1
|
Yuan WC, Earl AS, Ma S, Alcedo K, Russell JO, Duarte FM, Chu YT, Chang PC, Chen HY, Chi HH, Zhu Q, Rodriguez-Fraticelli AE, Patel SH, Lee YR, Buenrostro JD, Camargo FD. HBO1 functions as an epigenetic barrier to hepatocyte plasticity and reprogramming during liver injury. Cell Stem Cell 2025:S1934-5909(25)00177-8. [PMID: 40403721 DOI: 10.1016/j.stem.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 02/19/2025] [Accepted: 04/22/2025] [Indexed: 05/24/2025]
Abstract
Hepatocytes can reprogram into biliary epithelial cells (BECs) during liver injury, but the underlying epigenetic mechanisms remain poorly understood. Here, we define the chromatin dynamics of this process using single-cell ATAC-seq and identify YAP/TEAD activation as a key driver of chromatin remodeling. An in vivo CRISPR screen highlights the histone acetyltransferase HBO1 as a critical barrier to reprogramming. HBO1 is recruited by YAP to target loci, where it promotes histone H3 lysine 14 acetylation (H3K14ac) and engages the chromatin reader zinc-finger MYND-type containing 8 (ZMYND8) to suppress YAP/TEAD-driven transcription. Loss of HBO1 accelerates chromatin remodeling, enhances YAP binding, and enables a more complete hepatocyte-to-BEC transition. Our findings position HBO1 as an epigenetic brake that restrains YAP-mediated reprogramming, suggesting that targeting HBO1 may enhance hepatocyte plasticity for liver regeneration.
Collapse
Affiliation(s)
- Wei-Chien Yuan
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| | - Andrew S Earl
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sai Ma
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10026 USA
| | - Karel Alcedo
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jacquelyn O Russell
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fabiana M Duarte
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yen-Ting Chu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Pei-Chi Chang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Hsin-Hui Chi
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Qian Zhu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Lester Sue Smith Breast Center, Department of Molecular and Human Genetics, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Alejo E Rodriguez-Fraticelli
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sachin H Patel
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yu-Ru Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Jason D Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fernando D Camargo
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
2
|
Long Y, Li X, Liu Y, Zhang M, Feng F. Inhibition of YAP can down-regulate NLRP3 inflammasome and improve anti-tuberculosis drug-induced liver injury. Xenobiotica 2025:1-9. [PMID: 40288888 DOI: 10.1080/00498254.2025.2497050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/15/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Yes-associated protein (YAP) is a core effector molecule in the Hippo signalling pathway, but its role in antituberculosis drug-induced liver injury (ADLI) is unclear. We aimed to explore the regulatory effects of YAP on the NLRP3 inflammasome in ADLI and its potential hepatoprotective effects.An ADLI animal model was established. Various indicators of experimental animals were detected at 0, 7, 14, and 21 days. On day 7, HE staining observed liver tissue, and liver index, ALT, and AST levels confirmed the ADLI model. YAP's mRNA and protein levels were examined, YAP inhibitor effects were observed, and NLRP3 inflammasome, inflammation, and oxidative stress indicators were analysed.It was found that the mRNA and protein levels of YAP increased during ADLI and then decreased due to the action of YAP inhibitors. YAP caused an elevation in NLRP3 inflammasome indicators, as well as increased expression of inflammation and oxidative stress. After feeding with YAP inhibitors, these indicators were reduced.The results suggest that targeting YAP may be a novel therapeutic strategy for alleviating antituberculosis drug-induced liver injury.
Collapse
Affiliation(s)
- Yifei Long
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xueying Li
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yue Liu
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Mi Zhang
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Fumin Feng
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, China
| |
Collapse
|
3
|
Sussman JH, Cure HW, Yuan S, Ito K, Asangani IA, Garcia BA, Stanger BZ, Katsuda T. In vivo CRISPR screening reveals epigenetic regulators of hepatobiliary plasticity. Genes Dev 2025; 39:603-616. [PMID: 40169232 PMCID: PMC12047657 DOI: 10.1101/gad.352420.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025]
Abstract
Following prolonged liver injury, a small fraction of hepatocytes undergoes reprogramming to become cholangiocytes or biliary epithelial cells (BECs). This physiological process involves chromatin and transcriptional remodeling, but the epigenetic mediators are largely unknown. Here, we exploited a lineage-traced model of liver injury to investigate the role of histone post-translational modification in biliary reprogramming. Using mass spectrometry, we defined the repertoire of histone marks that are globally altered in quantity during reprogramming. Next, applying an in vivo CRISPR screening approach, we identified seven histone-modifying enzymes that alter the efficiency of hepatobiliary reprogramming. Among these, the histone methyltransferase and demethylase Nsd1 and Kdm2a were found to have reciprocal effects on H3K36 methylation that regulated the early and late stages of reprogramming, respectively. Although loss of Nsd1 and Kdm2a affected reprogramming efficiency, cells ultimately acquired the same transcriptomic states. These findings reveal that multiple chromatin regulators exert dynamic and complementary activities to achieve robust cell fate switching, serving as a model for the cell identity changes that occur in various forms of physiological metaplasia or reprogramming.
Collapse
Affiliation(s)
- Jonathan H Sussman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hector W Cure
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Salina Yuan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kenji Ito
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Irfan A Asangani
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Benjamin A Garcia
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ben Z Stanger
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Takeshi Katsuda
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Shan H, Yuan J, Xian L, Li W, Ge Y, Zhang L, Lin T, Lan M, Liu J, Luo Y, Wu Y, Xiao X. USP24 promotes hepatocellular carcinoma progression by deubiquitinating and stabilizing YAP1. Cancer Cell Int 2025; 25:164. [PMID: 40287768 PMCID: PMC12034148 DOI: 10.1186/s12935-025-03796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
Yes-associated protein 1 (YAP1) plays a pivotal role in promoting the progression of hepatocellular carcinoma (HCC). Emerging evidence shows that inducing YAP1 degradation represents a promising strategy. Here, we identified USP24 as a bona fide deubiquitinating enzyme for YAP1. USP24 directly interacts with and deubiquitinates YAP1, thereby stabilizing YAP1 protein levels. Clinically, USP24 was significantly upregulated in HCC tissues and correlated with poor patient prognosis. Depletion of USP24 significantly suppressed the proliferation of HCC cells in vitro, which could be rescued by restoration of YAP1. Consistent with these findings, USP24 knockdown inhibited tumor growth in a xenograft mouse model. Overall, our study reveals that the USP24/YAP1 axis plays a critical role in the malignant progression of HCC, thus providing rationale for potential therapeutic interventions for YAP1-driven HCC.
Collapse
Affiliation(s)
- Huizhuang Shan
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Jiaguo Yuan
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Luhua Xian
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wenmin Li
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yanfen Ge
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lei Zhang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ting Lin
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Mingwei Lan
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Junru Liu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yanfei Luo
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Yingli Wu
- Institute for Translational Medicine on Cell Fate and Disease, Shanghai Ninth People's Hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xinhua Xiao
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Igarashi R, Oda M, Okada R, Yano T, Takahashi S, Pastuhov S, Matano M, Masuda N, Togasaki K, Ohta Y, Sato S, Hishiki T, Suematsu M, Itoh M, Fujii M, Sato T. Generation of human adult hepatocyte organoids with metabolic functions. Nature 2025:10.1038/s41586-025-08861-y. [PMID: 40240606 DOI: 10.1038/s41586-025-08861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/04/2025] [Indexed: 04/18/2025]
Abstract
Proliferating hepatocytes often undergo ductal metaplasia to balance the energy trade-off between cellular functions and replication, hindering the expansion of human adult hepatocytes with functional competency1. Here we demonstrate that the combined activation of Wnt and STAT3 signalling enables long-term self-renewal of human adult hepatocyte organoids. YAP activation facilitates hepatocyte proliferation but commits it towards the biliary duct lineage. By contrast, STAT3 activation by oncostatin M induces hepatocyte proliferation while counteracting ductal metaplasia and maintaining the hepatic identity. Xenotransplanted hepatocyte organoids repopulate the recipient mouse liver and reconstitute the metabolic zonation structure. Upon niche factor removal and hormone supplementation, hepatocyte organoids form cord-like structures with bile canalicular networks and exhibit major liver metabolic functions comparable to those of in vivo hepatocytes. Hepatocyte organoids are amenable to gene editing, prompting functional modelling of inherent metabolic liver diseases. The new culture system offers a promising avenue for developing therapeutic strategies against human liver diseases.
Collapse
Affiliation(s)
- Ryo Igarashi
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Mayumi Oda
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Okada
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation, Tokyo, Japan
| | - Tomoki Yano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Sirirat Takahashi
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Strahil Pastuhov
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Mami Matano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Norio Masuda
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation, Tokyo, Japan
| | - Kazuhiro Togasaki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Ohta
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Saeko Sato
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Takako Hishiki
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Suematsu
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Manabu Itoh
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation, Tokyo, Japan
| | - Masayuki Fujii
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan.
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
6
|
Liu Y, Zhu J, Jin Y, Sun Z, Wu X, Zhou H, Yang Y. Disrupting bile acid metabolism by suppressing Fxr causes hepatocellular carcinoma induced by YAP activation. Nat Commun 2025; 16:3583. [PMID: 40234449 PMCID: PMC12000370 DOI: 10.1038/s41467-025-58809-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 04/03/2025] [Indexed: 04/17/2025] Open
Abstract
Disruption of bile acid (BA) metabolism causes various liver diseases including hepatocellular carcinoma (HCC). However, the underlying molecular mechanism remains elusive. Here, we report that BA metabolism is directly controlled by a repressor function of YAP, which induces cholestasis by altering BA levels and composition via inhibiting the transcription activity of Fxr, a key physiological BA sensor. Elevated BA levels further activate hepatic YAP, resulting in a feedforward cycle leading to HCC. Mechanistically, Teads are found to bind Fxr in a DNA-binding-independent manner and recruit YAP to epigenetically suppress Fxr. Promoting BA excretion, or alleviating YAP repressor function by pharmacologically activating Fxr and inhibiting HDAC1, or overexpressing an Fxr target gene Bsep to promote BA exportation, alleviate cholestasis and HCC caused by YAP activation. Our results identify YAP's transcriptional repressor role in BA metabolism as a key driver of HCC and suggest its potential as a therapeutic target.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Humans
- Bile Acids and Salts/metabolism
- YAP-Signaling Proteins
- Animals
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Mice
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Male
- ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics
- Cell Line, Tumor
- Cell Cycle Proteins/metabolism
- Cholestasis/metabolism
- Cholestasis/genetics
- Gene Expression Regulation, Neoplastic
- Liver/metabolism
- Liver/pathology
- Hep G2 Cells
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Juanjuan Zhu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Yu Jin
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Zhonghe Sun
- Cancer Research Technology Program, Frederick National Laboratory for Cancer, Frederick, MD, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Frederick National Laboratory for Cancer, Frederick, MD, USA
| | - Huiping Zhou
- Department of Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Program in Gastrointestinal Malignancies, Dana-Farber/Harvard Cancer Center, Boston, MA, USA.
| |
Collapse
|
7
|
Sorrentino G. Microenvironmental control of the ductular reaction: balancing repair and disease progression. Cell Death Dis 2025; 16:246. [PMID: 40180915 PMCID: PMC11968979 DOI: 10.1038/s41419-025-07590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
The ductular reaction (DR) is a dynamic adaptive cellular response within the liver, triggered by various hepatic insults and characterized by an expansion of dysmorphic biliary epithelial cells and liver progenitors. This complex response presents a dual role, playing a pivotal function in liver regeneration but, paradoxically, contributing to the progression of liver diseases, depending upon specific contextual factors and signaling pathways involved. This comprehensive review aims to offer a holistic perspective on the DR, focusing into its intricate cellular and molecular mechanisms, highlighting its pathological significance, and exploring its potential therapeutic implications. An up-to-date understanding of the DR in the context of different liver injuries is provided, analyzing its contributions to liver regeneration, inflammation, fibrosis, and ultimately carcinogenesis. Moreover, the review highlights the role of multiple microenvironmental factors, including the influence of extracellular matrix, tissue mechanics and the interplay with the intricate hepatic cell ecosystem in shaping the DR's regulation. Finally, in vitro and in vivo experimental models of the DR will be discussed, providing insights into how researchers can study and manipulate this critical cellular response. By comprehensively addressing the multifaceted nature of the DR, this review contributes to a more profound understanding of its pathophysiological role in liver diseases, thus offering potential therapeutic avenues for hepatic disorders and improving patient outcomes.
