1
|
Gajigan AP, Schvarcz CR, Conaco C, Edwards KF, Steward GF. Ultrastructural and transcriptional changes during a giant virus infection of a green alga. NPJ VIRUSES 2025; 3:47. [PMID: 40450179 DOI: 10.1038/s44298-025-00128-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 05/12/2025] [Indexed: 06/03/2025]
Abstract
The genome of Oceanusvirus kaneohense isolate, Tetraselmis virus 1 (TetV-1), was previously sequenced, but little was known about its infection cycle. We determined the eclipse period (4-8 h), latent period (16 h), and burst size (~1000), and observed ultrastructural changes in the host during infection. Putative viral factories and inclusion bodies appear in the cytoplasm by 8 and 16 h post-infection, respectively. Of 830 viral transcripts detected, those related to transcription, DNA synthesis, and host immune repression appeared earlier (0.25 and 4 h), and virus structural genes appeared later (8-16 h). Host lipid metabolism and endocytosis-related transcripts were upregulated during the early phase, while protein modification genes were downregulated. In the later stages, host transcripts associated with basic cellular processes were relatively more common, while developmental genes became less so. Many highly expressed host and virus genes were of unknown function, highlighting a need for additional functional studies.
Collapse
Affiliation(s)
- Andrian P Gajigan
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA.
- Center for Microbial Oceanography Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| | - Christopher R Schvarcz
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Center for Microbial Oceanography Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Kyle F Edwards
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Grieg F Steward
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA.
- Center for Microbial Oceanography Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| |
Collapse
|
2
|
Akingbola A, Abiodun A, Idahor C, Peters F, Ojo O, Jessica OU, Alao UH, Adewole O, Owolabi A, Chuku J. Genomic Evolution and Epidemiological Impact of Ongoing Clade Ib MPox Disease: A Narrative Review. Glob Health Epidemiol Genom 2025; 2025:8845911. [PMID: 40406501 PMCID: PMC12097866 DOI: 10.1155/ghe3/8845911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/20/2025] [Indexed: 05/26/2025] Open
Abstract
Clade 1b of the MPox virus has emerged as a highly virulent strain, causing significant public health challenges globally. Initially endemic to Central Africa, this strain has spread to nonendemic regions, including Europe, Asia, and the Americas. With its high transmission rate and severe outcomes, especially among vulnerable populations like children, Clade 1b has raised global concerns. The Africa Center for Disease Control and Prevention (CDC) has declared it a public health emergency of international concern. Clade 1b MPox shows a higher case fatality rate and increased transmissibility compared to other strains. It has moved beyond traditional zoonotic transmission to widespread human-to-human transmission. The variant's spread to countries such as Sweden and Thailand demonstrates its global reach. Public health efforts, including cross-border coordination, rapid response teams, and awareness campaigns, have been essential in containing the outbreaks. However, barriers such as limited resources, vaccine shortages, and logistical challenges in conflict-affected areas have hindered effective control, particularly in low-resource regions. The spread and severity of Clade 1b MPox highlight the need for global cooperation to strengthen surveillance, improve diagnostic capabilities, and expand healthcare infrastructure in affected areas. Enhancing access to vaccines and treatments, along with educating the public on preventive measures, will be key to controlling transmission. Ongoing research and monitoring are essential to mitigate future outbreaks and minimize the virus's global impact.
Collapse
Affiliation(s)
- Adewunmi Akingbola
- Department of Community Health, University of Cambridge, Old Schools, Trinity Lane, Cambridgeshire, Cambridge CB2 1TN, UK
| | - Adegbesan Abiodun
- African Cancer Institute, Department of Global Health, Stellenbosch University, Cape Town, South Africa
| | - Courage Idahor
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Favour Peters
- University of Cambridge, Old Schools, Trinity Lane, Cambridgeshire, Cambridge CB2 1TN, UK
| | - Olajide Ojo
- University of West England, Coldharbour Ln, Stoke Gifford, Bristol, UK
| | | | - Uthman Hassan Alao
- Department of Biomedical Laboratory Science, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Olajumoke Adewole
- Department of Community Health, Lagos State University College of Medicine, Ikeja, Lagos, Nigeria
| | | | - Joel Chuku
- Department of Medicine, V. N. Karazin Kharkiv National University, Svobody Square, Kharkiv 61022, Ukraine
| |
Collapse
|
3
|
Acchioni M, Acchioni C, Hiscott J, Sgarbanti M. Origin and function of anti-interferon type I viral proteins. Virology 2025; 605:110456. [PMID: 39999585 DOI: 10.1016/j.virol.2025.110456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Type I interferons (IFN-I) are the most important innate immune cytokines produced by vertebrate host cells following, virus infection. Broadly speaking, detection of infecting viral nucleic acids by pattern recognition receptors (PRR) and subsequent downstream signaling triggers synthesis of a large number of IFN-I-stimulated genes (ISGs), endowed with diverse antiviral effector function. The co-evolution of virus-host interactions over million years has resulted in the emergence of viral strategies that target and inhibit host PRR-mediated detection, signal transduction pathways and IFN-I-mediated stimulation of ISGs. In this review, we illustrate the multiple mechanisms of viral immune evasion and discuss the co-evolution of anti-IFN-I viral proteins by summarizing key examples from recent literature. Due to the large number of anti-IFN-I proteins described, we provide here an evaluation of the prominent examples from different virus families. Understanding the unrelenting evolution of viral evasion strategies will provide mechanistic detail concerning these evolving interactions but will further enhance the development of tailored antiviral approaches.
Collapse
Affiliation(s)
- Marta Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Chiara Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - John Hiscott
- Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
4
|
He T, Zhang X, Zhang X. Thousands-years-old deep-sea DNA viruses reveal the evolution of human pathogenic viruses. J Adv Res 2025:S2090-1232(25)00217-6. [PMID: 40174641 DOI: 10.1016/j.jare.2025.03.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025] Open
Abstract
INTRODUCTION In the last two decades, outbreaks of pathogenic viruses have led to significant human mortality and economic repercussions. Despite extensive investigations into tracing these viruses in terrestrial environments, their origins remain enigmatic. OBJECTIVES The Earth's biosphere encompasses both sunlight-dependent terrestrial and surface ocean ecosystems, as well as the sunlight-independent deep-sea ecosystem. However, the traceability of human pathogenic viruses in the deep sea has not been thoroughly explored. This study aimed to investigate the presence of human pathogenic viruses in the deep sea. METHODS In this study, we performed a viral metagenomic analysis using a global deep-sea sediment virome 2.0 dataset which contained 159 deep-sea sediment samples with geologic ages from 2,500 to 7,750 years. RESULTS A total of 554,664 viral operational taxonomic units (vOTUs) were identified and further obtained 2,254 potential pathogenic viruses of vertebrates. Among them, 23 vOTUs exhibited high homology with 12 species of human pathogenic viruses which belonged to 4 viral families. Notably, variola virus, the first human pathogenic virus eradicated from humans and now only found in laboratories, was discovered in the ancient deep-sea sediments. The evolution analysis showed that these DNA viruses might represent the ancestors or variants of human pathogenic viruses, suggesting that the deep sea could be a crucial reservoir for human pathogenic viruses. CONCLUSION Our findings present all the ancient pathogenic DNA viruses of humans found in the deep sea for the first time, highlighting the source of the future epidemics. It is imperative to implement the stringent virus monitoring and management measures for human activities in marine environments to address the emerging challenges of marine biosecurity and promote sustainable use of oceans.
Collapse
Affiliation(s)
- Tianliang He
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Xinyi Zhang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaobo Zhang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
5
|
Wang H, Meng L, Otaegi-Ugartemendia S, Condezo GN, Blanc-Mathieu R, Stokke R, Langvad MR, Brandt D, Kalinowski J, Dahle H, San Martín C, Ogata H, Sandaa RA. Haptophyte-infecting viruses change the genome condensing proteins of dinoflagellates. Commun Biol 2025; 8:510. [PMID: 40155463 PMCID: PMC11953307 DOI: 10.1038/s42003-025-07905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
Giant viruses are extraordinary members of the virosphere due to their structural complexity and high diversity in gene content. Haptophytes are ecologically important primary producers in the ocean, and all known viruses that infect haptophytes are giant viruses. However, little is known about the specifics of their infection cycles and the responses they trigger in their host cells. Our in-depth electron microscopic, phylogenomic and virion proteomic analyses of two haptophyte-infecting giant viruses, Haptolina ericina virus RF02 (HeV RF02) and Prymnesium kappa virus RF02 (PkV RF02), unravel their large capacity for host manipulation and arsenals that function during the infection cycle from virus entry to release. The virus infection induces significant morphological changes in the host cell that is manipulated to build a virus proliferation factory. Both viruses' genomes encode a putative nucleoprotein (dinoflagellate/viral nucleoprotein; DVNP), which was also found in the virion proteome of PkV RF02. Phylogenetic analysis suggests that DVNPs are widespread in marine giant metaviromes. Furthermore, the analysis shows that the dinoflagellate homologues were possibly acquired from viruses of the order Imitervirales. These findings enhance our understanding of how viruses impact the biology of microalgae, providing insights into evolutionary biology, ecosystem dynamics, and nutrient cycling in the ocean.
Collapse
Affiliation(s)
- Haina Wang
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Lingjie Meng
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | | | | | | | - Runar Stokke
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | | | - David Brandt
- Bielefeld University, CeBiTec, Bielefeld, Germany
| | | | - Håkon Dahle
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
6
|
Li Y, Wang L, Chen S. An overview of the progress made in research into the Mpox virus. Med Res Rev 2025; 45:788-812. [PMID: 39318037 DOI: 10.1002/med.22085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/26/2024]
Abstract
Mpox is a zoonotic illness caused by the Mpox virus (MPXV), a member of the Orthopoxvirus family. Although a few cases have been reported outside Africa, it was originally regarded as an endemic disease limited to African countries. However, the Mpox outbreak of 2022 was remarkable in that the infection spread to more than 123 countries worldwide, causing thousands of infections and deaths. The ongoing Mpox outbreak has been declared as a public health emergency of international concern by the World Health Organization. For a better management and control of the epidemic, this review summarizes the research advances and important scientific findings on MPXV by reviewing the current literature on epidemiology, clinical characteristics, diagnostic methods, prevention and treatment measures, and animal models of MPXV. This review provides useful information to raise awareness about the transmission, symptoms, and protective measures of MPXV, serving as a theoretical guide for relevant institutions to control MPXV.
Collapse
Affiliation(s)
- Yansheng Li
- Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound lmaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Department of Critical Care Medicine, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lianrong Wang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Shi Chen
- Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound lmaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Department of Critical Care Medicine, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Qudus MS, Afaq U, Liu S, Wu K, Yu C, Tian M, Wu J. SARS-CoV-2-ORF-3a Mediates Apoptosis Through Mitochondrial Dysfunction Modulated by the K + Ion Channel. Int J Mol Sci 2025; 26:1575. [PMID: 40004042 PMCID: PMC11855091 DOI: 10.3390/ijms26041575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19) causes pulmonary edema, which disrupts the lung alveoli-capillary barrier and leads to pulmonary cell apoptosis, the main cause of death. However, the molecular mechanism behind SARS-CoV-2's apoptotic activity remains unknown. Here, we revealed that SARS-CoV-2-ORF-3a mediates the pulmonary pathology associated with SARS-CoV-2, which is demonstrated by the fact that it causes lung tissue damage. The in vitro results showed that SARS-CoV-2-ORF-3a triggers cell death via the disruption of mitochondrial homeostasis, which is modulated through the regulation of Mitochondrial ATP-sensitive Potassium Channel (MitoKATP). The addition of exogenous Potassium (K+) in the form of potassium chloride (KCl) attenuated mitochondrial apoptosis along with the inflammatory interferon response (IFN-β) triggered by SARS-ORF-3a. The addition of exogenous K+ strongly suggests that dysregulation of K+ ion channel function is the central mechanism underlying the mitochondrial dysfunction and stress response induced by SARS-CoV-2-ORF-3a. Our results designate that targeting the potassium channel or its interactions with ORF-3a may represent a promising therapeutic strategy to mitigate the damaging effects of infection with SARS-CoV-2.
