1
|
Wu YC, Beets I, Fox BW, Fajardo Palomino D, Chen L, Liao CP, Vandewyer E, Lin LY, He CW, Chen LT, Lin CT, Schroeder FC, Pan CL. Intercellular sphingolipid signaling mediates aversive learning in C. elegans. Curr Biol 2025; 35:2323-2336.e9. [PMID: 40252647 DOI: 10.1016/j.cub.2025.03.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/02/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025]
Abstract
Physiological stress in non-neural tissues drives aversive learning for sensory cues associated with stress. However, the identities of signals derived from non-neural tissues and the mechanisms by which these signals mediate aversive learning remain elusive. Here, we show that intercellular sphingolipid signaling contributes to aversive learning under mitochondrial stress in C. elegans. We found that stress-induced aversive learning requires sphingosine kinase, SPHK-1, the enzyme that produces sphingosine-1-phosphate (S1P). Genetic and biochemical studies revealed an intercellular signaling pathway in which intestinal or hypodermal SPHK-1 signals through the neuronal G protein-coupled receptor, SPHR-1, and modulates responses of the octopaminergic RIC neuron to promote aversive learning. We further show that SPHK-1-mediated sphingolipid signaling is required for learned aversion of Chryseobacterium indologenes, a bacterial pathogen found in the natural habitats of C. elegans, which causes mitochondrial stress. Taken together, our work reveals a sphingolipid signaling pathway that communicates from intestinal or hypodermal tissues to neurons to promote aversive learning in response to mitochondrial stress and pathogen infection.
Collapse
Affiliation(s)
- Yu-Chun Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Isabel Beets
- Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, Isabel Beets, Leuven, Belgium
| | - Bennett William Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Li Chen
- Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, Isabel Beets, Leuven, Belgium
| | - Chien-Po Liao
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Elke Vandewyer
- Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, Isabel Beets, Leuven, Belgium
| | - Liang-Yi Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chun-Wei He
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Li-Tzu Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chih-Ta Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Chun-Liang Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| |
Collapse
|
2
|
Wani KA, Pukkila-Worley R. Evolutionarily ancient functions of enzymatic TIR proteins in innate immunity. Trends Immunol 2025:S1471-4906(25)00116-4. [PMID: 40393889 DOI: 10.1016/j.it.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/22/2025]
Abstract
Proteins with a Toll/interleukin-1 receptor/resistance (TIR) domain are among the most ancient immune regulators and include well-known pattern recognition receptors (PRRs). A specialized subset of TIR domain proteins are enzymes that predominantly use nicotinamide adenine dinucleotide (NAD+) to generate second messenger metabolites. These enzymatic TIR proteins have essential roles in bacteria, plant, and animal immunity. The mechanism of activation of these TIR proteins, conserved across Kingdoms, involves oligomerization into higher-ordered structures, which activates their intrinsic enzymatic activity. Here, we review the functions of enzymatic TIR proteins in innate immunity in bacteria, plants, and animals. This work offers insights into the evolutionary origins of immunity itself and defines fundamental principles of immune surveillance across the Tree of Life.
Collapse
Affiliation(s)
- Khursheed A Wani
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| | - Read Pukkila-Worley
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
3
|
Kaletsky R, Moore RS, Sengupta T, Seto R, Ceballos-Llera B, Murphy CT. Molecular requirements for C. elegans transgenerational epigenetic inheritance of pathogen avoidance. eLife 2025; 14:RP105673. [PMID: 40372780 PMCID: PMC12080996 DOI: 10.7554/elife.105673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
Bacteria are Caenorhabditis elegans' food, and worms are naturally attracted to many bacteria, including pathogenic Pseudomonas, preferring PA14 over laboratory Escherichia coli (OP50). Despite this natural attraction to PA14, prior PA14 exposure causes the worms to instead avoid PA14. This behavioral switch can happen quickly - even within the duration of the choice assay. We show that accurate assessment of the animals' true first choice requires the use of a paralytic (azide) to trap the worms at their initial choice, preventing the switch from attraction to avoidance of PA14 within the assay period. We previously discovered that exposure of C. elegans to 25°C plate-grown PA14 at 20°C for 24 hr not only leads to PA14 avoidance, but also to four generations of naïve progeny avoiding PA14, while other PA14 paradigms only cause P0 and/or F1 avoidance. We also showed that the transgenerational (P0-F4) epigenetic avoidance is mediated by P11, a small RNA produced by PA14. P11 is both necessary and sufficient for TEI of learned avoidance. P11 is highly expressed in our standard growth conditions (25°C on surfaces), but not in other conditions, suggesting that the reported failure to observe F2-F4 avoidance is likely due to the absence of P11 expression in PA14 in the experimenters' growth conditions. Additionally, we tested ~35 genes for involvement in TEI of learned pathogen avoidance. The conservation of multiple components of this sRNA TEI mechanism across C. elegans strains and in multiple Pseudomonas species suggests that this TEI behavior is likely to be physiologically important in wild conditions.
Collapse
Affiliation(s)
- Rachel Kaletsky
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- LSI Genomics, Princeton UniversityPrincetonUnited States
| | - Rebecca S Moore
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- LSI Genomics, Princeton UniversityPrincetonUnited States
- Chronobiology and Sleep Institute, Department of NeurosciencePhiladelphiaUnited States
- Howard Hughes Medical Institute, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Titas Sengupta
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- LSI Genomics, Princeton UniversityPrincetonUnited States
| | - Renee Seto
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- LSI Genomics, Princeton UniversityPrincetonUnited States
| | - Borja Ceballos-Llera
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- LSI Genomics, Princeton UniversityPrincetonUnited States
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- LSI Genomics, Princeton UniversityPrincetonUnited States
| |
Collapse
|
4
|
Kim D, El Khoury S, Pérez-Carrascal OM, DeSousa C, Jung DK, Bohley S, Wijaya L, Trang K, Shapira M. Gut microbiome remodeling provides protection from an environmental toxin. iScience 2025; 28:112209. [PMID: 40230520 PMCID: PMC11995125 DOI: 10.1016/j.isci.2025.112209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/09/2025] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
Gut microbiomes contribute to animal health and fitness. The immense biochemical diversity of bacteria holds particular potential for neutralizing environmental toxins and thus helping hosts deal with new toxic challenges. To explore this potential, we used Caenorhabditis elegans harboring a defined microbiome, and the antibiotic neomycin as a model toxin, differentially affecting microbiome strains, and also toxic to worms. Worms exposed to neomycin showed delayed development and reduced survival but were protected when colonized with neomycin-resistant Stenotrophomonas. 16S rRNA sequencing, bacterial load quantification, genetic manipulation, and behavioral assays showed that protection was linked to enrichment of Stenotrophomonas carrying a neomycin-modifying enzyme. Enrichment was facilitated by altered bacterial competition in the gut, as well as by KGB-1/JNK-dependent behavioral changes. While microbiome remodeling conferred toxin resistance, it was associated with reduced infection resistance and metabolic changes. These findings suggest that microbiome adaptation can help animals cope with stressors but may have long-term consequences that add to effects of direct intoxication.
Collapse
Affiliation(s)
- Dan Kim
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah El Khoury
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Catherin DeSousa
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Da Kyung Jung
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Seneca Bohley
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lila Wijaya
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kenneth Trang
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael Shapira
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Tse-Kang S, Wani KA, Pukkila-Worley R. Patterns of pathogenesis in innate immunity: insights from C. elegans. Nat Rev Immunol 2025:10.1038/s41577-025-01167-0. [PMID: 40247006 DOI: 10.1038/s41577-025-01167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/19/2025]
Abstract
The cells in barrier tissues can distinguish pathogenic from commensal bacteria and target inflammatory responses only in the context of infection. As such, these cells must be able to identify pathogen infection specifically and not just the presence of an infectious organism, because many innocuous bacteria express the ligands that activate innate immunity in other contexts. Unravelling the mechanisms that underly this specificity, however, is challenging. Free-living nematodes, such as Caenorhabditis elegans, are faced with a similar dilemma, as they live in microorganism-rich habitats and eat bacteria as their source of nutrition. Nematodes lost canonical mechanisms of pattern recognition during their evolution and have instead evolved mechanisms to identify specific ligands or symptoms in the host that indicate active infection with an infectious microorganism. Here we review how C. elegans surveys for these patterns of pathogenesis to activate innate immune defences. Collectively, this work demonstrates that using C. elegans as an experimental platform to study host-pathogen interactions at barrier surfaces reveals primordial and fundamentally important principles of innate immune sensing in the animal branch of the tree of life.
Collapse
Affiliation(s)
- Samantha Tse-Kang
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Khursheed A Wani
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Read Pukkila-Worley
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Zhao X, Li X, Gao J, Shen S, Zou W. Behavioral adaptations of Caenorhabditis elegans against pathogenic threats. PeerJ 2025; 13:e19294. [PMID: 40247835 PMCID: PMC12005179 DOI: 10.7717/peerj.19294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
This review examines the behavioral adaptation mechanisms of Caenorhabditis elegans in response to pathogenic bacterial threats, emphasizing their ecological significance. It systematically explores how mechanisms such as avoidance behavior, transgenerational learning, and forgetting enable C. elegans to optimize its survival and reproductive strategies within dynamic microbial environments. C. elegans detects harmful signals through chemosensation and initiates avoidance behaviors. Simultaneously, it manages environmental adaptation and energy allocation through transgenerational memory and forgetting, allowing C. elegans to cope with selective pressures from environmental fluctuations. In contrast, pathogenic bacteria such as Pseudomonas aeruginosa and Salmonella influence C. elegans behavior through strategies such as toxin release and biofilm formation, highlighting the complex co-evolutionary dynamics between hosts and pathogens. Additionally, these pathogens employ "Trojan Horse-like" and "Worm Star" mechanisms to kill C. elegans, further complicating host-pathogen interactions. These processes are driven by behavioral adaptations, biochemical signaling, and evolutionary pressures, which emphasize the ecological niche of C. elegans within microbial ecosystems. C. elegans serves as a valuable model for studying host-pathogen interactions. This study provides crucial theoretical insights into adaptive evolution and ecosystem dynamics, offering valuable guidance for the development of biocontrol strategies and the effective management of microbial ecosystems.
