1
|
Pemberton JG, Barlow-Busch I, Jenkins ML, Parson MA, Sarnyai F, Bektas SN, Kim YJ, Heuser JE, Burke JE, Balla T. An advanced toolset to manipulate and monitor subcellular phosphatidylinositol 3,5-bisphosphate. J Cell Biol 2025; 224:e202408158. [PMID: 40138452 PMCID: PMC11940380 DOI: 10.1083/jcb.202408158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/09/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Phosphatidylinositol (PI) 3,5-bisphosphate (PI(3,5)P2) is a minor inositol-containing phospholipid that serves as an important regulator of endolysosomal functions. However, the precise sites of subcellular enrichment and molecular targets of this regulatory lipid are poorly understood. Here, we describe the generation and detailed characterization of a short engineered catalytic fragment of the human PIKfyve enzyme, which potently converts PI 3-phosphate to PI(3,5)P2. This novel tool allowed for the evaluation of reported PI(3,5)P2-sensitive biosensors and showed that the recently identified phox homology (PX) domain of the Dictyostelium discoideum (Dd) protein, SNXA, can be used to monitor the production of PI(3,5)P2 in live cells. Modification and adaptation of the DdSNXAPX-based probes into compartment-specific bioluminescence resonance energy transfer-based biosensors allows for the real-time monitoring of PI(3,5)P2 generation within the endocytic compartments of entire cell populations. Collectively, these molecular tools should allow for exciting new studies to better understand the cellular processes controlled by localized PI(3,5)P2 metabolism.
Collapse
Affiliation(s)
- Joshua G. Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Western University, London, Canada
- Division of Development and Genetics, Children’s Health Research Institute, London, Canada
| | - Isobel Barlow-Busch
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Meredith L. Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Matthew A.H. Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Farkas Sarnyai
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Seyma Nur Bektas
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - John E. Heuser
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - John E. Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Cheng C, Hu J, Mannan R, He T, Bhattacharyya R, Magnuson B, Wisniewski JP, Peters S, Karim SA, MacLean DJ, Karabürk H, Zhang L, Rossiter NJ, Zheng Y, Xiao L, Li C, Awad D, Mahapatra S, Bao Y, Zhang Y, Cao X, Wang Z, Mehra R, Morlacchi P, Sahai V, Pasca di Magliano M, Shah YM, Weisman LS, Morton JP, Ding K, Qiao Y, Lyssiotis CA, Chinnaiyan AM. Targeting PIKfyve-driven lipid metabolism in pancreatic cancer. Nature 2025:10.1038/s41586-025-08917-z. [PMID: 40269157 DOI: 10.1038/s41586-025-08917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) subsists in a nutrient-deregulated microenvironment, making it particularly susceptible to treatments that interfere with cancer metabolism1,2. For example, PDAC uses, and is dependent on, high levels of autophagy and other lysosomal processes3-5. Although targeting these pathways has shown potential in preclinical studies, progress has been hampered by the difficulty in identifying and characterizing favourable targets for drug development6. Here, we characterize PIKfyve, a lipid kinase that is integral to lysosomal functioning7, as a targetable vulnerability in PDAC. Using a genetically engineered mouse model, we established that PIKfyve is essential to PDAC progression. Furthermore, through comprehensive metabolic analyses, we found that PIKfyve inhibition forces PDAC to upregulate a distinct transcriptional and metabolic program favouring de novo lipid synthesis. In PDAC, the KRAS-MAPK signalling pathway is a primary driver of de novo lipid synthesis. Accordingly, simultaneously targeting PIKfyve and KRAS-MAPK resulted in the elimination of the tumour burden in numerous preclinical human and mouse models. Taken together, these studies indicate that disrupting lipid metabolism through PIKfyve inhibition induces synthetic lethality in conjunction with KRAS-MAPK-directed therapies for PDAC.
Collapse
Affiliation(s)
- Caleb Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Jing Hu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Rupam Bhattacharyya
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Brian Magnuson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jasmine P Wisniewski
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sydney Peters
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Hüseyin Karabürk
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J Rossiter
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Chungen Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Dominik Awad
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yi Bao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Rohit Mehra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Vaibhav Sahai
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Lois S Weisman
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer P Morton
- CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA.
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Zhang Z, Fu X, Wright N, Wang W, Ye Y, Asbury J, Li Y, Zhu C, Wu R, Wang S, Sun S. PTPσ-mediated PI3P regulation modulates neurodegeneration in C9ORF72-ALS/FTD. Neuron 2025; 113:1190-1205.e9. [PMID: 40073860 PMCID: PMC12005967 DOI: 10.1016/j.neuron.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/09/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the repeat expansion in C9ORF72. Dipeptide repeat (DPR) proteins translated from both sense and antisense repeats, especially arginine-rich DPRs (R-DPRs), contribute to neurodegeneration. Through CRISPR interference (CRISPRi) screening in human-derived neurons, we identified receptor-type tyrosine-protein phosphatase S (PTPσ) as a strong modifier of poly-GR-mediated toxicity. We showed that reducing PTPσ promotes the survival of both poly-GR- and poly-PR-expressing neurons by elevating phosphatidylinositol 3-phosphate (PI3P), accompanied by restored early endosomes and lysosomes. Remarkably, PTPσ knockdown or inhibition substantially rescues the PI3P-endolysosomal defects and improves the survival of C9ORF72-ALS/FTD patient-derived neurons. Furthermore, the PTPσ inhibitor diminishes GR toxicity and rescues pathological and behavioral phenotypes in mice. Overall, these findings emphasize the critical role of PI3P-mediated endolysosomal deficits induced by R-DPRs in disease pathogenesis and reveal the therapeutic potential of targeting PTPσ in C9ORF72-ALS/FTD.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xiujuan Fu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Noelle Wright
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Physiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Weiren Wang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biotechology Master Program, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yingzhi Ye
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Physiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Julie Asbury
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Notre Dame of Maryland University, Baltimore, MD 21210, USA
| | - Yini Li
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chengzhang Zhu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Wu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaopeng Wang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuying Sun
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience and Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Myers G, Friedman A, Yu L, Pourmandi N, Kerpet C, Ito MA, Saba R, Tang V, Ozel AB, Bergin IL, Johnson CN, Ku CJ, Wang Y, Balbin-Cuesta G, Lim KC, Lin Z, Drysdale C, McGee B, Kurita R, Nakamura Y, Liu X, Siemieniak D, Singh SA, Lyssiotis CA, Maillard I, Weisman LS, Engel JD, Khoriaty R. A genome-wide screen identifies genes required for erythroid differentiation. Nat Commun 2025; 16:3488. [PMID: 40221460 PMCID: PMC11993733 DOI: 10.1038/s41467-025-58739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
The complete array of genes required for terminal erythroid differentiation remains unknown. To address this knowledge gap, we perform a genome-scale CRISPR knock-out screen in the human erythroid progenitor cell line HUDEP-2 and validate candidate regulators of erythroid differentiation in a custom secondary screen. Comparison of sgRNA abundance in the CRISPR library, proerythroblasts, and orthochromatic erythroblasts, resulted in the identification of genes that are essential for proerythroblast survival and genes that are required for terminal erythroid differentiation. Among the top genes identified are known regulators of erythropoiesis, underscoring the validity of this screen. Notably, using a Log2 fold change of <-1 and false discovery rate of <0.01, the screen identified 277 genes that are required for terminal erythroid differentiation, including multiple genes not previously nominated through GWAS. NHLRC2, which was previously implicated in hemolytic anemia, was a highly ranked gene. We suggest that anemia due to NHLRC2 mutation results at least in part from a defect in erythroid differentiation. Another highly ranked gene in the screen is VAC14, which we validated for its requirement in erythropoiesis in vitro and in vivo. Thus, data from this CRISPR screen may help classify the underlying mechanisms that contribute to erythroid disorders.
Collapse
Affiliation(s)
- Greggory Myers
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ann Friedman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lei Yu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Narges Pourmandi
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Claire Kerpet
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Masaki A Ito
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rilie Saba
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Vi Tang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ayse Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Craig N Johnson
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Chia-Jui Ku
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yu Wang
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ginette Balbin-Cuesta
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zesen Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Claire Drysdale
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Beth McGee
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Xiaofang Liu
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - David Siemieniak
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Sharon A Singh
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Ivan Maillard
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lois S Weisman
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Rami Khoriaty
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Deng Z, Yang Z, Li L, Zeng G, Meng Z, Liu R. A lipid metabolism related gene signature predicts postoperative recurrence in pancreatic cancer through multicenter cohort validation. Sci Rep 2025; 15:11683. [PMID: 40188284 PMCID: PMC11972318 DOI: 10.1038/s41598-025-96855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 04/01/2025] [Indexed: 04/07/2025] Open
Abstract
Postoperative recurrence of pancreatic adenocarcinoma (PAAD) remains a major challenge. This study aims to establish and validate a lipid metabolism-related prognostic model to predict recurrence in PAAD patients. The TCGA-PAAD database was used to establish a training cohort, which was validated using the ICGC database and multiple center cohorts. A prognostic model based on LASSO Cox regression and a nomogram was developed and further validated. Among 196 lipid metabolism-related genes, four were selected for the prognostic model. Patients were stratified into high- and low-risk groups based on the risk score. Univariate and multivariate Cox regression analyses showed that tumor site, T stage, N stage, M stage, and risk score were significantly associated with progression-free interval (PFI). High-risk patients had worse PFI, overall survival (OS), and disease-specific survival (DSS) (all P < 0.05). Time-dependent ROC and decision curve analyses confirmed the superior diagnostic capacity of the nomogram. GSEA revealed enrichment in G2M checkpoint, glycolysis, estrogen response, and hypoxia pathways for the high-risk group. Additionally, high-risk scores correlated with poor immune infiltration, gene mutations, and tumor mutational burden (TMB). Single-cell analysis suggested that risk genes interact with various cell types to promote PAAD progression. A novel lipid metabolism-related prognostic model was developed and validated to predict recurrence and survival in PAAD patients, with strong accuracy and stability.
Collapse
Affiliation(s)
- Zhaoda Deng
- Medical School of Chinese PLA, Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Pancreatic Surgery, Key Laboratory of Digital Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zitong Yang
- Medical School of Chinese PLA, Beijing, China
| | - Lincheng Li
- Department of Surgery, Second Mobile Corps Hospital of Chinese People's Armed Police Force, Wuxi, China
| | - Guineng Zeng
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Pancreatic Surgery, Key Laboratory of Digital Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Nankai University School of Medicine, Nankai University, Tianjin, 300300, China
| | - Zihe Meng
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Pancreatic Surgery, Key Laboratory of Digital Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Inner Mongolia Medical University, Hohhot, China
| | - Rong Liu
- Medical School of Chinese PLA, Beijing, China.
- Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Institute of Hepatobiliary Pancreatic Surgery, Key Laboratory of Digital Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
6
|
Llorente A, Arora GK, Murad R, Emerling BM. Phosphoinositide kinases in cancer: from molecular mechanisms to therapeutic opportunities. Nat Rev Cancer 2025:10.1038/s41568-025-00810-1. [PMID: 40181165 DOI: 10.1038/s41568-025-00810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 04/05/2025]
Abstract
Phosphoinositide kinases, extending beyond the well-known phosphoinositide 3-kinase (PI3K), are key players in the dynamic and site-specific phosphorylation of lipid phosphoinositides. Unlike PI3Ks, phosphatidylinositol 4-kinases (PI4Ks) and phosphatidylinositol phosphate kinases (PIPKs) do not usually exhibit mutational alterations, but mostly show altered expression in tumours, orchestrating a broad spectrum of signalling, metabolic and immune processes, all of which are crucial in the pathogenesis of cancer. Dysregulation of PI4Ks and PIPKs has been associated with various malignancies, which has sparked considerable interest towards their therapeutic targeting. In this Review we summarize the current understanding of the lesser-studied phosphoinositide kinase families, PI4K and PIPK, focusing on their functions and relevance in cancer. In addition, we provide an overview of ongoing efforts driving the preclinical and clinical development of phosphoinositide kinase-targeting molecules.
