1
|
Yu F, Gong Z, Li Y, Naseem DF, Li C, Wen M, Zhao B, Xu Z, Zhang S, Zang R, Wu A, Han Q, Wu S, Li H, Song Y. Association of SIRT6 Expression With Risk of Pneumonitis Induced by Radiotherapy in Cancer Patients. Mol Carcinog 2025; 64:1104-1118. [PMID: 40170513 PMCID: PMC12074565 DOI: 10.1002/mc.23900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 04/03/2025]
Abstract
Thoracic tumours represent a significant proportion of malignant cancers. While radiotherapy (RT) improves prognosis, it can also lead to side effects such as radiation-induced pneumonitis (RP). Since SIRT6 is involved in DNA repair, energy metabolism and inflammation, this study aims to investigate the expression of SIRT6 in lymphocytes as a potential biomarker and therapeutic target for RP. This study included 170 patients diagnosed with thoracic tumours, all of whom underwent thoracic RT. RP was evaluated and classified as severe RP (SRP) and lower as non-severe RP (NSRP). Analyses were performed using SPSS version 26.0 and the R. Among 170 patients in this study, 124 developed NSRP, and 46 experienced SRP. The univariate analysis showed that SIRT6 expression (cOR, 0.33, 95%CI, 0.18-0.97 before RT and 0.31, 0.19-0.98 after RT), clinical factors, dosimetric parameters and haematological/serological parameters were associated with SRP before and after RT. Our multivariable logistic regression showed that SIRT6 expression was significantly associated with risk of SRP before (aOR, 0.32, 95%CI, 0.15-0.96) and after RT (aOR, 0.32, 95%CI, 0.18-0.99) after adjustment with other confounders. Moreover, the receiver operating characteristic curve analysis revealed that the combined multivariable model exhibited superior predictive capability compared to any single predictor (overall AUC, 0.93, 95%CI, 0.90-0.97 before RT and AUC, 0.91, 95%CI, 0.87-0.96 after RT). The expression of SIRT6 alone or in combination with other risk factors was associated with an increased risk of SRP, suggesting a novel approach for the prevention and treatment of radiation pneumonitis in clinical practice.
Collapse
Affiliation(s)
- Fengyuan Yu
- Department of RadiotherapyQingdao UniversityQingdaoChina
- Department of RadiotherapyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiChina
| | - Zheng Gong
- Department of RadiotherapyQingdao UniversityQingdaoChina
- Department of RadiotherapyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiChina
| | - Yuan Li
- Department of RadiologyAffiliated Hospital of Nanjing University of Chinese MedicineNanjingPR China
| | - Danial F. Naseem
- Department of Head and Neck SurgeryMD Anderson Cancer CenterHoustonTexasUSA
| | - Chen Li
- Department of RadiotherapyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiChina
| | - Miaowei Wen
- Department of RadiotherapyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiChina
| | - Bingying Zhao
- Department of RadiotherapyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiChina
| | - Zhezhe Xu
- Department of RadiotherapyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiChina
| | - Shanshan Zhang
- Department of RadiotherapyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiChina
| | - Rukun Zang
- Department of RadiotherapyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiChina
| | - Ailu Wu
- Department of RadiotherapyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiChina
| | - Qingxin Han
- Department of RadiotherapyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiChina
| | - Shuhui Wu
- Department of OtorhinolaryngologyBaoshan Hospital Affiliated with Shanghai University of Traditional Chinese MedicineShanghaiPR China
| | - Hongwei Li
- Department of RadiotherapyQingdao UniversityQingdaoChina
| | - Yipeng Song
- Department of RadiotherapyQingdao UniversityQingdaoChina
- Department of RadiotherapyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiChina
| |
Collapse
|
2
|
Xu M, Wang W, Lu S, Xiong M, Zhao T, Yu Y, Song C, Yang J, Zhang N, Cao L, Sun G, Chen S, Wang P. The advances in acetylation modification in senescence and aging-related diseases. Front Physiol 2025; 16:1553646. [PMID: 40421455 PMCID: PMC12104306 DOI: 10.3389/fphys.2025.1553646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/28/2025] [Indexed: 05/28/2025] Open
Abstract
Aging is a process in which organisms or cells undergo a decline in their functions. Epigenetic modification changes have been recognized as a senescence hallmark in both natural aging and stimulation-induced senescence. An acetylation modification is a dynamic process, which plays a crucial role in the senescence process through DNA stability, metabolism, and signaling pathways. We summarized the role and regulatory pathways of acetylation modifications in senescence. Various cell fate-determining proteins regulate multiple cellular processes through acetylation modifications. These processes interact and coordinate with each other, forming an integrated regulatory network framework that collectively drives cellular senescence via multiple systemic mechanisms. Based on these findings, we proposed the "acetylation-network regulation-cellular senescence" model, to elaborate how acetylation contributes to senescence. We believe this insight could provide new directions and intervention strategies for senescence and aging-related diseases.
Collapse
Affiliation(s)
- Maiqi Xu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wenbin Wang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Saien Lu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mengyao Xiong
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Tong Zhao
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yao Yu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jinjing Yang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Liu Cao
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Sichong Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Pengbo Wang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
3
|
Greer EL, Lee SS, Prahlad V. Chromatin and epigenetics in aging biology. Genetics 2025; 230:iyaf055. [PMID: 40202900 DOI: 10.1093/genetics/iyaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/03/2025] [Indexed: 04/11/2025] Open
Abstract
This book chapter will focus on modifications to chromatin itself, how chromatin modifications are regulated, and how these modifications are deciphered by the cell to impact aging. In this chapter, we will review how chromatin modifications change with age, examine how chromatin-modifying enzymes have been shown to regulate aging and healthspan, discuss how some of these epigenetic changes are triggered and how they can regulate the lifespan of the individual and its naïve descendants, and speculate on future directions for the field.
Collapse
Affiliation(s)
- Eric Lieberman Greer
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
4
|
Naatz A, Bohl KS, Jones Lipinski RA, Nord JA, Gehant AL, Hansen PA, Smith BC, Corbett JA. Role of SIRT3 in the regulation of Gadd45α expression and DNA repair in β-cells. J Biol Chem 2025; 301:108451. [PMID: 40147772 PMCID: PMC12051128 DOI: 10.1016/j.jbc.2025.108451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/09/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025] Open
Abstract
In previous studies, we have shown that growth arrest and DNA damage (Gadd) 45α is required for the repair of nitric oxide-mediated DNA damage in β-cells. Gadd45α expression is stimulated by nitric oxide and requires forkhead box protein (Fox) O1 and NAD+-dependent deacetylase activity. Based on inhibitor studies, we attributed this activity to Sirtuin (SIRT)1; however, the inhibitors used in this previous study also attenuate the deacetylase activity of SIRT2, 3, and 6. We now provide experimental evidence that SIRT1 is dispensable for β-cell expression of Gadd45α and that the mitochondrial localized isoform SIRT3, is required for DNA repair in β-cells. We show that siRNA knockdown of Sirt3 attenuates nitric oxide-stimulated Gadd45α mRNA accumulation in both wildtype and Sirt1-/- INS 832/13 cells as well as isolated rat islets and that SIRT3 inhibition increases FoxO1 acetylation and attenuates DNA repair in response to nitric oxide. While SIRT3 is predominantly localized to mitochondria, a small fraction is localized in the nucleus of insulin-containing cells and functions to participate in the regulation of FoxO1-dependent, nitric oxide-stimulated DNA repair.
Collapse
Affiliation(s)
- Aaron Naatz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kelsey S Bohl
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Joshua A Nord
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alyssa L Gehant
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Polly A Hansen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
5
|
Zhao Y, Ning J, Wang Y, Liu G, Xu X, Wang C, Lu X. Potential roles of the sirtuins in promoting longevity for larger Argopecten scallops. MARINE LIFE SCIENCE & TECHNOLOGY 2025; 7:284-301. [PMID: 40417254 PMCID: PMC12102419 DOI: 10.1007/s42995-024-00269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/11/2024] [Indexed: 05/27/2025]
Abstract
Annual bay scallops are commercially significant bivalve species for fisheries and aquaculture, but their small size and severe inbreeding depression impede the development of their industry. Some interspecific hybrids of bay scallops and peruvian scallops show longer lifespans and significantly greater sizes, which may result from the longevity genes in the latter (7-10 years). Sirtuins (SIRTs) play pivotal roles in the genetic control of aging in various model species and human beings. However, the role of SIRTs in longevity has not been systematically studied in aquatic animals. In this study, different gene numbers, sequences, structures and tandem duplications of SIRTs were first identified between the two scallops through genome-wide analysis. Cloning and characteristics of the SIRT1 and SIRT6 ORFs revealed dramatic variations in amino acids between the two scallops, which may cause intrinsic differences in function for longevity regulation. In particular, the amino acid variations in the N-terminus may auto-regulate conformations, causing intrinsic differences in catalytic activity for longevity regulation. The robust expression of SIRT1 and SIRT6-2 in peruvian scallops suggested they may exert a role in extending the lifespan. Nutrient restriction (NR) could promote lifespan in terrestrial model organisms, and the SIRTs and their related genes responded to NR for longevity in scallops; peruvian scallops showed a higher ability of autophagy. This study provides potential biomarkers for breeding long-lived larger scallop hybrids for the sustainability of aquaculture. Moreover, the genetic variation during evolution in the two scallops provides a foundation for further research on the longevity function of the SIRTs. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00269-3.
Collapse
Affiliation(s)
- Yang Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Junhao Ning
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003 China
| | - Yuan Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Guilong Liu
- Yantai Spring-Sea AquaSeed, Ltd., Yantai, 264006 China
| | - Xin Xu
- Yantai Spring-Sea AquaSeed, Ltd., Yantai, 264006 China
| | - Chunde Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003 China
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109 China
| | - Xia Lu
- School of Ocean, Yantai University, Yantai, 264005 China
| |
Collapse
|
6
|
Pederson NJ, Diehl KL. DNA stimulates the deacetylase SIRT6 to mono-ADP-ribosylate proteins with histidine repeats. J Biol Chem 2025; 301:108532. [PMID: 40280420 PMCID: PMC12167490 DOI: 10.1016/j.jbc.2025.108532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 03/19/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Sirtuins are the NAD+-dependent class III lysine deacylases (KDACs). Members of this family have been linked to longevity and a wide array of different diseases, motivating the pursuit of sirtuin modulator compounds. Sirtuin 6 (SIRT6) is a primarily nuclear KDAC that deacetylates histones to facilitate gene repression. In addition to this canonical posttranslational modification "eraser" function, SIRT6 can use NAD+ instead to "write" mono-ADP-ribosylation (mARylation) on target proteins. This enzymatic function has been primarily associated with SIRT6's role in the DNA damage response. This modification has been challenging to study because it is not clear under what precise cellular contexts it occurs, only a few substrates are known, and potential interference from other ADP-ribosyltransferases in cells, among other reasons. In this work, we used commercially available ADP-ribosylation detection reagents to investigate the mARylation activity of SIRT6 in a reconstituted system. We observed that SIRT6 is activated in its mARylation activity by binding to dsDNA ends. We further identified a surprising target motif within biochemical substrates of SIRT6, polyhistidine repeat tracts, which are present in several previously identified SIRT6 mARylation substrates. This work provides important context for SIRT6 mARylation activity, in contrast to its KDAC activity, and generates a list of new potential SIRT6 mARylation substrates based on the polyhistidine motif.