Collapse
Affiliation(s)
- Xin Zhao
- Kunming Medical University, School of Public Health, Kunming, Yunnan, China
- Xi’an Public Health Center, Infection Control Office, Xi’an, Shaanxi, China
| | - Xinyu Li
- Kunming Medical University, School of Public Health, Kunming, Yunnan, China
| | - Jiayi Gao
- Xi’an Public Health Center, Infection Control Office, Xi’an, Shaanxi, China
| | - Shi Shen
- Xi’an Public Health Center, Infection Control Office, Xi’an, Shaanxi, China
| | - Wei Zou
- Kunming Medical University, School of Public Health, Kunming, Yunnan, China
| |
Collapse
|
7
|
Yang X, Wei R, Meng F, Liu D, Gong X, Ruvkun G, Wei W. Mitochondrial fission surveillance is coupled to Caenorhabditis elegans DNA and chromosome segregation integrity. PLoS Genet 2025; 21:e1011678. [PMID: 40279356 PMCID: PMC12064022 DOI: 10.1371/journal.pgen.1011678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 05/09/2025] [Accepted: 04/05/2025] [Indexed: 04/27/2025] Open
Abstract
Mitochondrial fission and fusion are tightly regulated to specify mitochondrial abundance, localization, and arrangement during cell division as well as in the diverse differentiated cell types and physiological states. However, the regulatory pathways for such mitochondrial dynamics are less explored than the mitochondrial fission and fusion components. Here we report a large-scale screen for genes that regulate mitochondrial fission. Mitochondrial fission defects cause a characteristic uneven fluorescent pattern in embryos carrying mitochondrial stress reporter genes. Using this uneven activation, we performed RNAi screens that identified 3 kinase genes from a ~ 500-kinase library and another 11 genes from 3,300 random genes that function in mitochondrial fission. Many of these identified genes play roles in chromosome segregation. We found that chromosome missegregation and genome instability lead to dysregulation of mitochondrial fission, possibly independent of DRP-1. ATL-1, the C. elegans ATR orthologue, plays a potentially protective role in alleviating the mitochondrial fission defect caused by chromosome missegregation. This establishes a screening paradigm for identifying mitochondrial fission regulators, which reveals the potential role of ATR in surveilling mitochondrial fission to mitigate dysregulation caused by improper chromosome segregation.
Collapse
Affiliation(s)
- Xiaomeng Yang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ruichen Wei
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Fanfan Meng
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Dianchen Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xuan Gong
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wei Wei
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
8
|
Kniazeva M, Ruvkun G. Translation elongation defects activate the Caenorhabditis elegans ZIP-2 bZIP transcription factor-mediated toxin defense. Proc Natl Acad Sci U S A 2025; 122:e2423578122. [PMID: 39899724 PMCID: PMC11831180 DOI: 10.1073/pnas.2423578122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/02/2025] [Indexed: 02/05/2025] Open
Abstract
The Caenorhabditis elegans bZIP transcription factor ZIP-2 is activated by toxins or mutations that inhibit translational elongation. The zip-2 DNA-binding protein is encoded in a downstream main open reading frame (mORF), but under normal translation elongation conditions only an upstream overlapping oORF -1 frameshifted from mORF is translated. Mutations or toxins that slow translational elongation, but not inhibitors of translational initiation or termination, activate ZIP-2. An mORF initiation codon mutation does not disrupt the normal zip-2 response to translational elongation defects, suggesting that zip-2 activation does not depend on this ATG. An mORF early termination mutant can be activated by strong translation elongation inhibition, suggesting that translation initiated upstream on oORF +1 frameshifts when elongation is inhibited to the mORF reading frame downstream of the stop codon to activate a fused oORF/mORF ZIP-2 transcription factor. The protein and DNA sequences of zip-2 oORF and mORF are conserved across the Caenorhabditis, suggesting selection for particular codons sensitive to translational elongation defects. Mutations that disrupt the oORF initiation codon constitutively activate zip-2, but not if the mORF initiation codon is also mutant, showing that zip-2 oORF competes with mORF for translational initiation. oORF initiation codon mutation-activated zip-2 slows C. elegans growth, and this slow growth is suppressed by a zip-2 null mutation. A zip-2 null mutant also strongly suppresses the growth arrest caused by translational elongation inhibitors. Thus, ZIP-2 is both a sensor of translational elongation attack, and a defense regulatory output via its activation of response genes.
Collapse
Affiliation(s)
- Marina Kniazeva
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02114
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02114
| |
Collapse
|
9
|
Oyerinde TO, Anadu VE, Olajide TS, Ijomone OK, Okeowo OM, Ijomone OM. Stress-induced neurodegeneration and behavioral alterations in Caenorhabditis elegans: Insights into the evolutionary conservation of stress-related pathways and implications for human health. PROGRESS IN BRAIN RESEARCH 2025; 291:405-425. [PMID: 40222789 DOI: 10.1016/bs.pbr.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Stress is a significant determinant for a range of neurological and psychiatric illnesses, and comprehending its influence on the brain is vital for developing effective interventions. Caenorhabditis elegans (C. elegans), a tiny nematode, has become a potent model system for investigating the impact of stress on neuronal integrity, behavior, and lifespan. This chapter presents a comprehensive summary of the existing understanding of stress-induced neurodegeneration, behavioral abnormalities, and changes in lifespan in C. elegans. We explored the stress response pathways in C. elegans, specifically focusing on the heat shock response and insulin-like signaling (ILS) pathway, targeting how these pathways affect neural integrity and functions. Additionally, this chapter highlighted behavioral modifications such as changes in locomotion, feeding, pharyngeal pumping, defecation, and copulation behaviors that occur in C. elegans following exposure to stressors, and how these findings contribute to our comprehension of stress-related illnesses. Furthermore, the evolutionary preservation of stress responses in both C. elegans and humans, underscoring the significance of C. elegans studies for translational research were highlighted. In conclusion, the possible implications of C. elegans research on human well-being, with a specific emphasis on the discovery of targets for treatment and the creation of innovative approaches to address stress-related conditions are discussed in this chapter.
Collapse
Affiliation(s)
- Toheeb O Oyerinde
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria; Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria.
| | - Victor E Anadu
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria; Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Tobiloba S Olajide
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria
| | - Olayemi K Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria; Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Oritoke M Okeowo
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, Federal University of Technology, Akure, Nigeria
| | - Omamuyovwi M Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria; Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria; Albeit Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
10
|
Lin S, Fu H, Wang H, Xu Y, Zhao Y, Du S, Wei J, Qiu P, Shi S, Li C, Efferth T, Hong C. Free and Easy Wanderer Ameliorates Intestinal Bloating-Dependent Avoidance Behavior of Caenorhabditis elegans Through Gut-Germline-Neural Signaling. CNS Neurosci Ther 2025; 31:e70291. [PMID: 40008431 PMCID: PMC11862825 DOI: 10.1111/cns.70291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/18/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
PURPOSE The aim of this study was to investigate the protective effect of Free and Easy Wanderer (FAEW) on the avoidance behavior induced by feeding Heat-Killed Escherichia coli, and to elucidate the underlying mechanisms. METHODS Initially, the effects of FAEW on avoidance behavior, survival, neuroendocrine signaling gene expression, and intestinal bloating were examined. The impact of FAEW on gut-germline-neural signaling was assessed by monitoring H4K8ac expression and the avoidance behavior of par-5 RNAi animals and glp-1(e2141) mutants. RNA-sequencing was conducted to analyze potential signaling pathways. Finally, avoidance behavior was examined using daf-16(mu86) mutants and the rescued animals. RESULTS FAEW delayed avoidance behavior. FAEW significantly downregulated gene expression in the neuroendocrine signaling pathway and alleviated intestinal bloating of C. elegans. The levels of H4K8ac and par-5 in the germline decreased significantly with FAEW's treatment, and FAEW failed to affect the avoidance behavior of par-5 RNAi animals and glp-1(e2141) mutants. FAEW's effect on avoidance behavior diminished in daf-16(mu86) mutants but was restored in daf-16 rescued animals. FAEW has been observed to restore daf-16 levels. CONCLUSION FAEW protects against avoidance behavior of C. elegans through downregulating H4K8ac protein expression and activating DAF-16. This study provides crucial experimental evidence supporting FAEW as a promising candidate for protecting against avoidance behavior associated with PTSD.
Collapse
Affiliation(s)
- Siyi Lin
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Huangjie Fu
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Hanxiao Wang
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yingying Xu
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yu Zhao
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Shiyu Du
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Jiale Wei
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Ping Qiu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Senlin Shi
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Changyu Li
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical SciencesJohannes Gutenberg UniversityMainzGermany
| | - Chunlan Hong
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
11
|
VanDerMolen KR, Newman MA, Breen PC, Gao Y, Huff LA, Dowen RH. Non-cell-autonomous regulation of mTORC2 by Hedgehog signaling maintains lipid homeostasis. Cell Rep 2025; 44:115191. [PMID: 39786994 PMCID: PMC11834565 DOI: 10.1016/j.celrep.2024.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/04/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Organisms allocate energetic resources between essential cellular processes to maintain homeostasis and, in turn, maximize fitness. The nutritional regulators of energy homeostasis have been studied in detail; however, how developmental signals might impinge on these pathways to govern metabolism is poorly understood. Here, we identify a non-canonical role for Hedgehog (Hh), a classic regulator of development, in maintaining intestinal lipid homeostasis in Caenorhabditis elegans. We demonstrate, using C. elegans and mouse hepatocytes, that Hh metabolic regulation does not occur through the canonical Hh transcription factor TRA-1/GLI, but rather via non-canonical signaling that engages mammalian target of rapamycin complex 2 (mTORC2). Hh mutants display impaired lipid homeostasis, decreased growth, and upregulation of autophagy factors, mimicking loss of mTORC2. Additionally, we find that Hh inhibits p38 MAPK signaling in parallel to mTORC2 activation to modulate lipid homeostasis. Our findings reveal a non-canonical role for Hh signaling in lipid metabolism via regulation of core homeostatic pathways.
Collapse
Affiliation(s)
- Kylie R VanDerMolen
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Martin A Newman
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter C Breen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yunjing Gao
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura A Huff
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert H Dowen
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Kalugotla G, Marmerstein V, Schriefer LA, Wang L, Morrison S, Perez LC, Schedl T, Pak SC, Baldridge MT. ATG-3 limits Orsay virus infection in C. elegans through regulation of collagen pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632696. [PMID: 39868230 PMCID: PMC11761658 DOI: 10.1101/2025.01.13.632696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Autophagy is an essential cellular process which functions to maintain homeostasis in response to stressors such as starvation or infection. Here, we report that a subset of autophagy factors including ATG-3 play an antiviral role in Orsay virus infection of Caenorhabditis elegans. Orsay virus infection does not modulate autophagic flux, and re-feeding after starvation limits Orsay virus infection and blocks autophagic flux, suggesting that the role of ATG-3 in Orsay virus susceptibility is independent of its role in maintaining autophagic flux. atg-3 mutants phenocopy rde-1 mutants, which have a defect in RNA interference (RNAi), in susceptibility to Orsay virus infection and transcriptional response to infection. However, atg-3 mutants do not exhibit defects in RNAi. Additionally, atg-3 limits viral infection at a post-entry step, similar to rde-1 mutants. Differential expression analysis using RNA sequencing revealed that antiviral sqt-2, which encodes a collagen trimer protein, is depleted in naïve and infected atg-3 mutants, as well as in infected WT animals, as are numerous other collagen genes. These data suggest that ATG-3 has a role in collagen organization pathways that function in antiviral defense in C. elegans.
