1
|
Chang X, Wang WX. Passing the Parcels: Intercellular Nanoplastics Transfer in Mussels Perna viridis with Activated Immunomodulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40238681 DOI: 10.1021/acs.est.4c14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Nanoplastics (NPs) are generally considered to have a defined intracellular fate, being difficult to excrete or transport due to their stability. This study provides the first evidence of NPs intercellular transfer in the hemocytes of green mussels (Perna viridis), which subsequently activated the immunomodulation process. NPs were predominantly internalized by granulocytes, with a portion being translocated and deposited in lysosomes, whereas those retained in endosomes were subsequently transferred to new hemocytes (mainly granulocytes). The transfer direction was driven by the intracellular NP concentration gradients. Transfer kinetics was size-dependent, with smaller-sized NPs exhibiting greater potential but a lower rate, primarily due to their specific extracellular vesicle-mediated transfer pathway. Tunneling nanotubes provided the most efficient pathway for the intercellular transfer of NPs, as their continuous membrane structure allowed direct substance exchange. Crucially, NP redistribution was accompanied by a gradient-driven transfer of mitochondria to injured hemocytes. This process alleviated stress on the overburdened hemocytes and regulated reactive oxygen species production, subsequently enhancing phagocytic activity and promoting immune responses. These findings underscore that NPs exhibit far more active behavior in the immune system than previously understood and provide new insights into how immune cells maintain the health of marine organisms in the face of NP challenges.
Collapse
Affiliation(s)
- Xinyi Chang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
2
|
Araújo TQ, Hochberg R. Ultrastructure and Function of the Stalk Gland Complex of Pompholyx faciemlarva (Rotifera: Monogononta). J Morphol 2024; 285:e70005. [PMID: 39530785 DOI: 10.1002/jmor.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Many planktonic rotifers carry their oviposited eggs until hatching. In some species, the eggs are attached to the mother via secretions from her style gland, which forms a thread that extends from her cloaca. In species of Pompholyx, the mother possesses the rare ability to change the tension on the secreted thread, which alters the proximity of the egg with respect to her body. In this study, we used behavioral observations, confocal microscopy, and transmission electron microscopy to study the functional morphology of the stalk gland, which secretes a similar thread to the style gland. Our observations reveal that six longitudinal muscles insert on a stalk-gland complex, which is a combination of a two-headed gland and an epithelial duct that connects to the posterior cloaca. The gland secretes a single, long, electron-dense thread that traverses the duct and attaches to the egg surface through the cloaca. Three retractor muscles insert on the stalk gland and function to pull the entire complex anteriorly, thereby increasing tension on the thread and moving the egg close to the mother's body. A set of three (two pairs and a single dorsal) protractor muscles antagonize these actions, and their contraction pulls the gland complex close to the cloaca, thereby releasing tension on the thread and allowing the egg to distance itself from the mother. The stalk gland complex does not appear to be homologous to the style glands of other rotifers, but we hypothesize that it functions as a form of maternal protection as is the case with style glands.
Collapse
Affiliation(s)
- Thiago Quintão Araújo
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Rick Hochberg
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
3
|
Wei S, Jiang J, Wang D, Chang J, Tian L, Yang X, Ma XR, Zhao JW, Li Y, Chang S, Chi X, Li H, Li N. GPR158 in pyramidal neurons mediates social novelty behavior via modulating synaptic transmission in male mice. Cell Rep 2024; 43:114796. [PMID: 39383040 DOI: 10.1016/j.celrep.2024.114796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/16/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024] Open
Abstract
Impairment in social communication skills is a hallmark feature of autism spectrum disorder (ASD). The role of G-protein-coupled receptor 158 (GPR158) in ASD remains largely unexplored. In this study, we observed that both constitutive and cell-/tissue-specific knockouts of Gpr158 in pyramidal neurons or the medial prefrontal cortex (mPFC) result in impaired novelty preference, while sociability remains unaffected in male mice. Notably, the loss of GPR158 leads to a significant decline in excitatory synaptic transmission, characterized by a reduction in glutamate vesicles, as well as the expression and phosphorylation of GluN2B in the mPFC. We successfully rescue the phenotype of social novelty deficits either by reintroducing GPR158 in the mPFC of Gpr158 deficient mice or by chemogenetic activation of pyramidal neurons where Gpr158 is specifically ablated. Our findings indicate that GPR158 in pyramidal neurons plays a specific role in modulating social novelty and may represent a potential target for treating social disorders.
Collapse
Affiliation(s)
- Shoupeng Wei
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jian Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Dilong Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jinlong Chang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Liusuyan Tian
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiuyan Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiao-Ru Ma
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jing-Wei Zhao
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuwen Chang
- Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xinjin Chi
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London WC1E 6BT, UK.
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China; China-UK Institute for Frontier Science, Shenzhen 518107, China.
| |
Collapse
|
4
|
Shao L, Wei H, Liu J, Ma W, Yu P, Wang M, Mao L. Graphdiyne as a Highly Efficient and Neuron-Targeted Photothermal Transducer for in Vivo Neuromodulation. ACS NANO 2024; 18:15607-15616. [PMID: 38838347 DOI: 10.1021/acsnano.4c01037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Photothermal modulation of neural activity offers a promising approach for understanding brain circuits and developing therapies for neurological disorders. However, the low neuron selectivity and inefficient light-to-heat conversion of existing photothermal nanomaterials significantly limit their potential for neuromodulation. Here, we report that graphdiyne (GDY) can be developed into an efficient neuron-targeted photothermal transducer for in vivo modulation of neuronal activity through rational surface functionalization. We functionalize GDY with polyethylene glycol (PEG) through noncovalent hydrophobic interactions, followed by antibody conjugation to specifically target the temperature-sensitive transient receptor potential cation channel subfamily V member 1 (TRPV1) on the surface of neural cells. The nanotransducer not only exhibits high photothermal conversion efficiency in the near-infrared region but also shows great TRPV1-targeting capability. This enables photothermal activation of TRPV1, leading to neurotransmitter release in cells and modulation of neural firing in living mice. With its precision and selectivity, the GDY-based transducer provides an innovative avenue for understanding brain function and developing therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Leihou Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Huan Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Helgoe J, Davy SK, Weis VM, Rodriguez-Lanetty M. Triggers, cascades, and endpoints: connecting the dots of coral bleaching mechanisms. Biol Rev Camb Philos Soc 2024; 99:715-752. [PMID: 38217089 DOI: 10.1111/brv.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
The intracellular coral-dinoflagellate symbiosis is the engine that underpins the success of coral reefs, one of the most diverse ecosystems on the planet. However, the breakdown of the symbiosis and the loss of the microalgal symbiont (i.e. coral bleaching) due to environmental changes are resulting in the rapid degradation of coral reefs globally. There is an urgent need to understand the cellular physiology of coral bleaching at the mechanistic level to help develop solutions to mitigate the coral reef crisis. Here, at an unprecedented scope, we present novel models that integrate putative mechanisms of coral bleaching within a common framework according to the triggers (initiators of bleaching, e.g. heat, cold, light stress, hypoxia, hyposalinity), cascades (cellular pathways, e.g. photoinhibition, unfolded protein response, nitric oxide), and endpoints (mechanisms of symbiont loss, e.g. apoptosis, necrosis, exocytosis/vomocytosis). The models are supported by direct evidence from cnidarian systems, and indirectly through comparative evolutionary analyses from non-cnidarian systems. With this approach, new putative mechanisms have been established within and between cascades initiated by different bleaching triggers. In particular, the models provide new insights into the poorly understood connections between bleaching cascades and endpoints and highlight the role of a new mechanism of symbiont loss, i.e. 'symbiolysosomal digestion', which is different from symbiophagy. This review also increases the approachability of bleaching physiology for specialists and non-specialists by mapping the vast landscape of bleaching mechanisms in an atlas of comprehensible and detailed mechanistic models. We then discuss major knowledge gaps and how future research may improve the understanding of the connections between the diverse cascade of cellular pathways and the mechanisms of symbiont loss (endpoints).
Collapse
Affiliation(s)
- Joshua Helgoe
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, 2701 SW Campus Way, 2403 Cordley Hall, Corvallis, OR, USA
| | - Mauricio Rodriguez-Lanetty
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, USA
| |
Collapse
|
6
|
Kirstein E, Schaudien D, Wagner M, Diebolt CM, Bozzato A, Tschernig T, Englisch CN. TRPC3 Is Downregulated in Primary Hyperparathyroidism. Int J Mol Sci 2024; 25:4392. [PMID: 38673977 PMCID: PMC11049814 DOI: 10.3390/ijms25084392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Transient receptor potential canonical sub-family channel 3 (TRPC3) is considered to play a critical role in calcium homeostasis. However, there are no established findings in this respect with regard to TRPC6. Although the parathyroid gland is a crucial organ in calcium household regulation, little is known about the protein distribution of TRPC channels-especially TRPC3 and TRPC6-in this organ. Our aim was therefore to investigate the protein expression profile of TRPC3 and TRPC6 in healthy and diseased human parathyroid glands. Surgery samples from patients with healthy parathyroid glands and from patients suffering from primary hyperparathyroidism (pHPT) were investigated by immunohistochemistry using knockout-validated antibodies against TRPC3 and TRPC6. A software-based analysis similar to an H-score was performed. For the first time, to our knowledge, TRPC3 and TRPC6 protein expression is described here in the parathyroid glands. It is found in both chief and oxyphilic cells. Furthermore, the TRPC3 staining score in diseased tissue (pHPT) was statistically significantly lower than that in healthy tissue. In conclusion, TRPC3 and TRPC6 proteins are expressed in the human parathyroid gland. Furthermore, there is strong evidence indicating that TRPC3 plays a role in pHPT and subsequently in parathyroid hormone secretion regulation. These findings ultimately require further research in order to not only confirm our results but also to further investigate the relevance of these channels and, in particular, that of TRPC3 in the aforementioned physiological functions and pathophysiological conditions.
