCP-2 cytokines in the lungs, without affecting pulmonary bacterial load. Altogether, these results show that the ABL/PI5P treatment may represent a promising host-directed therapeutic approach to improve the impaired phagocytosis and to limit the potentially tissue-damaging inflammatory response in CF.
Collapse
Affiliation(s)
- Noemi Poerio
- Dipartimento di Biologia, Università degli Studi di Roma “Tor Vergata”, Roma, Italy
| | - Federica De Santis
- Dipartimento di Biologia, Università degli Studi di Roma “Tor Vergata”, Roma, Italy
| | - Alice Rossi
- Unità di Infezioni e Fibrosi Cistica, Istituto Scientifico San Raffaele, Milano, Italy
| | - Serena Ranucci
- Unità di Infezioni e Fibrosi Cistica, Istituto Scientifico San Raffaele, Milano, Italy
| | - Ida De Fino
- Unità di Infezioni e Fibrosi Cistica, Istituto Scientifico San Raffaele, Milano, Italy
| | - Ana Henriquez
- Dipartimento di Biologia, Università degli Studi di Roma “Tor Vergata”, Roma, Italy
| | - Marco M. D’Andrea
- Dipartimento di Biologia, Università degli Studi di Roma “Tor Vergata”, Roma, Italy
| | - Fabiana Ciciriello
- Unità Operativa Complessa Fibrosi Cistica, Dipartimento di Medicina Pediatrica, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Vincenzina Lucidi
- Unità Operativa Complessa Fibrosi Cistica, Dipartimento di Medicina Pediatrica, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Roberto Nisini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Alessandra Bragonzi
- Unità di Infezioni e Fibrosi Cistica, Istituto Scientifico San Raffaele, Milano, Italy
| | - Maurizio Fraziano
- Dipartimento di Biologia, Università degli Studi di Roma “Tor Vergata”, Roma, Italy
| |
Collapse
|
8
|
Cernikova L, Faso C, Hehl AB. Phosphoinositide-binding proteins mark, shape and functionally modulate highly-diverged endocytic compartments in the parasitic protist Giardia lamblia. PLoS Pathog 2020; 16:e1008317. [PMID: 32092130 PMCID: PMC7058353 DOI: 10.1371/journal.ppat.1008317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/05/2020] [Accepted: 01/14/2020] [Indexed: 12/18/2022] Open
Abstract
Phosphorylated derivatives of phosphatidylinositol (PIPs) are key membrane lipid residues involved in clathrin-mediated endocytosis (CME). CME relies on PIP species PI(4,5)P2 to mark endocytic sites at the plasma membrane (PM) associated to clathrin-coated vesicle (CCV) formation. The highly diverged parasitic protist Giardia lamblia presents disordered and static clathrin assemblies at PM invaginations, contacting specialized endocytic organelles called peripheral vacuoles (PVs). The role for clathrin assemblies in fluid phase uptake and their link to internal membranes via PIP-binding adaptors is unknown. Here we provide evidence for a robust link between clathrin assemblies and fluid-phase uptake in G. lamblia mediated by proteins carrying predicted PX, FYVE and NECAP1 PIP-binding modules. We show that chemical and genetic perturbation of PIP-residue binding and turnover elicits novel uptake and organelle-morphology phenotypes. A combination of co-immunoprecipitation and in silico analysis techniques expands the initial PIP-binding network with addition of new members. Our data indicate that, despite the partial conservation of lipid markers and protein cohorts known to play important roles in dynamic endocytic events in well-characterized model systems, the Giardia lineage presents a strikingly divergent clathrin-centered network. This includes several PIP-binding modules, often associated to domains of currently unknown function that shape and modulate fluid-phase uptake at PVs. In well-characterized model eukaryotes, clathrin-mediated endocytosis is a key process for uptake of extracellular material and is regulated by more than 50 known proteins. A large number of these carry phosphoinositide (PIP)-binding domains and play a central role in the regulation of endocytosis. Here, we report on the detailed functional characterization of PIP-binding proteins in the intestinal parasitic protist Giardia lamblia. We show evidence that proteins carrying specific PIP-binding domains are directly involved in fluid-phase uptake. Furthermore, using co-immunoprecipitation assays, we confirm these proteins’ association to G. lamblia’s clathrin assemblies. In addition, using state-of-the-art imaging strategies, we demonstrate a previously unappreciated level of complexity involving PIPs and their partner proteins in marking and shaping G. lamblia’s unique endocytic compartments. Our data contribute substantially to an updated working model for G. lamblia’s host-parasite interface, demonstrating how uptake in this parasite is directly regulated by a variety of PIP residues and PIP-binding modules, which have been re-routed from conserved pathways, likely as a result of host-parasite co-evolution.
Collapse
Affiliation(s)
- Lenka Cernikova
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Carmen Faso
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail: (CF); (AH)
| | - Adrian B. Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- * E-mail: (CF); (AH)
| |
Collapse
|
9
|
Hsu SPC, Chen YC, Chiang HC, Huang YC, Huang CC, Wang HE, Wang YS, Chi KH. Rapamycin and hydroxychloroquine combination alters macrophage polarization and sensitizes glioblastoma to immune checkpoint inhibitors. J Neurooncol 2020; 146:417-426. [PMID: 32020472 PMCID: PMC7000510 DOI: 10.1007/s11060-019-03360-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The failure of immune checkpoint inhibitor (ICPi) on glioblastoma (GBM) treatment underscores the need for improving therapeutic strategy. We aimed to change tumor associated macrophage (TAM) from M2 type (anti-inflammatory) to M1 (pro-inflammatory) type to increase the therapeutic response of ICPi. We proposed that combined rapamycin (R) and hydroxychloroquine (Q) preferentially induce M2 cells death, as fatty acid oxidation was their major source of energy. METHODS Macrophage polarization was characterized on mice and human macrophage cell lines by specific cytokines stimulation with or without RQ treatment under single culture or co-culture with GBM cell lines. Tumor sizes were evaluated on subcutaneous and intracranial GL261 mice models with or without RQ, anti-PD1 mAb treatment. Tumor volumes assessed by MRI scan and proportions of tumor infiltrating immune cells analyzed by flow cytometry were compared. RESULTS In vitro RQ treatment decreased the macrophages polarization of M2, increased the phagocytic ability, and increased the lipid droplets accumulation. RQ treatment decreased the expression levels of CD47 and SIRPα on tumor cells and macrophage cells in co-culture experiments. The combination of RQ and anti-PD1 treatment was synergistic in action. Enhanced the intra-tumoral M1/M2 ratio, the CD8/CD4 ratio in the intracranial GL261 tumor model after RQ treatment were evident. CONCLUSION We provide a rationale for manipulating the macrophage phenotype and increased the therapeutic effect of ICPi. To re-educate and re-empower the TAM/microglia opens an interesting avenue for GBM treatment.
Collapse
Affiliation(s)
- Sanford P C Hsu
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming University, Taipei, Taiwan
| | | | | | | | | | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Shang Wang
- JohnPro Biotech Inc., Taipei, Taiwan.,Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, #95, Wen-Chang Rd., Shi-Lin, Taipei, 11101, Taiwan (ROC)
| | - Kwan-Hwa Chi
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan. .,Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, #95, Wen-Chang Rd., Shi-Lin, Taipei, 11101, Taiwan (ROC).
| |
Collapse
|
10
|
Sheffield DA, Jepsen MR, Feeney SJ, Bertucci MC, Sriratana A, Naughtin MJ, Dyson JM, Coppel RL, Mitchell CA. The myotubularin MTMR4 regulates phagosomal phosphatidylinositol 3-phosphate turnover and phagocytosis. J Biol Chem 2019; 294:16684-16697. [PMID: 31543504 DOI: 10.1074/jbc.ra119.009133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/11/2019] [Indexed: 01/31/2023] Open
Abstract
Macrophage phagocytosis is required for effective clearance of invading bacteria and other microbes. Coordinated phosphoinositide signaling is critical both for phagocytic particle engulfment and subsequent phagosomal maturation to a degradative organelle. Phosphatidylinositol 3-phosphate (PtdIns(3)P) is a phosphoinositide that is rapidly synthesized and degraded on phagosomal membranes, where it recruits FYVE domain- and PX motif-containing proteins that promote phagosomal maturation. However, the molecular mechanisms that regulate PtdIns(3)P removal from the phagosome have remained unclear. We report here that a myotubularin PtdIns(3)P 3-phosphatase, myotubularin-related protein-4 (MTMR4), regulates macrophage phagocytosis. MTMR4 overexpression reduced and siRNA-mediated Mtmr4 silencing increased levels of cell-surface immunoglobulin receptors (i.e. Fcγ receptors (FcγRs)) on RAW 264.7 macrophages, associated with altered pseudopodal F-actin. Furthermore, MTMR4 negatively regulated the phagocytosis of IgG-opsonized particles, indicating that MTMR4 inhibits FcγR-mediated phagocytosis, and was dynamically recruited to phagosomes of macrophages during phagocytosis. MTMR4 overexpression decreased and Mtmr4-specific siRNA expression increased the duration of PtdIns(3)P on phagosomal membranes. Macrophages treated with Mtmr4-specific siRNA were more resistant to Mycobacterium marinum-induced phagosome arrest, associated with increased maturation of mycobacterial phagosomes, indicating that extended PtdIns(3)P signaling on phagosomes in the Mtmr4-knockdown cells permitted trafficking of phagosomes to acidic late endosomal and lysosomal compartments. In conclusion, our findings indicate that MTMR4 regulates PtdIns(3)P degradation in macrophages and thereby controls phagocytosis and phagosomal maturation.