Collapse
Affiliation(s)
- Gowri Kalugotla
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vivien Marmerstein
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence A. Schriefer
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leran Wang
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephanie Morrison
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Luis Casorla Perez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen C. Pak
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
13
|
Xu YL, Peng L, Li JJ, Chen WF. Molecular and functional characterization of Accl(2)efl: A biomarker for heavy metal stress in Apis cerana cerana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117676. [PMID: 39765119 DOI: 10.1016/j.ecoenv.2025.117676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025]
Abstract
The expanded lethal (2) essential for life [l(2)efl] gene family is responsive to proteostatic stresses. Their protein products are core components of the stress response mechanism and are emerging as promising biomarkers for cellular stress in Apis mellifera. However, l(2)efl (LOC410857) uniquely remains unresponsive to heat stress within this gene family, and research examining its role in adaptation to other types of stress across diverse bee species is scarce. To address this knowledge gap, we cloned the l(2)efl gene from Apis cerana cerana [Accl(2)efl] and conducted a bioinformatics analysis on the encoded protein, aiming to elucidate the potential functions of Accl(2)efl. Our study encompassed assessing the role of Accl(2)efl in the response of bees to various stressful environments and its involvement in tolerance to heavy metals (Cd and Hg). Furthermore, we employed the RNAi technology to delve into the response mechanisms of Accl(2)efl under Cd and Hg stress. Our findings revealed that Accl(2)efl was activated when exposed to CdCl2 or HgCl2. Following the knockdown of Accl(2)efl, we observed that genes, such as defensins, were upregulated through the activation of the Toll signaling pathway. Conversely, the peroxisome signaling pathway was inhibited, resulting in a notable decrease in antioxidant enzyme activity. This led to a substantial elevation in Cd and Hg concentrations within hemolymph, accompanied by an increased mortality rate among bees re-exposed to CdCl2 or HgCl2. Combined, our data indicated that Accl(2)efl may plays a role in the tolerance of Apis cerana cerana to Cd/Hg stress. These findings provide a scientific basis for the further exploration of the role of Accl(2)efl in the response of bees to Cd/Hg stress and for enhancing the anti-Cd/Hg stress signaling network. They further lay a theoretical foundation for identifying new stress biomarkers for bees as well as indicators for the detection of environmental pollution.
Collapse
Affiliation(s)
- Yu-Lin Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Ling Peng
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, Shandong Province, China
| | - Jun-Jie Li
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, Shandong Province, China
| | - Wen-Feng Chen
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, Shandong Province, China.
| |
Collapse
|
14
|
Liu H, Chen P, Yang X, Hao F, Tian G, Shan Z, Qi B. Probiotics-sensing mechanism in neurons that initiates gut mitochondrial surveillance for pathogen defense. Cell Rep 2024; 43:115021. [PMID: 39602305 DOI: 10.1016/j.celrep.2024.115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/24/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Animals constantly face microbial challenges, and microbe-mediated infection protection is crucial for host survival. Identifying specific bacteria and their interactions with host intracellular surveillance systems is important but challenging. Here, we develop a "probiotics" screening system that identifies Escherichia coli mutants, such as ΔymcB, which protect hosts from Pseudomonas aeruginosa PA14 infection by activating the mitochondrial unfolded protein response (UPRmt). Genetic screening reveals that MDSS-1, a neuronal transmembrane protein, is crucial for sensing ΔymcB and triggering intestinal UPRmt. MDSS-1 functions as a potential receptor in ASE neurons, detecting ΔymcB and transmitting signals through neuropeptides, GPCRs, Wnt signaling, and endopeptidase inhibitors to activate intestinal UPRmt and enhance protection. Constitutive activation of MDSS-1 in ASE neurons is sufficient to induce UPRmt and confer infection resistance. This study uncovers a neuron-intestine communication mechanism, where ASE neurons detect bacteria and modulate the intestinal mitochondrial surveillance system for host adaptation to pathogens.
Collapse
Affiliation(s)
- Huimin Liu
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Panpan Chen
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Xubo Yang
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - FanRui Hao
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Guojing Tian
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Zhao Shan
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China.
| | - Bin Qi
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
15
|
Zhou L, Zhuo H, Jin J, Pu A, Liu Q, Song J, Tong X, Tang H, Dai F. Temperature perception by ER UPR promotes preventive innate immunity and longevity. Cell Rep 2024; 43:115071. [PMID: 39675004 DOI: 10.1016/j.celrep.2024.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Microbial infectivity increases with rising environmental temperature, heightening the risk of infection to host organisms. The host's basal immunity is activated accordingly to mitigate upcoming pathogenic threats; still, how animals sense temperature elevation to adjust their preventive immune response remains elusive. This study reports that high temperature enhances innate immunity differently from pathogen infection. Unlike pathogen invasion requiring the mitochondrial unfolded protein response (UPR), high temperature engages the endoplasmic reticulum (ER) UPR to trigger the innate immune response. Furthermore, chronic activation of the XBP-1 UPR branch represses nucleolar ribosome biogenesis, a highly energy-consuming process, leading to lipid accumulation. The subsequent increase in oleic acid promotes the activation of the PMK-1 immune pathway. Additionally, ribosome biogenesis was identified as a regulator of longevity, wherein its impact is dependent on lipid metabolism and innate immunity. Collectively, our findings reveal the crucial role of ER-nucleolus crosstalk in shaping preventive immune responses and lifespan regulation.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Haoyu Zhuo
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jiaqi Jin
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Anrui Pu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Qin Liu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jiangbo Song
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
16
|
Yu CW, Yen PL, Kuo YH, Lin TA, Liao VHC. Early-life polystyrene nanoplastics exposure impairs pathogen avoidance behavior associated with intestine-derived insulin-like neuropeptide (ins-11) and serotonin signaling in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117347. [PMID: 39557011 DOI: 10.1016/j.ecoenv.2024.117347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Nanoplastics (NPs) contamination is an emerging global concern due to the widespread use of plastic products and their potentially negative health impact on ecosystems. Despite their ubiquity, the effects of early-life NPs exposure on host-pathogen interactions remain largely unknown. In this study, we show that early-life exposure to polystyrene NPs (PS-NPs, 100-nm) at predicted environmentally relevant concentrations (10 µg/L) significantly impairs food preference and reduces avoidance of the pathogenic bacterium Bacillus thuringiensis in Caenorhabditis elegans. Exposure to PS-NPs led to a decrease in avoidance from 40.3 % in controls to 30.6 % at 10 µg/L and further to 23.1 % and 17.4 % at 50 and 100 µg/L, respectively. Mechanistic insights reveal that PS-NPs downregulate intestine-derived insulin-like neuropeptide (ins-11) via the transcription factor HLH-30 and the p38 MAPK signaling pathways, both are essential for avoidance behavior. Notably, acute serotonin treatment restored the avoidance behavior, indicating a role of serotonin signaling in this process. Our study indicates that early-life exposure to PS-NPs (100-nm) adversely affects the avoidance behavior of C. elegans, making them more vulnerable to harmful pathogens, thereby affecting their health. These findings highlight significant ecological and health hazards by early-life PS-NPs exposure.
Collapse
Affiliation(s)
- Chan-Wei Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road., Taipei 106, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road., Taipei 106, Taiwan
| | - Yu-Hsuan Kuo
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road., Taipei 106, Taiwan
| | - Ting-An Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road., Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road., Taipei 106, Taiwan.
| |
Collapse
|
17
|
Sheng Y, Abreu A, Markovich Z, Ebea P, Davis L, Park E, Sheng P, Xie M, Han SM, Xiao R. A mitochondrial unfolded protein response-independent role of DVE-1 in longevity regulation. Cell Rep 2024; 43:114889. [PMID: 39423131 PMCID: PMC11648574 DOI: 10.1016/j.celrep.2024.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
The special AT-rich sequence-binding (SATB) protein DVE-1 is widely recognized for its pivotal involvement in orchestrating the retrograde mitochondrial unfolded protein response (mitoUPR) in C. elegans. In our study of downstream factors contributing to lifespan extension in sensory ciliary mutants, we find that DVE-1 is crucial for this longevity effect independent of its canonical mitoUPR function. Additionally, DVE-1 also influences lifespan under conditions of dietary restriction and germline loss, again distinct from its role in mitoUPR. Mechanistically, while mitochondrial stress typically prompts nuclear accumulation of DVE-1 to initiate the transcriptional mitoUPR program, these long-lived mutants reduce DVE-1 nuclear accumulation, likely by enhancing its cytosolic translocation. This observation suggests a cytosolic role for DVE-1 in lifespan extension. Overall, our study implies that, in contrast to the more narrowly defined role of the mitoUPR-related transcription factor ATFS-1, DVE-1 may possess broader functions than previously recognized in modulating longevity and defending against stress.