Collapse
Affiliation(s)
- Giovanni Sorrentino
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
8
|
Ruan J, Li Q, Jin Y, Yin J, Ye C, Cheng F, Xu S, Chen R, Liu C, Rong X, Jiang M, Fu W, Zheng D, Chen J, Bao X, Wang H, Sheng J, Zhao P. Multiple-omics analysis reveals a dedifferentiation-immune loop in intrahepatic cholangiocarcinoma. Mol Ther 2025; 33:1803-1824. [PMID: 39943686 PMCID: PMC11997497 DOI: 10.1016/j.ymthe.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/21/2024] [Accepted: 02/07/2025] [Indexed: 03/10/2025] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is known for its diverse cell types and resistance to standard treatments, highlighting the importance of understanding its tumor microenvironment (TME) for improved prognostic accuracy and therapeutic innovation. Our study used a multi-omics approach to analyze the ICC TME in both human and mouse samples, linking survival outcomes to the complex cellular interactions within the TME. We discovered a dedifferentiation phenomenon in ICC cells driven by the Yes-associated protein (YAP) pathway, influenced by tumor-associated macrophages (TAMs). Conversely, ICC cells promoted an immunosuppressive environment in TAMs. Targeting TAMs in a transgenic mouse model disrupted this loop, enhancing T cell responses and suggesting a novel immunotherapy avenue for ICC. Our findings reveal a reciprocal dedifferentiation-immunosuppression loop between ICC cells and TAMs, advocating TAM targeting as a promising therapy and highlighting the potential of macrophage modulation in ICC treatment.
Collapse
Affiliation(s)
- Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Qiong Li
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Yuzhi Jin
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Jie Yin
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chanqi Ye
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Fei Cheng
- Pathology Department, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Shuaishuai Xu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Ruyin Chen
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Chuan Liu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern medical University, Guangzhou 510000, Guangdong Province, People's Republic of China
| | - Ming Jiang
- The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou 310058, Zhejiang Province, People's Republic of China
| | - Wenguang Fu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, People's Republic of China
| | - Dayong Zheng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, Guangdong Province, People's Republic of China
| | - Jinzhang Chen
- Department of Oncology, Nanfang Hospital, Southern medical University, Guangzhou 510000, Guangdong Province, People's Republic of China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Houhong Wang
- Department of General Surgery, The First Hospital Affiliated to Fuyang Normal University, Fuyang 236006, Anhui Province, People's Republic of China; Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou 236800, Anhui Province, People's Republic of China.
| | - Jianpeng Sheng
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, Jiangsu Province, People's Republic of China; Chinese Institutes for Medical Research, Beijing 100000, People's Republic of China.
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310003, Zhejiang Province, People's Republic of China.
| |
Collapse
|
9
|
Gupta V, Sehrawat TS, Pinzani M, Strazzabosco M. Portal Fibrosis and the Ductular Reaction: Pathophysiological Role in the Progression of Liver Disease and Translational Opportunities. Gastroenterology 2025; 168:675-690. [PMID: 39251168 PMCID: PMC11885590 DOI: 10.1053/j.gastro.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 09/11/2024]
Abstract
A consistent feature of chronic liver diseases and the hallmark of pathologic repair is the so-called "ductular reaction." This is a histologic abnormality characterized by an expansion of dysmorphic cholangiocytes inside and around portal spaces infiltrated by inflammatory, mesenchymal, and vascular cells. The ductular reaction is a highly regulated response based on the reactivation of morphogenetic signaling mechanisms and a complex crosstalk among a multitude of cell types. The nature and mechanism of these exchanges determine the difference between healthy regenerative liver repair and pathologic repair. An orchestrated signaling among cell types directs mesenchymal cells to deposit a specific extracellular matrix with distinct physical and biochemical properties defined as portal fibrosis. Progression of fibrosis leads to vast architectural and vascular changes known as "liver cirrhosis." The signals regulating the ecology of this microenvironment are just beginning to be addressed. Contrary to the tumor microenvironment, immune modulation inside this "benign" microenvironment is scarcely known. One of the reasons for this is that both the ductular reaction and portal fibrosis have been primarily considered a manifestation of cholestatic liver disease, whereas this phenomenon is also present, albeit with distinctive features, in all chronic human liver diseases. Novel human-derived cellular models and progress in "omics" technologies are increasing our knowledge at a fast pace. Most importantly, this knowledge is on the edge of generating new diagnostic and therapeutic advances. Here, we will critically review the latest advances, in terms of mechanisms, pathophysiology, and treatment prospects. In addition, we will delineate future avenues of research, including innovative translational opportunities.
Collapse
Affiliation(s)
- Vikas Gupta
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Tejasav S Sehrawat
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Massimo Pinzani
- UCL Institute for Liver & Digestive Health, Royal Free Hospital, London, United Kingdom; University of Pittsburgh Medical Center-Mediterranean Institute for Transplantation and Highly Specialized Therapies, Palermo, Italy
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
10
|
Benhassoun R, Morel AP, Jacquot V, Puisieux A, Ouzounova M. The epipliancy journey: Tumor initiation at the mercy of identity crisis and epigenetic drift. Biochim Biophys Acta Rev Cancer 2025; 1880:189307. [PMID: 40174706 DOI: 10.1016/j.bbcan.2025.189307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/05/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Cellular pliancy refers to the unique disposition of different stages of cellular differentiation to transform when exposed to specific oncogenic insults. This concept highlights a strong interconnection between cellular identity and tumorigenesis, and implies overcoming of epigenetic barriers defining cellular states. Emerging evidence suggests that the cell-type-specific response to intrinsic and extrinsic stresses is modulated by accessibility to certain areas of the genome. Understanding the interplay between epigenetic mechanisms, cellular differentiation, and oncogenic insults is crucial for deciphering the complex nature of tumorigenesis and developing targeted therapies. Hence, cellular pliancy relies on a dynamic cooperation between the cellular identity and the cellular context through epigenetic control, including the reactivation of cellular mechanisms, such as epithelial-to-mesenchymal transition (EMT). Such mechanisms and pathways confer plasticity to the cell allowing it to adapt to a hostile environment in a context of tumor initiation, thus changing its cellular identity. Indeed, growing evidence suggests that cancer is a disease of cell identity crisis, whereby differentiated cells lose their defined identity and gain progenitor characteristics. The loss of cell fate commitment is a central feature of tumorigenesis and appears to be a prerequisite for neoplastic transformation. In this context, EMT-inducing transcription factors (EMT-TFs) cooperate with mitogenic oncoproteins to foster malignant transformation. The aberrant activation of EMT-TFs plays an active role in tumor initiation by alleviating key oncosuppressive mechanisms and by endowing cancer cells with stem cell-like properties, including the ability to self-renew, thus changing the course of tumorigenesis. This highly dynamic phenotypic change occurs concomitantly to major epigenome reorganization, a key component of cell differentiation and cancer cell plasticity regulation. The concept of pliancy was initially proposed to address a fundamental question in cancer biology: why are some cells more likely to become cancerous in response to specific oncogenic events at particular developmental stages? We propose the concept of epipliancy, whereby a difference in epigenetic configuration leads to malignant transformation following an oncogenic insult. Here, we present recent studies furthering our understanding of how the epigenetic landscape may impact the modulation of cellular pliancy during early stages of cancer initiation.
Collapse
Affiliation(s)
- Rahma Benhassoun
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, France; LabEx DEVweCAN, Université de Lyon, France
| | - Anne-Pierre Morel
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, France; LabEx DEVweCAN, Université de Lyon, France
| | - Victoria Jacquot
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, France
| | - Alain Puisieux
- Equipe labellisée Ligue contre le cancer, U1339 Inserm - UMR3666 CNRS, Paris, France; Institut Curie, PSL Research University, Paris, France
| | - Maria Ouzounova
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, France; LabEx DEVweCAN, Université de Lyon, France.
| |
Collapse
|
11
|
Chi KY, Kim G, Kim H, Kim H, Jo S, Lee J, Lee Y, Yoon H, Cho S, Kim J, Lee JS, Yeon GB, Kim DS, Park HJ, Kim JH. Optimization of culture conditions to generate vascularized multi-lineage liver organoids with structural complexity and functionality. Biomaterials 2025; 314:122898. [PMID: 39447308 DOI: 10.1016/j.biomaterials.2024.122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Hepatic organoids (HOs), primarily composed of hepatobiliary cells, do not represent the pathogenesis of liver diseases due to the lack of non-parenchymal cells. Multi-lineage liver organoids (mLOs) containing various cell types found in the liver offer a promising in vitro disease model. However, their structural complexity remains challenging to achieve due to the difficulty in optimizing culture conditions that meet the growth need of all component cell types. Here, we demonstrate that cystic HOs generated from hPSCs can be expanded long-term and serve as a continuous source for generating complex mLOs. Assembling cystic HOs with hPSC-derived endothelial and hepatic stellate cell-like cells under conventional HO culture conditions failed to support the development of multiple cell types within mLOs, resulting in biased differentiation towards specific cell types. In contrast, modulating the cAMP/Wnt/Hippo signaling pathways with small molecules during assembly and differentiation phases efficiently generate mLOs containing both hepatic parenchymal and non-parenchymal cells. These mLOs exhibited structural complexity and functional maturity, including vascular network formation between parenchymal lobular structures, cell polarity for bile secretion, and the capacity to respond to fibrotic stimuli. Our study underscores the importance of modulating signaling pathways to enhance mLO structural complexity for applications in modeling liver pathologies.
Collapse
Affiliation(s)
- Kyun Yoo Chi
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Gyeongmin Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Hyojin Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Hyemin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea
| | - Seongyea Jo
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea
| | - Jihun Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Youngseok Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Heeseok Yoon
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Seunghyun Cho
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jeongjun Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jin-Seok Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Gyu-Bum Yeon
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, South Korea; Laboratory of Reprogramming and Differentiation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Dae-Sung Kim
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, South Korea; Laboratory of Reprogramming and Differentiation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Han-Jin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
12
|
Krishnamurthy M, Dhall A, Sahoo S, Schultz CW, Baird MA, Desai P, Odell J, Takahashi N, Nirula M, Zhuang S, Huang Y, Schroeder B, Zhang Y, Thomas MS, Redon C, Robinson C, Thang L, Ileva L, Patel NL, Kalen JD, Varlet AA, Zuela-Sopilniak N, Jha A, Wangsa D, Butcher D, Morgan T, Afzal AN, Chari R, Baktiar K, Kumar S, Pongor L, Difilippantonio S, Aladjem MI, Pommier Y, Jolly MK, Lammerding J, Sharma AK, Thomas A. Metastatic organotropism in small cell lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.07.617066. [PMID: 39416100 PMCID: PMC11483079 DOI: 10.1101/2024.10.07.617066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Metastasis is the leading cause of cancer-related deaths, yet its regulatory mechanisms are not fully understood. Small-cell lung cancer (SCLC) is the most metastatic form of lung cancer, with most patients presenting with widespread disease, making it an ideal model for studying metastasis. However, the lack of suitable preclinical models has limited such studies. We utilized rapid autopsy-derived tumors to develop xenograft models that mimic key features of SCLC, including histopathology, rapid and widespread development of metastasis to the liver, brain, adrenal, bone marrow, and kidneys within weeks, and response to chemotherapy. By integrating in vivo lineage selection with comprehensive bulk and single cell multiomic profiling of transcriptomes and chromatin accessibility, we identified critical cellular programs driving metastatic organotropism to the liver and brain, the most common sites of SCLC metastasis. Our findings reveal the key role of nuclear-cytoskeletal interactions in SCLC liver metastasis. Specifically, the loss of the nuclear envelope protein lamin A/C, encoded by the LMNA gene, increased nuclear deformability and significantly increased the incidence of liver metastasis. Human liver metastases exhibited reduced LMNA expression compared to other metastatic sites, correlating with poorer patient outcomes and increased mortality. This study introduces novel preclinical models for SCLC metastasis and highlights pathways critical for organ-specific metastasis, offering new avenues for the development of targeted therapies to prevent or treat metastatic disease.
