1
|
Shen J, Jiang Y, Bu W, Yu M, Huang R, Tang C, Yang Z, Gao H, Su L, Cheng D, Zhao X. Protein Ubiquitination Modification in Pulmonary Fibrosis. Compr Physiol 2025; 15:e70013. [PMID: 40312137 DOI: 10.1002/cph4.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive fibrotic interstitial lung disease characterized by a high incidence and mortality rate, which encompasses features, such as diffuse alveolar inflammation, invasive fibroblast activation, and uncontrolled extracellular matrix (ECM) deposition. Beyond the local pathological processes, PF can be better understood in light of interorgan communication networks that are involved in its progression. Notably, pulmonary inflammation can affect cardiovascular, renal, hepatic, and neural functions, highlighting the importance of understanding these systemic interactions. Posttranslational modifications play a crucial role in regulating protein function, localization, stability, and activity. Specifically, protein ubiquitination modifications are involved in PF induced by various stimuli, involving a range of ubiquitin-modifying enzymes and substrates. In this review, we provide an overview of how E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) modulate PF through several signaling pathways, such as TGF-β, Wnt, metabolic activity, aging, ferroptosis, endoplasmic reticulum stress, and inflammatory responses. This perspective includes the role of ubiquitin-proteasome systems in interorgan communication, affecting the progression of PF and related systemic conditions. Additionally, we also summarize the currently available therapeutic compounds targeting protein ubiquitination-related enzymes or ubiquitination substrates for the treatment of PF. Understanding the interplay between ubiquitination and interorgan communication may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Jinping Shen
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Yuling Jiang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Wenxia Bu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Mengjiao Yu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Ruiyao Huang
- Department of Clinical Medicine, Nantong University Xinglin College, Nantong, China
| | - Can Tang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Zeyun Yang
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Haiping Gao
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Liling Su
- Department of Clinical Medicine, Jiangxi Medical College, Shangrao, China
| | - Demin Cheng
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xinyuan Zhao
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
2
|
Ji Z, Siu WYS, Dueñas ME, Müller L, Trost M, Carvalho P. Suppression of TGF-β/SMAD signaling by an inner nuclear membrane phosphatase complex. Nat Commun 2025; 16:3474. [PMID: 40216785 PMCID: PMC11992160 DOI: 10.1038/s41467-025-58681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Cytokines of the TGF-β superfamily control essential cell fate decisions via receptor regulated SMAD (R-SMAD) transcription factors. Ligand-induced R-SMAD phosphorylation in the cytosol triggers their activation and nuclear accumulation. We determine how R-SMADs are inactivated by dephosphorylation in the cell nucleus to counteract signaling by TGF-β superfamily ligands. We show that R-SMAD dephosphorylation is mediated by an inner nuclear membrane associated complex containing the scaffold protein MAN1 and the CTDNEP1-NEP1R1 phosphatase. Structural prediction, domain mapping and mutagenesis reveals that MAN1 binds independently to the CTDNEP1-NEP1R1 phosphatase and R-SMADs to promote their inactivation by dephosphorylation. Disruption of this complex causes nuclear accumulation of R-SMADs and aberrant signaling, even in the absence of TGF-β ligands. These findings establish CTDNEP1-NEP1R1 as the R-SMAD phosphatase, reveal the mechanistic basis for TGF-β signaling inactivation and highlight how this process is disrupted by disease-associated MAN1 mutations.
Collapse
Affiliation(s)
- Zhe Ji
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Maria Emilia Dueñas
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- The Kids Research Institute Australia, Perth Children's Hospital, Nedlands, Australia
| | - Leonie Müller
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Matthias Trost
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Yamaguchi A, Yokobori T, Sohda M, Watanabe T, Nakazawa N, Sano A, Sakai M, Shiraishi T, Motegi SI, Shirabe K, Saeki H. Low TIF1γ Expression is Associated with Cancer Aggressiveness and Shorter Recurrence-Free Survival in Patients with Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2025:10.1245/s10434-025-17238-4. [PMID: 40208493 DOI: 10.1245/s10434-025-17238-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/09/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a significant cause of cancer-related death despite advances in multidisciplinary treatment. Transcriptional intermediary factor 1 γ (TIF1γ) has been known to be involved in tumorigenesis and epithelial-mesenchymal transition (EMT), which are linked to cancer aggressiveness and therapeutic resistance. However, its role in ESCC remains unclear. Therefore, we investigated the expression significance and function of TIF1γ in ESCC. METHODS We used immunohistochemical analysis to investigate the clinical significance of tumoral TIF1γ expression in 131 patients with ESCC. We also performed in vitro analysis using ESCC cell lines to evaluate the effects of TIF1γ suppression on EMT marker expression, migration ability, and 5-fluorouracil (5-FU) sensitivity. RESULTS The TIF1γ protein was mainly expressed in the nuclear ESCC cells. Low nuclear TIF1γ expression was associated with the progression of tumor depth and frequent recurrence. Low TIF1γ expression was an independent predictor of recurrence in ESCC. Moreover, suppression of TIF1γ facilitated EMT-like changes, such as high migration ability, E-cadherin suppression, vimentin induction, and 5-FU resistance of ESCC cells. CONCLUSIONS TIF1γ may be a promising biomarker for predicting patients with ESCC at high risk of recurrence. Therapeutic strategies that induce TIF1γ expression are expected to improve the chemosensitivity and prognosis of high-risk patients with ESCC who have low TIF1γ.
Collapse
Affiliation(s)
- Arisa Yamaguchi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Takehiko Yokobori
- Division of Gene Therapy Science, Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, Japan.
| | - Makoto Sohda
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Takayoshi Watanabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Nobuhiro Nakazawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Akihiko Sano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Takuya Shiraishi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
4
|
Rea A, Santana-Hernández S, Villanueva J, Sanvicente-García M, Cabo M, Suarez-Olmos J, Quimis F, Qin M, Llorens E, Blasco-Benito S, Torralba-Raga L, Perez L, Bhattarai B, Alari-Pahissa E, Georgoudaki AM, Balaguer F, Juan M, Pardo J, Celià-Terrassa T, Rovira A, Möker N, Zhang C, Colonna M, Spanholtz J, Malmberg KJ, Montagut C, Albanell J, Güell M, López-Botet M, Muntasell A. Enhancing human NK cell antitumor function by knocking out SMAD4 to counteract TGFβ and activin A suppression. Nat Immunol 2025; 26:582-594. [PMID: 40119192 PMCID: PMC11957989 DOI: 10.1038/s41590-025-02103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/30/2025] [Indexed: 03/24/2025]
Abstract
Transforming growth factor beta (TGFβ) and activin A suppress natural killer (NK) cell function and proliferation, limiting the efficacy of adoptive NK cell therapies. Inspired by the partial resistance to TGFβ of NK cells with SMAD4 haploinsufficiency, we used CRISPR-Cas9 for knockout of SMAD4 in human NK cells. Here we show that SMAD4KO NK cells were resistant to TGFβ and activin A inhibition, retaining their cytotoxicity, cytokine secretion and interleukin-2/interleukin-15-driven proliferation. They showed enhanced tumor penetration and tumor growth control, both as monotherapy and in combination with tumor-targeted therapeutic antibodies. Notably, SMAD4KO NK cells outperformed control NK cells treated with a TGFβ inhibitor, underscoring the benefit of maintaining SMAD4-independent TGFβ signaling. SMAD4KO conferred TGFβ resistance across diverse NK cell platforms, including CD19-CAR NK cells, stem cell-derived NK cells and ADAPT-NK cells. These findings position SMAD4 knockout as a versatile and compelling strategy to enhance NK cell antitumor activity, providing a new avenue for improving NK cell-based cancer immunotherapies.
Collapse
Grants
- 765104 EC | EC Seventh Framework Programm | FP7 People: Marie-Curie Actions (FP7-PEOPLE - Specific Programme "People" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
- ICI24/00041 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- SGR863 Generalitat de Catalunya (Government of Catalonia)
- 765104 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Sklodowska-Curie Actions (H2020 Excellent Science - Marie Sklodowska-Curie Actions)
- PI21/00002 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- PI22/00040 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- 2024PROD00089 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- FI23/00075 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- P01 CA111412 NCI NIH HHS
- Ministerio de Ciencia, Innovación y Universidades/FEDER CNS2023-144487
- AECC postdoctoral fellowship POSTD234709BLAS
- Ministerio de Ciencia, Innovación y Universidades PID2020-113963RBI00 Gobierno de Aragón B29-23R
- Ministerio de Ciencia, Innovación y Universidades PID2023-147310OB-I00
- Research Council of Norway 275469, 237579, the Research Council of Norway through its Centres of Excellence scheme 332727, the Norwegian Cancer Society-190386, 223310, The South-Eastern Norway Regional Health Authority 2021-073, 2024-053, Knut and Alice Wallenberg Foundation 2018.0106, Swedish Foundation for Strategic Research, and the US National Cancer Institute P01 CA111412, P009500901.
- CRIS EXCELLENCE 19-30, funded by CRIS Contra el Cáncer
- CIBERONC: CB16/12/00241
Collapse
Affiliation(s)
- Anna Rea
- University Pompeu Fabra (UPF), Barcelona, Spain
| | - Sara Santana-Hernández
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Cell Biology, Physiology and Immunology Deptartments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Javier Villanueva
- University Pompeu Fabra (UPF), Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Cell Biology, Physiology and Immunology Deptartments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Mariona Cabo
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | | | - Fabricio Quimis
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Mengjuan Qin
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Eduard Llorens
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | | | - Lamberto Torralba-Raga
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway
| | - Lorena Perez
- Department of Immunology, Hospital Clínic de Barcelona (HCB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Joint Platform of Immunotherapy Hospital Sant Joan de Deu - HCB, University of Barcelona, Barcelona, Spain
| | - Bishan Bhattarai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Francesc Balaguer
- Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Barcelona, Spain
| | - Manel Juan
- Department of Immunology, Hospital Clínic de Barcelona (HCB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Joint Platform of Immunotherapy Hospital Sant Joan de Deu - HCB, University of Barcelona, Barcelona, Spain
| | - Julián Pardo
- IIS Aragon Foundation/ Dpt. Microbiology, Radiology Pediatry and Public Health, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERinfec), Zaragoza, Spain
| | - Toni Celià-Terrassa
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ana Rovira
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Oncology, Hospital del Mar, Barcelona, Spain
| | - Nina Möker
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Congcong Zhang
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Karl-Johan Malmberg
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Clara Montagut
- University Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Oncology, Hospital del Mar, Barcelona, Spain
| | - Joan Albanell
- University Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Oncology, Hospital del Mar, Barcelona, Spain
| | - Marc Güell
- University Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Spain
| | - Miguel López-Botet
- University Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Aura Muntasell
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain.
- Institut de Biotecnologia i Biomedicina, Cell Biology, Physiology and Immunology Deptartments, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
5
|
Wu W, Yang J, Yu T, Zou Z, Huang X. The Role and Mechanism of TRIM Proteins in Gastric Cancer. Cells 2024; 13:2107. [PMID: 39768197 PMCID: PMC11674240 DOI: 10.3390/cells13242107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Tripartite motif (TRIM) family proteins, distinguished by their N-terminal region that includes a Really Interesting New Gene (RING) domain with E3 ligase activity, two B-box domains, and a coiled-coil region, have been recognized as significant contributors in carcinogenesis, primarily via the ubiquitin-proteasome system (UPS) for degrading proteins. Mechanistically, these proteins modulate a variety of signaling pathways, including Wnt/β-catenin, PI3K/AKT, and TGF-β/Smad, contributing to cellular regulation, and also impact cellular activities through non-signaling mechanisms, including modulation of gene transcription, protein degradation, and stability via protein-protein interactions. Currently, growing evidence indicates that TRIM proteins emerge as potential regulators in gastric cancer, exhibiting both tumor-suppressive and oncogenic roles. Given their critical involvement in cellular processes and the notable challenges of gastric cancer, exploring the specific contributions of TRIM proteins to this disease is necessary. Consequently, this review elucidates the roles and mechanisms of TRIM proteins in gastric cancer, emphasizing their potential as therapeutic targets and prognostic factors.
Collapse
Affiliation(s)
- Wangxi Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (W.W.); (T.Y.)
- The Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (J.Y.); (Z.Z.)
| | - Jinyu Yang
- The Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (J.Y.); (Z.Z.)
| | - Tian Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (W.W.); (T.Y.)
| | - Zhuoling Zou
- The Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (J.Y.); (Z.Z.)
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (W.W.); (T.Y.)