Collapse
Affiliation(s)
- Yi Sheng
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Adriana Abreu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zachary Markovich
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Pearl Ebea
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Leah Davis
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eric Park
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Peike Sheng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rui Xiao
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Institute on Aging, University of Florida, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
18
|
Ghosh A, Singh J. Translation initiation or elongation inhibition triggers contrasting effects on Caenorhabditis elegans survival during pathogen infection. mBio 2024; 15:e0248524. [PMID: 39347574 PMCID: PMC11559039 DOI: 10.1128/mbio.02485-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Diverse microbial pathogens are known to attenuate host protein synthesis. Consequently, the host mounts a defense response against protein translation inhibition, leading to increased transcript levels of immune genes. The seemingly paradoxical upregulation of immune gene transcripts in response to blocked protein synthesis suggests that the defense mechanism against translation inhibition may not universally benefit host survival. However, a comprehensive assessment of host survival on pathogens upon blockage of different stages of protein synthesis is currently lacking. Here, we investigate the impact of knockdown of various translation initiation and elongation factors on the survival of Caenorhabditis elegans exposed to Pseudomonas aeruginosa. Intriguingly, we observe opposing effects on C. elegans survival depending on whether translation initiation or elongation is inhibited. While translation initiation inhibition enhances survival, elongation inhibition decreases it. Transcriptomic studies reveal that translation initiation inhibition activates a bZIP transcription factor ZIP-2-dependent innate immune response that protects C. elegans from P. aeruginosa infection. In contrast, inhibiting translation elongation triggers both ZIP-2-dependent and ZIP-2-independent immune responses that, while effective in clearing the infection, are detrimental to the host. Thus, our findings reveal the opposing roles of translation initiation and elongation inhibition in C. elegans survival during P. aeruginosa infection, highlighting distinct transcriptional reprogramming that may underlie these differences. IMPORTANCE Several microbial pathogens target host protein synthesis machinery, potentially limiting the innate immune responses of the host. In response, hosts trigger a defensive response, elevating immune gene transcripts. This counterintuitive response can have either beneficial or harmful effects on host survival. In this study, we conduct a comprehensive analysis of the impact of knocking down various translation initiation and elongation factors on the survival of Caenorhabditis elegans exposed to Pseudomonas aeruginosa. Intriguingly, inhibiting initiation and elongation factors has contrasting effects on C. elegans survival. Inhibiting translation initiation activates immune responses that protect the host from bacterial infection, while inhibiting translation elongation induces aberrant immune responses that, although clear the infection, are detrimental to the host. Our study reveals divergent roles of translation initiation and elongation inhibition in C. elegans survival during P. aeruginosa infection and identifies differential transcriptional reprogramming that could underlie these differences.
Collapse
Affiliation(s)
- Annesha Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Jogender Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| |
Collapse
|
19
|
Ragle JM, Turzo A, Jackson A, Vo AA, Pham VT, Ward JD. The NHR-23-regulated putative protease inhibitor mlt-11 gene is necessary for C. elegans cuticle structure and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593762. [PMID: 38766248 PMCID: PMC11100798 DOI: 10.1101/2024.05.12.593762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
C. elegans molting offers a powerful entry point to understanding developmentally programmed apical extracellular matrix remodeling. However, the gene regulatory network controlling this process remains poorly understood. Focusing on targets of NHR-23, a key transcription factor that drives molting, we confirmed the Kunitz family protease inhibitor gene mlt-11 as an NHR-23 target. Through reporter assays, we identified NHR-23-binding sites that are necessary and sufficient for epithelial expression. We generated a translational fusion and demonstrated that MLT-11 is localized to the cuticle and lined openings to the exterior (vulva, rectum, mouth). We created a set of strains expressing varied levels of MLT-11 by deleting endogenous cis-regulatory element sequences. Combined deletion of two cis-regulatory elements caused developmental delay, motility defects, and failure of the cuticle barrier. Inactivation of mlt-11 by RNAi produced even more pronounced defects. mlt-11 is necessary to pattern every layer of the adult cuticle, suggesting a broad patterning role prior to the formation of the mature cuticle. Together these studies provide an entry point into understanding how individual cis-regulatory elements function to coordinate expression of oscillating genes involved in molting and how MLT-11 ensures proper cuticle assembly.
Collapse
Affiliation(s)
- James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ariela Turzo
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Anton Jackson
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - An A. Vo
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Vivian T. Pham
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jordan D. Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
20
|
Tse-Kang SY, Wani KA, Peterson ND, Page A, Humphries F, Pukkila-Worley R. Intestinal immunity in C. elegans is activated by pathogen effector-triggered aggregation of the guard protein TIR-1 on lysosome-related organelles. Immunity 2024; 57:2280-2295.e6. [PMID: 39299238 PMCID: PMC11464196 DOI: 10.1016/j.immuni.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/19/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024]
Abstract
Toll/interleukin-1/resistance (TIR)-domain proteins with enzymatic activity are essential for immunity in plants, animals, and bacteria. However, it is not known how these proteins function in pathogen sensing in animals. We discovered that the lone enzymatic TIR-domain protein in the nematode C. elegans (TIR-1, homolog of mammalian sterile alpha and TIR motif-containing 1 [SARM1]) was strategically expressed on the membranes of a specific intracellular compartment called lysosome-related organelles. The positioning of TIR-1 on lysosome-related organelles enables intestinal epithelial cells in the nematode C. elegans to survey for pathogen effector-triggered host damage. A virulence effector secreted by the bacterial pathogen Pseudomonas aeruginosa alkalinized and condensed lysosome-related organelles. This pathogen-induced morphological change in lysosome-related organelles triggered TIR-1 multimerization, which engaged its intrinsic NAD+ hydrolase (NADase) activity to activate the p38 innate immune pathway and protect the host against microbial intoxication. Thus, TIR-1 is a guard protein in an effector-triggered immune response, which enables intestinal epithelial cells to survey for pathogen-induced host damage.
Collapse
Affiliation(s)
- Samantha Y Tse-Kang
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Khursheed A Wani
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Nicholas D Peterson
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Amanda Page
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Read Pukkila-Worley
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
21
|
Liu P, Liu X, Qi B. UPR ER-immunity axis acts as physiological food evaluation system that promotes aversion behavior in sensing low-quality food. eLife 2024; 13:RP94181. [PMID: 39235964 PMCID: PMC11377039 DOI: 10.7554/elife.94181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
To survive in challenging environments, animals must develop a system to assess food quality and adjust their feeding behavior accordingly. However, the mechanisms that regulate this chronic physiological food evaluation system, which monitors specific nutrients from ingested food and influences food-response behavior, are still not fully understood. Here, we established a low-quality food evaluation assay system and found that heat-killed E. coli (HK-E. coli), a low-sugar food, triggers cellular UPRER and immune response. This encourages animals to avoid low-quality food. The physiological system for evaluating low-quality food depends on the UPRER (IRE-1/XBP-1) - Innate immunity (PMK-1/p38 MAPK) axis, particularly its neuronal function, which subsequently regulates feeding behaviors. Moreover, animals can adapt to a low-quality food environment through sugar supplementation, which inhibits the UPRER -PMK-1 regulated stress response by increasing vitamin C biosynthesis. This study reveals the role of the cellular stress response pathway as physiological food evaluation system for assessing nutritional deficiencies in food, thereby enhancing survival in natural environments.
Collapse
Affiliation(s)
- Pengfei Liu
- Southwest United Graduate School,Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xinyi Liu
- Southwest United Graduate School,Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Bin Qi
- Southwest United Graduate School,Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
22
|
Zhang Y, Iino Y, Schafer WR. Behavioral plasticity. Genetics 2024; 228:iyae105. [PMID: 39158469 DOI: 10.1093/genetics/iyae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024] Open
Abstract
Behavioral plasticity allows animals to modulate their behavior based on experience and environmental conditions. Caenorhabditis elegans exhibits experience-dependent changes in its behavioral responses to various modalities of sensory cues, including odorants, salts, temperature, and mechanical stimulations. Most of these forms of behavioral plasticity, such as adaptation, habituation, associative learning, and imprinting, are shared with other animals. The C. elegans nervous system is considerably tractable for experimental studies-its function can be characterized and manipulated with molecular genetic methods, its activity can be visualized and analyzed with imaging approaches, and the connectivity of its relatively small number of neurons are well described. Therefore, C. elegans provides an opportunity to study molecular, neuronal, and circuit mechanisms underlying behavioral plasticity that are either conserved in other animals or unique to this species. These findings reveal insights into how the nervous system interacts with the environmental cues to generate behavioral changes with adaptive values.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yuichi Iino
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0032, Japan
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
23
|
Emser J, Wernet N, Hetzer B, Wohlmann E, Fischer R. The cysteine-rich virulence factor NipA of Arthrobotrys flagrans interferes with cuticle integrity of Caenorhabditis elegans. Nat Commun 2024; 15:5795. [PMID: 38987250 PMCID: PMC11237121 DOI: 10.1038/s41467-024-50096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
Animals protect themself from microbial attacks by robust skins or a cuticle as in Caenorhabditis elegans. Nematode-trapping fungi, like Arthrobotrys flagrans, overcome the cuticle barrier and colonize the nematode body. While lytic enzymes are important for infection, small-secreted proteins (SSPs) without enzymatic activity, emerge as crucial virulence factors. Here, we characterized NipA (nematode induced protein) which A. flagrans secretes at the penetration site. In the absence of NipA, A. flagrans required more time to penetrate C. elegans. Heterologous expression of the fungal protein in the epidermis of C. elegans led to blister formation. NipA contains 13 cysteines, 12 of which are likely to form disulfide bridges, and the remaining cysteine was crucial for blister formation. We hypothesize that NipA interferes with cuticle integrity to facilitate fungal entry. Genome-wide expression analyses of C. elegans expressing NipA revealed mis-regulation of genes associated with extracellular matrix (ECM) maintenance and innate immunity.
Collapse
Affiliation(s)
- Jennifer Emser
- Institute for Applied Biosciences. Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Nicole Wernet
- Institute for Applied Biosciences. Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Birgit Hetzer
- Max Rubner-Institut (MRI) - Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, Karlsruhe, 76131, Germany
| | - Elke Wohlmann
- Institute for Applied Biosciences. Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Reinhard Fischer
- Institute for Applied Biosciences. Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany.
| |
Collapse
|
24
|
Hajdú G, Szathmári C, Sőti C. Modeling Host-Pathogen Interactions in C. elegans: Lessons Learned from Pseudomonas aeruginosa Infection. Int J Mol Sci 2024; 25:7034. [PMID: 39000143 PMCID: PMC11241598 DOI: 10.3390/ijms25137034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Infections, such as that by the multiresistant opportunistic bacterial pathogen Pseudomonas aeruginosa, may pose a serious health risk, especially on vulnerable patient populations. The nematode Caenorhabditis elegans provides a simple organismal model to investigate both pathogenic mechanisms and the emerging role of innate immunity in host protection. Here, we review the virulence and infection strategies of P. aeruginosa and host defenses of C. elegans. We summarize the recognition mechanisms of patterns of pathogenesis, including novel pathogen-associated molecular patterns and surveillance immunity of translation, mitochondria, and lysosome-related organelles. We also review the regulation of antimicrobial and behavioral defenses by the worm's neuroendocrine system. We focus on how discoveries in this rich field align with well-characterized evolutionary conserved protective pathways, as well as on potential crossovers to human pathogenesis and innate immune responses.