Collapse
Affiliation(s)
- Nicholas J Pederson
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Katharine L Diehl
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
7
|
Wei L, Kang M, Zhang G, Meng Y, Qin H. SIRT6 Overexpression Enhances Diabetic Foot Ulcer Healing via Nrf2 Pathway Activation. Inflammation 2025:10.1007/s10753-025-02297-2. [PMID: 40199836 DOI: 10.1007/s10753-025-02297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Sirtuin-6 (SIRT6) has a pivotal role in a wide array of cellular biological functions and is linked to the progression of various diseases. Previous findings have identified SIRT6 as a protective modulator against numerous diabetic complications. However, whether SIRT6 exerts a protective role in diabetic foot ulcer (DFU) remains unstudied. This work established a rat model of DFU and evaluated the possible role of SIRT6 in mediating the wound healing in DFU. Marked reductions in SIRT6 levels were observed in wound samples from DFU patients and rats. Increasing SIRT6 expression in wound tissues remarkably decreased wound area, accelerated epithelialisation, increased collagen deposition and improved angiogenesis. Moreover, up-modulation of SIRT6 relieved the oxidative stress and inflammation in DFU rats. The increase of SIRT6 in cultured vascular endothelial cells restrained cell apoptosis, oxidative stress and inflammation elicited by high glucose (HG). HG-impaired migration capacity and angiogenesis of vascular endothelial cells was also recovered by increasing SIRT6 expression. Mechanism research revealed that SIRT6 overexpression reinforced the activation of the Nrf2 pathway in wound tissues of DFU rats and HG-exposed vascular endothelial cells. Pharmacological suppression of Nrf2 reversed the protective effect of SIRT6 overexpression on HG-triggered endothelial dysfunction. The findings of this work indicate that the positive role of SIRT6 in DFU wound healing is related to Nrf2 activation which contributes to the suppression of oxidative stress and inflammation and the improvement of angiogenesis in vascular endothelial cells. This study highlights the previously unaddressed role of SIRT6 in DFU wound healing, providing novel insights into its protective functions. The findings hold significant clinical value by identifying SIRT6 as a promising therapeutic target for improving DFU wound healing.
Collapse
Affiliation(s)
- Li Wei
- Department of Anesthesiology and Operation, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Mengyang Kang
- Department of Peripheral Vascular Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Guofeng Zhang
- Department of Peripheral Vascular Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yan Meng
- Department of Peripheral Vascular Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Hao Qin
- Department of Peripheral Vascular Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
8
|
Zhang Y, Wang H, Zhan Z, Gan L, Bai O. Mechanisms of HDACs in cancer development. Front Immunol 2025; 16:1529239. [PMID: 40260239 PMCID: PMC12009879 DOI: 10.3389/fimmu.2025.1529239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
Histone deacetylases (HDACs) are a class of epigenetic regulators that play pivotal roles in key biological processes such as cell proliferation, differentiation, metabolism, and immune regulation. Based on this, HDAC inhibitors (HDACis), as novel epigenetic-targeted therapeutic agents, have demonstrated significant antitumor potential by inducing cell cycle arrest, activating apoptosis, and modulating the immune microenvironment. Current research is focused on developing highly selective HDAC isoform inhibitors and combination therapy strategies tailored to molecular subtypes, aiming to overcome off-target effects and resistance issues associated with traditional broad-spectrum inhibitors. This review systematically elaborates on the multidimensional regulatory networks of HDACs in tumor malignancy and assesses the clinical translation progress of next-generation HDACis and their prospects in precision medicine, providing a theoretical framework and strategic reference for the development of epigenetic-targeted antitumor drugs.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Haotian Wang
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Zhumei Zhan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lin Gan
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Out Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Zhang J, Liu C, Luo W, Sun B. Role of SIRT7 in Prostate Cancer Progression: New Insight Into Potential Therapeutic Target. Cancer Med 2025; 14:e70786. [PMID: 40165597 PMCID: PMC11959159 DOI: 10.1002/cam4.70786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Prostate cancer (PCa) is the second most common cancer in men worldwide, and understanding its molecular mechanisms is crucial for developing effective treatment strategies. SIRT7, a NAD+-dependent histone deacetylase, has emerged as a key regulator in PCa progression due to its roles in chromatin remodeling, DNA repair, and transcriptional regulation. Analysis of 492 PCa samples from The Cancer Genome Atlas (TCGA) via cBioPortal revealed that high SIRT7 expression is associated with poor prognosis in PCa patients. Mechanistically, SIRT7 deacetylates histone H3 at lysine 18 (H3K18Ac), a marker associated with aggressive tumors, suppressing tumor suppressor genes and promoting cancer cell proliferation and survival. Epithelial-mesenchymal transition (EMT) is a cellular biological process in which epithelial cells undergo specific molecular and morphological changes to transform into cells with characteristics of mesenchymal cells. SIRT7 also regulates EMT, and inhibiting SIRT7 in PCa cell lines reduces cell migration and invasion, highlighting its potential as a therapeutic target. In summary, the clinical significance of SIRT7 expression in PCa requires further research to elucidate its mechanisms. Developing specific inhibitors targeting SIRT7's deacetylase activity is a promising therapeutic strategy. SIRT7 plays a crucial role in regulating biological processes such as cell proliferation, cell cycle, and apoptosis in PCa through its epigenetic control of gene expression and maintenance of genomic stability. Therefore, SIRT7 may be a potential therapeutic target for PCa, and its expression could have prognostic value for PCa patients, providing important guidance for clinical monitoring and diagnosis by physicians.
Collapse
Affiliation(s)
- Jiale Zhang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- Guangzhou LaboratoryGuangzhouChina
| | - Chenxin Liu
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- Guangzhou LaboratoryGuangzhouChina
| | - Wenting Luo
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- Guangzhou LaboratoryGuangzhouChina
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- Guangzhou LaboratoryGuangzhouChina
| |
Collapse
|
10
|
Karmakar A, Augustine ABHR, Thummer RP. Genes as Genome Stabilizers in Pluripotent Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40095244 DOI: 10.1007/5584_2025_853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Pluripotent stem cells, comprising embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are characterized by their self-renewal capacity and the ability to differentiate into cells of all three germ layers of an adult animal. Out of the two, iPSCs are generated through the reprogramming of somatic cells by inducing a pluripotency-specific transcriptional program. This process requires a resetting of the somatic cell genome to a pluripotent cell-specific genome, resulting in cellular stress at genomic, epigenetic, and transcriptional levels. Notably, in contrast to the predominant compact and inactive organization of chromatin in somatic cells, the chromatin in ESCs and iPSCs is open. Furthermore, maintaining a pluripotent state needs a plethora of changes in the genetic landscape of the cells. Here, we attempt to elucidate how certain genes safeguard genomic stability in ESCs and iPSCs, aiding in the complex cellular mechanisms that regulate self-renewal, pluripotency, and somatic reprogramming.
Collapse
Affiliation(s)
- Asmita Karmakar
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Allan Blessing Harison Raj Augustine
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
11
|
Wang W, Liang J, Zhang Y, Wang J, Miao X, Chang Y, Chen Y. Myeloid sirtuin 6 deficiency causes obesity in mice by inducing norepinephrine degradation to limit thermogenic tissue function. Sci Signal 2025; 18:eadl6441. [PMID: 40067908 DOI: 10.1126/scisignal.adl6441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2024] [Accepted: 02/21/2025] [Indexed: 05/13/2025]
Abstract
Brown and beige adipocytes dissipate energy to generate heat through uncoupled respiration, and the hormone norepinephrine plays an important role in stimulating brown fat thermogenesis and beige adipocyte development in white adipose depots. Increasing energy expenditure by promoting the function and development of brown and beige fat is a potential approach to treat obesity and diabetes. Here, we investigated the effects of macrophage sirtuin 6 (SIRT6) on the regulation of the norepinephrine content of brown adipose tissue (BAT) and on obesity in mice. Myeloid SIRT6 deficiency impaired the thermogenic function of BAT, thereby decreasing core body temperatures because of reduced norepinephrine concentrations in BAT and subsequently leading to cold sensitivity. In addition, the oxygen consumption rate was reduced, resulting in severe insulin resistance and obesity. Furthermore, macrophage SIRT6 deficiency inhibited BAT thermogenesis after cold exposure or norepinephrine treatment and cold exposure-induced increases in markers of lipid metabolism and thermogenesis in white adipose tissue. Myeloid-specific SIRT6 deficiency promoted H3K9 acetylation in the promoter regions and the expression of genes encoding the norepinephrine-degrading enzyme MAOA and the norepinephrine transporter SLC6A2 in macrophages in BAT, leading to norepinephrine degradation and obesity. Our findings indicate that SIRT6 in macrophages is essential for maintaining norepinephrine concentrations in BAT in mice.
Collapse
Affiliation(s)
- Wei Wang
- National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, China
| | - Jichao Liang
- National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, China
| | - Yinliang Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Junjun Wang
- National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, China
| | - Xiaolei Miao
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yongsheng Chang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Yong Chen
- National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, China
| |
Collapse
|
12
|
Wang X, Zhao X, Zheng X, Peng X, Chen J, Wang Y, Wang Z, Meng M, Du J. Sirt6 loss activates Got1 and facilitates cleft palate through abnormal activating glycolysis. Cell Death Dis 2025; 16:159. [PMID: 40050262 PMCID: PMC11885815 DOI: 10.1038/s41419-025-07465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/09/2025]
Abstract
Cleft palate (CP) is a common congenital craniofacial malformation, which is caused by a combination of genetic and environmental factors. However, its underlying mechanism has not been elucidated. Sirtuin6 (SIRT6) mutation has been associated with craniofacial anomalies in humans. This study further defined the role of Sirt6 in palatogenesis by investigating the specific inactivation of Sirt6 in Wnt1-expressing cell lineages. Here, we demonstrated that Sirt6 conditioned knockout (Sirt6 cKO) could inhibit the osteogenesis of the palate which facilitated the occurrence of CP. Specifically, Sirt6 deficiency promoted the expression of glutamine oxaloacetic transaminase 1 (Got1) and glycolysis through deacetylation inhibition, which increased the proliferation of mouse embryonic palatal mesenchyme (MEPM) cells through the GOT1-lactate dehydrogenase A (LDHA)-transforming growth factor beta receptor 1 (TGFBR1) pathway in the early stage and inhibited the osteogenic differentiation of MEPM cells through the GOT1-LDHA-bone morphogenetic protein 2 (BMP2) pathway in the late stage. Notably, if there was a disturbance of the environment, such as retinoic acid (RA), the occurrence of CP increased. Also, the enhanced acetylation of histone 3 lysine 9 (H3K9) in Got1 induced by Sirt6 deficiency was mediated by the acetylase tat-interacting protein 60 (TIP60) rather than acetyltransferase p300 (P300). Additionally, inhibition of Got1 partially saved the promoting effect of Sirt6 cKO on the CP. Our study reveals the role of Sirt6 in facilitating CP, with Got1 as the primary driver.
Collapse
Affiliation(s)
- Xiaotong Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Re-generation and Function Reconstruction, Capital Medical University School of Stomatology, Fanjiacun Road No.9, Beijing, 100070, China
| | - Xige Zhao
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Re-generation and Function Reconstruction, Capital Medical University School of Stomatology, Fanjiacun Road No.9, Beijing, 100070, China
| | - Xiaoyu Zheng
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Re-generation and Function Reconstruction, Capital Medical University School of Stomatology, Fanjiacun Road No.9, Beijing, 100070, China
| | - Xia Peng
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Re-generation and Function Reconstruction, Capital Medical University School of Stomatology, Fanjiacun Road No.9, Beijing, 100070, China
| | - Jing Chen
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Re-generation and Function Reconstruction, Capital Medical University School of Stomatology, Fanjiacun Road No.9, Beijing, 100070, China
| | - Yijia Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Re-generation and Function Reconstruction, Capital Medical University School of Stomatology, Fanjiacun Road No.9, Beijing, 100070, China
| | - Zhiwei Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Re-generation and Function Reconstruction, Capital Medical University School of Stomatology, Fanjiacun Road No.9, Beijing, 100070, China
| | - Mingyue Meng
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Re-generation and Function Reconstruction, Capital Medical University School of Stomatology, Fanjiacun Road No.9, Beijing, 100070, China
| | - Juan Du
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Re-generation and Function Reconstruction, Capital Medical University School of Stomatology, Fanjiacun Road No.9, Beijing, 100070, China.