Collapse
Affiliation(s)
- Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Chen Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
8
|
Mutz P, Camargo AP, Sahakyan H, Neri U, Butkovic A, Wolf YI, Krupovic M, Dolja VV, Koonin EV. The protein structurome of Orthornavirae and its dark matter. mBio 2025; 16:e0320024. [PMID: 39714180 PMCID: PMC11796362 DOI: 10.1128/mbio.03200-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 12/24/2024] Open
Abstract
Metatranscriptomics is uncovering more and more diverse families of viruses with RNA genomes comprising the viral kingdom Orthornavirae in the realm Riboviria. Thorough protein annotation and comparison are essential to get insights into the functions of viral proteins and virus evolution. In addition to sequence- and hmm profile‑based methods, protein structure comparison adds a powerful tool to uncover protein functions and relationships. We constructed an Orthornavirae "structurome" consisting of already annotated as well as unannotated ("dark matter") proteins and domains encoded in viral genomes. We used protein structure modeling and similarity searches to illuminate the remaining dark matter in hundreds of thousands of orthornavirus genomes. The vast majority of the dark matter domains showed either "generic" folds, such as single α-helices, or no high confidence structure predictions. Nevertheless, a variety of lineage-specific globular domains that were new either to orthornaviruses in general or to particular virus families were identified within the proteomic dark matter of orthornaviruses, including several predicted nucleic acid-binding domains and nucleases. In addition, we identified a case of exaptation of a cellular nucleoside monophosphate kinase as an RNA-binding protein in several virus families. Notwithstanding the continuing discovery of numerous orthornaviruses, it appears that all the protein domains conserved in large groups of viruses have already been identified. The rest of the viral proteome seems to be dominated by poorly structured domains including intrinsically disordered ones that likely mediate specific virus-host interactions. IMPORTANCE Advanced methods for protein structure prediction, such as AlphaFold2, greatly expand our capability to identify protein domains and infer their likely functions and evolutionary relationships. This is particularly pertinent for proteins encoded by viruses that are known to evolve rapidly and as a result often cannot be adequately characterized by analysis of the protein sequences. We performed an exhaustive structure prediction and comparative analysis for uncharacterized proteins and domains ("dark matter") encoded by viruses with RNA genomes. The results show the dark matter of RNA virus proteome consists mostly of disordered and all-α-helical domains that cannot be readily assigned a specific function and that likely mediate various interactions between viral proteins and between viral and host proteins. The great majority of globular proteins and domains of RNA viruses are already known although we identified several unexpected domains represented in individual viral families.
Collapse
Affiliation(s)
- Pascal Mutz
- Division of Intramural Research, Computational Biology Branch, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Antonio Pedro Camargo
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Harutyun Sahakyan
- Division of Intramural Research, Computational Biology Branch, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Uri Neri
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Anamarija Butkovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Yuri I. Wolf
- Division of Intramural Research, Computational Biology Branch, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Eugene V. Koonin
- Division of Intramural Research, Computational Biology Branch, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Guo Y, Dall'Ara M, Baldo D, Gilmer D, Ratti C. Relative frequency dynamics and loading of beet necrotic yellow vein virus genomic RNAs during the acquisition by its vector Polymyxa betae. J Virol 2025; 99:e0141024. [PMID: 39679720 PMCID: PMC11784302 DOI: 10.1128/jvi.01410-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
The beet necrotic yellow vein virus (BNYVV) is a multipartite virus with the highest number (up to five) of genomic segments among RNA viruses. Classified as a soil-borne virus, it is persistently transmitted by the protozoan Polymyxa betae. Previous studies have demonstrated that the relative frequency of the BNYVV genomic RNAs was modified depending on the host plant as well as the infected organ, resulting in distinct stoichiometric ratios between the viral RNAs. In this study, we investigate whether infection by the vector P. betae influences the relative abundance of BNYVV RNAs within the roots of the host plant Beta vulgaris. Furthermore, we examine the relative frequency of BNYVV genomic segments and the viral load of BNYVV at two different stages of P. betae's biological cycle: zoospore and resting spore. Our finding offers new insights into understanding the biology of this soil-borne virus and its vector. Notably, the variations in the relative accumulation of BNYVV RNAs observed in zoospores and resting spores, along with a higher viral load in zoospores compared to resting spores, invite consideration of the virus's replicative capacity within the vector. IMPORTANCE Our understanding of the transmission of plant viruses by protozoan vectors remains poor and fragmented. The fate of viral elements in the living stages of the vector is unknown. Here, we first established a protocol allowing the purification of two forms of the vector free of cellular contaminants. This permitted the examination of the relative frequencies of beet necrotic yellow vein virus RNAs in the roots of its natural host and in two forms of its protozoan vector, Polymyxa betae, responsible for virus transmission. Our findings provide new insights into virus behavior during vector transmission, allowing us to analyze how the virus regulates its RNA frequencies and load within the vector. By focusing on the early stages of viral transmission and separating virus acquisition from transmission to new hosts, we pave the way for experiments aimed at elucidating the molecular mechanisms behind viral acquisition and the maintenance of viral genome integrity by P. betae.
Collapse
Affiliation(s)
- Yi Guo
- DISTAL-Plant Pathology, University of Bologna, Bologna, Italy
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Mattia Dall'Ara
- DISTAL-Plant Pathology, University of Bologna, Bologna, Italy
- Ri.NOVA Società Cooperativa, Cesena, Italy
| | - David Baldo
- DISTAL-Plant Pathology, University of Bologna, Bologna, Italy
| | - David Gilmer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Claudio Ratti
- DISTAL-Plant Pathology, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Banerjee S, Jewell KA, Brennan G. Experimental Evolution of Poxviruses. Methods Mol Biol 2025; 2860:241-256. [PMID: 39621272 DOI: 10.1007/978-1-0716-4160-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Experimental evolution is the process of exposing virus populations to defined selective pressures in a laboratory setting to identify adaptive changes. Coupled with deep sequencing, this experimental approach allows for nucleotide-level resolution of poxvirus adaptive strategies over time. Here, we present a general method of poxvirus experimental evolution, Illumina-based deep sequencing, and bioinformatic analyses to identify structural changes (e.g., gene duplication) as well as local adaptive changes (e.g., small indels and single nucleotide polymorphisms).
Collapse
Affiliation(s)
- Shefali Banerjee
- Department of Microbiology, Immunology and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | | | - Greg Brennan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
11
|
Gigante CM, Weigand MR, Li Y. Orthopoxvirus Genome Sequencing, Assembly, and Analysis. Methods Mol Biol 2025; 2860:39-63. [PMID: 39621260 DOI: 10.1007/978-1-0716-4160-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Poxviruses have exceptionally large genomes compared to most other viruses, which represent unique challenges to sequencing and assembly due to complex features such as repeat elements and low complexity sequences. The 2022 global mpox outbreak led to an unprecedented level of poxvirus sequencing as public health and research institutions faced with large sample numbers and demand for fast turnaround, merged NGS protocols designed for small RNA viruses with poxvirus expertise. Traditional manual assembly, checking, and editing of genomes was not feasible. Here, we present a protocol for metagenomic sequencing and orthopoxvirus genome assembly directly from DNA extracted from a patient lesion swab with no viral enrichment or host depletion. This sequencing approach is cost effective when using high throughput sequencing instruments and allows for detection of genomic insertions, deletions, and large rearrangement with confidence. We describe usage of two publicly available bioinformatic pipelines for genome assembly, quality control, annotation, and submission to sequence repositories.
Collapse
Affiliation(s)
- Crystal M Gigante
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Michael R Weigand
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yu Li
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
12
|
Brown N, Luniewski A, Yu X, Warthan M, Liu S, Zulawinska J, Ahmad S, Congdon M, Santos W, Xiao F, Guler JL. Replication stress increases de novo CNVs across the malaria parasite genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629492. [PMID: 39803504 PMCID: PMC11722320 DOI: 10.1101/2024.12.19.629492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Changes in the copy number of large genomic regions, termed copy number variations (CNVs), contribute to important phenotypes in many organisms. CNVs are readily identified using conventional approaches when present in a large fraction of the cell population. However, CNVs that are present in only a few genomes across a population are often overlooked but important; if beneficial under specific conditions, a de novo CNV that arises in a single genome can expand during selection to create a larger population of cells with novel characteristics. While the reach of single cell methods to study de novo CNVs is increasing, we continue to lack information about CNV dynamics in rapidly evolving microbial populations. Here, we investigated de novo CNVs in the genome of the Plasmodium parasite that causes human malaria. The highly AT-rich P. falciparum genome readily accumulates CNVs that facilitate rapid adaptation to new drugs and host environments. We employed a low-input genomics approach optimized for this unique genome as well as specialized computational tools to evaluate the de novo CNV rate both before and after the application of stress. We observed a significant increase in genomewide de novo CNVs following treatment with a replication inhibitor. These stress-induced de novo CNVs encompassed genes that contribute to various cellular pathways and tended to be altered in clinical parasite genomes. This snapshot of CNV dynamics emphasizes the connection between replication stress, DNA repair, and CNV generation in this important microbial pathogen.
Collapse
Affiliation(s)
- Noah Brown
- University of Virginia, Department of Biology, Charlottesville, VA, USA
| | | | - Xuanxuan Yu
- Unifersity of Florida, Department of Biostatistics, Gainesville, FL, USA
- Unifersity of Florida, Department of Surgery, College of Medicine, Gainesville, FL, USA
| | - Michelle Warthan
- University of Virginia, Department of Biology, Charlottesville, VA, USA
| | - Shiwei Liu
- University of Virginia, Department of Biology, Charlottesville, VA, USA
- Current affiliation: Indiana University School of Medicine, Indianapolis, IN, USA
| | - Julia Zulawinska
- University of Virginia, Department of Biology, Charlottesville, VA, USA
| | - Syed Ahmad
- University of Virginia, Department of Biology, Charlottesville, VA, USA
| | - Molly Congdon
- Virginia Tech, Department of Chemistry, Blacksburg, VA, USA
| | - Webster Santos
- Virginia Tech, Department of Chemistry, Blacksburg, VA, USA
| | - Feifei Xiao
- Unifersity of Florida, Department of Biostatistics, Gainesville, FL, USA
| | - Jennifer L Guler
- University of Virginia, Department of Biology, Charlottesville, VA, USA
| |
Collapse
|
13
|
Johnstone BA, Hardy JM, Ha J, Butkovic A, Koszalka P, Accurso C, Venugopal H, de Marco A, Krupovic M, Coulibaly F. The nucleocapsid architecture and structural atlas of the prototype baculovirus define the hallmarks of a new viral realm. SCIENCE ADVANCES 2024; 10:eado2631. [PMID: 39693434 DOI: 10.1126/sciadv.ado2631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
Baculovirus is the most studied insect virus owing to a broad ecological distribution and ease of engineering for biotechnological applications. However, its structure and evolutionary place in the virosphere remain enigmatic. Using cryo-electron microscopy, we show that the nucleocapsid forms a covalently cross-linked helical tube protecting a highly compacted 134-kilobase pair DNA genome. The ends of the tube are sealed by the base and cap substructures, which share a 126-subunit hub but differ in components that promote actin tail-mediated propulsion and nuclear entry of the nucleocapsid, respectively. Unexpectedly, sensitive searches for hidden evolutionary links show that the morphogenetic machinery and conserved oral infectivity factors originated within the lineage of baculo-like viruses (class Naldaviricetes). The unique viral architecture and structural atlas of hallmark proteins firmly place these viruses into a separate new realm, the highest taxonomy rank, and provide a structural framework to expand their use as sustainable bioinsecticides and biomedical tools.