Collapse
Affiliation(s)
- Gábor Hajdú
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csenge Szathmári
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csaba Sőti
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
25
|
Ravanelli S, Park JYC, Wicky C, Ewald CY, von Meyenn F. Metabolic enzymes aldo-2 and pdhb-1 as potential epigenetic regulators during C. elegans embryogenesis. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001222. [PMID: 38947245 PMCID: PMC11211921 DOI: 10.17912/micropub.biology.001222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The intersection of metabolic processes and epigenetic regulation during embryogenesis is crucial yet not fully understood. Through a candidate RNAi screen in Caenorhabditis elegans , we identified metabolic enzymes ALDO-2 and PDHB-1 as potential epigenetic regulators. Mild alteration of the chromatin remodeler LET-418 /Mi2 activity rescues embryonic lethality induced by suppressing aldo-2 or pdhb-1 , suggesting a critical role for glucose and pyruvate metabolism in chromatin remodeling during embryogenesis. Given the conservation of central metabolic pathways and chromatin modifiers across species, our findings lay the foundation for future mechanistic investigations into the interplay between epigenetics and metabolism during development and upon disease.
Collapse
Affiliation(s)
- Sonia Ravanelli
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Ji Young Cecilia Park
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Switzerland
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Chantal Wicky
- Department of Biology, University of Fribourg, Switzerland
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| |
Collapse
|
26
|
Haley JA, Chalasani SH. C. elegans foraging as a model for understanding the neuronal basis of decision-making. Cell Mol Life Sci 2024; 81:252. [PMID: 38849591 PMCID: PMC11335288 DOI: 10.1007/s00018-024-05223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 06/09/2024]
Abstract
Animals have evolved to seek, select, and exploit food sources in their environment. Collectively termed foraging, these ubiquitous behaviors are necessary for animal survival. As a foundation for understanding foraging, behavioral ecologists established early theoretical and mathematical frameworks which have been subsequently refined and supported by field and laboratory studies of foraging animals. These simple models sought to explain how animals decide which strategies to employ when locating food, what food items to consume, and when to explore the environment for new food sources. These foraging decisions involve integration of prior experience with multimodal sensory information about the animal's current environment and internal state. We suggest that the nematode Caenorhabditis elegans is well-suited for a high-resolution analysis of complex goal-oriented behaviors such as foraging. We focus our discussion on behavioral studies highlighting C. elegans foraging on bacteria and summarize what is known about the underlying neuronal and molecular pathways. Broadly, we suggest that this simple model system can provide a mechanistic understanding of decision-making and present additional avenues for advancing our understanding of complex behavioral processes.
Collapse
Affiliation(s)
- Jessica A Haley
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
27
|
Kingsley SF, Seo Y, Wood A, Wani KA, Gonzalez X, Irazoqui J, Finkel SE, Tissenbaum HA. Glucose-fed microbiota alters C. elegans intestinal epithelium and increases susceptibility to multiple bacterial pathogens. Sci Rep 2024; 14:13177. [PMID: 38849503 PMCID: PMC11161463 DOI: 10.1038/s41598-024-63514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Overconsumption of dietary sugar can lead to many negative health effects including the development of Type 2 diabetes, metabolic syndrome, cardiovascular disease, and neurodegenerative disorders. Recently, the human intestinal microbiota, strongly associated with our overall health, has also been known to be affected by diet. However, mechanistic insight into the importance of the human intestinal microbiota and the effects of chronic sugar ingestion has not been possible largely due to the complexity of the human microbiome which contains hundreds of types of organisms. Here, we use an interspecies C. elegans/E. coli system, where E. coli are subjected to high sugar, then consumed by the bacterivore host C. elegans to become the microbiota. This glucose-fed microbiota results in a significant lifespan reduction accompanied by reduced healthspan (locomotion), reduced stress resistance, and changes in behavior and feeding. Lifespan reduction is also accompanied by two potential major contributors: increased intestinal bacterial density and increased concentration of reactive oxygen species. The glucose-fed microbiota accelerated the age-related development of intestinal cell permeability, intestinal distention, and dysregulation of immune effectors. Ultimately, the changes in the intestinal epithelium due to aging with the glucose-fed microbiota results in increased susceptibility to multiple bacterial pathogens. Taken together, our data reveal that chronic ingestion of sugar, such as a Western diet, has profound health effects on the host due to changes in the microbiota and may contribute to the current increased incidence of ailments including inflammatory bowel diseases as well as multiple age-related diseases.
Collapse
Affiliation(s)
- Samuel F Kingsley
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Yonghak Seo
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Alicia Wood
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Khursheed A Wani
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Xavier Gonzalez
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Javier Irazoqui
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Steven E Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-2910, USA
| | - Heidi A Tissenbaum
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA.
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
28
|
Gahlot S, Singh J. Caenorhabditis elegans neuronal RNAi does not render other tissues refractory to RNAi. Proc Natl Acad Sci U S A 2024; 121:e2401096121. [PMID: 38768358 PMCID: PMC11145236 DOI: 10.1073/pnas.2401096121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Affiliation(s)
- Shivani Gahlot
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab140306, India
| | - Jogender Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab140306, India
| |
Collapse
|
29
|
Pu X, Qi B. Lysosomal dysfunction by inactivation of V-ATPase drives innate immune response in C. elegans. Cell Rep 2024; 43:114138. [PMID: 38678555 DOI: 10.1016/j.celrep.2024.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/10/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
Pathogens target vacuolar ATPase (V-ATPase) to inhibit lysosomal acidification or lysosomal fusion, causing lysosomal dysfunction. However, it remains unknown whether cells can detect dysfunctional lysosomes and initiate an immune response. In this study, we discover that dysfunction of lysosomes caused by inactivation of V-ATPase enhances innate immunity against bacterial infections. We find that lysosomal V-ATPase interacts with DVE-1, whose nuclear localization serves as a proxy for the induction of mitochondrial unfolded protein response (UPRmt). The inactivation of V-ATPase promotes the nuclear localization of DVE-1, activating UPRmt and inducing downstream immune response genes. Furthermore, pathogen resistance conferred by inactivation of V-ATPase requires dve-1 and its downstream immune effectors. Interestingly, animals grow slower after vha RNAi, suggesting that the vha-RNAi-induced immune response costs the most energy through activation of DVE-1, which trades off with growth. This study reveals how dysfunctional lysosomes can trigger an immune response, emphasizing the importance of conserving energy during immune defense.
Collapse
Affiliation(s)
- Xuepiao Pu
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Bin Qi
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
30
|
He C, Lin X, Li P, Hou J, Yang M, Sun Z, Zhang S, Yang K, Lin D. Nematode Uptake Preference toward Different Nanoplastics through Avoidance Behavior Regulation. ACS NANO 2024; 18:11323-11334. [PMID: 38635335 DOI: 10.1021/acsnano.4c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Expounding bioaccumulation pathways of nanoplastics in organisms is a prerequisite for assessing their ecological risks in the context of global plastic pollution. Invertebrate uptake preference toward nanoplastics is a key initial step of nanoplastic food chain transport that controls their global biosafety, while the biological regulatory mechanism remains unclear. Here, we reveal a preferential uptake mechanism involving active avoidance of nanoplastics by Caenorhabditis elegans and demonstrate the relationship between the uptake preference and nanoplastic characteristics. Nanoplastics with 100 nm in size or positive surface charges induce stronger avoidance due to higher toxicity, causing lower accumulation in nematodes, compared to the 500 nm-sized or negatively charged nanoplastics, respectively. Further evidence showed that nematodes did not actively ingest any types of nanoplastics, while different nanoplastics induced defense responses in a toxicity-dependent manner and distinctly stimulated the avoidance behavior of nematodes (ranged from 15.8 to 68.7%). Transcriptomics and validations using mutants confirmed that the insulin/IGF signaling (IIS) pathway is essential for the selective avoidance of nanoplastics. Specifically, the activation of DAF-16 promoted the IIS pathway-mediated defense against nanoplastics and stimulated the avoidance behavior, increasing the survival chances of nematodes. Considering the genetical universality of this defense response among invertebrates, such an uptake preference toward certain nanoplastics could lead to cascaded risks in the ecosystem.
Collapse
Affiliation(s)
- Caijiao He
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xintong Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong China
| | - Pei Li
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Meirui Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ziyi Sun
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Shuang Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
31
|
Tsai SH, Wu YC, Palomino DF, Schroeder FC, Pan CL. Peripheral peroxisomal β-oxidation engages neuronal serotonin signaling to drive stress-induced aversive memory in C. elegans. Cell Rep 2024; 43:113996. [PMID: 38520690 PMCID: PMC11087011 DOI: 10.1016/j.celrep.2024.113996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/06/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Physiological dysfunction confers negative valence to coincidental sensory cues to induce the formation of aversive associative memory. How peripheral tissue stress engages neuromodulatory mechanisms to form aversive memory is poorly understood. Here, we show that in the nematode C. elegans, mitochondrial disruption induces aversive memory through peroxisomal β-oxidation genes in non-neural tissues, including pmp-4/very-long-chain fatty acid transporter, dhs-28/3-hydroxylacyl-CoA dehydrogenase, and daf-22/3-ketoacyl-CoA thiolase. Upregulation of peroxisomal β-oxidation genes under mitochondrial stress requires the nuclear hormone receptor NHR-49. Importantly, the memory-promoting function of peroxisomal β-oxidation is independent of its canonical role in pheromone production. Peripheral signals derived from the peroxisomes target NSM, a critical neuron for memory formation under stress, to upregulate serotonin synthesis and remodel evoked responses to sensory cues. Our genetic, transcriptomic, and metabolomic approaches establish peroxisomal lipid signaling as a crucial mechanism that connects peripheral mitochondrial stress to central serotonin neuromodulation in aversive memory formation.
Collapse
Affiliation(s)
- Shang-Heng Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Yu-Chun Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chun-Liang Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| |
Collapse
|
32
|
Marquina-Solis J, Feng L, Vandewyer E, Beets I, Hawk J, Colón-Ramos DA, Yu J, Fox BW, Schroeder FC, Bargmann CI. Antagonism between neuropeptides and monoamines in a distributed circuit for pathogen avoidance. Cell Rep 2024; 43:114042. [PMID: 38573858 PMCID: PMC11063628 DOI: 10.1016/j.celrep.2024.114042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024] Open
Abstract
Pathogenic infection elicits behaviors that promote recovery and survival of the host. After exposure to the pathogenic bacterium Pseudomonas aeruginosa PA14, the nematode Caenorhabditis elegans modifies its sensory preferences to avoid the pathogen. Here, we identify antagonistic neuromodulators that shape this acquired avoidance behavior. Using an unbiased cell-directed neuropeptide screen, we show that AVK neurons upregulate and release RF/RYamide FLP-1 neuropeptides during infection to drive pathogen avoidance. Manipulations that increase or decrease AVK activity accelerate or delay pathogen avoidance, respectively, implicating AVK in the dynamics of avoidance behavior. FLP-1 neuropeptides drive pathogen avoidance through the G protein-coupled receptor DMSR-7, as well as other receptors. DMSR-7 in turn acts in multiple neurons, including tyraminergic/octopaminergic neurons that receive convergent avoidance signals from the cytokine DAF-7/transforming growth factor β. Neuromodulators shape pathogen avoidance through multiple mechanisms and targets, in agreement with the distributed neuromodulatory connectome of C. elegans.