- Chongqing Research Institute, Nanchang University, Chongqing 400010, China
| |
Collapse
|
6
|
Zhao B, Yu X, Shi J, Ma S, Li S, Shi H, Xia S, Ye Y, Zhang Y, Du Y, Wang Q. A stepwise mode of TGFβ-SMAD signaling and DNA methylation regulates naïve-to-primed pluripotency and differentiation. Nat Commun 2024; 15:10123. [PMID: 39578449 PMCID: PMC11584862 DOI: 10.1038/s41467-024-54433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
The formation of transcription regulatory complexes by the association of Smad4 with Smad2 and Smad3 (Smad2/3) is crucial in the canonical TGFβ pathway. Although the central requirement of Smad4 as a common mediator is emphasized in regulating TGFβ signaling, it is not obligatory for all responses. The role of Smad2/3 independently of Smad4 remains understudied. Here, we introduce a stepwise paradigm in which Smad2/3 regulate the lineage priming and differentiation of mouse embryonic stem cells (mESCs) by collaboration with different effectors. During the naïve-to-primed transition, Smad2/3 upregulate DNA methyltransferase 3b (Dnmt3b), which establishes the proper DNA methylation patterns and, in turn, enables Smad2/3 binding to the hypomethylated centers of promoters and enhancers of epiblast marker genes. Consequently, in the absence of Smad2/3, Smad4 alone cannot initiate epiblast-specific gene transcription. When primed epiblast cells begin to differentiate, Dnmt3b becomes less actively engaged in global genome methylation, and Smad4 takes over the baton in this relay race, forming a complex with Smad2/3 to support mesendoderm induction. Thus, mESCs lacking Smad4 can undergo the priming process but struggle with the downstream differentiation. This work sheds light on the intricate mechanisms underlying TGFβ signaling and its role in cellular processes.
Collapse
Affiliation(s)
- Bingnan Zhao
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai, China
| | - Xiuwei Yu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai, China
| | - Jintong Shi
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyu Ma
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai, China
| | - Shizhao Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai, China
| | - Haitao Shi
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shoubing Xia
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongchun Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Yanhua Du
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qiong Wang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai, China.
| |
Collapse
|
7
|
Naik A, Thakur N. Epigenetic regulation of TGF-β and vice versa in cancers - A review on recent developments. Biochim Biophys Acta Rev Cancer 2024; 1879:189219. [PMID: 39549878 DOI: 10.1016/j.bbcan.2024.189219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
This review explores the complex relationship between epigenetic mechanisms and Transforming Growth Factor-beta (TGF-β) signalling pathways in the field of cancer research. The study provides an overview of the latest advancements in understanding the crucial functions of epigenetic alterations, such as DNA methylation, histone modifications, and chromatin remodeling, in significantly impacting the TGF-β signalling pathway. The dynamic epigenetic modifications are essential in determining the behaviour of cancer cells, impacting the interactions with the tumor microenvironment, and affecting the overall process of carcinogenesis. Significant attention is given to Breast cancer, Lung cancer, Liver cancer, Prostate cancer, and Pancreatic cancer. Research has revealed intricate regulatory networks in these cancers, involving long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and histone post-translational modifications. These networks are closely connected to TGF-β signalling. Both findings highlight the significant interaction between epigenetic regulation and TGF-β signalling in cancer. They provide valuable insights that can guide the development of new treatment approaches to target both pathways and prevent cancer growth and metastasis.
Collapse
Affiliation(s)
- Ankit Naik
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Noopur Thakur
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
8
|
Strathearn LS, Spender LC, Schoenherr C, Mason S, Edwards R, Blyth K, Inman GJ. C1orf106 ( INAVA) Is a SMAD3-Dependent TGF-β Target Gene That Promotes Clonogenicity and Correlates with Poor Prognosis in Breast Cancer. Cells 2024; 13:1530. [PMID: 39329715 PMCID: PMC11429573 DOI: 10.3390/cells13181530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Transforming Growth Factor-β (TGF-β) can have both tumour-promoting and tumour-suppressing activity in breast cancer. Elucidating the key downstream mediators of pro-tumorigenic TGF-β signalling in this context could potentially give rise to new therapeutic opportunities and/or identify biomarkers for anti-TGF-β directed therapy. Here, we identify C1orf106 (also known as innate immunity activator INAVA) as a novel TGF-β target gene which is induced in a SMAD3-dependent but SMAD2/SMAD4-independent manner in human and murine cell lines. C1orf106 expression positively correlates with tumourigenic or metastatic potential in human and murine breast cancer cell line models, respectively, and is required for enhanced migration and invasion in response to TGF-β stimulation. C1orf106 promoted self-renewal and colony formation in vitro and may promote tumour-initiating frequency in vivo. High C1orf106 mRNA expression correlates with markers of aggressiveness and poor prognosis in human breast cancer. Taken together, our findings indicate that C1orf106 may act as a tumour promoter in breast cancer.
Collapse
Affiliation(s)
- Lauren S. Strathearn
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (L.S.S.); (L.C.S.)
- Cancer Research UK Scotland Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; (C.S.); (S.M.); (K.B.)
| | - Lindsay C. Spender
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (L.S.S.); (L.C.S.)
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK
| | - Christina Schoenherr
- Cancer Research UK Scotland Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; (C.S.); (S.M.); (K.B.)
| | - Susan Mason
- Cancer Research UK Scotland Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; (C.S.); (S.M.); (K.B.)
| | - Ruaridh Edwards
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (L.S.S.); (L.C.S.)
| | - Karen Blyth
- Cancer Research UK Scotland Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; (C.S.); (S.M.); (K.B.)
| | - Gareth J. Inman
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK; (L.S.S.); (L.C.S.)
- Cancer Research UK Scotland Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; (C.S.); (S.M.); (K.B.)
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| |
Collapse
|
9
|
Elahimanesh M, Shokri N, Shabani R, Rahimi M, Najafi M. Exploring the potential of predicted miRNAs on the genes involved in the expansion of hematopoietic stem cells. Sci Rep 2024; 14:15551. [PMID: 38969714 PMCID: PMC11226654 DOI: 10.1038/s41598-024-66614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
A major challenge in therapeutic approaches applying hematopoietic stem cells (HSCs) is the cell quantity. The primary objective of this study was to predict the miRNAs and anti-miRNAs using bioinformatics tools and investigate their effects on the expression levels of key genes predicted in the improvement of proliferation, and the inhibition of differentiation in HSCs isolated from Human umbilical cord blood (HUCB). A network including genes related to the differentiation and proliferation stages of HSCs was constructed by enriching data of text (PubMed) and StemChecker server with KEGG signaling pathways, and was improved using GEO datasets. Bioinformatics tools predicted a profile from miRNAs containing miR-20a-5p, miR-423-5p, and chimeric anti-miRNA constructed from 5'-miR-340/3'-miR-524 for the high-score genes (RB1, SMAD4, STAT1, CALML4, GNG13, and CDKN1A/CDKN1B genes) in the network. The miRNAs and anti-miRNA were transferred into HSCs using polyethylenimine (PEI). The gene expression levels were estimated using the RT-qPCR technique in the PEI + (miRNA/anti-miRNA)-contained cell groups (n = 6). Furthermore, CD markers (90, 16, and 45) were evaluated using flow cytometry. Strong relationships were found between the high-score genes, miRNAs, and chimeric anti-miRNA. The RB1, SMAD4, and STAT1 gene expression levels were decreased by miR-20a-5p (P < 0.05). Additionally, the anti-miRNA increased the gene expression level of GNG13 (P < 0.05), whereas the miR-423-5p decreased the CDKN1A gene expression level (P < 0.01). The cellular count also increased significantly (P < 0.05) but the CD45 differentiation marker did not change in the cell groups. The study revealed the predicted miRNA/anti-miRNA profile expands HSCs isolated from HUCB. While miR-20a-5p suppressed the RB1, SMAD4, and STAT1 genes involved in cellular differentiation, the anti-miRNA promoted the GNG13 gene related to the proliferation process. Notably, the mixed miRNA/anti-miRNA group exhibited the highest cellular expansion. This approach could hold promise for enhancing the cell quantity in HSC therapy.
Collapse
Affiliation(s)
- Mohammad Elahimanesh
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Shokri
- Clinical Biochemistry Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Anatomy Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Rahimi
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Biochemistry Department, Faculty of Medical Sciences, Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Miyazawa K, Itoh Y, Fu H, Miyazono K. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem 2024; 300:107256. [PMID: 38569937 PMCID: PMC11063908 DOI: 10.1016/j.jbc.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine that is widely distributed throughout the body. Its receptor proteins, TGF-β type I and type II receptors, are also ubiquitously expressed. Therefore, the regulation of various signaling outputs in a context-dependent manner is a critical issue in this field. Smad proteins were originally identified as signal-activated transcription factors similar to signal transducer and activator of transcription proteins. Smads are activated by serine phosphorylation mediated by intrinsic receptor dual specificity kinases of the TGF-β family, indicating that Smads are receptor-restricted effector molecules downstream of ligands of the TGF-β family. Smad proteins have other functions in addition to transcriptional regulation, including post-transcriptional regulation of micro-RNA processing, pre-mRNA splicing, and m6A methylation. Recent technical advances have identified a novel landscape of Smad-dependent signal transduction, including regulation of mitochondrial function without involving regulation of gene expression. Therefore, Smad proteins are receptor-activated transcription factors and also act as intracellular signaling modulators with multiple modes of function. In this review, we discuss the role of Smad proteins as receptor-activated transcription factors and beyond. We also describe the functional differences between Smad2 and Smad3, two receptor-activated Smad proteins downstream of TGF-β, activin, myostatin, growth and differentiation factor (GDF) 11, and Nodal.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hao Fu
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Cancer Invasion and Metastasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
11
|
Wu Y, Yu B, Ai X, Zhang W, Chen W, Laurence A, Zhang M, Chen Q, Shao Y, Zhang B. TIF1γ and SMAD4 regulation in colorectal cancer: impact on cell proliferation and liver metastasis. Biol Chem 2024; 405:241-256. [PMID: 38270141 DOI: 10.1515/hsz-2023-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
We investigated the effects of transcriptional intermediary factor 1γ (TIF1γ) and SMAD4 on the proliferation and liver metastasis of colorectal cancer (CRC) cells through knockdown of TIF1γ and/or SMAD4 and knockdown of TIF1γ and/or restoration of SMAD4 expression. Furthermore, we examined TIF1γ and SMAD4 expression in human primary CRC and corresponding liver metastatic CRC specimens. TIF1γ promoted but SMAD4 inhibited the proliferation of CRC cells by competitively binding to activated SMAD2/SMAD3 complexes and then reversely regulating c-Myc, p21, p27, and cyclinA2 levels. Surprisingly, both TIF1γ and SMAD4 reduced the liver metastasis of all studied CRC cell lines via inhibition of MEK/ERK pathway-mediated COX-2, Nm23, uPA, and MMP9 expression. In patients with advanced CRC, reduced TIF1γ or SMAD4 expression was correlated with increased invasion and liver metastasis and was a significant, independent risk factor for recurrence and survival after radical resection. Patients with advanced CRC with reduced TIF1γ or SAMD4 expression had higher recurrence rates and shorter overall survival. TIF1γ and SMAD4 competitively exert contrasting effects on cell proliferation but act complementarily to suppress the liver metastasis of CRC via MEK/ERK pathway inhibition. Thus, reduced TIF1γ or SMAD4 expression in advanced CRC predicts earlier liver metastasis and poor prognosis.
Collapse
Affiliation(s)
- Yanhui Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Bin Yu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xi Ai
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Weixun Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Arian Laurence
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mingzhi Zhang
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Qian Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, HUST, 1095 Jiefang Ave, Wuhan 430030, China
| | - Yajie Shao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, HUST, 1095 Jiefang Ave, Wuhan 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| |
Collapse
|
12
|
Qu HQ, Glessner JT, Qu J, Liu Y, Watson D, Chang X, Saeidian AH, Qiu H, Mentch FD, Connolly JJ, Hakonarson H. High Comorbidity of Pediatric Cancers in Patients with Birth Defects: Insights from Whole Genome Sequencing Analysis of Copy Number Variations. Transl Res 2024; 266:49-56. [PMID: 37989391 DOI: 10.1016/j.trsl.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/01/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Patients with birth defects (BD) exhibit an elevated risk of cancer. We aimed to investigate the potential link between pediatric cancers and BDs, exploring the hypothesis of shared genetic defects contributing to the coexistence of these conditions. METHODS This study included 1454 probands with BDs (704 females and 750 males), including 619 (42.3%) with and 845 (57.7%) without co-occurrence of pediatric onset cancers. Whole genome sequencing (WGS) was done at 30X coverage through the Kids First/Gabriella Miller X01 Program. RESULTS 8211 CNV loci were called from the 1454 unrelated individuals. 191 CNV loci classified as pathogenic/likely pathogenic (P/LP) were identified in 309 (21.3%) patients, with 124 (40.1%) of these patients having pediatric onset cancers. The most common group of CNVs are pathogenic deletions covering the region ChrX:52,863,011-55,652,521, seen in 162 patients including 17 males. Large recurrent P/LP duplications >5MB were detected in 33 patients. CONCLUSIONS This study revealed that P/LP CNVs were common in a large cohort of BD patients with high rate of pediatric cancers. We present a comprehensive spectrum of P/LP CNVs in patients with BDs and various cancers. Notably, deletions involving E2F target genes and genes implicated in mitotic spindle assembly and G2/M checkpoint were identified, potentially disrupting cell-cycle progression and providing mechanistic insights into the concurrent occurrence of BDs and cancers.