Collapse
Affiliation(s)
- Bronte A Johnstone
- Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Joshua M Hardy
- Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jungmin Ha
- Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Anamarija Butkovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 75015, Paris, France
| | - Paulina Koszalka
- Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Cathy Accurso
- Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Alex de Marco
- Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 75015, Paris, France
| | - Fasséli Coulibaly
- Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
14
|
Young B, Seifert SN, Lawson C, Koehler H. Exploring the genomic basis of Mpox virus-host transmission and pathogenesis. mSphere 2024; 9:e0057624. [PMID: 39540739 DOI: 10.1128/msphere.00576-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Mpox disease, caused by the monkeypox virus (MPXV), was recently classified as a public health emergency of international concern due to its high lethality and pandemic potential. MPXV is a zoonotic disease that emerged and is primarily spread by small rodents. Historically, it was considered mainly zoonotic and not likely to sustain human-to-human transmission. However, the worldwide outbreak of Clade IIb MPXV from 2020 to 2022 and ongoing Clade I MPXV epidemics in the Democratic Republic of the Congo and surrounding areas are a warning that human-adapted MPXVs will continually arise. Understanding the viral genetic determinants of host range, pathogenesis, and immune evasion is imperative for developing control strategies and predicting the future of Mpox. Here, we delve into the MPXV genome to detail genes involved in host immune evasion strategies for this zoonotic rodent-borne and human-circulating virus. We compare MPXV gene content to related Orthopoxviruses, which have narrow host ranges, to identify potential genes involved in species-specific pathogenesis and host tropism. In addition, we cover the key virulence factor differences that distinguish the MPXV clade lineages. Finally, we dissect how genomic reduction of Orthopoxviruses, through various molecular mechanisms, is contributing to the generation of novel MPXV lineages with increased human adaptation. This review aims to highlight gene content that defines the MPXV species, MPXV clades, and novel MPXV lineages that have culminated in this virus being elevated to a public health emergency of national concern.
Collapse
Affiliation(s)
- Brayden Young
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
- Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Stephanie N Seifert
- Paul G. Allen School for Global Heath, Washington State University, Pullman, Washington, USA
| | - Crystal Lawson
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
- Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Heather Koehler
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
- Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
15
|
Abidi S, Elhazaz Fernandez A, Seehase N, Hanisch L, Karlas A, Sandig V, Jordan I. Expression of an Efficient Selection Marker Out of a Duplicated Site in the ITRs of a Modified Vaccinia Virus Ankara (MVA). Vaccines (Basel) 2024; 12:1377. [PMID: 39772039 PMCID: PMC11680203 DOI: 10.3390/vaccines12121377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Poxviruses are large DNA viruses that replicate in the host cytoplasm without a nuclear phase. As vaccine vectors, they can package and express large recombinant cassettes from different positions of their genomic core region. We present a comparison between wildtype modified vaccinia Ankara (MVA) and isolate CR19, which has significantly expanded inverted terminal repeats (ITRs). With this expansion, a site in wildtype MVA, called deletion site (DS) IV, has been duplicated at both ends of the genome and now occupies an almost central position in the newly formed ITRs. Methods: We inserted various reporter genes into this site and found that the ITRs can be used for transgene expression. However, ITRs are genomic structures that can rapidly adapt to selective pressure through transient duplication and contraction. To test the potential utility of insertions into viral telomers, we inserted a factor from the cellular innate immune system that interferes with viral replication as an example of a difficult transgene. Results: A site almost in the centre of the ITRs can be used for transgene expression, and both sides are mirrored into identical copies. The example of a challenging transgene, tetherin, proved to be surprisingly efficient in selecting candidate vectors against the large background of parental viruses. Conclusions: Insertion of transgenes into ITRs automatically doubles the gene doses. The functionalisation of viruses with tetherin may accelerate the identification and generation of recombinant vectors for personalised medicine and pandemic preparedness.
Collapse
Affiliation(s)
- Sirine Abidi
- ProBioGen AG, 13086 Berlin, Germany; (S.A.); (A.E.F.); (N.S.); (A.K.); (V.S.)
| | - Aurora Elhazaz Fernandez
- ProBioGen AG, 13086 Berlin, Germany; (S.A.); (A.E.F.); (N.S.); (A.K.); (V.S.)
- Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
| | - Nicole Seehase
- ProBioGen AG, 13086 Berlin, Germany; (S.A.); (A.E.F.); (N.S.); (A.K.); (V.S.)
- Tentamus Pharma & Med Deutschland GmbH, 76149 Karlsruhe, Germany
| | - Lina Hanisch
- ProBioGen AG, 13086 Berlin, Germany; (S.A.); (A.E.F.); (N.S.); (A.K.); (V.S.)
| | - Alexander Karlas
- ProBioGen AG, 13086 Berlin, Germany; (S.A.); (A.E.F.); (N.S.); (A.K.); (V.S.)
| | - Volker Sandig
- ProBioGen AG, 13086 Berlin, Germany; (S.A.); (A.E.F.); (N.S.); (A.K.); (V.S.)
| | - Ingo Jordan
- ProBioGen AG, 13086 Berlin, Germany; (S.A.); (A.E.F.); (N.S.); (A.K.); (V.S.)
| |
Collapse
|
16
|
Chambers MJ, Scobell SB, Sadhu MJ. Systematic genetic characterization of the human PKR kinase domain highlights its functional malleability to escape a poxvirus substrate mimic. eLife 2024; 13:RP99575. [PMID: 39531012 PMCID: PMC11556786 DOI: 10.7554/elife.99575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Evolutionary arms races can arise at the contact surfaces between host and viral proteins, producing dynamic spaces in which genetic variants are continually pursued. However, the sampling of genetic variation must be balanced with the need to maintain protein function. A striking case is given by protein kinase R (PKR), a member of the mammalian innate immune system. PKR detects viral replication within the host cell and halts protein synthesis to prevent viral replication by phosphorylating eIF2α, a component of the translation initiation machinery. PKR is targeted by many viral antagonists, including poxvirus pseudosubstrate antagonists that mimic the natural substrate, eIF2α, and inhibit PKR activity. Remarkably, PKR has several rapidly evolving residues at this interface, suggesting it is engaging in an evolutionary arms race, despite the surface's critical role in phosphorylating eIF2α. To systematically explore the evolutionary opportunities available at this dynamic interface, we generated and characterized a library of 426 SNP-accessible nonsynonymous variants of human PKR for their ability to escape inhibition by the model pseudosubstrate inhibitor K3, encoded by the vaccinia virus gene K3L. We identified key sites in the PKR kinase domain that harbor K3-resistant variants, as well as critical sites where variation leads to loss of function. We find K3-resistant variants are readily available throughout the interface and are enriched at sites under positive selection. Moreover, variants beneficial against K3 were also beneficial against an enhanced variant of K3, indicating resilience to viral adaptation. Overall, we find that the eIF2α-binding surface of PKR is highly malleable, potentiating its evolutionary ability to combat viral inhibition.
Collapse
Affiliation(s)
- Michael James Chambers
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
- Department of Microbiology & Immunology, Georgetown UniversityWashingtonUnited States
| | - Sophia B Scobell
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - Meru J Sadhu
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
17
|
Bekele SG, Yallew WW, Melesse H. Knowledge of Human Monkeypox Virus Infection among Healthcare Providers and Associated Factors in Addis Ababa, Ethiopia. Am J Trop Med Hyg 2024; 111:1078-1081. [PMID: 39288770 PMCID: PMC11542522 DOI: 10.4269/ajtmh.24-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/04/2024] [Indexed: 09/19/2024] Open
Abstract
Human monkeypox virus infection (mpox) is a reemerging viral zoonotic disease that has been occurring outside of locations where it has been endemic in Africa. To understand the shifting epidemiology of this disease and respond accordingly, increased clinical skill and professional capabilities are essential. However, there are no studies assessing the knowledge of healthcare professionals in Ethiopia on mpox. Hence, this paper aimed to assess knowledge of the infection and associated factors among healthcare providers in Addis Ababa, Ethiopia, specifically knowledge of diagnosis and treatment of mpox, from November 14, 2022 to November 25, 2022. A facility-based cross-sectional study design was used. Knowledge was assessed using a structured questionnaire, and a 70% Bloom's cutoff point was used to classify the scores. A pretest was conducted in a similar setting before data collection. Frequencies, percentages, and bivariate and multivariate logistic regression analyses were used. The majority of participants, 128 (64.6% with 95% CI), scored below 70% on knowledge questions. Professionals with experience of 5 years or less had better knowledge than those who had worked longer (adjusted odds ratio: 0.301; 95% CI: 0.149-0.609; P = 0.000). Knowledge of mpox among healthcare providers in Addis Ababa was poor across sociodemographic and professional variables. Thus, education on mpox among healthcare providers in Ethiopia is critical in preparing the workforce and limiting potential damage to the country.
Collapse
Affiliation(s)
- Sofonias Girma Bekele
- Global Health and Health Policy Department, Addis Continental Institute of Public Health, Addis Ababa, Ethiopia
| | - Walelegn Worku Yallew
- Global Health and Health Policy Department, Addis Continental Institute of Public Health, Addis Ababa, Ethiopia
| | - Hanna Melesse
- Epidemiology and Biostatistics Department, Addis Continental Institute of Public Health, Addis Ababa, Ethiopia
| |
Collapse
|
18
|
Fang D, Liu Y, Dou D, Su B. The unique immune evasion mechanisms of the mpox virus and their implication for developing new vaccines and immunotherapies. Virol Sin 2024; 39:709-718. [PMID: 39181538 PMCID: PMC11738799 DOI: 10.1016/j.virs.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
Mpox is an infectious and contagious zoonotic disease caused by the mpox virus (MPXV), which belongs to the genus Orthopoxvirus. Since 2022, MPXV has posed a significant threat to global public health. The emergence of thousands of cases across the Western Hemisphere prompted the World Health Organization to declare an emergency. The extensive coevolutionary history of poxviruses with humans has enabled these viruses to develop sophisticated mechanisms to counter the human immune system. Specifically, MPXV employs unique immune evasion strategies against a wide range of immunological elements, presenting a considerable challenge for treatment, especially following the discontinuation of routine smallpox vaccination among the general population. In this review, we start by discussing the entry of the mpox virus and the onset of early infection, followed by an introduction to the mechanisms by which the mpox virus can evade the innate and adaptive immune responses. Two caspase-1 inhibitory proteins and a PKR escape-related protein have been identified as phylogenomic hubs involved in modulating the immune environment during the MPXV infection. With respect to adaptive immunity, mpox viruses exhibit unique and exceptional T-cell inhibition capabilities, thereby comprehensively remodeling the host immune environment. The viral envelope also poses challenges for the neutralizing effects of antibodies and the complement system. The unique immune evasion mechanisms employed by MPXV make novel multi-epitope and nucleic acid-based vaccines highly promising research directions worth investigating. Finally, we briefly discuss the impact of MPXV infection on immunosuppressed patients and the current status of MPXV vaccine development. This review may provide valuable information for the development of new immunological treatments for mpox.
Collapse
Affiliation(s)
- Dong Fang
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China
| | - Yan Liu
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Dou Dou
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China
| | - Bin Su
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China; Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Central Laboratory, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
19
|
Chambers MJ, Scobell SB, Sadhu MJ. Systematic genetic characterization of the human PKR kinase domain highlights its functional malleability to escape a poxvirus substrate mimic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596416. [PMID: 38903081 PMCID: PMC11188142 DOI: 10.1101/2024.05.29.596416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Evolutionary arms races can arise at the contact surfaces between host and viral proteins, producing dynamic spaces in which genetic variants are continually pursued. However, the sampling of genetic variation must be balanced with the need to maintain protein function. A striking case is given by protein kinase R (PKR), a member of the mammalian innate immune system. PKR detects viral replication within the host cell and halts protein synthesis to prevent viral replication by phosphorylating eIF2α, a component of the translation initiation machinery. PKR is targeted by many viral antagonists, including poxvirus pseudosubstrate antagonists that mimic the natural substrate, eIF2α, and inhibit PKR activity. Remarkably, PKR has several rapidly evolving residues at this interface, suggesting it is engaging in an evolutionary arms race, despite the surface's critical role in phosphorylating eIF2α. To systematically explore the evolutionary opportunities available at this dynamic interface, we generated and characterized a library of 426 SNP-accessible nonsynonymous variants of human PKR for their ability to escape inhibition by the model pseudosubstrate inhibitor K3, encoded by the vaccinia virus gene K3L. We identified key sites in the PKR kinase domain that harbor K3-resistant variants, as well as critical sites where variation leads to loss of function. We find K3-resistant variants are readily available throughout the interface and are enriched at sites under positive selection. Moreover, variants beneficial against K3 were also beneficial against an enhanced variant of K3, indicating resilience to viral adaptation. Overall, we find that the eIF2α-binding surface of PKR is highly malleable, potentiating its evolutionary ability to combat viral inhibition.