Collapse
Affiliation(s)
- Javier Marquina-Solis
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Likui Feng
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | | | - Isabel Beets
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Josh Hawk
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Daniel A Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA; Instituto de Neurobiología José del Castillo, Recinto de Ciencias Médicas, Universidad de Puerto Rico, San Juan, PR 00901, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| | - Jingfang Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Cornelia I Bargmann
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
33
|
Xiao Y, Hong CA, Liu F, Shi D, Zhu X, Yu C, Jiang N, Li S, Liu Y. Caffeic acid activates mitochondrial UPR to resist pathogen infection in Caenorhabditis elegans via the transcription factor ATFS-1. Infect Immun 2024; 92:e0049423. [PMID: 38294242 PMCID: PMC10929418 DOI: 10.1128/iai.00494-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Mitochondria play roles in the resistance of Caenorhabditis elegans against pathogenic bacteria by regulating mitochondrial unfolded protein response (UPRmt). Caffeic acid (CA) (3,4-dihydroxy cinnamic acid) is a major phenolic compound present in several plant species, which exhibits biological activities such as antioxidant, anti-fibrosis, anti-inflammatory, and anti-tumor properties. However, whether caffeic acid influences the innate immune response and the underlying molecular mechanisms remains unknown. In this study, we find that 20 µM caffeic acid enhances innate immunity to resist the Gram-negative pathogen Pseudomonas aeruginosa infection in C. elegans. Meanwhile, caffeic acid also inhibits the growth of pathogenic bacteria. Furthermore, caffeic acid promotes host immune response by reducing the bacterial burden in the intestine. Through genetic screening in C. elegans, we find that caffeic acid promotes innate immunity via the transcription factor ATFS-1. In addition, caffeic acid activates the UPRmt and immune response genes for innate immune response through ATFS-1. Our work suggests that caffeic acid has the potential to protect patients from pathogen infection.
Collapse
Affiliation(s)
- Yi Xiao
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Cao-an Hong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fang Liu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Dandan Shi
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinting Zhu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Changyan Yu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nian Jiang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Sanhua Li
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yun Liu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
34
|
Kim S, Ramalho TR, Haynes CM. Regulation of proteostasis and innate immunity via mitochondria-nuclear communication. J Cell Biol 2024; 223:e202310005. [PMID: 38335010 PMCID: PMC10857905 DOI: 10.1083/jcb.202310005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Mitochondria are perhaps best known as the "powerhouse of the cell" for their role in ATP production required for numerous cellular activities. Mitochondria have emerged as an important signaling organelle. Here, we first focus on signaling pathways mediated by mitochondria-nuclear communication that promote protein homeostasis (proteostasis). We examine the mitochondrial unfolded protein response (UPRmt) in C. elegans, which is regulated by a transcription factor harboring both a mitochondrial- and nuclear-targeting sequence, the integrated stress response in mammals, as well as the regulation of chromatin by mitochondrial metabolites. In the second section, we explore the role of mitochondria-to-nuclear communication in the regulation of innate immunity and inflammation. Perhaps related to their prokaryotic origin, mitochondria harbor molecules also found in viruses and bacteria. If these molecules accumulate in the cytosol, they elicit the same innate immune responses as viral or bacterial infection.
Collapse
Affiliation(s)
- Sookyung Kim
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Theresa R. Ramalho
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cole M. Haynes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
35
|
Grover M, Gang SS, Troemel ER, Barkoulas M. Proteasome inhibition triggers tissue-specific immune responses against different pathogens in C. elegans. PLoS Biol 2024; 22:e3002543. [PMID: 38466732 PMCID: PMC10957088 DOI: 10.1371/journal.pbio.3002543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/21/2024] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
Protein quality control pathways play important roles in resistance against pathogen infection. For example, the conserved transcription factor SKN-1/NRF up-regulates proteostasis capacity after blockade of the proteasome and also promotes resistance against bacterial infection in the nematode Caenorhabditis elegans. SKN-1/NRF has 3 isoforms, and the SKN-1A/NRF1 isoform, in particular, regulates proteasomal gene expression upon proteasome dysfunction as part of a conserved bounce-back response. We report here that, in contrast to the previously reported role of SKN-1 in promoting resistance against bacterial infection, loss-of-function mutants in skn-1a and its activating enzymes ddi-1 and png-1 show constitutive expression of immune response programs against natural eukaryotic pathogens of C. elegans. These programs are the oomycete recognition response (ORR), which promotes resistance against oomycetes that infect through the epidermis, and the intracellular pathogen response (IPR), which promotes resistance against intestine-infecting microsporidia. Consequently, skn-1a mutants show increased resistance to both oomycete and microsporidia infections. We also report that almost all ORR/IPR genes induced in common between these programs are regulated by the proteasome and interestingly, specific ORR/IPR genes can be induced in distinct tissues depending on the exact trigger. Furthermore, we show that increasing proteasome function significantly reduces oomycete-mediated induction of multiple ORR markers. Altogether, our findings demonstrate that proteasome regulation keeps innate immune responses in check in a tissue-specific manner against natural eukaryotic pathogens of the C. elegans epidermis and intestine.
Collapse
Affiliation(s)
- Manish Grover
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Spencer S. Gang
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | | |
Collapse
|
36
|
Sengupta T, St. Ange J, Kaletsky R, Moore RS, Seto RJ, Marogi J, Myhrvold C, Gitai Z, Murphy CT. A natural bacterial pathogen of C. elegans uses a small RNA to induce transgenerational inheritance of learned avoidance. PLoS Genet 2024; 20:e1011178. [PMID: 38547071 PMCID: PMC10977744 DOI: 10.1371/journal.pgen.1011178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/09/2024] [Indexed: 04/02/2024] Open
Abstract
C. elegans can learn to avoid pathogenic bacteria through several mechanisms, including bacterial small RNA-induced learned avoidance behavior, which can be inherited transgenerationally. Previously, we discovered that a small RNA from a clinical isolate of Pseudomonas aeruginosa, PA14, induces learned avoidance and transgenerational inheritance of that avoidance in C. elegans. Pseudomonas aeruginosa is an important human pathogen, and there are other Pseudomonads in C. elegans' natural habitat, but it is unclear whether C. elegans ever encounters PA14-like bacteria in the wild. Thus, it is not known if small RNAs from bacteria found in C. elegans' natural habitat can also regulate host behavior and produce heritable behavioral effects. Here we screened a set of wild habitat bacteria, and found that a pathogenic Pseudomonas vranovensis strain isolated from the C. elegans microbiota, GRb0427, regulates worm behavior: worms learn to avoid this pathogenic bacterium following exposure, and this learned avoidance is inherited for four generations. The learned response is entirely mediated by bacterially-produced small RNAs, which induce avoidance and transgenerational inheritance, providing further support that such mechanisms of learning and inheritance exist in the wild. We identified Pv1, a small RNA expressed in P. vranovensis, that has a 16-nucleotide match to an exon of the C. elegans gene maco-1. Pv1 is both necessary and sufficient to induce learned avoidance of Grb0427. However, Pv1 also results in avoidance of a beneficial microbiome strain, P. mendocina. Our findings suggest that bacterial small RNA-mediated regulation of host behavior and its transgenerational inheritance may be functional in C. elegans' natural environment, and that this potentially maladaptive response may favor reversal of the transgenerational memory after a few generations. Our data also suggest that different bacterial small RNA-mediated regulation systems evolved independently, but define shared molecular features of bacterial small RNAs that produce transgenerationally-inherited effects.
Collapse
Affiliation(s)
- Titas Sengupta
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Jonathan St. Ange
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Rachel Kaletsky
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Rebecca S. Moore
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Renee J. Seto
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Jacob Marogi
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Cameron Myhrvold
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Coleen T. Murphy
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
37
|
DuMez-Kornegay RN, Baker LS, Morris AJ, DeLoach WLM, Dowen RH. Kombucha Tea-associated microbes remodel host metabolic pathways to suppress lipid accumulation. PLoS Genet 2024; 20:e1011003. [PMID: 38547054 PMCID: PMC10977768 DOI: 10.1371/journal.pgen.1011003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/22/2024] [Indexed: 04/02/2024] Open
Abstract
The popularity of the ancient, probiotic-rich beverage Kombucha Tea (KT) has surged in part due to its purported health benefits, which include protection against metabolic diseases; however, these claims have not been rigorously tested and the mechanisms underlying host response to the probiotics in KT are unknown. Here, we establish a reproducible method to maintain C. elegans on a diet exclusively consisting of Kombucha Tea-associated microbes (KTM), which mirrors the microbial community found in the fermenting culture. KT microbes robustly colonize the gut of KTM-fed animals and confer normal development and fecundity. Intriguingly, animals consuming KTMs display a marked reduction in total lipid stores and lipid droplet size. We find that the reduced fat accumulation phenotype is not due to impaired nutrient absorption, but rather it is sustained by a programed metabolic response in the intestine of the host. KTM consumption triggers widespread transcriptional changes within core lipid metabolism pathways, including upregulation of a suite of lysosomal lipase genes that are induced during lipophagy. The elevated lysosomal lipase activity, coupled with a decrease in lipid droplet biogenesis, is partially required for the reduction in host lipid content. We propose that KTM consumption stimulates a fasting-like response in the C. elegans intestine by rewiring transcriptional programs to promote lipid utilization. Our results provide mechanistic insight into how the probiotics in Kombucha Tea reshape host metabolism and how this popular beverage may impact human metabolism.
Collapse
Affiliation(s)
- Rachel N. DuMez-Kornegay
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lillian S. Baker
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alexis J. Morris
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Whitney L. M. DeLoach
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert H. Dowen
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
38
|
Tse-Kang S, Wani KA, Peterson ND, Page A, Pukkila-Worley R. Activation of intestinal immunity by pathogen effector-triggered aggregation of lysosomal TIR-1/SARM1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.04.569946. [PMID: 38106043 PMCID: PMC10723332 DOI: 10.1101/2023.12.04.569946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
TIR-domain proteins with enzymatic activity are essential for immunity in plants, animals, and bacteria. However, it is not known how these proteins function in pathogen sensing in animals. We discovered that a TIR-domain protein (TIR-1/SARM1) is strategically expressed on the membranes of a lysosomal sub-compartment, which enables intestinal epithelial cells in the nematode C. elegans to survey for pathogen effector-triggered host damage. We showed that a redox active virulence effector secreted by the bacterial pathogen Pseudomonas aeruginosa alkalinized and condensed a specific subset of lysosomes by inducing intracellular oxidative stress. Concentration of TIR-1/SARM1 on the surface of these organelles triggered its multimerization, which engages its intrinsic NADase activity, to activate the p38 innate immune pathway and protect the host against microbial intoxication. Thus, lysosomal TIR-1/SARM1 is a sensor for oxidative stress induced by pathogenic bacteria to activate metazoan intestinal immunity.