Collapse
Affiliation(s)
- Hui-Qi Qu
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Joseph T Glessner
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Jingchun Qu
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Yichuan Liu
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Deborah Watson
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Xiao Chang
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Amir Hossein Saeidian
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Haijun Qiu
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Frank D Mentch
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - John J Connolly
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA; Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA; Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
13
|
Lizcano-Perret B, Vertommen D, Herinckx G, Calabrese V, Gatto L, Roux PP, Michiels T. Identification of RSK substrates using an analog-sensitive kinase approach. J Biol Chem 2024; 300:105739. [PMID: 38342435 PMCID: PMC10945272 DOI: 10.1016/j.jbc.2024.105739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024] Open
Abstract
The p90 ribosomal S6 kinases (RSK) family of serine/threonine kinases comprises four isoforms (RSK1-4) that lie downstream of the ERK1/2 mitogen-activated protein kinase pathway. RSKs are implicated in fine tuning of cellular processes such as translation, transcription, proliferation, and motility. Previous work showed that pathogens such as Cardioviruses could hijack any of the four RSK isoforms to inhibit PKR activation or to disrupt cellular nucleocytoplasmic trafficking. In contrast, some reports suggest nonredundant functions for distinct RSK isoforms, whereas Coffin-Lowry syndrome has only been associated with mutations in the gene encoding RSK2. In this work, we used the analog-sensitive kinase strategy to ask whether the cellular substrates of distinct RSK isoforms differ. We compared the substrates of two of the most distant RSK isoforms: RSK1 and RSK4. We identified a series of potential substrates for both RSKs in cells and validated RanBP3, PDCD4, IRS2, and ZC3H11A as substrates of both RSK1 and RSK4, and SORBS2 as an RSK1 substrate. In addition, using mutagenesis and inhibitors, we confirmed analog-sensitive kinase data showing that endogenous RSKs phosphorylate TRIM33 at S1119. Our data thus identify a series of potential RSK substrates and suggest that the substrates of RSK1 and RSK4 largely overlap and that the specificity of the various RSK isoforms likely depends on their cell- or tissue-specific expression pattern.
Collapse
Affiliation(s)
- Belén Lizcano-Perret
- Molecular Virology Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Didier Vertommen
- MASSPROT Platform, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Gaëtan Herinckx
- MASSPROT Platform, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Viviane Calabrese
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, Canada
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, Canada; Faculty of Medicine, Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec, Canada
| | - Thomas Michiels
- Molecular Virology Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
14
|
Soudja S, Zhang N. Editorial: TGF-β and T cell biology. Front Immunol 2023; 14:1282656. [PMID: 37736097 PMCID: PMC10509360 DOI: 10.3389/fimmu.2023.1282656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Affiliation(s)
- Saïdi Soudja
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
15
|
Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell Mol Immunol 2023; 20:1002-1022. [PMID: 37217798 PMCID: PMC10468540 DOI: 10.1038/s41423-023-01036-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Balanced immunity is pivotal for health and homeostasis. CD4+ helper T (Th) cells are central to the balance between immune tolerance and immune rejection. Th cells adopt distinct functions to maintain tolerance and clear pathogens. Dysregulation of Th cell function often leads to maladies, including autoimmunity, inflammatory disease, cancer, and infection. Regulatory T (Treg) and Th17 cells are critical Th cell types involved in immune tolerance, homeostasis, pathogenicity, and pathogen clearance. It is therefore critical to understand how Treg and Th17 cells are regulated in health and disease. Cytokines are instrumental in directing Treg and Th17 cell function. The evolutionarily conserved TGF-β (transforming growth factor-β) cytokine superfamily is of particular interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be proinflammatory, pathogenic, and immune regulatory. How TGF-β superfamily members and their intricate signaling pathways regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades. Here, we introduce the fundamental biology of TGF-β superfamily signaling, Treg cells, and Th17 cells and discuss in detail how the TGF-β superfamily contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks.
Collapse
Affiliation(s)
- Junying Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xingqi Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
16
|
Rousseau V, Einig E, Jin C, Horn J, Riebold M, Poth T, Jarboui MA, Flentje M, Popov N. Trim33 masks a non-transcriptional function of E2f4 in replication fork progression. Nat Commun 2023; 14:5143. [PMID: 37612308 PMCID: PMC10447549 DOI: 10.1038/s41467-023-40847-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Replicative stress promotes genomic instability and tumorigenesis but also presents an effective therapeutic endpoint, rationalizing detailed analysis of pathways that control DNA replication. We show here that the transcription factor E2f4 recruits the DNA helicase Recql to facilitate progression of DNA replication forks upon drug- or oncogene-induced replicative stress. In unperturbed cells, the Trim33 ubiquitin ligase targets E2f4 for degradation, limiting its genomic binding and interactions with Recql. Replicative stress blunts Trim33-dependent ubiquitination of E2f4, which stimulates transient Recql recruitment to chromatin and facilitates recovery of DNA synthesis. In contrast, deletion of Trim33 induces chronic genome-wide recruitment of Recql and strongly accelerates DNA replication under stress, compromising checkpoint signaling and DNA repair. Depletion of Trim33 in Myc-overexpressing cells leads to accumulation of replication-associated DNA damage and delays Myc-driven tumorigenesis. We propose that the Trim33-E2f4-Recql axis controls progression of DNA replication forks along transcriptionally active chromatin to maintain genome integrity.
Collapse
Affiliation(s)
- Vanessa Rousseau
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076, Tübingen, Germany
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str 2, 97080, Würzburg, Germany
- Interfaculty Institute for Biochemistry, University Hospital Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Elias Einig
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076, Tübingen, Germany
| | - Chao Jin
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076, Tübingen, Germany
| | - Julia Horn
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str 2, 97080, Würzburg, Germany
- Wakenitzmauer 3, 23552, Lübeck, Germany
| | - Mathias Riebold
- Department of Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectiology, and Geriatry, University Hospital Tübingen, Otfried-Müller-Str 12, 72076, Tübingen, Germany
| | - Tanja Poth
- Center for Model System and Comparative Pathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Mohamed-Ali Jarboui
- Core Facility for Medical Bioanalytics, Proteomics Platform Tübingen (PxP), Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str 7, 72076, Tübingen, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str 2, 97080, Würzburg, Germany
| | - Nikita Popov
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076, Tübingen, Germany.
| |
Collapse
|
17
|
Fleischauer J, Bastone AL, Selich A, John-Neek P, Weisskoeppel L, Schaudien D, Schambach A, Rothe M. TGF β Inhibitor A83-01 Enhances Murine HSPC Expansion for Gene Therapy. Cells 2023; 12:1978. [PMID: 37566057 PMCID: PMC10416825 DOI: 10.3390/cells12151978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Murine hematopoietic stem and progenitor cells (HSPCs) are commonly used as model systems during gene therapeutic retroviral vector development and preclinical biosafety assessment. Here, we developed cell culture conditions to maintain stemness and prevent differentiation during HSPC culture. We used the small compounds A83-01, pomalidomide, and UM171 (APU). Highly purified LSK SLAM cells expanded in medium containing SCF, IL-3, FLT3-L, and IL-11 but rapidly differentiated to myeloid progenitors and mast cells. The supplementation of APU attenuated the differentiation and preserved the stemness of HSPCs. The TGFβ inhibitor A83-01 was identified as the major effector. It significantly inhibited the mast-cell-associated expression of FcεR1α and the transcription of genes regulating the formation of granules and promoted a 3800-fold expansion of LSK cells. As a functional readout, we used expanded HSPCs in state-of-the-art genotoxicity assays. Like fresh cells, APU-expanded HSPCs transduced with a mutagenic retroviral vector developed a myeloid differentiation block with clonal restriction and dysregulated oncogenic transcriptomic signatures due to vector integration near the high-risk locus Mecom. Thus, expanded HSPCs might serve as a novel cell source for retroviral vector testing and genotoxicity studies.
Collapse
Affiliation(s)
- Jenni Fleischauer
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Antonella Lucia Bastone
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Anton Selich
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Luisa Weisskoeppel
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Schaudien
- Department of Inhalation Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai Fuchs Strasse 1, 30625 Hannover, Germany;
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, 30625 Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
18
|
Vegivinti CTR, Keesari PR, Veeraballi S, Martins Maia CMP, Mehta AK, Lavu RR, Thakur RK, Tella SH, Patel R, Kakumani VK, Pulakurthi YS, Aluri S, Aggarwal RK, Ramachandra N, Zhao R, Sahu S, Shastri A, Verma A. Role of innate immunological/inflammatory pathways in myelodysplastic syndromes and AML: a narrative review. Exp Hematol Oncol 2023; 12:60. [PMID: 37422676 DOI: 10.1186/s40164-023-00422-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
Dysregulation of the innate immune system and inflammatory-related pathways has been implicated in hematopoietic defects in the bone marrow microenvironment and associated with aging, clonal hematopoiesis, myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). As the innate immune system and its pathway regulators have been implicated in the pathogenesis of MDS/AML, novel approaches targeting these pathways have shown promising results. Variability in expression of Toll like receptors (TLRs), abnormal levels of MyD88 and subsequent activation of NF-κβ, dysregulated IL1-receptor associated kinases (IRAK), alterations in TGF-β and SMAD signaling, high levels of S100A8/A9 have all been implicated in pathogenesis of MDS/AML. In this review we not only discuss the interplay of various innate immune pathways in MDS pathogenesis but also focus on potential therapeutic targets from recent clinical trials including the use of monoclonal antibodies and small molecule inhibitors against these pathways.
Collapse
Affiliation(s)
- Charan Thej Reddy Vegivinti
- Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | | | | | | | - Ansh Krishnachandra Mehta
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Hematology and Oncology, Jacobi Medical Center/ Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Rohit Reddy Lavu
- Department of Oncology, Yashoda hospitals, Hyderabad, 500036, India
| | - Rahul Kumar Thakur
- Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Sri Harsha Tella
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, US
| | - Riya Patel
- Department of Hematology and Oncology, University of Buffalo - Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, US
| | | | | | - Srinivas Aluri
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | | | - Nandini Ramachandra
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Rongbao Zhao
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Srabani Sahu
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Aditi Shastri
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Oncology, Blood Cancer Institute, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Amit Verma
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US.
- Department of Oncology, Blood Cancer Institute, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US.
| |
Collapse
|
19
|
Zhang H, Yue J, Hou X, Lu H, Bikdeli A, Guo H, Li H, Li D. Rapidly progressive interstitial lung disease combined with pneumocystis jiroveci pneumonia in a patient with single anti-TIF-1γ antibody positive dermatomyositis in the context of an underlying tumor. BMC Pulm Med 2023; 23:248. [PMID: 37415133 DOI: 10.1186/s12890-023-02542-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Interstitial lung disease (ILD) is a frequently observed comorbidity in autoimmune diseases such as dermatomyositis/polymyositis (DM/PM), and it is significantly associated with specific autoantibody types. One unique antibody type is the anti-transcription intermediate factor-1γ antibody (anti-TIF-1γ Ab), which has a positive rate of only 7%. It is often found in combination with malignancy and rarely with ILD, particularly rapidly progressive ILD (RPILD). In some cases, the presence of ILD in individuals with DM may indicate a paraneoplastic syndrome. Pneumocystis jiroveci pneumonia (PJP) typically occurs due to intensive immunosuppressive therapy, human immunodeficiency virus (HIV) infection, or malignancy, and rarely as an isolated condition. CASE PRESENTATION A 52-year-old man with a history of rapid weight loss but non-HIV infected and not immunosuppressed who presented with fever, cough, dyspnea, weakness of the extremities, characteristic rash and mechanic's hand. Pathogenic tests suggested PJP, laboratory tests suggested a single anti-TIF-1γ Ab positive DM, imaging suggested ILD, and pathology revealed no malignancy. RPILD and acute respiratory distress syndrome (ARDS) developed after anti-infection and steroid hormone therapy. After mechanical support therapy such as Extracorporeal Membrane Oxygenation (ECMO), the patient developed late-onset cytomegalovirus pneumonia (CMVP), complicated bacterial infection, and ultimately death. Additionally, we discuss the potential causes of rapid weight loss, the mechanisms by which anti-TIF-1γ Ab may lead to ILD, and the possible connection between anti-TIF-1γ Ab positivity, rapid weight loss, immune abnormalities, and opportunistic infections. CONCLUSIONS This case emphasizes the importance of early recognition of malignant tumors and pulmonary lesions, assessment of the body's immune status, prompt initiation of immunosuppressive treatment, and prevention of opportunistic infections in individuals with single anti-TIF-1γ Ab positive DM presenting with rapid weight loss.