Collapse
Affiliation(s)
- Michael J Chambers
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Microbiology & Immunology, Georgetown University, Washington DC, USA
| | - Sophia B Scobell
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Meru J Sadhu
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Banse P, Elena SF, Beslon G. Innovation in viruses: fitness valley crossing, neutral landscapes, or just duplications? Virus Evol 2024; 10:veae078. [PMID: 39386076 PMCID: PMC11463231 DOI: 10.1093/ve/veae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/19/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Viruses evolve by periods of relative stasis interleaved with sudden, rapid series of mutation fixations, known as evolutionary bursts. These bursts can be triggered by external factors, such as environmental changes, antiviral therapies, or spill-overs from reservoirs into novel host species. However, it has also been suggested that bursts may result from the intrinsic evolutionary dynamics of viruses. Indeed, bursts could be caused by fitness valley crossing, or a neutral exploration of a fitness plateau until an escape mutant is found. In order to investigate the importance of these intrinsic causes of evolutionary bursts, we used a simulation software package to perform massive evolution experiments of viral-like genomes. We tested two conditions: (i) after an external change and (ii) in a constant environment, with the latter condition guaranteeing the absence of an external triggering factor. As expected, an external change was almost systematically followed by an evolutionary burst. However, we also observed bursts in the constant environment as well, albeit much less frequently. We analyzed how many of these bursts are triggered by deleterious, quasi-neutral, or beneficial mutations and show that, while bursts can occasionally be triggered by valley crossing or traveling along neutral ridges, many of them were triggered by chromosomal rearrangements and, in particular, segmental duplications. Our results suggest that combinatorial differences between the different mutation types lead to punctuated evolutionary dynamics, with long periods of stasis occasionally interrupted by short periods of rapid evolution, akin to what is observed in virus evolution.
Collapse
Affiliation(s)
- Paul Banse
- INSA Lyon, INRIA, CNRS, Universite Claude Bernard Lyon 1, Ecole Centrale de Lyon, Université Lumière Lyon 2, LIRIS, UMR5205, Villeurbanne 69621, France
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Catedrático Agustín Escardino 9, Paterna, Valencia 46980, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Guillaume Beslon
- INSA Lyon, INRIA, CNRS, Universite Claude Bernard Lyon 1, Ecole Centrale de Lyon, Université Lumière Lyon 2, LIRIS, UMR5205, Villeurbanne 69621, France
| |
Collapse
|
21
|
Wu J, Meng L, Gaïa M, Hikida H, Okazaki Y, Endo H, Ogata H. Gene Transfer Among Viruses Substantially Contributes to Gene Gain of Giant Viruses. Mol Biol Evol 2024; 41:msae161. [PMID: 39093595 PMCID: PMC11334073 DOI: 10.1093/molbev/msae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The phylum Nucleocytoviricota comprises a diverse group of double-stranded DNA viruses that display a wide range of gene repertoires. Although these gene repertoires determine the characteristics of individual viruses, the evolutionary processes that have shaped the gene repertoires of extant viruses since their common ancestor are poorly characterized. In this study, we aimed to address this gap in knowledge by using amalgamated likelihood estimation, a probabilistic tree reconciliation method that infers evolutionary scenarios by distinguishing origination, gene duplications, virus-to-virus horizontal gene transfer (vHGT), and gene losses. We analyzed over 4,700 gene families from 195 genomes spanning all known viral orders. The evolutionary reconstruction suggests a history of extensive gene gains and losses during the evolution of these viruses, notably with vHGT contributing to gene gains at a comparable level to duplications and originations. The vHGT frequently occurred between phylogenetically closely related viruses, as well as between distantly related viruses with an overlapping host range. We observed a pattern of massive gene duplications that followed vHGTs for gene families that was potentially related to host range control and virus-host arms race. These results suggest that vHGT represents a previously overlooked, yet important, evolutionary force that integrates the evolutionary paths of multiple viruses and affects shaping of Nucleocytoviricota virus gene repertoires.
Collapse
Affiliation(s)
- Junyi Wu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Lingjie Meng
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Morgan Gaïa
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry F-91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris F-75016, France
| | - Hiroyuki Hikida
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Yusuke Okazaki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Hisashi Endo
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| |
Collapse
|
22
|
Michalakis Y, Blanc S. Aspects of the lifestyle of multipartite viruses apply to monopartite segmented and perhaps nonsegmented viruses. NPJ VIRUSES 2024; 2:31. [PMID: 40295805 PMCID: PMC11721093 DOI: 10.1038/s44298-024-00045-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/04/2024] [Indexed: 04/30/2025]
Abstract
Recent research on faba bean necrotic stunt virus, aiming to understand how multipartite viruses function and potentially their existence, revealed three surprising features: a non-uniform segment frequency distribution (genome formula), a multicellular functioning, and the non-concomitant transmission of genomic segments. We review the occurrence of these features in other multipartite viruses and discuss their potential operation in monopartite viruses with segmented genomes and perhaps even in viruses with nonsegmented genomes.
Collapse
Affiliation(s)
| | - Stéphane Blanc
- PHIM, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
23
|
Riedl A, Bojková D, Tan J, Jeney Á, Larsen PK, Jeney C, Full F, Kalinke U, Ruzsics Z. Construction and Characterization of a High-Capacity Replication-Competent Murine Cytomegalovirus Vector for Gene Delivery. Vaccines (Basel) 2024; 12:791. [PMID: 39066429 PMCID: PMC11281640 DOI: 10.3390/vaccines12070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
We investigated the basic characteristics of a new murine cytomegalovirus (MCMV) vector platform. Using BAC technology, we engineered replication-competent recombinant MCMVs with deletions of up to 26% of the wild-type genome. To this end, we targeted five gene blocks (m01-m17, m106-m109, m129-m141, m144-m158, and m159-m170). BACs featuring deletions from 18% to 26% of the wild-type genome exhibited delayed virus reconstitution, while smaller deletions (up to 16%) demonstrated reconstitution kinetics similar to those of the wild type. Utilizing an innovative methodology, we introduced large genomic DNA segments, up to 35 kbp, along with reporter genes into a newly designed vector with a potential cloning capacity of 46 kbp (Q4). Surprisingly, the insertion of diverse foreign DNAs alleviated the delayed plaque formation phenotype of Q4, and these large inserts remained stable through serial in vitro passages. With reporter-gene-expressing recombinant MCMVs, we successfully transduced not only mouse cell lines but also non-rodent mammalian cells, including those of human, monkey, bovine, and bat origin. Remarkably, even non-mammalian cell lines derived from chickens exhibited successful transduction.
Collapse
Affiliation(s)
- André Riedl
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Denisa Bojková
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute of Medical Virology, Goethe University Frankfurt, University Hospital, 60596 Frankfurt am Main, Germany
| | - Jiang Tan
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Ábris Jeney
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Pia-Katharina Larsen
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Institute for Experimental Infection Research, 30625 Hanover, Germany
| | - Csaba Jeney
- Department of Microsystems Engineering—IMTEK, University of Freiburg, 79110 Freiburg, Germany
| | - Florian Full
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Ulrich Kalinke
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Institute for Experimental Infection Research, 30625 Hanover, Germany
| | - Zsolt Ruzsics
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
24
|
Höfler T, Nascimento MM, Zeitlow M, Kim JY, Trimpert J. Evolutionary Dynamics of Accelerated Antiviral Resistance Development in Hypermutator Herpesvirus. Mol Biol Evol 2024; 41:msae119. [PMID: 38879872 PMCID: PMC11226790 DOI: 10.1093/molbev/msae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/09/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024] Open
Abstract
Antiviral therapy is constantly challenged by the emergence of resistant pathogens. At the same time, experimental approaches to understand and predict resistance are limited by long periods required for evolutionary processes. Here, we present a herpes simplex virus 1 mutant with impaired proofreading capacity and consequently elevated mutation rates. Comparing this hypermutator to parental wild type virus, we study the evolution of antiviral drug resistance in vitro. We model resistance development and elucidate underlying genetic changes against three antiviral substances. Our analyzes reveal no principle difference in the evolutionary behavior of both viruses, adaptive processes are overall similar, however significantly accelerated for the hypermutator. We conclude that hypermutator viruses are useful for modeling adaptation to antiviral therapy. They offer the benefit of expedited adaptation without introducing apparent bias and can therefore serve as an accelerator to predict natural evolution.
Collapse
Affiliation(s)
- Thomas Höfler
- Institut für Virologie, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Germany
| | - Mariana Mara Nascimento
- Institut für Virologie, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Germany
| | - Michaela Zeitlow
- Institut für Virologie, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Germany
| | - Ji Yoon Kim
- Institut für Virologie, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Germany
| | - Jakob Trimpert
- Institut für Virologie, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Germany
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
25
|
Tomanek I. Shining a light on Ohno's dilemma. eLife 2024; 13:e99318. [PMID: 38847396 PMCID: PMC11161172 DOI: 10.7554/elife.99318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Laboratory experiments on a fluorescent protein in E. coli reveal how duplicate genes are rapidly inactivated by mutations during evolution.
Collapse
Affiliation(s)
- Isabella Tomanek
- Department of Biology and Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
26
|
Moss B. Understanding the biology of monkeypox virus to prevent future outbreaks. Nat Microbiol 2024; 9:1408-1416. [PMID: 38724757 DOI: 10.1038/s41564-024-01690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 03/26/2024] [Indexed: 06/07/2024]
Abstract
Historically, monkeypox (mpox) was a zoonotic disease endemic in Africa. However, in 2022, a global outbreak occurred following a substantial increase in cases in Africa, coupled with spread by international travellers to other continents. Between January 2022 and October 2023, about 91,000 confirmed cases from 115 countries were reported, leading the World Health Organization to declare a public health emergency. The basic biology of monkeypox virus (MPXV) can be inferred from other poxviruses, such as vaccinia virus, and confirmed by genome sequencing. Here the biology of MPXV is reviewed, together with a discussion of adaptive changes during MPXV evolution and implications for transmission. Studying MPXV biology is important to inform specific host interactions, to aid in ongoing outbreaks and to predict those in the future.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Monzón S, Varona S, Negredo A, Vidal-Freire S, Patiño-Galindo JA, Ferressini-Gerpe N, Zaballos A, Orviz E, Ayerdi O, Muñoz-Gómez A, Delgado-Iribarren A, Estrada V, García C, Molero F, Sánchez-Mora P, Torres M, Vázquez A, Galán JC, Torres I, Causse Del Río M, Merino-Diaz L, López M, Galar A, Cardeñoso L, Gutiérrez A, Loras C, Escribano I, Alvarez-Argüelles ME, Del Río L, Simón M, Meléndez MA, Camacho J, Herrero L, Jiménez P, Navarro-Rico ML, Jado I, Giannetti E, Kuhn JH, Sanchez-Lockhart M, Di Paola N, Kugelman JR, Guerra S, García-Sastre A, Cuesta I, Sánchez-Seco MP, Palacios G. Monkeypox virus genomic accordion strategies. Nat Commun 2024; 15:3059. [PMID: 38637500 PMCID: PMC11026394 DOI: 10.1038/s41467-024-46949-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
The 2023 monkeypox (mpox) epidemic was caused by a subclade IIb descendant of a monkeypox virus (MPXV) lineage traced back to Nigeria in 1971. Person-to-person transmission appears higher than for clade I or subclade IIa MPXV, possibly caused by genomic changes in subclade IIb MPXV. Key genomic changes could occur in the genome's low-complexity regions (LCRs), which are challenging to sequence and are often dismissed as uninformative. Here, using a combination of highly sensitive techniques, we determine a high-quality MPXV genome sequence of a representative of the current epidemic with LCRs resolved at unprecedented accuracy. This reveals significant variation in short tandem repeats within LCRs. We demonstrate that LCR entropy in the MPXV genome is significantly higher than that of single-nucleotide polymorphisms (SNPs) and that LCRs are not randomly distributed. In silico analyses indicate that expression, translation, stability, or function of MPXV orthologous poxvirus genes (OPGs), including OPG153, OPG204, and OPG208, could be affected in a manner consistent with the established "genomic accordion" evolutionary strategies of orthopoxviruses. We posit that genomic studies focusing on phenotypic MPXV differences should consider LCR variability.