Collapse
|
39
|
Tran TD, Luallen RJ. An organismal understanding of C. elegans innate immune responses, from pathogen recognition to multigenerational resistance. Semin Cell Dev Biol 2024; 154:77-84. [PMID: 36966075 PMCID: PMC10517082 DOI: 10.1016/j.semcdb.2023.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023]
Abstract
The nematode Caenorhabditis elegans has been a model for studying infection since the early 2000s and many major discoveries have been made regarding its innate immune responses. C. elegans has been found to utilize some key conserved aspects of immune responses and signaling, but new interesting features of innate immunity have also been discovered in the organism that might have broader implications in higher eukaryotes such as mammals. Some of the distinctive features of C. elegans innate immunity involve the mechanisms this bacterivore uses to detect infection and mount specific immune responses to different pathogens, despite lacking putative orthologs of many important innate immune components, including cellular immunity, the inflammasome, complement, or melanization. Even when orthologs of known immune factors exist, there appears to be an absence of canonical functions, most notably the lack of pattern recognition by its sole Toll-like receptor. Instead, recent research suggests that C. elegans senses infection by specific pathogens through contextual information, including unique products produced by the pathogen or infection-induced disruption of host physiology, similar to the proposed detection of patterns of pathogenesis in mammalian systems. Interestingly, C. elegans can also transfer information of past infection to their progeny, providing robust protection for their offspring in face of persisting pathogens, in part through the RNAi pathway as well as potential new mechanisms that remain to be elucidated. Altogether, some of these strategies employed by C. elegans share key conceptual features with vertebrate adaptive immunity, as the animal can differentiate specific microbial features, as well as propagate a form of immune memory to their offspring.
Collapse
Affiliation(s)
- Tuan D Tran
- Department of Biology San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - Robert J Luallen
- Department of Biology San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| |
Collapse
|
40
|
Dodge JD, Browder NJ, Pellegrino MW. Mitochondrial recovery by the UPR mt: Insights from C. elegans. Semin Cell Dev Biol 2024; 154:59-68. [PMID: 36792440 PMCID: PMC11684877 DOI: 10.1016/j.semcdb.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Mitochondria are multifaceted organelles, with such functions as the production of cellular energy to the regulation of cell death. However, mitochondria incur various sources of damage from the accumulation of reactive oxygen species and DNA mutations that can impact the protein folding environment and impair their function. Since mitochondrial dysfunction is often associated with reductions in organismal fitness and possibly disease, cells must have safeguards in place to protect mitochondrial function and promote recovery during times of stress. The mitochondrial unfolded protein response (UPRmt) is a transcriptional adaptation that promotes mitochondrial repair to aid in cell survival during stress. While the earlier discoveries into the regulation of the UPRmt stemmed from studies using mammalian cell culture, much of our understanding about this stress response has been bestowed to us by the model organism Caenorhabditis elegans. Indeed, the facile but powerful genetics of this relatively simple nematode has uncovered multiple regulators of the UPRmt, as well as several physiological roles of this stress response. In this review, we will summarize these major advancements originating from studies using C. elegans.
Collapse
Affiliation(s)
- Joshua D Dodge
- The University of Texas at Arlington, Department of Biology, Arlington, TX 76019, USA
| | - Nicholas J Browder
- The University of Texas at Arlington, Department of Biology, Arlington, TX 76019, USA
| | - Mark W Pellegrino
- The University of Texas at Arlington, Department of Biology, Arlington, TX 76019, USA.
| |
Collapse
|
41
|
Parrella P, Elikan AB, Kogan HV, Wague F, Marshalleck CA, Snow JW. Bleomycin reduces Vairimorpha (Nosema) ceranae infection in honey bees with some evident host toxicity. Microbiol Spectr 2024; 12:e0334923. [PMID: 38179918 PMCID: PMC10846157 DOI: 10.1128/spectrum.03349-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Microsporidia cause disease in many beneficial insects, including honey bees, yet few pathogen control tools are available for protecting these important organisms against infection. Some evidence suggests that microsporidia possess a reduced number of genes encoding DNA repair proteins. We hypothesized that microsporidia would thus be susceptible to treatment with DNA-damaging agents and tested this hypothesis using a novel, rapid method for achieving robust and homogenous experimental infection of large numbers of newly emerged honey bees with one of its microsporidia pathogens, Vairimorpha (Nosema) ceranae. In carrying out these experiments, we found this novel V. ceranae inoculation method to have similar efficacy as other traditional methods. We show that the DNA-damaging agent bleomycin reduces V. ceranae levels, with minimal but measurable effects on honey bee survival and increased expression of midgut cellular stress genes, including those encoding SHSP. Increased expression of UpdlC suggests the occurrence of epithelial regeneration, which may contribute to host resistance to bleomycin treatment. While bleomycin does reduce infection levels, host toxicity issues may preclude its use in the field. However, with further work, bleomycin may provide a useful tool in the research setting as a potential selection agent for genetic modification of microsporidia.IMPORTANCEMicrosporidia cause disease in many beneficial insects, yet there are few tools available for control in the field or laboratory. Based on the reported paucity of DNA repair enzymes found in microsporidia genomes, we hypothesized that these obligate intracellular parasites would be sensitive to DNA damage. In support of this, we observed that the well-characterized DNA damage agent bleomycin can reduce levels of the microsporidia Vairimorpha (Nosema) ceranae in experimental infections in honey bees. Observation of slightly reduced honey bee survival and evidence of sublethal toxicity likely preclude the use of bleomycin in the field. However, this work identifies bleomycin as a compound that merits further exploration for use in research laboratories as a potential selection agent for generating genetically modified microsporidia.
Collapse
Affiliation(s)
- Parker Parrella
- Department of Biology, Barnard College, New York, New York, USA
| | | | - Helen V. Kogan
- Department of Biology, Barnard College, New York, New York, USA
| | - Fatoumata Wague
- Department of Biology, Barnard College, New York, New York, USA
| | | | | |
Collapse
|
42
|
Abstract
Foraging animals optimize feeding decisions by adjusting both common and rare behavioral patterns. Here, we characterize the relationship between an animal's arousal state and a rare decision to leave a patch of bacterial food. Using long-term tracking and behavioral state classification, we find that food leaving decisions in Caenorhabditis elegans are coupled to arousal states across multiple timescales. Leaving emerges probabilistically over minutes from the high arousal roaming state, but is suppressed during the low arousal dwelling state. Immediately before leaving, animals have a brief acceleration in speed that appears as a characteristic signature of this behavioral motif. Neuromodulatory mutants and optogenetic manipulations that increase roaming have a coupled increase in leaving rates, and similarly acute manipulations that inhibit feeding induce both roaming and leaving. By contrast, inactivating a set of chemosensory neurons that depend on the cGMP-gated transduction channel TAX-4 uncouples roaming and leaving dynamics. In addition, tax-4-expressing sensory neurons promote lawn-leaving behaviors that are elicited by feeding inhibition. Our results indicate that sensory neurons responsive to both internal and external cues play an integrative role in arousal and foraging decisions.
Collapse
Affiliation(s)
- Elias Scheer
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Cornelia I Bargmann
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
43
|
Zhao Y, Zhong C, Li Y, Zhou W, Huang X. Novel Genes and Key Signaling Molecules Involved in the Repulsive Response of Meloidogyne incognita against Biocontrol Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19445-19456. [PMID: 38033160 DOI: 10.1021/acs.jafc.3c06074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The ability of the model organism, Caenorhabditis elegans, to distinguish and escape from pathogenic bacteria has been extensively studied; however, studies on the repulsive response of Meloidogyne incognita are still in their infancy. We have recently demonstrated that biocontrol bacteria induce a repulsive response in M. incognita via two classical signaling pathways. The present study aimed to identify the novel genes and signaling molecules of M. incognita that potentially contribute to its defense reaction. Analysis of the transcriptome data of M. incognita with and without a repulsive response against Bacillus nematocida B16 obtained 15 candidate genes, of which the novel genes Minc3s01748g26034 and Minc3s02548g30585 were found to regulate the aversive behavior of M. incognita, and their functions were further validated. To further confirm the neuronal localization of the two novel genes in M. incognita, in situ hybridization was conducted using the digoxin-labeled probes of ten tag genes, and preferentially profiled the localization of amphid sensory neurons of M. incognita. Analysis of the overviewed neuronal map suggested that Minc3s01748g26034 and Minc3s02548g30585 functioned in ASK/ASI and CEPD/V neurons, respectively. During their interactions, the volatile compounds 3-methyl-butyric acid and 2-methyl-butyric acid produced by the biocontrol bacteria were predicted as the primary signaling molecules that promoted the repulsive behavior of M. incognita against biocontrol bacteria. The findings provided novel insights into the mechanisms underlying the repulsive response of M. incognita that are different from the canonical molecular pathways previously found in C. elegans and can aid in developing novel strategies for controlling root-knot nematodes.
Collapse
Affiliation(s)
- Yanli Zhao
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Chidi Zhong
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Yixin Li
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Wenhui Zhou
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Xiaowei Huang
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| |
Collapse
|
44
|
Taouktsi E, Kyriakou E, Voulgaraki E, Verganelakis D, Krokou S, Rigas S, Voutsinas GE, Syntichaki P. Mitochondrial p38 Mitogen-Activated Protein Kinase: Insights into Its Regulation of and Role in LONP1-Deficient Nematodes. Int J Mol Sci 2023; 24:17209. [PMID: 38139038 PMCID: PMC10743222 DOI: 10.3390/ijms242417209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
p38 Mitogen-Activated Protein Kinase (MAPK) cascades are central regulators of numerous physiological cellular processes, including stress response signaling. In C. elegans, mitochondrial dysfunction activates a PMK-3/p38 MAPK signaling pathway (MAPKmt), but its functional role still remains elusive. Here, we demonstrate the induction of MAPKmt in worms deficient in the lonp-1 gene, which encodes the worm ortholog of mammalian mitochondrial LonP1. This induction is subjected to negative regulation by the ATFS-1 transcription factor through the CREB-binding protein (CBP) ortholog CBP-3, indicating an interplay between both activated MAPKmt and mitochondrial Unfolded Protein Response (UPRmt) surveillance pathways. Our results also reveal a genetic interaction in lonp-1 mutants between PMK-3 kinase and the ZIP-2 transcription factor. ZIP-2 has an established role in innate immunity but can also modulate the lifespan by maintaining mitochondrial homeostasis during ageing. We show that in lonp-1 animals, ZIP-2 is activated in a PMK-3-dependent manner but does not confer increased survival to pathogenic bacteria. However, deletion of zip-2 or pmk-3 shortens the lifespan of lonp-1 mutants, suggesting a possible crosstalk under conditions of mitochondrial perturbation that influences the ageing process. Furthermore, loss of pmk-3 specifically diminished the extreme heat tolerance of lonp-1 worms, highlighting the crucial role of PMK-3 in the heat shock response upon mitochondrial LONP-1 inactivation.