- Department of geriatric dentistry, Capital Medical University School of Stomatology, Fanjiacun Road No.9, Beijing, 100070, China.
| |
Collapse
|
13
|
Fiorentino F, Fabbrizi E, Mai A, Rotili D. Activation and inhibition of sirtuins: From bench to bedside. Med Res Rev 2025; 45:484-560. [PMID: 39215785 PMCID: PMC11796339 DOI: 10.1002/med.22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
The sirtuin family comprises seven NAD+-dependent enzymes which catalyze protein lysine deacylation and mono ADP-ribosylation. Sirtuins act as central regulators of genomic stability and gene expression and control key processes, including energetic metabolism, cell cycle, differentiation, apoptosis, and aging. As a result, all sirtuins play critical roles in cellular homeostasis and organism wellness, and their dysregulation has been linked to metabolic, cardiovascular, and neurological diseases. Furthermore, sirtuins have shown dichotomous roles in cancer, acting as context-dependent tumor suppressors or promoters. Given their central role in different cellular processes, sirtuins have attracted increasing research interest aimed at developing both activators and inhibitors. Indeed, sirtuin modulation may have therapeutic effects in many age-related diseases, including diabetes, cardiovascular and neurodegenerative disorders, and cancer. Moreover, isoform selective modulators may increase our knowledge of sirtuin biology and aid to develop better therapies. Through this review, we provide critical insights into sirtuin pharmacology and illustrate their enzymatic activities and biological functions. Furthermore, we outline the most relevant sirtuin modulators in terms of their modes of action, structure-activity relationships, pharmacological effects, and clinical applications.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| | - Emanuele Fabbrizi
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| | - Antonello Mai
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
- Pasteur Institute, Cenci‐Bolognetti FoundationSapienza University of RomeRomeItaly
| | - Dante Rotili
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| |
Collapse
|
14
|
Bhat A, Bhan S, Kabiraj A, Pandita RK, Ramos KS, Nandi S, Sopori S, Sarkar PS, Dhar A, Pandita S, Kumar R, Das C, Tainer JA, Pandita TK. A predictive chromatin architecture nexus regulates transcription and DNA damage repair. J Biol Chem 2025; 301:108300. [PMID: 39947477 PMCID: PMC11931391 DOI: 10.1016/j.jbc.2025.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 03/28/2025] Open
Abstract
Genomes are blueprints of life essential for an organism's survival, propagation, and evolutionary adaptation. Eukaryotic genomes comprise of DNA, core histones, and several other nonhistone proteins, packaged into chromatin in the tiny confines of nucleus. Chromatin structural organization restricts transcription factors to access DNA, permitting binding only after specific chromatin remodeling events. The fundamental processes in living cells, including transcription, replication, repair, and recombination, are thus regulated by chromatin structure through ATP-dependent remodeling, histone variant incorporation, and various covalent histone modifications including phosphorylation, acetylation, and ubiquitination. These modifications, particularly involving histone variant H2AX, furthermore play crucial roles in DNA damage responses by enabling repair protein's access to damaged DNA. Chromatin also stabilizes the genome by regulating DNA repair mechanisms while suppressing damage from endogenous and exogenous sources. Environmental factors such as ionizing radiations induce DNA damage, and if repair is compromised, can lead to chromosomal abnormalities and gene amplifications as observed in several tumor types. Consequently, chromatin architecture controls the genome fidelity and activity: it orchestrates correct gene expression, genomic integrity, DNA repair, transcription, replication, and recombination. This review considers connecting chromatin organization to functional outcomes impacting transcription, DNA repair and genomic integrity as an emerging grand challenge for predictive molecular cell biology.
Collapse
Affiliation(s)
- Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, India.
| | - Sonali Bhan
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, India
| | - Aindrila Kabiraj
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India
| | - Raj K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Keneth S Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India
| | - Shreya Sopori
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, India
| | - Parthas S Sarkar
- Department of Neurobiology and Neurology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Telangana, India
| | | | - Rakesh Kumar
- Department of Biotechnology, Shri Mata Vaishnav Devi University, Katra, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India.
| | - John A Tainer
- Department of Molecular & Cellular Oncology and Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA.
| |
Collapse
|
15
|
Chen F, Xu W, Tang M, Tian Y, Shu Y, He X, Zhou L, Liu Q, Zhu Q, Lu X, Zhang J, Zhu WG. hnRNPA2B1 deacetylation by SIRT6 restrains local transcription and safeguards genome stability. Cell Death Differ 2025; 32:382-396. [PMID: 39511404 PMCID: PMC11893882 DOI: 10.1038/s41418-024-01412-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024] Open
Abstract
Repair of double strand breaks (DSBs) by RNA-binding proteins (RBPs) is vital for ensuring genome integrity. DSB repair is accompanied by local transcriptional repression in the vicinity of transcriptionally active genes, but the mechanism by which RBPs regulate transcriptional regulation is unclear. Here, we demonstrated that RBP hnRNPA2B1 functions as a RNA polymerase-associated factor that stabilizes the transcription complex under physiological conditions. Following a DSB, hnRNPA2B1 is released from damaged chromatin, reducing the efficiency of RNAPII complex assembly, leading to local transcriptional repression. Mechanistically, SIRT6 deacetylates hnRNPA2B1 at K113/173 residues, enforcing its rapid detachment from DSBs. This process disrupts the integrity of the RNAPII complex on active chromatin, which is a pre-requisite for transient but complete repression of local transcription. Functionally, the overexpression of an acetylation mimic stabilizes the transcription complex and facilitates the functioning of the transcription machinery. hnRNPA2B1 acetylation status was negatively correlated with SIRT6 expression, and acetylation mimic enhanced radio-sensitivity in vivo. Our findings demonstrate that hnRNPA2B1 is crucial for transcriptional repression. We have uncovered the missing link between DSB repair and transcriptional regulation in genome stability maintenance, highlighting the potential of hnRNPA2B1 as a therapeutic target.
Collapse
Affiliation(s)
- Feng Chen
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Wenchao Xu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan Tian
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Yuxin Shu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, China
| | - Xingkai He
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Linmin Zhou
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Qi Liu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Qian Zhu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Xiaopeng Lu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China.
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China.
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, China.
| |
Collapse
|
16
|
Kielbowski K, Bratborska AW, Bakinowska E, Pawlik A. Sirtuins as therapeutic targets in diabetes. Expert Opin Ther Targets 2025; 29:117-135. [PMID: 40116767 DOI: 10.1080/14728222.2025.2482563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/01/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION Sirtuins (SIRTs) are NAD+-dependent deacetylases that mediate post-translational modifications of proteins. Seven members of the SIRT family have been identified in mammals. Importantly, SIRTs interact with numerous metabolic and inflammatory pathways. Thus, researchers have investigated their role in metabolic and inflammatory disorders. AREAS COVERED In this review, we comprehensively discuss the involvement of SIRTs in the processes of pancreatic β-cell dysfunction, glucose tolerance, insulin secretion, lipid metabolism, and adipocyte functions. In addition, we describe the current evidence regarding modulation of the expression and activity of SIRTs in diabetes, diabetic complications, and obesity. EXPERT OPINION The development of specific SIRT activators and inhibitors that exhibit high selectivity toward specific SIRT isoforms remains a major challenge. This involves the need to elucidate the physiological pathways involving SIRTs, as well as their important role in the development of metabolic disorders. Molecular modeling techniques will be helpful to develop new compounds that modulate the activity of SIRTs, which may contribute to the preparation of new drugs that selectively target specific SIRTs. SIRTs hold promise as potential targets in metabolic disease, but there is much to learn about specific modulators and the final answers will await clinical trials.
Collapse
Affiliation(s)
- Kajetan Kielbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
17
|
Rao H, Yang T, Wang Y, Fei J, Bie LH, Gao J. Molecular dynamics simulation on the role of CL5D in accelerating the product dissociation of SIRT6. Phys Chem Chem Phys 2025; 27:4298-4306. [PMID: 39925168 DOI: 10.1039/d4cp03870c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
SIRT6 is a member of the NAD+-dependent histone deacetylase family and is integral to maintaining genome stability and regulating metabolic transcription. SIRT6 transfers acetyl groups from the lysine side chains of protein substrates to the cofactor NAD+, generating nicotinamide, 2'-O-acyl-ADP-ribose (ADPr), and a deacetylated substrate. SIRT6 has been found to be activated by small molecule activators, such as CL5D. However, the process of dissociation of the SIRT6 product and the mechanism of activation by small molecule activators are unknown. In this work, we elucidated these activation mechanisms by performing extensive molecular dynamics simulations. The results of random acceleration molecular dynamics and umbrella sampling demonstrated that the dissociation sequence involves the exit of the deacetylated substrate first, followed by ADPr. The binding of CL5D does not alter the dissociation pathway of the products, but it increases the catalytic activity of SIRT6 by facilitating the dissociation of products within SIRT6. Our results suggest a mechanism of SIRT6 activation, which highlights the importance of product dissociation in enzyme catalysis. This result may help facilitate the development of new SIRT6 activators.
Collapse
Affiliation(s)
- Hao Rao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Ting Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Yue Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Junwen Fei
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Li-Hua Bie
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
18
|
Leng S, Li H, Zhang P, Dang Z, Shao B, Xue S, Ning Y, Teng X, Zhang L, Wang H, Li N, Zhang F, Yu W. SGK1-Mediated Vascular Smooth Muscle Cell Phenotypic Transformation Promotes Thoracic Aortic Dissection Progression. Arterioscler Thromb Vasc Biol 2025; 45:238-259. [PMID: 39633576 PMCID: PMC11748913 DOI: 10.1161/atvbaha.124.321421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND The occurrence of thoracic aortic dissection (TAD) is closely related to the transformation of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic phenotype. The role of SGK1 (serum- and glucocorticoid-regulated kinase 1) in VSMC phenotypic transformation and TAD occurrence is unclear. METHODS Four-week-old male Sgk1F/F (Sgk1 floxed) and Sgk1F/F;TaglnCre (smooth muscle cell-specific Sgk1 knockout) mice were administered β-aminopropionitrile monofumarate for 4 weeks to model TAD. The SGK1 inhibitor GSK650394 was administered daily via intraperitoneal injection to treat the mouse model of TAD. Immunopurification and mass spectrometry were used to identify proteins that interact with SGK1. Immunoprecipitation, immunofluorescence colocalization, and GST (glutathione S-transferase) pull-down were used to detect molecular interactions between SGK1 and SIRT6 (sirtuin 6). RNA-sequencing analysis was performed to evaluate changes in the SIRT6 transcriptome. Quantitative chromatin immunoprecipitation was used to determine the target genes regulated by SIRT6. Functional experiments were also conducted to investigate the role of SGK1-SIRT6-MMP9 (matrix metalloproteinase 9) in VSMC phenotypic transformation. The effect of SGK1 regulation on target genes was evaluated in human and mouse TAD samples. RESULTS Sgk1F/F;TaglnCre or pharmacological blockade of Sgk1 inhibited the formation and rupture of β-aminopropionitrile monofumarate-induced TADs in mice and reduced the degradation of the ECM (extracellular matrix) in vessels. Mechanistically, SGK1 promoted the ubiquitination and degradation of SIRT6 by phosphorylating SIRT6 at Ser338, thereby reducing the expression of the SIRT6 protein. Furthermore, SIRT6 transcriptionally inhibits the expression of MMP9 through epigenetic modification, forming the SGK1-SIRT6-MMP9 regulatory axis, which participates in the ECM signaling pathway. Additionally, our data showed that the lack of SGK1-mediated inhibition of ECM degradation and VSMC phenotypic transformation is partially dependent on the regulatory effect of SIRT6-MMP9. CONCLUSIONS These findings highlight the key role of SGK1 in the pathogenesis of TAD. A lack of SGK1 inhibits VSMC phenotypic transformation by regulating the SIRT6-MMP9 axis, providing insights into potential epigenetic strategies for TAD treatment.
