1
|
Kalita B, Martinez-Cebrian G, McEvoy J, Allensworth M, Knight M, Magli A, Perlingeiro RCR, Dyer MA, Stewart E, Dynlacht BD. PAX translocations remodel mitochondrial metabolism through altered leucine usage in rhabdomyosarcoma. Cell 2025; 188:2757-2777.e22. [PMID: 40185100 DOI: 10.1016/j.cell.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 01/09/2025] [Accepted: 03/06/2025] [Indexed: 04/07/2025]
Abstract
Alveolar rhabdomyosarcoma (ARMS) patients harboring paired-box fusion proteins (PAX3/7-FOXO1) exhibit a greater incidence of tumor relapse, metastasis, and poor survival outcome, thereby underscoring the urgent need to develop effective therapies to treat this subtype of childhood cancer. To uncover mechanisms that contribute to tumor initiation, we develop a muscle progenitor model and use epigenomic approaches to unravel genome rewiring events mediated by PAX3/7 fusion proteins. Among the key targets of PAX3/7 fusion proteins, we identify a cohort of oncogenes, fibroblast growth factor (FGF) receptors, tRNA-modifying enzymes, and genes essential for mitochondrial metabolism and protein translation, which we successfully targeted in preclinical trials. We identify leucine usage as a key factor driving the growth of aggressive PAX-fusion tumors, as limiting its bioavailability impaired oxidative phosphorylation and mitochondrial metabolism, delaying tumor progression and improving survival in vivo. Our data provide a compelling list of actionable targets and suggest promising new strategies to treat this tumor.
Collapse
Affiliation(s)
- Bhargab Kalita
- Department of Pathology and Perlmutter Cancer Institute, New York University School of Medicine, New York, NY 10016, USA.
| | - Gerard Martinez-Cebrian
- Department of Pathology and Perlmutter Cancer Institute, New York University School of Medicine, New York, NY 10016, USA; Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Justina McEvoy
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, TN 38105, USA
| | - Melody Allensworth
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, TN 38105, USA
| | - Michelle Knight
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, TN 38105, USA; Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Genomic Medicine Unit, Sanofi, 225nd Avenue, Waltham, MA 02451, USA
| | - Rita C R Perlingeiro
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, TN 38105, USA
| | - Elizabeth Stewart
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, TN 38105, USA; Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Brian David Dynlacht
- Department of Pathology and Perlmutter Cancer Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
2
|
Ahmad ST, Li Y, Garcia-Lopez J, Gudenas BL, Hadley J, Paul L, Wu SC, Refaat A, Kojic M, Batts M, Soliman T, Pitre A, Arnskötter F, Zindy F, Jones A, Twarog NR, Mayasundari A, Bianski B, Tinkle C, Shirinifard A, Janke L, Lu M, Lewis SA, Onar-Thomas A, Pfister SM, Gajjar A, Baker SJ, Roussel MF, Rankovic Z, Robinson GW, Orr BA, Wainwright B, Shelat AA, Waszak SM, Kutscher LM, Lin H, Northcott PA. Genetic modeling of ELP1-associated Sonic hedgehog medulloblastoma identifies MDM2 as a selective therapeutic target. Cancer Cell 2025:S1535-6108(25)00173-4. [PMID: 40378836 DOI: 10.1016/j.ccell.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 02/23/2025] [Accepted: 04/28/2025] [Indexed: 05/19/2025]
Abstract
Germline loss-of-function (LOF) variants in Elongator acetyltransferase complex subunit 1 (ELP1) are the most prevalent predisposing genetic events in childhood medulloblastoma (MB), accounting for ∼30% of the Sonic hedgehog (SHH) 3 subtype. The mechanism(s) by which germline ELP1 deficiency provokes SHH-MB pathogenesis remain unknown. Genetically engineered mice mimicking heterozygous Elp1 LOF (Elp1HET) seen in affected germline carriers exhibit hallmark features of premalignancy in cerebellar granule neuron progenitors (GNPs), including increased DNA replication stress, genomic instability, accelerated cell cycle, and stalled differentiation. Orthotopic transplantation of Elp1HET GNPs harboring somatic Ptch1 inactivation yields SHH-MB-like tumors with compromised p53 signaling, providing a plausible explanation for the exclusivity of ELP1-associated MBs in the SHH-3 subtype. Preclinical treatment of ELP1-mutant patient-derived xenografts with an FDA-approved MDM2 inhibitor reactivates p53-dependent apoptosis and extends survival. Our findings functionally substantiate the role of ELP1 deficiency in SHH-MB predisposition and nominate therapeutics targeting MDM2 as a rational treatment option.