Collapse
Affiliation(s)
- Alicia Llorente
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Gurpreet K Arora
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rabi Murad
- Bioformatics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Brooke M Emerling
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
7
|
Ebner M, Fröhlich F, Haucke V. Mechanisms and functions of lysosomal lipid homeostasis. Cell Chem Biol 2025; 32:392-407. [PMID: 40054455 DOI: 10.1016/j.chembiol.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/30/2025] [Accepted: 02/11/2025] [Indexed: 03/23/2025]
Abstract
Lysosomes are the central degradative organelle of mammalian cells and have emerged as major intersections of cellular metabolite flux. Macromolecules derived from dietary and intracellular sources are delivered to the acidic lysosomal lumen where they are subjected to degradation by acid hydrolases. Lipids derived from lipoproteins, autophagy cargo, or autophagosomal membranes themselves constitute major lysosomal substrates. Dysregulation of lysosomal lipid processing, defective export of lipid catabolites, and lysosomal membrane permeabilization underly diseases ranging from neurodegeneration to metabolic syndromes and lysosomal storage disorders. Mammalian cells are equipped with sophisticated homeostatic control mechanisms that protect the lysosomal limiting membrane from excessive damage, prevent the spillage of luminal hydrolases into the cytoplasm, and preserve the lysosomal membrane composition in the face of constant fusion with heterotypic organelles such as endosomes and autophagosomes. In this review we discuss the molecular mechanisms that govern lysosomal lipid homeostasis and, thereby, lysosome function in health and disease.
Collapse
Affiliation(s)
- Michael Ebner
- Department of Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| | - Florian Fröhlich
- Bioanalytical Chemistry Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), 49076 Osnabrück, Germany
| | - Volker Haucke
- Department of Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Freie Universität Berlin, Faculty of Biology, Chemistry, Pharmacy, 14195 Berlin, Germany.
| |
Collapse
|
8
|
Scott O, Saran E, Freeman SA. The spectrum of lysosomal stress and damage responses: from mechanosensing to inflammation. EMBO Rep 2025; 26:1425-1439. [PMID: 40016424 PMCID: PMC11933331 DOI: 10.1038/s44319-025-00405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
Cells and tissues turn over their aged and damaged components in order to adapt to a changing environment and maintain homeostasis. These functions rely on lysosomes, dynamic and heterogeneous organelles that play essential roles in nutrient redistribution, metabolism, signaling, gene regulation, plasma membrane repair, and immunity. Because of metabolic fluctuations and pathogenic threats, lysosomes must adapt in the short and long term to maintain functionality. In response to such challenges, lysosomes deploy a variety of mechanisms that prevent the breaching of their membrane and escape of their contents, including pathogen-associated molecules and hydrolases. While transient permeabilization of the lysosomal membrane can have acute beneficial effects, supporting inflammation and antigen cross-presentation, sustained or repeated lysosomal perforations have adverse metabolic and transcriptional consequences and can lead to cell death. This review outlines factors contributing to lysosomal stress and damage perception, as well as remedial processes aimed at addressing lysosomal disruptions. We conclude that lysosomal stress plays widespread roles in human physiology and pathology, the understanding and manipulation of which can open the door to novel therapeutic strategies.
Collapse
Affiliation(s)
- Ori Scott
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical Immunology and Allergy, Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Ekambir Saran
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Takeuchi K, Nagase L, Kageyama S, Kanoh H, Oshima M, Ogawa-Iio A, Ikeda Y, Fujii Y, Kondo S, Osaka N, Masuda T, Ishihara T, Nakamura Y, Hirota Y, Sasaki T, Senda T, Sasaki AT. PI5P4K inhibitors: promising opportunities and challenges. FEBS J 2025. [PMID: 39828902 DOI: 10.1111/febs.17393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/30/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
Phosphatidylinositol 5-phosphate 4-kinases (PI5P4K), also known as type II PIPKs or PIPKIIs, convert the lipid second messenger PI5P to PI(4,5)P2. The PI5P4K family consists of three isozymes in mammals-PI5P4Kα, β, and γ-which notably utilize both GTP and ATP as phosphodonors. Unlike the other two isozymes, which can utilize both ATP and GTP, PI5P4Kβ exhibits a marked preference for GTP over ATP, acting as an intracellular GTP sensor that alters its kinase activity in response to physiological changes in GTP concentration. Knockout studies have demonstrated a critical role for PI5P4Kα and β in tumorigenesis, while PI5P4Kγ has been implicated in regulating immune and neural systems. Pharmacological targeting of PI5P4K holds promise for the development of new therapeutic approaches against cancer, immune dysfunction, and neurodegenerative diseases. Although several PI5P4K inhibitors have already been developed, challenges remain in PI5P4K inhibitor development, including a discrepancy between in vitro and cellular efficacy. This discrepancy is attributable to mainly three factors. (a) Most PI5P4K inhibitors were developed at low ATP levels, where these enzymes exhibit minimal activity. (b) Non-catalytic functions of PI5P4K require careful interpretation of PI5P4K depletion studies, as their scaffolding roles suppress class I PI3K signaling. (c) The lack of pharmacodynamic markers for in vivo assessment complicates efficacy assessment. To address these issues and promote the development of effective and targeted therapeutic strategies, this review provides an analytical overview of the distinct roles of individual isozymes and recent developments in PI5P4K inhibitors, emphasizing structural insights and the importance of pharmacodynamic marker identification.
Collapse
Affiliation(s)
- Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
- Cellular and Molecular Biology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Lisa Nagase
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Shun Kageyama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Hirotaka Kanoh
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masashi Oshima
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
| | - Aki Ogawa-Iio
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma-ku, Japan
| | - Yoshiki Ikeda
- Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Japan
| | - Yuki Fujii
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
| | - Sei Kondo
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Natsuki Osaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Takeshi Masuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Tsukasa Ishihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yoshikazu Nakamura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Yoshihisa Hirota
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma-ku, Japan
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Japan
- Department of Lipid Biology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Tsukuba, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Japan
| | - Atsuo T Sasaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, OH, USA
- Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, Japan
| |
Collapse
|
10
|
Sun J, Zalejski J, Song S, Sharma A, Wang W, Hu Y, Lo WT, Koch PA, Singh J, Singaram I, An B, Zhao JJ, Gong LW, Haucke V, Gao R, Cho W. PI(3,5)P 2 Controls the Signaling Activity of Class I PI3K. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.01.25.525550. [PMID: 36747849 PMCID: PMC9900776 DOI: 10.1101/2023.01.25.525550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
3-Phosphoinositides are ubiquitous cellular lipids that play pivotal regulatory roles in health and disease. Among 3-phosphoinositides, phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) remains the least understood species in terms of its spatiotemporal dynamics and physiological function due to the lack of a specific sensor that allows spatiotemporally resolved quantitative imaging of PI(3,5)P 2 . Using a newly developed ratiometric PI(3,5)P 2 sensor engineered from the C-terminal SH2 domain of Class I phosphoinositide 3-kinases (PI3K)-p85α subunit we demonstrate that a unique pool of PI(3,5)P 2 is generated on lysosomes and late endosomes in response to growth factor stimulation. This PI(3,5)P 2 , the formation of which is mediated sequentially by Class II PI3KC2β and PIKfyve, plays a crucial role in terminating the activity of growth factor-stimulated Class I PI3K, one of the most frequently mutated proteins in cancer, via specific interaction with its regulatory p85 subunit. A small molecule inhibitor of p85α-PI(3,5)P 2 binding specifically blocks the feedback inhibition of Class I PI3K by PI(3,5)P 2 and thus serves as a PI3K activator that promotes neurite growth. Furthermore, cancer-causing mutations of the Class I PI3K-p85 subunit inhibit p85-PI(3,5)P 2 interaction and thereby induce sustained activation of Class I PI3K. Our results unravel a hitherto unknown spatiotemporally specific regulatory function of PI(3,5)P 2 that links Class I and II PI3Ks and modulates the magnitude of PI3K-mediated growth factor signaling. These results also suggest new therapeutic possibilities for treating cancer patients with p85 mutations and promoting wound healing and tissue regeneration.
Collapse
|
11
|
Domingues N, Pires J, Milosevic I, Raimundo N. Role of lipids in interorganelle communication. Trends Cell Biol 2025; 35:46-58. [PMID: 38866684 PMCID: PMC11632148 DOI: 10.1016/j.tcb.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Cell homeostasis and function rely on well-orchestrated communication between different organelles. This communication is ensured by signaling pathways and membrane contact sites between organelles. Many players involved in organelle crosstalk have been identified, predominantly proteins and ions. The role of lipids in interorganelle communication remains poorly understood. With the development and broader availability of methods to quantify lipids, as well as improved spatiotemporal resolution in detecting different lipid species, the contribution of lipids to organelle interactions starts to be evident. However, the specific roles of various lipid molecules in intracellular communication remain to be studied systematically. We summarize new insights in the interorganelle communication field from the perspective of organelles and discuss the roles played by lipids in these complex processes.
Collapse
Affiliation(s)
- Neuza Domingues
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Joana Pires
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Ira Milosevic
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal; Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Hershey, PA, USA.
| |
Collapse
|
12
|
Rodríguez-Palma EJ, Loya-Lopez S, Min SM, Calderon-Rivera A, Gomez K, Khanna R, Axtman AD. Targeting Na v1.7 and Na v1.8 with a PIKfyve inhibitor to reverse inflammatory and neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2025; 17:100174. [PMID: 39720155 PMCID: PMC11665415 DOI: 10.1016/j.ynpai.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
PIKfyve (1-phosphatidylinositol 3-phosphate 5-kinase), a lipid kinase, plays an important role in generating phosphatidylinositol (3,5)-bisphosphate (PI(3,5)P2). SGC-PIKFYVE-1, a potent and selective inhibitor of PIKfyve, has been used as a chemical probe to explore pathways dependent on PIKfyve activity. Based on reported changes in membrane dynamics and ion transport in response to PIKfyve inhibition, we hypothesized that pharmacological inhibition of PIKfyve could modulate pain. Acute treatment with SGC-PIKFYVE-1 (10 µM) inhibited voltage-gated sodium currents through the inhibition of Nav1.7 and Nav1.8 channels, without affecting voltage-gated calcium or potassium currents in sensory neurons. Additionally, systemic administration of SGC-PIKFYVE-1 (30 mg/kg) alleviated mechanical and cold sensitivity induced by neuropathic or inflammatory pain in both male and female mice, without causing motor impairments. Although other functions of PIKfyve are well characterized, its role in inhibiting chronic pain has not been fully elucidated. Our study provides proof-of-concept for this alternative approach to pain management. Collectively, these results highlight the inhibitory effects of PIKfyve as a promising avenue for further exploration in chronic pain treatment.
Collapse
Affiliation(s)
- Erick J. Rodríguez-Palma
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Santiago Loya-Lopez
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Sophia M. Min
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Aida Calderon-Rivera
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kimberly Gomez
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rajesh Khanna
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Pain Research and Integrated Neuroscience Center (PRINC), College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Alison D. Axtman
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lead contact
| |
Collapse
|
13
|
Da Graça J, Delevoye C, Morel E. Morphodynamical adaptation of the endolysosomal system to stress. FEBS J 2025; 292:248-260. [PMID: 38706230 PMCID: PMC11734881 DOI: 10.1111/febs.17154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/28/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
In eukaryotes, the spatiotemporal control of endolysosomal organelles is central to the maintenance of homeostasis. By providing an interface between the cytoplasm and external environment, the endolysosomal system is placed at the forefront of the response to a wide range of stresses faced by cells. Endosomes are equipped with a dedicated set of membrane-associated proteins that ensure endosomal functions as well as crosstalk with the secretory or the autophagy pathways. Morphodynamical processes operate through local spatialization of subdomains, enabling specific remodeling and membrane contact capabilities. Consequently, the plasticity of endolysosomal organelles can be considered a robust and flexible tool exploited by cells to cope with homeostatic deviations. In this review, we provide insights into how the cellular responses to various stresses (osmotic, UV, nutrient deprivation, or pathogen infections) rely on the adaptation of the endolysosomal system morphodynamics.