Collapse
Affiliation(s)
- David A Sheffield
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Department of Microbiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Malene R Jepsen
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Sandra J Feeney
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Micka C Bertucci
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Absorn Sriratana
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Monica J Naughtin
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Jennifer M Dyson
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Ross L Coppel
- Department of Microbiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Christina A Mitchell
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
11
|
Hao J, Hu H, Liu J, Wang X, Liu X, Wang J, Niu M, Zhao Y, Xiao X. Integrated Metabolomics and Network Pharmacology Study on Immunoregulation Mechanisms of Panax ginseng through Macrophages. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:3630260. [PMID: 31341490 PMCID: PMC6614982 DOI: 10.1155/2019/3630260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/03/2019] [Indexed: 11/29/2022]
Abstract
Panax ginseng (PG) is a widely used functional food and herbal with immunoregulation activity. Currently, immunoregulation studies of PG mainly focused on the specific actions of individual constituents. However, the integral immunoregulation mechanisms of PG need further research. In this study, an integrated metabolomics and network pharmacology approach were used to investigate it. High-content screening was used to evaluate macrophage phagocytosis activity of PG. Untargeted metabolomics profiling of murine macrophage cells with UHPLC-Q-TOF-MS and a multivariate data method were performed to discover the potential biomarkers and metabolic pathways. Then, a macrophage phenotype related "ingredients-targets-metabolites" network of PG was constructed using network pharmacology for further research. As a result, PG can significantly enhance macrophage phagocytosis of GFP-E. coli. A total of twenty potential biomarkers and ten main pathways for which levels changed markedly upon treatment were identified, including glycerophospholipid metabolism, glutathione metabolism, choline metabolism, and taurine metabolism. Twenty compounds of PG associated with metabolomic changes were selected by the network pharmacology analysis, including ginsenoside Re, ginsenoside Rg1, frutinone A, and kaempferol. The network pharmacology results also showed that PG can polarize macrophages to both M1 and M2 phenotype but may be prone to M2 phenotype. In conclusion, our results indicated that PG may be prone to polarize macrophages to M2 phenotype by mainly regulating the glutathione and choline metabolism, which was related to twenty compounds of PG.
Collapse
Affiliation(s)
- Junjie Hao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Department of China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Huangwanyin Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Department of China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Jing Liu
- Department of China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
- Chengde Medical University, Chengde 067000, China
| | - Xuan Wang
- Department of China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100039, China
| | - Xiaoyi Liu
- Department of China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Jiabo Wang
- Department of China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Ming Niu
- Department of China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Yanling Zhao
- Department of China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Xiaohe Xiao
- Department of China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| |
Collapse
|
12
|
Melcarne C, Lemaitre B, Kurant E. Phagocytosis in Drosophila: From molecules and cellular machinery to physiology. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:1-12. [PMID: 30953686 DOI: 10.1016/j.ibmb.2019.04.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 05/20/2023]
Abstract
Phagocytosis is an evolutionarily conserved mechanism that plays a key role in both host defence and tissue homeostasis in multicellular organisms. A range of surface receptors expressed on different cell types allow discriminating between self and non-self (or altered) material, thus enabling phagocytosis of pathogens and apoptotic cells. The phagocytosis process can be divided into four main steps: 1) binding of the phagocyte to the target particle, 2) particle internalization and phagosome formation, through remodelling of the plasma membrane, 3) phagosome maturation, and 4) particle destruction in the phagolysosome. In this review, we describe our present knowledge on phagocytosis in the fruit fly Drosophila melanogaster, assessing each of the key steps involved in engulfment of both apoptotic cells and bacteria. We also assess the physiological role of phagocytosis in host defence, development and tissue homeostasis.
Collapse
Affiliation(s)
- C Melcarne
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - B Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - E Kurant
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 34988, Israel.
| |
Collapse
|
13
|
Tao W, Wang J, Parak WJ, Farokhzad OC, Shi J. Nanobuffering of pH-Responsive Polymers: A Known but Sometimes Overlooked Phenomenon and Its Biological Applications. ACS NANO 2019; 13:4876-4882. [PMID: 30985108 PMCID: PMC6748625 DOI: 10.1021/acsnano.9b01696] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
With recent advances in polymer chemistry, materials science, and nanotechnology, pH-responsive polymers have a significant impact in a number of diverse fields. Fundamental studies of these polymers are thus highly desirable as they may lead to new insights into the rational design of pH-responsive polymers with specific effects. In this Perspective, we focus on the nanobuffering of pH-responsive polymers (NBPRP). Although researchers have known of such buffering effects for more than a century, for example, in the context of the Henderson-Hasselbalch equation, modern synthesis and analysis routes now enable us to analyze these effects on the nanometer scale. In this way, the NBPRP phenomenon was explicitly defined and described by Gauthier and colleagues in the February issue of ACS Nano. Here, we highlight several potential areas in which the NBPRP could enable innovative classes of biological applications. We expect deeper mechanistic understanding of nanobuffering effects induced by pH-responsive polymers to have a significant impact on the future development and applications of these polymers.
Collapse
Affiliation(s)
- Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Junqing Wang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Wolfgang J. Parak
- Center for Hybrid Nanostructures (CHyN), Univeristät Hamburg, 22607 Hamburg, Germany
| | - Omid C. Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
14
|
Nisini R, Poerio N, Mariotti S, De Santis F, Fraziano M. The Multirole of Liposomes in Therapy and Prevention of Infectious Diseases. Front Immunol 2018; 9:155. [PMID: 29459867 PMCID: PMC5807682 DOI: 10.3389/fimmu.2018.00155] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/17/2018] [Indexed: 12/17/2022] Open
Abstract
Liposomes are closed bilayer structures spontaneously formed by hydrated phospholipids that are widely used as efficient delivery systems for drugs or antigens, due to their capability to encapsulate bioactive hydrophilic, amphipathic, and lipophilic molecules into inner water phase or within lipid leaflets. The efficacy of liposomes as drug or antigen carriers has been improved in the last years to ameliorate pharmacokinetics and capacity to release their cargo in selected target organs or cells. Moreover, different formulations and variations in liposome composition have been often proposed to include immunostimulatory molecules, ligands for specific receptors, or stimuli responsive compounds. Intriguingly, independent research has unveiled the capacity of several phospholipids to play critical roles as intracellular messengers in modulating both innate and adaptive immune responses through various mechanisms, including (i) activation of different antimicrobial enzymatic pathways, (ii) driving the fusion–fission events between endosomes with direct consequences to phagosome maturation and/or to antigen presentation pathway, and (iii) modulation of the inflammatory response. These features can be exploited by including selected bioactive phospholipids in the bilayer scaffold of liposomes. This would represent an important step forward since drug or antigen carrying liposomes could be engineered to simultaneously activate different signal transduction pathways and target specific cells or tissues to induce antigen-specific T and/or B cell response. This lipid-based host-directed strategy can provide a focused antimicrobial innate and adaptive immune response against specific pathogens and offer a novel prophylactic or therapeutic option against chronic, recurrent, or drug-resistant infections.