Collapse
Affiliation(s)
- Emilie Kirstein
- Institute for Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany (C.N.E.)
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hanover, Germany
| | - Mathias Wagner
- Department of Pathology, Saarland University, 66421 Homburg, Germany
| | - Coline M. Diebolt
- Institute for Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany (C.N.E.)
| | - Alessandro Bozzato
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, 66421 Homburg, Germany;
| | - Thomas Tschernig
- Institute for Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany (C.N.E.)
| | - Colya N. Englisch
- Institute for Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany (C.N.E.)
| |
Collapse
|
7
|
Huebbers JW, Caldarescu GA, Kubátová Z, Sabol P, Levecque SCJ, Kuhn H, Kulich I, Reinstädler A, Büttgen K, Manga-Robles A, Mélida H, Pauly M, Panstruga R, Žárský V. Interplay of EXO70 and MLO proteins modulates trichome cell wall composition and susceptibility to powdery mildew. THE PLANT CELL 2024; 36:1007-1035. [PMID: 38124479 PMCID: PMC10980356 DOI: 10.1093/plcell/koad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Exocyst component of 70-kDa (EXO70) proteins are constituents of the exocyst complex implicated in vesicle tethering during exocytosis. MILDEW RESISTANCE LOCUS O (MLO) proteins are plant-specific calcium channels and some MLO isoforms enable fungal powdery mildew pathogenesis. We here detected an unexpected phenotypic overlap of Arabidopsis thaliana exo70H4 and mlo2 mlo6 mlo12 triple mutant plants regarding the biogenesis of leaf trichome secondary cell walls. Biochemical and Fourier transform infrared spectroscopic analyses corroborated deficiencies in the composition of trichome cell walls in these mutants. Transgenic lines expressing fluorophore-tagged EXO70H4 and MLO exhibited extensive colocalization of these proteins. Furthermore, mCherry-EXO70H4 mislocalized in trichomes of the mlo triple mutant and, vice versa, MLO6-GFP mislocalized in trichomes of the exo70H4 mutant. Expression of GFP-marked PMR4 callose synthase, a known cargo of EXO70H4-dependent exocytosis, revealed reduced cell wall delivery of GFP-PMR4 in trichomes of mlo triple mutant plants. In vivo protein-protein interaction assays in plant and yeast cells uncovered isoform-preferential interactions between EXO70.2 subfamily members and MLO proteins. Finally, exo70H4 and mlo6 mutants, when combined, showed synergistically enhanced resistance to powdery mildew attack. Taken together, our data point to an isoform-specific interplay of EXO70 and MLO proteins in the modulation of trichome cell wall biogenesis and powdery mildew susceptibility.
Collapse
Affiliation(s)
- Jan W Huebbers
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - George A Caldarescu
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Zdeňka Kubátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Peter Sabol
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Sophie C J Levecque
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Hannah Kuhn
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Anja Reinstädler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Kim Büttgen
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Alba Manga-Robles
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, 24071 León, Spain
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, 24071 León, Spain
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
- Institute of Experimental Botany of the Czech Academy of Sciences, Laboratory of Cell Biology, Rozvojová 263, 165 02 Prague 6 Lysolaje, Czech Republic
| |
Collapse
|
8
|
Mukherjee M, Mukherjee C, Ghosh V, Jain A, Sadhukhan S, Dagar S, Sahu BS. Endoplasmic reticulum stress impedes regulated secretion by governing key exocytotic and granulogenic molecular switches. J Cell Sci 2024; 137:jcs261257. [PMID: 38348894 DOI: 10.1242/jcs.261257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
Dense core vesicles (DCVs) and synaptic vesicles are specialised secretory vesicles in neurons and neuroendocrine cells, and abnormal release of their cargo is associated with various pathophysiologies. Endoplasmic reticulum (ER) stress and inter-organellar communication are also associated with disease biology. To investigate the functional status of regulated exocytosis arising from the crosstalk of a stressed ER and DCVs, ER stress was modelled in PC12 neuroendocrine cells using thapsigargin. DCV exocytosis was severely compromised in ER-stressed PC12 cells and was reversed to varying magnitudes by ER stress attenuators. Experiments with tunicamycin, an independent ER stressor, yielded similar results. Concurrently, ER stress also caused impaired DCV exocytosis in insulin-secreting INS-1 cells. Molecular analysis revealed blunted SNAP25 expression, potentially attributed to augmented levels of ATF4, an inhibitor of CREB that binds to the CREB-binding site. The effects of loss of function of ATF4 in ER-stressed cells substantiated this attribution. Our studies revealed severe defects in DCV exocytosis in ER-stressed cells for the first time, mediated by reduced levels of key exocytotic and granulogenic switches regulated via the eIF2α (EIF2A)-ATF4 axis.
Collapse
Affiliation(s)
- Mohima Mukherjee
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | | | - Vinayak Ghosh
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | - Aamna Jain
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | - Souren Sadhukhan
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | - Sushma Dagar
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | | |
Collapse
|
9
|
Courtney Y, Head JP, Yimer ED, Dani N, Shipley FB, Libermann TA, Lehtinen MK. A choroid plexus apocrine secretion mechanism shapes CSF proteome and embryonic brain development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574486. [PMID: 38260341 PMCID: PMC10802501 DOI: 10.1101/2024.01.08.574486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
We discovered that apocrine secretion by embryonic choroid plexus (ChP) epithelial cells contributes to the cerebrospinal fluid (CSF) proteome and influences brain development in mice. The apocrine response relies on sustained intracellular calcium signaling and calpain-mediated cytoskeletal remodeling. It rapidly alters the embryonic CSF proteome, activating neural progenitors lining the brain's ventricles. Supraphysiological apocrine secretion induced during mouse development by maternal administration of a serotonergic 5HT2C receptor agonist dysregulates offspring cerebral cortical development, alters the fate of CSF-contacting neural progenitors, and ultimately changes adult social behaviors. Critically, exposure to maternal illness or to the psychedelic drug LSD during pregnancy also overactivates the ChP, inducing excessive secretion. Collectively, our findings demonstrate a new mechanism by which maternal exposure to diverse stressors disrupts in utero brain development.
Collapse
|
10
|
Iyer M, Kantarci H, Cooper MH, Ambiel N, Novak SW, Andrade LR, Lam M, Jones G, Münch AE, Yu X, Khakh BS, Manor U, Zuchero JB. Oligodendrocyte calcium signaling promotes actin-dependent myelin sheath extension. Nat Commun 2024; 15:265. [PMID: 38177161 PMCID: PMC10767123 DOI: 10.1038/s41467-023-44238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Myelin is essential for rapid nerve signaling and is increasingly found to play important roles in learning and in diverse diseases of the CNS. Morphological parameters of myelin such as sheath length are thought to precisely tune conduction velocity, but the mechanisms controlling sheath morphology are poorly understood. Local calcium signaling has been observed in nascent myelin sheaths and can be modulated by neuronal activity. However, the role of calcium signaling in sheath formation remains incompletely understood. Here, we use genetic tools to attenuate oligodendrocyte calcium signaling during myelination in the developing mouse CNS. Surprisingly, genetic calcium attenuation does not grossly affect the number of myelinated axons or myelin thickness. Instead, calcium attenuation causes myelination defects resulting in shorter, dysmorphic sheaths. Mechanistically, calcium attenuation reduces actin filaments in oligodendrocytes, and an intact actin cytoskeleton is necessary and sufficient to achieve accurate myelin morphology. Together, our work reveals a cellular mechanism required for accurate CNS myelin formation and may provide mechanistic insight into how oligodendrocytes respond to neuronal activity to sculpt and refine myelin sheaths.
Collapse
Affiliation(s)
- Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Husniye Kantarci
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Madeline H Cooper
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas Ambiel
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Leonardo R Andrade
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mable Lam
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Graham Jones
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra E Münch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Xinzhu Yu
- Department of Molecular and Integrative Physiology, Beckman Institute, University of Illinois at Urbana-, Champaign, IL, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, USA
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Cao THM, Le APH, Tran TT, Huynh VK, Pham BH, Le TM, Nguyen QL, Tran TC, Tong TM, Than THN, Nguyen TTT, Ha HTT. Plasma cell-free RNA profiling of Vietnamese Alzheimer's patients reveals a linkage with chronic inflammation and apoptosis: a pilot study. Front Mol Neurosci 2023; 16:1308610. [PMID: 38178908 PMCID: PMC10764507 DOI: 10.3389/fnmol.2023.1308610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Circulating cell-free RNA (cfRNA) is a potential hallmark for early diagnosis of Alzheimer's Disease (AD) as it construes the genetic expression level, giving insights into the pathological progress from the outset. Profiles of cfRNA in Caucasian AD patients have been investigated thoroughly, yet there was no report exploring cfRNAs in the ASEAN groups. This study examined the gap, expecting to support the development of point-of-care AD diagnosis. Methods cfRNA profiles were characterized from 20 Vietnamese plasma samples (10 probable AD and 10 age-matched controls). RNA reads were subjected to differential expression (DE) analysis. Weighted gene correlation network analysis (WGCNA) was performed to identify gene modules that were significantly co-expressed. These modules' expression profiles were then correlated with AD status to identify relevant modules. Genes with the highest intramodular connectivity (module membership) were selected as hub genes. Transcript counts of differentially expressed genes were correlated with key AD measures-MMSE and MTA scores-to identify potential biomarkers. Results 136 genes were identified as significant AD hallmarks (p < 0.05), with 52 downregulated and 84 upregulated in the AD cohort. 45.6% of these genes are highly expressed in the hippocampus, cerebellum, and cerebral cortex. Notably, all markers related to chronic inflammation were upregulated, and there was a significant shift in all apoptotic markers. Three co-expressed modules were found to be significantly correlated with Alzheimer's status (p < 0.05; R2> 0.5). Functional enrichment analysis on these modules reveals an association with focal adhesion, nucleocytoplasmic transport, and metal ion response leading to apoptosis, suggesting the potential participation of these pathways in AD pathology. 47 significant hub genes were found to be differentially expressed genes with the highest connectivity. Six significant hub genes (CREB1, YTHDC1, IL1RL1, PHACTR2, ANKRD36B, RNF213) were found to be significantly correlated with MTA and MMSE scores. Other significant transcripts (XRN1, UBB, CHP1, THBS1, S100A9) were found to be involved in inflammation and neuronal death. Overall, we have identified candidate transcripts in plasma cf-RNA that are differentially expressed and are implicated in inflammation and apoptosis, which can jumpstart further investigations into applying cf-RNA as an AD biomarker in Vietnam and ASEAN countries.