Collapse
Affiliation(s)
- Juliane Da Graça
- Université Paris Cité, INSERM UMR‐S1151, CNRS UMR‐S8253, Institut Necker Enfants MaladesFrance
| | - Cédric Delevoye
- Université Paris Cité, INSERM UMR‐S1151, CNRS UMR‐S8253, Institut Necker Enfants MaladesFrance
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane CompartmentsParisFrance
| | - Etienne Morel
- Université Paris Cité, INSERM UMR‐S1151, CNRS UMR‐S8253, Institut Necker Enfants MaladesFrance
| |
Collapse
|
14
|
Wadje BN, Somarowthu T, Thakur S, Jadhav HR, Bharate SB. Structure-based virtual screening of FDA-approved drugs to discover potential inhibitors of phosphoinositide kinase, PIKfyve. J Biomol Struct Dyn 2024:1-16. [PMID: 39660560 DOI: 10.1080/07391102.2024.2437513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/21/2024] [Indexed: 12/12/2024]
Abstract
The phosphoinositide kinase, PIKfyve is a lipid kinase that plays a vital role in membrane trafficking, endosomal transport, retroviral budding, and toll-like receptor signaling. Thus, it has emerged as a potential therapeutic target for several diseases, including, cancer, viral infections, and autoimmune diseases. However, a limited number of PIKfyve inhibitors have been reported so far. Herein, we report a structure-based virtual screening-driven identification of new PIKfyve inhibitors from a library of FDA-approved small molecule drugs. Labetalol, capsaicin and ibrutinib occupy the ATP pocket of PIKfyve with dock scores of -10.3, -10.6 and -12.24 kcal/mol, and MMGBSA binding energy of -57.3, -53.7 and -66.4 kcal/mol, respectively. These drugs inhibit PIKfyve with IC50 values of 0.292, 0.965 and 0.678 µM, respectively, in an in vitro ADP-Glo kinase assay. Among the top hits from SBVS, labetalol as well as capsaicin display a stable interaction with the critical amino acid, LEU 119 of the hinge region during the 100 ns MD simulation. The results obtained herein warrant the exploration of these new inhibitors in preclinical disease models.
Collapse
Affiliation(s)
- Bhagyashri N Wadje
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Tejaswi Somarowthu
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Shikha Thakur
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, Rajasthan, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, Rajasthan, India
| | - Sandip B Bharate
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
15
|
Chen J, Mirvis M, Ekman A, Vanslembrouck B, Le Gros M, Larabell C, Marshall WF. Automated segmentation of soft X-ray tomography: native cellular structure with sub-micron resolution at high throughput for whole-cell quantitative imaging in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621371. [PMID: 39554159 PMCID: PMC11565976 DOI: 10.1101/2024.10.31.621371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Soft X-ray tomography (SXT) is an invaluable tool for quantitatively analyzing cellular structures at sub-optical isotropic resolution. However, it has traditionally depended on manual segmentation, limiting its scalability for large datasets. Here, we leverage a deep learning-based auto-segmentation pipeline to segment and label cellular structures in hundreds of cells across three Saccharomyces cerevisiae strains. This task-based pipeline employs manual iterative refinement to improve segmentation accuracy for key structures, including the cell body, nucleus, vacuole, and lipid droplets, enabling high-throughput and precise phenotypic analysis. Using this approach, we quantitatively compared the 3D whole-cell morphometric characteristics of wild-type, VPH1-GFP, and vac14 strains, uncovering detailed strain-specific cell and organelle size and shape variations. We show the utility of SXT data for precise 3D curvature analysis of entire organelles and cells and detection of fine morphological features using surface meshes. Our approach facilitates comparative analyses with high spatial precision and statistical throughput, uncovering subtle morphological features at the single cell and population level. This workflow significantly enhances our ability to characterize cell anatomy and supports scalable studies on the mesoscale, with applications in investigating cellular architecture, organelle biology, and genetic research across diverse biological contexts. Significance Statement Soft X-ray tomography offers many powerful features for whole-cell multi-organelle imaging, but, like other high resolution volumetric imaging modalities, is typically limited by low throughput due to laborious segmentation.Auto-segmentation for soft X-ray tomography overcomes this limitation, enabling statistical 3D morphometric analysis of multiple organelles in whole cells across cell populations. The combination of high 3D resolution of SXT data with statistically useful throughput represents an avenue for more thorough characterizations of cells in toto and opens new mesoscale biological questions and statistical whole-cell modeling of organelle and cell morphology, interactions, and responses to perturbations.
Collapse
|
16
|
de J López-Rodríguez VR, Arce-González R, Navas-Pérez A, Graue-Hernández E, García-Martínez F, Montes-Almanza L, Chacón-Camacho OF, Zenteno JC. Familial fleck corneal dystrophy caused by complete deletion of the PIKFYVE gene. Ophthalmic Genet 2024; 45:532-536. [PMID: 38956867 DOI: 10.1080/13816810.2024.2365737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 03/14/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Fleck corneal dystrophy (FCD) is a rare autosomal dominant disease that affects exclusively the corneal stroma. The disease is caused by heterozygous variants in PIKFYVE, a gene encoding a lipid kinase involved in multiple cellular pathways, primarily participating in membrane dynamics and signaling. This report describes a familial case of FCD caused by a complete deletion of the PIKFYVE gene. MATERIAL AND METHODS A clinical ophthalmic examination was performed on the proband and family members. Genetic testing included next-generation sequencing (multigene panel), and chromosomal microarray analysis. A quantitative PCR assay was designed in order to segregate the deletion. RESULTS A 19-year-old male, with no family or personal history of ocular disease, presented for evaluation due to an acute illness consisting of burning, foreign body sensation, and red eye. Slit lamp biomicroscopy revealed bilateral small pterygia and scattered bilateral white opacities in the corneal stroma, a very similar corneal phenotype was found in the 47-year-old father, who was asymptomatic. NGS detected a heterozygous deletion of the entire PIKFYVE coding sequence. CMA in DNA from the propositus indicated a 543 kb deletion in 2q33.3q34 spanning the entire PIKFYVE gene. The deletion was confirmed in the father. CONCLUSIONS We add to the molecular spectrum of FCD by describing a familial case of a whole PIKFYVE gene deletion in affected subjects. Our findings support that normal expression of PIKFYVE is necessary for corneal keratocytes homeostasis and normal corneal appearance. We conclude that PIKFYVE haploinsufficiency is the molecular mechanism underlying this familial case of FCD.
Collapse
Affiliation(s)
| | - Rocío Arce-González
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Alejandro Navas-Pérez
- Department of Cornea, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Froylán García-Martínez
- Research Unit-Genetics Department, Institute of Ophthalmology, "Conde de Valenciana", Mexico City, Mexico
| | - Luis Montes-Almanza
- Research Unit-Genetics Department, Institute of Ophthalmology, "Conde de Valenciana", Mexico City, Mexico
| | - Oscar F Chacón-Camacho
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Juan C Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
17
|
Stevenson M, Hebron ML, Liu X, Balaraman K, Wolf C, Moussa C. c-KIT inhibitors reduce pathology and improve behavior in the Tg(SwDI) model of Alzheimer's disease. Life Sci Alliance 2024; 7:e202402625. [PMID: 39009412 PMCID: PMC11249953 DOI: 10.26508/lsa.202402625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Treatments for Alzheimer's disease have primarily focused on removing brain amyloid plaques to improve cognitive outcomes in patients. We developed small compounds, known as BK40143 and BK40197, and we hypothesize that these drugs alleviate microglial-mediated neuroinflammation and induce autophagic clearance of neurotoxic proteins to improve behavior in models of neurodegeneration. Specificity binding assays of BK40143 and BK40197 showed primary binding to c-KIT/Platelet Derived Growth Factor Receptors (PDGFR)α/β, whereas BK40197 also differentially binds to FYVE finger-containing phosphoinositide kinase (PIKFYVE). Both compounds penetrate the CNS, and treatment with these drugs inhibited the maturation of peripheral mast cells in transgenic mice, correlating with cognitive improvements on measures of memory and anxiety. In the brain, microglial activation was profoundly attenuated and amyloid-beta and tau were reduced via autophagy. Multi-kinase inhibition, including c-KIT, exerts multifunctional effects to reduce neurodegenerative pathology via autophagy and microglial activity and may represent a potential therapeutic option for neurodegeneration.
Collapse
Affiliation(s)
- Max Stevenson
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington DC, USA
| | - Michaeline L Hebron
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington DC, USA
| | - Xiaoguang Liu
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington DC, USA
| | - Kaluvu Balaraman
- Medicinal Chemistry Shared Resource, Department of Chemistry, Georgetown University Medical Center, Washington DC, USA
| | - Christian Wolf
- Medicinal Chemistry Shared Resource, Department of Chemistry, Georgetown University Medical Center, Washington DC, USA
| | - Charbel Moussa
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington DC, USA
| |
Collapse
|
18
|
Xanthopoulou E, Lamprou I, Mitrakas AG, Michos GD, Zois CE, Giatromanolaki A, Harris AL, Koukourakis MI. Autophagy Blockage Up-Regulates HLA-Class-I Molecule Expression in Lung Cancer and Enhances Anti-PD-L1 Immunotherapy Efficacy. Cancers (Basel) 2024; 16:3272. [PMID: 39409895 PMCID: PMC11476265 DOI: 10.3390/cancers16193272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Immune checkpoint inhibitors have an established role in non-small cell lung cancer (NSCLC) therapy. The loss of HLA-class-I expression allows cancer cell evasion from immune surveillance, disease progression, and failure of immunotherapy. The restoration of HLA-class-I expression may prove to be a game-changer in current immunotherapy strategies. Autophagic activity has been recently postulated to repress HLA-class-I expression in cancer cells. METHODS NSCLC cell lines (A549 and H1299) underwent late-stage (chloroquine and bafilomycin) and early-stage autophagy blockage (ULK1 inhibitors and MAP1LC3A silencing). The HLA-class-I expression was assessed with flow cytometry, a Western blot, and RT-PCR. NSCLC tissues were examined for MAP1LC3A and HLA-class-I expression using double immunohistochemistry. CD8+ T-cell cytotoxicity was examined in cancer cells pre-incubated with chloroquine and anti-PD-L1 monoclonal antibodies (Moabs); Results: A striking increase in HLA-class-I expression following incubation with chloroquine, bafilomycin, and IFNγ was noted in A549 and H1299 cancer cells, respectively. This effect was further confirmed in CD133+ cancer stem cells. HLA-class-I, β2-microglobulin, and TAP1 mRNA levels remained stable. Prolonged exposure to chloroquine further enhanced HLA-class-I expression. Similar results were noted following exposure to a ULK1 and a PIKfyve inhibitor. Permanent silencing of the MAP1LC3A gene resulted in enhanced HLA-class-I expression. In immunohistochemistry experiments, double LC3A+/HLA-class-I expression was seldom. Pre-incubation of H1299 cancer cells with chloroquine and anti-PD-L1 MoAbs increased the mean % of apoptotic/necrotic cells from 2.5% to 18.4%; Conclusions: Autophagy blockers acting either at late or early stages of the autophagic process may restore HLA-class-I-mediated antigen presentation, eventually leading to enhanced immunotherapy efficacy.
Collapse
Affiliation(s)
- Erasmia Xanthopoulou
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
| | - Ioannis Lamprou
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
| | - Achilleas G. Mitrakas
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
| | - Georgios D. Michos
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
| | - Christos E. Zois
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK;
| | - Alexandra Giatromanolaki
- Department of Pathology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Adrian L. Harris
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK;
| | - Michael I. Koukourakis
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
| |
Collapse
|
19
|
Stevenson M, Algarzae NK, Moussa C. Tyrosine kinases: multifaceted receptors at the intersection of several neurodegenerative disease-associated processes. FRONTIERS IN DEMENTIA 2024; 3:1458038. [PMID: 39221072 PMCID: PMC11361951 DOI: 10.3389/frdem.2024.1458038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Tyrosine kinases (TKs) are catalytic enzymes activated by auto-phosphorylation that function by phosphorylating tyrosine residues on downstream substrates. Tyrosine kinase inhibitors (TKIs) have been heavily exploited as cancer therapeutics, primarily due to their role in autophagy, blood vessel remodeling and inflammation. This suggests tyrosine kinase inhibition as an appealing therapeutic target for exploiting convergent mechanisms across several neurodegenerative disease (NDD) pathologies. The overlapping mechanisms of action between neurodegeneration and cancer suggest that TKIs may play a pivotal role in attenuating neurodegenerative processes, including degradation of misfolded or toxic proteins, reduction of inflammation and prevention of fibrotic events of blood vessels in the brain. In this review, we will discuss the distinct roles that select TKs have been shown to play in various disease-associated processes, as well as identify TKs that have been explored as targets for therapeutic intervention and associated pharmacological agents being investigated as treatments for NDDs.