Collapse
Affiliation(s)
- Roberto Nisini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Noemi Poerio
- Dipartimento di Biologia, Università degli Studi di Roma "Tor Vergata", Rome, Italy
| | - Sabrina Mariotti
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Federica De Santis
- Dipartimento di Biologia, Università degli Studi di Roma "Tor Vergata", Rome, Italy
| | - Maurizio Fraziano
- Dipartimento di Biologia, Università degli Studi di Roma "Tor Vergata", Rome, Italy
| |
Collapse
|
15
|
Segawa T, Hazeki K, Nigorikawa K, Nukuda A, Tanizawa T, Miyamoto K, Morioka S, Hazeki O. Inhibitory receptor FcγRIIb mediates the effects of IgG on a phagosome acidification and a sequential dephosphorylation system comprising SHIPs and Inpp4a. Innate Immun 2017; 23:401-409. [DOI: 10.1177/1753425917701553] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The relative abundance of phosphoinositide (PI) species on the phagosome membrane fluctuates over the course of phagocytosis. PtdIns(3,4,5)P3 and PtdIns(3,4)P2 rapidly increase in the forming of the phagocytic cup, following which they disappear after sealing of the cup. In the present study, we monitored the clearance of these PI species using the enhanced green fluorescent protein-fused pleckstrin homology domain of Akt, a fluorescence probe that binds both PtdIns(3,4,5)P3 and PtdIns(3,4)P2 in Raw 264.7 macrophages. The clearance of PIs was much faster when the phagocytosed particles were coated with IgG. The effect of IgG was not observed in the macrophages deficient in FcγRIIb, an inhibitory IgG receptor. To identify the lipid phosphatases responsible for the FcγRIIb-accelerated PI clearance, we prepared a panel of lipid phosphatase-deficient cells. The lack of a PI 5-phosphatase Src homology 2 domain-containing inositol-5-phosphatase (SHIP)1 or SHIP2 impaired the FcγRIIb-accelerated clearance of PIs. The lack of a PI 4-phosphatase Inpp4a also impaired the accelerated PIs clearance. In the FcγRIIb- and Inpp4a-deficient cells, acidification of the formed phagosome was slowed. These results suggested that FcγRIIb drives the sequential dephosphorylation system comprising SHIPs and Inpp4a, and accelerates phagosome acidification.
Collapse
Affiliation(s)
- Tomohiro Segawa
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kaoru Hazeki
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kiyomi Nigorikawa
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsuko Nukuda
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoki Tanizawa
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenshiro Miyamoto
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shin Morioka
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Osamu Hazeki
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
16
|
Wang C, Zhao T, Li Y, Huang G, White MA, Gao J. Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes. Adv Drug Deliv Rev 2017; 113:87-96. [PMID: 27612550 PMCID: PMC5339051 DOI: 10.1016/j.addr.2016.08.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 01/08/2023]
Abstract
Endosomes and lysosomes play a critical role in various aspects of cell physiology such as nutrient sensing, receptor recycling, protein/lipid catabolism, and cell death. In drug delivery, endosomal release of therapeutic payloads from nanocarriers is also important in achieving efficient delivery of drugs to reach their intracellular targets. Recently, we invented a library of ultra pH-sensitive (UPS) nanoprobes with exquisite fluorescence response to subtle pH changes. The UPS nanoprobes also displayed strong pH-specific buffer effect over small molecular bases with broad pH responses (e.g., chloroquine and NH4Cl). Tunable pH transitions from 7.4 to 4.0 of UPS nanoprobes cover the entire physiological pH of endocytic organelles (e.g., early and late endosomes) and lysosomes. These unique physico-chemical properties of UPS nanoprobes allowed a 'detection and perturbation' strategy for the investigation of luminal pH in cell signaling and metabolism, which introduces a nanotechnology-enabled paradigm for the biological studies of endosomes and lysosomes.
Collapse
Affiliation(s)
- Chensu Wang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Tian Zhao
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Yang Li
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Gang Huang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Michael A White
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Jinming Gao
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| |
Collapse
|
17
|
Kallepitis C, Bergholt MS, Mazo MM, Leonardo V, Skaalure SC, Maynard SA, Stevens MM. Quantitative volumetric Raman imaging of three dimensional cell cultures. Nat Commun 2017; 8:14843. [PMID: 28327660 PMCID: PMC5364421 DOI: 10.1038/ncomms14843] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/03/2017] [Indexed: 02/07/2023] Open
Abstract
The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell-material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.
Collapse
Affiliation(s)
- Charalambos Kallepitis
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Mads S. Bergholt
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Manuel M. Mazo
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Vincent Leonardo
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Stacey C. Skaalure
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Stephanie A. Maynard
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
18
|
Sauvanet C, Wayt J, Pelaseyed T, Bretscher A. Structure, Regulation, and Functional Diversity of Microvilli on the Apical Domain of Epithelial Cells. Annu Rev Cell Dev Biol 2015; 31:593-621. [DOI: 10.1146/annurev-cellbio-100814-125234] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cécile Sauvanet
- Department of Molecular Biology and Genetics and Weill Institute for Molecular and Cell Biology, Cornell University, Ithaca, New York 14853;
| | - Jessica Wayt
- Department of Molecular Biology and Genetics and Weill Institute for Molecular and Cell Biology, Cornell University, Ithaca, New York 14853;
| | - Thaher Pelaseyed
- Department of Molecular Biology and Genetics and Weill Institute for Molecular and Cell Biology, Cornell University, Ithaca, New York 14853;
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics and Weill Institute for Molecular and Cell Biology, Cornell University, Ithaca, New York 14853;
| |
Collapse
|
19
|
Wang C, Wang Y, Li Y, Bodemann B, Zhao T, Ma X, Huang G, Hu Z, DeBerardinis RJ, White MA, Gao J. A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles. Nat Commun 2015; 6:8524. [PMID: 26437053 PMCID: PMC4600749 DOI: 10.1038/ncomms9524] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 09/01/2015] [Indexed: 02/07/2023] Open
Abstract
Endosomes, lysosomes and related catabolic organelles are a dynamic continuum of vacuolar structures that impact a number of cell physiological processes such as protein/lipid metabolism, nutrient sensing and cell survival. Here we develop a library of ultra-pH-sensitive fluorescent nanoparticles with chemical properties that allow fine-scale, multiplexed, spatio-temporal perturbation and quantification of catabolic organelle maturation at single organelle resolution to support quantitative investigation of these processes in living cells. Deployment in cells allows quantification of the proton accumulation rate in endosomes; illumination of previously unrecognized regulatory mechanisms coupling pH transitions to endosomal coat protein exchange; discovery of distinct pH thresholds required for mTORC1 activation by free amino acids versus proteins; broad-scale characterization of the consequence of endosomal pH transitions on cellular metabolomic profiles; and functionalization of a context-specific metabolic vulnerability in lung cancer cells. Together, these biological applications indicate the robustness and adaptability of this nanotechnology-enabled 'detection and perturbation' strategy.
Collapse
Affiliation(s)
- Chensu Wang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Yiguang Wang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Yang Li
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Brian Bodemann
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Tian Zhao
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Xinpeng Ma
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Gang Huang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Zeping Hu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Ralph J. DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Michael A. White
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Jinming Gao
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| |
Collapse
|
20
|
Abstract
Neutrophils play critical roles in innate immunity and host defense. However, excessive neutrophil accumulation or hyper-responsiveness of neutrophils can be detrimental to the host system. Thus, the response of neutrophils to inflammatory stimuli needs to be tightly controlled. Many cellular processes in neutrophils are mediated by localized formation of an inositol phospholipid, phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), at the plasma membrane. The PtdIns(3,4,5)P3 signaling pathway is negatively regulated by lipid phosphatases and inositol phosphates, which consequently play a critical role in controlling neutrophil function and would be expected to act as ideal therapeutic targets for enhancing or suppressing innate immune responses. Here, we comprehensively review current understanding about the action of lipid phosphatases and inositol phosphates in the control of neutrophil function in infection and inflammation.
Collapse
Affiliation(s)
- Hongbo R Luo
- Department of Pathology, Harvard Medical School, Boston, MA, USA Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Subhanjan Mondal
- Department of Pathology, Harvard Medical School, Boston, MA, USA Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA, USA Promega Corporation, Madison, WI, USA
| |
Collapse
|
21
|
Abstract
Our long-term efforts to elucidate receptor-mediated signalling in immune cells, particularly transmembrane signalling initiated by FcɛRI, the receptor for IgE in mast cells, led us unavoidably to contemplate the role of the heterogeneous plasma membrane. Our early investigations with fluorescence microscopy revealed co-redistribution of certain lipids and signalling components with antigen-cross-linked IgE-FcɛRI and pointed to participation of ordered membrane domains in the signalling process. With a focus on this function, we have worked along with others to develop diverse and increasingly sophisticated tools to analyse the complexity of membrane structure that facilitates regulation and targeting of signalling events. The present chapter describes how initial membrane interactions of clustered IgE-FcɛRI lead to downstream cellular responses and how biochemical information integrated with nanoscale resolution spectroscopy and imaging is providing mechanistic insights at the level of molecular complexes.