Collapse
Affiliation(s)
- Thien Hoang Minh Cao
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Anh Phuc Hoang Le
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tai Tien Tran
- Department of Physiology, Pathophysiology and Immunology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Vy Kim Huynh
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Bao Hoai Pham
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thao Mai Le
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Quang Lam Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thang Cong Tran
- Department of Neurology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Trang Mai Tong
- Department of Neurology, University Medical Center, Ho Chi Minh City, Vietnam
| | - The Ha Ngoc Than
- Department of Geriatrics, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Department of Geriatrics and Palliative Care, University Medical Center, Ho Chi Minh City, Vietnam
| | - Tran Tran To Nguyen
- Department of Geriatrics, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Huong Thi Thanh Ha
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
12
|
Iyer M, Kantarci H, Ambiel N, Novak SW, Andrade LR, Lam M, Münch AE, Yu X, Khakh BS, Manor U, Zuchero JB. Oligodendrocyte calcium signaling sculpts myelin sheath morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536299. [PMID: 37090556 PMCID: PMC10120717 DOI: 10.1101/2023.04.11.536299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Myelin is essential for rapid nerve signaling and is increasingly found to play important roles in learning and in diverse diseases of the CNS. Morphological parameters of myelin such as sheath length and thickness are regulated by neuronal activity and can precisely tune conduction velocity, but the mechanisms controlling sheath morphology are poorly understood. Local calcium signaling has been observed in nascent myelin sheaths and can be modulated by neuronal activity. However, the role of calcium signaling in sheath formation and remodeling is unknown. Here, we used genetic tools to attenuate oligodendrocyte calcium signaling during active myelination in the developing mouse CNS. Surprisingly, we found that genetic calcium attenuation did not grossly affect the number of myelinated axons or myelin thickness. Instead, calcium attenuation caused striking myelination defects resulting in shorter, dysmorphic sheaths. Mechanistically, calcium attenuation reduced actin filaments in oligodendrocytes, and an intact actin cytoskeleton was necessary and sufficient to achieve accurate myelin morphology. Together, our work reveals a novel cellular mechanism required for accurate CNS myelin formation and provides mechanistic insight into how oligodendrocytes may respond to neuronal activity to sculpt myelin sheaths throughout the nervous system.
Collapse
|
13
|
Johnson JR, Barclay JW. C. elegans dkf-1 (Protein Kinase D1) mutants have age-dependent defects in locomotion and neuromuscular transmission. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000800. [PMID: 37090152 PMCID: PMC10113962 DOI: 10.17912/micropub.biology.000800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023]
Abstract
Changes in neuronal function that occur with age are an area of increasing importance. A potential significant contributor to age-dependent decline may be alterations to neurotransmitter release. Protein kinases, such as Protein Kinase C and Protein Kinase A, are well characterised modulators of neuronal function and neurotransmission. Protein Kinase D (PRKD) is a serine/threonine kinase whose role in neurons is less well characterised. Here we report that mutations in the C. elegans PRKD homolog, dkf-1 , show an acceleration in age-dependent decline of locomotion rate and an alteration to age-dependent changes in aldicarb sensitivity. These effects could be explained by a pre- or post-synaptic function of the protein kinase as the animal ages.
Collapse
Affiliation(s)
- James R. Johnson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, England, United Kingdom
| | - Jeff W. Barclay
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, England, United Kingdom
- Correspondence to: Jeff W. Barclay (
)
| |
Collapse
|
14
|
Gerber LS, Heusinkveld HJ, Langendoen C, Stahlmecke B, Schins RPF, Westerink RHS. Acute, sub-chronic and chronic exposures to TiO2 and Ag nanoparticles differentially affects neuronal function in vitro. Neurotoxicology 2022; 93:311-323. [DOI: 10.1016/j.neuro.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
15
|
Yasseen BA, Elkhodiry AA, El-Messiery RM, El-sayed H, Elbenhawi MW, Kamel AG, Gad SA, Zidan M, Hamza MS, Al-ansary M, Abdel-Rahman EA, Ali SS. Platelets' morphology, metabolic profile, exocytosis, and heterotypic aggregation with leukocytes in relation to severity and mortality of COVID-19-patients. Front Immunol 2022; 13:1022401. [PMID: 36479107 PMCID: PMC9720295 DOI: 10.3389/fimmu.2022.1022401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Roles of platelets during infections surpass the classical thrombus function and are now known to modulate innate immune cells. Leukocyte-platelet aggregations and activation-induced secretome are among factors recently gaining interest but little is known about their interplay with severity and mortality during the course of SARS-Cov-2 infection. The aim of the present work is to follow platelets' bioenergetics, redox balance, and calcium homeostasis as regulators of leukocyte-platelet interactions in a cohort of COVID-19 patients with variable clinical severity and mortality outcomes. We investigated COVID-19 infection-related changes in platelet counts, activation, morphology (by flow cytometry and electron microscopy), bioenergetics (by Seahorse analyzer), mitochondria function (by high resolution respirometry), intracellular calcium (by flow cytometry), reactive oxygen species (ROS, by flow cytometry), and leukocyte-platelet aggregates (by flow cytometry) in non-intensive care unit (ICU) hospitalized COVID-19 patients (Non-ICU, n=15), ICU-survivors of severe COVID-19 (ICU-S, n=35), non-survivors of severe COVID-19 (ICU-NS, n=60) relative to control subjects (n=31). Additionally, molecular studies were carried out to follow gene and protein expressions of mitochondrial electron transport chain complexes (ETC) in representative samples of isolated platelets from the studied groups. Our results revealed that COVID-19 infection leads to global metabolic depression especially in severe patients despite the lack of significant impacts on levels of mitochondrial ETC genes and proteins. We also report that severe patients' platelets exhibit hyperpolarized mitochondria and significantly lowered intracellular calcium, concomitantly with increased aggregations with neutrophil. These changes were associated with increased populations of giant platelets and morphological transformations usually correlated with platelets activation and inflammatory signatures, but with impaired exocytosis. Our data suggest that hyperactive platelets with impaired exocytosis may be integral parts in the pathophysiology dictating severity and mortality in COVID-19 patients.
Collapse
Affiliation(s)
- Basma A. Yasseen
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Aya A. Elkhodiry
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Riem M. El-Messiery
- Infectious Disease Unit, Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hajar El-sayed
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | | | - Azza G. Kamel
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Shaimaa A. Gad
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Center, Cairo, Egypt
| | - Mona Zidan
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Marwa S. Hamza
- Department of Clinical Pharmacy Practice, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed Al-ansary
- Department of Intensive Care, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Engy A. Abdel-Rahman
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt,Pharmacology Department, Faculty of Medicine, Assuit University, Assuit, Egypt,*Correspondence: Sameh S. Ali, ; Engy A. Abdel-Rahman,
| | - Sameh S. Ali
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt,*Correspondence: Sameh S. Ali, ; Engy A. Abdel-Rahman,
| |
Collapse
|
16
|
Abstract
The transformation of a single fertilised egg into an adult human consisting of tens of trillions of highly diverse cell types is a marvel of biology. The expansion is largely achieved by cell duplication through the process of mitosis. Mitosis is essential for normal growth, development, and tissue repair and is one of the most tightly regulated biological processes studied. This regulation is designed to ensure accurate segregation of chromosomes into each new daughter cell since errors in this process can lead to genetic imbalances, aneuploidy, that can lead to diseases including cancer. Understanding how mitosis operates and the molecular mechanisms that ensure its fidelity are therefore not only of significant intellectual value but provide unique insights into disease pathology. The purpose of this review is to revisit historical evidence that mitosis can be influenced by the ubiquitous second messenger calcium and to discuss this in the context of new findings revealing exciting new information about its role in cell division.
Collapse
Affiliation(s)
- Charlotte Nugues
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nordine Helassa
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Lee P. Haynes
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
17
|
A Novel Role of the TRPM4 Ion Channel in Exocytosis. Cells 2022; 11:cells11111793. [PMID: 35681487 PMCID: PMC9180413 DOI: 10.3390/cells11111793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Under physiological conditions, the widely expressed calcium-activated TRPM4 channel conducts sodium into cells. This sodium influx depolarizes the plasma membrane and reduces the driving force for calcium entry. The aberrant expression or function of TRPM4 has been reported in various diseases, including different types of cancer. TRPM4 is mainly localized in the plasma membrane, but it is also found in intracellular vesicles, which can undergo exocytosis. In this study, we show that calcium-induced exocytosis in the colorectal cancer cell line HCT116 is dependent on TRPM4. In addition, the findings from some studies of prostate cancer cell lines suggest a more general role of TRPM4 in calcium-induced exocytosis in cancer cells. Furthermore, calcium-induced exocytosis depends on TRPM4 ion conductivity. Additionally, an increase in intracellular calcium results in the delivery of TRPM4 to the plasma membrane. This process also depends on TRPM4 ion conductivity. TRPM4-dependent exocytosis and the delivery of TRPM4 to the plasma membrane are mediated by SNARE proteins. Finally, we provide evidence that calcium-induced exocytosis depends on TRPM4 ion conductivity, not within the plasma membrane, but rather in TRPM4-containing vesicles.