Collapse
Affiliation(s)
- Max Stevenson
- The Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| | - Norah K. Algarzae
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Charbel Moussa
- The Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
20
|
Yang H, Ji X, Wang H, Yang R, Ma J. Mechanism understanding of PIKfyve inhibitor YM201636 with human serum albumin: Insights from molecular modeling and multiple spectroscopic techniques. LUMINESCENCE 2024; 39:e4838. [PMID: 39051537 DOI: 10.1002/bio.4838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
YM201636 is the potent PIKfyve inhibitor that is being actively investigated for liver cancer efficacy. In this study, computer simulations and experiments were conducted to investigate the interaction mechanism between YM201636 and the transport protein HSA. Results indicated that YM201636 is stably bound between the subdomains IIA and IIIA of HSA, supported by site marker displacement experiments. YM201636 quenched the endogenous fluorescence of HSA by static quenching since a decrease in quenching constants was observed from 7.74 to 2.39 × 104 M-1. UV-vis and time-resolved fluorescence spectroscopy confirmed the YM201636-HSA complex formation and this binding followed a static mechanism. Thermodynamic parameters ΔG, ΔH, and ΔS obtained negative values suggesting the binding was a spontaneous process driven by Van der Waals interactions and hydrogen binding. Binding constants ranged between 5.71 and 0.33 × 104 M-1, which demonstrated a moderately strong affinity of YM201636 to HSA. CD, synchronous, and 3D fluorescence spectroscopy revealed that YM201636 showed a slight change in secondary structure. The increase of Kapp and a decrease of PSH with YM201636 addition showed that YM201636 changed the surface hydrophobicity of HSA. The research provides reasonable models helping us further understand the transportation and distribution of YM201636 when it absorbs into the blood circulatory system.
Collapse
Affiliation(s)
- Hongqin Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Xinzhu Ji
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Huiling Wang
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Ruijing Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Junyi Ma
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| |
Collapse
|
21
|
Gopaldass N, Mayer A. PROPPINs and membrane fission in the endo-lysosomal system. Biochem Soc Trans 2024; 52:1233-1241. [PMID: 38747700 DOI: 10.1042/bst20230897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
PROPPINs constitute a conserved protein family with multiple members being expressed in many eukaryotes. PROPPINs have mainly been investigated for their role in autophagy, where they co-operate with several core factors for autophagosome formation. Recently, novel functions of these proteins on endo-lysosomal compartments have emerged. PROPPINs support the division of these organelles and the formation of tubulo-vesicular cargo carriers that mediate protein exit from them, such as those generated by the Retromer coat. In both cases, PROPPINs provide membrane fission activity. Integrating information from yeast and human cells this review summarizes the most important molecular features that allow these proteins to facilitate membrane fission and thus provide a critical element to endo-lysosomal protein traffic.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
22
|
Prever L, Squillero G, Hirsch E, Gulluni F. Linking phosphoinositide function to mitosis. Cell Rep 2024; 43:114273. [PMID: 38843397 DOI: 10.1016/j.celrep.2024.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024] Open
Abstract
Phosphoinositides (PtdIns) are a family of differentially phosphorylated lipid second messengers localized to the cytoplasmic leaflet of both plasma and intracellular membranes. Kinases and phosphatases can selectively modify the PtdIns composition of different cellular compartments, leading to the recruitment of specific binding proteins, which control cellular homeostasis and proliferation. Thus, while PtdIns affect cell growth and survival during interphase, they are also emerging as key drivers in multiple temporally defined membrane remodeling events of mitosis, like cell rounding, spindle orientation, cytokinesis, and abscission. In this review, we summarize and discuss what is known about PtdIns function during mitosis and how alterations in the production and removal of PtdIns can interfere with proper cell division.
Collapse
Affiliation(s)
- Lorenzo Prever
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Gabriele Squillero
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Emilio Hirsch
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| | - Federico Gulluni
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| |
Collapse
|
23
|
Roy A, DePamphilis ML. Selective Termination of Autophagy-Dependent Cancers. Cells 2024; 13:1096. [PMID: 38994949 PMCID: PMC11240546 DOI: 10.3390/cells13131096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
The goal of cancer research is to identify characteristics of cancer cells that allow them to be selectively eliminated without harming the host. One such characteristic is autophagy dependence. Cancer cells survive, proliferate, and metastasize under conditions where normal cells do not. Thus, the requirement in cancer cells for more energy and macromolecular biosynthesis can evolve into a dependence on autophagy for recycling cellular components. Recent studies have revealed that autophagy, as well as different forms of cellular trafficking, is regulated by five phosphoinositides associated with eukaryotic cellular membranes and that the enzymes that synthesize them are prime targets for cancer therapy. For example, PIKFYVE inhibitors rapidly disrupt lysosome homeostasis and suppress proliferation in all cells. However, these inhibitors selectively terminate PIKFYVE-dependent cancer cells and cancer stem cells with not having adverse effect on normal cells. Here, we describe the biochemical distinctions between PIKFYVE-sensitive and -insensitive cells, categorize PIKFYVE inhibitors into four groups that differ in chemical structure, target specificity and efficacy on cancer cells and normal cells, identify the mechanisms by which they selectively terminate autophagy-dependent cancer cells, note their paradoxical effects in cancer immunotherapy, and describe their therapeutic applications against cancers.
Collapse
Affiliation(s)
- Ajit Roy
- National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Room 6N105, 10 Center Dr., Bethesda, MD 20892-0001, USA;
| | - Melvin L. DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Room 4B413, 6 Center Dr., Bethesda, MD 20892-2790, USA
| |
Collapse
|
24
|
Accogli A, Park YN, Lenk GM, Severino M, Scala M, Denecke J, Hempel M, Lessel D, Kortüm F, Salpietro V, de Marco P, Guerrisi S, Torella A, Nigro V, Srour M, Turro E, Labarque V, Freson K, Piatelli G, Capra V, Kitzman JO, Meisler MH. Biallelic loss-of-function variants of SLC12A9 cause lysosome dysfunction and a syndromic neurodevelopmental disorder. Genet Med 2024; 26:101097. [PMID: 38334070 DOI: 10.1016/j.gim.2024.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
PURPOSE Pathogenic variants of FIG4 generate enlarged lysosomes and neurological and developmental disorders. To identify additional genes regulating lysosomal volume, we carried out a genome-wide activation screen to detect suppression of enlarged lysosomes in FIG4-/- cells. METHODS The CRISPR-a gene activation screen utilized sgRNAs from the promoters of protein-coding genes. Fluorescence-activated cell sorting separated cells with correction of the enlarged lysosomes from uncorrected cells. Patient variants of SLC12A9 were identified by exome or genome sequencing and studied by segregation analysis and clinical characterization. RESULTS Overexpression of SLC12A9, a solute co-transporter, corrected lysosomal swelling in FIG4-/- cells. SLC12A9 (NP_064631.2) colocalized with LAMP2 at the lysosome membrane. Biallelic variants of SLC12A9 were identified in 3 unrelated probands with neurodevelopmental disorders. Common features included intellectual disability, skeletal and brain structural abnormalities, congenital heart defects, and hypopigmented hair. Patient 1 was homozygous for nonsense variant p.(Arg615∗), patient 2 was compound heterozygous for p.(Ser109Lysfs∗20) and a large deletion, and proband 3 was compound heterozygous for p.(Glu290Glyfs∗36) and p.(Asn552Lys). Fibroblasts from proband 1 contained enlarged lysosomes that were corrected by wild-type SLC12A9 cDNA. Patient variant p.(Asn552Lys) failed to correct the lysosomal defect. CONCLUSION Impaired function of SLC12A9 results in enlarged lysosomes and a recessive disorder with a recognizable neurodevelopmental phenotype.
Collapse
Affiliation(s)
- Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre (MUHC), Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Young N Park
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Guy M Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | | | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Jonas Denecke
- University Children's Hospital, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | | | | - Annalaura Torella
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy; Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy; Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Myriam Srour
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, QC, Canada; McGill University Health Center (MUHC) Research Institute, Montreal, QC, Canada; Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Ernest Turro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Veerle Labarque
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium; Paediatric Hemato-Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Kathleen Freson
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Gianluca Piatelli
- Department of Neurosurgery, Gaslini Children's Hospital, Genoa, Italy
| | - Valeria Capra
- Genomics and Clinical Genetics, IRCCS Instituto G. Gaslini, Genoa, Italy
| | - Jacob O Kitzman
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
25
|
Roy A, Chakraborty AR, DePamphilis ML. PIKFYVE inhibitors trigger interleukin-24-dependent cell death of autophagy-dependent melanoma. Mol Oncol 2024; 18:988-1011. [PMID: 38414326 PMCID: PMC10994231 DOI: 10.1002/1878-0261.13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024] Open
Abstract
Inhibitors specifically targeting the 1-phosphatidylinositol 3-phosphate 5-kinase (PIKFYVE) disrupt lysosome homeostasis, thereby selectively terminating autophagy-dependent human cancer cells in vivo as well as in vitro without harming the viability of nonmalignant cells. To elucidate the mechanism by which PIKFYVE inhibition induces cell death, autophagy-dependent melanoma cells were compared with normal foreskin fibroblasts. RNA sequence profiling suggested that PIKFYVE inhibitors upregulated an endoplasmic reticulum (ER) stress response involving interleukin-24 (IL24; also known as MDA7) selectively in melanoma cells. Subsequent biochemical and genetic analyses confirmed these results and extended them to tumor xenografts in which tumor formation and expansion were inhibited. IL24 expression was upregulated by the DDIT3/CHOP/CEBPz transcription factor, a component of the PERK-dependent ER-stress response. Ectopic expression of IL24-induced cell death in melanoma cells, but not in foreskin fibroblasts, whereas ablation of the IL24 gene in melanoma cells prevented death. IL24 upregulation was triggered specifically by PIKFYVE inhibition. Thus, unlike thapsigargin and tunicamycin, which induce ER-stress indiscriminately, PIKFYVE inhibitors selectively terminated PIKFYVE-sensitive melanoma by inducing IL24-dependent ER-stress. Moreover, induction of cell death by a PIKFYVE inhibitor together with ectopic expression of IL24 protein was cumulative, thereby confirming the therapeutic potential of PIKFYVE inhibitors in the treatment of melanoma.