Collapse
Affiliation(s)
- Manan Krishnamurthy
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anjali Dhall
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
| | - Christopher W. Schultz
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Michelle A. Baird
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health; Bethesda, USA
| | - Parth Desai
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Hematology & Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA
| | - Jacob Odell
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Nobuyuki Takahashi
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Medical Oncology, National Cancer Center East Hospital, Kashiwa, Japan
| | - Michael Nirula
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sophie Zhuang
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yue Huang
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Brett Schroeder
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yang Zhang
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Maria Sebastian Thomas
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Christophe Redon
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Christina Robinson
- Animal Research Technical Support, Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701
| | - Lai Thang
- Animal Research Technical Support, Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701
| | - Lilia Ileva
- Small Animal Imaging Program, Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Nimit L. Patel
- Small Animal Imaging Program, Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Joseph D. Kalen
- Small Animal Imaging Program, Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Alice-Anaïs Varlet
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Noam Zuela-Sopilniak
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ankita Jha
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health; Bethesda, USA
| | - Darawalee Wangsa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Donna Butcher
- Molecular Histopathology Laboratory, Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tamara Morgan
- Molecular Histopathology Laboratory, Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Alyah N. Afzal
- Laboratory Animal Sciences Program, Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, USA
| | - Raj Chari
- Laboratory Animal Sciences Program, Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, USA
| | - Karim Baktiar
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Suresh Kumar
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lorinc Pongor
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Cancer Genomics and Epigenetics Core Group, Szeged, Hungary
| | - Simone Difilippantonio
- Animal Research Technical Support, Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701
| | - Mirit I. Aladjem
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yves Pommier
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ajit Kumar Sharma
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Anish Thomas
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
13
|
Lei Z, Yang Y, Xiang Y. The utilisation of biliary organoids for biomedical applications. Front Bioeng Biotechnol 2025; 12:1501829. [PMID: 39845376 PMCID: PMC11753252 DOI: 10.3389/fbioe.2024.1501829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Biliary duct injury, biliary atresia (BA), biliary tract tumors, primary sclerosing cholangitis (PSC), and other diseases are commonly encountered in clinical practice within the digestive system. To gain a better understanding of the pathogenesis and development of these diseases and explore more effective treatment methods, organoid technology has recently garnered significant attention. Organoids are three-dimensional structures derived from stem/progenitor cells that can faithfully mimic the intricate structure and physiological function of tissues or organs in vitro. They provide a valuable platform for studying the pathogenesis of biliary tract diseases and offer novel possibilities for repairing and regenerating biliary tract injuries. The main seed cells used to construct biliary tract organoids include primary human biliary tract epithelial cells as well as pluripotent stem cells. The construction of these organoids involves various techniques such as traditional embedding technology, rotary culture technology, hanging drop culture technology, along with emerging approaches like organ chip technology, three-dimensional (3D) printing technology, and four-dimensional (4D) printing technology. This article comprehensively reviews the construction methods of biliary tract organoids while discussing their applications in disease modeling research on disease mechanisms drug screening tissue/organ repair; it also highlights current challenges and suggests future research directions regarding biliary tract organoids which will serve as references for treating common refractory digestive system diseases in clinical practice.
Collapse
Affiliation(s)
- Zhongwen Lei
- Department of Hepatobiliary Surgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Yijun Yang
- Department of Hepatobiliary Surgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Yang Xiang
- Department of Hepatobiliary Surgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
- Haikou Key Laboratory of Clinical Research and Transformation of Digestive Diseases, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| |
Collapse
|
14
|
Tong W, Zhu L, Han P, Bai Y, Wang T, Chen D, Li Z, Chi H, Deng X, Zhang Y, Shen Z. TWEAK is an activator of Hippo-YAP signaling protecting against hepatic Ischemia/ reperfusion injury. Int Immunopharmacol 2024; 143:113567. [PMID: 39500083 DOI: 10.1016/j.intimp.2024.113567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/11/2024] [Accepted: 10/31/2024] [Indexed: 12/08/2024]
Abstract
Hepatic ischemia-reperfusion injury (IRI) represents a formidable complication commonly linked with hemorrhagic shock, liver resection, and transplantation. This study aims to elucidate the role of Tumor Necrosis Factor-like Weak Inducer of Apoptosis (TWEAK) in the pathogenesis of hepatic I/R injury and to delineate the underlying mechanisms involved. Utilizing a hypoxia-reoxygenation model in human liver organoids (HLOs) alongside a murine model of warm ischemia-reperfusion injury, we systematically investigated the interplay between TWEAK, its receptor Fn14, and the HIPPO signaling pathway. Our findings indicate that TWEAK pretreatment significantly mitigates IRI in murine livers as well as hypoxia/reoxygenation injury in HLOs. Notably, administration of adeno-associated virus (AAV) to knock down Fn14 abrogated the protective effects of TWEAK in the murine model. Transcriptome sequencing analysis revealed that the interaction between TWEAK and Fn14 enhances cellular resistance to IRI by activating the HIPPO signaling pathway. Overall, TWEAK emerges as a promising therapeutic target for mitigating hepatic I/R injury, potentially improving outcomes in liver transplantation.
Collapse
Affiliation(s)
- Wen Tong
- The First Central Clinical School, Tianjin Medical University, Tianjin 300070, China
| | - Liuyang Zhu
- The First Central Clinical School, Tianjin Medical University, Tianjin 300070, China
| | - Pinsheng Han
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Bai
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin 300192, China
| | - Tianze Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Dapeng Chen
- The First Central Clinical School, Tianjin Medical University, Tianjin 300070, China
| | - Zhongmin Li
- Department of Hepatobiliary Surgery, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Hao Chi
- The First Central Clinical School, Tianjin Medical University, Tianjin 300070, China
| | - Xiyue Deng
- The First Central Clinical School, Tianjin Medical University, Tianjin 300070, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin 300192, China.
| | - Zhongyang Shen
- Organ Transplantation Centre, Tianjin First Central Hospital, Tianjin 300192, China.
| |
Collapse
|
15
|
Ye B, Yue M, Chen H, Sun C, Shao Y, Jin Q, Zhang C, Yu G. YAP/TAZ as master regulators in liver regeneration and disease: insights into mechanisms and therapeutic targets. Mol Biol Rep 2024; 52:78. [PMID: 39718664 DOI: 10.1007/s11033-024-10177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key downstream effectors of the Hippo pathway that regulate organ size, tissue homeostasis, and cancer development. YAP/TAZ play crucial regulatory roles in organ growth, cell proliferation, cell renewal, and regeneration. Mechanistically, YAP/TAZ influence the occurrence and progression of liver regeneration (LR) through various signaling pathways, including Notch, Wnt/β-catenin, TGF-β/Smad. While the activation of YAP/TAZ can promote the regeneration of damaged liver tissue, their mechanisms of action may differ under various LR conditions. Furthermore, excessive activation of YAP/TAZ may also lead to severe liver damage, manifesting as alcoholic hepatitis, liver fibrosis, and even liver cancer. Here, we review the role and mechanisms of YAP/TAZ in LR and liver disease, highlighting the potential for advancements in clinical diagnosis and treatment targeting YAP/TAZ in these contexts.
Collapse
Affiliation(s)
- Bingyu Ye
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| | - Meijuan Yue
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Hu Chen
- Anyang Food and Drug Inspection and Testing Center, Anyang, 455000, China
| | - Caifang Sun
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yongle Shao
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Qinpeng Jin
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chunyan Zhang
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
16
|
Zhu R, Jiao Z, Yu FX. Advances towards potential cancer therapeutics targeting Hippo signaling. Biochem Soc Trans 2024; 52:2399-2413. [PMID: 39641583 DOI: 10.1042/bst20240244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Decades of research into the Hippo signaling pathway have greatly advanced our understanding of its roles in organ growth, tissue regeneration, and tumorigenesis. The Hippo pathway is frequently dysregulated in human cancers and is recognized as a prominent cancer signaling pathway. Hence, the Hippo pathway represents an ideal molecular target for cancer therapies. This review will highlight recent advancements in targeting the Hippo pathway for cancer treatment and discuss the potential opportunities for developing new therapeutic modalities.
Collapse
Affiliation(s)
- Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhihan Jiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
17
|
Li S, Ou C, Zhang J, Zeng M, Liang K, Peng Q, Gao Y. The Effect of FOXA3 Overexpression on Hepatocyte Differentiation and Liver Regeneration in a Fah cKO Mouse Model. Cell Mol Gastroenterol Hepatol 2024; 19:101438. [PMID: 39662671 PMCID: PMC11786892 DOI: 10.1016/j.jcmgh.2024.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND & AIMS Stimulated by injury or disease, hepatocytes can regenerate and repair liver tissues through proliferation and differentiation. Partial hepatectomy and liver transplantation are effective treatments for liver diseases. This study investigated the effect of FOXA3 on cell differentiation in HepaRG cell lines under 2- and 3-dimensional culture conditions. METHODS Experiments were performed using a HepaRG cell line that stably overexpressed FOXA3 (RF3) and hepatocyte-specific functions. Moreover, a Fah conditional knockout mouse model (Fah cKO mice) was constructed using the CRISPR-Cas9 method and treated with RF3 spheroids for transplantation. Various molecular biology and immunostaining experiments were performed to assess liver function, hepatocyte structure, and expression levels of cell cycle-related proteins. RESULTS HepaRG cells that overexpressed FOXA3 had hepatocyte-specific functions. RF3 spheroids expressed liver markers following gene and protein expression analysis. After RF3 spheroid transplantation, Fah cKO mice exhibited increased survival, reduced weight loss, normalization of liver function and hepatocyte structure, and enhanced expression of hepatocyte differentiation factors. However, the expression of cell cycle-related proteins, including p53 and p21, was decreased in vivo. Injection of an HNF4α antagonist revealed that inhibition of HNF4α effectively suppressed the regenerative capacity of the liver after RF3 spheroid transplantation, resulting in an increase in the number of p53- and p21-positive cells and a decrease in the expression levels of liver function-related genes. CONCLUSIONS FOXA3 plays an important role in hepatocyte function. RF3 spheroid transplantation had a therapeutic effect in the Fah cKO mouse model, improving liver function and promoting liver regeneration.
Collapse
Affiliation(s)
- Shao Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chupeng Ou
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiajun Zhang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Min Zeng
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kangyan Liang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Peng
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, China.
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Zhou Y, Lin X, Jiao Y, Yang D, Li Z, Zhu L, Li Y, Yin S, Li Q, Xu S, Tang D, Zhang S, Yu W, Gao P, Yang L. A brain-to-liver signal mediates the inhibition of liver regeneration under chronic stress in mice. Nat Commun 2024; 15:10361. [PMID: 39609433 PMCID: PMC11605118 DOI: 10.1038/s41467-024-54827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
As the ability of liver regeneration is pivotal for liver disease patients, it will be of high significance and importance to identify the missing piece of the jigsaw influencing the liver regeneration. Here, we report that chronic stress impairs the liver regeneration capacity after partial hepatectomy with increased mortality in male mice. Anatomical tracing and functional mapping identified a neural circuit from noradrenergic neurons in the locus coeruleus (LC) to serotonergic neurons in the rostral medullary raphe region (rMR), which critically contributes to the inhibition of liver regeneration under chronic stress. In addition, hepatic sympathetic nerves were shown to be critical for the inhibitory effects on liver regeneration by releasing norepinephrine (NE), which acts on adrenergic receptor β2 (ADRB2) to block the proinflammatory macrophage activation. Collectively, we reveal a "brain-to-liver" neural connection that mediates chronic stress-evoked deficits in liver regeneration, thus shedding important insights into hepatic disease therapy.
Collapse
Affiliation(s)
- Yanyu Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Xiaoqi Lin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Dan Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Zhengyu Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Ling Zhu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yixuan Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Suqing Yin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Quanfu Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Song Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| |
Collapse
|
19
|
Zhong S, Zheng L, Wu Y, Sun S, Luo Q, Song G, Lü D, Long M. Rotating culture regulates the formation of HepaRG-derived liver organoids via YAP translocation. BMC Biol 2024; 22:262. [PMID: 39548509 PMCID: PMC11568593 DOI: 10.1186/s12915-024-02062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Liver organoid serves as an alternative model for liver pathophysiology in carbohydrate or lipid metabolism and xenobiotic metabolism transformation. Biomechanical cues including spaceflight mission can affect liver organoid construction and their related functions, but their underlying mechanisms are not fully understood yet. Here, a rotating cell culture device, namely Rotating Flat Chamber (RFC), was specifically designed for adhering cells or cell aggregated to elucidate the effects of altered gravity vector on HepaRG-derived liver organoids construction. RESULTS The organoids so formed under RFC presented the fast growth rate and large projection area. Meanwhile, the expressions of two pluripotency markers of SOX9 and CD44 were enhanced. This finding was positively correlated with the increased YAP expression and nuclear translocation as well as the elevated α4β6-integrin expression. Inhibition of YAP expression and nuclear translocation decreased the expression of SOX9 and CD44 under RFC, thereby attenuating the pluripotency of HepaRG-derived liver organoids. CONCLUSIONS In conclusion, we proposed a novel liver organoid construction method using rotating culture, by which the pluripotency of liver organoids so constructed is mediated by α4β6-integrin and YAP translocation. This work furthered the understanding in how the gravity vector orientation affects the construction of liver organoids and the related mechanotransductive pathways.