Collapse
Affiliation(s)
- Sara Monzón
- Unidad de Bioinformática, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sarai Varona
- Unidad de Bioinformática, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Escuela Internacional de Doctorado de la UNED (EIDUNED), Universidad Nacional de Educación a Distancia (UNED), 2832, Madrid, Spain
| | - Anabel Negredo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Santiago Vidal-Freire
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | | - Angel Zaballos
- Unidad de Genómica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Eva Orviz
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Oskar Ayerdi
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Ana Muñoz-Gómez
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | | | - Vicente Estrada
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Cristina García
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Francisca Molero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Patricia Sánchez-Mora
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Montserrat Torres
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ana Vázquez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Juan-Carlos Galán
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Ignacio Torres
- Servicio de Microbiología, Hospital Clínico Universitario, Instituto de Investigación INCLIVA, 46010, Valencia, Spain
| | - Manuel Causse Del Río
- Unidad de Microbiología, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain
| | - Laura Merino-Diaz
- Unidad Clínico de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, 41013, Sevilla, Spain
| | - Marcos López
- Servicio de Microbiología y Parasitología, Hospital Universitario Puerta de Hierro Majadahonda, 28222, Madrid, Spain
| | - Alicia Galar
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, 28007, Madrid, Spain
| | - Laura Cardeñoso
- Servicio de Microbiología, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, 28006, Madrid, Spain
| | - Almudena Gutiérrez
- Servicio de Microbiología y Parasitología Clínica, Hospital Universitario La Paz, 28046, Madrid, Spain
| | - Cristina Loras
- Servicio de Microbiología, Hospital General y Universitario, 13005, Ciudad Real, Spain
| | - Isabel Escribano
- Servicio de Microbiología, Hospital General Universitario Dr. Balmis, 03010, Alicante, Spain
| | | | | | - María Simón
- Servicio de Microbiología, Hospital Central de la Defensa "Gómez Ulla", 28947, Madrid, Spain
| | - María Angeles Meléndez
- Servicio de Microbiología y Parasitología, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | - Juan Camacho
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Laura Herrero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pilar Jiménez
- Unidad de Genómica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Luisa Navarro-Rico
- Unidad de Genómica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Isabel Jado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Elaina Giannetti
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, 21702, USA
| | - Mariano Sanchez-Lockhart
- United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD, 21702, USA
| | - Nicholas Di Paola
- United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD, 21702, USA
| | - Jeffrey R Kugelman
- United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD, 21702, USA
| | - Susana Guerra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Departmento de Medicina Preventiva, Salud Publica y Microbiología, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Isabel Cuesta
- Unidad de Bioinformática, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Maripaz P Sánchez-Seco
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Gustavo Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
28
|
Georgana I, Scutts SR, Gao C, Lu Y, Torres AA, Ren H, Emmott E, Men J, Oei K, Smith GL. Filamin B restricts vaccinia virus spread and is targeted by vaccinia virus protein C4. J Virol 2024; 98:e0148523. [PMID: 38412044 PMCID: PMC10949515 DOI: 10.1128/jvi.01485-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Vaccinia virus (VACV) is a large DNA virus that encodes scores of proteins that modulate the host immune response. VACV protein C4 is one such immunomodulator known to inhibit the activation of both the NF-κB signaling cascade and the DNA-PK-mediated DNA sensing pathway. Here, we show that the N-terminal region of C4, which neither inhibits NF-κB nor mediates interaction with DNA-PK, still contributes to virus virulence. Furthermore, this domain interacts directly and with high affinity to the C-terminal domain of filamin B (FLNB). FLNB is a large actin-binding protein that stabilizes the F-actin network and is implicated in other cellular processes. Deletion of FLNB from cells results in larger VACV plaques and increased infectious viral yield, indicating that FLNB restricts VACV spread. These data demonstrate that C4 has a new function that contributes to virulence and engages the cytoskeleton. Furthermore, we show that the cytoskeleton performs further previously uncharacterized functions during VACV infection. IMPORTANCE Vaccinia virus (VACV), the vaccine against smallpox and monkeypox, encodes many proteins to counteract the host immune response. Investigating these proteins provides insights into viral immune evasion mechanisms and thereby indicates how to engineer safer and more immunogenic VACV-based vaccines. Here, we report that the N-terminal domain of VACV protein C4 interacts directly with the cytoskeletal protein filamin B (FLNB), and this domain of C4 contributes to virus virulence. Furthermore, VACV replicates and spreads better in cells lacking FLNB, thus demonstrating that FLNB has antiviral activity. VACV utilizes the cytoskeleton for movement within and between cells; however, previous studies show no involvement of C4 in VACV replication or spread. Thus, C4 associates with FLNB for a different reason, suggesting that the cytoskeleton has further uncharacterized roles during virus infection.
Collapse
Affiliation(s)
- Iliana Georgana
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Simon R. Scutts
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Chen Gao
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Yongxu Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alice A. Torres
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Hongwei Ren
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Edward Emmott
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jinghao Men
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Keefe Oei
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Kohanovski I, Pontz M, Vande Zande P, Selmecki A, Dahan O, Pilpel Y, Yona AH, Ram Y. Aneuploidy Can Be an Evolutionary Diversion on the Path to Adaptation. Mol Biol Evol 2024; 41:msae052. [PMID: 38427813 PMCID: PMC10951435 DOI: 10.1093/molbev/msae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
Aneuploidy is common in eukaryotes, often leading to decreased fitness. However, evidence from fungi and human tumur cells suggests that specific aneuploidies can be beneficial under stressful conditions and facilitate adaptation. In a previous evolutionary experiment with yeast, populations evolving under heat stress became aneuploid, only to later revert to euploidy after beneficial mutations accumulated. It was therefore suggested that aneuploidy is a "stepping stone" on the path to adaptation. Here, we test this hypothesis. We use Bayesian inference to fit an evolutionary model with both aneuploidy and mutation to the experimental results. We then predict the genotype frequency dynamics during the experiment, demonstrating that most of the evolved euploid population likely did not descend from aneuploid cells, but rather from the euploid wild-type population. Our model shows how the beneficial mutation supply-the product of population size and beneficial mutation rate-determines the evolutionary dynamics: with low supply, much of the evolved population descends from aneuploid cells; but with high supply, beneficial mutations are generated fast enough to outcompete aneuploidy due to its inherent fitness cost. Our results suggest that despite its potential fitness benefits under stress, aneuploidy can be an evolutionary "diversion" rather than a "stepping stone": it can delay, rather than facilitate, the adaptation of the population, and cells that become aneuploid may leave less descendants compared to cells that remain diploid.
Collapse
Affiliation(s)
- Ilia Kohanovski
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- School of Computer Science, Reichman University, Herzliya, Israel
| | - Martin Pontz
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Pétra Vande Zande
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Orna Dahan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Avihu H Yona
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yoav Ram
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Zhang R, Karijolich J. RNA recognition by PKR during DNA virus infection. J Med Virol 2024; 96:e29424. [PMID: 38285432 PMCID: PMC10832991 DOI: 10.1002/jmv.29424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Protein kinase R (PKR) is a double-stranded RNA (dsRNA) binding protein that plays a crucial role in innate immunity during viral infection and can restrict both DNA and RNA viruses. The potency of its antiviral function is further reflected by the large number of viral-encoded PKR antagonists. However, much about the regulation of dsRNA accumulation and PKR activation during viral infection remains unknown. Since DNA viruses do not have an RNA genome or RNA replication intermediates like RNA viruses do, PKR-mediated dsRNA detection in the context of DNA virus infection is particularly intriguing. Here, we review the current state of knowledge regarding the regulation of PKR activation and its antagonism during infection with DNA viruses.
Collapse
Affiliation(s)
- Ruilin Zhang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt Center for Immunobiology, Nashville. Nashville, TN 37232-2363, USA
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt Center for Immunobiology, Nashville. Nashville, TN 37232-2363, USA
| |
Collapse
|
31
|
Desingu PA, Rubeni TP, Nagarajan K, Sundaresan NR. Molecular evolution of 2022 multi-country outbreak-causing monkeypox virus Clade IIb. iScience 2024; 27:108601. [PMID: 38188513 PMCID: PMC10770499 DOI: 10.1016/j.isci.2023.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/16/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
The monkeypox virus (Mpoxv) Clade IIb viruses that caused an outbreak in 2017-18 in Nigeria and its genetically related viruses have been detected in many countries and caused multi-country outbreak in 2022. Since the pandemic-causing Mpoxv Clade IIb viruses are closely related to Clade IIa viruses which mostly cause endemic, the Clade IIb Mpoxv might have certain specific genetic variations that are still largely unknown. Here, we have systematically analyzed genetic alterations in different clades of Mpox viruses. The results suggest that the Mpoxv Clade IIb have genetic variations in terms of genomic gaps, frameshift mutations, in-frame nonsense mutations, amino acid tandem repeats, and APOBEC3 mutations. Further, we observed specific genetic variations in the multiple genes specific for Clade I and Clade IIb, and exclusive genetic variations for Clade IIa and Clade IIb. Collectively, findings shed light on the evolution and genetic variations in the outbreak of 2022 causing Mpoxv Clade IIb.
Collapse
Affiliation(s)
- Perumal Arumugam Desingu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | | | - K. Nagarajan
- Department of Veterinary Pathology, Madras Veterinary College, Vepery, Chennai 600007, Tamil Nadu
- Veterinary and Animal Sciences University (TANUVAS)
| | | |
Collapse
|
32
|
Atasoy MO, Naggar RFE, Rohaim MA, Munir M. Zoonotic and Zooanthroponotic Potential of Monkeypox. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:75-90. [PMID: 38801572 DOI: 10.1007/978-3-031-57165-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The current multicounty outbreak of monkeypox virus (MPXV) posed an emerging and continued challenge to already strained public healthcare sector, around the globe. Since its first identification, monkeypox disease (mpox) remained enzootic in Central and West African countries where reports of human cases are sporadically described. Recent trends in mpox spread outside the Africa have highlighted increased incidence of spillover of the MPXV from animal to humans. While nature of established animal reservoirs remained undefined, several small mammals including rodents, carnivores, lagomorphs, insectivores, non-human primates, domestic/farm animals, and several species of wildlife are proposed to be carrier of the MPXV infection. There are established records of animal-to-human (zoonotic) spread of MPXV through close interaction of humans with animals by eating bushmeat, contracting bodily fluids or trading possibly infected animals. In contrast, there are reports and increasing possibilities of human-to-animal (zooanthroponotic) spread of the MPXV through petting and close interaction with pet owners and animal care workers. We describe here the rationales and molecular factors which predispose the spread of MPXV not only amongst humans but also from animals to humans. A range of continuing opportunities for the spread and evolution of MPXV are discussed to consider risks beyond the currently identified groups. With the possibility of MPXV establishing itself in animal reservoirs, continued and broad surveillance, investigation into unconventional transmissions, and exploration of spillover events are warranted.