Collapse
|
18
|
He X, Ewing AG. Anionic Species Regulate Chemical Storage in Nanometer Vesicles and Amperometrically Detected Exocytotic Dynamics. J Am Chem Soc 2022; 144:4310-4314. [PMID: 35254807 PMCID: PMC8931764 DOI: 10.1021/jacs.2c00581] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hofmeister effects have often been ignored in living organisms, although they affect the activity and functions of biological molecules. Herein, amperometry has been applied to show that the vesicular content, dynamics of exocytosis and vesicles opening, depend on the anionic species treatment. Compared to 100 μM Cl- treated chromaffin cells, a similar number of catecholamine molecules is released after chaotropic anions (ClO4- and SCN-) treatment, even though the vesicular catecholamine content significantly increases, suggesting a lower release fraction. In addition, there are opposite effects on the dynamics of vesicles release (shorter duration) and vesicle opening (longer duration) for chaotropic anions treated cells. Our results show anion-dependent vesicle release, vesicle opening, and vesicular content, providing understanding of the pharmacological and pathological processes induced by inorganic ions.
Collapse
Affiliation(s)
- Xiulan He
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96 Gothenburg, Sweden
| |
Collapse
|
19
|
Deplazes E, Tafalla BD, Murphy C, White J, Cranfield CG, Garcia A. Calcium Ion Binding at the Lipid-Water Interface Alters the Ion Permeability of Phospholipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14026-14033. [PMID: 34784471 DOI: 10.1021/acs.langmuir.1c02016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Calcium ions (Ca2+) play a fundamental role in membrane-associated physiological processes. Ca2+ can also significantly modulate the physicochemical properties of phospholipid bilayers, but whether this occurs at physiologically relevant concentrations is difficult to determine because of the uncertainty in the reported affinity of Ca2+ for phospholipid bilayers. In this article, we determine the apparent affinity of Ca2+ for zwitterionic phospholipid bilayers using tethered bilayer lipid membranes (tBLMs) used in conjunction with swept-frequency electrical impedance spectroscopy (EIS). We report that Ca2+ binds to phospholipid bilayers at physiologically relevant concentrations and modulates membrane permeability. We present direct experimental evidence that this effect is governed by specific interactions with select lipid headgroup moieties, which is supported by data from molecular dynamics (MD) simulations. This is the first reported use of tBLM/EIS to estimate cation-membrane affinity. Combined with MD simulations, this technique provides a novel methodology to elucidate the molecular details of cation-membrane interactions at the water-phospholipid interface.
Collapse
Affiliation(s)
- Evelyne Deplazes
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Christopher Murphy
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jacqueline White
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Charles G Cranfield
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Alvaro Garcia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
20
|
17 β-Estradiol Increases APE1/Ref-1 Secretion in Vascular Endothelial Cells and Ovariectomized Mice: Involvement of Calcium-Dependent Exosome Pathway. Biomedicines 2021; 9:biomedicines9081040. [PMID: 34440244 PMCID: PMC8394342 DOI: 10.3390/biomedicines9081040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 01/16/2023] Open
Abstract
Apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE1/Ref-1) is a multifunctional protein that can be secreted, and recently suggested as new biomarker for vascular inflammation. However, the endogenous hormones for APE1/Ref-1 secretion and its underlying mechanisms are not defined. Here, the effect of twelve endogenous hormones on APE1/Ref-1 secretion was screened in cultured vascular endothelial cells. The endogenous hormones that significantly increased APE1/Ref-1 secretion was 17β-estradiol (E2), 5𝛼-dihydrotestosterone, progesterone, insulin, and insulin-like growth factor. The most potent hormone inducing APE1/Ref-1 secretion was E2, which in cultured endothelial cells, E2 for 24 h increased APE1/Ref-1 secretion level of 4.56 ± 1.16 ng/mL, compared to a basal secretion level of 0.09 ± 0.02 ng/mL. Among the estrogens, only E2 increased APE1/Ref-1 secretion, not estrone and estriol. Blood APE1/Ref-1 concentrations decreased in ovariectomized (OVX) mice but were significantly increased by the replacement of E2 (0.39 ± 0.09 ng/mL for OVX vs. 4.67 ± 0.53 ng/mL for OVX + E2). E2-induced APE1/Ref-1secretion was remarkably suppressed by the estrogen receptor (ER) blocker fulvestrant and intracellular Ca2+ chelator 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM), suggesting E2-induced APE1/Ref-1 secretion was dependent on ER and intracellular calcium. E2-induced APE1/Ref-1 secretion was significantly inhibited by exosome inhibitor GW4869. Furthermore, APE1/Ref-1 level in CD63-positive exosome were increased by E2. Finally, fluorescence imaging data showed that APE1/Ref-1 co-localized with CD63-labled exosome in the cytoplasm of cells upon E2 treatment. Taken together, E2 was the most potent hormone for APE1/Ref-1 secretion, which appeared to occur through exosomes that were dependent on ER and intracellular Ca2+. Furthermore, hormonal effects should be considered when analyzing biomarkers for vascular inflammation.
Collapse
|
21
|
Matsumoto H, Ochiai M, Imai E, Matsumura T, Hayakawa Y. Stress-derived reactive oxygen species enable hemocytes to release activator of growth blocking peptide (GBP) processing enzyme. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104225. [PMID: 33736983 DOI: 10.1016/j.jinsphys.2021.104225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Insect cytokine growth blocking peptide (GBP) is synthesized as an inactive precursor, termed proGBP, that is normally present in a significant concentration in the hemolymph of non-stressed animals (Hayakawa, 1990, 1991). Under stress conditions, proGBP is instantly processed to active GBP by a serine protease and this is thought to be an important initial step for insects to cope with stress-induced adverse effects via GBP-induced physiological changes. However, the detailed mechanism underlying proteolytic processing of hemolymph proGBP in insects under stress conditions remains unknown. Here we demonstrated that proGBP processing requires ROS-induced release of a proteinaceous factor from hemocytes that activates the inactive proGBP processing enzyme. The release of the activator protein from hemocytes is initiated by an elevation of the cytoplasmic Ca2+ concentration induced by ROS. Therefore, we concluded that stress-induced activation of proGBP requires ROS-dependent stimulation of an intracellular calcium signaling pathway in hemocytes, followed by release of the hemocyte proteinaceous factor that specifically activates the proGBP processing enzyme.
Collapse
Affiliation(s)
- Hitoshi Matsumoto
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan
| | - Masanori Ochiai
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Erina Imai
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan
| | - Takashi Matsumura
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Yoichi Hayakawa
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
| |
Collapse
|
22
|
Lizarraga-Valderrama LR, Sheridan GK. Extracellular vesicles and intercellular communication in the central nervous system. FEBS Lett 2021; 595:1391-1410. [PMID: 33728650 DOI: 10.1002/1873-3468.14074] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022]
Abstract
Neurons and glial cells of the central nervous system (CNS) release extracellular vesicles (EVs) to the interstitial fluid of the brain and spinal cord parenchyma. EVs contain proteins, nucleic acids and lipids that can be taken up by, and modulate the behaviour of, neighbouring recipient cells. The functions of EVs have been extensively studied in the context of neurodegenerative diseases. However, mechanisms involved in EV-mediated neuron-glial communication under physiological conditions or healthy ageing remain unclear. A better understanding of the myriad roles of EVs in CNS homeostasis is essential for the development of novel therapeutics to alleviate and reverse neurological disturbances of ageing. Proteomic studies are beginning to reveal cell type-specific EV cargo signatures that may one day allow us to target specific neuronal or glial cell populations in the treatment of debilitating neurological disorders. This review aims to synthesise the current literature regarding EV-mediated cell-cell communication in the brain, predominantly under physiological conditions.
Collapse
Affiliation(s)
| | - Graham K Sheridan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, UK
| |
Collapse
|
23
|
Plasticity in exocytosis revealed through the effects of repetitive stimuli affect the content of nanometer vesicles and the fraction of transmitter released. Proc Natl Acad Sci U S A 2019; 116:21409-21415. [PMID: 31570594 DOI: 10.1073/pnas.1910859116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Electrochemical techniques with disk and nano-tip electrodes, together with calcium imaging, were used to examine the effect of short-interval repetitive stimuli on both exocytosis and vesicular content in a model cell line. We show that the number of events decreases markedly with repeated stimuli suggesting a depletion of exocytosis machinery. However, repetitive stimuli induce a more stable fusion pore, leading to an increased amount of neurotransmitter release. In contrast, the total neurotransmitter content inside the vesicles decreases after repetitive stimuli, resulting in a higher average release fraction from each event. We suggest a possible mechanism regarding a link between activity-induced plasticity and fraction of release.