Collapse
Affiliation(s)
- Shaoyu Zhong
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Lu Zheng
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Wu
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shujin Sun
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Dongyuan Lü
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mian Long
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Bebelman MP, Belicova L, Gralinska E, Jumel T, Lahree A, Sommer S, Shevchenko A, Zatsepin T, Kalaidzidis Y, Vingron M, Zerial M. Hepatocyte differentiation requires anisotropic expansion of bile canaliculi. Development 2024; 151:dev202777. [PMID: 39373104 DOI: 10.1242/dev.202777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024]
Abstract
During liver development, bipotential progenitor cells called hepatoblasts differentiate into hepatocytes or cholangiocytes. Hepatocyte differentiation is uniquely associated with multi-axial polarity, enabling the anisotropic expansion of apical lumina between adjacent cells and formation of a three-dimensional network of bile canaliculi. Cholangiocytes, the cells forming the bile ducts, exhibit the vectorial polarity characteristic of epithelial cells. Whether cell polarization feeds back on the gene regulatory pathways governing hepatoblast differentiation is unknown. Here, we used primary mouse hepatoblasts to investigate the contribution of anisotropic apical expansion to hepatocyte differentiation. Silencing of the small GTPase Rab35 caused isotropic lumen expansion and formation of multicellular cysts with the vectorial polarity of cholangiocytes. Gene expression profiling revealed that these cells express reduced levels of hepatocyte markers and upregulate genes associated with cholangiocyte identity. Timecourse RNA sequencing demonstrated that loss of lumen anisotropy precedes these transcriptional changes. Independent alterations in apical lumen morphology induced either by modulation of the subapical actomyosin cortex or by increased intraluminal pressure caused similar transcriptional changes. These findings suggest that cell polarity and lumen morphogenesis feed back to hepatoblast-to-hepatocyte differentiation.
Collapse
Affiliation(s)
- Maarten P Bebelman
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Lenka Belicova
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Elzbieta Gralinska
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Tobias Jumel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Aparajita Lahree
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Sarah Sommer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Timofei Zatsepin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
21
|
Kim M, Park Y, Kim YS, Ko S. Cellular Plasticity in Gut and Liver Regeneration. Gut Liver 2024; 18:949-960. [PMID: 39081200 PMCID: PMC11565004 DOI: 10.5009/gnl240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 11/16/2024] Open
Abstract
The intestine and liver share a unique regenerative property that sets them apart from other mammalian visceral organs. The intestinal epithelium exhibits rapid renewal, making it one of the fastest renewing tissues in humans. Under physiological conditions, intestinal stem cells within each intestinal crypt continuously differentiate into the different types of intestinal epithelial cells to maintain intestinal homeostasis. However, when exposed to tissue damage or stressful conditions such as inflammation, intestinal epithelial cells in the gastrointestinal tract exhibit plasticity, allowing fully differentiated cells to regain their stem cell properties. Likewise, hepatic epithelial cells possess a remarkable regenerative capacity to restore lost liver mass through proliferation-mediated liver regeneration. When the proliferation-mediated regenerative capacity is impaired, hepatocytes and biliary epithelial cells (BECs) can undergo plasticity-mediated regeneration and replenish each other. The transition of mammalian liver progenitor cells to hepatocytes/BECs can be observed under tightly controlled experimental conditions such as severe hepatocyte injury accompanied by the loss of regenerative capacity. In this review, we will discuss the mechanism by which cellular plasticity contributes to the regeneration process and the potential therapeutic implications of understanding and harnessing cellular plasticity in the gut and liver.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yoojeong Park
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - You Sun Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Polizel GHG, Fanalli SL, Diniz WJS, Cesar ASM, Cônsolo NRB, Fukumasu H, Cánovas A, Fernandes AC, Prati BCT, Furlan É, Pombo GDV, Santana MHDA. Liver transcriptomics-metabolomics integration reveals biological pathways associated with fetal programming in beef cattle. Sci Rep 2024; 14:27681. [PMID: 39532951 PMCID: PMC11557885 DOI: 10.1038/s41598-024-78965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
We investigated the long-term effects of prenatal nutrition on pre-slaughter Nelore bulls using integrative transcriptome and metabolome analyses of liver tissue. Three prenatal nutritional treatments were administered to 126 cows: NP (control, mineral supplementation only), PP (protein-energy supplementation in the third trimester), and FP (protein-energy supplementation throughout pregnancy). Liver samples from 22.5 ± 1-month-old bulls underwent RNA-Seq and targeted metabolomics. Weighted correlation network analysis (WGCNA) identified treatment-associated gene and metabolite co-expression modules, further analyzed using MetaboAnalyst 6.0 (metabolite over-representation analysis and transcriptome-metabolome integrative analysis) and Enrichr (gene over-representation analysis). We identified several significant gene and metabolite modules, as well as hub components associated with energy, protein and oxidative metabolism, regulatory mechanisms, epigenetics, and immune function. The NP transcriptome-metabolome analysis identified key pathways (aminoacyl t-RNA biosynthesis, gluconeogenesis, and PPAR signaling) and hub components (glutamic acid, SLC6A14). PP highlighted pathways (arginine and proline metabolism, TGF-beta signaling, glyoxylate and dicarboxylate metabolism) with arginine and ODC1 as hub components. This study highlights the significant impact of prenatal nutrition on the liver tissue of Nelore bulls, shedding light on critical metabolic pathways and hub components related to energy and protein metabolism, as well as immune system and epigenetics.
Collapse
Affiliation(s)
- Guilherme Henrique Gebim Polizel
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil.
| | - Simara Larissa Fanalli
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil
| | - Wellison J S Diniz
- Department of Animal Sciences, College of Agriculture, Auburn University, Auburn, AL, 36849, USA
| | - Aline Silva Mello Cesar
- Department of Food Science and Technology, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias 11, Piracicaba, 13418-900, SP, Brazil
| | - Nara Regina Brandão Cônsolo
- Department of Nutrition and Animal Production, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Av. Duque de Caxias Norte, 255, 13635- 900, Pirassununga, SP, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil
| | - Angela Cánovas
- Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Arícia Christofaro Fernandes
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil
| | - Barbara Carolina Teixeira Prati
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil
| | - Édison Furlan
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil
| | - Gabriela do Vale Pombo
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil
| | - Miguel Henrique de Almeida Santana
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil
| |
Collapse
|
23
|
Amanda B, Faizah Z, Pakpahan C, Aziz MA, Hamidah B, Ashari FY, Oceandy D. Mammalian Ste-20-like Kinase 1/2 (MST1/2) Inhibitor XMU-MP-1: A Potential Compound to Improve Spermatogenesis in Mouse Model of Diabetes Mellitus. Biomedicines 2024; 12:2513. [PMID: 39595079 PMCID: PMC11591716 DOI: 10.3390/biomedicines12112513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Spermatogenesis is a key process in male reproduction that, if it does not happen correctly, can lead to infertility, with diabetes being one of the most prevalent causes of spermatogenesis disruption. Currently, there is a lack of research examining the potential benefits of targeting cell proliferation to enhance spermatogenesis in this condition. XMU-MP1 has been identified as an inhibitor of MST1, a core component of the Hippo pathway, which is anticipated to promote proliferation and regeneration. This study aims to evaluate the effects of XMU-MP1 treatment on sperm and testicular characteristics in mice. Methods: We used the STZ-induced diabetic mouse model to investigate the impact of administering XMU-MP1 on testicular tissue and sperm parameters. This study compared the seminiferous tubules, specifically focusing on the diameter of the seminiferous tubule, the thickness of the seminiferous tubule epithelium, the ratio of the thickness of the seminiferous tubule epithelium to the diameter of the seminiferous tubules, and the lumen diameter of the seminiferous tubules. We also conducted a comparison of sperm parameters, including sperm concentration, progressive motility, total motility, total motility, and morphology. Results: XMU-MP1-treated mice had a larger spermatogenesis area and better sperm motility than control mice. Diabetic mice treated with XMU-MP1 also showed a trend toward improvements in the spermatogenesis area, sperm concentration, sperm motility, and sperm morphology, although these improvements were not statistically significant. Conclusions: XMU-MP1 serves as a potential compound to improve spermatogenesis in mice.
Collapse
Affiliation(s)
- Bella Amanda
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (Z.F.); (C.P.); (M.A.A.); (B.H.); (F.Y.A.)
- Airlangga University Teaching Hospital, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Zakiyatul Faizah
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (Z.F.); (C.P.); (M.A.A.); (B.H.); (F.Y.A.)
| | - Cennikon Pakpahan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (Z.F.); (C.P.); (M.A.A.); (B.H.); (F.Y.A.)
- Airlangga University Teaching Hospital, Universitas Airlangga, Surabaya 60115, Indonesia
| | - M. Aminudin Aziz
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (Z.F.); (C.P.); (M.A.A.); (B.H.); (F.Y.A.)
| | - Berliana Hamidah
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (Z.F.); (C.P.); (M.A.A.); (B.H.); (F.Y.A.)
| | - Faisal Yusuf Ashari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (Z.F.); (C.P.); (M.A.A.); (B.H.); (F.Y.A.)
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK;
| |
Collapse
|
24
|
Wang P, Xiang M, Zhu L, Zhang R, Zheng X, Zheng Z, Li K. ALKBH5 Protects Against Hepatic Ischemia-Reperfusion Injury by Regulating YTHDF1-Mediated YAP Expression. Int J Mol Sci 2024; 25:11537. [PMID: 39519091 PMCID: PMC11546256 DOI: 10.3390/ijms252111537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Ischemia/reperfusion (I/R) injury with severe cell death is a major complication involved in liver transplantation and resection. The identification of key regulators improving hepatocyte activity may provide potential strategies to clinically resolve I/R-induced injury. N6-methyladenosine (m6A) RNA modification is essential for tissue homeostasis and pathogenesis. However, the potential involvement of m6A in the regulation of hepatocyte activity and liver injury has not been fully explored. In the present study, we found that hepatocyte AlkB homolog H5 (ALKBH5) levels were decreased both in vivo and in vitro I/R models. Hepatocyte-specific ALKBH5 overexpression effectively attenuated I/R-induced liver necrosis and improved cell proliferation in mice. Mechanistically, ALKBH5-mediated m6A demethylation improved the mRNA stability of YTH N6-methyladenosine RNA-binding protein 1 (YTHDF1), thereby increasing its expression, which consequently promoted the translation of Yes-associated protein (YAP). In conclusion, ALKBH5 is a regulator of hepatic I/R injury that improves hepatocyte repair and proliferation by maintaining YTHDF1 stability and YAP content. The ALKBH5-m6A-YTHDF1-YAP axis represents promising therapeutic targets for hepatic I/R injury to improve the prognosis of liver surgery.
Collapse
Affiliation(s)
- Pixiao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Mei Xiang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China;
| | - Ling Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Rixin Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Xiaolin Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Zhi Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Kai Li
- Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| |
Collapse
|
25
|
Wang C, Liang X, Jia Z, Huang Y, Chen H, Wei H, Huang Y, Huang X, Fang X. Changes in the expression profile of serum lncRNAs in pregnant women with high hepatitis B viral load during antiviral and non-antiviral treatment. BMC Pregnancy Childbirth 2024; 24:696. [PMID: 39449132 PMCID: PMC11515369 DOI: 10.1186/s12884-024-06907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
OBJECTIVE This research analyzes the potential of long non-coding RNAs (lncRNAs) as markers in determining the necessity of antiviral treatment in pregnant women by examining alterations in the expression profile of serum lncRNAs in pregnant women with elevated hepatitis B viral load (HBVL) under antiviral and non-antiviral treatment regimens between the second trimester and delivery. METHODS Serum was obtained from 6 s-trimester pregnant women with high HBVL and no intrauterine infection. Then, 3 of these women were randomly selected for antiviral treatment, with the remaining 3 women undergoing non-antiviral treatment as control. Serum samples were again collected from these 6 women before delivery. The expression profile of lncRNAs was analyzed with microarray technology, followed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The axes of hub lncRNA-miRNA-mRNA were identified based on the competing endogenous RNA (ceRNA) network. RESULTS The expression profile of serum lncRNAs in pregnant women with high HBVL changed significantly from the second trimester of pregnancy until delivery under antiviral or non-antiviral treatment. The Venn diagram was utilized to screen out the jointly up-regulated and down-regulated lncRNAs in the serum of pregnant women under antiviral and non-antiviral treatment before delivery. Additionally, the KEGG pathway enrichment analysis results showed that lncRNAs might mediate the Hippo pathway in HBV infection. Based on the ceRNA network, 3 hub lncRNAs (CATG00000076041.1, LINC01310, and G014655) were found to potentially regulate the key gene TP73 in the Hippo pathway. CONCLUSION In this study, we retrieved co-differentially expressed lncRNAs in pregnant women with high HBVL under antiviral or non-antiviral treatment, which may be used as markers for evaluating whether pregnant women with high HBVL may be free of antiviral treatment. This study may provide a basis for preventing potential adverse effects of antiviral treatment on maternal and fetal health.