Collapse
Affiliation(s)
- Ajit Roy
- National Institute of Child Health & Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Arup R. Chakraborty
- National Institute of Child Health & Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Melvin L. DePamphilis
- National Institute of Child Health & Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
26
|
Swords SB, Jia N, Norris A, Modi J, Cai Q, Grant BD. A conserved requirement for RME-8/DNAJC13 in neuronal autophagic lysosome reformation. Autophagy 2024; 20:792-808. [PMID: 37942902 PMCID: PMC11062384 DOI: 10.1080/15548627.2023.2269028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Autophagosomes fuse with lysosomes, forming autolysosomes that degrade engulfed cargo. To maintain lysosomal capacity, autophagic lysosome reformation (ALR) must regenerate lysosomes from autolysosomes using a membrane tubule-based process. Maintaining lysosomal capacity is required to maintain cellular health, especially in neurons where lysosomal dysfunction has been repeatedly implicated in neurodegenerative disease. The DNA-J domain HSC70 co-chaperone RME-8/DNAJC13 has been linked to endosomal coat protein regulation and to neurological disease. We report new analysis of the requirements for the RME-8/DNAJC13 protein in neurons, focusing on intact C. elegans mechanosensory neurons, and primary mouse cortical neurons in culture. Loss of RME-8/DNAJC13 in both systems results in accumulation of grossly elongated autolysosomal tubules. Further C. elegans analysis revealed a similar autolysosome tubule accumulation defect in mutants known to be required for ALR in mammals, including mutants lacking bec-1/BECN1/Beclin1 and vps-15/PIK3R4/p150 that regulate the class III phosphatidylinositol 3-kinase (PtdIns3K) VPS-34, and dyn-1/dynamin that severs ALR tubules. Clathrin is also an important ALR regulator implicated in autolysosome tubule formation and release. In C. elegans we found that loss of RME-8 causes severe depletion of clathrin from neuronal autolysosomes, a phenotype shared with bec-1 and vps-15 mutants. We conclude that RME-8/DNAJC13 plays a previously unrecognized role in ALR, likely affecting autolysosome tubule severing. Additionally, in both systems, loss of RME-8/DNAJC13 reduced macroautophagic/autophagic flux, suggesting feedback regulation from ALR to autophagy. Our results connecting RME-8/DNAJC13 to ALR and autophagy provide a potential mechanism by which RME-8/DNAJC13 could influence neuronal health and the progression of neurodegenerative disease.Abbreviation: ALR, autophagic lysosome reformation; ATG-13/EPG-1, AuTophaGy (yeast Atg homolog)-13; ATG-18, AuTophaGy (yeast Atg homolog)-18; AV, autophagic vacuole; CLIC-1, Clathrin Light Chain-1; EPG-3, Ectopic P Granules-3; EPG-6, Ectopic P Granules-6; LGG-1, LC3, GABARAP and GATE-16 family-1; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; PD, Parkinson disease; PtdIns3P, phosphatidylinositol-3-phosphate; PtdIns(4,5)P2, phosphatidylinositol-4,5-bisphosphate; RME-8, Receptor Mediated Endocytosis-8; SNX-1, Sorting NeXin-1; VPS-34, related to yeast Vacuolar Protein Sorting factor-34.
Collapse
Affiliation(s)
- Sierra B. Swords
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Nuo Jia
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Anne Norris
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Jil Modi
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Qian Cai
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
- Center for Lipid Research, New Brunswick, NJ, USA
| |
Collapse
|
27
|
Cheng C, Hu J, Mannan R, Bhattacharyya R, Rossiter NJ, Magnuson B, Wisniewski JP, Zheng Y, Xiao L, Li C, Awad D, He T, Bao Y, Zhang Y, Cao X, Wang Z, Mehra R, Morlacchi P, Sahai V, di Magliano MP, Shah YM, Ding K, Qiao Y, Lyssiotis CA, Chinnaiyan AM. Targeting PIKfyve-driven lipid homeostasis as a metabolic vulnerability in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585580. [PMID: 38562800 PMCID: PMC10983929 DOI: 10.1101/2024.03.18.585580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) subsists in a nutrient-deregulated microenvironment, making it particularly susceptible to treatments that interfere with cancer metabolism12. For example, PDAC utilizes and is dependent on high levels of autophagy and other lysosomal processes3-5. Although targeting these pathways has shown potential in preclinical studies, progress has been hampered by the challenge of identifying and characterizing favorable targets for drug development6. Here, we characterize PIKfyve, a lipid kinase integral to lysosomal functioning7, as a novel and targetable vulnerability in PDAC. In human patient and murine PDAC samples, we discovered that PIKFYVE is overexpressed in PDAC cells compared to adjacent normal cells. Employing a genetically engineered mouse model, we established the essential role of PIKfyve in PDAC progression. Further, through comprehensive metabolic analyses, we found that PIKfyve inhibition obligated PDAC to upregulate de novo lipid synthesis, a relationship previously undescribed. PIKfyve inhibition triggered a distinct lipogenic gene expression and metabolic program, creating a dependency on de novo lipid metabolism pathways, by upregulating genes such as FASN and ACACA. In PDAC, the KRAS-MAPK signaling pathway is a primary driver of de novo lipid synthesis, specifically enhancing FASN and ACACA levels. Accordingly, the simultaneous targeting of PIKfyve and KRAS-MAPK resulted in the elimination of tumor burden in a syngeneic orthotopic model and tumor regression in a xenograft model of PDAC. Taken together, these studies suggest that disrupting lipid metabolism through PIKfyve inhibition induces synthetic lethality in conjunction with KRAS-MAPK-directed therapies for PDAC.
Collapse
Affiliation(s)
- Caleb Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Jing Hu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PRC
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rupam Bhattacharyya
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J Rossiter
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Brian Magnuson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jasmine P Wisniewski
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Chungen Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PRC
| | - Dominik Awad
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, PRC
| | - Yi Bao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PRC
| | - Rohit Mehra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Vaibhav Sahai
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PRC
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
28
|
Boretto C, Actis C, Faris P, Cordero F, Beccuti M, Ferrero G, Muzio G, Moccia F, Autelli R. Tamoxifen Activates Transcription Factor EB and Triggers Protective Autophagy in Breast Cancer Cells by Inducing Lysosomal Calcium Release: A Gateway to the Onset of Endocrine Resistance. Int J Mol Sci 2023; 25:458. [PMID: 38203629 PMCID: PMC10779225 DOI: 10.3390/ijms25010458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Among the several mechanisms accounting for endocrine resistance in breast cancer, autophagy has emerged as an important player. Previous reports have evidenced that tamoxifen (Tam) induces autophagy and activates transcription factor EB (TFEB), which regulates the expression of genes controlling autophagy and lysosomal biogenesis. However, the mechanisms by which this occurs have not been elucidated as yet. This investigation aims at dissecting how TFEB is activated and contributes to Tam resistance in luminal A breast cancer cells. TFEB was overexpressed and prominently nuclear in Tam-resistant MCF7 cells (MCF7-TamR) compared with their parental counterpart, and this was not dependent on alterations of its nucleo-cytoplasmic shuttling. Tam promoted the release of lysosomal Ca2+ through the major transient receptor potential cation channel mucolipin subfamily member 1 (TRPML1) and two-pore channels (TPCs), which caused the nuclear translocation and activation of TFEB. Consistently, inhibiting lysosomal calcium release restored the susceptibility of MCF7-TamR cells to Tam. Our findings demonstrate that Tam drives the nuclear relocation and transcriptional activation of TFEB by triggering the release of Ca2+ from the acidic compartment, and they suggest that lysosomal Ca2+ channels may represent new druggable targets to counteract the onset of autophagy-mediated endocrine resistance in luminal A breast cancer cells.
Collapse
Affiliation(s)
- Cecilia Boretto
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (C.B.); (C.A.); (G.F.); (G.M.)
| | - Chiara Actis
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (C.B.); (C.A.); (G.F.); (G.M.)
| | - Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Francesca Cordero
- Department of Computer Science, University of Turin, 10149 Turin, Italy; (F.C.); (M.B.)
| | - Marco Beccuti
- Department of Computer Science, University of Turin, 10149 Turin, Italy; (F.C.); (M.B.)
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (C.B.); (C.A.); (G.F.); (G.M.)
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (C.B.); (C.A.); (G.F.); (G.M.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Riccardo Autelli
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (C.B.); (C.A.); (G.F.); (G.M.)
| |
Collapse
|
29
|
Tan JX, Finkel T. Lysosomes in senescence and aging. EMBO Rep 2023; 24:e57265. [PMID: 37811693 PMCID: PMC10626421 DOI: 10.15252/embr.202357265] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Dysfunction of lysosomes, the primary hydrolytic organelles in animal cells, is frequently associated with aging and age-related diseases. At the cellular level, lysosomal dysfunction is strongly linked to cellular senescence or the induction of cell death pathways. However, the precise mechanisms by which lysosomal dysfunction participates in these various cellular or organismal phenotypes have remained elusive. The ability of lysosomes to degrade diverse macromolecules including damaged proteins and organelles puts lysosomes at the center of multiple cellular stress responses. Lysosomal activity is tightly regulated by many coordinated cellular processes including pathways that function inside and outside of the organelle. Here, we collectively classify these coordinated pathways as the lysosomal processing and adaptation system (LYPAS). We review evidence that the LYPAS is upregulated by diverse cellular stresses, its adaptability regulates senescence and cell death decisions, and it can form the basis for therapeutic manipulation for a wide range of age-related diseases and potentially for aging itself.
Collapse
Affiliation(s)
- Jay Xiaojun Tan
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Toren Finkel
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| |
Collapse
|
30
|
Rizalar FS, Lucht MT, Petzoldt A, Kong S, Sun J, Vines JH, Telugu NS, Diecke S, Kaas T, Bullmann T, Schmied C, Löwe D, King JS, Cho W, Hallermann S, Puchkov D, Sigrist SJ, Haucke V. Phosphatidylinositol 3,5-bisphosphate facilitates axonal vesicle transport and presynapse assembly. Science 2023; 382:223-230. [PMID: 37824668 PMCID: PMC10938084 DOI: 10.1126/science.adg1075] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/16/2023] [Indexed: 10/14/2023]
Abstract
Neurons relay information via specialized presynaptic compartments for neurotransmission. Unlike conventional organelles, the specialized apparatus characterizing the neuronal presynapse must form de novo. How the components for presynaptic neurotransmission are transported and assembled is poorly understood. Our results show that the rare late endosomal signaling lipid phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] directs the axonal cotransport of synaptic vesicle and active zone proteins in precursor vesicles in human neurons. Precursor vesicles are distinct from conventional secretory organelles, endosomes, and degradative lysosomes and are transported by coincident detection of PI(3,5)P2 and active ARL8 via kinesin KIF1A to the presynaptic compartment. Our findings identify a crucial mechanism that mediates the delivery of synaptic vesicle and active zone proteins to developing synapses.
Collapse
Affiliation(s)
- Filiz Sila Rizalar
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Max T. Lucht
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Astrid Petzoldt
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Shuhan Kong
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Jiachen Sun
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - James H. Vines
- School of Biosciences, University of Sheffield, Firth Court Western Bank, Sheffield S10 2TN, UK
| | - Narasimha Swamy Telugu
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Technology Platform Pluripotent Stem Cells, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Sebastian Diecke
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Technology Platform Pluripotent Stem Cells, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Thomas Kaas
- Leipzig University, Carl-Ludwig-Institute of Physiology, Faculty of Medicine, 04103 Leipzig, Germany
| | - Torsten Bullmann
- Leipzig University, Carl-Ludwig-Institute of Physiology, Faculty of Medicine, 04103 Leipzig, Germany
| | - Christopher Schmied
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Delia Löwe
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Jason S. King
- School of Biosciences, University of Sheffield, Firth Court Western Bank, Sheffield S10 2TN, UK
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Stefan Hallermann
- Leipzig University, Carl-Ludwig-Institute of Physiology, Faculty of Medicine, 04103 Leipzig, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Stephan J. Sigrist
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
- Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
31
|
Rivero-Ríos P, Weisman LS. A signaling lipid drives synapse formation. Science 2023; 382:155-156. [PMID: 37824634 DOI: 10.1126/science.adk5037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Phosphatidylinositol 3,5-bisphosphate enables transport of proteins to synaptic sites.