Collapse
Affiliation(s)
- Mustafa O Atasoy
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Furness College, Lancaster University, Tower Ave, Bailrigg, LA1 4YG, UK
| | - Rania F El Naggar
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Furness College, Lancaster University, Tower Ave, Bailrigg, LA1 4YG, UK
| | - Mohammed A Rohaim
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Furness College, Lancaster University, Tower Ave, Bailrigg, LA1 4YG, UK
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Furness College, Lancaster University, Tower Ave, Bailrigg, LA1 4YG, UK.
| |
Collapse
|
33
|
Schuele L, Boter M, Nieuwenhuijse DF, Götz H, Fanoy E, de Vries H, Vieyra B, Bavalia R, Hoornenborg E, Molenkamp R, Jonges M, van den Ouden A, Simões M, van den Lubben M, Koopmans M, Welkers MRA, Oude Munnink BB. Circulation, viral diversity and genomic rearrangement in mpox virus in the Netherlands during the 2022 outbreak and beyond. J Med Virol 2024; 96:e29397. [PMID: 38235923 DOI: 10.1002/jmv.29397] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/23/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Mpox is an emerging zoonotic disease which has now spread to over 113 countries as of August 2023, with over 89,500 confirmed human cases. The Netherlands had one of the highest incidence rates in Europe during the peak of the outbreak. In this study, we generated 158 near-complete mpox virus (MPXV) genomes (12.4% of nationwide cases) that were collected throughout the Netherlands from the start of the outbreak in May 2022 to August 2023 to track viral evolution and investigate outbreak dynamics. We detected 14 different viral lineages, suggesting multiple introductions followed by rapid initial spread within the country. The estimated evolutionary rate was relatively high compared to previously described in orthopoxvirus literature, with an estimated 11.58 mutations per year. Genomic rearrangement events occurred at a rate of 0.63% and featured a large deletion event. In addition, based on phylogenetics, we identified multiple potential transmission clusters which could be supported by direct source- and contact tracing data. This led to the identification of at least two main transmission locations at the beginning of the outbreak. We conclude that whole genome sequencing of MPXV is essential to enhance our understanding of outbreak dynamics and evolution of a relatively understudied and emerging zoonotic pathogen.
Collapse
Affiliation(s)
- Leonard Schuele
- Department of Viroscience, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Marjan Boter
- Department of Viroscience, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - David F Nieuwenhuijse
- Department of Viroscience, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Hannelore Götz
- Department of Viroscience, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Public Health, (Infectious Disease Control and Center Sexual Health) Public Health Service Rotterdam-Rijnmond, Rotterdam, Netherlands
| | - Ewout Fanoy
- Department of Infectious Diseases, Public Health Service Amsterdam, Amsterdam, Netherlands
| | - Henry de Vries
- Department of Infectious Diseases, Public Health Service Amsterdam, Amsterdam, Netherlands
- Department of Dermatology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Infectious Diseases, Amsterdam, Netherlands
| | - Bruno Vieyra
- Department of Public Health, (Infectious Disease Control and Center Sexual Health) Public Health Service Rotterdam-Rijnmond, Rotterdam, Netherlands
| | - Roisin Bavalia
- Department of Infectious Diseases, Public Health Service Amsterdam, Amsterdam, Netherlands
| | - Elske Hoornenborg
- Department of Infectious Diseases, Public Health Service Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Infectious Diseases, Amsterdam, Netherlands
| | - Richard Molenkamp
- Department of Viroscience, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Marcel Jonges
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Margarida Simões
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- European Program for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control, (ECDC), Stockholm, Sweden
| | - Mariken van den Lubben
- Department of Infectious Diseases, Public Health Service Amsterdam, Amsterdam, Netherlands
| | - Marion Koopmans
- Department of Viroscience, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Matthijs R A Welkers
- Department of Infectious Diseases, Public Health Service Amsterdam, Amsterdam, Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Bas B Oude Munnink
- Department of Viroscience, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
34
|
Bonnamy M, Brousse A, Pirolles E, Michalakis Y, Blanc S. The genome formula of a multipartite virus is regulated both at the individual segment and the segment group levels. PLoS Pathog 2024; 20:e1011973. [PMID: 38271470 PMCID: PMC10846721 DOI: 10.1371/journal.ppat.1011973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/06/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024] Open
Abstract
Differential accumulation of the distinct genome segments is a common feature of viruses with segmented genomes. The reproducible and specific pattern of genome segment accumulation within the host is referred to as the "genome formula". There is speculation and some experimental support for a functional role of the genome formula by modulating gene expression through copy number variations. However, the mechanisms of genome formula regulation have not yet been identified. In this study, we investigated whether the genome formula of the octopartite nanovirus faba bean necrotic stunt virus (FBNSV) is regulated by processes acting at the individual segment vs. viral population levels. We used a leaf infiltration system to show that the two most accumulated genome segments of the FBNSV possess a greater intrinsic accumulation capacity in Vicia faba tissues than the other segments. Nevertheless, processes acting at the individual segment level are insufficient to generate the genome formula, suggesting the involvement of additional mechanisms acting at the supra-segment level. Indeed, the absence of segments with important functions during systemic infection strongly modifies the relative frequency of the others, indicating that the genome formula is a property of the segment group. Together, these results demonstrate that the FBNSV genome formula is shaped by a complex process acting at both the individual segment and the segment group levels.
Collapse
Affiliation(s)
- Mélia Bonnamy
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- MIVEGEC, CNRS, IRD, Univ Montpellier, Montpellier, France
| | - Andy Brousse
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- MIVEGEC, CNRS, IRD, Univ Montpellier, Montpellier, France
| | - Elodie Pirolles
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | - Stéphane Blanc
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
35
|
Dall'Ara M, Guo Y, Poli D, Gilmer D, Ratti C. Analysis of the relative frequencies of the multipartite BNYVV genomic RNAs in different plants and tissues. J Gen Virol 2024; 105. [PMID: 38197877 DOI: 10.1099/jgv.0.001950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Multipartite virus genomes are composed of two or more segments, each packaged into an independent viral particle. A potential advantage of multipartitism is the regulation of gene expression through changes in the segment copy number. Soil-borne beet necrotic yellow vein virus (BNYVV) is a typical example of multipartism, given its high number of genomic positive-sense RNAs (up to five). Here we analyse the relative frequencies of the four genomic RNAs of BNYVV type B during infection of different host plants (Chenopodium quinoa, Beta macrocarpa and Spinacia oleracea) and organs (leaves and roots). By successfully validating a two-step reverse-transcriptase digital droplet PCR protocol, we show that RNA1 and -2 genomic segments always replicate at low and comparable relative frequencies. In contrast, RNA3 and -4 accumulate with variable relative frequencies, resulting in distinct RNA1 : RNA2 : RNA3 : RNA4 ratios, depending on the infected host species and organ.
Collapse
Affiliation(s)
- M Dall'Ara
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - Y Guo
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - D Poli
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - D Gilmer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, France
| | - C Ratti
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| |
Collapse
|
36
|
Aleksashin NA, Chang STL, Cate JHD. A highly efficient human cell-free translation system. RNA (NEW YORK, N.Y.) 2023; 29:1960-1972. [PMID: 37793791 PMCID: PMC10653386 DOI: 10.1261/rna.079825.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
Cell-free protein synthesis (CFPS) systems enable easy in vitro expression of proteins with many scientific, industrial, and therapeutic applications. Here we present an optimized, highly efficient human cell-free translation system that bypasses many limitations of currently used in vitro systems. This CFPS system is based on extracts from human HEK293T cells engineered to endogenously express GADD34 and K3L proteins, which suppress phosphorylation of translation initiation factor eIF2α. Overexpression of GADD34 and K3L proteins in human cells before cell lysate preparation significantly simplifies lysate preparation. We find that expression of the GADD34 and K3L accessory proteins before cell lysis maintains low levels of phosphorylation of eIF2α in the extracts. During in vitro translation reactions, eIF2α phosphorylation increases moderately in a GCN2-dependent fashion that can be inhibited by GCN2 kinase inhibitors. This new CFPS system should be useful for exploring human translation mechanisms in more physiological conditions outside the cell.
Collapse
Affiliation(s)
- Nikolay A Aleksashin
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, USA
| | - Stacey Tsai-Lan Chang
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, USA
| | - Jamie H D Cate
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, USA
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
37
|
Truchon AR, Chase EE, Gann ER, Moniruzzaman M, Creasey BA, Aylward FO, Xiao C, Gobler CJ, Wilhelm SW. Kratosvirus quantuckense: the history and novelty of an algal bloom disrupting virus and a model for giant virus research. Front Microbiol 2023; 14:1284617. [PMID: 38098665 PMCID: PMC10720644 DOI: 10.3389/fmicb.2023.1284617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Since the discovery of the first "giant virus," particular attention has been paid toward isolating and culturing these large DNA viruses through Acanthamoeba spp. bait systems. While this method has allowed for the discovery of plenty novel viruses in the Nucleocytoviricota, environmental -omics-based analyses have shown that there is a wealth of diversity among this phylum, particularly in marine datasets. The prevalence of these viruses in metatranscriptomes points toward their ecological importance in nutrient turnover in our oceans and as such, in depth study into non-amoebal Nucleocytoviricota should be considered a focal point in viral ecology. In this review, we report on Kratosvirus quantuckense (née Aureococcus anophagefferens Virus), an algae-infecting virus of the Imitervirales. Current systems for study in the Nucleocytoviricota differ significantly from this virus and its relatives, and a litany of trade-offs within physiology, coding potential, and ecology compared to these other viruses reveal the importance of K. quantuckense. Herein, we review the research that has been performed on this virus as well as its potential as a model system for algal-virus interactions.
Collapse
Affiliation(s)
- Alexander R Truchon
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Emily E Chase
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Eric R Gann
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Surgical Critical Care Initiative (SC2i), Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, United States
| | - Brooke A Creasey
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Chuan Xiao
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, United States
| | | | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
38
|
Lucena-Neto FD, Falcão LFM, Vieira-Junior AS, Moraes ECS, David JPF, Silva CC, Sousa JR, Duarte MIS, Vasconcelos PFC, Quaresma JAS. Monkeypox Virus Immune Evasion and Eye Manifestation: Beyond Eyelid Implications. Viruses 2023; 15:2301. [PMID: 38140542 PMCID: PMC10747317 DOI: 10.3390/v15122301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Monkeypox virus (MPXV), belonging to the Poxviridae family and Orthopoxvirus genus, is closely related to the smallpox virus. Initial prodromal symptoms typically include headache, fever, and lymphadenopathy. This review aims to detail various ocular manifestations and immune evasion associated with the monkeypox viral infection and its complications, making it appropriate as a narrative review. Common external ocular manifestations of MPXV typically involve a generalized pustular rash, keratitis, discharges, and dried secretions related to conjunctival pustules, photophobia, and lacrimation. Orthopoxviruses can evade host immune responses by secreting proteins that antagonize the functions of host IFNγ, CC and CXC chemokines, IL-1β, and the complement system. One of the most important transcription factors downstream of pattern recognition receptors binding is IRF3, which controls the expression of the crucial antiviral molecules IFNα and IFNβ. We strongly recommend that ophthalmologists include MPXV as part of their differential diagnosis when they encounter similar cases presenting with ophthalmic manifestations such as conjunctivitis, blepharitis, or corneal lesions. Furthermore, because non-vaccinated individuals are more likely to exhibit these symptoms, it is recommended that healthcare administrators prioritize smallpox vaccination for at-risk groups, including very young children, pregnant women, older adults, and immunocompromised individuals, especially those in close contact with MPXV cases.
Collapse
Affiliation(s)
- Francisco D. Lucena-Neto
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Luiz F. M. Falcão
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Adolfo S. Vieira-Junior
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Evelly C. S. Moraes
- Department of Infectious Disease, School of Medicine, Federal University of Pará, Belém 66075-110, PA, Brazil; (E.C.S.M.); (J.P.F.D.)
| | - Joacy P. F. David
- Department of Infectious Disease, School of Medicine, Federal University of Pará, Belém 66075-110, PA, Brazil; (E.C.S.M.); (J.P.F.D.)
| | - Camilla C. Silva
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Jorge R. Sousa
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Maria I. S. Duarte
- Department of Infectious Disease, School of Medicine, São Paulo University, São Paulo 01246-904, SP, Brazil;
| | - Pedro F. C. Vasconcelos
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Juarez A. S. Quaresma
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
- Department of Infectious Disease, School of Medicine, Federal University of Pará, Belém 66075-110, PA, Brazil; (E.C.S.M.); (J.P.F.D.)