Collapse
Affiliation(s)
- Cuimin Wang
- Department of Obstetrics and Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China.
- Department of Obstetrics and Gynecology, People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, No. 6, Taoyuan Road, Qingxiu District, Nanning, China.
| | - Xuxia Liang
- Department of Obstetrics and Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China.
- Department of Obstetrics and Gynecology, People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, No. 6, Taoyuan Road, Qingxiu District, Nanning, China.
| | - Zaiming Jia
- Department of Obstetrics and Gynecology, Youjiang Medical College for Nationalities, Baise City, China
| | - Yuting Huang
- Department of Obstetrics and Gynecology, Youjiang Medical College for Nationalities, Baise City, China
| | - Hui Chen
- Department of Obstetrics and Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Haitang Wei
- Department of Obstetrics and Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Yin Huang
- Department of Obstetrics and Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Xizhen Huang
- Department of Obstetrics and Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Xiang Fang
- Department of Obstetrics and Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| |
Collapse
|
26
|
Blakely WJ, Hatterschide J, White EA. HPV18 E7 inhibits LATS1 kinase and activates YAP1 by degrading PTPN14. mBio 2024; 15:e0181124. [PMID: 39248565 PMCID: PMC11481495 DOI: 10.1128/mbio.01811-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
High-risk human papillomavirus (HPV) oncoproteins inactivate cellular tumor suppressors to reprogram host cell signaling pathways. HPV E7 proteins bind and degrade the tumor suppressor PTPN14, thereby promoting the nuclear localization of the YAP1 oncoprotein and inhibiting keratinocyte differentiation. YAP1 is a transcriptional coactivator that drives epithelial cell stemness and self-renewal. YAP1 activity is inhibited by the highly conserved Hippo pathway, which is frequently inactivated in human cancers. MST1/2 and LATS1/2 kinases form the core of the Hippo kinase cascade. Active LATS1 kinase is phosphorylated on threonine 1079 and inhibits YAP1 by phosphorylating it on amino acids including serine 127. Here, we tested the effect of high-risk (carcinogenic) HPV18 E7 on Hippo pathway activity. We found that either PTPN14 knockout or PTPN14 degradation by HPV18 E7 decreased the phosphorylation of LATS1 T1079 and YAP1 S127 in human keratinocytes and inhibited keratinocyte differentiation. Conversely, PTPN14-dependent differentiation required LATS kinases and certain PPxY motifs in PTPN14. Neither MST1/2 kinases nor the putative PTPN14 phosphatase active sites were required for PTPN14 to promote differentiation. Together, these data support that PTPN14 inactivation or degradation of PTPN14 by HPV18 E7 reduce LATS1 activity, promoting active YAP1 and inhibiting keratinocyte differentiation.IMPORTANCEThe Hippo kinase cascade inhibits YAP1, an oncoprotein and driver of cell stemness and self-renewal. There is mounting evidence that the Hippo pathway is targeted by tumor viruses including human papillomavirus. The high-risk HPV E7 oncoprotein promotes YAP1 nuclear localization and the carcinogenic activity of high-risk HPV E7 requires YAP1 activity. Blocking HPV E7-dependent YAP1 activation could inhibit HPV-mediated carcinogenesis, but the mechanism by which HPV E7 activates YAP1 has not been elucidated. Here we report that by degrading the tumor suppressor PTPN14, HPV18 E7 inhibits LATS1 kinase, reducing inhibitory phosphorylation on YAP1. These data support that an HPV oncoprotein can inhibit Hippo signaling to activate YAP1 and strengthen the link between PTPN14 and Hippo signaling in human epithelial cells.
Collapse
Affiliation(s)
- William J. Blakely
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joshua Hatterschide
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Elizabeth A. White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Kurlishchuk Y, Cindric Vranesic A, Jessen M, Kipping A, Ritter C, Kim K, Cramer P, von Eyss B. A non-canonical repressor function of JUN restrains YAP activity and liver cancer growth. EMBO J 2024; 43:4578-4603. [PMID: 39210147 PMCID: PMC11480203 DOI: 10.1038/s44318-024-00188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Yes-associated protein (YAP) and its homolog, transcriptional coactivator with PDZ-binding motif (TAZ), are the main transcriptional downstream effectors of the Hippo pathway. Decreased Hippo pathway activity leads to nuclear translocation of YAP/TAZ where they interact with TEAD transcription factors to induce target gene expression. Unrestrained YAP/TAZ activity can lead to excessive growth and tumor formation in a short time, underscoring the evolutionary need for tight control of these two transcriptional coactivators. Here, we report that the AP-1 component JUN acts as specific repressor of YAP/TAZ at joint target sites to decrease YAP/TAZ activity. This function of JUN is independent of its heterodimeric AP-1 partner FOS and the canonical AP-1 function. Since expression of JUN is itself induced by YAP/TAZ, our work identifies a JUN-dependent negative feedback loop that buffers YAP/TAZ activity at joint genomic sites. This negative feedback loop gets disrupted in liver cancer to unlock the full oncogenic potential of YAP/TAZ. Our results thus demonstrate an additional layer of control for the interplay of YAP/TAZ and AP-1.
Collapse
Affiliation(s)
- Yuliya Kurlishchuk
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - Anita Cindric Vranesic
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - Marco Jessen
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - Alexandra Kipping
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - Christin Ritter
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - KyungMok Kim
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - Paul Cramer
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - Björn von Eyss
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany.
| |
Collapse
|
28
|
Ma X, Zhou Y, Li R, Ding X, Li D, Pan T, Zhang F, Li W. Targeting Hippo/YAP in intrahepatic cholangiocarcinoma: Promising molecules in cancer therapy. Mol Carcinog 2024; 63:1866-1873. [PMID: 39092765 DOI: 10.1002/mc.23791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/08/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024]
Abstract
The tumorigenesis of intrahepatic cholangiocarcinoma (ICC) has been identified to be exceptionally involved in dysregulated Hippo/Yes-associated protein (YAP) signaling pathway (Hippo/YAP). Hippo/YAP functions as a master regulator engaged in a plethora of physiological and oncogenic processes as well. Therefore, the aberrant Hippo/YAP could serve as an Achilles' heel regarding the molecular therapeutic avenues for ICC patients. Herein, we comprehensively review the recent studies about the underlying mechanism of disrupted Hippo/YAP in ICC, how diagnostic values could be utilized upon the critical genes in this pathway, and what opportunities could be given upon this target pathway.
Collapse
Affiliation(s)
- Xing Ma
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yangyang Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruping Li
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xianmin Ding
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Deyu Li
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Tingting Pan
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Fuqiang Zhang
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wenliang Li
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
29
|
Yao Y, Xu T, Li X, Shi X, Wu H, Zhang Z, Xu S. Selenoprotein S maintains intestinal homeostasis in ulcerative colitis by inhibiting necroptosis of colonic epithelial cells through modulation of macrophage polarization. Theranostics 2024; 14:5903-5925. [PMID: 39346531 PMCID: PMC11426251 DOI: 10.7150/thno.97005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Rationale: Macrophage polarization plays an important role in the inflammatory regulation of ulcerative colitis (UC). In this context, necroptosis is a type of cell death that regulates intestinal inflammation, and selenoprotein S (SelS) is a selenoprotein expressed in intestinal epithelial cells and macrophages that prevents intestinal inflammation. However, the underlying mechanisms of SelS in both cell types in regulating UC inflammatory responses remain unclear. Therefore, the direct effect of SelS deficiency on necroptosis in colonic epithelial cells (CECs) was investigated. In addition, whether SelS knockdown exacerbated intestinal inflammation by modulating macrophage polarization to promote necroptosis in CECs was assessed. Methods: The UC model of SelS knockdown mice was established with 3.5% sodium dextran sulfate, and clinical indicators and colon injury were evaluated in the mice. Moreover, SelS knockdown macrophages and CECs cultured alone/cocultured were treated with IL-1β. The M1/M2 polarization, NF-κB/NLRP3 signaling pathway, oxidative stress, necroptosis, inflammatory cytokine, and tight junction indicators were analyzed. In addition, co-immunoprecipitation, liquid chromatography-mass spectrometry, laser confocal analysis, and molecular docking were performed to identify the interacting proteins of SelS. The GEO database was used to assess the correlation of SelS and its target proteins with macrophage polarization. The intervention effect of four selenium supplements on UC was also explored. Results: Ubiquitin A-52 residue ribosomal protein fusion product 1 (Uba52) was identified as a potential interacting protein of SelS and SelS, Uba52, and yes-associated protein (YAP) was associated with macrophage polarization in the colon tissue of patients with UC. SelS deficiency in CECs directly induced reactive oxygen species (ROS) production, necroptosis, cytokine release, and tight junction disruption. SelS deficiency in macrophages inhibited YAP ubiquitination degradation by targeting Uba52, promoted M1 polarization, and activated the NF-κB/NLRP3 signaling pathway, thereby exacerbating ROS-triggered cascade damage in CECs. Finally, exogenous selenium supplementation could effectively alleviate colon injury in UC. Conclusion: SelS is required for maintaining intestinal homeostasis and that its deletion enhances necroptosis in CECs, which is further exacerbated by promoting M1 macrophage polarization, and triggers more severe barrier dysfunction and inflammatory responses in UC.
Collapse
Affiliation(s)
- Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| |
Collapse
|
30
|
Liao S, Chen Y, Luo Y, Zhang M, Min J. The phenotypic changes of Schwann cells promote the functional repair of nerve injury. Neuropeptides 2024; 106:102438. [PMID: 38749170 DOI: 10.1016/j.npep.2024.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/17/2024]
Abstract
Functional recovery after nerve injury is a significant challenge due to the complex nature of nerve injury repair and the non-regeneration of neurons. Schwann cells (SCs), play a crucial role in the nerve injury repair process because of their high plasticity, secretion, and migration abilities. Upon nerve injury, SCs undergo a phenotypic change and redifferentiate into a repair phenotype, which helps in healing by recruiting phagocytes, removing myelin fragments, promoting axon regeneration, and facilitating myelin formation. However, the repair phenotype can be unstable, limiting the effectiveness of the repair. Recent research has found that transplantation of SCs can be an effective treatment option, therefore, it is essential to comprehend the phenotypic changes of SCs and clarify the related mechanisms to develop the transplantation therapy further.
Collapse
Affiliation(s)
- Shufen Liao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yan Chen
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yin Luo
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Mengqi Zhang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Jun Min
- Neurology Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
31
|
Li S, Li X, Yang YB, Wu SF. YAP/TAZ-TEAD activity promotes the malignant transformation of cervical intraepithelial neoplasia through enhancing the characteristics and Warburg effect of cancer stem cells. Apoptosis 2024; 29:1198-1210. [PMID: 38553612 PMCID: PMC11263238 DOI: 10.1007/s10495-023-01935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 07/23/2024]
Abstract
A number of studies have confirmed that Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ)-transcriptional enhanced associate domain (TEAD) activity is the driver of cancer development. However, the role and mechanism of the YAP/TAZ-TEAD pathway in cervical intraepithelial neoplasia (CIN) remain to be clarified. Therefore, this study was designed to observe the effect of YAP/TAZ-TEAD activity on the development of CIN and provide new ideas for the diagnosis and treatment of CIN. Firstly, cervical tissues were collected from CIN patients in different stages [CIN grade 1 (CIN1) tissue, CIN grade 2/3 (CIN 2/3) and squamous cell carcinoma (SCC)] and healthy volunteers. Next, the expression levels of YAP, TAZ and TEAD in cervical tissues and cells were observed by immunohistochemistry, qRT-PCR and western blot. Besides, Z172 and Z183 cells were transfected with siRNA-YAP/TAZ (si-YAP/TAZ) and YAP/TAZ overexpression vector (YAP-5SA). Also, Z172 cells were co-transfected with YAP-5SA and si-TEAD2/4. Subsequently, the stemness characteristics, glycolysis level and malignant transformation of cells in each group were observed by sphere-formation assay, commercial kit, MTT, Transwell, scratch experiment, xenotransplantation and western blot.The expression of YAP, TAZ and TEAD increased significantly in cervical cancer tissue and cell line at the stage of CIN2/3 and SCC. When YAP/TAZ was knocked down, the stemness characteristics, glycolysis level and malignant transformation of cancer cells were notably inhibited; while activating YAP/TAZ exhibited a completely opposite result. In addition, activating YAP/TAZ and knocking down the TEAD expression at the same time significant weakened the effect of activated YAP/TAZ signal on precancerous cells and reduced inhibitory effect of knocking down TEAD alone. YAP/TAZ-TEAD signal activates the characteristics and Warburg effect of cancer stem cells, thereby promoting the malignant transformation of CIN.