Collapse
Affiliation(s)
- Hengzhe Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Department of Intensive Care Medicine, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Jinfeng Yue
- Department of Intensive Care Medicine, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaohui Hou
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Department of Intensive Care Medicine, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Hongjun Lu
- Department of Intensive Care Medicine, Traditional Chinese Medicine of Rizhao Hospital, Rizhao, 276800, Shandong, China
| | - Arezou Bikdeli
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Haipeng Guo
- Department of Intensive Care Medicine, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Hao Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Daqing Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
20
|
Alam J, Huda MN, Tackett AJ, Miah S. Oncogenic signaling-mediated regulation of chromatin during tumorigenesis. Cancer Metastasis Rev 2023; 42:409-425. [PMID: 37147457 PMCID: PMC10348982 DOI: 10.1007/s10555-023-10104-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
Signaling pathways play critical roles in executing and controlling important biological processes within cells. Cells/organisms trigger appropriate signal transduction pathways in order to turn on or off intracellular gene expression in response to environmental stimuli. An orchestrated regulation of different signaling pathways across different organs and tissues is the basis of many important biological functions. Presumably, any malfunctions or dysregulation of these signaling pathways contribute to the pathogenesis of disease, particularly cancer. In this review, we discuss how the dysregulation of signaling pathways (TGF-β signaling, Hippo signaling, Wnt signaling, Notch signaling, and PI3K-AKT signaling) modulates chromatin modifications to regulate the epigenome, thereby contributing to tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Jahangir Alam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Md Nazmul Huda
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sayem Miah
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
21
|
Liu A, Yu C, Qiu C, Wu Q, Huang C, Li X, She X, Wan K, Liu L, Li M, Wang Z, Chen Y, Hu F, Song D, Li K, Zhao C, Deng H, Sun X, Xu F, Lai S, Luo X, Hu J, Wang G. PRMT5 methylating SMAD4 activates TGF-β signaling and promotes colorectal cancer metastasis. Oncogene 2023; 42:1572-1584. [PMID: 36991117 DOI: 10.1038/s41388-023-02674-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
Perturbations in transforming growth factor-β (TGF-β) signaling can lead to a plethora of diseases, including cancer. Mutations and posttranslational modifications (PTMs) of the partner of SMAD complexes contribute to the dysregulation of TGF-β signaling. Here, we reported a PTM of SMAD4, R361 methylation, that was critical for SMAD complexes formation and TGF-β signaling activation. Through mass spectrometric, co-immunoprecipitation (Co-IP) and immunofluorescent (IF) assays, we found that oncogene protein arginine methyltransferase 5 (PRMT5) interacted with SMAD4 under TGF-β1 treatment. Mechanically, PRMT5 triggered SMAD4 methylation at R361 and induced SMAD complexes formation and nuclear import. Furthermore, we emphasized that PRMT5 interacting and methylating SMAD4 was required for TGF-β1-induced epithelial-mesenchymal transition (EMT) and colorectal cancer (CRC) metastasis, and SMAD4 R361 mutation diminished PRMT5 and TGF-β1-induced metastasis. In addition, highly expressed PRMT5 or high level of SMAD4 R361 methylation indicated worse outcomes in clinical specimens analysis. Collectively, our study highlights the critical interaction of PRMT5 and SMAD4 and the roles of SMAD4 R361 methylation for controlling TGF-β signaling during metastasis. We provided a new insight for SMAD4 activation. And this study indicated that blocking PRMT5-SMAD4 signaling might be an effective targeting strategy in SMAD4 wild-type CRC.
Collapse
Affiliation(s)
- Anyi Liu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Chengxin Yu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Cheng Qiu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Qi Wu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Changsheng Huang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xun Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xiaowei She
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Kairui Wan
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Lang Liu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Mao Li
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Zhihong Wang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yaqi Chen
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
- Department of Thyroid and Breast Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Fuqing Hu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Da Song
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
- Department of Emergency and Trauma Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Kangdi Li
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Chongchong Zhao
- Protein Chemistry and Proteomics Facility, Tsinghua University Technology Center for Protein Research, Beijing, 100084, PR China
| | - Haiteng Deng
- Protein Chemistry and Proteomics Facility, Tsinghua University Technology Center for Protein Research, Beijing, 100084, PR China
| | - Xuling Sun
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, PR China
| | - Feng Xu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Senyan Lai
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xuelai Luo
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Junbo Hu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Guihua Wang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
22
|
Saleem HM, Ramaiah P, Gupta J, Jalil AT, Kadhim NA, Alsaikhan F, Ramírez-Coronel AA, Tayyib NA, Guo Q. Nanotechnology-empowered lung cancer therapy: From EMT role in cancer metastasis to application of nanoengineered structures for modulating growth and metastasis. ENVIRONMENTAL RESEARCH 2023:115942. [PMID: 37080268 DOI: 10.1016/j.envres.2023.115942] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Lung cancer is one of the leading causes of death in both males and females, and it is the first causes of cancer-related deaths. Chemotherapy, surgery and radiotherapy are conventional treatment of lung cancer and recently, immunotherapy has been also appeared as another therapeutic strategy for lung tumor. However, since previous treatments have not been successful in cancer therapy and improving prognosis and survival rate of lung tumor patients, new studies have focused on gene therapy and targeting underlying molecular pathways involved in lung cancer progression. Nanoparticles have been emerged in treatment of lung cancer that can mediate targeted delivery of drugs and genes. Nanoparticles protect drugs and genes against unexpected interactions in blood circulation and improve their circulation time. Nanoparticles can induce phototherapy in lung cancer ablation and mediating cell death. Nanoparticles can induce photothermal and photodynamic therapy in lung cancer. The nanostructures can impair metastasis of lung cancer and suppress EMT in improving drug sensitivity. Metastasis is one of the drawbacks observed in lung cancer that promotes migration of tumor cells and allows them to establish new colony in secondary site. EMT can occur in lung cancer and promotes tumor invasion. EMT is not certain to lung cancer and it can be observed in other human cancers, but since lung cancer has highest incidence rate, understanding EMT function in lung cancer is beneficial in improving prognosis of patients. EMT induction in lung cancer promotes tumor invasion and it can also lead to drug resistance and radio-resistance. Moreover, non-coding RNAs and pharmacological compounds can regulate EMT in lung cancer and EMT-TFs such as Twist and Slug are important modulators of lung cancer invasion that are discussed in current review.
Collapse
Affiliation(s)
- Hiba Muwafaq Saleem
- Department of Medical Laboratory Techniques, Al-Maarif University College, AL-Anbar, Iraq.
| | | | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, UP, India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Qingdong Guo
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
23
|
Sun H, Chen Y, Yan K, Shao Y, Zhang QC, Lin Y, Xi Q. Recruitment of TRIM33 to cell-context specific PML nuclear bodies regulates nodal signaling in mESCs. EMBO J 2023; 42:e112058. [PMID: 36524443 PMCID: PMC9890237 DOI: 10.15252/embj.2022112058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
TRIM33 is a chromatin reader required for mammalian mesendoderm differentiation after activation of Nodal signaling, while its role in mESCs is still elusive. Here, we report that TRIM33 co-localizes with promyelocytic leukemia nuclear bodies (PML-NBs) specifically in mESCs, to mediate Nodal signaling-directed transcription of Lefty1/2. We show that TRIM33 puncta formation in mESCs depends on PML and on specific assembly of PML-NBs. Moreover, TRIM33 and PML co-regulate Lefty1/2 expression in mESCs, with both PML protein and formation of mESCs-specific PML-NBs being required for TRIM33 recruitment to these loci, and PML-NBs directly associating with the Lefty1/2 loci. Finally, a TurboID proximity-labeling experiment confirmed that TRIM33 is highly enriched only in mESCs-specific PML-NBs. Thus, our study supports a model in which TRIM33 condensates regulate Nodal signaling-directed transcription in mESCs and shows that PML-NBs can recruit distinct sets of client proteins in a cell-context-dependent manner.
Collapse
Affiliation(s)
- Hongyao Sun
- MOE Key Laboratory of Protein Sciences, School of Life SciencesTsinghua UniversityBeijingChina
- Joint Graduate Program of Peking‐Tsinghua‐NIBSTsinghua UniversityBeijingChina
| | - Yutong Chen
- IDG/McGovern Institute for Brain Research, School of Life SciencesTsinghua UniversityBeijingChina
| | - Kun Yan
- Tsinghua‐Peking Center for Life Sciences, School of Life SciencesTsinghua UniversityBeijingChina
| | - Yanqiu Shao
- Tsinghua‐Peking Center for Life Sciences, School of Life SciencesTsinghua UniversityBeijingChina
| | - Qiangfeng C Zhang
- Joint Graduate Program of Peking‐Tsinghua‐NIBSTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life Sciences, School of Life SciencesTsinghua UniversityBeijingChina
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life SciencesTsinghua UniversityBeijingChina
| | - Yi Lin
- IDG/McGovern Institute for Brain ResearchTsinghua‐Peking Joint Centre for Life SciencesBeijingChina
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, School of Life SciencesTsinghua UniversityBeijingChina
| |
Collapse
|
24
|
Chua CG, Low JZ, Lim WY, Manghani M. Characteristics of anti-transcriptional intermediary factor 1 gamma autoantibody-positive dermatomyositis patients in Singapore. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2022. [DOI: 10.47102/annals-acadmedsg.2022278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction: This study aimed to determine the clinical profile and outcome of anti-transcriptional intermediary factor 1 gamma autoantibody (anti-TIF1-γ Ab)-positive dermatomyositis patients and propose cancer screening programmes based on regional cancer trends.
Method: Data on history, physical findings and investigations were collected using chart review on dermatomyositis patients seen at a tertiary hospital in Singapore from 1 January 2015 to 30 June 2021. Comparisons were made between anti-TIF1-γ Ab-positive and anti-TIF1-γ Ab-negative dermatomyositis.
Results: Ninety-six dermatomyositis patients were analysed and 36 patients were positive for anti-TIF1-γ Ab. Anti-TIF1-γ Ab-positive patients had more frequent heliotrope rashes, shawl sign, periungual erythema, holster sign, Gottron’s papules, dysphagia and truncal weakness (P<0.05). They had less frequent interstitial lung disease, polyarthritis, cutaneous ulcers, palmar papules and mechanic’s hands (P<0.05). After 48 months of follow-up, a higher proportion of anti-TIF1-γ Ab-positive patients developed cancer compared with Ab-negative patients (63.9% versus 8.5%; odds ratio 19.1, 95% confidence interval 6.1–59.8; P<0.001). Nasopharyngeal carcinoma (NPC) and breast cancer were the most common malignancies, followed by bowel, lung and non-Hodgkin lymphoma. Most malignancies (78.3%) occurred within 13 months prior to, or 4 months after the onset of dermatomyositis. The mortality rate for anti-TIF1-γ Ab-positive patients was significantly higher than Ab-negative patients (36.1% vs 16.7%, P=0.031), and Kaplan-Meier survival estimates at 24 months were 66% and 89%, respectively (P=0.0153).
Conclusion: These observational data support periodic screening of NPC and other malignancies in patients with anti-TIF1-γ Ab-positive dermatomyositis in Singapore.