Collapse
MESH Headings
- Animals
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Immediate-Early Proteins/antagonists & inhibitors
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/drug effects
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/deficiency
- Aortic Dissection/pathology
- Aortic Dissection/genetics
- Aortic Dissection/enzymology
- Aortic Dissection/chemically induced
- Male
- Phenotype
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/drug effects
- Mice, Knockout
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/enzymology
- Aortic Aneurysm, Thoracic/chemically induced
- Disease Models, Animal
- Humans
- Mice
- Disease Progression
- Aorta, Thoracic/pathology
- Aorta, Thoracic/enzymology
- Cells, Cultured
- Signal Transduction
- Matrix Metalloproteinase 9/metabolism
- Matrix Metalloproteinase 9/genetics
- Vascular Remodeling
- Mice, Inbred C57BL
- Dissection, Thoracic Aorta
Collapse
Affiliation(s)
- Shuai Leng
- Department of Cardiac Surgery (S.L., H.L., P.Z., Z.D., B.S., S.X., Y.N., X.T., L.Z., H.W., N.L., F.Z., W.Y.), Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Research Center of Translational Medicine (S.L., W.Y.), Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Haijie Li
- Department of Cardiac Surgery (S.L., H.L., P.Z., Z.D., B.S., S.X., Y.N., X.T., L.Z., H.W., N.L., F.Z., W.Y.), Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pengfei Zhang
- Department of Cardiac Surgery (S.L., H.L., P.Z., Z.D., B.S., S.X., Y.N., X.T., L.Z., H.W., N.L., F.Z., W.Y.), Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhiqiao Dang
- Department of Cardiac Surgery (S.L., H.L., P.Z., Z.D., B.S., S.X., Y.N., X.T., L.Z., H.W., N.L., F.Z., W.Y.), Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Baowei Shao
- Department of Cardiac Surgery (S.L., H.L., P.Z., Z.D., B.S., S.X., Y.N., X.T., L.Z., H.W., N.L., F.Z., W.Y.), Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shishan Xue
- Department of Cardiac Surgery (S.L., H.L., P.Z., Z.D., B.S., S.X., Y.N., X.T., L.Z., H.W., N.L., F.Z., W.Y.), Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yansong Ning
- Department of Cardiac Surgery (S.L., H.L., P.Z., Z.D., B.S., S.X., Y.N., X.T., L.Z., H.W., N.L., F.Z., W.Y.), Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xilong Teng
- Department of Cardiac Surgery (S.L., H.L., P.Z., Z.D., B.S., S.X., Y.N., X.T., L.Z., H.W., N.L., F.Z., W.Y.), Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Leilei Zhang
- Department of Cardiac Surgery (S.L., H.L., P.Z., Z.D., B.S., S.X., Y.N., X.T., L.Z., H.W., N.L., F.Z., W.Y.), Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Honglu Wang
- Department of Cardiac Surgery (S.L., H.L., P.Z., Z.D., B.S., S.X., Y.N., X.T., L.Z., H.W., N.L., F.Z., W.Y.), Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Na Li
- Department of Cardiac Surgery (S.L., H.L., P.Z., Z.D., B.S., S.X., Y.N., X.T., L.Z., H.W., N.L., F.Z., W.Y.), Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fengquan Zhang
- Department of Cardiac Surgery (S.L., H.L., P.Z., Z.D., B.S., S.X., Y.N., X.T., L.Z., H.W., N.L., F.Z., W.Y.), Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenqian Yu
- Department of Cardiac Surgery (S.L., H.L., P.Z., Z.D., B.S., S.X., Y.N., X.T., L.Z., H.W., N.L., F.Z., W.Y.), Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Research Center of Translational Medicine (S.L., W.Y.), Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
19
|
Yaghoobi A, Rezaee M, Hedayati N, Keshavarzmotamed A, Khalilzad MA, Russel R, Asemi Z, Rajabi Moghadam H, Mafi A. Insight into the cardioprotective effects of melatonin: shining a spotlight on intercellular Sirt signaling communication. Mol Cell Biochem 2025; 480:799-823. [PMID: 38980593 DOI: 10.1007/s11010-024-05002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/25/2024] [Indexed: 07/10/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death and illness worldwide. While there have been advancements in the treatment of CVDs using medication and medical procedures, these conventional methods have limited effectiveness in halting the progression of heart diseases to complete heart failure. However, in recent years, the hormone melatonin has shown promise as a protective agent for the heart. Melatonin, which is secreted by the pineal gland and regulates our sleep-wake cycle, plays a role in various biological processes including oxidative stress, mitochondrial function, and cell death. The Sirtuin (Sirt) family of proteins has gained attention for their involvement in many cellular functions related to heart health. It has been well established that melatonin activates the Sirt signaling pathways, leading to several beneficial effects on the heart. These include preserving mitochondrial function, reducing oxidative stress, decreasing inflammation, preventing cell death, and regulating autophagy in cardiac cells. Therefore, melatonin could play crucial roles in ameliorating various cardiovascular pathologies, such as sepsis, drug toxicity-induced myocardial injury, myocardial ischemia-reperfusion injury, hypertension, heart failure, and diabetic cardiomyopathy. These effects may be partly attributed to the modulation of different Sirt family members by melatonin. This review summarizes the existing body of literature highlighting the cardioprotective effects of melatonin, specifically the ones including modulation of Sirt signaling pathways. Also, we discuss the potential use of melatonin-Sirt interactions as a forthcoming therapeutic target for managing and preventing CVDs.
Collapse
Affiliation(s)
- Alireza Yaghoobi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | | | | | - Reitel Russel
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hasan Rajabi Moghadam
- Department of Cardiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
20
|
Padhiar AA, Yang X, Zaidi SAA, Li Z, Liao J, Shu W, Chishti AA, He L, Alam G, Faqeer A, Ali I, Zhang S, Wang T, Liu T, Zhou M, Wang G, Zhou Y, Zhou G. MAM-STAT3-Driven Mitochondrial Ca +2 Upregulation Contributes to Immunosenescence in Type A Mandibuloacral Dysplasia Patients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407398. [PMID: 39661729 PMCID: PMC11791949 DOI: 10.1002/advs.202407398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Individuals with homozygous laminA/C p.R527C mutations manifest a severe form of Mandibuloacral dysplasia-(MAD) and exhibit overlapping progeroid symptoms, for which the underlying molecular pathology remains unknown. Herein, it is shown that MAD patients achieved inflammaging with different pro-inflammatory cytokines compared to progeria-(HGPS) patient. Characterization of MAD iPSC-derived Mesenchymal stem cells (MAD-iMSC) uncovers deregulated mitochondrial Ca+2 as the primary cause of inflammaging, mediated through inflammasome formation rather than the cGAS-STING pathway. Moreover, MAD-iMSCs extracellular vesicles (EVs) can also upregulate mitochondrial Ca+2 in healthy cells. This deregulated Ca+2 homeostasis is indirectly mediated by mitochondrial calcium mediator, signal transducer, and activator of transcription-3 (STAT3), situated on the mitochondrial associated membrane (MAM). Inflammaging is mitigated by various FDA-approved MAM-STAT3 upstream inhibitors, such as (Tocilizumab) or by correcting R527C mutation with CRISPR/CAS9. These results provide new insights into MAD disease and propose targeting defective mitochondrial Ca+2 homeostasis as a promising therapy for reversing immunosenescence.
Collapse
Affiliation(s)
- Arshad Ahmed Padhiar
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCT06269‐3043USA
- Senotherapeutics Ltd.Hangzhou311100China
| | - Xiaohong Yang
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
- Department of Laboratory MedicinePuning Traditional Chinese Medicine HospitalPuningGuangdong515343China
| | - Syed Aqib Ali Zaidi
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
| | - Zhu Li
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
| | - Jinqi Liao
- Senotherapeutics Ltd.Hangzhou311100China
- Lungene Biotech Ltd.Yinxing Scientific BuildingShenzhen510086China
| | - Wei Shu
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle HeathGuilin Medical UniversityGuilin541004China
| | - Arif Ali Chishti
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
| | - Liangge He
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
| | - Gulzar Alam
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
| | - Abdullah Faqeer
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
| | - Ilyas Ali
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
| | - Shuai Zhang
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
- Brain Research Centre and Department of BiologySouthern University of Science and Technology1088 Xueyuan Blvd, Nanshan DistrictShenzhenGuangdong518055China
| | - Ting Wang
- Senotherapeutics Ltd.Hangzhou311100China
- Lungene Biotech Ltd.Yinxing Scientific BuildingShenzhen510086China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle HeathGuilin Medical UniversityGuilin541004China
| | - Tao Liu
- Department of Tumor ImmunotherapyShenzhen Luohu People's HospitalThe Third Affiliated Hospital of Shenzhen UniversityShenzhenGuangdong518001China
| | - Meiling Zhou
- Department of Tumor ImmunotherapyShenzhen Luohu People's HospitalThe Third Affiliated Hospital of Shenzhen UniversityShenzhenGuangdong518001China
| | - Gang Wang
- Senotherapeutics Ltd.Hangzhou311100China
| | - Yan Zhou
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
- Senotherapeutics Ltd.Hangzhou311100China
- Lungene Biotech Ltd.Yinxing Scientific BuildingShenzhen510086China
| | - Guangqian Zhou
- Guangdong Key Laboratory of Genomic Stability and Disease PreventionShenzhen Key Laboratory of Anti‐Aging and Regenerative MedicineShenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic DiseasesDepartment of Medical Cell Biology and GeneticsHealth Science CenterShenzhen UniversityShenzhen518060China
- Senotherapeutics Ltd.Hangzhou311100China
- Lungene Biotech Ltd.Yinxing Scientific BuildingShenzhen510086China
| |
Collapse
|
21
|
You Y, Liang W, Zhao Y. Development and Validation of a Predictive Model Based on Serum Silent Information Regulator 6 Levels in Chinese Older Adult Patients: Cross-Sectional Descriptive Study. JMIR Aging 2025; 8:e64374. [PMID: 39851250 PMCID: PMC11758378 DOI: 10.2196/64374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 01/26/2025] Open
Abstract
Background Serum levels of silent information regulator 6 (SIRT6), a key biomarker of aging, were identified as a predictor of coronary artery disease (CAD), but whether SIRT6 can distinguish severity of coronary artery lesions in older adult patients is unknown. objectives This study developed a nomogram to demonstrate the functionality of SIRT6 in assessing severity of coronary artery atherosclerosis. Methods Patients aged 60 years and older with angina pectoris were screened for this single-center clinical study between October 1, 2022, and March 31, 2023. Serum specimens of eligible patients were collected for SIRT6 detection by enzyme-linked immunosorbent assay. Clinical data and putative predictors, including 29 physiological characteristics, biochemical parameters, carotid artery ultrasonographic results, and complete coronary angiography findings, were evaluated, with CAD diagnosis as the primary outcome. The nomogram was derived from the Extreme Gradient Boosting (XGBoost) model, with logistic regression for variable selection. Model performance was assessed by examining discrimination, calibration, and clinical use separately. A 10-fold cross-validation technique was used to compare all models. The models' performance was further evaluated on the internal validation set to ensure that the obtained results were not due to overoptimization. Results Eligible patients (n=222) were divided into 2 cohorts: the development cohort (n=178) and the validation cohort (n=44). Serum SIRT6 levels were identified as both an independent risk factor and a predictor for CAD in older adults. The area under the receiver operating characteristic curve (AUROC) was 0.725 (95% CI 0.653-0.797). The optimal cutoff value of SIRT6 for predicting CAD was 546.384 pg/mL. Predictors included in this nomogram were serum SIRT6 levels, triglyceride glucose (TyG) index, and apolipoprotein B. The model achieved an AUROC of 0.956 (95% CI 0.928-0.983) in the development cohort. Similarly, in the internal validation cohort, the AUROC was 0.913 (95% CI 0.828-0.999). All models demonstrated satisfactory calibration, with predicted outcomes closely aligning with actual results. Conclusions SIRT6 shows promise in predicting CAD, with enhanced predictive abilities when combined with the TyG index. In clinical settings, monitoring fluctuations in SIRT6 and TyG may offer valuable insights for early CAD detection. The nomogram for CAD outcome prediction in older adult patients with angina pectoris may aid in clinical trial design and personalized clinical decision-making, particularly in institutions where SIRT6 is being explored as a biomarker for aging or cardiovascular health.