Collapse
Affiliation(s)
- Pilar Rivero-Ríos
- Life Sciences Institute, University of Michigan-Ann Arbor, Ann Arbor, MI, USA
| | - Lois S Weisman
- Life Sciences Institute, University of Michigan-Ann Arbor, Ann Arbor, MI, USA
| |
Collapse
|
32
|
Tsukahara T, Kethireddy S, Bonefas K, Chen A, Sutton BLM, Dou Y, Iwase S, Sutton MA. Division of labor among H3K4 Methyltransferases Defines Distinct Facets of Homeostatic Plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558734. [PMID: 37790395 PMCID: PMC10542164 DOI: 10.1101/2023.09.20.558734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Heterozygous mutations in any of the six H3K4 methyltransferases (KMT2s) result in monogenic neurodevelopmental disorders, indicating nonredundant yet poorly understood roles of this enzyme family in neurodevelopment. Recent evidence suggests that histone methyltransferase activity may not be central to KMT2 functions; however, the enzymatic activity is evolutionarily conserved, implicating the presence of selective pressure to maintain the catalytic activity. Here, we show that H3K4 methylation is dynamically regulated during prolonged alteration of neuronal activity. The perturbation of H3K4me by the H3.3K4M mutant blocks synaptic scaling, a form of homeostatic plasticity that buffers the impact of prolonged reductions or increases in network activity. Unexpectedly, we found that the six individual enzymes are all necessary for synaptic scaling and that the roles of KMT2 enzymes segregate into evolutionary-defined subfamilies: KMT2A and KMT2B (fly-Trx homologs) for synaptic downscaling, KMT2C and KMT2D (Trr homologs) for upscaling, and KMT2F and KMT2G (dSet homologs) for both directions. Selective blocking of KMT2A enzymatic activity by a small molecule and targeted disruption of the enzymatic domain both blocked the synaptic downscaling and interfered with the activity-dependent transcriptional program. Furthermore, our study revealed specific phases of synaptic downscaling, i.e., induction and maintenance, in which KMT2A and KMT2B play distinct roles. These results suggest that mammalian brains have co-opted intricate H3K4me installation to achieve stability of the expanding neuronal circuits.
Collapse
Affiliation(s)
- Takao Tsukahara
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Saini Kethireddy
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan
| | - Katherine Bonefas
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Alex Chen
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Brendan LM Sutton
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Yali Dou
- Department of Medicine and Department of Biochemistry and Molecular Medicine, Keck School of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Shigeki Iwase
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Michael A. Sutton
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
33
|
Li C, Qiao Y, Jiang X, Liu L, Zheng Y, Qiu Y, Cheng C, Zhou F, Zhou Y, Huang W, Ren X, Wang Y, Wang Z, Chinnaiyan AM, Ding K. Discovery of a First-in-Class Degrader for the Lipid Kinase PIKfyve. J Med Chem 2023; 66:12432-12445. [PMID: 37605297 PMCID: PMC10510382 DOI: 10.1021/acs.jmedchem.3c00912] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 08/23/2023]
Abstract
The phosphoinositide kinase PIKfyve has emerged as a new potential therapeutic target in various cancers. However, limited clinical progress has been achieved with PIKfyve inhibitors. Here, we report the discovery of a first-in-class PIKfyve degrader 12d (PIK5-12d) by employing the proteolysis-targeting chimera approach. PIK5-12d potently degraded PIKfyve protein with a DC50 value of 1.48 nM and a Dmax value of 97.7% in prostate cancer VCaP cells. Mechanistic studies revealed that it selectively induced PIKfyve degradation in a VHL- and proteasome-dependent manner. PIKfyve degradation by PIK5-12d caused massive cytoplasmic vacuolization and blocked autophagic flux in multiple prostate cancer cell lines. Importantly, PIK5-12d was more effective in suppressing the growth of prostate cancer cells than the parent inhibitor and exerted prolonged inhibition of downstream signaling. Further, intraperitoneal administration of PIK5-12d exhibited potent PIKfyve degradation and suppressed tumor proliferation in vivo. Overall, PIK5-12d is a valuable chemical tool for exploring PIKfyve-based targeted therapy.
Collapse
Affiliation(s)
- Chungen Li
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, #345 Lingling Roadd, Shanghai 200032, People’s Republic of China
| | - Yuanyuan Qiao
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xia Jiang
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lianchao Liu
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, #345 Lingling Roadd, Shanghai 200032, People’s Republic of China
| | - Yang Zheng
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yudi Qiu
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, #345 Lingling Roadd, Shanghai 200032, People’s Republic of China
| | - Caleb Cheng
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fengtao Zhou
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
| | - Yang Zhou
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
| | - Weixue Huang
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, #345 Lingling Roadd, Shanghai 200032, People’s Republic of China
| | - Xiaomei Ren
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, #345 Lingling Roadd, Shanghai 200032, People’s Republic of China
| | - Yuzhuo Wang
- The
Vancouver Prostate Centre, Vancouver General Hospital and Department
of Urologic Sciences, The University of
British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| | - Zhen Wang
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, #345 Lingling Roadd, Shanghai 200032, People’s Republic of China
| | - Arul M. Chinnaiyan
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Howard
Hughes Medical Institute, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Urology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ke Ding
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, #345 Lingling Roadd, Shanghai 200032, People’s Republic of China
- Institute
of Basic Medicine and Cancer (IBMC), Chinese
Academy of Sciences, Hangzhou, Zhejiang 310022, People’s Republic of China
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
| |
Collapse
|
34
|
Weckerly CC, Hammond GR. Molding a PI(3,5)P2 biosensor. J Cell Biol 2023; 222:e202308004. [PMID: 37578524 PMCID: PMC10424508 DOI: 10.1083/jcb.202308004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
The lipid phosphatidylinositol 3,5-bisphosphate-PI(3,5)P2-is known to be a key regulator of cellular traffic in health and disease, but its cellular localization was somewhat enigmatic until now, with the discovery of a new PI(3,5)P2 biosensor reported in this issue of JCB by Vines et al. (2023. J. Cell Biol.https://doi.org/10.1083/jcb.202209077).
Collapse
Affiliation(s)
- Claire C. Weckerly
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gerald R.V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Huda M, Bektas SN, Bekdas B, Caydasi AK. The signalling lipid PI3,5P 2 is essential for timely mitotic exit. Open Biol 2023; 13:230125. [PMID: 37751887 PMCID: PMC10522413 DOI: 10.1098/rsob.230125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/15/2023] [Indexed: 09/28/2023] Open
Abstract
Coordination of mitotic exit with chromosome segregation is key for successful mitosis. Mitotic exit in budding yeast is executed by the mitotic exit network (MEN), which is negatively regulated by the spindle position checkpoint (SPOC). SPOC kinase Kin4 is crucial for SPOC activation in response to spindle positioning defects. Here, we report that the lysosomal signalling lipid phosphatidylinositol-3,5-bisphosphate (PI3,5P2) has an unanticipated role in the timely execution of mitotic exit. We show that the lack of PI3,5P2 causes a delay in mitotic exit, whereas elevated levels of PI3,5P2 accelerates mitotic exit in mitotic exit defective cells. Our data indicate that PI3,5P2 promotes mitotic exit in part through impairment of Kin4. This process is largely dependent on the known PI3,5P2 effector protein Atg18. Our work thus uncovers a novel link between PI3,5P2 and mitotic exit.
Collapse
Affiliation(s)
- Mariam Huda
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Seyma Nur Bektas
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Baris Bekdas
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Ayse Koca Caydasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| |
Collapse
|
36
|
Abstract
Phosphoinositides (PIs) are phospholipids derived from phosphatidylinositol. PIs are regulated via reversible phosphorylation, which is directed by the opposing actions of PI kinases and phosphatases. PIs constitute a minor fraction of the total cellular lipid pool but play pleiotropic roles in multiple aspects of cell biology. Genetic mutations of PI regulatory enzymes have been identified in rare congenital developmental syndromes, including ciliopathies, and in numerous human diseases, such as cancer and metabolic and neurological disorders. Accordingly, PI regulatory enzymes have been targeted in the design of potential therapeutic interventions for human diseases. Recent advances place PIs as central regulators of membrane dynamics within functionally distinct subcellular compartments. This brief review focuses on the emerging role PIs play in regulating cell signaling within the primary cilium and in directing transfer of molecules at interorganelle membrane contact sites and identifies new roles for PIs in subcellular spaces.
Collapse
Affiliation(s)
- Elizabeth Michele Davies
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Christina Anne Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Harald Alfred Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research. The Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
| |
Collapse
|
37
|
Cao X, Lenk GM, Meisler MH. Altered phenotypes due to genetic interaction between the mouse phosphoinositide biosynthesis genes Fig4 and Pip4k2c. G3 (BETHESDA, MD.) 2023; 13:jkad007. [PMID: 36691351 PMCID: PMC10411592 DOI: 10.1093/g3journal/jkad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/25/2023]
Abstract
Loss-of-function mutations of FIG4 are responsible for neurological disorders in human and mouse that result from reduced abundance of the signaling lipid PI(3,5)P2. In contrast, loss-of-function mutations of the phosphoinositide kinase PIP4K2C result in elevated abundance of PI(3,5)P2. These opposing effects on PI(3,5)P2 suggested that we might be able to compensate for deficiency of FIG4 by reducing expression of PIP4K2C. To test this hypothesis in a whole animal model, we generated triallelic mice with genotype Fig 4-/-, Pip4k2c+/-; these mice are null for Fig 4 and haploinsufficient for Pip4k2c. The neonatal lethality of Fig 4 null mice in the C57BL/6J strain background was rescued by reduced expression of Pip4k2c. The lysosome enlargement characteristic of Fig 4 null cells was also reduced by heterozygous loss of Pip4k2c. The data demonstrate interaction between these two genes, and suggest that inhibition of the kinase PIPK4C2 could be a target for treatment of FIG4 deficiency disorders such as Charcot-Marie-Tooth Type 4J and Yunis-Varón Syndrome.
Collapse
Affiliation(s)
- Xu Cao
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Guy M Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| |
Collapse
|
38
|
Barlow-Busch I, Shaw AL, Burke JE. PI4KA and PIKfyve: Essential phosphoinositide signaling enzymes involved in myriad human diseases. Curr Opin Cell Biol 2023; 83:102207. [PMID: 37453227 DOI: 10.1016/j.ceb.2023.102207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Lipid phosphoinositides are master regulators of multiple cellular functions. Misregulation of the activity of the lipid kinases that generate phosphoinositides is causative of human diseases, including cancer, neurodegeneration, developmental disorders, immunodeficiencies, and inflammatory disease. This review will present a summary of recent discoveries on the roles of two phosphoinositide kinases (PI4KA and PIKfyve), which have emerged as targets for therapeutic intervention. Phosphatidylinositol 4-kinase alpha (PI4KA) generates PI4P at the plasma membrane and PIKfyve generates PI(3,5)P2 at endo-lysosomal membranes. Both of these enzymes exist as multi-protein mega complexes that are under myriad levels of regulation. Human disease can be caused by either loss or gain-of-function of these complexes, so understanding how they are regulated will be essential in the design of therapeutics. We will summarize insight into how these enzymes are regulated by their protein-binding partners, with a major focus on the unanswered questions of how their activity is controlled.
Collapse
Affiliation(s)
- Isobel Barlow-Busch
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Alexandria L Shaw
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
39
|
Char R, Liu Z, Jacqueline C, Davieau M, Delgado MG, Soufflet C, Fallet M, Chasson L, Chapuy R, Camosseto V, Strock E, Rua R, Almeida CR, Su B, Lennon-Duménil AM, Nal B, Roquilly A, Liang Y, Méresse S, Gatti E, Pierre P. RUFY3 regulates endolysosomes perinuclear positioning, antigen presentation and migration in activated phagocytes. Nat Commun 2023; 14:4290. [PMID: 37463962 PMCID: PMC10354229 DOI: 10.1038/s41467-023-40062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Endo-lysosomes transport along microtubules and clustering in the perinuclear area are two necessary steps for microbes to activate specialized phagocyte functions. We report that RUN and FYVE domain-containing protein 3 (RUFY3) exists as two alternative isoforms distinguishable by the presence of a C-terminal FYVE domain and by their affinity for phosphatidylinositol 3-phosphate on endosomal membranes. The FYVE domain-bearing isoform (iRUFY3) is preferentially expressed in primary immune cells and up-regulated upon activation by microbes and Interferons. iRUFY3 is necessary for ARL8b + /LAMP1+ endo-lysosomes positioning in the pericentriolar organelles cloud of LPS-activated macrophages. We show that iRUFY3 controls macrophages migration, MHC II presentation and responses to Interferon-γ, while being important for intracellular Salmonella replication. Specific inactivation of rufy3 in phagocytes leads to aggravated pathologies in mouse upon LPS injection or bacterial pneumonia. This study highlights the role of iRUFY3 in controlling endo-lysosomal dynamics, which contributes to phagocyte activation and immune response regulation.