Keywords: Autoantibody, cancer, dermatomyositis, nasopharyngeal carcinoma, transcriptional intermediary factor 1 gamma
Collapse
|
25
|
Tie Y, Tang F, Peng D, Zhang Y, Shi H. TGF-beta signal transduction: biology, function and therapy for diseases. MOLECULAR BIOMEDICINE 2022; 3:45. [PMID: 36534225 PMCID: PMC9761655 DOI: 10.1186/s43556-022-00109-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The transforming growth factor beta (TGF-β) is a crucial cytokine that get increasing concern in recent years to treat human diseases. This signal controls multiple cellular responses during embryonic development and tissue homeostasis through canonical and/or noncanonical signaling pathways. Dysregulated TGF-β signal plays an essential role in contributing to fibrosis via promoting the extracellular matrix deposition, and tumor progression via inducing the epithelial-to-mesenchymal transition, immunosuppression, and neovascularization at the advanced stage of cancer. Besides, the dysregulation of TGF-beta signal also involves in other human diseases including anemia, inflammatory disease, wound healing and cardiovascular disease et al. Therefore, this signal is proposed to be a promising therapeutic target in these diseases. Recently, multiple strategies targeting TGF-β signals including neutralizing antibodies, ligand traps, small-molecule receptor kinase inhibitors targeting ligand-receptor signaling pathways, antisense oligonucleotides to disrupt the production of TGF-β at the transcriptional level, and vaccine are under evaluation of safety and efficacy for the forementioned diseases in clinical trials. Here, in this review, we firstly summarized the biology and function of TGF-β in physiological and pathological conditions, elaborated TGF-β associated signal transduction. And then, we analyzed the current advances in preclinical studies and clinical strategies targeting TGF-β signal transduction to treat diseases.
Collapse
Affiliation(s)
- Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Fan Tang
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China ,grid.13291.380000 0001 0807 1581Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Dandan Peng
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Ye Zhang
- grid.506261.60000 0001 0706 7839Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Huashan Shi
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| |
Collapse
|
26
|
Huang N, Sun X, Li P, Liu X, Zhang X, Chen Q, Xin H. TRIM family contribute to tumorigenesis, cancer development, and drug resistance. Exp Hematol Oncol 2022; 11:75. [PMID: 36261847 PMCID: PMC9583506 DOI: 10.1186/s40164-022-00322-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
The tripartite-motif (TRIM) family represents one of the largest classes of putative single protein RING-finger E3 ubiquitin ligases. TRIM family is involved in a variety of cellular signaling transductions and biological processes. TRIM family also contributes to cancer initiation, progress, and therapy resistance, exhibiting oncogenic and tumor-suppressive functions in different human cancer types. Moreover, TRIM family members have great potential to serve as biomarkers for cancer diagnosis and prognosis. In this review, we focus on the specific mechanisms of the participation of TRIM family members in tumorigenesis, and cancer development including interacting with dysregulated signaling pathways such as JAK/STAT, PI3K/AKT, TGF-β, NF-κB, Wnt/β-catenin, and p53 hub. In addition, many studies have demonstrated that the TRIM family are related to tumor resistance; modulate the epithelial–mesenchymal transition (EMT) process, and guarantee the acquisition of cancer stem cells (CSCs) phenotype. In the end, we havediscussed the potential of TRIM family members for cancer therapeutic targets.
Collapse
Affiliation(s)
- Ning Huang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xiaolin Sun
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Peng Li
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Xin Liu
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Qian Chen
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
27
|
Bertrand-Chapel A, Caligaris C, Fenouil T, Savary C, Aires S, Martel S, Huchedé P, Chassot C, Chauvet V, Cardot-Ruffino V, Morel AP, Subtil F, Mohkam K, Mabrut JY, Tonon L, Viari A, Cassier P, Hervieu V, Castets M, Mauviel A, Sentis S, Bartholin L. SMAD2/3 mediate oncogenic effects of TGF-β in the absence of SMAD4. Commun Biol 2022; 5:1068. [PMID: 36207615 PMCID: PMC9546935 DOI: 10.1038/s42003-022-03994-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
TGF-β signaling is involved in pancreatic ductal adenocarcinoma (PDAC) tumorigenesis, representing one of the four major pathways genetically altered in 100% of PDAC cases. TGF-β exerts complex and pleiotropic effects in cancers, notably via the activation of SMAD pathways, predominantly SMAD2/3/4. Though SMAD2 and 3 are rarely mutated in cancers, SMAD4 is lost in about 50% of PDAC, and the role of SMAD2/3 in a SMAD4-null context remains understudied. We herein provide evidence of a SMAD2/3 oncogenic effect in response to TGF-β1 in SMAD4-null human PDAC cancer cells. We report that inactivation of SMAD2/3 in SMAD4-negative PDAC cells compromises TGF-β-driven collective migration mediated by FAK and Rho/Rac signaling. Moreover, RNA-sequencing analyses highlight a TGF-β gene signature related to aggressiveness mediated by SMAD2/3 in the absence of SMAD4. Using a PDAC patient cohort, we reveal that SMAD4-negative tumors with high levels of phospho-SMAD2 are more aggressive and have a poorer prognosis. Thus, loss of SMAD4 tumor suppressive activity in PDAC leads to an oncogenic gain-of-function of SMAD2/3, and to the onset of associated deleterious effects. In pancreatic ductal adenocarcinoma cells and patient tissue, SMAD2/3 is shown to mediate oncogenic effects of TGF-β in the absence of SMAD4.
Collapse
Affiliation(s)
- Adrien Bertrand-Chapel
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Cassandre Caligaris
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Tanguy Fenouil
- Hospices Civils de Lyon, Institute of Pathology, Groupement Hospitalier Est, Bron, France.,Ribosome, Translation and Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Clara Savary
- Cell Death and Childhood Cancers Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Labex DevWeCan, Institut Convergence Plascan, Lyon, France
| | - Sophie Aires
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Sylvie Martel
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Paul Huchedé
- Cell Death and Childhood Cancers Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Labex DevWeCan, Institut Convergence Plascan, Lyon, France
| | - Christelle Chassot
- EMT and Cancer Cell Plasticity Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Véronique Chauvet
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Victoire Cardot-Ruffino
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Anne-Pierre Morel
- EMT and Cancer Cell Plasticity Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Fabien Subtil
- Service de Biostatistiques, Hospices Civils de Lyon, Lyon France, Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Villeurbanne, France
| | - Kayvan Mohkam
- Hospices Civils de Lyon, Croix-Rousse University Hospital, Claude Bernard Lyon 1 University, Department of General Surgery & Liver Transplantation, Lyon, France
| | - Jean-Yves Mabrut
- Hospices Civils de Lyon, Croix-Rousse University Hospital, Claude Bernard Lyon 1 University, Department of General Surgery & Liver Transplantation, Lyon, France
| | - Laurie Tonon
- Plateforme de bioinformatique Gilles Thomas, Fondation Lyon Synergie Cancer, Centre Léon Bérard, Lyon, France
| | - Alain Viari
- Plateforme de bioinformatique Gilles Thomas, Fondation Lyon Synergie Cancer, Centre Léon Bérard, Lyon, France
| | - Philippe Cassier
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Département d'oncologie Médicale, unité de phase 1, Centre Léon Bérard, Lyon, France
| | - Valérie Hervieu
- Hospices Civils de Lyon, Institute of Pathology, Groupement Hospitalier Est, Bron, France
| | - Marie Castets
- Cell Death and Childhood Cancers Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Labex DevWeCan, Institut Convergence Plascan, Lyon, France.
| | - Alain Mauviel
- Team "TGF-ß and Oncogenesis", Institut Curie, PSL Research University, INSERM 1021, CNRS 3347, Equipe Labellisée Ligue 2016, 91400, Orsay, France
| | - Stéphanie Sentis
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurent Bartholin
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
28
|
TIF1γ inhibits lung adenocarcinoma EMT and metastasis by interacting with the TAF15/TBP complex. Cell Rep 2022; 41:111513. [DOI: 10.1016/j.celrep.2022.111513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
|
29
|
Modepalli S, Martinez-Morilla S, Venkatesan S, Fasano J, Paulsen K, Görlich D, Hattangadi S, Kupfer GM. An In Vivo Model for Elucidating the Role of an Erythroid-Specific Isoform of Nuclear Export Protein Exportin 7 (Xpo7) in Murine Erythropoiesis. Exp Hematol 2022; 114:22-32. [PMID: 35973480 PMCID: PMC10165728 DOI: 10.1016/j.exphem.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/04/2022]
Abstract
Erythroid nuclear condensation is a complex process in which compaction to one-tenth its original size occurs in an active nucleus simultaneously undergoing transcription and cell division. We previously found that the nuclear exportin Exportin7 (Xpo7), which is erythroid- specific and highly induced during terminal erythropoiesis, facilitates nuclear condensation. We also identified a previously unannotated, erythroid-specific isoform of Xpo7 (Xpo7B) containing a novel first exon Xpo7-1b expressed only in late Ter119+ erythroblasts. To better understand the functional difference between the erythroid Xpo7B isoform and the ubiquitous isoform (Xpo7A) containing the original first exon Xpo7-1a, we created gene-targeted mouse models lacking either exon Xpo7-1a or Xpo7-1b, or both exons 4 and 5, which are completely null for Xpo7 expression. We found that deficiency in Xpo7A does not affect steady-state nor stress erythropoiesis. In contrast, mice lacking the erythroid isoform, Xpo7B, exhibit a mild anemia as well as altered stress erythropoiesis. Complete Xpo7 deficiency resulted in partially penetrant embryonic lethality at the stage when definitive erythropoiesis is prominent in the fetal liver. Inducible complete knockdown of Xpo7 confirms that both steady-state erythropoiesis and stress erythropoiesis are affected. We also observe that Xpo7 deficiency downregulates the expression of important stress response factors, such as Gdf15 and Smad3. We conclude that the erythroid-specific isoform of Xpo7 is important for both steady-state and stress erythropoiesis in mice.
Collapse
Affiliation(s)
- Susree Modepalli
- Department of Molecular Oncology, Georgetown University, Washington DC
| | | | - Srividhya Venkatesan
- Department of Pediatric Hematology-Oncology, Yale School of Medicine, New Haven, CT
| | - James Fasano
- Department of Pediatric Hematology-Oncology, Yale School of Medicine, New Haven, CT
| | - Katerina Paulsen
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Shilpa Hattangadi
- Division of Kidney, Urologic, and Hematologic Diseases, National Institutes of Health, Bethesda, MD.
| | - Gary M Kupfer
- Department of Molecular Oncology, Georgetown University, Washington DC.
| |
Collapse
|
30
|
Khanbabaei H, Ebrahimi S, García-Rodríguez JL, Ghasemi Z, Pourghadamyari H, Mohammadi M, Kristensen LS. Non-coding RNAs and epithelial mesenchymal transition in cancer: molecular mechanisms and clinical implications. J Exp Clin Cancer Res 2022; 41:278. [PMID: 36114510 PMCID: PMC9479306 DOI: 10.1186/s13046-022-02488-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental process for embryonic development during which epithelial cells acquire mesenchymal characteristics, and the underlying mechanisms confer malignant features to carcinoma cells such as dissemination throughout the organism and resistance to anticancer treatments. During the past decades, an entire class of molecules, called non-coding RNA (ncRNA), has been characterized as a key regulator of almost every cellular process, including EMT. Like protein-coding genes, ncRNAs can be deregulated in cancer, acting as oncogenes or tumor suppressors. The various forms of ncRNAs, including microRNAs, PIWI-interacting RNAs, small nucleolar RNAs, transfer RNA-derived RNA fragments, long non-coding RNAs, and circular RNAs can orchestrate the complex regulatory networks of EMT at multiple levels. Understanding the molecular mechanism underlying ncRNAs in EMT can provide fundamental insights into cancer metastasis and may lead to novel therapeutic approaches. In this review, we describe recent advances in the understanding of ncRNAs in EMT and provide an overview of recent ncRNA applications in the clinic.