Collapse
Affiliation(s)
- David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, U.S.A
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
22
|
Gilberti RM, Knecht DA. Macrophages phagocytose nonopsonized silica particles using a unique microtubule-dependent pathway. Mol Biol Cell 2014; 26:518-29. [PMID: 25428990 PMCID: PMC4310742 DOI: 10.1091/mbc.e14-08-1301] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cells can take up particles by both opsonized and nonopsonized pathways. Silica and latex, but not zymosan, can be taken up by the nonopsonized pathway. Uptake of silica, but not latex, is toxic to macrophages. Nonopsonized phagocytosis is characterized and found to have key differences from the complement- and antibody-opsonized pathways. Silica inhalation leads to the development of the chronic lung disease silicosis. Macrophages are killed by uptake of nonopsonized silica particles, and this is believed to play a critical role in the etiology of silicosis. However, the mechanism of nonopsonized-particle uptake is not well understood. We compared the molecular events associated with nonopsonized- and opsonized-particle phagocytosis. Both Rac and RhoA GTPases are activated upon nonopsonized-particle exposure, whereas opsonized particles activate either Rac or RhoA. All types of particles quickly generate a PI(3,4,5)P3 and F-actin response at the particle attachment site. After formation of a phagosome, the events related to endolysosome-to-phagosome fusion do not significantly differ between the pathways. Inhibitors of tyrosine kinases, actin polymerization, and the phosphatidylinositol cascade prevent opsonized- and nonopsonized-particle uptake similarly. Inhibition of silica particle uptake prevents silica-induced cell death. Microtubule depolymerization abolished uptake of complement-opsonized and nonopsonized particles but not Ab-opsonized particles. Of interest, regrowth of microtubules allowed uptake of new nonopsonized particles but not ones bound to cells in the absence of microtubules. Although complement-mediated uptake requires macrophages to be PMA-primed, untreated cells phagocytose nonopsonized silica and latex. Thus it appears that nonopsonized-particle uptake is accomplished by a pathway with unique characteristics.
Collapse
Affiliation(s)
- Renée M Gilberti
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - David A Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
23
|
Abstract
The specific interaction of phosphoinositides with proteins is critical for a plethora of cellular processes, including cytoskeleton remodelling, mitogenic signalling, ion channel regulation and membrane traffic. The spatiotemporal restriction of different phosphoinositide species helps to define compartments within the cell, and this is particularly important for membrane trafficking within both the secretory and endocytic pathways. Phosphoinositide homoeostasis is tightly regulated by a large number of inositol kinases and phosphatases, which respectively phosphorylate and dephosphorylate distinct phosphoinositide species. Many of these enzymes have been implicated in regulating membrane trafficking and, accordingly, their dysregulation has been linked to a number of human diseases. In the present review, we focus on the inositol phosphatases, concentrating on their roles in membrane trafficking and the human diseases with which they have been associated.
Collapse
|
24
|
Dimitrakopoulou K, Dimitrakopoulos GN, Wilk E, Tsimpouris C, Sgarbas KN, Schughart K, Bezerianos A. Influenza A immunomics and public health omics: the dynamic pathway interplay in host response to H1N1 infection. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:167-83. [PMID: 24512282 DOI: 10.1089/omi.2013.0062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Towards unraveling the influenza A (H1N1) immunome, this work aims at constructing the murine host response pathway interactome. To accomplish that, an ensemble of dynamic and time-varying Gene Regulatory Network Inference methodologies was recruited to set a confident interactome based on mouse time series transcriptome data (day 1-day 60). The proposed H1N1 interactome demonstrated significant transformations among activated and suppressed pathways in time. Enhanced interplay was observed at day 1, while the maximal network complexity was reached at day 8 (correlated with viral clearance and iBALT tissue formation) and one interaction was present at day 40. Next, we searched for common interactivity features between the murine-adapted PR8 strain and other influenza A subtypes/strains. For this, two other interactomes, describing the murine host response against H5N1 and H1N1pdm, were constructed, which in turn validated many of the observed interactions (in the period day 1-day 7). The H1N1 interactome revealed the role of cell cycle both in innate and adaptive immunity (day 1-day 14). Also, pathogen sensory pathways (e.g., RIG-I) displayed long-lasting association with cytokine/chemokine signaling (until day 8). Interestingly, the above observations were also supported by the H5N1 and H1N1pdm models. It also elucidated the enhanced coupling of the activated innate pathways with the suppressed PPAR signaling to keep low inflammation until viral clearance (until day 14). Further, it showed that interactions reflecting phagocytosis processes continued long after the viral clearance and the establishment of adaptive immunity (day 8-day 40). Additionally, interactions involving B cell receptor pathway were evident since day 1. These results collectively inform the emerging field of public health omics and future clinical studies aimed at deciphering dynamic host responses to infectious agents.
Collapse
|
25
|
Kapus A, Janmey P. Plasma membrane--cortical cytoskeleton interactions: a cell biology approach with biophysical considerations. Compr Physiol 2013; 3:1231-81. [PMID: 23897686 DOI: 10.1002/cphy.c120015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
From a biophysical standpoint, the interface between the cell membrane and the cytoskeleton is an intriguing site where a "two-dimensional fluid" interacts with an exceedingly complex three-dimensional protein meshwork. The membrane is a key regulator of the cytoskeleton, which not only provides docking sites for cytoskeletal elements through transmembrane proteins, lipid binding-based, and electrostatic interactions, but also serves as the source of the signaling events and molecules that control cytoskeletal organization and remolding. Conversely, the cytoskeleton is a key determinant of the biophysical and biochemical properties of the membrane, including its shape, tension, movement, composition, as well as the mobility, partitioning, and recycling of its constituents. From a cell biological standpoint, the membrane-cytoskeleton interplay underlies--as a central executor and/or regulator--a multitude of complex processes including chemical and mechanical signal transduction, motility/migration, endo-/exo-/phagocytosis, and other forms of membrane traffic, cell-cell, and cell-matrix adhesion. The aim of this article is to provide an overview of the tight structural and functional coupling between the membrane and the cytoskeleton. As biophysical approaches, both theoretical and experimental, proved to be instrumental for our understanding of the membrane/cytoskeleton interplay, this review will "oscillate" between the cell biological phenomena and the corresponding biophysical principles and considerations. After describing the types of connections between the membrane and the cytoskeleton, we will focus on a few key physical parameters and processes (force generation, curvature, tension, and surface charge) and will discuss how these contribute to a variety of fundamental cell biological functions.
Collapse
Affiliation(s)
- András Kapus
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
26
|
Samie M, Wang X, Zhang X, Goschka A, Li X, Cheng X, Gregg E, Azar M, Zhuo Y, Garrity AG, Gao Q, Slaugenhaupt S, Pickel J, Zolov SN, Weisman LS, Lenk GM, Titus S, Bryant-Genevier M, Southall N, Juan M, Ferrer M, Xu H. A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev Cell 2013; 26:511-24. [PMID: 23993788 DOI: 10.1016/j.devcel.2013.08.003] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/22/2013] [Accepted: 08/05/2013] [Indexed: 11/19/2022]
Abstract
Phagocytosis of large extracellular particles such as apoptotic bodies requires delivery of the intracellular endosomal and lysosomal membranes to form plasmalemmal pseudopods. Here, we identified mucolipin TRP channel 1 (TRPML1) as the key lysosomal Ca2+ channel regulating focal exocytosis and phagosome biogenesis. Both particle ingestion and lysosomal exocytosis are inhibited by synthetic TRPML1 blockers and are defective in macrophages isolated from TRPML1 knockout mice. Furthermore, TRPML1 overexpression and TRPML1 agonists facilitate both lysosomal exocytosis and particle uptake. Using time-lapse confocal imaging and direct patch clamping of phagosomal membranes, we found that particle binding induces lysosomal PI(3,5)P2 elevation to trigger TRPML1-mediated lysosomal Ca2+ release specifically at the site of uptake, rapidly delivering TRPML1-resident lysosomal membranes to nascent phagosomes via lysosomal exocytosis. Thus phagocytic ingestion of large particles activates a phosphoinositide- and Ca2+-dependent exocytosis pathway to provide membranes necessary for pseudopod extension, leading to clearance of senescent and apoptotic cells in vivo.