Collapse
|
24
|
Burgoyne RD, Helassa N, McCue HV, Haynes LP. Calcium Sensors in Neuronal Function and Dysfunction. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035154. [PMID: 30833454 DOI: 10.1101/cshperspect.a035154] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcium signaling in neurons as in other cell types can lead to varied changes in cellular function. Neuronal Ca2+ signaling processes have also become adapted to modulate the function of specific pathways over a wide variety of time domains and these can have effects on, for example, axon outgrowth, neuronal survival, and changes in synaptic strength. Ca2+ also plays a key role in synapses as the trigger for fast neurotransmitter release. Given its physiological importance, abnormalities in neuronal Ca2+ signaling potentially underlie many different neurological and neurodegenerative diseases. The mechanisms by which changes in intracellular Ca2+ concentration in neurons can bring about diverse responses is underpinned by the roles of ubiquitous or specialized neuronal Ca2+ sensors. It has been established that synaptotagmins have key functions in neurotransmitter release, and, in addition to calmodulin, other families of EF-hand-containing neuronal Ca2+ sensors, including the neuronal calcium sensor (NCS) and the calcium-binding protein (CaBP) families, play important physiological roles in neuronal Ca2+ signaling. It has become increasingly apparent that these various Ca2+ sensors may also be crucial for aspects of neuronal dysfunction and disease either indirectly or directly as a direct consequence of genetic variation or mutations. An understanding of the molecular basis for the regulation of the targets of the Ca2+ sensors and the physiological roles of each protein in identified neurons may contribute to future approaches to the development of treatments for a variety of human neuronal disorders.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Nordine Helassa
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Hannah V McCue
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Lee P Haynes
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
25
|
Elhalel G, Price C, Fixler D, Shainberg A. Cardioprotection from stress conditions by weak magnetic fields in the Schumann Resonance band. Sci Rep 2019; 9:1645. [PMID: 30733450 PMCID: PMC6367437 DOI: 10.1038/s41598-018-36341-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/19/2018] [Indexed: 01/19/2023] Open
Abstract
The Schumann Resonances (ScR) are Extremely Low Frequency (ELF) electromagnetic resonances in the Earth-ionosphere cavity excited by global lightning discharges. This natural electromagnetic noise has likely existed on the Earth ever since the Earth had an atmosphere and an ionosphere, hence surrounding us throughout our evolutionary history. The purpose of this study was to examine the influence of extremely weak magnetic fields in the ScR first mode frequency range on the spontaneous contractions, calcium transients and Creatine Kinase (CK) release of rat cardiac cell cultures. We show that applying 7.8 Hz, 90 nT magnetic fields (MF) causes a gradual decrease in the spontaneous calcium transients’ amplitude, reaching 28% of the initial amplitude after 40 minutes of MF application, and accompanied with a gradual decrease in the calcium transients’ rise time. The mechanical spontaneous contractions cease after the ScR fields have been applied for more than 30 minutes, when the calcium transient’s amplitude reached ~60% of its initial value. The influence of the ScR MF was reversible, independent of the field magnitude in the range 20 pT-100 nT, and independent of the external DC magnetic field. However, the effect is frequency dependent; the described changes occurred only in the 7.6–8 Hz range. In addition, applying 7.8 Hz, 90 nT MF for 1.5 hours, reduced the amount of CK released to the buffer, during normal conditions, hypoxic conditions and oxidative stress induced by 80 μM H2O2. We show that the ScR field induced reduction in CK release is associated with a stress response process and has a protective character.
Collapse
Affiliation(s)
- G Elhalel
- Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - C Price
- Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - D Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Tel Aviv, Israel
| | - A Shainberg
- Faculty of Life Sciences, Bar Ilan University, Tel Aviv, Israel
| |
Collapse
|
26
|
Panicker LM, Srikanth MP, Castro-Gomes T, Miller D, Andrews NW, Feldman RA. Gaucher disease iPSC-derived osteoblasts have developmental and lysosomal defects that impair bone matrix deposition. Hum Mol Genet 2019; 27:811-822. [PMID: 29301038 DOI: 10.1093/hmg/ddx442] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/27/2017] [Indexed: 01/18/2023] Open
Abstract
Gaucher disease (GD) is caused by bi-allelic mutations in GBA1, the gene that encodes acid β-glucocerebrosidase (GCase). Individuals affected by GD have hematologic, visceral and bone abnormalities, and in severe cases there is also neurodegeneration. To shed light on the mechanisms by which mutant GBA1 causes bone disease, we examined the ability of human induced pluripotent stem cells (iPSC) derived from patients with Types 1, 2 and 3 GD, to differentiate to osteoblasts and carry out bone deposition. Differentiation of GD iPSC to osteoblasts revealed that these cells had developmental defects and lysosomal abnormalities that interfered with bone matrix deposition. Compared with controls, GD iPSC-derived osteoblasts exhibited reduced expression of osteoblast differentiation markers, and bone matrix protein and mineral deposition were defective. Concomitantly, canonical Wnt/β catenin signaling in the mutant osteoblasts was downregulated, whereas pharmacological Wnt activation with the GSK3β inhibitor CHIR99021 rescued GD osteoblast differentiation and bone matrix deposition. Importantly, incubation with recombinant GCase (rGCase) rescued the differentiation and bone-forming ability of GD osteoblasts, demonstrating that the abnormal GD phenotype was caused by GCase deficiency. GD osteoblasts were also defective in their ability to carry out Ca2+-dependent exocytosis, a lysosomal function that is necessary for bone matrix deposition. We conclude that normal GCase enzymatic activity is required for the differentiation and bone-forming activity of osteoblasts. Furthermore, the rescue of bone matrix deposition by pharmacological activation of Wnt/β catenin in GD osteoblasts uncovers a new therapeutic target for the treatment of bone abnormalities in GD.
Collapse
Affiliation(s)
- Leelamma M Panicker
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Manasa P Srikanth
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thiago Castro-Gomes
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742, USA
| | - Diana Miller
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742, USA
| | - Ricardo A Feldman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
27
|
Amaroli A, Marcoli M, Venturini A, Passalacqua M, Agnati LF, Signore A, Raffetto M, Maura G, Benedicenti S, Cervetto C. Near-infrared laser photons induce glutamate release from cerebrocortical nerve terminals. JOURNAL OF BIOPHOTONICS 2018; 11:e201800102. [PMID: 29931754 DOI: 10.1002/jbio.201800102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Although photons have been repeatedly shown to affect the functioning of the nervous system, their effects on neurotransmitter release have never been investigated. We exploited in vitro models that allow effects involving neuron-astrocyte network functioning to be detected (mouse cerebrocortical slices) and dissected these effects at cerebrocortical nerve endings and astrocyte processes. Infrared light proved able to induce glutamate release by stimulating glutamatergic nerve endings.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genova, Genova, Italy
| | - Manuela Marcoli
- Department of Pharmacy, University of Genova, Genova, Italy
- Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | | | - Mario Passalacqua
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Luigi F Agnati
- Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Antonio Signore
- Department of Surgical and Diagnostic Sciences, University of Genova, Genova, Italy
| | - Mirco Raffetto
- Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture, University of Genova, Genova, Italy
| | - Guido Maura
- Department of Pharmacy, University of Genova, Genova, Italy
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genova, Genova, Italy
| | | |
Collapse
|
28
|
Freund-Brown J, Choa R, Singh BK, Robertson TF, Ferry GM, Viver E, Bassiri H, Burkhardt JK, Kambayashi T. Cutting Edge: Murine NK Cells Degranulate and Retain Cytotoxic Function without Store-Operated Calcium Entry. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1973-1978. [PMID: 28794231 PMCID: PMC5807242 DOI: 10.4049/jimmunol.1700340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/24/2017] [Indexed: 01/08/2023]
Abstract
Sustained Ca2+ signaling, known as store-operated calcium entry (SOCE), occurs downstream of immunoreceptor engagement and is critical for cytotoxic lymphocyte signaling and effector function. CD8+ T cells require sustained Ca2+ signaling for inflammatory cytokine production and the killing of target cells; however, much less is known about its role in NK cells. In this study, we use mice deficient in stromal interacting molecules 1 and 2, which are required for SOCE, to examine the contribution of sustained Ca2+ signaling to murine NK cell function. Surprisingly, we found that, although SOCE is required for NK cell IFN-γ production in an NFAT-dependent manner, NK cell degranulation/cytotoxicity and tumor rejection in vivo remained intact in the absence of sustained Ca2+ signaling. Our data suggest that mouse NK cells use different signaling mechanisms for cytotoxicity compared with other cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Jacquelyn Freund-Brown
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ruth Choa
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Brenal K Singh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Tanner Ford Robertson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
| | - Gabrielle M Ferry
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA 19104; and
| | - Eric Viver
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, CNRS, INSERM, 13288 Marseille, France
| | - Hamid Bassiri
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA 19104; and
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
29
|
Thompson SEM, Coates JC. Surface sensing and stress-signalling in Ulva and fouling diatoms - potential targets for antifouling: a review. BIOFOULING 2017; 33:410-432. [PMID: 28508711 DOI: 10.1080/08927014.2017.1319473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
Understanding the underlying signalling pathways that enable fouling algae to sense and respond to surfaces is essential in the design of environmentally friendly coatings. Both the green alga Ulva and diverse diatoms are important ecologically and economically as they are persistent biofoulers. Ulva spores exhibit rapid secretion, allowing them to adhere quickly and permanently to a ship, whilst diatoms secrete an abundance of extracellular polymeric substances (EPS), which are highly adaptable to different environmental conditions. There is evidence, now supported by molecular data, for complex calcium and nitric oxide (NO) signalling pathways in both Ulva and diatoms being involved in surface sensing and/or adhesion. Moreover, adaptation to stress has profound effects on the biofouling capability of both types of organism. Targets for future antifouling coatings based on surface sensing are discussed, with an emphasis on pursuing NO-releasing coatings as a potentially universal antifouling strategy.