Collapse
Affiliation(s)
- Yuzi You
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China, 86 13601893105
| | - Yajie Zhao
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China, 86 13601893105
| |
Collapse
|
22
|
Lu C, Wei J, Gao C, Sun M, Dong D, Mu Z. Molecular signaling pathways in doxorubicin-induced nephrotoxicity and potential therapeutic agents. Int Immunopharmacol 2025; 144:113373. [PMID: 39566381 DOI: 10.1016/j.intimp.2024.113373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
Doxorubicin (DOX), an anthracycline chemotherapeutic agent, is extensively utilized in the clinical management of both solid and hematological malignancies. Nevertheless, the clinical application of this treatment is significantly limited by adverse reactions and toxicity that may arise during or after administration. Its cytotoxic effects are multifaceted, with cardiotoxicity being the most prevalent side effect. Furthermore, it has the potential to adversely affect other organs, including the brain, kidneys, liver, and so on. Notably, it has been reported that DOX may cause renal failure in patients and there is currently no effective treatment for DOX-induced kidney damage, which has raised a high concern about DOX-induced nephrotoxicity (DIN). Although the precise molecular mechanisms underlying DIN remain incompletely elucidated, prior research has indicated that reactive oxygen species (ROS) are pivotal in this process, triggering a cascade of detrimental pathways including apoptosis, inflammation, dysregulated autophagic flux, and fibrosis. In light of these mechanisms, decades of research have uncovered several DIN-associated signaling pathways and found multiple potential therapeutic agents targeting them. Thus, this review intends to delineate the DIN associated signaling pathways, including AMPK, JAKs/STATs, TRPC6/RhoA/ROCK1, YAP/TEAD, SIRTs, Wnt/β-catenin, TGF-β/Smad, MAPK, Nrf2/ARE, NF-κB, and PI3K/AKT, and to summarize their potential regulatory agents, which provide a reference for the development of novel medicines against DIN.
Collapse
Affiliation(s)
- Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China; Department of Urology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China.
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China.
| | - Zhongyi Mu
- Department of Urology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
23
|
Frobel J, Hänsel‐Hertsch R. The age-related decline of helicase function-how G-quadruplex structures promote genome instability. FEBS Lett 2025; 599:267-274. [PMID: 38803008 PMCID: PMC11771695 DOI: 10.1002/1873-3468.14939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
The intricate mechanisms underlying transcription-dependent genome instability involve G-quadruplexes (G4) and R-loops. This perspective elucidates the potential link between these structures and genome instability in aging. The co-occurrence of G4 DNA and RNA-DNA hybrid structures (G-loop) underscores a complex interplay in genome regulation and instability. Here, we hypothesize that the age-related decline of sirtuin function leads to an increase in acetylated helicases that bind to G4 DNA and RNA-DNA hybrid structures, but are less efficient in resolving them. We propose that acetylated, less active, helicases induce persistent G-loop structures, promoting transcription-dependent genome instability in aging.
Collapse
Affiliation(s)
- Joana Frobel
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University HospitalUniversity of CologneGermany
| | - Robert Hänsel‐Hertsch
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University HospitalUniversity of CologneGermany
- Department of Translational Genomics, Faculty of Medicine and University Hospital CologneUniversity of CologneGermany
- Institute of Human GeneticsUniversity Hospital CologneGermany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing‐Associated Diseases (CECAD)University of CologneGermany
| |
Collapse
|
24
|
Liang C, Wang S, Feng D, Wang S, Zheng C, Qu Y, Wang W, Ma Y, Li H, Yang H, Cao H, Hua H, Cheng M, Li D. Structure-Guided Discovery of Subtype Selective SIRT6 Inhibitors with a β-Carboline Skeleton for the Treatment of Breast Cancer. J Med Chem 2024; 67:21975-22001. [PMID: 39631827 DOI: 10.1021/acs.jmedchem.4c01921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
SIRT6 promotes the progression of breast cancer by inducing drug resistance by reinforcing DNA damage repair mechanisms. This study utilized a combination of high-throughput virtual screening and FLUOR DE LYS assays. Hit 14 which features a novel β-carboline skeleton as a potent SIRT6 inhibitor was found. Subsequent structure-guided optimization led to the synthesis of 60 3,6,9-position modified derivatives based on the differences analysis of SIRTs family proteins. Of which, 10d inhibited the deacetylase activity of SIRT6, with an IC50 of 5.81 μM and more than 27 times subtype selectivity. Phe64, Met157, and Ser56 were identified as the key residues. Moreover, 10d suppressed breast cancer cell proliferation, migration, invasion, and induced apoptosis in MCF-7 cells by disrupting the DNA damage repair pathway. Additionally, 10d demonstrated a safe and effective antibreast cancer effect in vivo, presenting a promising strategy for the treatment of breast cancer by targeting SIRT6.
Collapse
Affiliation(s)
- Chaowei Liang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Siyu Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Dongyan Feng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Shenglin Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Chao Zheng
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5T-1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5T-1R8, Canada
| | - Ying Qu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Weirenbo Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Yongzhi Ma
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Hangao Yang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Hao Cao
- School of Life Science and Biopharmaceutics, and Key Laboratory of Microbial Pharmaceutics, Liaoning Province, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| |
Collapse
|
25
|
Mishra L, Mishra M. Ribose-induced advanced glycation end products reduce the lifespan in Drosophila melanogaster by changing the redox state and down-regulating the Sirtuin genes. Biogerontology 2024; 26:28. [PMID: 39702854 DOI: 10.1007/s10522-024-10172-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Advanced Glycation End (AGE) products are one such factor that accumulates during aging and age-related diseases. However, how exogenous AGE compounds cause aging is an area that needs to be explored. Specifically, how an organ undergoes aging and aging-related phenomena that need further investigation. The intestine is the most exposed area to food substances. How AGEs affect the intestine in terms of aging need to be explored. Drosophila melanogaster, a well-known model organism, is used to decode aging and age-associated phenomena. In this study, we fed Ribose induced Advanced Glycation End products (Rib-AGE) to D. melanogaster to study the aging mechanism. The Rib-AGE-induced aging was checked in Drosophila. We found a series of changes in Rib-AGE-fed flies. Reactive oxygen species (ROS) and nitric oxide species (NOs) were higher in the Rib-AGE-fed flies, and the antioxidant level was lower. The intestinal permeability was altered. The microorganism load was higher inside the gut. The structural arrangement of the gut's microfilament was found to be damaged, and the nuclear shape was found to be irregular. Cell death within the gut was elevated in comparison to control. The food intake was found to be reduced. The relative mRNA expression of the Sirtuin 2 and Sirtuin 6 gene of D. melanogaster was downregulated in Rib-AGE-fed flies compared to the control. All these findings strongly suggest that Rib-AGE accelerates aging and age-related disorders in D. melanogaster.
Collapse
Affiliation(s)
- Lokanath Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, 769008, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, 769008, India.
| |
Collapse
|
26
|
Qu Q, Chen Y, Wang Y, Wang W, Long S, Yang HY, Wu J, Li M, Tian X, Wei X, Liu YH, Xu S, Xiong J, Yang C, Wu Z, Huang X, Xie C, Wu Y, Xu Z, Zhang C, Zhang B, Feng JW, Chen J, Feng Y, Fang H, Lin L, Xie ZK, Sun B, Tian H, Yu Y, Piao HL, Xie XS, Deng X, Zhang CS, Lin SC. Lithocholic acid binds TULP3 to activate sirtuins and AMPK to slow down ageing. Nature 2024:10.1038/s41586-024-08348-2. [PMID: 39695235 DOI: 10.1038/s41586-024-08348-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
Lithocholic acid (LCA) is accumulated in mammals during calorie restriction and it can activate AMP-activated protein kinase (AMPK) to slow down ageing1. However, the molecular details of how LCA activates AMPK and induces these biological effects are unclear. Here we show that LCA enhances the activity of sirtuins to deacetylate and subsequently inhibit vacuolar H+-ATPase (v-ATPase), which leads to AMPK activation through the lysosomal glucose-sensing pathway. Proteomics analyses of proteins that co-immunoprecipitated with sirtuin 1 (SIRT1) identified TUB-like protein 3 (TULP3), a sirtuin-interacting protein2, as a LCA receptor. In detail, LCA-bound TULP3 allosterically activates sirtuins, which then deacetylate the V1E1 subunit of v-ATPase on residues K52, K99 and K191. Muscle-specific expression of a V1E1 mutant (3KR), which mimics the deacetylated state, strongly activates AMPK and rejuvenates muscles in aged mice. In nematodes and flies, LCA depends on the TULP3 homologues tub-1 and ktub, respectively, to activate AMPK and extend lifespan and healthspan. Our study demonstrates that activation of the TULP3-sirtuin-v-ATPase-AMPK pathway by LCA reproduces the benefits of calorie restriction.
Collapse
Affiliation(s)
- Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Weiche Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shating Long
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Heng-Ye Yang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Xiamen, China
| | - Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shengrong Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jinye Xiong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chunyan Yang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhenhua Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xi Huang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Changchuan Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yaying Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zheni Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jin-Wei Feng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Junjie Chen
- Analysis and Measurement Centre, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yuanji Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Liyun Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Z K Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Beibei Sun
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yong Yu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiao-Song Xie
- McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
27
|
Yeewa R, Pohsa S, Yamsri T, Wongkummool W, Jantaree P, Potikanond S, Nimlamool W, Shotelersuk V, Lo Piccolo L, Jantrapirom S. The histone acylation reader ENL/AF9 regulates aging in Drosophila melanogaster. Neurobiol Aging 2024; 144:153-162. [PMID: 39405796 DOI: 10.1016/j.neurobiolaging.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
Histone acylation plays a pivotal role in modulating gene expression, ensuring proper neurogenesis and responsiveness to various signals. Recently, the evolutionary conserved YAF9, ENL, AF9, TAF41, SAS5 (YEATS) domain found in four human paralogs, has emerged as a new class of histone acylation reader with a preference for the bulkier crotonyl group lysine over acetylation. Despite advancements, the role of either histone crotonylation or its readers in neurons remains unclear. In this study, we employed Drosophila melanogaster to investigate the role of ENL/AF9 (dENL/AF9) in the nervous system. Pan-neuronal dENL/AF9 knockdown not only extended the lifespan of flies but also enhanced their overall fitness during aging, including improved sleep quality and locomotion. Moreover, a decreased activity of dENL/AF9 in neurons led to an up-regulation of catalase gene expression which combined with reduced levels of malondialdehyde (MDA) and an enhanced tolerance to oxidative stress in aging flies. This study unveiled a novel function of histone crotonylation readers in aging with potential implications for understanding age-related conditions in humans.
Collapse
Affiliation(s)
- Ranchana Yeewa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sureena Pohsa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Titaree Yamsri
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wasinee Wongkummool
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phatcharida Jantaree
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Vorasuk Shotelersuk
- Centre of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Centre for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Luca Lo Piccolo
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
28
|
Fernandez F, Griffiths LR, Sutherland HG, Cole MH, Fitton JH, Winberg P, Schweitzer D, Hopkins LN, Meyer BJ. Sirtuin Proteins and Memory: A Promising Target in Alzheimer's Disease Therapy? Nutrients 2024; 16:4088. [PMID: 39683482 DOI: 10.3390/nu16234088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Sirtuins (SIRTs), nicotine adenine dinucleotide (+)-dependent histone deacetylases, have emerged as critical regulators in many signalling pathways involved in a wide range of biological processes. Currently, seven mammalian SIRTs have been characterized and are found across a number of cellular compartments. There has been considerable interest in the role of SIRTs in the brain due to their role in a plethora of metabolic- and age-related diseases, including their involvement in learning and memory function in physiological and pathophysiological conditions. Although cognitive function declines over the course of healthy ageing, neurological disorders including Alzheimer's disease (AD) can be associated with progressive cognitive impairments. This review aimed to report and integrate recent advances in the understanding of the role of SIRTs in cognitive function and dysfunction in the context of AD. We have also reviewed the use of selective and/or natural SIRT activators as potential therapeutic agents and/or adjuvants for AD.