Collapse
MESH Headings
- Humans
- Female
- Transcription Factors/genetics
- Transcription Factors/metabolism
- YAP-Signaling Proteins/metabolism
- YAP-Signaling Proteins/genetics
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
- Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Uterine Cervical Dysplasia/pathology
- Uterine Cervical Dysplasia/genetics
- Uterine Cervical Dysplasia/metabolism
- Animals
- Trans-Activators/genetics
- Trans-Activators/metabolism
- TEA Domain Transcription Factors/metabolism
- Cell Line, Tumor
- Mice
- Warburg Effect, Oncologic
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Cell Proliferation/genetics
- Mice, Nude
- Gene Expression Regulation, Neoplastic
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
Collapse
Affiliation(s)
- Shu Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xing Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yong-Bin Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Su-Fang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
32
|
van Luyk ME, Krotenberg Garcia A, Lamprou M, Suijkerbuijk SJE. Cell competition in primary and metastatic colorectal cancer. Oncogenesis 2024; 13:28. [PMID: 39060237 PMCID: PMC11282291 DOI: 10.1038/s41389-024-00530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Adult tissues set the scene for a continuous battle between cells, where a comparison of cellular fitness results in the elimination of weaker "loser" cells. This phenomenon, named cell competition, is beneficial for tissue integrity and homeostasis. In fact, cell competition plays a crucial role in tumor suppression, through elimination of early malignant cells, as part of Epithelial Defense Against Cancer. However, it is increasingly apparent that cell competition doubles as a tumor-promoting mechanism. The comparative nature of cell competition means that mutational background, proliferation rate and polarity all factor in to determine the outcome of these processes. In this review, we explore the intricate and context-dependent involvement of cell competition in homeostasis and regeneration, as well as during initiation and progression of primary and metastasized colorectal cancer. We provide a comprehensive overview of molecular and cellular mechanisms governing cell competition and its parallels with regeneration.
Collapse
Affiliation(s)
- Merel Elise van Luyk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ana Krotenberg Garcia
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Maria Lamprou
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Jacoba Elisabeth Suijkerbuijk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
33
|
Liu Y, Okesola BO, Osuna de la Peña D, Li W, Lin M, Trabulo S, Tatari M, Lawlor RT, Scarpa A, Wang W, Knight M, Loessner D, Heeschen C, Mata A, Pearce OMT. A Self-Assembled 3D Model Demonstrates How Stiffness Educates Tumor Cell Phenotypes and Therapy Resistance in Pancreatic Cancer. Adv Healthc Mater 2024; 13:e2301941. [PMID: 38471128 PMCID: PMC11468796 DOI: 10.1002/adhm.202301941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/16/2024] [Indexed: 03/14/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense and stiff extracellular matrix (ECM) associated with tumor progression and therapy resistance. To further the understanding of how stiffening of the tumor microenvironment (TME) contributes to aggressiveness, a three-dimensional (3D) self-assembling hydrogel disease model is developed based on peptide amphiphiles (PAs, PA-E3Y) designed to tailor stiffness. The model displays nanofibrous architectures reminiscent of native TME and enables the study of the invasive behavior of PDAC cells. Enhanced tuneability of stiffness is demonstrated by interacting thermally annealed aqueous solutions of PA-E3Y (PA-E3Yh) with divalent cations to create hydrogels with mechanical properties and ultrastructure similar to native tumor ECM. It is shown that stiffening of PA-E3Yh hydrogels to levels found in PDAC induces ECM deposition, promotes epithelial-to-mesenchymal transition (EMT), enriches CD133+/CXCR4+ cancer stem cells (CSCs), and subsequently enhances drug resistance. The findings reveal how a stiff 3D environment renders PDAC cells more aggressive and therefore more faithfully recapitulates in vivo tumors.
Collapse
Affiliation(s)
- Ying Liu
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Babatunde O. Okesola
- School of Life SciencesFaculty of Medicine and Health SciencesUniversity of NottinghamNottinghamNG7 2RDUK
| | - David Osuna de la Peña
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Weiqi Li
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Meng‐Lay Lin
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Sara Trabulo
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Marianthi Tatari
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Rita T. Lawlor
- Department of Diagnostics and Public HealthSection of PathologyUniversity of VeronaVerona37134Italy
- ARC‐NetApplied Research on Cancer CentreUniversity of VeronaVerona37134Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public HealthSection of PathologyUniversity of VeronaVerona37134Italy
- ARC‐NetApplied Research on Cancer CentreUniversity of VeronaVerona37134Italy
| | - Wen Wang
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Martin Knight
- Centre for BioengineeringSchool of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Centre for Predictive in vitro ModelsQueen Mary University of LondonLondonE1 4NSUK
| | - Daniela Loessner
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
- Department of Chemical and Biological EngineeringFaculty of EngineeringMonash UniversityMelbourneVIC3800Australia
- Department of Materials Science and EngineeringFaculty of EngineeringMonash UniversityMelbourneVIC3800Australia
- Department of Anatomy and Developmental BiologyFaculty of MedicineNursing and Health SciencesMonash UniversityMelbourneVIC3800Australia
| | - Christopher Heeschen
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute – FPO – IRCCSCandiolo (TO)10060Italy
| | - Alvaro Mata
- School of PharmacyUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
- Biodiscovery InstituteUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
- Department of Chemical and Environmental EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | | |
Collapse
|
34
|
Fan S, Gao Y, Zhao P, Xie G, Zhou Y, Yang X, Li X, Zhang S, Gonzalez FJ, Qu A, Huang M, Bi H. Fenofibrate-promoted hepatomegaly and liver regeneration are PPAR α-dependent and partially related to the YAP pathway. Acta Pharm Sin B 2024; 14:2992-3008. [PMID: 39027236 PMCID: PMC11252459 DOI: 10.1016/j.apsb.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/26/2024] [Accepted: 03/03/2024] [Indexed: 07/20/2024] Open
Abstract
Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, is widely prescribed for hyperlipidemia management. Recent studies also showed that it has therapeutic potential in various liver diseases. However, its effects on hepatomegaly and liver regeneration and the involved mechanisms remain unclear. Here, the study showed that fenofibrate significantly promoted liver enlargement and regeneration post-partial hepatectomy in mice, which was dependent on hepatocyte-expressed PPARα. Yes-associated protein (YAP) is pivotal in manipulating liver growth and regeneration. We further identified that fenofibrate activated YAP signaling by suppressing its K48-linked ubiquitination, promoting its K63-linked ubiquitination, and enhancing the interaction and transcriptional activity of the YAP-TEAD complex. Pharmacological inhibition of YAP-TEAD interaction using verteporfin or suppression of YAP using AAV Yap shRNA in mice significantly attenuated fenofibrate-induced hepatomegaly. Other factors, such as MYC, KRT23, RAS, and RHOA, might also participate in fenofibrate-promoted hepatomegaly and liver regeneration. These studies demonstrate that fenofibrate-promoted liver enlargement and regeneration are PPARα-dependent and partially through activating the YAP signaling, with clinical implications of fenofibrate as a novel therapeutic agent for promoting liver regeneration.
Collapse
Affiliation(s)
- Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guomin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yanying Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Xuan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuaishuai Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| |
Collapse
|
35
|
Shang T, Jiang T, Cui X, Pan Y, Feng X, Dong L, Wang H. Diverse functions of SOX9 in liver development and homeostasis and hepatobiliary diseases. Genes Dis 2024; 11:100996. [PMID: 38523677 PMCID: PMC10958229 DOI: 10.1016/j.gendis.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/13/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2024] Open
Abstract
The liver is the central organ for digestion and detoxification and has unique metabolic and regenerative capacities. The hepatobiliary system originates from the foregut endoderm, in which cells undergo multiple events of cell proliferation, migration, and differentiation to form the liver parenchyma and ductal system under the hierarchical regulation of transcription factors. Studies on liver development and diseases have revealed that SRY-related high-mobility group box 9 (SOX9) plays an important role in liver embryogenesis and the progression of hepatobiliary diseases. SOX9 is not only a master regulator of cell fate determination and tissue morphogenesis, but also regulates various biological features of cancer, including cancer stemness, invasion, and drug resistance, making SOX9 a potential biomarker for tumor prognosis and progression. This review systematically summarizes the latest findings of SOX9 in hepatobiliary development, homeostasis, and disease. We also highlight the value of SOX9 as a novel biomarker and potential target for the clinical treatment of major liver diseases.
Collapse
Affiliation(s)
- Taiyu Shang
- School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Tianyi Jiang
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Xiaowen Cui
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
| | - Yufei Pan
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
| | - Xiaofan Feng
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Liwei Dong
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Hongyang Wang
- School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
- Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University & Ministry of Education, Shanghai 200438, China
| |
Collapse
|
36
|
Nishikawa Y. Aberrant differentiation and proliferation of hepatocytes in chronic liver injury and liver tumors. Pathol Int 2024; 74:361-378. [PMID: 38837539 PMCID: PMC11551836 DOI: 10.1111/pin.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Chronic liver injury induces liver cirrhosis and facilitates hepatocarcinogenesis. However, the effects of this condition on hepatocyte proliferation and differentiation are unclear. We showed that rodent hepatocytes display a ductular phenotype when they are cultured within a collagenous matrix. This process involves transdifferentiation without the emergence of hepatoblastic features and is at least partially reversible. During the ductular reaction in chronic liver diseases with progressive fibrosis, some hepatocytes, especially those adjacent to ectopic ductules, demonstrate ductular transdifferentiation, but the majority of increased ductules originate from the existing bile ductular system that undergoes extensive remodeling. In chronic injury, hepatocyte proliferation is weak but sustained, and most regenerative nodules in liver cirrhosis are composed of clonally proliferating hepatocytes, suggesting that a small fraction of hepatocytes maintain their proliferative capacity in chronic injury. In mouse hepatocarcinogenesis models, hepatocytes activate the expression of various fetal/neonatal genes, indicating that these cells undergo dedifferentiation. Hepatocyte-specific somatic integration of various oncogenes in mice demonstrated that hepatocytes may be the cells of origin for a broad spectrum of liver tumors through transdifferentiation and dedifferentiation. In conclusion, the phenotypic plasticity and heterogeneity of mature hepatocytes are important for understanding the pathogenesis of chronic liver diseases and liver tumors.
Collapse
Affiliation(s)
- Yuji Nishikawa
- President's OfficeAsahikawa Medical UniversityAsahikawaHokkaidoJapan
| |
Collapse
|
37
|
Xu C, Fang X, Song Y, Xiang Z, Xu X, Wei X. Transcriptional Control: A Directional Sign at the Crossroads of Adult Hepatic Progenitor Cells' Fates. Int J Biol Sci 2024; 20:3544-3556. [PMID: 38993564 PMCID: PMC11234216 DOI: 10.7150/ijbs.93739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
Hepatic progenitor cells (HPCs) have a bidirectional potential to differentiate into hepatocytes and bile duct epithelial cells and constitute a second barrier to liver regeneration in the adult liver. They are usually located in the Hering duct in the portal vein region where various cells, extracellular matrix, cytokines, and communication signals together constitute the niche of HPCs in homeostasis to maintain cellular plasticity. In various types of liver injury, different cellular signaling streams crosstalk with each other and point to the inducible transcription factor set, including FoxA1/2/3, YB-1, Foxl1, Sox9, HNF4α, HNF1α, and HNF1β. These transcription factors exert different functions by binding to specific target genes, and their products often interact with each other, with diverse cascades of regulation in different molecular events that are essential for homeostatic regulation, self-renewal, proliferation, and selective differentiation of HPCs. Furthermore, the tumor predisposition of adult HPCs is found to be significantly increased under transcriptional factor dysregulation in transcriptional analysis, and the altered initial commitment of the differentiation pathway of HPCs may be one of the sources of intrahepatic tumors. Related transcription factors such as HNF4α and HNF1 are expected to be future targets for tumor treatment.