Collapse
|
31
|
Chen M, Lingadahalli S, Narwade N, Lei KMK, Liu S, Zhao Z, Zheng Y, Lu Q, Tang AHN, Poon TCW, Cheung E. TRIM33 drives prostate tumor growth by stabilizing androgen receptor from Skp2-mediated degradation. EMBO Rep 2022; 23:e53468. [PMID: 35785414 DOI: 10.15252/embr.202153468] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 12/23/2022] Open
Abstract
Androgen receptor (AR) is a master transcription factor that drives prostate cancer (PCa) development and progression. Alterations in the expression or activity of AR coregulators significantly impact the outcome of the disease. Using a proteomics approach, we identified the tripartite motif-containing 33 (TRIM33) as a novel transcriptional coactivator of AR. We demonstrate that TRIM33 facilitates AR chromatin binding to directly regulate a transcription program that promotes PCa progression. TRIM33 further stabilizes AR by protecting it from Skp2-mediated ubiquitination and proteasomal degradation. We also show that TRIM33 is essential for PCa tumor growth by avoiding cell-cycle arrest and apoptosis, and TRIM33 knockdown sensitizes PCa cells to AR antagonists. In clinical analyses, we find TRIM33 upregulated in multiple PCa patient cohorts. Finally, we uncover an AR-TRIM33-coactivated gene signature highly expressed in PCa tumors and predict disease recurrence. Overall, our results reveal that TRIM33 is an oncogenic AR coactivator in PCa and a potential therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Mi Chen
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Shreyas Lingadahalli
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Nitin Narwade
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Kate Man Kei Lei
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Pilot Laboratory, University of Macau, Taipa, Macau SAR.,Institute of Translational Medicine, University of Macau, Taipa, Macau SAR
| | | | - Zuxianglan Zhao
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Yimin Zheng
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Qian Lu
- Xuzhou Medical University, Xuzhou, China
| | | | - Terence Chuen Wai Poon
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR.,Pilot Laboratory, University of Macau, Taipa, Macau SAR.,Institute of Translational Medicine, University of Macau, Taipa, Macau SAR
| | - Edwin Cheung
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| |
Collapse
|
32
|
Liu X, Hao J, Wei P, Zhao X, Lan Q, Ni L, Chen Y, Bai X, Ni L, Dong C. SMAD4, activated by the TCR-triggered MEK/ERK signaling pathway, critically regulates CD8 + T cell cytotoxic function. SCIENCE ADVANCES 2022; 8:eabo4577. [PMID: 35895826 PMCID: PMC9328680 DOI: 10.1126/sciadv.abo4577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Transforming growth factor-β is well known to restrain cytotoxic T cell responses to maintain self-tolerance and to promote tumor immune evasion. In this study, we have investigated the role of SMAD4, a core component in the TGF-β signaling pathway, in CD8+ T cells. Unexpectedly, we found that SMAD4 was critical in promoting CD8+ T cell function in both tumor and infection models. SMAD4-mediated transcriptional regulation of CD8+ T cell activation and cytotoxicity was dependent on the T cell receptor (TCR) but not TGF-β signaling pathway. Following TCR activation, SMAD4 translocated into the nucleus, up-regulated genes encoding TCR signaling components and cytotoxic molecules in CD8+ T cells and thus reinforced T cell function. Biochemically, SMAD4 was directly phosphorylated by ERK at Ser367 residue following TCR activation. Our study thus demonstrates a critical yet unexpected role of SMAD4 in promoting CD8+ T cell-mediated cytotoxic immunity.
Collapse
Affiliation(s)
- Xinwei Liu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing Hao
- Shanghai Immune Therapy Institute, Shanghai Jiaotong University School of Medicine-affiliated Renji Hospital, Shanghai 200127, China
| | - Peng Wei
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qiuyan Lan
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lu Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yongzhen Chen
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xue Bai
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- Shanghai Immune Therapy Institute, Shanghai Jiaotong University School of Medicine-affiliated Renji Hospital, Shanghai 200127, China
| |
Collapse
|
33
|
The lncRNA TCONS_00021785/miR-21-5p/Trim33 axis regulates VMP1-mediated zymophagy, reduces the activation of trypsinogen, and promotes acinar cell recovery. Cell Death Dis 2022; 8:65. [PMID: 35169128 PMCID: PMC8847645 DOI: 10.1038/s41420-022-00862-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/31/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022]
Abstract
In the early stage of acute pancreatitis, trypsinogen in acinar cells is activated, and the cells clear trypsin through zymophagy to avoid damage. Studies have shown that the substrate of zymophagy is ubiquitinated pancreatin, but the mechanism of pancreatin ubiquitination and the regulatory mechanism of zymophagy are not fully understood. Our results show that Trim33 can enhance cell viability, reduce cell necrosis, and reduce trypsinogen activation. Trim33 is a key E3 ligase enzyme that mediates trypsin ubiquitination. The results showed that overexpression of Trim33 can significantly increase VMP1 mRNA and protein levels. However, knocking down Trim33 produced the opposite effect, which indicates that Trim33, as a transcriptional mediator, affects zymophagy by regulating the expression of VMP1. In addition, we explored the transcriptional regulation mechanism of the Trim33 molecule. Our research shows that lncRNA TCONS_00021785 can competitively bind miR-21-5p to upregulate Trim33, thereby initiating enzyme autophagy and reducing zymogen activation.
Collapse
|
34
|
Pakravan K, Razmara E, Mahmud Hussen B, Sattarikia F, Sadeghizadeh M, Babashah S. SMAD4 contributes to chondrocyte and osteocyte development. J Cell Mol Med 2022; 26:1-15. [PMID: 34841647 PMCID: PMC8742202 DOI: 10.1111/jcmm.17080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Different cellular and molecular mechanisms contribute to chondrocyte and osteocyte development. Although vital roles of the mothers against decapentaplegic homolog 4 (also called 'SMAD4') have been discussed in different cancers and stem cell-related studies, there are a few reviews summarizing the roles of this protein in the skeletal development and bone homeostasis. In order to fill this gap, we discuss the critical roles of SMAD4 in the skeletal development. To this end, we review the different signalling pathways and also how SMAD4 defines stem cell features. We also elaborate how the epigenetic factors-ie DNA methylation, histone modifications and noncoding RNAs-make a contribution to the chondrocyte and osteocyte development. To better grasp the important roles of SMAD4 in the cartilage and bone development, we also review the genotype-phenotype correlation in animal models. This review helps us to understand the importance of the SMAD4 in the chondrocyte and bone development and the potential applications for therapeutic goals.
Collapse
Affiliation(s)
- Katayoon Pakravan
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Ehsan Razmara
- Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Bashdar Mahmud Hussen
- Department of PharmacognosyCollege of PharmacyHawler Medical UniversityKurdistan RegionIraq
| | - Fatemeh Sattarikia
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Majid Sadeghizadeh
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
35
|
Wang F, Wang W, Wu X, Tang C, Du F, Lu Z, Zhang Z, Xu H, Cao X, Li PA. Downregulation of TRIM33 Promotes Survival and Epithelial-Mesenchymal Transition in Gastric Cancer. Technol Cancer Res Treat 2022; 21:15330338221114505. [PMID: 35929141 PMCID: PMC9358585 DOI: 10.1177/15330338221114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Among all malignancies worldwide, gastric cancer is the fifth most common cancer with the third highest mortality rate. One of the main reasons for the low survival rate is the recurrence and metastasis that occurs in many patients after surgery. Numerous studies have shown that abnormal TRIM33 expression is associated with the progression of malignant tumors. TRIM33 can function either as a tumor suppressor or tumor promoter in different cancers. Our data showed that TRIM33 was highly expressed in stomach cancer, and in human gastric cancer tissues, low expression of TRIM33 was associated with poor prognosis in patients with gastric cancer. To clarify the function of TRIM33 in survival and epithelial–mesenchymal transition in gastric cancer cells, we investigated the effect of TRIM33 knockdown in several gastric cancer cell lines. Downregulation of TRIM33 in BGC-823 and SGC-7901 cells enhanced the proliferation, colony formation, and migratory ability of these gastric cancer cells. It also promoted epithelial–mesenchymal transition; transfection of cells with siRNA targeting TRIM33 led to the upregulation of vimentin and N-Cadherin expression, and downregulation of E-Cadherin expression. Meanwhile, the transforming growth factor beta pathway was activated: levels of transforming growth factor beta were elevated and the expressions of p-Smad2, Smad2, Smad3, and Smad4 were activated. To confirm the role of TRIM33 in vivo, a xenograft model was established in nude mice. Immunohistochemical analysis identified that the protein levels of TRIM33, p-Smad2, Smad2, Smad3, Smad4, vimentin, and N-Cadherin were increased, and E-Cadherin levels were decreased, in xenograft tumors from the si-TRIM33 group. Taken together, these results suggest that TRIM33 may be a potential marker for the diagnosis and prognosis of gastric cancer. Furthermore, it may also serve as a novel target for gastric cancer treatment.
Collapse
Affiliation(s)
- Fang Wang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wenjun Wang
- Department of Pathology, Basic Medical School, 105002Ningxia Medical University, Yinchuan, China
| | - Xiaoting Wu
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Cui Tang
- Department of Pathology, Basic Medical School, 105002Ningxia Medical University, Yinchuan, China
| | - Fang Du
- School of Information Engineering, 56693Ningxia University, Ningxia, China
| | - Zhiguo Lu
- Department of Pediatric Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhuoyang Zhang
- Department of Pathology, Basic Medical School, 105002Ningxia Medical University, Yinchuan, China
| | - Hui Xu
- Department of Pathology, Basic Medical School, 105002Ningxia Medical University, Yinchuan, China
| | - Xiangmei Cao
- Department of Pathology, Basic Medical School, 105002Ningxia Medical University, Yinchuan, China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| |
Collapse
|
36
|
Kanno T, Nakajima T, Kawashima Y, Yokoyama S, Asou HK, Sasamoto S, Hayashizaki K, Kinjo Y, Ohara O, Nakayama T, Endo Y. Acsbg1-dependent mitochondrial fitness is a metabolic checkpoint for tissue T reg cell homeostasis. Cell Rep 2021; 37:109921. [PMID: 34758300 DOI: 10.1016/j.celrep.2021.109921] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/30/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
Regulatory T (Treg) cells are critical for immunological tolerance and immune homeostasis. Treg cells strongly rely on mitochondrial metabolism and show a lower level of glycolysis. However, little is known about the role of lipid metabolism in the regulation of Treg cell homeostasis. Some members of the ACSL family of acyl-coenzyme A (CoA) synthases are expressed in T cells, but their function remains unclear. A combination of RNA-sequencing and proteome analyses shows that Acsbg1, a member of ACSL, is selectively expressed in Treg cells. We show that the genetic deletion of Acsbg1 not only causes mitochondrial dysfunction, but it also dampens other metabolic pathways. The extrinsic supplementation of Acsbg1-deficient Treg cells with oleoyl-CoA restores the phenotype of the Treg metabolic signature. Furthermore, this pathway in ST2+ effector Treg cells enhances immunosuppressive capacity in airway inflammation. Thus, Acsbg1 serves as a metabolic checkpoint governing Treg cell homeostasis and the resolution of lung inflammation.
Collapse
Affiliation(s)
- Toshio Kanno
- Laboratory of Medical Omics Research, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Takahiro Nakajima
- Laboratory of Medical Omics Research, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Satoru Yokoyama
- Laboratory of Medical Omics Research, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Hikari K Asou
- Laboratory of Medical Omics Research, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Shigemi Sasamoto
- Laboratory of Medical Omics Research, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Koji Hayashizaki
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan; Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuki Kinjo
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan; Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan; AMED-CREST, AMED, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yusuke Endo
- Laboratory of Medical Omics Research, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan; Department of Omics Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| |
Collapse
|
37
|
The GPI-anchored protein CD109 protects hematopoietic progenitor cells from undergoing erythroid differentiation induced by TGF-β. Leukemia 2021; 36:847-855. [PMID: 34743190 DOI: 10.1038/s41375-021-01463-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/09/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022]
Abstract
Although a glycosylphosphatidylinositol-anchored protein (GPI-AP) CD109 serves as a TGF-β co-receptor and inhibits TGF-β signaling in keratinocytes, the role of CD109 on hematopoietic stem progenitor cells (HSPCs) remains unknown. We studied the effect of CD109 knockout (KO) or knockdown (KD) on TF-1, a myeloid leukemia cell line that expresses CD109, and primary human HSPCs. CD109-KO or KD TF-1 cells underwent erythroid differentiation in the presence of TGF-β. CD109 was more abundantly expressed in hematopoietic stem cells (HSCs) than in multipotent progenitors and HSPCs of human bone marrow (BM) and cord blood but was not detected in mouse HSCs. Erythroid differentiation was induced by TGF-β to a greater extent in CD109-KD cord blood or iPS cell-derived megakaryocyte-erythrocyte progenitor cells (MEPs) than in wild-type MEPs. When we analyzed the phenotype of peripheral blood MEPs of patients with paroxysmal nocturnal hemoglobinuria who had both GPI(+) and GPI(-) CD34+ cells, the CD36 expression was more evident in CD109- MEPs than CD109+ MEPs. In summary, CD109 suppresses TGF-β signaling in HSPCs, and the lack of CD109 may increase the sensitivity of PIGA-mutated HSPCs to TGF-β, thus leading to the preferential commitment of erythroid progenitor cells to mature red blood cells in immune-mediated BM failure.