- Department of Infectious Disease, School of Medicine, São Paulo University, São Paulo 01246-904, SP, Brazil;
- Virology Section, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil
| |
Collapse
|
39
|
Ferrareze PAG, Pereira E Costa RA, Thompson CE. Genomic characterization and molecular evolution of human monkeypox viruses. Arch Virol 2023; 168:278. [PMID: 37864757 DOI: 10.1007/s00705-023-05904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/30/2023] [Indexed: 10/23/2023]
Abstract
Monkeypox virus is a member of the family Poxviridae, as are variola virus and vaccinia virus. It has a linear double-strand DNA genome approximately 197 kb long, containing ~190 non-overlapping ORFs. Comparison of members of the Central and West African clades shows the presence of unique genes that are associated with different disease presentations, depending on the strain. The last smallpox vaccination efforts ended in the mid-1980s, and there is concern about the recent spread of human monkeypox disease around the world. Almost 87,000 human monkeypox cases have been diagnosed in the world, of which more than 10,900 were in Brazil. The aim of this study was to evaluate the epidemiology and molecular evolution of hMpxV. From computational biology analysis of 640 hMpxV genomes from 1962 to 2022, synteny breaks and gene conservation were observed between Central and West clade genomes, and strains belonged with the 2022 outbreak assigned to the West African clade. Evidence was found for diversifying selective pressure at specific sites within protein coding sequences, acting on immunomodulatory processes. The existence of different sites under diversifying and purifying selection in paralog genes indicates adaptive mechanisms underlying the host-pathogen interaction of monkeypox virus in humans.
Collapse
Affiliation(s)
- Patrícia Aline Gröhs Ferrareze
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | | | - Claudia Elizabeth Thompson
- Department of Pharmacosciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245/200C Sarmento Leite St, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
40
|
Vande Zande P, Zhou X, Selmecki A. The Dynamic Fungal Genome: Polyploidy, Aneuploidy and Copy Number Variation in Response to Stress. Annu Rev Microbiol 2023; 77:341-361. [PMID: 37307856 PMCID: PMC10599402 DOI: 10.1146/annurev-micro-041320-112443] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fungal species have dynamic genomes and often exhibit genomic plasticity in response to stress. This genome plasticity often comes with phenotypic consequences that affect fitness and resistance to stress. Fungal pathogens exhibit genome plasticity in both clinical and agricultural settings and often during adaptation to antifungal drugs, posing significant challenges to human health. Therefore, it is important to understand the rates, mechanisms, and impact of large genomic changes. This review addresses the prevalence of polyploidy, aneuploidy, and copy number variation across diverse fungal species, with special attention to prominent fungal pathogens and model species. We also explore the relationship between environmental stress and rates of genomic changes and highlight the mechanisms underlying genotypic and phenotypic changes. A comprehensive understanding of these dynamic fungal genomes is needed to identify novel solutions for the increase in antifungal drug resistance.
Collapse
Affiliation(s)
- Pétra Vande Zande
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Xin Zhou
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA;
| |
Collapse
|
41
|
Delamonica B, Davalos L, Larijani M, Anthony SJ, Liu J, MacCarthy T. Evolutionary potential of the monkeypox genome arising from interactions with human APOBEC3 enzymes. Virus Evol 2023; 9:vead047. [PMID: 37577211 PMCID: PMC10422979 DOI: 10.1093/ve/vead047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
APOBEC3, an enzyme subfamily that plays a role in virus restriction by generating mutations at particular DNA motifs or mutational 'hotspots', can drive viral mutagenesis with host-specific preferential hotspot mutations contributing to pathogen variation. While previous analysis of viral genomes from the 2022 Mpox (formerly Monkeypox) disease outbreak has shown a high frequency of C>T mutations at TC motifs, suggesting recent mutations are human APOBEC3-mediated, how emerging monkeypox virus (MPXV) strains will evolve as a consequence of APOBEC3-mediated mutations remains unknown. By measuring hotspot under-representation, depletion at synonymous sites, and a combination of the two, we analyzed APOBEC3-driven evolution in human poxvirus genomes, finding varying hotspot under-representation patterns. While the native poxvirus molluscum contagiosum exhibits a signature consistent with extensive coevolution with human APOBEC3, including depletion of TC hotspots, variola virus shows an intermediate effect consistent with ongoing evolution at the time of eradication. MPXV, likely the result of recent zoonosis, showed many genes with more TC hotspots than expected by chance (over-representation) and fewer GC hotspots than expected (under-representation). These results suggest the MPXV genome: (1) may have evolved in a host with a particular APOBEC GC hotspot preference, (2) has inverted terminal repeat (ITR) regions-which may be exposed to APOBEC3 for longer during viral replication-and longer genes likely to evolve faster, and therefore (3) has a heightened potential for future human APOBEC3-meditated evolution as the virus spreads in the human population. Our predictions of MPXV mutational potential can both help guide future vaccine development and identification of putative drug targets and add urgency to the task of containing human Mpox disease transmission and uncovering the ecology of the virus in its reservoir host.
Collapse
Affiliation(s)
- Brenda Delamonica
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Liliana Davalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mani Larijani
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Pathology, Microbiology, and Immunology, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
42
|
Aguilar Rangel M, Dolan PT, Taguwa S, Xiao Y, Andino R, Frydman J. High-resolution mapping reveals the mechanism and contribution of genome insertions and deletions to RNA virus evolution. Proc Natl Acad Sci U S A 2023; 120:e2304667120. [PMID: 37487061 PMCID: PMC10400975 DOI: 10.1073/pnas.2304667120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/07/2023] [Indexed: 07/26/2023] Open
Abstract
RNA viruses rapidly adapt to selective conditions due to the high intrinsic mutation rates of their RNA-dependent RNA polymerases (RdRps). Insertions and deletions (indels) in viral genomes are major contributors to both deleterious mutational load and evolutionary novelty, but remain understudied. To characterize the mechanistic details of their formation and evolutionary dynamics during infection, we developed a hybrid experimental-bioinformatic approach. This approach, called MultiMatch, extracts insertions and deletions from ultradeep sequencing experiments, including those occurring at extremely low frequencies, allowing us to map their genomic distribution and quantify the rates at which they occur. Mapping indel mutations in adapting poliovirus and dengue virus populations, we determine the rates of indel generation and identify mechanistic and functional constraints shaping indel diversity. Using poliovirus RdRp variants of distinct fidelity and genome recombination rates, we demonstrate tradeoffs between fidelity and Indel generation. Additionally, we show that maintaining translation frame and viral RNA structures constrain the Indel landscape and that, due to these significant fitness effects, Indels exert a significant deleterious load on adapting viral populations. Conversely, we uncover positively selected Indels that modulate RNA structure, generate protein variants, and produce defective interfering genomes in viral populations. Together, our analyses establish the kinetic and mechanistic tradeoffs between misincorporation, recombination, and Indel rates and reveal functional principles defining the central role of Indels in virus evolution, emergence, and the regulation of viral infection.
Collapse
Affiliation(s)
| | - Patrick T. Dolan
- Department of Biology, Stanford University, Stanford, CA94305
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | - Shuhei Taguwa
- Department of Biology, Stanford University, Stanford, CA94305
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka565-0871, Japan
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA94305
| |
Collapse
|
43
|
Khamees A, Awadi S, Al-Shami K, Alkhoun HA, Al-Eitan SF, Alsheikh AM, Saeed A, Al-Zoubi RM, Zoubi MSA. Human monkeypox virus in the shadow of the COVID-19 pandemic. J Infect Public Health 2023; 16:1149-1157. [PMID: 37269693 PMCID: PMC10182868 DOI: 10.1016/j.jiph.2023.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND The end of smallpox in 1980 and the subsequent stopping of vaccination against smallpox was followed by the emergence of monkeypox (mpox), a viral disease of animal origin, meaning that it is transmitted from animal to human. The symptoms of mpox are similar to smallpox, except that they are less severe in terms of clinical features. In the case of public health, the mpox virus is one of the most important orthopoxviruses (such as variola, cowpox, and vaccinia) that come from the family Poxviridae. Mpox occurs mostly in central Africa and sometimes in tropical rainforests or some urban areas. Also, there are threats other than COVID-19, that must be addressed and prevented from spreading, as there has been an outbreak of mpox cases since May 7, 2022, throughout the USA, Europe, Australia, and part of Africa. OBJECTIVES In this review, we will discuss mpox between the past, the present and during the COVID-19 pandemic. Also, it offers an updated summary of the taxonomy, etiology, transmission, and epidemiology of mpox illness. In addition, the current review aims to highlight the importance of emerging pandemics in the same era such as mpox and COVID-19. METHODS A literature search was done for the study using online sources like PubMed and Google Scholar. Publications in English were included. Data for study variables were extracted. After the duplicate articles were eliminated, full-text screening was performed on the papers' titles and abstracts. RESULTS The evaluation included a series documenting mpox virus outbreaks, and both prospective and retrospectiveinvestigations. CONCLUSIONS monkeypox is a viral disease caused by the monkeypox virus (MPXV), which is primarily found in central and western Africa. The disease is transmitted from animals to humans and presents symptoms similar to those of smallpox, including fever, headache, muscle aches, and a rash. Monkeypox can lead to complications such as secondary integument infection, bronchopneumonia, sepsis, and encephalitis, as well as corneal infection that can result in blindness. There is no specific clinically proven treatment for monkeypox, and treatment is primarily supportive. However, antiviral drugs and vaccines are available for cross-protection against the virus, and strict infection control measures and vaccination of close contacts of affected individuals can help prevent and control outbreaks.
Collapse
Affiliation(s)
- Almu'atasim Khamees
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163 Irbid, Jordan; Department of General Surgery, King Hussein Cancer Center, Amman, 11941, Jordan.
| | - Sajeda Awadi
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163 Irbid, Jordan.
| | - Khayry Al-Shami
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163 Irbid, Jordan.
| | - Hayat Abu Alkhoun
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163 Irbid, Jordan.
| | - Sharaf F Al-Eitan
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163 Irbid, Jordan.
| | | | - Ahmad Saeed
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163 Irbid, Jordan.
| | - Raed M Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar; Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha 2713, Qatar; Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan.
| | | |
Collapse
|
44
|
Taouk ML, Steinig E, Taiaroa G, Savic I, Tran T, Higgins N, Tran S, Lee A, Braddick M, Moso MA, Chow EPF, Fairley CK, Towns J, Chen MY, Caly L, Lim CK, Williamson DA. Intra- and interhost genomic diversity of monkeypox virus. J Med Virol 2023; 95:e29029. [PMID: 37565686 PMCID: PMC10952654 DOI: 10.1002/jmv.29029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
The impact and frequency of infectious disease outbreaks demonstrate the need for timely genomic surveillance to inform public health responses. In the largest known outbreak of mpox, genomic surveillance efforts have primarily focused on high-incidence nations in Europe and the Americas, with a paucity of data from South-East Asia and the Western Pacific. Here we analyzed 102 monkeypox virus (MPXV) genomes sampled from 56 individuals in Melbourne, Australia. All genomes fell within the 2022 MPXV outbreak lineage (B.1), with likely onward local transmission detected. We observed within-host diversity and instances of co-infection, and highlight further examples of structural variation and apolipoprotein B editing complex-driven micro-evolution in the current MPXV outbreak. Updating our understanding of MPXV emergence and diversification will inform public health measures and enable monitoring of the virus' evolutionary trajectory throughout the mpox outbreak.