Collapse
Affiliation(s)
- Francesca Fernandez
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
- Healthy Brain and Mind Research Centre, Australian Catholic University, Fitzroy, VIC 3065, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| | - Heidi G Sutherland
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| | - Michael H Cole
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia
- Healthy Brain and Mind Research Centre, Australian Catholic University, Fitzroy, VIC 3065, Australia
| | - J Helen Fitton
- Venus Shell Systems Pty Ltd., Huskisson, NSW 2540, Australia
| | - Pia Winberg
- Venus Shell Systems Pty Ltd., Huskisson, NSW 2540, Australia
- School of Medical, Indigenous and Health Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Daniel Schweitzer
- Mater Centre of Neuroscience, 53 Raymond Terrace, South Brisbane, QLD 4066, Australia
- Department of Neurology, Wesley Hospital, 451 Coronation Drive, Auchenflower, QLD 4066, Australia
| | - Lloyd N Hopkins
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| | - Barbara J Meyer
- School of Medical, Indigenous and Health Science, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
29
|
Rhzali I, Storey KB. Histone Modifications in the Anoxic Northern Crayfish, Faxonius virilis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:5. [PMID: 39576345 DOI: 10.1007/s10126-024-10394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Northern Crayfish, Faxonius virilis, displays various strategies that allow them to survive extended periods of oxygen deprivation. However, certain epigenetic adaptations that these crayfish use have not been studied in detail, and the role of specific mechanisms used such as histone modifications remain unknown. Epigenetic studies offer a new perspective on how crayfish can regulate gene expression to redirect energy to essential functions needed for survival. This study investigates the regulation of histone modifications of proteins including acetylation and deacetylation in F. virilis in response to 20-h anoxia exposure. These histone modifications were studied via analysis of writer, reader, and eraser proteins such as lysine acetyltransferases (KATs), bromodomain proteins (BRDs), histone deacetylases (HDAC), and sirtuin proteins (SIRTs). Significant upregulation was seen in one histone protein and one lysine acetyltransferase: H3K14Ac and KAT2A. These proteins are known to be regulated by BRD2; a protein that specifically reads and targets H3K14Ac. In response to anoxia, a larger number of histone deacetylases and sirtuin proteins were upregulated in comparison to lysine acetyltransferases suggesting a focus on suppression of gene expression. The histone deacetylases and sirtuin proteins with significant upregulation were HDAC2, HDAC3, SIRT2, SIRT3, and SIRT6. These proteins have also all been implicated in DNA damage regulation which further suggests that crayfish focus limited energy on ensuring cell survival. This study provides an understanding of how histone acetylation and deacetylation are regulated in crayfish as a component of metabolic rate suppression under anoxia.
Collapse
Affiliation(s)
- Imane Rhzali
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
30
|
Mani S, Srivastava V, Shandilya C, Kaushik A, Singh KK. Mitochondria: the epigenetic regulators of ovarian aging and longevity. Front Endocrinol (Lausanne) 2024; 15:1424826. [PMID: 39605943 PMCID: PMC11598335 DOI: 10.3389/fendo.2024.1424826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Ovarian aging is a major health concern for women. Ovarian aging is associated with reduced health span and longevity. Mitochondrial dysfunction is one of the hallmarks of ovarian aging. In addition to providing oocytes with optimal energy, the mitochondria provide a co-substrate that drives epigenetic processes. Studies show epigenetic alterations, both nuclear and mitochondrial contribute to ovarian aging. Both, nuclear and mitochondrial genomes cross-talk with each other, resulting in two ways orchestrated anterograde and retrograde response that involves epigenetic changes in nuclear and mitochondrial compartments. Epigenetic alterations causing changes in metabolism impact ovarian function. Key mitochondrial co-substrate includes acetyl CoA, NAD+, ATP, and α-KG. Thus, enhancing mitochondrial function in aging ovaries may preserve ovarian function and can lead to ovarian longevity and reproductive and better health outcomes in women. This article describes the role of mitochondria-led epigenetics involved in ovarian aging and discusses strategies to restore epigenetic reprogramming in oocytes by preserving, protecting, or promoting mitochondrial function.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Vidushi Srivastava
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Chesta Shandilya
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Aditi Kaushik
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Keshav K. Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Women’s Reproductive Health, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
31
|
Zhang W, Bai L, Xu W, Liu J, Chen Y, Lin W, Lu H, Wang B, Luo B, Peng G, Zhang K, Shen C. Sirt6 Mono-ADP-Ribosylates YY1 to Promote Dystrophin Expression for Neuromuscular Transmission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406390. [PMID: 39387251 PMCID: PMC11600243 DOI: 10.1002/advs.202406390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/20/2024] [Indexed: 10/15/2024]
Abstract
The degeneration of the neuromuscular junction (NMJ) and the decline in motor function are common features of aging, but the underlying mechanisms have remained largely unclear. This study reveals that Sirt6 is reduced in aged mouse muscles. Ablation of Sirt6 in skeletal muscle causes a reduction of Dystrophin levels, resulting in premature NMJ degeneration, compromised neuromuscular transmission, and a deterioration in motor performance. Mechanistic studies show that Sirt6 negatively regulates the stability of the Dystrophin repressor YY1 (Yin Yang 1). Specifically, Sirt6 mono-ADP-ribosylates YY1, causing its disassociation from the Dystrophin promoter and allowing YY1 to bind to the SMURF2 E3 ligase, leading to its degradation. Importantly, supplementation with nicotinamide mononucleotide (NMN) enhances the mono-ADP-ribosylation of YY1 and effectively delays NMJ degeneration and the decline in motor function in elderly mice. These findings provide valuable insights into the intricate mechanisms underlying NMJ degeneration during aging. Targeting Sirt6 could be a potential therapeutic approach to mitigate the detrimental effects on NMJ degeneration and improve motor function in the elderly population.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurobiology of First Affiliated HospitalZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismInstitute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Lei Bai
- Department of Neurobiology of First Affiliated HospitalZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismInstitute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Wentao Xu
- Department of Neurobiology of First Affiliated HospitalZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismInstitute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jun Liu
- Department of PharmacologyNanjing University of Chinese MedicineNanjingChina
| | - Yi Chen
- Department of NeurobiologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Weiqiang Lin
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicine and International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwuChina
| | - Huasong Lu
- Life Sciences InstituteZhejiang UniversityHangzhouChina
| | - Binwei Wang
- Department of PharmacologyNanjing University of Chinese MedicineNanjingChina
| | - Benyan Luo
- Department of NeurobiologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Guoping Peng
- Department of NeurobiologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Kejing Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseMOE Joint International Research Laboratory of Pancreatic DiseasesFirst Affiliated HospitalHangzhou310006China
| | - Chengyong Shen
- Department of Neurobiology of First Affiliated HospitalZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismInstitute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang UniversityNanhu Brain‐Computer Interface InstituteHangzhouChina
| |
Collapse
|
32
|
Nisar A, Khan S, Li W, Hu L, Samarawickrama PN, Gold NM, Zi M, Mehmood SA, Miao J, He Y. Hypoxia and aging: molecular mechanisms, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e786. [PMID: 39415849 PMCID: PMC11480526 DOI: 10.1002/mco2.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Aging is a complex biological process characterized by the gradual decline of cellular functions, increased susceptibility to diseases, and impaired stress responses. Hypoxia, defined as reduced oxygen availability, is a critical factor that influences aging through molecular pathways involving hypoxia-inducible factors (HIFs), oxidative stress, inflammation, and epigenetic modifications. This review explores the interconnected roles of hypoxia in aging, highlighting how hypoxic conditions exacerbate cellular damage, promote senescence, and contribute to age-related pathologies, including cardiovascular diseases, neurodegenerative disorders, cancer, metabolic dysfunctions, and pulmonary conditions. By examining the molecular mechanisms linking hypoxia to aging, we identify key pathways that serve as potential therapeutic targets. Emerging interventions such as HIF modulators, antioxidants, senolytics, and lifestyle modifications hold promise in mitigating the adverse effects of hypoxia on aging tissues. However, challenges such as the heterogeneity of aging, lack of reliable biomarkers, and safety concerns regarding hypoxia-targeted therapies remain. This review emphasizes the need for personalized approaches and advanced technologies to develop effective antiaging interventions. By integrating current knowledge, this review provides a comprehensive framework that underscores the importance of targeting hypoxia-induced pathways to enhance healthy aging and reduce the burden of age-related diseases.
Collapse
Affiliation(s)
- Ayesha Nisar
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Sawar Khan
- Department of Cell Biology, School of Life SciencesCentral South UniversityChangshaHunanChina
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Wen Li
- Department of EndocrinologyThe Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province)KunmingYunnanChina
| | - Li Hu
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Naheemat Modupeola Gold
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Meiting Zi
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | | | - Jiarong Miao
- Department of GastroenterologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yonghan He
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| |
Collapse
|
33
|
Nahálková J. On the interface of aging, cancer, and neurodegeneration with SIRT6 and L1 retrotransposon protein interaction network. Ageing Res Rev 2024; 101:102496. [PMID: 39251041 DOI: 10.1016/j.arr.2024.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
Roles of the sirtuins in aging and longevity appear related to their evolutionarily conserved functions as retroviral-restriction factors. Retrotransposons also promote the aging process, which can be reversed by the inhibition of their activity. SIRT6 can functionally limit the mutation activity of LINE-1 (L1), a retrotransposon causing cancerogenesis-linked mutations accumulating during aging. Here, an overview of the molecular mechanisms of the controlling effects was created by the pathway enrichment and gene function prediction analysis of a protein interaction network of SIRT6 and L1 retrotransposon proteins L1 ORF1p, and L1 ORF2p. The L1-SIRT6 interaction network is enriched in pathways and nodes associated with RNA quality control, DNA damage response, tumor-related and retrotransposon activity-suppressing functions. The analysis also highlighted sumoylation, which controls protein-protein interactions, subcellular localization, and other post-translational modifications; DNA IR Damage and Cellular Response via ATR, and Hallmark Myc Targets V1, which scores are a measure of tumor aggressiveness. The protein node prioritization analysis emphasized the functions of tumor suppressors p53, PARP1, BRCA1, and BRCA2 having L1 retrotransposon limiting activity; tumor promoters EIF4A3, HNRNPA1, HNRNPH1, DDX5; and antiviral innate immunity regulators DDX39A and DDX23. The outline of the regulatory mechanisms involved in L1 retrotransposition with a focus on the prioritized nodes is here demonstrated in detail. Furthermore, a model establishing functional links between HIV infection, L1 retrotransposition, SIRT6, and cancer development is also presented. Finally, L1-SIRT6 subnetwork SIRT6-PARP1-BRCA1/BRCA2-TRIM28-PIN1-p53 was constructed, where all nodes possess L1 retrotransposon activity-limiting activity and together represent candidates for multitarget control.
Collapse
Affiliation(s)
- Jarmila Nahálková
- Biochemistry, Molecular, and Cell Biology Unit, Biochemworld co., Snickar-Anders väg 17, Skyttorp, Uppsala County 74394, Sweden.
| |
Collapse
|
34
|
Zhuang Y, Zhang Y, Liu C, Zhong Y. Interplay Between the Circadian Clock and Sirtuins. Int J Mol Sci 2024; 25:11469. [PMID: 39519022 PMCID: PMC11545976 DOI: 10.3390/ijms252111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The circadian clock is an autonomous timekeeping system evolved by organisms to adapt to external changes, regulating a variety of important physiological and behavioral processes. Recent studies have shown that the sirtuin family of histone deacetylases is involved in regulating the expression of clock genes and plays an important role in maintaining the normal rhythm of clock gene expression and behavior. Moreover, sirtuins are regulated directly or indirectly by the circadian clock system. The mutual regulation between the circadian clock and sirtuins is likely involved in a variety of signal transduction and metabolism processes. In this review, we discuss the molecular mechanisms and research progress on the intertwined relationship between the circadian clock and sirtuins, mainly in mammals, highlighting sirtuins as molecular links between metabolic control and circadian rhythms and offering our perspectives on future developments in the field.