Collapse
Affiliation(s)
- Eirini Taouktsi
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece;
| | - Eleni Kyriakou
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
| | - Evangelia Voulgaraki
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
| | - Dimitris Verganelakis
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
- Department of Biological Applications & Technology, University of Ioannina, 45500 Ioannina, Greece
| | - Stefania Krokou
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
| | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece;
| | - Gerassimos E. Voutsinas
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, 15341 Athens, Greece;
| | - Popi Syntichaki
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
| |
Collapse
|
45
|
Martin SJ. Unleashing dendritic cell-mediated tumor clearance by targeting Bcl-2. Trends Immunol 2023; 44:871-873. [PMID: 37813733 DOI: 10.1016/j.it.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
Bcl-2 family proteins serve as key regulators of apoptosis and are frequently overexpressed in cancer. Consequently, small-molecule Bcl-2-antagonists (BH3 mimetics) have emerged as a new class of targeted therapeutics. A recent study by Zhao et al. has unexpectedly found that BH3 mimetics can also activate dendritic cells (DCs) to prime for T cell-mediated tumor clearance.
Collapse
Affiliation(s)
- Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
46
|
Seeger AY, Zaidi F, Alhayek S, Jones RM, Zohair H, Holland RL, Kim IJ, Blanke SR. Host cell sensing and restoration of mitochondrial function and metabolism within Helicobacter pylori VacA intoxicated cells. mBio 2023; 14:e0211723. [PMID: 37815365 PMCID: PMC10653863 DOI: 10.1128/mbio.02117-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE Persistent human gastric infection with Helicobacter pylori is the single most important risk factor for development of gastric malignancy, which is one of the leading causes of cancer-related deaths worldwide. An important virulence factor for Hp colonization and severity of gastric disease is the protein exotoxin VacA, which is secreted by the bacterium and modulates functional properties of gastric cells. VacA acts by damaging mitochondria, which impairs host cell metabolism through impairment of energy production. Here, we demonstrate that intoxicated cells have the capacity to detect VacA-mediated damage, and orchestrate the repair of mitochondrial function, thereby restoring cellular health and vitality. This study provides new insights into cellular recognition and responses to intracellular-acting toxin modulation of host cell function, which could be relevant for the growing list of pathogenic microbes and viruses identified that target mitochondria as part of their virulence strategies.
Collapse
Affiliation(s)
- Ami Y. Seeger
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| | - Faisal Zaidi
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| | - Sammy Alhayek
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| | - Rachel M. Jones
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| | - Huzaifa Zohair
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| | - Robin L. Holland
- Department of Pathobiology, University of Illinois, Urbana, Illinois, USA
| | - Ik-Jung Kim
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
- Buck Institute for Research on Aging, Novato, California, USA
| | - Steven R. Blanke
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
- Department of Pathobiology, University of Illinois, Urbana, Illinois, USA
- Department of Biomedical and Translational Medicine, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
47
|
Mirza Z, Walhout AJM, Ambros V. A bacterial pathogen induces developmental slowing by high reactive oxygen species and mitochondrial dysfunction in Caenorhabditis elegans. Cell Rep 2023; 42:113189. [PMID: 37801396 PMCID: PMC10929622 DOI: 10.1016/j.celrep.2023.113189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/19/2023] [Accepted: 09/14/2023] [Indexed: 10/08/2023] Open
Abstract
Host-pathogen interactions are complex by nature, and the host developmental stage increases this complexity. By utilizing Caenorhabditis elegans larvae as the host and the bacterium Pseudomonas aeruginosa as the pathogen, we investigated how a developing organism copes with pathogenic stress. By screening 36 P. aeruginosa isolates, we found that the CF18 strain causes a severe but reversible developmental delay via induction of reactive oxygen species (ROS) and mitochondrial dysfunction. While the larvae upregulate mitophagy, antimicrobial, and detoxification genes, mitochondrial unfolded protein response (UPRmt) genes are repressed. Either antioxidant or iron supplementation rescues the phenotypes. We examined the virulence factors of CF18 via transposon mutagenesis and RNA sequencing (RNA-seq). We found that non-phenazine toxins that are regulated by quorum sensing (QS) and the GacA/S system are responsible for developmental slowing. This study highlights the importance of ROS levels and mitochondrial health as determinants of developmental rate and how pathogens can attack these important features.
Collapse
Affiliation(s)
- Zeynep Mirza
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Albertha J M Walhout
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Victor Ambros
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
48
|
Liu F, Zhang H, Wang H, Zhu X, Li S, Jiang N, Yu C, Liu Y, Xiao Y. The homeodomain transcription factor CEH-37 regulates PMK-1/p38 MAPK pathway to protect against intestinal infection via the phosphatase VHP-1. Cell Mol Life Sci 2023; 80:312. [PMID: 37796333 PMCID: PMC11072455 DOI: 10.1007/s00018-023-04970-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Increasing evidence indicate that the expression of defense genes at the right place and the right time are regulated by host-defense transcription factors. However, the precise mechanisms of this regulation are not well understood. Homeodomain transcription factors, encoded by homeobox genes, play crucial role for the development of multicellular eukaryotes. In this study, we demonstrated that homeodomain transcription factor CEH-37 (known as OTX2 in mammals) was a key transcription factor for host defense in Caenorhabditis elegans. Meanwhile, CEH-37 acted in the intestine to protect C. elegans against pathogen infection. We further showed that the homeodomain transcription factor CEH-37 positively regulated PMK-1/ p38 MAPK activity to promote the intestinal immunity via suppression phosphatase VHP-1. Furthermore, we demonstrated that this function was conserved, because the human homeodomain transcription factor OTX2 also exhibited protective function in lung epithelial cells during Pseudomonas aeruginosa infection. Thus, our work reveal that CEH-37/OTX2 is a evolutionarily conserved transcription factor for defense against pathogen infection. The finding provides a model in which CEH-37 decreases VHP-1 phosphatase activity, allowing increased stimulation of PMK-1/p38 MAPK phosphorylation cascade in the intestine for pathogen resistance.
Collapse
Affiliation(s)
- Fang Liu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Hongjiao Zhang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi , 563000, Guizhou, China
| | - Haijuan Wang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi , 563000, Guizhou, China
| | - Xinting Zhu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Sanhua Li
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi , 563000, Guizhou, China
| | - Nian Jiang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi , 563000, Guizhou, China
| | - Changyan Yu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi , 563000, Guizhou, China
| | - Yun Liu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Institute of Life Sciences, Zunyi Medical University, Zunyi , 563000, Guizhou, China.
| | - Yi Xiao
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Institute of Life Sciences, Zunyi Medical University, Zunyi , 563000, Guizhou, China.
| |
Collapse
|
49
|
Drury F, Grover M, Hintze M, Saunders J, Fasseas MK, Constantinou C, Barkoulas M. A PAX6-regulated receptor tyrosine kinase pairs with a pseudokinase to activate immune defense upon oomycete recognition in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2023; 120:e2300587120. [PMID: 37725647 PMCID: PMC10523662 DOI: 10.1073/pnas.2300587120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Abstract
Oomycetes were recently discovered as natural pathogens of Caenorhabditis elegans, and pathogen recognition alone was shown to be sufficient to activate a protective transcriptional program characterized by the expression of multiple chitinase-like (chil) genes. However, the molecular mechanisms underlying oomycete recognition in animals remain fully unknown. We performed here a forward genetic screen to uncover regulators of chil gene induction and found several independent loss-of-function alleles of old-1 and flor-1, which encode receptor tyrosine kinases belonging to the C. elegans-specific KIN-16 family. We report that OLD-1 and FLOR-1 are both necessary for mounting the immune response and act in the epidermis. FLOR-1 is a pseudokinase that acts downstream of the active kinase OLD-1 and regulates OLD-1 levels at the plasma membrane. Interestingly, the old-1 locus is adjacent to the chil genes in the C. elegans genome, thereby revealing a genetic cluster important for oomycete resistance. Furthermore, we demonstrate that old-1 expression at the anterior side of the epidermis is regulated by the VAB-3/PAX6 transcription factor, well known for its role in visual system development in other animals. Taken together, our study reveals both conserved and species-specific factors shaping the activation and spatial characteristics of the immune response to oomycete recognition.
Collapse
Affiliation(s)
- Florence Drury
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| | - Manish Grover
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| | - Mark Hintze
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| | - Jonathan Saunders
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| | - Michael K. Fasseas
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| | - Charis Constantinou
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| | - Michalis Barkoulas
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| |
Collapse
|
50
|
Wu G, Baumeister R, Heimbucher T. SGK-1 mediated inhibition of iron import is a determinant of lifespan in C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000970. [PMID: 37799207 PMCID: PMC10550382 DOI: 10.17912/micropub.biology.000970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Maintaining iron levels is crucial for health, but iron overload has been associated with tumorigenesis. Therefore, critical enzymes involved in iron homeostasis are under tight, typically posttranslational control. In C. elegans , the mTORC2 and insulin/IGF-1 activated kinase SGK-1 is induced upon exogenous iron overload to couple iron storage and fat accumulation. Here we show that, already at physiological iron conditions, sgk-1 loss-of-function increases intracellular iron levels that may impair lifespan. Reducing iron levels by diminishing cellular or mitochondrial iron import is sufficient to extend the short lifespan of sgk-1 loss-of-function animals. Our results indicate another regulatory level of sgk-1 in iron homeostasis via negative feedback regulation on iron transporters.
Collapse
Affiliation(s)
- Gang Wu
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Baumeister
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Center for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, ZBMZ Center of Biochemistry and Molecular Cell Research, University of Freiburg, 79104 Freiburg, Germany
- FRIAS Freiburg Institute for Advanced Studies, Albertstraße 19, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Heimbucher
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|