Collapse
Affiliation(s)
- Shiekh Tanveer Ahmad
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yiran Li
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jesus Garcia-Lopez
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brian L Gudenas
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jennifer Hadley
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Leena Paul
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephanie C Wu
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alaa Refaat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marija Kojic
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Melissa Batts
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taha Soliman
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Aaron Pitre
- Cell and Tissue Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Frederik Arnskötter
- Hopp Children's Cancer Center Heidelberg (KiTZ), JRG Developmental Origins of Pediatric Cancers, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Frederique Zindy
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Nathaniel R Twarog
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anand Mayasundari
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brandon Bianski
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christopher Tinkle
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Laura Janke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Meifen Lu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sara A Lewis
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Division Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Amar Gajjar
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Suzanne J Baker
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Giles W Robinson
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brandon Wainwright
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Anang A Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sebastian M Waszak
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA
| | - Lena M Kutscher
- Hopp Children's Cancer Center Heidelberg (KiTZ), JRG Developmental Origins of Pediatric Cancers, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hong Lin
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul A Northcott
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
3
|
Škapik IP, Giacomelli C, Hahn S, Deinlein H, Gallant P, Diebold M, Biayna J, Hendricks A, Olimski L, Otto C, Kastner C, Wolf E, Schülein-Völk C, Maurus K, Rosenwald A, Schleussner N, Jackstadt RF, Schlegel N, Germer CT, Bushell M, Eilers M, Schmidt S, Wiegering A. Maintenance of p-eIF2α levels by the eIF2B complex is vital for colorectal cancer. EMBO J 2025; 44:2075-2105. [PMID: 40016419 PMCID: PMC11962125 DOI: 10.1038/s44318-025-00381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 03/01/2025] Open
Abstract
Protein synthesis is an essential process, deregulated in multiple tumor types showing differential dependence on translation factors compared to untransformed tissue. We show that colorectal cancer (CRC) with loss-of-function mutation in the APC tumor suppressor depends on an oncogenic translation program regulated by the ability to sense phosphorylated eIF2α (p-eIF2α). Despite increased protein synthesis rates following APC loss, eIF2α phosphorylation, typically associated with translation inhibition, is enhanced in CRC. Elevated p-eIF2α, and its proper sensing by the decameric eIF2B complex, are essential to balance translation. Knockdown or mutation of eIF2Bα and eIF2Bδ, two eIF2B subunits responsible for sensing p-eIF2α, impairs CRC viability, demonstrating that the eIF2B/p-eIF2α nexus is vital for CRC. Specifically, the decameric eIF2B linked by two eIF2Bα subunits is critical for translating growth-promoting mRNAs which are induced upon APC loss. Depletion of eIF2Bα in APC-deficient murine and patient-derived organoids establishes a therapeutic window, validating eIF2Bα as a target for clinical intervention. In conclusion, we demonstrate how the expression of the oncogenic signature in CRC is crucially controlled at the translational level.