Collapse
Affiliation(s)
- Yan Zhuang
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yantong Zhang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Chao Liu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yingbin Zhong
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
35
|
Peng A, Li J, Xing J, Yao Y, Niu X, Zhang K. The function of nicotinamide phosphoribosyl transferase (NAMPT) and its role in diseases. Front Mol Biosci 2024; 11:1480617. [PMID: 39513038 PMCID: PMC11540786 DOI: 10.3389/fmolb.2024.1480617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
Nicotinamide phosphoribosyl transferase (NAMPT) is a rate-limiting enzyme in the mammalian nicotinamide adenine dinucleotide (NAD) salvage pathway, and plays a vital role in the regulation of cell metabolic activity, reprogramming, aging and apoptosis. NAMPT synthesizes nicotinamide mononucleotide (NMN) through enzymatic action, which is a key protein involved in host defense mechanism and plays an important role in metabolic homeostasis and cell survival. NAMPT is involved in NAD metabolism and maintains intracellular NAD levels. Sirtuins (SIRTs) are a family of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases (HDACs), the members are capable of sensing cellular NAD+ levels. NAMPT-NAD and SIRT constitute a powerful anti-stress defense system. In this paper, the structure, biological function and correlation with diseases of NAMPT are introduced, aiming to provide new ideas for the targeted therapy of related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Center Hospital, Taiyuan, China
| |
Collapse
|
36
|
Du J, Chen F, Du C, Zhao W, Chen Z, Ding Z, Zhou M. Amodiaquine ameliorates stress-induced premature cellular senescence via promoting SIRT1-mediated HR repair. Cell Death Discov 2024; 10:434. [PMID: 39394181 PMCID: PMC11470136 DOI: 10.1038/s41420-024-02201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
DNA damage is considered to be a potentially unifying driver of ageing, and the stalling of DNA damage repair accelerates the cellular senescence. However, augmenting DNA repair has remained a great challenge due to the intricate repair mechanisms specific for multiple types of lesions. Herein, we miniaturized our modified detecting system for homologous recombination (HR) into a 96-well-based platform and performed a high-throughput chemical screen for FDA-approved drugs. We uncovered that amodiaquine could significantly augment HR repair at the noncytotoxic concentration. Further experiments demonstrated that amodiaquine remarkably suppressed stress-induced premature cellular senescence (SIPS), as evidenced by senescence-associated beta-galactosidase (SA-β-gal) staining or senescence-related markers p21WAF1 and p16ink4a, and the expression of several cytokines. Mechanistic studies revealed that the stimulation of HR repair by amodiaquine might be mostly attributable to the promotion of SIRT1 at the transcriptional level. Additionally, SIRT1 depletion abolished the amodiaquine-mediated effects on DNA repair and cellular senescence, indicating that amodiaquine delayed the onset of SIPS via a SIRT1-dependent pathway. Taken together, this experimental approach paved the way for the identification of compounds that augment HR activity, which could help to underscore the therapeutic potential of targeting DNA repair for treating aging-related diseases.
Collapse
Affiliation(s)
- Jie Du
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, Guangdong, China
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Fuqiang Chen
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Chenghong Du
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenna Zhao
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Zihan Chen
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenhua Ding
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Meijuan Zhou
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, Guangdong, China.
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
37
|
Mal S, Majumder D, Birari P, Sharma AK, Gupta U, Jana K, Kundu M, Basu J. The miR-26a/SIRT6/HIF-1α axis regulates glycolysis and inflammatory responses in host macrophages during Mycobacterium tuberculosis infection. FEBS Lett 2024; 598:2592-2614. [PMID: 39155147 DOI: 10.1002/1873-3468.15001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024]
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis. Here, a macrophage infection model was used to unravel the role of the histone deacetylase sirtuin 6 (SIRT6) in Mtb-triggered regulation of the innate immune response. Mtb infection downregulated microRNA-26a and upregulated its target SIRT6. SIRT6 suppressed glycolysis and expression of HIF-1α-dependent glycolytic genes during infection. In addition, SIRT6 regulated the levels of intracellular succinate which controls stabilization of HIF-1α, as well as the release of interleukin (IL)-1β. Furthermore, SIRT6 inhibited inducible nitric oxide synthase (iNOS) and proinflammatory IL-6 but augmented anti-inflammatory arginase expression. The miR-26a/SIRT6/HIF-1α axis therefore regulates glycolysis and macrophage immune responses during Mtb infection. Our findings link SIRT6 to rewiring of macrophage signaling pathways facilitating dampening of the antibacterial immune response.
Collapse
Affiliation(s)
- Soumya Mal
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Kolkata, India
| | | | - Pankaj Birari
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| | | | - Umesh Gupta
- National JALMA Institute of Leprosy and Other Mycobacterial Disease, Agra, India
| | - Kuladip Jana
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Kolkata, India
| | | | - Joyoti Basu
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
38
|
Calubag MF, Robbins PD, Lamming DW. A nutrigeroscience approach: Dietary macronutrients and cellular senescence. Cell Metab 2024; 36:1914-1944. [PMID: 39178854 PMCID: PMC11386599 DOI: 10.1016/j.cmet.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Cellular senescence, a process in which a cell exits the cell cycle in response to stressors, is one of the hallmarks of aging. Senescence and the senescence-associated secretory phenotype (SASP)-a heterogeneous set of secreted factors that disrupt tissue homeostasis and promote the accumulation of senescent cells-reprogram metabolism and can lead to metabolic dysfunction. Dietary interventions have long been studied as methods to combat age-associated metabolic dysfunction, promote health, and increase lifespan. A growing body of literature suggests that senescence is responsive to diet, both to calories and specific dietary macronutrients, and that the metabolic benefits of dietary interventions may arise in part through reducing senescence. Here, we review what is currently known about dietary macronutrients' effect on senescence and the SASP, the nutrient-responsive molecular mechanisms that may mediate these effects, and the potential for these findings to inform the development of a nutrigeroscience approach to healthy aging.
Collapse
Affiliation(s)
- Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
39
|
Zhang Z, Jiang Z, Cheng J, Price CA, Yang L, Li Q. Nicotine induces senescence in spermatogonia stem cells by disrupting homeostasis between circadian oscillation and rhythmic mitochondrial dynamics via the SIRT6/Bmal1 pathway. Life Sci 2024; 352:122860. [PMID: 38936603 DOI: 10.1016/j.lfs.2024.122860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/15/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Infertility is intricately linked with alterations in circadian rhythms along with physiological decline and stem cell senescence. Yet, the direct involvement of circadian mechanisms in nicotine-induced injury to the testes, especially the senescence of spermatogonia stem cells (SSCs), is not well comprehended. This study revealed that nicotine exposure induced testis injury by triggering SSCs senescence along with the upregulation of senescence marker genes and senescence-associated secretory phenotype components. Moreover, nicotine treatment caused mitochondrial hyper-fusion, increased oxidative stress, and DNA damage. Exposure to nicotine was found to suppress the expression of sirtuin 6 (SIRT6), which accelerated the senescence of spermatogonia stem cells (SSCs). This acceleration led to increased acetylation of brain and muscle ARNT-like protein (Bmal1), consequently reducing the expression of Bmal1 protein. Conversely, the overexpression of Bmal1 alleviated mitochondrial hyper-fusion and senescence phenotypes induced by nicotine. Overall, this study unveiled a novel molecular mechanism behind nicotine-induced disorders in spermatogenesis and highlighted the SIRT6/Bmal1 regulatory pathway as a potential therapeutic target for combating nicotine-associated infertility.
Collapse
Affiliation(s)
- Zelin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhongliang Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianyong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Christopher A Price
- Centre de recherche en reproduction & fertility, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada
| | - Li Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
40
|
Tu H, Gao Q, Zhou Y, Peng L, Wu D, Zhang D, Yang J. The role of sirtuins in intervertebral disc degeneration: Mechanisms and therapeutic potential. J Cell Physiol 2024; 239:e31328. [PMID: 38922861 DOI: 10.1002/jcp.31328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the main causes of low back pain, which affects the patients' quality of life and health and imposes a significant socioeconomic burden. Despite great efforts made by researchers to understand the pathogenesis of IDD, effective strategies for preventing and treating this disease remain very limited. Sirtuins are a highly conserved family of (NAD+)-dependent deacetylases in mammals that are involved in a variety of metabolic processes in vivo. In recent years, sirtuins have attracted much attention owing to their regulatory roles in IDD on physiological activities such as inflammation, apoptosis, autophagy, aging, oxidative stress, and mitochondrial function. At the same time, many studies have explored the therapeutic effects of sirtuins-targeting activators or micro-RNA in IDD. This review summarizes the molecular pathways of sirtuins involved in IDD, and summarizes the therapeutic role of activators or micro-RNA targeting Sirtuins in IDD, as well as the current limitations and challenges, with a view to provide possible solutions for the treatment of IDD.
Collapse
Affiliation(s)
- Heng Tu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qian Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yumeng Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Li Peng
- Key Laboratory of Bio-Resource & Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Dan Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
41
|
Pan W, He Y, Huang Y. Research advances on silence information regulator 6 as a potential therapeutic target for bone regeneration and repair. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:427-433. [PMID: 39183069 PMCID: PMC11375492 DOI: 10.3724/zdxbyxb-2023-0615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Segmental bone defects and nonunion of fractures caused by trauma, infection, tumor or systemic diseases with limited osteogenesis and prolonged bone healing cycles are challenging issues in orthopedic clinical practice. Therefore, identifying regulatory factors for bone tissue regeneration and metabolism is crucial for accelerating bone repair and reconstructing defective areas. Silence information regulator 6 (SIRT6), functioning as a deacetylase and nucleotide transferase, is extensively involved in the regulation of differentiation, apoptosis, metabolism, and inflammation in bone cells including osteoblasts and osteoclasts, and is considered to be an important factor in regulating bone metabolism. SIRT6 forms a complex with B lymphocyte-induced maturation protein 1 (Blimp1), down-regulates the expression of the nuclear factor κB (NF-κB) pathway, and promotes the expression of the ERα-FasL axis signal to inhibit osteoclast formation and maturation differentiation, thereby hindering bone resorption and increasing bone mass. In addition, SIRT6 activates the Akt-mTOR pathway to regulate the autophagy level and osteogenesis of bone marrow mesenchymal stem cells, inhibits glycolysis and reactive oxygen production in osteoblasts, promotes osteoblast differentiation through the CREB/CCN1/COX2 pathway and the bone morphogenetic protein (BMP) signaling pathway, enhances bone formation, and accelerates bone regeneration and repair of skeletal tissue. This article provides an overview of the research progress on SIRT6 in the pathophysiology of bone regeneration, revealing its potential as a novel therapeutic target for bone tissue repair to alleviate the progression of skeletal pathological diseases.
Collapse
Affiliation(s)
- Wenzheng Pan
- Department of Orthopedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Yong He
- Department of Orthopedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yue Huang
- Department of Orthopedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
42
|
Izadi M, Sadri N, Abdi A, Serajian S, Jalalei D, Tahmasebi S. Epigenetic biomarkers in aging and longevity: Current and future application. Life Sci 2024; 351:122842. [PMID: 38879158 DOI: 10.1016/j.lfs.2024.122842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
The aging process has been one of the most necessary research fields in the current century, and knowing different theories of aging and the role of different genetic, epigenetic, molecular, and environmental modulating factors in increasing the knowledge of aging mechanisms and developing appropriate diagnostic, therapeutic, and preventive ways would be helpful. One of the most conserved signs of aging is epigenetic changes, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNAs, and extracellular RNAs. Numerous biological processes and hallmarks are vital in aging development, but epigenomic alterations are especially notable because of their importance in gene regulation and cellular identity. The mounting evidence points to a possible interaction between age-related epigenomic alterations and other aging hallmarks, like genome instability. To extend a healthy lifespan and possibly reverse some facets of aging and aging-related diseases, it will be crucial to comprehend global and locus-specific epigenomic modifications and recognize corresponding regulators of health and longevity. In the current study, we will aim to discuss the role of epigenomic mechanisms in aging and the most recent developments in epigenetic diagnostic biomarkers, which have the potential to focus efforts on reversing the destructive signs of aging and extending the lifespan.
Collapse
Affiliation(s)
- Mehran Izadi
- Department of Infectious and Tropical Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
| | - Nariman Sadri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Sahar Serajian
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Dorsa Jalalei
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Trinh D, Al Halabi L, Brar H, Kametani M, Nash JE. The role of SIRT3 in homeostasis and cellular health. Front Cell Neurosci 2024; 18:1434459. [PMID: 39157755 PMCID: PMC11327144 DOI: 10.3389/fncel.2024.1434459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024] Open
Abstract
Mitochondria are responsible for maintaining cellular energy levels, and play a major role in regulating homeostasis, which ensures physiological function from the molecular to whole animal. Sirtuin 3 (SIRT3) is the major protein deacetylase of mitochondria. SIRT3 serves as a nutrient sensor; under conditions of mild metabolic stress, SIRT3 activity is increased. Within the mitochondria, SIRT3 regulates every complex of the electron transport chain, the tricarboxylic acid (TCA) and urea cycles, as well as the mitochondria membrane potential, and other free radical scavengers. This article reviews the role of SIRT3 in regulating homeostasis, and thus physiological function. We discuss the role of SIRT3 in regulating reactive oxygen species (ROS), ATP, immunological function and mitochondria dynamics.