Collapse
Affiliation(s)
- Mohammad Samie
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
28
|
Schlam D, Bohdanowicz M, Chatgilialoglu A, Chatilialoglu A, Steinberg BE, Ueyama T, Du G, Grinstein S, Fairn GD. Diacylglycerol kinases terminate diacylglycerol signaling during the respiratory burst leading to heterogeneous phagosomal NADPH oxidase activation. J Biol Chem 2013; 288:23090-104. [PMID: 23814057 DOI: 10.1074/jbc.m113.457606] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is commonly assumed that all phagosomes have identical molecular composition. This assumption has remained largely unchallenged due to a paucity of methods to distinguish individual phagosomes. We devised an assay that extends the utility of nitro blue tetrazolium for detection and quantification of NAPDH oxidase (NOX) activity in individual phagosomes. Implementation of this assay revealed that in murine macrophages there is heterogeneity in the ability of individual phagosomes to generate superoxide, both between and within cells. To elucidate the molecular basis of the variability in NOX activation, we employed genetically encoded fluorescent biosensors to evaluate the uniformity in the distribution of phospholipid mediators of the oxidative response. Despite variability in superoxide generation, the distribution of phosphatidylinositol 3,4,5-trisphosphate, phosphatidylinositol 3-phosphate, and phosphatidic acid was nearly identical in all phagosomes. In contrast, diacylglycerol (DAG) was not generated uniformly across the phagosomal population, varying in a manner that directly mirrored superoxide production. Modulation of DAG levels suggested that NOX activation is precluded when phagosomes fail to reach a critical DAG concentration. In particular, forced expression of diacylglycerol kinase β abrogated DAG accumulation at the phagosome, leading to impaired respiratory burst. Conversely, pharmacological inhibition of DAG kinases or expression of an inactive diacylglycerol kinase β mutant increased the proportion of DAG-positive phagosomes, concomitantly potentiating phagosomal NOX activity. Our data suggest that diacylglycerol kinases limit the extent of NADPH oxidase activation, curtailing the production of potentially harmful reactive oxygen species. The resulting heterogeneity in phagosome responsiveness could enable the survival of a fraction of invading microorganisms.
Collapse
Affiliation(s)
- Daniel Schlam
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Maruyama S, Kim E. A modern descendant of early green algal phagotrophs. Curr Biol 2013; 23:1081-4. [PMID: 23707430 DOI: 10.1016/j.cub.2013.04.063] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/29/2013] [Accepted: 04/24/2013] [Indexed: 11/18/2022]
Abstract
Green algae, land plants, and other photosynthetic eukaryotes possess plastids, such as chloroplasts, which have evolved from cyanobacterial ancestors via endosymbiosis. An early evolutionary merger between heterotrophic eukaryotes and cyanobacteria called primary endosymbiosis gave rise to the first photosynthetic eukaryotes. A series of plastid acquisitions involving engulfment of eukaryotic phototrophs, known as secondary or tertiary endosymbiosis, followed. Through these repeated symbiotic events, photosynthesis spread across a number of eukaryotic lineages. While the origin of eukaryotic photosynthesis was undoubtedly a fundamentally important evolutionary event in Earth's history, without which much of the modern marine phytoplankton would not exist, the cellular processes that shaped this initial plastid genesis remain largely unknown. Here, we report ultrastructural evidence for bacterial phagocytosis in a primary plastid-bearing alga. This mixotrophic green alga utilizes a mouth-like opening, a tubular channel, and a large permanent vacuole to engulf, transport, and digest bacterial cells. This mode of phagocytosis, likely inherited from its plastid-lacking ancestor, differs from those displayed by many other eukaryotes, including animals, amoebas, and ciliates. These results provide insight into the key phagocytosis step during the origin of the first photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Shinichiro Maruyama
- Department of Biochemistry & Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | | |
Collapse
|
30
|
Sommer LAM, Meier MA, Dames SA. A fast and simple method for probing the interaction of peptides and proteins with lipids and membrane-mimetics using GB1 fusion proteins and NMR spectroscopy. Protein Sci 2013; 21:1566-70. [PMID: 22825779 DOI: 10.1002/pro.2127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The expression of peptides and proteins as fusions to the B1 domain of streptococcal protein G (GB1) is very popular since GB1 often improves the solubility of the target protein and because the first purification step using IgG affinity chromatography is simple and efficient. However, the following protease digest is not always complete or can result in a digest of the target protein. In addition, a further purification step such as RP-HPLC has to be used to get rid of the GB1 tag and undigested fusion protein. Because the protease digest and the following purification step are not only time-consuming but generally also expensive, we tested if GB1 fusion proteins can directly be used for NMR interaction studies using lipids or membrane-mimetics. Based on NMR binding studies using only the GB1 part, this fusion tag does not significantly interact with different membrane-mimetics such as micelles, bicelles, or liposomes. Thus spectral changes observed using GB1-fusion proteins indicate lipid- and membrane interactions of the target protein. The method was initially established to probe membrane interactions of a large number of mutants of the FATC domain of the ser/thr kinase TOR. To demonstrate the usefulness of the approach, we show NMR binding data for the wild type protein and a leucine to alanine mutant.
Collapse
Affiliation(s)
- Lisa A M Sommer
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Munich, Germany
| | | | | |
Collapse
|
31
|
Fernandes MC, Flannery AR, Andrews N, Mortara RA. Extracellular amastigotes of Trypanosoma cruzi are potent inducers of phagocytosis in mammalian cells. Cell Microbiol 2013; 15:977-91. [PMID: 23241026 PMCID: PMC3638054 DOI: 10.1111/cmi.12090] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/26/2012] [Accepted: 12/11/2012] [Indexed: 12/15/2022]
Abstract
The protozoan parasite Trypanosoma cruzi, the aetiological agent of Chagas' disease, has two infective life cycle stages, trypomastigotes and amastigotes. While trypomastigotes actively enter mammalian cells, highly infective extracellular amastigotes (type I T. cruzi) rely on actin-mediated uptake, which is generally inefficient in non-professional phagocytes. We found that extracellular amastigotes (EAs) of T. cruzi G strain (type I), but not Y strain (type II), were taken up 100-fold more efficiently than inert particles. Mammalian cell lines showed levels of parasite uptake comparable to macrophages, and extensive actin recruitment and polymerization was observed at the site of entry. EA uptake was not dependent on parasite-secreted molecules and required the same molecular machinery utilized by professional phagocytes during large particle phagocytosis. Transcriptional silencing of synaptotagmin VII and CD63 significantly inhibited EA internalization, demonstrating that delivery of supplemental lysosomal membrane to form the phagosome is involved in parasite uptake. Importantly, time-lapse live imaging using fluorescent reporters revealed phagosome-associated modulation of phosphoinositide metabolism during EA uptake that closely resembles what occurs during phagocytosis by macrophages. Collectively, our results demonstrate that T. cruzi EAs are potent inducers of phagocytosis in non-professional phagocytes, a process that may facilitate parasite persistence in infected hosts.
Collapse
Affiliation(s)
- Maria Cecilia Fernandes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | | | | | | |
Collapse
|
32
|
|
33
|
Kagan JC, Iwasaki A. Phagosome as the organelle linking innate and adaptive immunity. Traffic 2012; 13:1053-61. [PMID: 22577865 DOI: 10.1111/j.1600-0854.2012.01377.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/04/2012] [Accepted: 05/11/2012] [Indexed: 12/22/2022]
Abstract
The means by which phagocytosis and antimicrobial defense mechanisms are linked have expanded greatly in recent years. It is now clear that the process of phagocytosis does more than just degrade internalized microbes, but also helps coordinate the actions of the innate and adaptive immune system. This review will discuss the means by which Toll-like receptor signaling pathways are coordinated around the processes of phagocytosis, phagosome trafficking and autophagy and how these signaling pathways influence T-cell-mediated immunity. In this regard, we propose that at the subcellular level, phagosomes represent the smallest definable unit that links innate and adaptive immunity.
Collapse
Affiliation(s)
- Jonathan C Kagan
- Division of Gastroenterology, Harvard Medical School, Children's Hospital Boston, 300 Longwood Ave, Enders 649, Boston, MA 02115, USA.
| | | |
Collapse
|
34
|
Rodriguez Camargo DC, Link NM, Dames SA. The FKBP–Rapamycin Binding Domain of Human TOR Undergoes Strong Conformational Changes in the Presence of Membrane Mimetics with and without the Regulator Phosphatidic Acid. Biochemistry 2012; 51:4909-21. [DOI: 10.1021/bi3002133] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Nina M. Link
- Biozentrum, University of Basel, Basel, Switzerland
| | - Sonja A. Dames
- Biomolecular
NMR Spectroscopy,
Department of Chemistry, Technische Universität München, Munich, Germany
| |
Collapse
|
35
|
Ueno T, Falkenburger BH, Pohlmeyer C, Inoue T. Triggering actin comets versus membrane ruffles: distinctive effects of phosphoinositides on actin reorganization. Sci Signal 2011; 4:ra87. [PMID: 22169478 DOI: 10.1126/scisignal.2002033] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A limited set of phosphoinositide membrane lipids regulate diverse cellular functions including proliferation, differentiation, and migration. We developed two techniques based on rapamycin-induced protein dimerization to rapidly change the concentration of plasma membrane phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)]. First, using a membrane-recruitable form of PI(4)P 5-kinase, we increased PI(4,5)P(2) synthesis from phosphatidylinositol 4-phosphate [PI(4)P] and found that COS-7, HeLa, and human embryonic kidney 293 cells formed bundles of motile actin filaments known as actin comets. In contrast, a second technique that increased the concentration of PI(4,5)P(2) without consuming PI(4)P induced membrane ruffles. These distinct phenotypes were mediated by dynamin-mediated vesicular trafficking and mutually inhibitory crosstalk between the small guanosine triphosphatases Rac and RhoA. Our results indicate that the effect of PI(4,5)P(2) on actin reorganization depends on the abundance of other phosphoinositides, such as PI(4)P. Thus, combinatorial regulation of phosphoinositide concentrations may contribute to the diversity of phosphoinositide functions.