Collapse
Affiliation(s)
- Ivana Paskov Škapik
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany
- Goethe University Frankfurt, University Hospital, Department of General, Visceral, Transplant and Thoracic Surgery, Frankfurt am Main, Germany
| | - Chiara Giacomelli
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Sarah Hahn
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany
- Goethe University Frankfurt, University Hospital, Department of General, Visceral, Transplant and Thoracic Surgery, Frankfurt am Main, Germany
| | - Hanna Deinlein
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Peter Gallant
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Mathias Diebold
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074, Würzburg, Germany
| | - Josep Biayna
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Anne Hendricks
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Leon Olimski
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Christoph Otto
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Carolin Kastner
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Elmar Wolf
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
- Institute of Biochemistry, CAU Kiel, 24118, Kiel, Germany
| | | | - Katja Maurus
- Institute of Pathology, University of Würzburg, 97074, Würzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg, 97074, Würzburg, Germany
| | - Nikolai Schleussner
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, 69120, Heidelberg, Germany
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, Heidelberg, Germany
| | - Rene-Filip Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, Heidelberg, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Christoph-Thomas Germer
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Martin Bushell
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Martin Eilers
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Stefanie Schmidt
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany.
| | - Armin Wiegering
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080, Würzburg, Germany.
- Goethe University Frankfurt, University Hospital, Department of General, Visceral, Transplant and Thoracic Surgery, Frankfurt am Main, Germany.
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
4
|
Ravi S, Sharma T, Yip M, Yang H, Xie J, Gao G, Tai PL. A deep learning model trained on expressed transcripts across different tissue types reveals cell-type codon-optimization preferences. Nucleic Acids Res 2025; 53:gkaf233. [PMID: 40156867 PMCID: PMC11954528 DOI: 10.1093/nar/gkaf233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/03/2025] [Accepted: 03/28/2025] [Indexed: 04/01/2025] Open
Abstract
Species-specific differences in protein translation can affect the design of protein-based drugs. Consequently, efficient expression of recombinant proteins often requires codon optimization. Publicly available optimization tools do not always result in higher expression levels and can lead to protein misfolding and reduced expression. Here, we aimed to develop a novel deep learning (DL) tool using a recurrent neural network (RNN) to define cell type-dependent codon biases. Using gene expression data from three different tissue types (brain, liver, and muscle) and all secretory genes, we trained DL models to predict optimal codon usage. Codon-optimized sequences for test reporter genes exhibited enhanced protein expression compared to their original sequences and those optimized using a publicly available tool. Interestingly, DL models trained on genes expressed in liver cells (hepatocytes) resulted in the highest levels of expression when tested in vitro, irrespective of the cell type. Our findings also demonstrate that DL-based codon optimization algorithms can significantly enhance protein translation, particularly for secretory proteins, which are crucial for therapeutic applications. This research represents a novel approach to codon optimization with broader implications for protein-based pharmaceuticals, vaccine manufacturing, gene therapy, and other recombinant DNA products.
Collapse
Affiliation(s)
- Sandhiya Ravi
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Tapan Sharma
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Mitchell Yip
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Huiya Yang
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Jun Xie
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Guangping Gao
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, United States
- Li Weibo Institute of Rare Diseases Research, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Phillip W L Tai
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, United States
- Li Weibo Institute of Rare Diseases Research, UMass Chan Medical School, Worcester, MA 01605, United States
| |
Collapse
|
5
|
Weissenboeck FP, Pieper M, Schepers H, Hötte S, Klöcker N, Hüwel S, van Impel A, Schulte-Merker S, Rentmeister A. Spatiotemporal control of translation in live zebrafish embryos via photoprotected mRNAs. Commun Chem 2025; 8:16. [PMID: 39828804 PMCID: PMC11743775 DOI: 10.1038/s42004-025-01411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Translation of mRNA into protein is a fundamental process and tightly controlled during development. Several mechanisms acting on the mRNA level regulate when and where an mRNA is expressed. To explore the effects of conditional and transient gene expression in a developing organism, it is vital to experimentally enable abrogation and restoration of translation. We recently developed the FlashCaps technology allowing preparation of translationally muted mRNAs and their controlled activation by light. Here, we validate its functionality in vivo. We demonstrate that translation of FlashCap-eGFP-mRNA can be triggered in zebrafish embryos with spatiotemporal control. The injected FlashCap-mRNA is stable for hours and remains muted. Light-mediated activation up to 24 h post fertilization produces visible amounts of eGFP and can be restricted to distinct parts of the embryo. This methodology extends the toolbox for vertebrate models by enabling researchers to locally activate mRNA translation at different timepoints during development.