Collapse
Affiliation(s)
- Chenhao Xu
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Xixi Fang
- Hangzhou Normal University, Hangzhou 310006, China
| | - Yisu Song
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Xuyong Wei
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| |
Collapse
|
38
|
Blakely WJ, Hatterschide J, White EA. HPV18 E7 inhibits LATS1 kinase and activates YAP1 by degrading PTPN14. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583953. [PMID: 38496413 PMCID: PMC10942435 DOI: 10.1101/2024.03.07.583953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
High-risk human papillomavirus (HPV) oncoproteins inactivate cellular tumor suppressors to reprogram host cell signaling pathways. HPV E7 proteins bind and degrade the tumor suppressor PTPN14, thereby promoting the nuclear localization of the YAP1 oncoprotein and inhibiting keratinocyte differentiation. YAP1 is a transcriptional coactivator that drives epithelial cell stemness and self-renewal. YAP1 activity is inhibited by the highly conserved Hippo pathway, which is frequently inactivated in human cancers. MST1/2 and LATS1/2 kinases form the core of the Hippo kinase cascade. Active LATS1 kinase is phosphorylated on threonine 1079 and inhibits YAP1 by phosphorylating it on amino acids including serine 127. Here, we tested the effect of high-risk (carcinogenic) HPV18 E7 on Hippo pathway activity. We found that either PTPN14 knockout or PTPN14 degradation by HPV18 E7 decreased phosphorylation of LATS1 T1079 and YAP1 S127 in human keratinocytes and inhibited keratinocyte differentiation. Conversely, PTPN14-dependent differentiation required LATS kinases and certain PPxY motifs in PTPN14. Neither MST1/2 kinases nor the putative PTPN14 phosphatase active site were required for PTPN14 to promote differentiation. Taken together, these data support that PTPN14 inactivation or degradation of PTPN14 by HPV18 E7 reduce LATS1 activity, promoting active YAP1 and inhibiting keratinocyte differentiation.
Collapse
Affiliation(s)
- William J. Blakely
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joshua Hatterschide
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Current address: Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - Elizabeth A. White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
39
|
Rathgeber AC, Ludwig LS, Penter L. Single-cell genomics-based immune and disease monitoring in blood malignancies. Clin Hematol Int 2024; 6:62-84. [PMID: 38884110 PMCID: PMC11180218 DOI: 10.46989/001c.117961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/25/2023] [Indexed: 06/18/2024] Open
Abstract
Achieving long-term disease control using therapeutic immunomodulation is a long-standing concept with a strong tradition in blood malignancies. Besides allogeneic hematopoietic stem cell transplantation that continues to provide potentially curative treatment for otherwise challenging diagnoses, recent years have seen impressive progress in immunotherapies for leukemias and lymphomas with immune checkpoint blockade, bispecific monoclonal antibodies, and CAR T cell therapies. Despite their success, non-response, relapse, and immune toxicities remain frequent, thus prioritizing the elucidation of the underlying mechanisms and identifying predictive biomarkers. The increasing availability of single-cell genomic tools now provides a system's immunology view to resolve the molecular and cellular mechanisms of immunotherapies at unprecedented resolution. Here, we review recent studies that leverage these technological advancements for tracking immune responses, the emergence of immune resistance, and toxicities. As single-cell immune monitoring tools evolve and become more accessible, we expect their wide adoption for routine clinical applications to catalyze more precise therapeutic steering of personal immune responses.
Collapse
Affiliation(s)
- Anja C. Rathgeber
- Berlin Institute for Medical Systems BiologyMax Delbrück Center for Molecular Medicine
- Department of Hematology, Oncology, and TumorimmunologyCharité - Universitätsmedizin Berlin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin
| | - Leif S. Ludwig
- Berlin Institute for Medical Systems BiologyMax Delbrück Center for Molecular Medicine
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin
| | - Livius Penter
- Department of Hematology, Oncology, and TumorimmunologyCharité - Universitätsmedizin Berlin
- BIH Biomedical Innovation AcademyBerlin Institute of Health at Charité - Universitätsmedizin Berlin
| |
Collapse
|
40
|
Lin M, Zheng X, Yan J, Huang F, Chen Y, Ding R, Wan J, Zhang L, Wang C, Pan J, Cao X, Fu K, Lou Y, Feng XH, Ji J, Zhao B, Lan F, Shen L, He X, Qiu Y, Jin J. The RNF214-TEAD-YAP signaling axis promotes hepatocellular carcinoma progression via TEAD ubiquitylation. Nat Commun 2024; 15:4995. [PMID: 38862474 PMCID: PMC11167002 DOI: 10.1038/s41467-024-49045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
RNF214 is an understudied ubiquitin ligase with little knowledge of its biological functions or protein substrates. Here we show that the TEAD transcription factors in the Hippo pathway are substrates of RNF214. RNF214 induces non-proteolytic ubiquitylation at a conserved lysine residue of TEADs, enhances interactions between TEADs and YAP, and promotes transactivation of the downstream genes of the Hippo signaling. Moreover, YAP and TAZ could bind polyubiquitin chains, implying the underlying mechanisms by which RNF214 regulates the Hippo pathway. Furthermore, RNF214 is overexpressed in hepatocellular carcinoma (HCC) and inversely correlates with differentiation status and patient survival. Consistently, RNF214 promotes tumor cell proliferation, migration, and invasion, and HCC tumorigenesis in mice. Collectively, our data reveal RNF214 as a critical component in the Hippo pathway by forming a signaling axis of RNF214-TEAD-YAP and suggest that RNF214 is an oncogene of HCC and could be a potential drug target of HCC therapy.
Collapse
Affiliation(s)
- Mengjia Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaoyun Zheng
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jianing Yan
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Fei Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yilin Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Ran Ding
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jinkai Wan
- International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Zhang
- International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenliang Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jinchang Pan
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaolei Cao
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Kaiyi Fu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yan Lou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Xin-Hua Feng
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, 321000, China
| | - Junfang Ji
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, 321000, China
| | - Bin Zhao
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, 321000, China
| | - Fei Lan
- International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, and Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li Shen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Department of Orthopedics Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Xianglei He
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, 3100014, Zhejiang, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
| | - Jianping Jin
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, 321000, China.
| |
Collapse
|
41
|
Hubel E, Neumann A, Fishman S, Schaffer O, Erez N, Shrkihe BA, Shteingard Y, Gross T, Shibolet O, Varol C, Zvibel I. Sortilin in Biliary Epithelial Cells Promotes Ductular Reaction and Fibrosis during Cholestatic Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:941-957. [PMID: 38493927 DOI: 10.1016/j.ajpath.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 03/19/2024]
Abstract
Cholestatic injuries are accompanied by ductular reaction, initiated by proliferation and activation of biliary epithelial cells (BECs), leading to fibrosis. Sortilin (encoded by Sort1) facilitates IL-6 secretion and leukemia inhibitory factor (LIF) signaling. This study investigated the interplay between sortilin and IL-6 and LIF in cholestatic injury-induced ductular reaction, morphogenesis of new ducts, and fibrosis. Cholestatic injury was induced by bile duct ligation (BDL) in wild-type and Sort1-/- mice, with or without augmentation of IL-6 or LIF. Mice with BEC sortilin deficiency (hGFAPcre.Sort1fl/fl) and control mice were subjected to BDL and 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet (DDC) induced cholestatic injury. Sort1-/- mice displayed reduced BEC proliferation and expression of BEC-reactive markers. Administration of LIF or IL-6 restored BEC proliferation in Sort1-/- mice, without affecting BEC-reactive or inflammatory markers. Sort1-/- mice also displayed impaired morphogenesis, which was corrected by LIF treatment. Similarly, hGFAPcre.Sort1fl/fl mice exhibited reduced BEC proliferation, but similar reactive and inflammatory marker expression. Serum IL-6 and LIF were comparable, yet liver pSTAT3 was reduced, indicating that sortilin is essential for co-activation of LIF receptor/gp130 signaling in BECs, but not for IL-6 secretion. hGFAPcre.Sortfl/fl mice displayed impaired morphogenesis and diminished fibrosis after BDL and DDC. In conclusion, sortilin-mediated engagement of LIF signaling in BECs promoted ductular reaction and morphogenesis during cholestatic injury. This study indicates that BEC sortilin is pivotal for the development of fibrosis.
Collapse
Affiliation(s)
- Einav Hubel
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center and Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anat Neumann
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center and Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sigal Fishman
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center and Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ortal Schaffer
- Department of Pediatric Surgery, Assaf Harofe Hospital, Tzrifin, Israel
| | - Noam Erez
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center and Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Bander Abu Shrkihe
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center and Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Shteingard
- Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tamar Gross
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Shibolet
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center and Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Chen Varol
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center and Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Isabel Zvibel
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center and Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
42
|
Okumura A, Aoshima K, Tanimizu N. Generation of in vivo-like multicellular liver organoids by mimicking developmental processes: A review. Regen Ther 2024; 26:219-234. [PMID: 38903867 PMCID: PMC11186971 DOI: 10.1016/j.reth.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024] Open
Abstract
Liver is involved in metabolic reactions, ammonia detoxification, and immunity. Multicellular liver tissue cultures are more desirable for drug screening, disease modeling, and researching transplantation therapy, than hepatocytes monocultures. Hepatocytes monocultures are not stable for long. Further, hepatocyte-like cells induced from pluripotent stem cells and in vivo hepatocytes are functionally dissimilar. Organoid technology circumvents these issues by generating functional ex vivo liver tissue from intrinsic liver progenitor cells and extrinsic stem cells, including pluripotent stem cells. To function as in vivo liver tissue, the liver organoid cells must be arranged precisely in the 3-dimensional space, closely mimicking in vivo liver tissue. Moreover, for long term functioning, liver organoids must be appropriately vascularized and in contact with neighboring epithelial tissues (e.g., bile canaliculi and intrahepatic bile duct, or intrahepatic and extrahepatic bile ducts). Recent discoveries in liver developmental biology allows one to successfully induce liver component cells and generate organoids. Thus, here, in this review, we summarize the current state of knowledge on liver development with a focus on its application in generating different liver organoids. We also cover the future prospects in creating (functionally and structurally) in vivo-like liver organoids using the current knowledge on liver development.
Collapse
Affiliation(s)
- Ayumu Okumura
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Kenji Aoshima
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Naoki Tanimizu
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| |
Collapse
|
43
|
Lee NY, Choi MG, Lee EJ, Koo JH. Interplay between YAP/TAZ and metabolic dysfunction-associated steatotic liver disease progression. Arch Pharm Res 2024; 47:558-570. [PMID: 38874747 PMCID: PMC11217110 DOI: 10.1007/s12272-024-01501-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is becoming an increasingly pressing global health challenge, with increasing mortality rates showing an upward trend. Two million deaths occur annually from cirrhosis and liver cancer together each year. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), key effectors of the Hippo signaling pathway, critically regulate tissue homeostasis and disease progression in the liver. While initial studies have shown that YAP expression is normally restricted to cholangiocytes in healthy livers, the activation of YAP/TAZ is observed in other hepatic cells during chronic liver disease. The disease-driven dysregulation of YAP/TAZ appears to be a critical element in the MASLD progression, contributing to hepatocyte dysfunction, inflammation, and fibrosis. In this study, we focused on the complex roles of YAP/TAZ in MASLD and explored how the YAP/TAZ dysregulation of YAP/TAZ drives steatosis, inflammation, fibrosis, and cirrhosis. Finally, the cell-type-specific functions of YAP/TAZ in different types of hepatic cells, such as hepatocytes, hepatic stellate cells, hepatic macrophages, and biliary epithelial cells are discussed, highlighting the multifaceted impact of YAP/TAZ on liver physiology and pathology.
Collapse
Affiliation(s)
- Na Young Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Myeung Gi Choi
- College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Eui Jin Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Ja Hyun Koo
- Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
44
|
Oliva-Vilarnau N, Beusch CM, Sabatier P, Sakaraki E, Tjaden A, Graetz L, Büttner FA, Dorotea D, Nguyen M, Bergqvist F, Sundström Y, Müller S, Zubarev RA, Schulte G, Tredup C, Gramignoli R, Tietge UJ, Lauschke VM. Wnt/β-catenin and NFκB signaling synergize to trigger growth factor-free regeneration of adult primary human hepatocytes. Hepatology 2024; 79:1337-1351. [PMID: 37870288 PMCID: PMC11095891 DOI: 10.1097/hep.0000000000000648] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND AND AIMS The liver has a remarkable capacity to regenerate, which is sustained by the ability of hepatocytes to act as facultative stem cells that, while normally quiescent, re-enter the cell cycle after injury. Growth factor signaling is indispensable in rodents, whereas Wnt/β-catenin is not required for effective tissue repair. However, the molecular networks that control human liver regeneration remain unclear. METHODS Organotypic 3D spheroid cultures of primary human or murine hepatocytes were used to identify the signaling network underlying cell cycle re-entry. Furthermore, we performed chemogenomic screening of a library enriched for epigenetic regulators and modulators of immune function to determine the importance of epigenomic control for human hepatocyte regeneration. RESULTS Our results showed that, unlike in rodents, activation of Wnt/β-catenin signaling is the major mitogenic cue for adult primary human hepatocytes. Furthermore, we identified TGFβ inhibition and inflammatory signaling through NF-κB as essential steps for the quiescent-to-regenerative switch that allows Wnt/β-catenin-induced proliferation of human cells. In contrast, growth factors, but not Wnt/β-catenin signaling, triggered hyperplasia in murine hepatocytes. High-throughput screening in a human model confirmed the relevance of NFκB and revealed the critical roles of polycomb repressive complex 2, as well as of the bromodomain families I, II, and IV. CONCLUSIONS This study revealed a network of NFκB, TGFβ, and Wnt/β-catenin that controls human hepatocyte regeneration in the absence of exogenous growth factors, identified novel regulators of hepatocyte proliferation, and highlighted the potential of organotypic culture systems for chemogenomic interrogation of complex physiological processes.