Collapse
Affiliation(s)
- Mona L. Taouk
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Eike Steinig
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - George Taiaroa
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Ivana Savic
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Thomas Tran
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Nasra Higgins
- Victorian Department of HealthMelbourneVictoriaAustralia
| | - Stephanie Tran
- Victorian Department of HealthMelbourneVictoriaAustralia
| | - Alvin Lee
- Victorian Department of HealthMelbourneVictoriaAustralia
| | | | - Michael A. Moso
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Eric P. F. Chow
- Melbourne Sexual Health CentreAlfred HealthMelbourneVictoriaAustralia
- Central Clinical School, Faculty of Medicine, Nursing and Health SciencesMonash UniversityMelbourneVictoriaAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Christopher K. Fairley
- Melbourne Sexual Health CentreAlfred HealthMelbourneVictoriaAustralia
- Central Clinical School, Faculty of Medicine, Nursing and Health SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Janet Towns
- Melbourne Sexual Health CentreAlfred HealthMelbourneVictoriaAustralia
| | - Marcus Y. Chen
- Melbourne Sexual Health CentreAlfred HealthMelbourneVictoriaAustralia
| | - Leon Caly
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Chuan K. Lim
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Deborah A. Williamson
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| |
Collapse
|
45
|
Qudus MS, Cui X, Tian M, Afaq U, Sajid M, Qureshi S, Liu S, Ma J, Wang G, Faraz M, Sadia H, Wu K, Zhu C. The prospective outcome of the monkeypox outbreak in 2022 and characterization of monkeypox disease immunobiology. Front Cell Infect Microbiol 2023; 13:1196699. [PMID: 37533932 PMCID: PMC10391643 DOI: 10.3389/fcimb.2023.1196699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
A new threat to global health re-emerged with monkeypox's advent in early 2022. As of November 10, 2022, nearly 80,000 confirmed cases had been reported worldwide, with most of them coming from places where the disease is not common. There were 53 fatalities, with 40 occurring in areas that had never before recorded monkeypox and the remaining 13 appearing in the regions that had previously reported the disease. Preliminary genetic data suggest that the 2022 monkeypox virus is part of the West African clade; the virus can be transmitted from person to person through direct interaction with lesions during sexual activity. It is still unknown if monkeypox can be transmitted via sexual contact or, more particularly, through infected body fluids. This most recent epidemic's reservoir host, or principal carrier, is still a mystery. Rodents found in Africa can be the possible intermediate host. Instead, the CDC has confirmed that there are currently no particular treatments for monkeypox virus infection in 2022; however, antivirals already in the market that are successful against smallpox may mitigate the spread of monkeypox. To protect against the disease, the JYNNEOS (Imvamune or Imvanex) smallpox vaccine can be given. The spread of monkeypox can be slowed through measures such as post-exposure immunization, contact tracing, and improved case diagnosis and isolation. Final Thoughts: The latest monkeypox epidemic is a new hazard during the COVID-19 epidemic. The prevailing condition of the monkeypox epidemic along with coinfection with COVID-19 could pose a serious condition for clinicians that could lead to the global epidemic community in the form of coinfection.
Collapse
Affiliation(s)
- Muhammad Suhaib Qudus
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xianghua Cui
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Sajid
- RNA Therapeutics Institute, Chan Medical School, University of Massachusetts Worcester, Worcester, MA, United States
| | - Sonia Qureshi
- Krembil Research Institute, University of Health Network, Toronto, ON, Canada
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - June Ma
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guolei Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Muhammad Faraz
- Department of Microbiology, Quaid-I- Azam University, Islamabad, Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
46
|
Breman FC, Haegeman A, Krešić N, Philips W, De Regge N. Lumpy Skin Disease Virus Genome Sequence Analysis: Putative Spatio-Temporal Epidemiology, Single Gene versus Whole Genome Phylogeny and Genomic Evolution. Viruses 2023; 15:1471. [PMID: 37515159 PMCID: PMC10385495 DOI: 10.3390/v15071471] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Lumpy Skin Disease virus is a poxvirus from the genus Capripox that mainly affects bovines and it causes severe economic losses to livestock holders. The Lumpy Skin Disease virus is currently dispersing in Asia, but little is known about detailed phylogenetic relations between the strains and genome evolution. We reconstructed a whole-genome-sequence (WGS)-based phylogeny and compared it with single-gene-based phylogenies. To study population and spatiotemporal patterns in greater detail, we reconstructed networks. We determined that there are strains from multiple clades within the previously defined cluster 1.2 that correspond with recorded outbreaks across Eurasia and South Asia (Indian subcontinent), while strains from cluster 2.5 spread in Southeast Asia. We concluded that using only a single gene (cheap, fast and easy to routinely use) for sequencing lacks phylogenetic and spatiotemporal resolution and we recommend to create at least one WGS whenever possible. We also found that there are three gene regions, highly variable, across the genome of LSDV. These gene regions are located in the 5' and 3' flanking regions of the LSDV genome and they encode genes that are involved in immune evasion strategies of the virus. These may provide a starting point to further investigate the evolution of the virus.
Collapse
Affiliation(s)
- Floris C Breman
- Sciensano, Unit Exotic and Vector Borne Diseases (ExoVec), Groesselenberg 99, B-2800 Ukkel, Belgium
| | - Andy Haegeman
- Sciensano, Unit Exotic and Vector Borne Diseases (ExoVec), Groesselenberg 99, B-2800 Ukkel, Belgium
| | - Nina Krešić
- Sciensano, Unit Exotic and Vector Borne Diseases (ExoVec), Groesselenberg 99, B-2800 Ukkel, Belgium
| | - Wannes Philips
- Sciensano, Unit Exotic and Vector Borne Diseases (ExoVec), Groesselenberg 99, B-2800 Ukkel, Belgium
| | - Nick De Regge
- Sciensano, Unit Exotic and Vector Borne Diseases (ExoVec), Groesselenberg 99, B-2800 Ukkel, Belgium
| |
Collapse
|
47
|
Delamonica B, Davalos L, Larijani M, Anthony SJ, Liu J, MacCarthy T. Evolutionary potential of the monkeypox genome arising from interactions with human APOBEC3 enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546779. [PMID: 37425914 PMCID: PMC10326987 DOI: 10.1101/2023.06.27.546779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
APOBEC3, an enzyme subfamily that plays a role in virus restriction by generating mutations at particular DNA motifs or mutational "hotspots," can drive viral mutagenesis with host-specific preferential hotspot mutations contributing to pathogen variation. While previous analysis of viral genomes from the 2022 Mpox (formerly Monkeypox) disease outbreak has shown a high frequency of C>T mutations at T C motifs, suggesting recent mutations are human APOBEC3-mediated, how emerging monkeypox virus (MPXV) strains will evolve as a consequence of APOBEC3-mediated mutations remains unknown. By measuring hotspot under-representation, depletion at synonymous sites, and a combination of the two, we analyzed APOBEC3-driven evolution in human poxvirus genomes, finding varying hotspot under-representation patterns. While the native poxvirus molluscum contagiosum exhibits a signature consistent with extensive coevolution with human APOBEC3, including depletion of T C hotspots, variola virus shows an intermediate effect consistent with ongoing evolution at the time of eradication. MPXV, likely the result of recent zoonosis, showed many genes with more T C hotspots than expected by chance (over-representation) and fewer G C hotspots than expected (under-representation). These results suggest the MPXV genome: 1) may have evolved in a host with a particular APOBEC G C hotspot preference, 2) has inverted terminal repeat (ITR) regions -which may be exposed to APOBEC3 for longer during viral replication- and longer genes likely to evolve faster, and therefore 3) has a heightened potential for future human APOBEC3-meditated evolution as the virus spreads in the human population. Our predictions of MPXV mutational potential can both help guide future vaccine development and identification of putative drug targets and add urgency to the task of containing human Mpox disease transmission and uncovering the ecology of the virus in its reservoir host.
Collapse
Affiliation(s)
- Brenda Delamonica
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Liliana Davalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA; Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Mani Larijani
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada; Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
48
|
Brinkmann A, Kohl C, Pape K, Bourquain D, Thürmer A, Michel J, Schaade L, Nitsche A. Extensive ITR expansion of the 2022 Mpox virus genome through gene duplication and gene loss. Virus Genes 2023:10.1007/s11262-023-02002-1. [PMID: 37256469 DOI: 10.1007/s11262-023-02002-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/29/2023] [Indexed: 06/01/2023]
Abstract
Poxviruses are known to evolve slower than RNA viruses with only 1-2 mutations/genome/year. Rather than single mutations, rearrangements such as gene gain and loss, which have been discussed as a possible driver for host adaption, were described in poxviruses. In 2022 and 2023 the world is being challenged by the largest global outbreak so far of Mpox virus, and the virus seems to have established itself in the human community for an extended period of time. Here, we report five Mpox virus genomes from Germany with extensive gene duplication and loss, leading to the expansion of the ITR regions from 6400 to up to 24,600 bp. We describe duplications of up to 18,200 bp to the opposed genome end, and deletions at the site of insertion of up to 16,900 bp. Deletions and duplications of genes with functions of supposed immune modulation, virulence and host adaption as B19R, B21R, B22R and D10L are described. In summary, we highlight the need for monitoring rearrangements of the Mpox virus genome rather than for monitoring single mutations only.
Collapse
Affiliation(s)
- Annika Brinkmann
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.
| | - Claudia Kohl
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Katharina Pape
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Daniel Bourquain
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Andrea Thürmer
- Genome Sequencing and Genomic Epidemiology, Methodology and Research Infrastructure, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Janine Michel
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Lars Schaade
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| |
Collapse
|
49
|
Sammartino JC, Cassaniti I, Ferrari A, Piralla A, Bergami F, Arena FA, Paolucci S, Rovida F, Lilleri D, Percivalle E, Baldanti F. Characterization of immune response against monkeypox virus in cohorts of infected patients, historic and newly vaccinated subjects. J Med Virol 2023; 95:e28778. [PMID: 37212258 DOI: 10.1002/jmv.28778] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/23/2023]
Abstract
Monkeypox virus (MPXV) is a zoonotic disease endemic in the rainforest countries of Central and West Africa. Understanding the immune response in zoonosis is fundamental to prevent and contrast viral spreading. MPXV is a close relative of Variola (smallpox) virus and vaccination with vaccinia virus gives approximatively 85% of protection against MPXV. With the emergence of the recent MPXV outbreak, JYNNEOS vaccine has been proposed to individuals at high-risk of exposure. Comparative data on MPXV immune response in vaccinated or infected subjects are still limited. Here we set-up an immunofluorescence method for the evaluation of humoral response elicited by natural infection and healthy vaccinated subjects, including historically smallpox-vaccinated individuals and newly vaccinated subjects. Neutralization assay was also included, and in vaccinated subjects, cell-mediated response was evaluated. We observed that the natural infection produces a strong immune response that can control the disease. In naïve subjects, a second dose boosts the serological response to levels similar to those of the MPXV patients. Last, smallpox-vaccinated controls retain a degree of protection, even after years from vaccination, most visible in the t-cellular response.
Collapse
Affiliation(s)
- Josè Camilla Sammartino
- Department of Clinical, Surgical, Diagnostics and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Irene Cassaniti
- Department of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandro Ferrari
- Department of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonio Piralla
- Department of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federica Bergami
- Department of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesca Adua Arena
- Department of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefania Paolucci
- Department of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesca Rovida
- Department of Clinical, Surgical, Diagnostics and Paediatric Sciences, University of Pavia, Pavia, Italy
- Department of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniele Lilleri
- Department of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Percivalle
- Department of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Department of Clinical, Surgical, Diagnostics and Paediatric Sciences, University of Pavia, Pavia, Italy
- Department of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
50
|
Persi E, Wolf YI, Karamycheva S, Makarova KS, Koonin EV. Compensatory relationship between low-complexity regions and gene paralogy in the evolution of prokaryotes. Proc Natl Acad Sci U S A 2023; 120:e2300154120. [PMID: 37036997 PMCID: PMC10120016 DOI: 10.1073/pnas.2300154120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
The evolution of genomes in all life forms involves two distinct, dynamic types of genomic changes: gene duplication (and loss) that shape families of paralogous genes and extension (and contraction) of low-complexity regions (LCR), which occurs through dynamics of short repeats in protein-coding genes. Although the roles of each of these types of events in genome evolution have been studied, their co-evolutionary dynamics is not thoroughly understood. Here, by analyzing a wide range of genomes from diverse bacteria and archaea, we show that LCR and paralogy represent two distinct routes of evolution that are inversely correlated. The emergence of LCR is a prominent evolutionary mechanism in fast evolving, young protein families, whereas paralogy dominates the comparatively slow evolution of old protein families. The analysis of multiple prokaryotic genomes shows that the formation of LCR is likely a widespread, transient evolutionary mechanism that temporally and locally affects also ancestral functions, but apparently, fades away with time, under mutational and selective pressures, yielding to gene paralogy. We propose that compensatory relationships between short-term and longer-term evolutionary mechanisms are universal in the evolution of life.
Collapse
Affiliation(s)
- Erez Persi
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| | - Svetlana Karamycheva
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| |
Collapse
|