Collapse
Affiliation(s)
- Tasuku Ueno
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
36
|
Bonatto SJR, Oliveira HHP, Nunes EA, Pequito D, Iagher F, Coelho I, Naliwaiko K, Kryczyk M, Brito GAP, Repka J, Sabóia LV, Fukujima G, Calder PC, Fernandes LC. Fish oil supplementation improves neutrophil function during cancer chemotherapy. Lipids 2011; 47:383-9. [PMID: 22160495 DOI: 10.1007/s11745-011-3643-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 11/21/2011] [Indexed: 01/07/2023]
Abstract
Cancer chemotherapy is associated with neutropenia and impaired neutrophil function. This study aimed to investigate whether supplementation with low dose fish oil (FO), providing n-3 polyunsaturated fatty acids, in cancer patients receiving chemotherapy after surgical tumor (mainly gastrointestinal) removal is able to improve the function of blood neutrophils. Patients (n = 38) receiving chemotherapy (5-fluorouracil and leucovorin) were randomized into two groups; one group (control) did not receive a supplement, while the other group (FO) received 2 g FO/day for 8 weeks; the FO provided 0.3 g eicosapentaenoic acid plus 0.4 g docosahexaenoic acid per day. Patients in the control group lost an average of 2.5 kg of weight over the 8 weeks of the study. The number of blood polymorphonuclear cells (PMNC), mainly neutrophils, and their functions (phagocytosis and hydrogen peroxide production) decreased in the control group (average decreases of approximately 30, 45 and 17%, respectively). FO prevented these decreases and actually increased body weight (average of 1.7 kg weight gain; p < 0.002 vs. control group), PMNC number (average 29% increase), phagocytosis (average 14% increase) and superoxide production (average 28% increase). FO may be useful in preventing chemotherapy-induced decline in neutrophil number and function.
Collapse
Affiliation(s)
- Sandro J R Bonatto
- Department of Physiology, Biological Sciences Building, Federal University of Paraná, Curitiba, PR 81540-990, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lang C, Flieger A. Characterisation of Legionella pneumophila phospholipases and their impact on host cells. Eur J Cell Biol 2011; 90:903-12. [DOI: 10.1016/j.ejcb.2010.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/08/2010] [Accepted: 12/13/2010] [Indexed: 01/16/2023] Open
|
38
|
Egami Y, Fukuda M, Araki N. Rab35 regulates phagosome formation through recruitment of ACAP2 in macrophages during FcγR-mediated phagocytosis. J Cell Sci 2011; 124:3557-67. [PMID: 22045739 DOI: 10.1242/jcs.083881] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Phagosome formation and subsequent maturation are complex sequences of events that involve actin cytoskeleton remodeling and membrane trafficking. Here, we demonstrate that the Ras-related protein Rab35 is involved in the early stage of FcγR-mediated phagocytosis in macrophages. Live-cell image analysis revealed that Rab35 was markedly concentrated at the membrane where IgG-opsonized erythrocytes (IgG-Es) are bound. Rab35 silencing by RNA interference (RNAi) or the expression of GDP- or GTP-locked Rab35 mutant drastically reduced the rate of phagocytosis of IgG-Es. Actin-mediated pseudopod extension to form phagocytic cups was disturbed by the Rab35 silencing or the expression of GDP-Rab35, although initial actin assembly at the IgG-E binding sites was not inhibited. Furthermore, GTP-Rab35-dependent recruitment of ACAP2, an ARF6 GTPase-activating protein, was shown in the phagocytic cup formation. Concomitantly, overexpression of ACAP2 along with GTP-locked Rab35 showed a synergistic inhibitory effect on phagocytosis. It is likely that Rab35 regulates actin-dependent phagosome formation by recruiting ACAP2, which might control actin remodeling and membrane traffic through ARF6.
Collapse
Affiliation(s)
- Youhei Egami
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | | | | |
Collapse
|
39
|
Magenau A, Benzing C, Proschogo N, Don AS, Hejazi L, Karunakaran D, Jessup W, Gaus K. Phagocytosis of IgG-coated polystyrene beads by macrophages induces and requires high membrane order. Traffic 2011; 12:1730-43. [PMID: 21883764 DOI: 10.1111/j.1600-0854.2011.01272.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biochemical composition and biophysical properties of cell membranes are hypothesized to affect cellular processes such as phagocytosis. Here, we examined the plasma membranes of murine macrophage cell lines during the early stages of uptake of immunoglobulin G (IgG)-coated polystyrene particles. We found that the plasma membrane undergoes rapid actin-independent condensation to form highly ordered phagosomal membranes, the biophysical hallmark of lipid rafts. Surprisingly, these membranes are depleted of cholesterol and enriched in sphingomyelin and ceramide. Inhibition of sphingomyelinase activity impairs membrane condensation, F-actin accumulation at phagocytic cups and particle uptake. Switching phagosomal membranes to a cholesterol-rich environment had no effect on membrane condensation and the rate of phagocytosis. In contrast, preventing membrane condensation with the oxysterol 7-ketocholesterol, even in the presence of ceramide, blocked F-actin dissociation from nascent phagosomes and particle uptake. In conclusion, our results suggest that ordered membranes function to co-ordinate F-actin remodelling and that the biophysical properties of phagosomal membranes are essential for phagocytosis.
Collapse
Affiliation(s)
- Astrid Magenau
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bozzaro S, Eichinger L. The professional phagocyte Dictyostelium discoideum as a model host for bacterial pathogens. Curr Drug Targets 2011; 12:942-54. [PMID: 21366522 PMCID: PMC3267156 DOI: 10.2174/138945011795677782] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 10/26/2010] [Indexed: 01/24/2023]
Abstract
The use of simple hosts such as Dictyostelium discoideum in the study of host pathogen interactions offers a number of advantages and has steadily increased in recent years. Infection-specific genes can often only be studied in a very limited way in man and even in the mouse model their analysis is usually expensive, time consuming and technically challenging or sometimes even impossible. In contrast, their functional analysis in D. discoideum and other simple model organisms is often easier, faster and cheaper. Because host-pathogen interactions necessarily involve two organisms, it is desirable to be able to genetically manipulate both the pathogen and its host. Particularly suited are those hosts, like D. discoideum, whose genome sequence is known and annotated and for which excellent genetic and cell biological tools are available in order to dissect the complex crosstalk between host and pathogen. The review focusses on host-pathogen interactions of D. discoideum with Legionella pneumophila, mycobacteria, and Salmonella typhimurium which replicate intracellularly.
Collapse
Affiliation(s)
- Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, Ospedale S. Luigi, 10043 Orbassano, Italy.
| | | |
Collapse
|
41
|
Zhu N, Feng X, He C, Gao H, Yang L, Ma Q, Guo L, Qiao Y, Yang H, Ma T. Defective macrophage function in aquaporin-3 deficiency. FASEB J 2011; 25:4233-9. [PMID: 21865318 DOI: 10.1096/fj.11-182808] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Macrophages play an essential role in innate immunity. We found that mouse resident peritoneal macrophages (mRPMs) express the aquaglyceroporin aquaporin-3 (AQP3) in a plasma membrane pattern. AQP3-deficient (AQP3(-/-)) mice showed significantly greater mortality than wild-type (AQP3(+/+)) mice in a model of bacterial peritonitis. To establish the cellular mechanism of the peritonitis phenotype, measurements were made of mRPM phagocytosis, migration, and water/glycerol permeability. We found significantly impaired engulfment of Escherichia coli and chicken erythrocytes in AQP3(-/-) vs. AQP3(+/+) mRPMs, as well as impaired migration of AQP3(-/-) mRPMs in response to a chemotactic stimulus. In AQP3(+/+) mRPMs, AQP3 was polarized to pseudopodia at the leading edge during migration and around the phagocytic cup during engulfment. Water and glycerol permeabilities in mRPMs from AQP3(-/-) mice were reduced compared to mRPMs from AQP3(+/+) mice. Cellular glycerol and ATP content were remarkably lower in AQP3(-/-) vs. AQP3(+/+) mRPMs, and glycerol supplementation partially rescued the reduced ATP content and impaired function of AQP3(-/-) mRPMs. These data implicate AQP3 as a novel determinant in macrophage immune function by a cellular mechanism involving facilitated water and glycerol transport, and consequent phagocytic and migration activity. This is the first study demonstrating involvement of an aquaporin in innate immunity. Our results suggest AQP3 as a novel therapeutic target in modulating the immune response in various infectious and inflammatory conditions.