Collapse
Affiliation(s)
- Nuria Oliva-Vilarnau
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Christian M. Beusch
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pierre Sabatier
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Eirini Sakaraki
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Frankfurt am Main, Germany
| | - Lukas Graetz
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Florian A. Büttner
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Debra Dorotea
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet, Stockholm, Sweden
| | - My Nguyen
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet, Stockholm, Sweden
| | - Filip Bergqvist
- Department of Medicine, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- The Structural Genomics Consortium (SGC), Karolinska Institutet, Stockholm, Sweden
| | - Yvonne Sundström
- Department of Medicine, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- The Structural Genomics Consortium (SGC), Karolinska Institutet, Stockholm, Sweden
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Frankfurt am Main, Germany
| | - Roman A. Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Claudia Tredup
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Frankfurt am Main, Germany
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnosis Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Uwe J.F. Tietge
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet, Stockholm, Sweden
- Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| |
Collapse
|
45
|
Afonso MB, Marques V, van Mil SW, Rodrigues CM. Human liver organoids: From generation to applications. Hepatology 2024; 79:1432-1451. [PMID: 36815360 PMCID: PMC11095893 DOI: 10.1097/hep.0000000000000343] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023]
Abstract
In the last decade, research into human hepatology has been revolutionized by the development of mini human livers in a dish. These liver organoids are formed by self-organizing stem cells and resemble their native counterparts in cellular content, multicellular architecture, and functional features. Liver organoids can be derived from the liver tissue or pluripotent stem cells generated from a skin biopsy, blood cells, or renal epithelial cells present in urine. With the development of liver organoids, a large part of previous hurdles in modeling the human liver is likely to be solved, enabling possibilities to better model liver disease, improve (personalized) drug testing, and advance bioengineering options. In this review, we address strategies to generate and use organoids in human liver disease modeling, followed by a discussion of their potential application in drug development and therapeutics, as well as their strengths and limitations.
Collapse
Affiliation(s)
- Marta B. Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Saskia W.C. van Mil
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, The Netherlands
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| |
Collapse
|
46
|
Min K, Karuppannan SK, Tae G. The impact of matrix stiffness on hepatic cell function, liver fibrosis, and hepatocellular carcinoma-Based on quantitative data. BIOPHYSICS REVIEWS 2024; 5:021306. [PMID: 38846007 PMCID: PMC11151446 DOI: 10.1063/5.0197875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Over the past few decades, extensive research has explored the development of supportive scaffold materials for in vitro hepatic cell culture, to effectively mimic in vivo microenvironments. It is crucial for hepatic disease modeling, drug screening, and therapeutic evaluations, considering the ethical concerns and practical challenges associated with in vivo experiments. This review offers a comprehensive perspective on hepatic cell culture using bioscaffolds by encompassing all stages of hepatic diseases-from a healthy liver to fibrosis and hepatocellular carcinoma (HCC)-with a specific focus on matrix stiffness. This review begins by providing physiological and functional overviews of the liver. Subsequently, it explores hepatic cellular behaviors dependent on matrix stiffness from previous reports. For hepatic cell activities, softer matrices showed significant advantages over stiffer ones in terms of cell proliferation, migration, and hepatic functions. Conversely, stiffer matrices induced myofibroblastic activation of hepatic stellate cells, contributing to the further progression of fibrosis. Elevated matrix stiffness also correlates with HCC by increasing proliferation, epithelial-mesenchymal transition, metastasis, and drug resistance of HCC cells. In addition, we provide quantitative information on available data to offer valuable perspectives for refining the preparation and development of matrices for hepatic tissue engineering. We also suggest directions for further research on this topic.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sathish Kumar Karuppannan
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
47
|
Alexander WB, Wang W, Hill MA, O'Dell MR, Ruffolo LI, Guo B, Jackson KM, Ullman N, Friedland SC, McCall MN, Patel A, Figueroa-Guilliani N, Georger M, Belt BA, Whitney-Miller CL, Linehan DC, Murphy PJ, Hezel AF. Smad4 restricts injury-provoked biliary proliferation and carcinogenesis. Dis Model Mech 2024; 17:dmm050358. [PMID: 38415925 PMCID: PMC10924230 DOI: 10.1242/dmm.050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 02/29/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a deadly and heterogeneous type of cancer characterized by a spectrum of epidemiologic associations as well as genetic and epigenetic alterations. We seek to understand how these features inter-relate in the earliest phase of cancer development and through the course of disease progression. For this, we studied murine models of liver injury integrating the most commonly occurring gene mutations of CCA - including Kras, Tp53, Arid1a and Smad4 - as well as murine hepatobiliary cancer models and derived primary cell lines based on these mutations. Among commonly mutated genes in CCA, we found that Smad4 functions uniquely to restrict reactive cholangiocyte expansion to liver injury through restraint of the proliferative response. Inactivation of Smad4 accelerates carcinogenesis, provoking pre-neoplastic biliary lesions and CCA development in an injury setting. Expression analyses of Smad4-perturbed reactive cholangiocytes and CCA lines demonstrated shared enriched pathways, including cell-cycle regulation, MYC signaling and oxidative phosphorylation, suggesting that Smad4 may act via these mechanisms to regulate cholangiocyte proliferation and progression to CCA. Overall, we showed that TGFβ/SMAD4 signaling serves as a critical barrier restraining cholangiocyte expansion and malignant transformation in states of biliary injury.
Collapse
Affiliation(s)
- William B. Alexander
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wenjia Wang
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Margaret A. Hill
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael R. O'Dell
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Luis I. Ruffolo
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Bing Guo
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Katherine M. Jackson
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nicholas Ullman
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Scott C. Friedland
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Matthew N. McCall
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ankit Patel
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | - Mary Georger
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Brian A. Belt
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Christa L. Whitney-Miller
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David C. Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Patrick J. Murphy
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Aram F. Hezel
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
48
|
Liu Y, Zhou Y, Ahodantin J, Jin Y, Zhu J, Sun Z, Wu X, Su L, Yang Y. Generation and characterization of mature hepatocyte organoids for liver metabolic studies. J Cell Sci 2024; 137:jcs261961. [PMID: 38700490 PMCID: PMC11166457 DOI: 10.1242/jcs.261961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
Hepatocyte organoids (HOs) generated in vitro are powerful tools for liver regeneration. However, previously reported HOs have mostly been fetal in nature with low expression levels of metabolic genes characteristic of adult liver functions, hampering their application in studies of metabolic regulation and therapeutic testing for liver disorders. Here, we report development of novel culture conditions that combine optimized levels of triiodothyronine (T3) with the removal of growth factors to enable successful generation of mature hepatocyte organoids (MHOs) of both mouse and human origin with metabolic functions characteristic of adult livers. We show that the MHOs can be used to study various metabolic functions including bile and urea production, zonal metabolic gene expression, and metabolic alterations in both alcoholic liver disease and non-alcoholic fatty liver disease, as well as hepatocyte proliferation, injury and cell fate changes. Notably, MHOs derived from human fetal hepatocytes also show improved hepatitis B virus infection. Therefore, these MHOs provide a powerful in vitro model for studies of human liver physiology and diseases. The human MHOs are potentially also a robust research tool for therapeutic development.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA 02115, USA
| | - Yaxing Zhou
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA 02115, USA
| | - James Ahodantin
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Departments of Pharmacology and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yu Jin
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA 02115, USA
| | - Juanjuan Zhu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA 02115, USA
| | - Zhonghe Sun
- Cancer Research Technology Program, Frederick National Laboratory for Cancer, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Frederick National Laboratory for Cancer, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Lishan Su
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Departments of Pharmacology and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Program in Gastrointestinal Malignancies, Dana-Farber/Harvard Cancer Center, 188 Longwood Ave, Boston, MA 02115, USA
- Program in Gastrointestinal Malignancies, Dana-Farber/Harvard Cancer Center, 188 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
49
|
Miura S, Horisawa K, Iwamori T, Tsujino S, Inoue K, Karasawa S, Yamamoto J, Ohkawa Y, Sekiya S, Suzuki A. Hepatocytes differentiate into intestinal epithelial cells through a hybrid epithelial/mesenchymal cell state in culture. Nat Commun 2024; 15:3940. [PMID: 38750036 PMCID: PMC11096382 DOI: 10.1038/s41467-024-47869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/14/2024] [Indexed: 05/18/2024] Open
Abstract
Hepatocytes play important roles in the liver, but in culture, they immediately lose function and dedifferentiate into progenitor-like cells. Although this unique feature is well-known, the dynamics and mechanisms of hepatocyte dedifferentiation and the differentiation potential of dedifferentiated hepatocytes (dediHeps) require further investigation. Here, we employ a culture system specifically established for hepatic progenitor cells to study hepatocyte dedifferentiation. We found that hepatocytes dedifferentiate with a hybrid epithelial/mesenchymal phenotype, which is required for the induction and maintenance of dediHeps, and exhibit Vimentin-dependent propagation, upon inhibition of the Hippo signaling pathway. The dediHeps re-differentiate into mature hepatocytes by forming aggregates, enabling reconstitution of hepatic tissues in vivo. Moreover, dediHeps have an unexpected differentiation potential into intestinal epithelial cells that can form organoids in three-dimensional culture and reconstitute colonic epithelia after transplantation. This remarkable plasticity will be useful in the study and treatment of intestinal metaplasia and related diseases in the liver.
Collapse
Affiliation(s)
- Shizuka Miura
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kenichi Horisawa
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tokuko Iwamori
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Satoshi Tsujino
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kazuya Inoue
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Satsuki Karasawa
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Junpei Yamamoto
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Sayaka Sekiya
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
50
|
Wu B, Shentu X, Nan H, Guo P, Hao S, Xu J, Shangguan S, Cui L, Cen J, Deng Q, Wu Y, Liu C, Song Y, Lin X, Wang Z, Yuan Y, Ma W, Li R, Li Y, Qian Q, Du W, Lai T, Yang T, Liu C, Ma X, Chen A, Xu X, Lai Y, Liu L, Esteban MA, Hui L. A spatiotemporal atlas of cholestatic injury and repair in mice. Nat Genet 2024; 56:938-952. [PMID: 38627596 DOI: 10.1038/s41588-024-01687-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/09/2024] [Indexed: 05/09/2024]
Abstract
Cholestatic liver injuries, characterized by regional damage around the bile ductular region, lack curative therapies and cause considerable mortality. Here we generated a high-definition spatiotemporal atlas of gene expression during cholestatic injury and repair in mice by integrating spatial enhanced resolution omics sequencing and single-cell transcriptomics. Spatiotemporal analyses revealed a key role of cholangiocyte-driven signaling correlating with the periportal damage-repair response. Cholangiocytes express genes related to recruitment and differentiation of lipid-associated macrophages, which generate feedback signals enhancing ductular reaction. Moreover, cholangiocytes express high TGFβ in association with the conversion of liver progenitor-like cells into cholangiocytes during injury and the dampened proliferation of periportal hepatocytes during recovery. Notably, Atoh8 restricts hepatocyte proliferation during 3,5-diethoxycarbonyl-1,4-dihydro-collidin damage and is quickly downregulated after injury withdrawal, allowing hepatocytes to respond to growth signals. Our findings lay a keystone for in-depth studies of cellular dynamics and molecular mechanisms of cholestatic injuries, which may further develop into therapies for cholangiopathies.
Collapse
Affiliation(s)
- Baihua Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyi Shentu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haitao Nan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Shijie Hao
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiangshan Xu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Shuncheng Shangguan
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- BGI Research, Shenzhen, China
| | - Lei Cui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiuting Deng
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yan Wu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Chang Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yumo Song
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Xiumei Lin
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | | | - Yue Yuan
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Wen Ma
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Ronghai Li
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yikang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qiwei Qian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Wensi Du
- China National GeneBank, BGI Research, Shenzhen, China
| | - Tingting Lai
- China National GeneBank, BGI Research, Shenzhen, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen, China
| | - Chuanyu Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ao Chen
- BGI Research, Shenzhen, China
| | - Xun Xu
- BGI Research, Shenzhen, China
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China
| | - Yiwei Lai
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
| | - Longqi Liu
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- China National GeneBank, BGI Research, Shenzhen, China.
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
| | - Miguel A Esteban
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|