Collapse
Affiliation(s)
| | - Juliet C Coates
- a School of Biosciences , University of Birmingham , Birmingham , UK
| |
Collapse
|
30
|
Moreira B, Tuoriniemi J, Kouchak Pour N, Mihalčíková L, Safina G. Surface Plasmon Resonance for Measuring Exocytosis from Populations of PC12 Cells: Mechanisms of Signal Formation and Assessment of Analytical Capabilities. Anal Chem 2017; 89:3069-3077. [DOI: 10.1021/acs.analchem.6b04811] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Beatriz Moreira
- Department
of Chemistry and Molecular Biology, University of Gothenburg, Kemigården
4, 412 96 Gothenburg, Sweden
| | - Jani Tuoriniemi
- Department
of Chemistry and Molecular Biology, University of Gothenburg, Kemigården
4, 412 96 Gothenburg, Sweden
| | - Naghmeh Kouchak Pour
- Department
of Chemistry and Molecular Biology, University of Gothenburg, Kemigården
4, 412 96 Gothenburg, Sweden
| | - Lýdia Mihalčíková
- Department
of Chemistry and Molecular Biology, University of Gothenburg, Kemigården
4, 412 96 Gothenburg, Sweden
| | - Gulnara Safina
- Department
of Chemistry and Molecular Biology, University of Gothenburg, Kemigården
4, 412 96 Gothenburg, Sweden
- Division
of Biological Physics, Department of Physics, Chalmers University of Technology, Kemigården 1, 412 96 Gothenburg, Sweden
| |
Collapse
|
31
|
Bhattacharya S, McElhanon KE, Gushchina LV, Weisleder N. Role of phosphatidylinositol-4,5-bisphosphate 3-kinase signaling in vesicular trafficking. Life Sci 2016; 167:39-45. [PMID: 27760304 DOI: 10.1016/j.lfs.2016.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023]
Abstract
Phosphatidylinositol-4,5-bisphosphate 3-kinases (PI3Ks) are regulatory enzymes involved in the generation of lipid species that modulate cellular signaling pathways through downstream effectors to influence a variety of cellular functions. Years of intensive study of PI3Ks have produced a significant body of literature in many areas, including that PI3K can mediate intracellular vesicular trafficking and through these actions contribute to a number of important physiological functions. This review focuses on the crucial roles that PI3K and AKT, a major downstream partner of PI3K, play in the regulation of vesicle trafficking during various forms of vesicular endocytosis and exocytosis.
Collapse
Affiliation(s)
- Sayak Bhattacharya
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 W. 12th Ave., Columbus, OH 43210-1252, United States
| | - Kevin E McElhanon
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 W. 12th Ave., Columbus, OH 43210-1252, United States
| | - Liubov V Gushchina
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 W. 12th Ave., Columbus, OH 43210-1252, United States
| | - Noah Weisleder
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 W. 12th Ave., Columbus, OH 43210-1252, United States.
| |
Collapse
|
32
|
Fleißner A, Herzog S. Signal exchange and integration during self-fusion in filamentous fungi. Semin Cell Dev Biol 2016; 57:76-83. [DOI: 10.1016/j.semcdb.2016.03.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/06/2016] [Accepted: 03/22/2016] [Indexed: 11/16/2022]
|
33
|
Shakirzyanova A, Valeeva G, Giniatullin A, Naumenko N, Fulle S, Akulov A, Atalay M, Nikolsky E, Giniatullin R. Age-dependent action of reactive oxygen species on transmitter release in mammalian neuromuscular junctions. Neurobiol Aging 2016; 38:73-81. [DOI: 10.1016/j.neurobiolaging.2015.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 10/13/2015] [Accepted: 10/26/2015] [Indexed: 01/01/2023]
|
34
|
In VitroDevelopmental Neurotoxicity Following Chronic Exposure to 50 Hz Extremely Low-Frequency Electromagnetic Fields in Primary Rat Cortical Cultures. Toxicol Sci 2015; 149:433-40. [DOI: 10.1093/toxsci/kfv242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
35
|
Heusinkveld HJ, van den Berg M, Westerink RHS. In vitro dopaminergic neurotoxicity of pesticides: a link with neurodegeneration? Vet Q 2015; 34:120-31. [PMID: 25506807 DOI: 10.1080/01652176.2014.980934] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Around the globe, chemical compounds are used to treat or repel pests and plagues that pose a threat to food and feed production. From epidemiological studies, it is known that there is a link between exposure to certain chemical classes of these so-called pesticides and the prevalence of neurodegenerative disorders such as Parkinson's disease in humans. However, which particular compound(s) account for this link or what underlying mechanisms are involved is still largely unresolved. The degenerative process in Parkinson's disease is largely limited to the dopaminergic neurons in the basal ganglia. Cellular mechanisms that are implicated in parkinsonian neurodegeneration include mitochondrial dysfunction, oxidative stress, disturbance of intracellular calcium homeostasis and endoplasmic reticulum (ER) stress. A major characteristic that distinguishes the dopaminergic neurons in the basal ganglia from other dopaminergic neurons is a particular reliance on intracellular calcium for spontaneous activity. Considering the energy consuming nature of maintenance of the intracellular calcium homeostasis and its involvement in life and death of a neuron, this may explain the specific vulnerability of this neuronal population. Despite a large variation in primary mechanism of action it has been demonstrated that pesticides from different classes disturb intracellular calcium homeostasis, thus interfering with intracellular calcium signalling. This relates to altered dopaminergic signalling, disturbed protein homeostasis and increased oxidative stress. Therefore, effects of (mixtures of) pesticides on the intracellular calcium homeostasis may play a role in the development of Parkinson's disease in humans. Although human exposure to pesticides via e.g. food often occurs in complex mixtures, (human) risk assessment is largely based on the assessment of single compounds. The discovery of common modes of action across different classes of pesticides therefore underpins the urgency of development of new models and approaches in risk assessment.
Collapse
Affiliation(s)
- Harm J Heusinkveld
- a Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine , Utrecht University , 3508 TD Utrecht , The Netherlands
| | | | | |
Collapse
|
36
|
Popovic MA, Stojilkovic SS, Gonzalez-Iglesias AE. Effects of isoquinolonesulfonamides on action potential secretion coupling in pituitary cells. Horm Mol Biol Clin Investig 2015; 1:35-42. [PMID: 25961970 DOI: 10.1515/hmbci.2010.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 06/25/2009] [Indexed: 11/15/2022]
Abstract
BACKGROUND Pituitary lactotrophs fire action potentials spontaneously and the associated voltage-gated calcium influx is sufficient to maintain high and steady prolactin release. Several intracellular proteins can mediate the action of calcium influx on prolactin secretion, including calmodulin-dependent protein kinases. Here, we studied effects of isoquinolonesulfonamides KN-62 and KN-93, calmodulin-dependent protein kinase inhibitors, and KN-92, an inactive analog, on spontaneous electrical activity, voltage-gated calcium influx, cyclic nucleotide production, and basal prolactin release. METHODS The effects of these compounds on electrical activity and calcium signaling was measured in single lactotrophs and cyclic nucleotide production and prolactin release were determined in static culture and perifusion experiments of anterior pituitary cells from postpubertal female rats. RESULTS KN-62 and KN-93 blocked basal prolactin release in a dose- and time-dependent manner, suggesting that calmodulin-dependent protein kinase could mediate the coupling of electrical activity and secretion. However, a similar effect on basal prolactin release was observed on application of KN-92, which does not inhibit this kinase. KN-93 also inhibited cAMP and cGMP production, but inhibition of prolactin release was independent of the status of cyclic nucleotide production. Single cell measurements revealed abolition of spontaneous and depolarization-induced electrical activity and calcium transients in KN-92/93-treated cells, with a time course comparable to that observed in secretory studies. CONCLUSIONS The results suggest that caution should be used when interpreting data from studies using isoquinolonesulfonamides to evaluate the role of calmodulin-dependent protein kinases in excitable endocrine cells, because inactive compounds exhibit comparable effects on action potential secretion coupling to those of active compounds.
Collapse
|
37
|
Hypoxia is an effective stimulus for vesicular release of ATP from human umbilical vein endothelial cells. Placenta 2015; 36:759-66. [PMID: 25956988 PMCID: PMC4502406 DOI: 10.1016/j.placenta.2015.04.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/26/2015] [Accepted: 04/09/2015] [Indexed: 12/12/2022]
Abstract
Introduction Hypoxia induces dilatation of the umbilical vein by releasing autocoids from endothelium; prostaglandins (PGs), adenosine and nitric oxide (NO) have been implicated. ATP is vasoactive, thus we tested whether hypoxia releases ATP from primary Human Umbilical Vein Endothelial Cells (HUVEC). Methods HUVEC were grown on inserts under no-flow conditions. ATP was assayed by luciferin–luciferase and visualised by quinacrine labeling. Intracellular Ca2+ ([Ca2+]i) was imaged with Fura-2. Results ATP release occurred constitutively and was increased by hypoxia (PO2: 150–8 mmHg), ∼10-fold more from apical, than basolateral surface. Constitutive ATP release was decreased, while hypoxia-induced release was abolished by brefeldin or monensin A, inhibitors of vesicular transport, and LY294002 or Y27632, inhibitors of phosphoinositide 3-kinases (PI3K) and Rho-associated protein kinase (ROCK). ATP release was unaffected by NO donor, but increased by calcium ionophore, by >60-fold from apical, but <25% from basolateral surface. Hypoxia induced a small increase in [Ca2+]i compared with ATP (10 μM); hypoxia inhibited the ATP response. Quinacrine-ATP fluorescent loci in the perinuclear space, were diminished by hypoxia and monensin, whereas brefeldin A increased fluorescence intensity, consistent with inhibition of anterograde transport. Discussion. Hypoxia within the physiological range releases ATP from HUVEC, particularly from apical/adluminal surfaces by exocytosis, via an increase in [Ca2+]i, PI3K and ROCK, independently of NO. We propose that hypoxia releases ATP at concentrations sufficient to induce umbilical vein dilation via PGs and NO and improve fetal blood flow, but curbs amplification of ATP release by autocrine actions of ATP, so limiting its pro-inflammatory effects. Hypoxia releases ATP from Human umbilical vein endothelial cells (HUVEC). This ATP release is preferentially from apical surfaces. Polarised ATP release is also triggered by Ca2+ ionophore. Hypoxia-induced ATP release occurs from vesicles, as visualised by quinacrine. It is attenuated by inhibitors of vesicular trafficking, PI3K and ROCK.