Collapse
|
38
|
Yuki R. [Aberrant Activation Mechanism of TGF-β Signaling in Epithelial-mesenchymal Transition]. YAKUGAKU ZASSHI 2021; 141:1229-1234. [PMID: 34719542 DOI: 10.1248/yakushi.21-00143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an important program in epithelial cancer cells to acquire the motility and invasion, which promotes cancer metastasis to remote organs. EMT is induced by various secreted factors, such as transforming growth factor-β (TGF-β) and epidermal growth factor (EGF). TGF-β ligand activates Smad-dependent and -independent pathways by binding to TGF-β receptors. In Smad-dependent pathway, the activated TGF-β receptor phosphorylates Smad2/3 and accelerates its association with Smad4, leading to their nuclear translocation. Smad2/3-4 complex promotes the expression of EMT-inducing transcription factors, such as Snail and Slug. In Smad-independent pathway, mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/AKT pathways are activated and required for TGF-β-induced EMT. Smad-independent pathway is similar to downstream of receptor tyrosine kinases, and therefore EGFR signaling is known to induce EMT synergize with TGF-β signaling. We explored a new mechanism of EGFR-mediated activation of TGF-β signaling and found that c-Abl kinase activates TGF-β signaling. Based on our proteomic analysis, we identified several TGF-β signaling molecules as nuclear c-Abl substrates, including transcriptional intermediary factor 1-γ (TIF1γ/TRIM33/Ectodermin), a suppressor of TGF-β signaling. c-Abl-mediated phosphorylation of TIF1γ inhibits its binding to Smad3, thereby increasing Smad3's transcriptional activity and promoting EMT. TIF1γ phosphorylation is also involved in the EGFR-caused aberrant activation of TGF-β signaling, suggesting that EGFR/c-Abl pathway activates TGF-β signaling through phosphorylation of nuclear substrates and promotes EMT. Our findings provide new insights into the activation machinery of TGF-β signaling, and further studies are required to clarify the clinical significance of the EGFR/c-Abl pathway in cancer metastasis.
Collapse
Affiliation(s)
- Ryuzaburo Yuki
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University
| |
Collapse
|
39
|
Integration of IgG and IgA autoantibodies for early diagnosis of hepatocellular carcinoma. Clin Chim Acta 2021; 523:423-429. [PMID: 34728178 DOI: 10.1016/j.cca.2021.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/29/2021] [Accepted: 10/28/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Autoantibodes against tumor-associated antigens (TAAs) have been recommended for the early diagnosis of malignancies. In this study, we intend to comprehensively evaluate the performances of four autoantibodies including anti-p53, CTAG1A, TIF1γ-IgG and anti-TIF1γ-IgA for the early diagnosis of hepatocellular carcinoma (HCC), and then determine an optimal panel of autoantibodies for early HCC diagnosis. METHODS The performances of four autoantibodies were evaluated by enzyme-linked immunosorbent assay (ELISA) for the early diagnosis of HCC with 380 retrospective serum samples. A training set comprised of 92 patients with early HCC, 72 patients with hepatic benign lesions (HBL), and 86 healthy controls (HC) was used to develop the predictive model for early HCC. And then, data obtained from an independent validation set was applied to evaluate and validate the predictive model to distinguish the early HCC from the controls (HBL + HC). RESULTS The results of the training set showed the levels and positive rates of four autoantibodies in early HCC group were significantly higher than that in HBL group/HC group (P < 0.01), of which anti-p53-IgG exhibited the highest AUC of 0.679, with 33.7% sensitivity at 93.7% specificity; the panel comprised of four autoantibodies showed the highest AUC for the patients with early HCC, up to 0.814 (95%CI 0.760-0.860), with 72.8% sensitivity at 84.2% specificity among all possible combinations of four autoantibodies. Additionally, this four-autoantibody panel showed the AUC of 0.824, 70.8% sensitivity at 84.2% specificity in the validation set. CONCLUSIONS Serum IgG autoantibodies against p53, CTAG1A and TIF1γ, and IgA autoantibody against TIF1γ present the diagnostic value for early HCC, of which anti-p53-IgG is a preferable biomarker. The panel comprised of four autoantibodies might contribute to early HCC diagnosis.
Collapse
|
40
|
Circ_0092367 Inhibits EMT and Gemcitabine Resistance in Pancreatic Cancer via Regulating the miR-1206/ESRP1 Axis. Genes (Basel) 2021; 12:genes12111701. [PMID: 34828307 PMCID: PMC8622583 DOI: 10.3390/genes12111701] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Gemcitabine is the first-line treatment for patients with pancreatic cancer (PC), yet most patients develop resistance to gemcitabine. Recent studies showed that circular RNAs (circRNAs) have important regulatory roles in PC progression and chemoresistance. In this study, the ability of circRNA circ_0092367 to enhance gemcitabine efficacy was tested and the underlying molecular mechanism of circ_0092367 was investigated. The expression levels of circ_0092367, miR-1206, and ESRP1 were measured using qRT-PCR experiments. The effects of circ_0092367, miR-1206, and ESRP1 on PC cell lines exposed to gemcitabine were examined by CCK-8 assays. We performed luciferase assays to determine the relationship between circ_0092367 and miR-1206 and between miR-1206 and ESRP1. We demonstrated that circ_0092367 was significantly downregulated in PC tissues and cell lines, and a high expression of circ_0092367 was associated with improved survival in patients with PC. Gain- and loss-of-function assays revealed that circ_0092367 inhibited epithelial-mesenchymal transition (EMT) phenotypes and sensitized PC cells to gemcitabine treatment in vitro and in vivo. Cytoplasmic circ_0092367 could directly repress the levels of miR-1206 and thus upregulate the expression of ESRP1, thereby inhibiting EMT and enhancing the sensitivity of PC cells to gemcitabine treatment. Our findings show that circ_0092367 plays a crucial role in sensitizing PC cells to gemcitabine by modulating the miR-1206/ESRP1 axis, highlighting its potential as a valuable therapeutic target in PC patients.
Collapse
|
41
|
TRIM proteins in fibrosis. Biomed Pharmacother 2021; 144:112340. [PMID: 34678729 DOI: 10.1016/j.biopha.2021.112340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is an outcome of tissue repair after different types of injuries. The homeostasis of extracellular matrix is broken, and excessive deposition occurs, affecting the normal function of tissues and organs, which could become prostrated in serious cases.Finding a suitable target to regulate the repair process and reduce the damage caused by fibrosis is a hot research topic at present. The TRIM family is number of one of the E3 ubiquitin ligase subfamilies and participates in various biological processes including intracellular signal transduction, apoptosis, autophagy, and immunity by regulating the ubiquitination of target proteins. For the past few years, the important role of TRIM in the occurrence and development of fibrosis has been gradually revealed. In this review, we focus on the recent emerging topics on TRIM proteins in the regulation of fibrosis, fibrosis-related cytokines and pathways.
Collapse
|
42
|
Yu B, Luo F, Sun B, Liu W, Shi Q, Cheng S, Chen C, Chen G, Li Y, Feng H. KAT6A Acetylation of SMAD3 Regulates Myeloid-Derived Suppressor Cell Recruitment, Metastasis, and Immunotherapy in Triple-Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100014. [PMID: 34392614 PMCID: PMC8529494 DOI: 10.1002/advs.202100014] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Aberrant SMAD3 activation has been implicated as a driving event in cancer metastasis, yet the underlying mechanisms are still elusive. Here, SMAD3 is identified as a nonhistone substrate of lysine acetyltransferase 6A (KAT6A). The acetylation of SMAD3 at K20 and K117 by KAT6A promotes SMAD3 association with oncogenic chromatin modifier tripartite motif-containing 24 (TRIM24) and disrupts SMAD3 interaction with tumor suppressor TRIM33. This event in turn promotes KAT6A-acetylated H3K23-mediated recruitment of TRIM24-SMAD3 complex to chromatin and thereby increases SMAD3 activation and immune response-related cytokine expression, leading to enhanced breast cancer stem-like cell stemness, myeloid-derived suppressor cell (MDSC) recruitment, and triple-negative breast cancer (TNBC) metastasis. Inhibiting KAT6A in combination with anti-PD-L1 therapy in treating TNBC xenograft-bearing animals markedly attenuates metastasis and provides a significant survival benefit. Thus, the work presents a KAT6A acetylation-dependent regulatory mechanism governing SMAD3 oncogenic function and provides insight into how targeting an epigenetic factor with immunotherapies enhances the antimetastasis efficacy.
Collapse
Affiliation(s)
- Bo Yu
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Fei Luo
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Bowen Sun
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Wenxue Liu
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Qiqi Shi
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Shi‐Yuan Cheng
- Department of NeurologyLou and Jean Malnati Brain Tumor InstituteThe Robert H. Lurie Comprehensive Cancer CenterSimpson Querrey Institute for EpigeneticsNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunming650223China
| | - Guoqiang Chen
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yanxin Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of HealthDepartment of Hematology and OncologyShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
43
|
Cabo M, Santana-Hernández S, Costa-Garcia M, Rea A, Lozano-Rodríguez R, Ataya M, Balaguer F, Juan M, Ochoa MC, Menéndez S, Comerma L, Rovira A, Berraondo P, Albanell J, Melero I, López-Botet M, Muntasell A. CD137 Costimulation Counteracts TGFβ Inhibition of NK-cell Antitumor Function. Cancer Immunol Res 2021; 9:1476-1490. [PMID: 34580116 DOI: 10.1158/2326-6066.cir-21-0030] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/19/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Enhancing natural killer (NK) cell-based cancer immunotherapy by overcoming immunosuppression is an area of intensive research. Here, we have demonstrated that the anti-CD137 agonist urelumab can overcome TGFβ-mediated inhibition of human NK-cell proliferation and antitumor function. Transcriptomic, immunophenotypic, and functional analyses showed that CD137 costimulation modified the transcriptional program induced by TGFβ on human NK cells by rescuing their proliferation in response to IL2, preserving their expression of activating receptors (NKG2D) and effector molecules (granzyme B, IFNγ) while allowing the acquisition of tumor-homing/retention features (CXCR3, CD103). Activated NK cells cultured in the presence of TGFβ1 and CD137 agonist recovered CCL5 and IFNγ secretion and showed enhanced direct and antibody-dependent cytotoxicity upon restimulation with cancer cells. Trastuzumab treatment of fresh breast carcinoma-derived multicellular cultures induced CD137 expression on tumor-infiltrating CD16+ NK cells, enabling the action of urelumab, which fostered tumor-infiltrating NK cells and recapitulated the enhancement of CCL5 and IFNγ production. Bioinformatic analysis pointed to IFNG as the driver of the association between NK cells and clinical response to trastuzumab in patients with HER2-positive primary breast cancer, highlighting the translational relevance of the CD137 costimulatory axis for enhancing IFNγ production. Our data reveals CD137 as a targetable checkpoint for overturning TGFβ constraints on NK-cell antitumor responses.
Collapse
Affiliation(s)
- Mariona Cabo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sara Santana-Hernández
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Anna Rea
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Roberto Lozano-Rodríguez
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Francesc Balaguer
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Manel Juan
- Immunology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Maria C Ochoa
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Centro de Investigación Médica Aplicada (CIMA)-Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Navarra Institute of Health Research (IDISNA), Universidad de Navarra, Pamplona, Spain
| | - Silvia Menéndez
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Laura Comerma
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Ana Rovira
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Pedro Berraondo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Centro de Investigación Médica Aplicada (CIMA)-Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Navarra Institute of Health Research (IDISNA), Universidad de Navarra, Pamplona, Spain
| | - Joan Albanell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Ignacio Melero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Centro de Investigación Médica Aplicada (CIMA)-Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Navarra Institute of Health Research (IDISNA), Universidad de Navarra, Pamplona, Spain.,Clínica Universitaria de Navarra, Pamplona, Spain
| | - Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
44
|
Chung C. Targeting the Myeloid Lineages and the Immune Microenvironment in Myelodysplastic Syndromes: Novel and Evolving Therapeutic Strategies. Ann Pharmacother 2021; 56:475-487. [PMID: 34330162 DOI: 10.1177/10600280211036154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To discuss the recent and emerging data for novel targeted therapies in myelodysplastic syndromes (MDS). DATA SOURCES A literature search from January 2015 to June 2021 was performed using the key terms targeted therapies, myelodysplastic syndromes, DNA repair, erythroid differentiation therapy, epigenetic inhibitors, signal transduction inhibitors, and apoptosis-inducing agents. STUDY SELECTION AND DATA EXTRACTION Relevant clinical trials and articles in the English language were identified and reviewed. DATA SYNTHESIS MDS are a heterogeneous group of malignant blood disorders affecting the bone marrow (BM), ultimately leading to BM failure, acute leukemia, and death. Selection of treatment is influenced by the severity of symptoms, cytopenia, cytogenetics, prognostic category, medical fitness, and patient preferences. Although current therapies such as erythropoiesis stimulating agents (ESAs) and hypomethylating agents (HMAs) help improve anemia and reduce transfusion burden, limited treatment options exist when patients experience treatment failure to ESAs or HMA. Recent regulatory approval of luspatercept, which targets the erythroid differentiation pathway, represents a major therapeutic advance in the management of anemia in MDS patients who are refractory to ESAs. Many investigational targeted therapies that aim at the myeloid lineage signaling pathway and the immune microenvironment are in active development. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE This nonexhaustive review summarizes and describes the recent data for targeted therapies for MDS. CONCLUSION The development of novel and investigational therapeutic agents continues to contribute to an improved understanding of tumor biology. The precise therapeutic role and timing of these agents remain to be elucidated.