Collapse
Affiliation(s)
- Dennison Trinh
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Lina Al Halabi
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Harsimar Brar
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Marie Kametani
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Joanne E. Nash
- Department of Biological Sciences, University of Toronto Scarborough Graduate Department of Cells Systems Biology, University of Toronto Cross-Appointment with Department of Psychology, University of Toronto Scarborough Scientist – KITE, Toronto, ON, Canada
| |
Collapse
|
44
|
Della-Morte D, Pacifici F, Simonetto M, Dong C, Dueker N, Blanton SH, Wang L, Rundek T. The role of sirtuins and uncoupling proteins on vascular aging: The Northern Manhattan Study experience. Free Radic Biol Med 2024; 220:262-270. [PMID: 38729451 DOI: 10.1016/j.freeradbiomed.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Aging affects all organs. Arteries, in particular, are among the most affected. Vascular aging (VA) is defined as age-associated changes in function and structure of vessels. Classical VA phenotypes are carotid intima-media thickness (IMT), carotid plaque (CP), and arterial stiffness (STIFF). Individuals have different predisposition to these VA phenotypes and their associated risk of cardiovascular events. Some develop an early vascular aging (EVA), and others are protected and identified as having supernormal vascular aging (SUPERNOVA). The mechanisms leading to these phenotypes are not well understood. In the Northern Manhattan Study (NOMAS), we found genetic variants in the 7 Sirtuins (SIRT) and 5 Uncoupling Proteins (UCP) to be differently associated with risk to developing VA phenotypes. In this article, we review the results of genetic-epidemiology studies to better understand which of the single nucleotide polymorphisms (SNPs) in SIRT and UCP are responsible for both EVA and SUPERNOVA.
Collapse
Affiliation(s)
- David Della-Morte
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, 00133, Rome, Italy; Department of Neurology, The Evelyn McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166, Rome, Italy.
| | - Francesca Pacifici
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, 00133, Rome, Italy; Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166, Rome, Italy
| | - Marialaura Simonetto
- Department of Neurology, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Chuanhui Dong
- Department of Neurology, The Evelyn McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Nicole Dueker
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald, Department of Human Genetics, University of Miami, Miami, FL, 33136, USA
| | - Susan H Blanton
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald, Department of Human Genetics, University of Miami, Miami, FL, 33136, USA
| | - Liyong Wang
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald, Department of Human Genetics, University of Miami, Miami, FL, 33136, USA
| | - Tatjana Rundek
- Department of Neurology, The Evelyn McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| |
Collapse
|
45
|
Bernasocchi T, Mostoslavsky R. Subcellular one carbon metabolism in cancer, aging and epigenetics. FRONTIERS IN EPIGENETICS AND EPIGENOMICS 2024; 2:1451971. [PMID: 39239102 PMCID: PMC11375787 DOI: 10.3389/freae.2024.1451971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The crosstalk between metabolism and epigenetics is an emerging field that is gaining importance in different areas such as cancer and aging, where changes in metabolism significantly impacts the cellular epigenome, in turn dictating changes in chromatin as an adaptive mechanism to bring back metabolic homeostasis. A key metabolic pathway influencing an organism's epigenetic state is one-carbon metabolism (OCM), which includes the folate and methionine cycles. Together, these cycles generate S-adenosylmethionine (SAM), the universal methyl donor essential for DNA and histone methylation. SAM serves as the sole methyl group donor for DNA and histone methyltransferases, making it a crucial metabolite for chromatin modifications. In this review, we will discuss how SAM and its byproduct, S-adenosylhomocysteine (SAH), along with the enzymes and cofactors involved in OCM, may function in the different cellular compartments, particularly in the nucleus, to directly regulate the epigenome in aging and cancer.
Collapse
Affiliation(s)
- Tiziano Bernasocchi
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
- The Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Raul Mostoslavsky
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
- The Broad Institute of Harvard and MIT, Cambridge, MA, United States
| |
Collapse
|
46
|
Pederson NJ, Diehl KL. DNA stimulates SIRT6 to mono-ADP-ribosylate proteins within histidine repeats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606047. [PMID: 39211154 PMCID: PMC11361027 DOI: 10.1101/2024.07.31.606047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sirtuins are the NAD + -dependent class III lysine deacylases (KDACs). Members of this family have been linked to longevity and a wide array of different diseases, motivating the pursuit of sirtuin modulator compounds. Sirtuin 6 (SIRT6) is a primarily nuclear KDAC that deacetylates histones to facilitate gene repression. In addition to this canonical post-translational modification (PTM) "eraser" function, SIRT6 can use NAD + instead to "write" mono-ADP-ribosylation (mARylation) on target proteins. This enzymatic function has been primarily associated with SIRT6's role in the DNA damage response. This modification has been challenging to study because it is not clear under what precise cellular contexts it occurs, only a few substrates are known, and potential interference from other ADP-ribosyltransferases in cells, among other reasons. In this work, we used commercially available ADP-ribosylation detection reagents to investigate the mARylation activity of SIRT6 in a reconstituted system. We observed that SIRT6 is activated in its mARylation activity by binding to dsDNA ends. We further identified a surprising target motif within biochemical substrates of SIRT6, polyhistidine (polyHis) repeat tracts, that are present in several previously identified SIRT6 mARylation substrates and binding partners. This work provides important context for SIRT6 mARylation activity, in contrast to its KDAC activity, and proposes that SIRT6 is a histidine mARyltransferase enzyme.
Collapse
|
47
|
Carr LM, Mustafa S, Care A, Collins-Praino LE. More than a number: Incorporating the aged phenotype to improve in vitro and in vivo modeling of neurodegenerative disease. Brain Behav Immun 2024; 119:554-571. [PMID: 38663775 DOI: 10.1016/j.bbi.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 03/04/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Age is the number one risk factor for developing a neurodegenerative disease (ND), such as Alzheimer's disease (AD) or Parkinson's disease (PD). With our rapidly ageing world population, there will be an increased burden of ND and need for disease-modifying treatments. Currently, however, translation of research from bench to bedside in NDs is poor. This may be due, at least in part, to the failure to account for the potential effect of ageing in preclinical modelling of NDs. While ageing can impact upon physiological response in multiple ways, only a limited number of preclinical studies of ND have incorporated ageing as a factor of interest. Here, we evaluate the aged phenotype and highlight the critical, but unmet, need to incorporate aspects of this phenotype into both the in vitro and in vivo models used in ND research. Given technological advances in the field over the past several years, we discuss how these could be harnessed to create novel models of ND that more readily incorporate aspects of the aged phenotype. This includes a recently described in vitro panel of ageing markers, which could help lead to more standardised models and improve reproducibility across studies. Importantly, we cannot assume that young cells or animals yield the same responses as seen in the context of ageing; thus, an improved understanding of the biology of ageing, and how to appropriately incorporate this into the modelling of ND, will ensure the best chance for successful translation of new therapies to the aged patient.
Collapse
Affiliation(s)
- Laura M Carr
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Sanam Mustafa
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia
| | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Lyndsey E Collins-Praino
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
48
|
Hao W, Jialong Z, Jiuzhi Y, Yang Y, Chongning L, Jincai L. ADP-ribosylation, a multifaceted modification: Functions and mechanisms in aging and aging-related diseases. Ageing Res Rev 2024; 98:102347. [PMID: 38815933 DOI: 10.1016/j.arr.2024.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Aging, a complex biological process, plays key roles the development of multiple disorders referred as aging-related diseases involving cardiovascular diseases, stroke, neurodegenerative diseases, cancers, lipid metabolism-related diseases. ADP-ribosylation is a reversible modification onto proteins and nucleic acids to alter their structures and/or functions. Growing evidence support the importance of ADP-ribosylation and ADP-ribosylation-associated enzymes in aging and age-related diseases. In this review, we summarized ADP-ribosylation-associated proteins including ADP-ribosyl transferases, the ADP-ribosyl hydrolyses and ADP-ribose binding domains. Furthermore, we outlined the latest knowledge about regulation of ADP-ribosylation in the pathogenesis and progression of main aging-related diseases, organism aging and cellular senescence, and we also speculated the underlying mechanisms to better disclose this novel molecular network. Moreover, we discussed current issues and provided an outlook for future research, aiming to revealing the unknown bio-properties of ADP-ribosylation, and establishing a novel therapeutic perspective in aging-related diseases and health aging via targeting ADP-ribosylation.
Collapse
Affiliation(s)
- Wu Hao
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhao Jialong
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuan Jiuzhi
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Yang
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Lv Chongning
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Lu Jincai
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
49
|
Zhang H, Zhang J, Zhang HX. Effect of quercetin on the protein-substrate interactions in SIRT6: Insight from MD simulations. J Mol Graph Model 2024; 130:108778. [PMID: 38652998 DOI: 10.1016/j.jmgm.2024.108778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
SIRT6 is of interest for its promising effect in the treatment of aging-related diseases. Studies have shown quercetin (QUE) and its derivatives have varying degrees of effect on the catalytic effect of SIRT6. In the research, the effect of QUE on the protein-substrate interaction in the SIRT6-mediated mono-ADP ribosylation system was investigated by conventional molecular dynamics (MD) simulations combined with MM/PBSA binding free energy calculations. The results show that QUE can bind stably to SIRT6 with the binding energy of -22.8 kcal/mol and further affect the atomic interaction between SIRT6 and NAD+ (or H3K9), resulting in an increased affinity between SIRT6-NAD+ and decreased SIRT6-H3K9 binding capacity. At the same time, the binding of QUE can also alter some structural characteristics of the protein, with large shifts occurring in the residue regions involving the N-terminal (residues 1-27), Rossmann fold regions (residues 55-92), and ZBD (residues 164-179). Thus, QUE shows great potential as a scaffold for the design of novel potent SIRT6 modulators.
Collapse
Affiliation(s)
- Hui Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, Jilin, People's Republic of China
| | - Jilong Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, Jilin, People's Republic of China.
| | - Hong-Xing Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, Jilin, People's Republic of China.
| |
Collapse
|
50
|
Yu L, Li Y, Song S, Zhang Y, Wang Y, Wang H, Yang Z, Wang Y. The dual role of sirtuins in cancer: biological functions and implications. Front Oncol 2024; 14:1384928. [PMID: 38947884 PMCID: PMC11211395 DOI: 10.3389/fonc.2024.1384928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Sirtuins are pivotal in orchestrating numerous cellular pathways, critically influencing cell metabolism, DNA repair, aging processes, and oxidative stress. In recent years, the involvement of sirtuins in tumor biology has garnered substantial attention, with a growing body of evidence underscoring their regulatory roles in various aberrant cellular processes within tumor environments. This article delves into the sirtuin family and its biological functions, shedding light on their dual roles-either as promoters or inhibitors-in various cancers including oral, breast, hepatocellular, lung, and gastric cancers. It further explores potential anti-tumor agents targeting sirtuins, unraveling the complex interplay between sirtuins, miRNAs, and chemotherapeutic drugs. The dual roles of sirtuins in cancer biology reflect the complexity of targeting these enzymes but also highlight the immense therapeutic potential. These advancements hold significant promise for enhancing clinical outcomes, marking a pivotal step forward in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Lu Yu
- Department of Respiratory, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanjiao Li
- Department of Pharmacy, Qionglai Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yalin Zhang
- School of Medicine, University of Electronic Science and Technology of China, Center of Critical Care Medicine, Sichuan Academy of Medical Sciences, Chengdu, China
- Center of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiping Wang
- Center of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science, Nanning, China
| | - Zhengteng Yang
- Department of Medicine, The First Affiliated Hospital of Guangxi University of Traditional Medicine, Nanning, China
| | - Yi Wang
- Center of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science, Nanning, China
| |
Collapse
|