Collapse
Affiliation(s)
- Rémy Char
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Zhuangzhuang Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, PR China
| | - Cédric Jacqueline
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR1064, F-44000, Nantes, France
| | - Marion Davieau
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR1064, F-44000, Nantes, France
| | - Maria-Graciela Delgado
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France
| | - Clara Soufflet
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Mathieu Fallet
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Lionel Chasson
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Raphael Chapuy
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Voahirana Camosseto
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Eva Strock
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Rejane Rua
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Catarina R Almeida
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Bing Su
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | | | - Beatrice Nal
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Antoine Roquilly
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR1064, F-44000, Nantes, France
| | - Yinming Liang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, PR China
| | - Stéphane Méresse
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Evelina Gatti
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France.
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Philippe Pierre
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France.
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| |
Collapse
|
40
|
Rodríguez-Solana P, Arruti N, Nieves-Moreno M, Mena R, Rodríguez-Jiménez C, Guerrero-Carretero M, Acal JC, Blasco J, Peralta JM, Del Pozo Á, Montaño VEF, Dios-Blázquez LD, Fernández-Alcalde C, González-Atienza C, Sánchez-Cazorla E, Gómez-Cano MDLÁ, Delgado-Mora L, Noval S, Vallespín E. Whole Exome Sequencing of 20 Spanish Families: Candidate Genes for Non-Syndromic Pediatric Cataracts. Int J Mol Sci 2023; 24:11429. [PMID: 37511188 PMCID: PMC10380485 DOI: 10.3390/ijms241411429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Non-syndromic pediatric cataracts are defined as opacification of the crystalline lens that occurs during the first years of life without affecting other organs. Given that this disease is one of the most frequent causes of reversible blindness in childhood, the main objective of this study was to propose new responsible gene candidates that would allow a more targeted genetic approach and expand our genetic knowledge about the disease. We present a whole exome sequencing (WES) study of 20 Spanish families with non-syndromic pediatric cataracts and a previous negative result on an ophthalmology next-generation sequencing panel. After ophthalmological evaluation and collection of peripheral blood samples from these families, WES was performed. We were able to reach a genetic diagnosis in 10% of the families analyzed and found genes that could cause pediatric cataracts in 35% of the cohort. Of the variants found, 18.2% were classified as pathogenic, 9% as likely pathogenic, and 72.8% as variants of uncertain significance. However, we did not find conclusive results in 55% of the families studied, which suggests further studies are needed. The results of this WES study allow us to propose LONP1, ACACA, TRPM1, CLIC5, HSPE1, ODF1, PIKFYVE, and CHMP4A as potential candidates to further investigate for their role in pediatric cataracts, and AQP5 and locus 2q37 as causal genes.
Collapse
Affiliation(s)
- Patricia Rodríguez-Solana
- Molecular Ophthalmology Section, Institute of Medical and Molecular Genetics (INGEMM), IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (P.R.-S.); (R.M.); (C.R.-J.); (V.E.F.M.); (C.G.-A.); (E.S.-C.)
| | - Natalia Arruti
- Department of Pediatric Ophthalmology, IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (N.A.); (M.N.-M.); (M.G.-C.); (J.C.A.); (J.B.); (J.M.P.); (C.F.-A.); (S.N.)
- European Reference Network on Eye Diseases (ERN-EYE), La Paz University Hospital, 28046 Madrid, Spain
| | - María Nieves-Moreno
- Department of Pediatric Ophthalmology, IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (N.A.); (M.N.-M.); (M.G.-C.); (J.C.A.); (J.B.); (J.M.P.); (C.F.-A.); (S.N.)
- European Reference Network on Eye Diseases (ERN-EYE), La Paz University Hospital, 28046 Madrid, Spain
| | - Rocío Mena
- Molecular Ophthalmology Section, Institute of Medical and Molecular Genetics (INGEMM), IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (P.R.-S.); (R.M.); (C.R.-J.); (V.E.F.M.); (C.G.-A.); (E.S.-C.)
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (Á.D.P.); (M.d.L.Á.G.-C.); (L.D.-M.)
| | - Carmen Rodríguez-Jiménez
- Molecular Ophthalmology Section, Institute of Medical and Molecular Genetics (INGEMM), IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (P.R.-S.); (R.M.); (C.R.-J.); (V.E.F.M.); (C.G.-A.); (E.S.-C.)
| | - Marta Guerrero-Carretero
- Department of Pediatric Ophthalmology, IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (N.A.); (M.N.-M.); (M.G.-C.); (J.C.A.); (J.B.); (J.M.P.); (C.F.-A.); (S.N.)
| | - Juan Carlos Acal
- Department of Pediatric Ophthalmology, IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (N.A.); (M.N.-M.); (M.G.-C.); (J.C.A.); (J.B.); (J.M.P.); (C.F.-A.); (S.N.)
| | - Joana Blasco
- Department of Pediatric Ophthalmology, IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (N.A.); (M.N.-M.); (M.G.-C.); (J.C.A.); (J.B.); (J.M.P.); (C.F.-A.); (S.N.)
| | - Jesús M. Peralta
- Department of Pediatric Ophthalmology, IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (N.A.); (M.N.-M.); (M.G.-C.); (J.C.A.); (J.B.); (J.M.P.); (C.F.-A.); (S.N.)
| | - Ángela Del Pozo
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (Á.D.P.); (M.d.L.Á.G.-C.); (L.D.-M.)
- Clinical Bioinformatics Section, Institute of Medical and Molecular Genetics (INGEMM), IdiPaz, CIBERER, La Paz University Hospital, 28046 Madrid, Spain;
| | - Victoria E. F. Montaño
- Molecular Ophthalmology Section, Institute of Medical and Molecular Genetics (INGEMM), IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (P.R.-S.); (R.M.); (C.R.-J.); (V.E.F.M.); (C.G.-A.); (E.S.-C.)
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (Á.D.P.); (M.d.L.Á.G.-C.); (L.D.-M.)
| | - Lucía De Dios-Blázquez
- Clinical Bioinformatics Section, Institute of Medical and Molecular Genetics (INGEMM), IdiPaz, CIBERER, La Paz University Hospital, 28046 Madrid, Spain;
| | - Celia Fernández-Alcalde
- Department of Pediatric Ophthalmology, IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (N.A.); (M.N.-M.); (M.G.-C.); (J.C.A.); (J.B.); (J.M.P.); (C.F.-A.); (S.N.)
| | - Carmen González-Atienza
- Molecular Ophthalmology Section, Institute of Medical and Molecular Genetics (INGEMM), IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (P.R.-S.); (R.M.); (C.R.-J.); (V.E.F.M.); (C.G.-A.); (E.S.-C.)
| | - Eloísa Sánchez-Cazorla
- Molecular Ophthalmology Section, Institute of Medical and Molecular Genetics (INGEMM), IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (P.R.-S.); (R.M.); (C.R.-J.); (V.E.F.M.); (C.G.-A.); (E.S.-C.)
| | - María de Los Ángeles Gómez-Cano
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (Á.D.P.); (M.d.L.Á.G.-C.); (L.D.-M.)
- Clinical Genetics Section, Institute of Medical and Molecular Genetics (INGEMM), IdiPaz, CIBERER, La Paz University Hospital, 28046 Madrid, Spain
| | - Luna Delgado-Mora
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (Á.D.P.); (M.d.L.Á.G.-C.); (L.D.-M.)
- Clinical Genetics Section, Institute of Medical and Molecular Genetics (INGEMM), IdiPaz, CIBERER, La Paz University Hospital, 28046 Madrid, Spain
| | - Susana Noval
- Department of Pediatric Ophthalmology, IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (N.A.); (M.N.-M.); (M.G.-C.); (J.C.A.); (J.B.); (J.M.P.); (C.F.-A.); (S.N.)
- European Reference Network on Eye Diseases (ERN-EYE), La Paz University Hospital, 28046 Madrid, Spain
| | - Elena Vallespín
- Molecular Ophthalmology Section, Institute of Medical and Molecular Genetics (INGEMM), IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (P.R.-S.); (R.M.); (C.R.-J.); (V.E.F.M.); (C.G.-A.); (E.S.-C.)
- European Reference Network on Eye Diseases (ERN-EYE), La Paz University Hospital, 28046 Madrid, Spain
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (Á.D.P.); (M.d.L.Á.G.-C.); (L.D.-M.)
| |
Collapse
|
41
|
Cao X, Lenk GM, Mikusevic V, Mindell JA, Meisler MH. The chloride antiporter CLCN7 is a modifier of lysosome dysfunction in FIG 4 and VAC14 mutants. PLoS Genet 2023; 19:e1010800. [PMID: 37363915 DOI: 10.1371/journal.pgen.1010800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The phosphatase FIG 4 and the scaffold protein VAC14 function in the biosynthesis of PI(3,5)P2, a signaling lipid that inhibits the lysosomal chloride transporter ClC-7. Loss-of-function mutations of FIG 4 and VAC14 reduce PI(3,5)P2 and result in lysosomal disorders characterized by accumulation of enlarged lysosomes and neurodegeneration. Similarly, a gain of function mutation of CLCN7 encoding ClC-7 also results in enlarged lysosomes. We therefore tested the ability of reduced CLCN7 expression to compensate for loss of FIG 4 or VAC14. Knock-out of CLCN7 corrected lysosomal swelling and partially corrected lysosomal hyperacidification in FIG 4 null cell cultures. Knockout of the related transporter CLCN6 (ClC-6) in FIG 4 null cells did not affect the lysosome phenotype. In the Fig 4 null mouse, reduction of ClC-7 by expression of the dominant negative CLCN7 variant p.Gly215Arg improved growth and neurological function and increased lifespan by 20%. These observations demonstrate a role for the CLCN7 chloride transporter in pathogenesis of FIG 4 and VAC14 disorders. Reduction of CLCN7 provides a new target for treatment of FIG 4 and VAC14 deficiencies that lack specific therapies, such as Charcot-Marie-Tooth Type 4J and Yunis-Varón syndrome.
Collapse
Affiliation(s)
- Xu Cao
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Guy M Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Vedrana Mikusevic
- Membrane Transport Biophysics Section, National Institutes of Neurological Disorders and Stroke, Bethesda, Maryland, United States of America
| | - Joseph A Mindell
- Membrane Transport Biophysics Section, National Institutes of Neurological Disorders and Stroke, Bethesda, Maryland, United States of America
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
42
|
Flickinger KM, Wilson KM, Rossiter NJ, Hunger AL, Lee TD, Hall MD, Cantor JR. Conditional lethality profiling reveals anticancer mechanisms of action and drug-nutrient interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.04.543621. [PMID: 37333068 PMCID: PMC10274668 DOI: 10.1101/2023.06.04.543621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chemical screening studies have identified drug sensitivities across hundreds of cancer cell lines but most putative therapeutics fail to translate. Discovery and development of drug candidates in models that more accurately reflect nutrient availability in human biofluids may help in addressing this major challenge. Here we performed high-throughput screens in conventional versus Human Plasma-Like Medium (HPLM). Sets of conditional anticancer compounds span phases of clinical development and include non-oncology drugs. Among these, we characterize a unique dual-mechanism of action for brivudine, an agent otherwise approved for antiviral treatment. Using an integrative approach, we find that brivudine affects two independent targets in folate metabolism. We also traced conditional phenotypes for several drugs to the availability of nucleotide salvage pathway substrates and verified others for compounds that seemingly elicit off-target anticancer effects. Our findings establish generalizable strategies for exploiting conditional lethality in HPLM to reveal therapeutic candidates and mechanisms of action.