Collapse
Affiliation(s)
- Na Zhu
- Central Research Laboratory, Bethune Second Hospital of Jilin University, Changchun, 130041, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Dames SA, Junemann A, Sass HJ, Schönichen A, Stopschinski BE, Grzesiek S, Faix J, Geyer M. Structure, dynamics, lipid binding, and physiological relevance of the putative GTPase-binding domain of Dictyostelium formin C. J Biol Chem 2011; 286:36907-20. [PMID: 21846933 DOI: 10.1074/jbc.m111.225052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dictyostelium Formin C (ForC) is involved in the regulation of local actin cytoskeleton reorganization (e.g. during cellular adhesion or migration). ForC contains formin homology 2 and 3 (FH2 and -3) domains and an N-terminal putative GTPase-binding domain (GBD) but lacks a canonical FH1 region. To better understand the role of the GBD, its structure, dynamics, lipid-binding properties, and cellular functions were analyzed by NMR and CD spectroscopy and by in vivo fluorescence microscopy. Moreover, the program CS-Rosetta was tested for the structure prediction based on chemical shift data only. The ForC GBD adopts an ubiquitin-like α/β-roll fold with an unusually long loop between β-strands 1 and 2. Based on the lipid-binding data, the presence of DPC micelles induces the formation of α-helical secondary structure and a rearrangement of the tertiary structure. Lipid-binding studies with a mutant protein and a peptide suggest that the β1-β2 loop is not relevant for these conformational changes. Whereas small amounts of negatively charged phosphoinositides (1,2-dioctanoyl-sn-glycero-3-(phosphoinositol 4,5-bisphosphate) and 1,2-dihexanoyl-sn-glycero-3-(phosphoinositol 3,4,5-trisphosphate)) lower the micelle concentration necessary to induce the observed spectral changes, other negatively charged phospholipids (1,2-dihexanoyl-sn-glycero-3-(phospho-L-serine) and 1,2-dihexanoyl-sn-glycero-3-phospho-(1'-rac-glycerol)) had no such effect. Interestingly, bicelles and micelles composed of diacylphosphocholines had no effect on the GBD structure. Our data suggest a model in which part of the large positively charged surface area of the GBD mediates localization to specific membrane patches, thereby regulating interactions with signaling proteins. Our cellular localization studies show that both the GBD and the FH3 domain are required for ForC targeting to cell-cell contacts and early phagocytic cups and macropinosomes.
Collapse
Affiliation(s)
- Sonja A Dames
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Golebiewska U, Kay JG, Masters T, Grinstein S, Im W, Pastor RW, Scarlata S, McLaughlin S. Evidence for a fence that impedes the diffusion of phosphatidylinositol 4,5-bisphosphate out of the forming phagosomes of macrophages. Mol Biol Cell 2011; 22:3498-507. [PMID: 21795401 PMCID: PMC3172273 DOI: 10.1091/mbc.e11-02-0114] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Fluorescence correlation spectroscopy and fluorescence recovery after photobleaching measurements on macrophages injected with fluorescent phosphatidylinositol 4,5-bisphosphate (PIP2) suggest that a barrier impedes the diffusion of plasma membrane PIP2 into and out of forming phagosomes. To account for the many functions of phosphatidylinositol 4,5-bisphosphate (PIP2), several investigators have proposed that there are separate pools of PIP2 in the plasma membrane. Recent experiments show the surface concentration of PIP2 is indeed enhanced in regions where phagocytosis, exocytosis, and cell division occurs. Kinases that produce PIP2 are also concentrated in these regions. However, how is the PIP2 produced by these kinases prevented from diffusing rapidly away? First, proteins could act as “fences” around the perimeter of these regions. Second, some factor could markedly decrease the diffusion coefficient, D, of PIP2 within these regions. We used fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP) to investigate these two possibilities in the forming phagosomes of macrophages injected with fluorescent PIP2. FCS measurements show that PIP2 diffuses rapidly (D ∼ 1 μm2/s) in both the forming phagosomes and unengaged plasma membrane. FRAP measurements show that the fluorescence from PIP2 does not recover (>100 s) after photobleaching the entire forming phagosome but recovers rapidly (∼10 s) in a comparable area of membrane outside the cup. These results (and similar data for a plasma membrane–anchored green fluorescent protein) support the hypothesis that a fence impedes the diffusion of PIP2 into and out of forming phagosomes.
Collapse
Affiliation(s)
- Urszula Golebiewska
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
de Keijzer S, Meddens MBM, Kilic D, Joosten B, Reinieren-Beeren I, Lidke DS, Cambi A. Interleukin-4 alters early phagosome phenotype by modulating class I PI3K dependent lipid remodeling and protein recruitment. PLoS One 2011; 6:e22328. [PMID: 21799824 PMCID: PMC3143135 DOI: 10.1371/journal.pone.0022328] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 06/24/2011] [Indexed: 11/19/2022] Open
Abstract
Phagocytosis is a complex process that involves membranelipid remodeling and the attraction and retention of key effector proteins. Phagosome phenotype depends on the type of receptor engaged and can be influenced by extracellular signals. Interleukin 4 (IL-4) is a cytokine that induces the alternative activation of macrophages (MΦs) upon prolonged exposure, triggering a different cell phenotype that has an altered phagocytic capacity. In contrast, the direct effects of IL-4 during phagocytosis remain unknown. Here, we investigate the impact of short-term IL-4 exposure (1 hour) during phagocytosis of IgG-opsonized yeast particles by MΦs. By time-lapse confocal microscopy of GFP-tagged lipid-sensing probes, we show that IL-4 increases the negative charge of the phagosomal membrane by prolonging the presence of the negatively charged second messenger PI(3,4,5)P3. Biochemical assays reveal an enhanced PI3K/Akt activity upon phagocytosis in the presence of IL-4. Blocking the specific class I PI3K after the onset of phagocytosis completely abrogates the IL-4-induced changes in lipid remodeling and concomitant membrane charge. Finally, we show that IL-4 direct signaling leads to a significantly prolonged retention profile of the signaling molecules Rac1 and Rab5 to the phagosomal membrane in a PI3K-dependent manner. This protracted early phagosome phenotype suggests an altered maturation, which is supported by the delayed phagosome acidification measured in the presence of IL-4. Our findings reveal that molecular differences in IL-4 levels, in the extracellular microenvironment, influence the coordination of lipid remodeling and protein recruitment, which determine phagosome phenotype and, eventually, fate. Endosomal and phagosomal membranes provide topological constraints to signaling molecules. Therefore, changes in the phagosome phenotype modulated by extracellular factors may represent an additional mechanism that regulates the outcome of phagocytosis and could have significant impact on the net biochemical output of a cell.
Collapse
Affiliation(s)
- Sandra de Keijzer
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Marjolein B. M. Meddens
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Dilek Kilic
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Ben Joosten
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Inge Reinieren-Beeren
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Diane S. Lidke
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Alessandra Cambi
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
45
|
Neukomm LJ, Nicot AS, Kinchen JM, Almendinger J, Pinto SM, Zeng S, Doukoumetzidis K, Tronchère H, Payrastre B, Laporte JF, Hengartner MO. The phosphoinositide phosphatase MTM-1 regulates apoptotic cell corpse clearance through CED-5–CED-12 in C. elegans. Development 2011; 138:2003-14. [DOI: 10.1242/dev.060012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Multicellular organisms use programmed cell death to eliminate unwanted or potentially harmful cells. Improper cell corpse removal can lead to autoimmune diseases. The development of interventional therapies that increase engulfment activity could represent an attractive approach to treat such diseases. Here, we describe mtm-1, the Caenorhabditis elegans homolog of human myotubularin 1, as a potential negative regulator of apoptotic cell corpse clearance. Loss of mtm-1 function leads to substantially reduced numbers of persistent cell corpses in engulfment mutants, which is a result of a restoration of engulfment function rather than of impaired or delayed programmed cell death. Epistatic analyses place mtm-1 upstream of the ternary GEF complex, which consists of ced-2, ced-5 and ced-12, and parallel to mig-2. Over-activation of engulfment results in the removal of viable cells that have been brought to the verge of death under limiting caspase activity. In addition, mtm-1 also promotes phagosome maturation in the hermaphrodite gonad, potentially through CED-1 receptor recycling. Finally, we show that the CED-12 PH domain can bind to PtdIns(3,5)P2 (one target of MTM-1 phosphatase activity), suggesting that MTM-1 might regulate CED-12 recruitment to the plasma membrane.