Collapse
|
45
|
Rossmann MP, Hoi K, Chan V, Abraham BJ, Yang S, Mullahoo J, Papanastasiou M, Wang Y, Elia I, Perlin JR, Hagedorn EJ, Hetzel S, Weigert R, Vyas S, Nag PP, Sullivan LB, Warren CR, Dorjsuren B, Greig EC, Adatto I, Cowan CA, Schreiber SL, Young RA, Meissner A, Haigis MC, Hekimi S, Carr SA, Zon LI. Cell-specific transcriptional control of mitochondrial metabolism by TIF1γ drives erythropoiesis. Science 2021; 372:716-721. [PMID: 33986176 PMCID: PMC8177078 DOI: 10.1126/science.aaz2740] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/29/2021] [Indexed: 12/11/2022]
Abstract
Transcription and metabolism both influence cell function, but dedicated transcriptional control of metabolic pathways that regulate cell fate has rarely been defined. We discovered, using a chemical suppressor screen, that inhibition of the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) rescues erythroid differentiation in bloodless zebrafish moonshine (mon) mutant embryos defective for transcriptional intermediary factor 1 gamma (tif1γ). This rescue depends on the functional link of DHODH to mitochondrial respiration. The transcription elongation factor TIF1γ directly controls coenzyme Q (CoQ) synthesis gene expression. Upon tif1γ loss, CoQ levels are reduced, and a high succinate/α-ketoglutarate ratio leads to increased histone methylation. A CoQ analog rescues mon's bloodless phenotype. These results demonstrate that mitochondrial metabolism is a key output of a lineage transcription factor that drives cell fate decisions in the early blood lineage.
Collapse
Affiliation(s)
- Marlies P Rossmann
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Karen Hoi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Victoria Chan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - James Mullahoo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Ying Wang
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Ilaria Elia
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Julie R Perlin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Elliott J Hagedorn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Raha Weigert
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sejal Vyas
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Partha P Nag
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Curtis R Warren
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Bilguujin Dorjsuren
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Eugenia Custo Greig
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac Adatto
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Chad A Cowan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Leonard I Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA.
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
46
|
Bewersdorf JP, Zeidan AM. Risk-Adapted, Individualized Treatment Strategies of Myelodysplastic Syndromes (MDS) and Chronic Myelomonocytic Leukemia (CMML). Cancers (Basel) 2021; 13:1610. [PMID: 33807279 PMCID: PMC8036734 DOI: 10.3390/cancers13071610] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Myelodysplastic syndrome (MDS) and chronic myelomonocytic leukemia (CMML) are two distinct blood cancers with a variable clinical symptom burden and risk of progression to acute myeloid leukemia. Management decisions should be guided by individual patient and disease characteristics and based on validated risk stratification tools. While supportive care with red blood cell transfusions, erythropoiesis-stimulating agents, and iron chelation remains the mainstay of therapy for lower-risk (LR)-MDS patients, luspatercept has recently been approved for transfusion-dependent anemic LR-MDS patients ending a decade without any new drug approvals for MDS. For higher-risk patients, allogeneic hematopoietic cell transplant (allo-HCT) remains the only curative therapy for both MDS and CMML but most patients are not eligible for allo-HCT. For those patients, the hypomethylating agents (HMA) azacitidine and decitabine remain standard of care with azacitidine being the only agent that has shown an overall survival benefit in randomized trials. Although early results from novel molecularly driven agents such as IDH1/2 inhibitors, venetoclax, magrolimab, and APR-246 for MDS as well as tagraxofusp, tipifarnib, and lenzilumab for CMML appear encouraging, confirmatory randomized trials must be completed to fully assess their safety and efficacy prior to routine clinical use. Herein, we review the current management of MDS and CMML and conclude with a critical appraisal of novel therapies and general trends in this field.
Collapse
Affiliation(s)
| | - Amer M. Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208028, New Haven, CT 06520-8028, USA;
| |
Collapse
|
47
|
Sinha A, Iyengar PV, ten Dijke P. E3 Ubiquitin Ligases: Key Regulators of TGFβ Signaling in Cancer Progression. Int J Mol Sci 2021; 22:E476. [PMID: 33418880 PMCID: PMC7825147 DOI: 10.3390/ijms22020476] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGFβ) is a secreted growth and differentiation factor that influences vital cellular processes like proliferation, adhesion, motility, and apoptosis. Regulation of the TGFβ signaling pathway is of key importance to maintain tissue homeostasis. Perturbation of this signaling pathway has been implicated in a plethora of diseases, including cancer. The effect of TGFβ is dependent on cellular context, and TGFβ can perform both anti- and pro-oncogenic roles. TGFβ acts by binding to specific cell surface TGFβ type I and type II transmembrane receptors that are endowed with serine/threonine kinase activity. Upon ligand-induced receptor phosphorylation, SMAD proteins and other intracellular effectors become activated and mediate biological responses. The levels, localization, and function of TGFβ signaling mediators, regulators, and effectors are highly dynamic and regulated by a myriad of post-translational modifications. One such crucial modification is ubiquitination. The ubiquitin modification is also a mechanism by which crosstalk with other signaling pathways is achieved. Crucial effector components of the ubiquitination cascade include the very diverse family of E3 ubiquitin ligases. This review summarizes the diverse roles of E3 ligases that act on TGFβ receptor and intracellular signaling components. E3 ligases regulate TGFβ signaling both positively and negatively by regulating degradation of receptors and various signaling intermediates. We also highlight the function of E3 ligases in connection with TGFβ's dual role during tumorigenesis. We conclude with a perspective on the emerging possibility of defining E3 ligases as drug targets and how they may be used to selectively target TGFβ-induced pro-oncogenic responses.
Collapse
Affiliation(s)
| | | | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.S.); (P.V.I.)
| |
Collapse
|
48
|
Transforming growth factor beta type 1 (TGF-β) and hypoxia-inducible factor 1 (HIF-1) transcription complex as master regulators of the immunosuppressive protein galectin-9 expression in human cancer and embryonic cells. Aging (Albany NY) 2020; 12:23478-23496. [PMID: 33295886 PMCID: PMC7762483 DOI: 10.18632/aging.202343] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022]
Abstract
Galectin-9 is one of the key proteins employed by a variety of human malignancies to suppress anti-cancer activities of cytotoxic lymphoid cells and thus escape immune surveillance. Human cancer cells in most cases express higher levels of galectin-9 compared to non-transformed cells. However, the biochemical mechanisms underlying this phenomenon remain unclear. Here we report for the first time that in human cancer as well as embryonic cells, the transcription factors hypoxia-inducible factor 1 (HIF-1) and activator protein 1 (AP-1) are involved in upregulation of transforming growth factor beta 1 (TGF-β1) expression, leading to activation of the transcription factor Smad3 through autocrine action. This process triggers upregulation of galectin-9 expression in both malignant (mainly in breast and colorectal cancer as well as acute myeloid leukaemia (AML)) and embryonic cells. The effect, however, was not observed in mature non-transformed human cells. TGF-β1-activated Smad3 therefore displays differential behaviour in human cancer and embryonic vs non-malignant cells. This study uncovered a self-supporting biochemical mechanism underlying high levels of galectin-9 expression operated by the human cancer and embryonic cells employed in our investigations. Our results suggest the possibility of using the TGF-β1 signalling pathway as a potential highly efficient target for cancer immunotherapy.
Collapse
|
49
|
Assouvie A, Rotival M, Hamroune J, Busso D, Romeo PH, Quintana-Murci L, Rousselet G. A genetic variant controls interferon-β gene expression in human myeloid cells by preventing C/EBP-β binding on a conserved enhancer. PLoS Genet 2020; 16:e1009090. [PMID: 33147208 PMCID: PMC7641354 DOI: 10.1371/journal.pgen.1009090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 08/31/2020] [Indexed: 12/01/2022] Open
Abstract
Interferon β (IFN-β) is a cytokine that induces a global antiviral proteome, and regulates the adaptive immune response to infections and tumors. Its effects strongly depend on its level and timing of expression. Therefore, the transcription of its coding gene IFNB1 is strictly controlled. We have previously shown that in mice, the TRIM33 protein restrains Ifnb1 transcription in activated myeloid cells through an upstream inhibitory sequence called ICE. Here, we show that the deregulation of Ifnb1 expression observed in murine Trim33-/- macrophages correlates with abnormal looping of both ICE and the Ifnb1 gene to a 100 kb downstream region overlapping the Ptplad2/Hacd4 gene. This region is a predicted myeloid super-enhancer in which we could characterize 3 myeloid-specific active enhancers, one of which (E5) increases the response of the Ifnb1 promoter to activation. In humans, the orthologous region contains several single nucleotide polymorphisms (SNPs) known to be associated with decreased expression of IFNB1 in activated monocytes, and loops to the IFNB1 gene. The strongest association is found for the rs12553564 SNP, located in the E5 orthologous region. The minor allele of rs12553564 disrupts a conserved C/EBP-β binding motif, prevents binding of C/EBP-β, and abolishes the activation-induced enhancer activity of E5. Altogether, these results establish a link between a genetic variant preventing binding of a transcription factor and a higher order phenotype, and suggest that the frequent minor allele (around 30% worldwide) might be associated with phenotypes regulated by IFN-β expression in myeloid cells. Genome-wide association studies identify multiple genetic variants associated with higher order phenotypes. Pinpointing the causative variant and understanding its molecular mode of action is a complex task. Using a murine model of interferon-β transcriptional deregulation, we characterize a super-enhancer controlling Ifnb1 expression in myeloid cells. The most active enhancer of this locus is conserved in humans, but presents a frequent variant found in around 30% of the population worldwide. This variant prevents binding of the C/EBP-β transcription factor, and is associated with decreased expression of IFNB1 in activated monocytes. When mimicked in the murine enhancer, it abolishes its inducible enhancer activity. Our results describe the molecular link between a point mutation and a cellular phenotype that could influence clinical situations.
Collapse
Affiliation(s)
- Anaïs Assouvie
- Laboratoire Réparation et Transcription dans les cellules Souches, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA/IRCM, Inserm U1274, Fontenay-aux-Roses, France
| | - Maxime Rotival
- Unit of Human Evolutionary Genetics, CNRS UMR2000, Institut Pasteur, Paris, France
| | - Juliette Hamroune
- Plate-forme Génomique, Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Didier Busso
- CIGEx, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA/IRCM, Inserm U1274, Fontenay-aux-Roses, France
| | - Paul-Henri Romeo
- Laboratoire Réparation et Transcription dans les cellules Souches, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA/IRCM, Inserm U1274, Fontenay-aux-Roses, France
| | - Lluis Quintana-Murci
- Unit of Human Evolutionary Genetics, CNRS UMR2000, Institut Pasteur, Paris, France
- Chair Human Genomics & Evolution, Collège de France, Paris, France
| | - Germain Rousselet
- Laboratoire Réparation et Transcription dans les cellules Souches, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA/IRCM, Inserm U1274, Fontenay-aux-Roses, France
- * E-mail:
| |
Collapse
|
50
|
Activin Receptor-Ligand Trap for the Treatment of β-thalassemia: A Serendipitous Discovery. Mediterr J Hematol Infect Dis 2020; 12:e2020075. [PMID: 33194149 PMCID: PMC7643807 DOI: 10.4084/mjhid.2020.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022] Open
Abstract
β-thalassemia is a hereditary disorder caused by defective production of β-globin chains of hemoglobin (Hb) that leads to an increased α/β globins ratio with subsequent free α-globins. Alpha globin excess causes oxidative stress, red blood cells membrane damage, premature death of late-stage erythroid precursors, resulting in ineffective erythropoiesis. The transforming growth factor β (TGF-β) superfamily signaling acts on biological processes, such as cell quiescence, apoptosis, proliferation, differentiation, and migration, and plays an essential role in regulating the hematopoiesis. This pathway can lose its physiologic regulation in pathologic conditions, leading to anemia and ineffective erythropoiesis. Activin receptor-ligand trap molecules such as Sotatercept and Luspatercept downregulate the TGF-β pathway, thus inhibiting the Smad2/3 cascade and alleviating anemia in patients with β-thalassemia and myelodysplastic syndromes. In this review, we describe in extenso the TGF-β pathway, as well as the molecular and biological basis of activin receptors ligand traps, focusing on their role in various β-thalassemia experimental models. The most recent results from clinical trials on sotatercept and luspatercept will also be reviewed.
Collapse
|