Collapse
|
43
|
Roy A, Chakraborty AR, Nomanbhoy T, DePamphilis ML. PIP5K1C phosphoinositide kinase deficiency distinguishes PIKFYVE-dependent cancer cells from non-malignant cells. Autophagy 2023:1-21. [PMID: 36803256 PMCID: PMC10392749 DOI: 10.1080/15548627.2023.2182594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Although PIKFYVE phosphoinositide kinase inhibitors can selectively eliminate PIKFYVE-dependent human cancer cells in vitro and in vivo, the basis for this selectivity has remained elusive. Here we show that the sensitivity of cells to the PIKFYVE inhibitor WX8 is not linked to PIKFYVE expression, macroautophagic/autophagic flux, the BRAFV600E mutation, or ambiguous inhibitor specificity. PIKFYVE dependence results from a deficiency in the PIP5K1C phosphoinositide kinase, an enzyme required for conversion of phosphatidylinositol-4-phosphate (PtdIns4P) into phosphatidylinositol-4,5-bisphosphate (PtdIns[4,5]P2/PIP2), a phosphoinositide associated with lysosome homeostasis, endosome trafficking, and autophagy. PtdIns(4,5)P2 is produced via two independent pathways. One requires PIP5K1C; the other requires PIKFYVE and PIP4K2C to convert PtdIns3P into PtdIns(4,5)P2. In PIKFYVE-dependent cells, low concentrations of WX8 specifically inhibit PIKFYVE in situ, thereby increasing the level of its substrate PtdIns3P while suppressing PtdIns(4,5)P2 synthesis and inhibiting lysosome function and cell proliferation. At higher concentrations, WX8 inhibits both PIKFYVE and PIP4K2C in situ, which amplifies these effects to further disrupt autophagy and induce cell death. WX8 did not alter PtdIns4P levels. Consequently, inhibition of PIP5K1C in WX8-resistant cells transformed them into sensitive cells, and overexpression of PIP5K1C in WX8-sensitive cells increased their resistance to WX8. This discovery suggests that PIKFYVE-dependent cancers could be identified clinically by low levels of PIP5K1C and treated with PIKFYVE inhibitors.
Collapse
Affiliation(s)
- Ajit Roy
- Division of Developmental Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Arup R Chakraborty
- Division of Developmental Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Melvin L DePamphilis
- Division of Developmental Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
44
|
Cabral-Dias R, Antonescu CN. Control of phosphatidylinositol-3-kinase signaling by nanoscale membrane compartmentalization. Bioessays 2023; 45:e2200196. [PMID: 36567275 DOI: 10.1002/bies.202200196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 09/12/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Phosphatidylinositol-3-kinases (PI3Ks) are lipid kinases that produce 3-phosphorylated derivatives of phosphatidylinositol upon activation by various cues. These 3-phosphorylated lipids bind to various protein effectors to control many cellular functions. Lipid phosphatases such as phosphatase and tensin homolog (PTEN) terminate PI3K-derived signals and are critical to ensure appropriate signaling outcomes. Many lines of evidence indicate that PI3Ks and PTEN, as well as some specific lipid effectors are highly compartmentalized, either in plasma membrane nanodomains or in endosomal compartments. We examine the evidence for specific recruitment of PI3Ks, PTEN, and other related enzymes to membrane nanodomains and endocytic compartments. We then examine the hypothesis that scaffolding of the sources (PI3Ks), terminators (PTEN), and effectors of these lipid signals with a common plasma membrane nanodomain may achieve highly localized lipid signaling and ensure selective activation of specific effectors. This highlights the importance of spatial regulation of PI3K signaling in various physiological and disease contexts.
Collapse
Affiliation(s)
- Rebecca Cabral-Dias
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Swords S, Jia N, Norris A, Modi J, Cai Q, Grant BD. A Conserved Requirement for RME-8/DNAJC13 in Neuronal Autolysosome Reformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530319. [PMID: 36909501 PMCID: PMC10002637 DOI: 10.1101/2023.02.27.530319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Autophagosomes fuse with lysosomes, forming autolysosomes that degrade engulfed cargo. To maintain lysosomal capacity, autolysosome reformation (ALR) must regenerate lysosomes from autolysosomes using a membrane tubule-based process. Maintaining lysosomal capacity is required to maintain proteostasis and cellular health, especially in neurons where lysosomal dysfunction has been repeatedly implicated in neurodegenerative disease. Cell biological studies have linked the DNA-J domain Hsc70 co-chaperone RME-8/DNAJC13 to endosomal coat protein regulation, while human genetics studies have linked RME-8/DNAJC13 to neurological disease, including Parkinsonism and Essential Tremor. We report new analysis of the requirements for the RME-8/DNAJC13 protein in neurons, focusing on C. elegans mechanosensory neurons in the intact animal, and in primary mouse cortical neurons in culture. We find that loss of RME-8/DNAJC13 in both systems results in accumulation of grossly elongated autolysosomal tubules. Further C. elegans analysis revealed a similar autolysosome tubule accumulation defect in mutants known to be required for ALR in mammals, including bec-1/beclin and vps-15/PIK3R4/p150 that regulate type-III PI3-kinase VPS-34, and dyn-1/dynamin that severs ALR tubules. Clathrin is also an important ALR regulator implicated in autolysosome tubule formation and release. In C. elegans we found that loss of RME-8 causes severe depletion of clathrin from neuronal autolysosomes, a phenotype shared with bec-1 and vps-15 mutants. We conclude that RME-8/DNAJC13 plays a conserved but previously unrecognized role in autolysosome reformation, likely affecting ALR tubule initiation and/or severing. Additionally, in both systems, we found that loss of RME-8/DNAJC13 appeared to reduce autophagic flux, suggesting feedback regulation from ALR to autophagy. Our results connecting RME-8/DNAJC13 to ALR and autophagy provide a potential mechanism by which RME-8/DNAJC13 could influence neuronal health and the progression of neurodegenerative disease.
Collapse
Affiliation(s)
- Sierra Swords
- Department of Molecular Biology and Biochemistry Rutgers University, Piscataway, NJ USA, 08854
| | - Nuo Jia
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ USA, 08854
| | - Anne Norris
- Department of Molecular Biology and Biochemistry Rutgers University, Piscataway, NJ USA, 08854
| | - Jil Modi
- Department of Molecular Biology and Biochemistry Rutgers University, Piscataway, NJ USA, 08854
| | - Qian Cai
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ USA, 08854
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry Rutgers University, Piscataway, NJ USA, 08854
- Center for Lipid Research, New Brunswick, NJ USA 08901
| |
Collapse
|
46
|
Huang S, Baskin JM. Adding a Chemical Biology Twist to CRISPR Screening. Isr J Chem 2023; 63:e202200056. [PMID: 37588264 PMCID: PMC10427134 DOI: 10.1002/ijch.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Indexed: 11/09/2022]
Abstract
In less than a decade, CRISPR screening has revolutionized forward genetics and cell and molecular biology. Advances in screening technologies, including sgRNA libraries, Cas9-expressing cell lines, and streamlined sequencing pipelines, have democratized pooled CRISPR screens at genome-wide scale. Initially, many such screens were survival-based, identifying essential genes in physiological or perturbed processes. With the application of new chemical biology tools to CRISPR screening, the phenotypic space is no longer limited to live/dead selection or screening for levels of conventional fluorescent protein reporters. Further, the resolution has been increased from cell populations to single cells or even the subcellular level. We highlight advances in pooled CRISPR screening, powered by chemical biology, that have expanded phenotypic space, resolution, scope, and scalability as well as strengthened the CRISPR/Cas enzyme toolkit to enable biological hypothesis generation and discovery.
Collapse
Affiliation(s)
- Shiying Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853 USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
47
|
Synaptic vesicle proteins and ATG9A self-organize in distinct vesicle phases within synapsin condensates. Nat Commun 2023; 14:455. [PMID: 36709207 PMCID: PMC9884207 DOI: 10.1038/s41467-023-36081-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/16/2023] [Indexed: 01/30/2023] Open
Abstract
Ectopic expression in fibroblasts of synapsin 1 and synaptophysin is sufficient to generate condensates of vesicles highly reminiscent of synaptic vesicle (SV) clusters and with liquid-like properties. Here we show that unlike synaptophysin, other major integral SV membrane proteins fail to form condensates with synapsin, but co-assemble into the clusters formed by synaptophysin and synapsin in this ectopic expression system. Another vesicle membrane protein, ATG9A, undergoes activity-dependent exo-endocytosis at synapses, raising questions about the relation of ATG9A traffic to the traffic of SVs. We find that both in fibroblasts and in nerve terminals ATG9A does not co-assemble into synaptophysin-positive vesicle condensates but localizes on a distinct class of vesicles that also assembles with synapsin but into a distinct phase. Our findings suggest that ATG9A undergoes differential sorting relative to SV proteins and also point to a dual role of synapsin in controlling clustering at synapses of SVs and ATG9A vesicles.
Collapse
|
48
|
Llorente A, Arora GK, Grenier SF, Emerling BM. PIP kinases: A versatile family that demands further therapeutic attention. Adv Biol Regul 2023; 87:100939. [PMID: 36517396 PMCID: PMC9992244 DOI: 10.1016/j.jbior.2022.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Phosphoinositides are membrane-localized phospholipids that regulate a plethora of essential cellular processes. These lipid signaling molecules are critical for cell homeostasis and therefore their levels are strictly regulated by the coordinated action of several families of lipid kinases and phosphatases. In this review, we provide a focused perspective on the phosphatidylinositol phosphate kinase (PIPK) family and the three subfamilies that compose it: Type I PIPKs or phosphatidylinositol-4-phosphate 5-kinases (PI4P5Ks), Type II PIPKs or phosphatidylinositol-5-phosphate 4-kinases (PI5P4Ks), and Type III PIPKs or phosphatidylinositol-3-phosphate 5-kinases (PIKfyve). Each subfamily is responsible for catalyzing a hydroxyl phosphorylation on specific phosphoinositide species to generate a double phosphorylated lipid, therefore regulating the levels of both substrate and product. Here, we summarize our current knowledge about the functions and regulation of each PIPK subfamily. Further, we highlight the roles of these kinases in various in vivo genetic models and give an overview of their involvement in multiple pathological conditions. The phosphoinositide field has been long focused on targeting PI3K signaling, but growing evidence suggests that it is time to draw attention to the other phosphoinositide kinases. The discovery of the involvement of PIPKs in the pathogenesis of multiple diseases has prompted substantial efforts to turn these enzymes into pharmacological targets. An increasingly refined knowledge of the biology of PIPKs in a variety of in vitro and in vivo models will facilitate the development of effective approaches for therapeutic intervention with the potential to translate into meaningful clinical benefits for patients suffering from cancer, immunological and infectious diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Alicia Llorente
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Gurpreet K Arora
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Shea F Grenier
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Brooke M Emerling
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA.
| |
Collapse
|
49
|
Jaślan D, Ferro IF, Kudrina V, Yuan Y, Patel S, Grimm C. PI(3,5)P 2 and NAADP: Team players or lone warriors? - New insights into TPC activation modes. Cell Calcium 2023; 109:102675. [PMID: 36525777 DOI: 10.1016/j.ceca.2022.102675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
NAADP (nicotinic acid adenine dinucleotide phosphate) is a second messenger, releasing Ca2+ from acidic calcium stores such as endosomes and lysosomes. PI(3,5)P2 (phosphatidylinositol 3,5-bisphosphate) is a phospho-inositide, residing on endolysosomal membranes and likewise releasing Ca2+ from endosomes and lysosomes. Both compounds have been shown to activate endolysosomal two-pore channels (TPCs) in mammalian cells. However, their effects on ion permeability as demonstrated specifically for TPC2 differ. While PI(3,5)P2 elicits predominantly Na+-selective currents, NAADP increases the Ca2+ permeability of the channel. What happens when both compounds are applied simultaneously was unclear until recently.
Collapse
Affiliation(s)
- Dawid Jaślan
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Irene Flavia Ferro
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Veronika Kudrina
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Yu Yuan
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
50
|
Nanayakkara R, Gurung R, Rodgers SJ, Eramo MJ, Ramm G, Mitchell CA, McGrath MJ. Autophagic lysosome reformation in health and disease. Autophagy 2022:1-18. [DOI: 10.1080/15548627.2022.2128019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Randini Nanayakkara
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Rajendra Gurung
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Samuel J. Rodgers
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Matthew J. Eramo
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Christina A. Mitchell
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Meagan J. McGrath
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|