Collapse
Affiliation(s)
- Lukas Jakob Neukomm
- Institute of Molecular Life Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Anne-Sophie Nicot
- Department of Translational Medecine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale U964, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7104, Université de Strasbourg, Collège de France, 67404 Illkirch, France
| | | | - Johann Almendinger
- Institute of Molecular Life Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sérgio Morgado Pinto
- Institute of Molecular Life Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sheng Zeng
- Institute of Molecular Life Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Kimon Doukoumetzidis
- Institute of Molecular Life Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Hélène Tronchère
- INSERM, U1048, Université Toulouse III Paul Sabatier, I2MC, CHU de Toulouse, Laboratoire d'Hématologie, 31432 Toulouse cedex 4, France
| | - Bernard Payrastre
- INSERM, U1048, Université Toulouse III Paul Sabatier, I2MC, CHU de Toulouse, Laboratoire d'Hématologie, 31432 Toulouse cedex 4, France
| | - Jocelyn Franck Laporte
- Department of Translational Medecine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale U964, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7104, Université de Strasbourg, Collège de France, 67404 Illkirch, France
| | - Michael Otmar Hengartner
- Institute of Molecular Life Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
46
|
El-Khouri RJ, Bricarello DA, Watkins EB, Kim CY, Miller CE, Patten TE, Parikh AN, Kuhl TL. pH responsive polymer cushions for probing membrane environment interactions. NANO LETTERS 2011; 11:2169-2172. [PMID: 21500840 DOI: 10.1021/nl200832c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A robust and straightforward method for the preparation of lipid membranes upon dynamically responsive polymer cushions is reported. Structural characterization demonstrates that complete, well-packed membranes with tunable mobility can be constructed on the polymeric cushion. With this system, membrane conformational changes induced by cellular cytoskeleton interactions can be modeled. The membrane can be tailored to screen the cushion from changes in pH or allow rapid response to the pH environment by incorporation of protein ion channels. This elementary system offers a means to replicate the conformational changes that occur with the cellular cytoskeleton and has great potential for fundamental biophysical studies of membrane properties and membrane-protein interactions decoupled from the underlying solid support.
Collapse
Affiliation(s)
- Rita J El-Khouri
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Nordenfelt P, Tapper H. Phagosome dynamics during phagocytosis by neutrophils. J Leukoc Biol 2011; 90:271-84. [PMID: 21504950 DOI: 10.1189/jlb.0810457] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The neutrophil is a key player in immunity, and its activities are essential for the resolution of infections. Neutrophil-pathogen interactions usually trigger a large arsenal of antimicrobial measures that leads to the highly efficient killing of pathogens. In neutrophils, the phagocytic process, including the formation and maturation of the phagosome, is in many respects very different from that in other phagocytes. Although the complex mechanisms that coordinate the membrane traffic, oxidative burst, and release of granule contents required for the microbicidal activities of neutrophils are not completely understood, it is evident that they are unique and differ from those in macrophages. Neutrophils exhibit more rapid rates of phagocytosis and higher intensity of oxidative respiratory response than do macrophages. The phagosome maturation pathway in macrophages, which is linked to the endocytic pathway, is replaced in neutrophils by the rapid delivery of preformed granules to nonacidic phagosomes. This review describes the plasticity and dynamics of the phagocytic process with a special focus on neutrophil phagosome maturation.
Collapse
Affiliation(s)
- Pontus Nordenfelt
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden.
| | | |
Collapse
|
48
|
Alexander RT, Jaumouillé V, Yeung T, Furuya W, Peltekova I, Boucher A, Zasloff M, Orlowski J, Grinstein S. Membrane surface charge dictates the structure and function of the epithelial Na+/H+ exchanger. EMBO J 2011; 30:679-91. [PMID: 21245831 DOI: 10.1038/emboj.2010.356] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 12/17/2010] [Indexed: 01/24/2023] Open
Abstract
The Na(+)/H(+) exchanger NHE3 plays a central role in intravascular volume and acid-base homeostasis. Ion exchange activity is conferred by its transmembrane domain, while regulation of the rate of transport by a variety of stimuli is dependent on its cytosolic C-terminal region. Liposome- and cell-based assays employing synthetic or recombinant segments of the cytosolic tail demonstrated preferential association with anionic membranes, which was abrogated by perturbations that interfere with electrostatic interactions. Resonance energy transfer measurements indicated that segments of the C-terminal domain approach the bilayer. In intact cells, neutralization of basic residues in the cytosolic tail by mutagenesis or disruption of electrostatic interactions inhibited Na(+)/H(+) exchange activity. An electrostatic switch model is proposed to account for multiple aspects of the regulation of NHE3 activity.
Collapse
|
49
|
Clarke M, Engel U, Giorgione J, Müller-Taubenberger A, Prassler J, Veltman D, Gerisch G. Curvature recognition and force generation in phagocytosis. BMC Biol 2010; 8:154. [PMID: 21190565 PMCID: PMC3022777 DOI: 10.1186/1741-7007-8-154] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/29/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The uptake of particles by actin-powered invagination of the plasma membrane is common to protozoa and to phagocytes involved in the immune response of higher organisms. The question addressed here is how a phagocyte may use geometric cues to optimize force generation for the uptake of a particle. We survey mechanisms that enable a phagocyte to remodel actin organization in response to particles of complex shape. RESULTS Using particles that consist of two lobes separated by a neck, we found that Dictyostelium cells transmit signals concerning the curvature of a surface to the actin system underlying the plasma membrane. Force applied to a concave region can divide a particle in two, allowing engulfment of the portion first encountered. The phagosome membrane that is bent around the concave region is marked by a protein containing an inverse Bin-Amphiphysin-Rvs (I-BAR) domain in combination with an Src homology (SH3) domain, similar to mammalian insulin receptor tyrosine kinase substrate p53. Regulatory proteins enable the phagocyte to switch activities within seconds in response to particle shape. Ras, an inducer of actin polymerization, is activated along the cup surface. Coronin, which limits the lifetime of actin structures, is reversibly recruited to the cup, reflecting a program of actin depolymerization. The various forms of myosin-I are candidate motor proteins for force generation in particle uptake, whereas myosin-II is engaged only in retracting a phagocytic cup after a switch to particle release. Thus, the constriction of a phagocytic cup differs from the contraction of a cleavage furrow in mitosis. CONCLUSIONS Phagocytes scan a particle surface for convex and concave regions. By modulating the spatiotemporal pattern of actin organization, they are capable of switching between different modes of interaction with a particle, either arresting at a concave region and applying force in an attempt to sever the particle there, or extending the cup along the particle surface to identify the very end of the object to be ingested. Our data illustrate the flexibility of regulatory mechanisms that are at the phagocyte's disposal in exploring an environment of irregular geometry.
Collapse
Affiliation(s)
- Margaret Clarke
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73121, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Hubber A, Roy CR. Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 2010; 26:261-83. [PMID: 20929312 DOI: 10.1146/annurev-cellbio-100109-104034] [Citation(s) in RCA: 369] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophages and protozoa ingest bacteria by phagocytosis and destroy these microbes using a conserved pathway that mediates fusion of the phagosome with lysosomes. To survive within phagocytic host cells, bacterial pathogens have evolved a variety of strategies to avoid fusion with lysosomes. A virulence strategy used by the intracellular pathogen Legionella pneumophila is to manipulate host cellular processes using bacterial proteins that are delivered into the cytosolic compartment of the host cell by a specialized secretion system called Dot/Icm. The proteins delivered by the Dot/Icm system target host factors that play evolutionarily conserved roles in controlling membrane transport in eukaryotic cells, which enables L. pneumophila to create an endoplasmic reticulum-like vacuole that supports intracellular replication in both protozoan and mammalian host cells. This review focuses on intracellular trafficking of L. pneumophila and describes how bacterial proteins contribute to modulation of host processes required for survival within host cells.
Collapse
Affiliation(s)
- Andree Hubber
- Section of Microbial Pathogenesis, School of Medicine, Yale University, New Haven, Connecticut 06536, USA.
| | | |
Collapse
|