Collapse
|
38
|
Farkaš R, Ďatková Z, Mentelová L, Löw P, Beňová-Liszeková D, Beňo M, Sass M, Řehulka P, Řehulková H, Raška O, Kováčik L, Šmigová J, Raška I, Mechler BM. Apocrine secretion in Drosophila salivary glands: subcellular origin, dynamics, and identification of secretory proteins. PLoS One 2014; 9:e94383. [PMID: 24732043 PMCID: PMC3986406 DOI: 10.1371/journal.pone.0094383] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/14/2014] [Indexed: 01/29/2023] Open
Abstract
In contrast to the well defined mechanism of merocrine exocytosis, the mechanism of apocrine secretion, which was first described over 180 years ago, remains relatively uncharacterized. We identified apocrine secretory activity in the late prepupal salivary glands of Drosophila melanogaster just prior to the execution of programmed cell death (PCD). The excellent genetic tools available in Drosophila provide an opportunity to dissect for the first time the molecular and mechanistic aspects of this process. A prerequisite for such an analysis is to have pivotal immunohistochemical, ultrastructural, biochemical and proteomic data that fully characterize the process. Here we present data showing that the Drosophila salivary glands release all kinds of cellular proteins by an apocrine mechanism including cytoskeletal, cytosolic, mitochondrial, nuclear and nucleolar components. Surprisingly, the apocrine release of these proteins displays a temporal pattern with the sequential release of some proteins (e.g. transcription factor BR-C, tumor suppressor p127, cytoskeletal β-tubulin, non-muscle myosin) earlier than others (e.g. filamentous actin, nuclear lamin, mitochondrial pyruvate dehydrogenase). Although the apocrine release of proteins takes place just prior to the execution of an apoptotic program, the nuclear DNA is never released. Western blotting indicates that the secreted proteins remain undegraded in the lumen. Following apocrine secretion, the salivary gland cells remain quite vital, as they retain highly active transcriptional and protein synthetic activity.
Collapse
Affiliation(s)
- Robert Farkaš
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia,
| | - Zuzana Ďatková
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia,
- Department of Genetics, Comenius University, Bratislava, Slovakia
| | - Lucia Mentelová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia,
- Department of Genetics, Comenius University, Bratislava, Slovakia
| | - Péter Löw
- Department of Anatomy and Cell Biology, Lorand Eötvös University, Budapest, Hungary
| | - Denisa Beňová-Liszeková
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia,
| | - Milan Beňo
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia,
| | - Miklós Sass
- Department of Anatomy and Cell Biology, Lorand Eötvös University, Budapest, Hungary
| | - Pavel Řehulka
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
| | - Helena Řehulková
- 1st Department of Internal Medicine - Cardioangiology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Otakar Raška
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Lubomír Kováčik
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jana Šmigová
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Ivan Raška
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Bernard M. Mechler
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| |
Collapse
|
39
|
Correia H, Ramos P, Santos A, Pinto NR, Mendes R, Magalhães T, Almeida A. A post-mortem study of the anatomical region differences and age-related changes on Ca and Mg levels in the human brain. Microchem J 2014. [DOI: 10.1016/j.microc.2013.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Mahto SK, Tenenbaum-Katan J, Greenblum A, Rothen-Rutishauser B, Sznitman J. Microfluidic shear stress-regulated surfactant secretion in alveolar epithelial type II cells in vitro. Am J Physiol Lung Cell Mol Physiol 2014; 306:L672-83. [PMID: 24487389 DOI: 10.1152/ajplung.00106.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the role of flow-induced shear stress on the mechanisms regulating surfactant secretion in type II alveolar epithelial cells (ATII) using microfluidic models. Following flow stimulation spanning a range of wall shear stress (WSS) magnitudes, monolayers of ATII (MLE-12 and A549) cells were examined for surfactant secretion by evaluating essential steps of the process, including relative changes in the number of fusion events of lamellar bodies (LBs) with the plasma membrane (PM) and intracellular redistribution of LBs. F-actin cytoskeleton and calcium levels were analyzed in A549 cells subjected to WSS spanning 4-20 dyn/cm(2). Results reveal an enhancement in LB fusion events with the PM in MLE-12 cells upon flow stimulation, whereas A549 cells exhibit no foreseeable changes in the monitored number of fusion events for WSS levels ranging up to a threshold of ∼8 dyn/cm(2); above this threshold, we witness instead a decrease in LB fusion events in A549 cells. However, patterns of LB redistribution suggest that WSS can potentially serve as a stimulus for A549 cells to trigger the intracellular transport of LBs toward the cell periphery. This observation is accompanied by a fragmentation of F-actin, indicating that disorganization of the F-actin cytoskeleton might act as a limiting factor for LB fusion events. Moreover, we note a rise in cytosolic calcium ([Ca(2+)]c) levels following stimulation of A549 cells with WSS magnitudes ranging near or above the experimental threshold. Overall, WSS stimulation can influence key components of molecular machinery for regulated surfactant secretion in ATII cells in vitro.
Collapse
|
41
|
Lourido S, Jeschke GR, Turk BE, Sibley LD. Exploiting the unique ATP-binding pocket of toxoplasma calcium-dependent protein kinase 1 to identify its substrates. ACS Chem Biol 2013; 8:1155-62. [PMID: 23530747 PMCID: PMC3691715 DOI: 10.1021/cb400115y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
Apicomplexan parasites rely on calcium
as a second messenger to
regulate a variety of essential cellular processes. Calcium-dependent
protein kinases (CDPK), which transduce these signals, are conserved
among apicomplexans but absent from mammalian hosts, making them attractive
targets for therapeutic intervention. Despite their importance, the
signaling pathways CDPK regulate remain poorly characterized, and
their protein substrates are completely unknown. In Toxoplasma
gondii, CDPK1 is required for calcium-regulated secretion
from micronemes, thereby controlling motility, invasion, and egress
from host cells. CDPK1 is unique among parasite and mammalian kinases
in containing glycine at the key “gatekeeper” residue,
which results in an expanded ATP-binding pocket. In the present study,
we use a synthetic ATPγS analogue that displays steric complementarity
to the ATP-binding pocket and hence allows identification of protein
substrates based on selective thiophosphorylation. The specificity
of this approach was validated by the concordance between the identified
phosphorylation sites and the in vitro substrate
preference of CDPK1. We further demonstrate that the phosphorylation
of predicted substrates is dependent on CDPK1 both in vivo and in vitro. This combined strategy for identifying
the targets of specific protein kinases provides a platform for defining
the roles of CDPKs in apicomplexans.
Collapse
Affiliation(s)
- Sebastian Lourido
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid
Ave., St. Louis, Missouri 63110, United States
| | - Grace R. Jeschke
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St.,
New Haven, Connecticut 06520, United States
| | - Benjamin E. Turk
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St.,
New Haven, Connecticut 06520, United States
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid
Ave., St. Louis, Missouri 63110, United States
| |
Collapse
|
42
|
Abstract
An under-appreciated clue about pathogenesis in Parkinson disease (PD) is the distribution of pathology in the early and middle stages of the disease. This pathological 'roadmap' shows that in addition to dopaminergic neurons in the substantia nigra pars compacta (SNc), a significant number of other central and peripheral neuronal populations exhibit Lewy pathology, phenotypic dysregulation or frank degeneration in PD patients. This spatially distributed, at-risk population of neurons shares a number of features, including autonomously generated activity, broad action potentials, low intrinsic calcium buffering capacity and long, poorly myelinated, highly branched axons. Many, and perhaps all, of these traits add to the metabolic burden in these neurons, suggesting that mitochondrial deficits could drive pathogenesis in PD-in agreement with a large segment of the literature. What is less clear is how this neuronal phenotype might shape the susceptibility to proteostatic dysfunction or to the spread of α-synuclein fibrils deposited in the extracellular space. The review explores the literature on these issues and their translational implications.
Collapse
Affiliation(s)
- D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | | |
Collapse
|
43
|
Lourido S, Tang K, Sibley LD. Distinct signalling pathways control Toxoplasma egress and host-cell invasion. EMBO J 2012; 31:4524-34. [PMID: 23149386 DOI: 10.1038/emboj.2012.299] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/16/2012] [Indexed: 12/27/2022] Open
Abstract
Calcium signalling coordinates motility, cell invasion, and egress by apicomplexan parasites, yet the key mediators that transduce these signals remain largely unknown. One underlying assumption is that invasion into and egress from the host cell depend on highly similar systems to initiate motility. Using a chemical-genetic approach to specifically inhibit select calcium-dependent kinases (CDPKs), we instead demonstrate that these pathways are controlled by different kinases: both TgCDPK1 and TgCDPK3 were required during ionophore-induced egress, but only TgCDPK1 was required during invasion. Similarly, microneme secretion, which is necessary for motility during both invasion and egress, universally depended on TgCDPK1, but only exhibited TgCDPK3 dependence when triggered by certain stimuli. We also demonstrate that egress likely comes under a further level of control by cyclic GMP-dependent protein kinase and that its activation can induce egress and partially compensate for the inhibition of TgCDPK3. These results demonstrate that separate signalling pathways are integrated to regulate motility in response to the different signals that promote invasion or egress during infection by Toxoplasma gondii.
Collapse
Affiliation(s)
- Sebastian Lourido
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
44
|
Karch CM, Jeng AT, Goate AM. Extracellular Tau levels are influenced by variability in Tau that is associated with tauopathies. J Biol Chem 2012; 287:42751-62. [PMID: 23105105 DOI: 10.1074/jbc.m112.380642] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases marked by intracellular aggregates of hyperphosphorylated Tau. These diseases may occur by sporadic mechanisms in which genetic variants represent risk factors for disease, as is the case in Alzheimer disease (AD). In AD, cerebrospinal fluid (CSF) levels of soluble Tau/pTau-181 are higher in cases compared with controls. A subset of frontotemporal dementia (FTD) cases occur by a familial mechanism in which MAPT, the gene that encodes Tau, mutations are dominantly inherited. In symptomatic FTD patients expressing a MAPT mutation, CSF Tau levels are slightly elevated but are significantly lower than in AD patients. We sought to model CSF Tau changes by measuring extracellular Tau in cultured cells. Full-length, monomeric extracellular total Tau and pTau-181 were detectable in human neuroblastoma cells expressing endogenous Tau, in human non-neuronal cells overexpressing wild-type Tau, and in mouse cortical neurons. Tau isoforms influence the rate of Tau release, whereby the N terminus (exons 2/3) and microtubule binding repeat length contribute to Tau release from the cell. Compared with cells overexpressing wild-type Tau, cells overexpressing FTD-associated MAPT mutations produce significantly less extracellular total Tau without altering intracellular total Tau levels. This study demonstrates that cells actively release Tau in the absence of disease or toxicity, and Tau release is modified by changes in the Tau protein that are associated with tauopathies.
Collapse
Affiliation(s)
- Celeste M Karch
- Department of Psychiatry and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
45
|
Kwon HJ. Extracellular ATP signaling via P2X(4) receptor and cAMP/PKA signaling mediate ATP oscillations essential for prechondrogenic condensation. J Endocrinol 2012; 214:337-48. [PMID: 22685336 DOI: 10.1530/joe-12-0131] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Prechondrogenic condensation is the most critical process in skeletal patterning. A previous study demonstrated that ATP oscillations driven by Ca(2+) oscillations play a critical role in prechondrogenic condensation by inducing oscillatory secretion. However, it remains unknown what mechanisms initiate the Ca(2+)-driven ATP oscillations, mediate the link between Ca(2+) and ATP oscillations, and then result in oscillatory secretion in chondrogenesis. This study has shown that extracellular ATP signaling was required for both ATP oscillations and prechondrogenic condensation. Among P2 receptors, the P2X(4) receptor revealed the strongest expression level and mediated ATP oscillations in chondrogenesis. Moreover, blockage of P2X(4) activity abrogated not only chondrogenic differentiation but also prechondrogenic condensation. In addition, both ATP oscillations and secretion activity depended on cAMP/PKA signaling but not on K(ATP) channel activity and PKC or PKG signaling. This study proposes that Ca(2+)-driven ATP oscillations essential for prechondrogenic condensation is initiated by extracellular ATP signaling via P2X(4) receptor and is mediated by cAMP/PKA signaling and that cAMP/PKA signaling induces oscillatory secretion to underlie prechondrogenic condensation, in cooperation with Ca(2+) and ATP oscillations.
Collapse
Affiliation(s)
- Hyuck Joon Kwon
- Research Center for Cooperative Projects, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| |
Collapse
|
46
|
Pajouhesh H, Feng ZP, Zhang L, Pajouhesh H, Jiang X, Hendricson A, Dong H, Tringham E, Ding Y, Vanderah TW, Porreca F, Belardetti F, Zamponi GW, Mitscher LA, Snutch TP. Structure–activity relationships of trimethoxybenzyl piperazine N-type calcium channel inhibitors. Bioorg Med Chem Lett 2012; 22:4153-8. [DOI: 10.1016/j.bmcl.2012.04.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 11/30/2022]
|
47
|
Lopez CI, Pelletán LE, Suhaiman L, De Blas GA, Vitale N, Mayorga LS, Belmonte SA. Diacylglycerol stimulates acrosomal exocytosis by feeding into a PKC- and PLD1-dependent positive loop that continuously supplies phosphatidylinositol 4,5-bisphosphate. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1186-99. [PMID: 22609963 DOI: 10.1016/j.bbalip.2012.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 04/04/2012] [Accepted: 05/07/2012] [Indexed: 01/08/2023]
Abstract
Acrosomal exocytosis involves a massive fusion between the outer acrosomal and the plasma membranes of the spermatozoon triggered by stimuli that open calcium channels at the plasma membrane. Diacylglycerol has been implicated in the activation of these calcium channels. Here we report that this lipid promotes the efflux of intraacrosomal calcium and triggers exocytosis in permeabilized human sperm, implying that diacylglycerol activates events downstream of the opening of plasma membrane channels. Furthermore, we show that calcium and diacylglycerol converge in a signaling pathway leading to the production of phosphatidylinositol 4,5-bisphosphate (PIP(2)). Addition of diacylglycerol promotes the PKC-dependent activation of PLD1. Rescue experiments adding phosphatidic acid or PIP(2) and direct measurement of lipid production suggest that both PKC and PLD1 promote PIP(2) synthesis. Inhibition of different steps of the pathway was reverted by adenophostin, an agonist of IP(3)-sensitive calcium channels, indicating that PIP(2) is necessary to keep these channels opened. However, phosphatidic acid, PIP(2), or adenophostin could not trigger exocytosis by themselves, indicating that diacylglycerol must also activate another factor. We found that diacylglycerol and phorbol ester stimulate the accumulation of the GTP-bound form of Rab3A. Together our results indicate that diacylglycerol promotes acrosomal exocytosis by i) maintaining high levels of IP(3) - an effect that depends on a positive feedback loop leading to the production of PIP(2) - and ii) stimulating the activation of Rab3A, which in turn initiates a cascade of protein interactions leading to the assembly of SNARE complexes and membrane fusion.
Collapse
Affiliation(s)
- Cecilia I Lopez
- Instituto de Histología y Embriología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | | | | | | | | | |
Collapse
|
48
|
Plattner H, Sehring IM, Mohamed IK, Miranda K, De Souza W, Billington R, Genazzani A, Ladenburger EM. Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma). Cell Calcium 2012; 51:351-82. [PMID: 22387010 DOI: 10.1016/j.ceca.2012.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 12/20/2022]
Abstract
The importance of Ca2+-signaling for many subcellular processes is well established in higher eukaryotes, whereas information about protozoa is restricted. Recent genome analyses have stimulated such work also with Alveolates, such as ciliates (Paramecium, Tetrahymena) and their pathogenic close relatives, the Apicomplexa (Plasmodium, Toxoplasma). Here we compare Ca2+ signaling in the two closely related groups. Acidic Ca2+ stores have been characterized in detail in Apicomplexa, but hardly in ciliates. Two-pore channels engaged in Ca2+-release from acidic stores in higher eukaryotes have not been stingently characterized in either group. Both groups are endowed with plasma membrane- and endoplasmic reticulum-type Ca2+-ATPases (PMCA, SERCA), respectively. Only recently was it possible to identify in Paramecium a number of homologs of ryanodine and inositol 1,3,4-trisphosphate receptors (RyR, IP3R) and to localize them to widely different organelles participating in vesicle trafficking. For Apicomplexa, physiological experiments suggest the presence of related channels although their identity remains elusive. In Paramecium, IP3Rs are constitutively active in the contractile vacuole complex; RyR-related channels in alveolar sacs are activated during exocytosis stimulation, whereas in the parasites the homologous structure (inner membrane complex) may no longer function as a Ca2+ store. Scrutinized comparison of the two closely related protozoan phyla may stimulate further work and elucidate adaptation to parasitic life. See also "Conclusions" section.
Collapse
Affiliation(s)
- H Plattner
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Burgoyne RD, Haynes LP. Understanding the physiological roles of the neuronal calcium sensor proteins. Mol Brain 2012; 5:2. [PMID: 22269068 PMCID: PMC3271974 DOI: 10.1186/1756-6606-5-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/23/2012] [Indexed: 01/22/2023] Open
Abstract
Calcium signalling plays a crucial role in the control of neuronal function and plasticity. Changes in neuronal Ca2+ concentration are detected by Ca2+-binding proteins that can interact with and regulate target proteins to modify their function. Members of the neuronal calcium sensor (NCS) protein family have multiple non-redundant roles in the nervous system. Here we review recent advances in the understanding of the physiological roles of the NCS proteins and the molecular basis for their specificity.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | | |
Collapse
|
50
|
Abstract
The name astroglia unifies many non-excitable neural cells that act as primary homeostatic cells in the nervous system. Neuronal activity triggers multiple homeostatic responses of astroglia that include increase in metabolic activity and synthesis of neuronal preferred energy substrate lactate, clearance of neurotransmitters and buffering of extracellular K(+) ions to name but a few. Many (if not all) of astroglial homeostatic responses are controlled by dynamic changes in the cytoplasmic concentration of two cations, Ca(2+) and Na(+). Intracellular concentration of these ions is tightly controlled by several transporters and can be rapidly affected by the activation of respective fluxes through ionic channels or ion exchangers. Here, we provide a comprehensive review of astroglial Ca(2+) and Na(+) signalling.
Collapse
|