Collapse
Affiliation(s)
| | - Melissa Pieper
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Helena Schepers
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Sophie Hötte
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, University of Münster, Münster, Germany
- Multiscale Imaging Center, University of Münster, Münster, Germany
| | - Nils Klöcker
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Sabine Hüwel
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Andreas van Impel
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, University of Münster, Münster, Germany
- Multiscale Imaging Center, University of Münster, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, University of Münster, Münster, Germany
- Multiscale Imaging Center, University of Münster, Münster, Germany
| | - Andrea Rentmeister
- Institute of Biochemistry, University of Münster, Münster, Germany.
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany.
| |
Collapse
|
6
|
Blaze J, Chen S, Heissel S, Alwaseem H, Landinez Macias MP, Peter C, Molina H, Storkebaum E, Turecki G, Goodarzi H, Akbarian S. Altered tRNA expression profile associated with codon-specific proteomic changes in the suicide brain. Mol Psychiatry 2025:10.1038/s41380-025-02891-8. [PMID: 39809846 DOI: 10.1038/s41380-025-02891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/10/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Suicide is a major public health concern, and the number of deaths by suicide has been increasing in recent years in the US. There are various biological risk factors for suicide, but causal molecular mechanisms remain unknown, suggesting that investigation of novel mechanisms and integrative approaches are necessary. Transfer (t)RNAs and their modifications, including cytosine methylation (m5C), have received little attention regarding their role in normal or diseased brain function, though they are dynamic mediators of protein synthesis. tRNA regulation is highly interconnected with proteomic and metabolomic outcomes, suggesting that investigating these multiple levels of molecular regulation together may elucidate more information on neural function and suicide risk. In the current study, we used an integrative 'omics' approach to probe tRNA dysregulation, including tRNA expression and tRNA m5C, proteomics, and amino acid metabolomics in prefrontal cortex from 98 subjects who died by suicide during an episode of major depressive disorder (MDD) and neurotypical controls. While no changes were detected in amino acid content, results showed increased tRNAGlyGCC expression in the suicide brain that is not driven by changes in m5C. Proteomics revealed increased expression of proteins with high glycine codon GGC content, demonstrating a strong association between isoacceptor-specific tRNA expression and proteomic outcomes in the suicide brain, which is in line with previous work linking tRNAGly with alterations in glycine-rich proteins in a translational rodent model of depression. Further, we confirmed using a rodent model that tRNAGlyGCC overexpression was sufficient to increase the expression of proteins with high glycine codon GGC content that were upregulated in the suicide brain. By characterizing the effects of MDD-suicide in human PFC tissue, we now begin to elucidate a novel molecular signature with downstream consequences for psychiatric outcomes.
Collapse
Affiliation(s)
- J Blaze
- Department of Psychiatry, Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - S Chen
- Department of Biochemistry and Biophysics, Department of Urology, Helen Diller Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - S Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - H Alwaseem
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - M P Landinez Macias
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - C Peter
- Department of Psychiatry, Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - E Storkebaum
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - G Turecki
- McGill Group for Suicide Studies, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - H Goodarzi
- Department of Biochemistry and Biophysics, Department of Urology, Helen Diller Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - S Akbarian
- Department of Psychiatry, Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Wint R, Cleary MD. Transfer RNA Levels Are Tuned to Support Differentiation During Drosophila Neurogenesis. Genes (Basel) 2024; 15:1602. [PMID: 39766869 PMCID: PMC11675937 DOI: 10.3390/genes15121602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Neural differentiation requires a multifaceted program to alter gene expression along the proliferation to the differentiation axis. While critical changes occur at the level of transcription, post-transcriptional mechanisms allow fine-tuning of protein output. We investigated the role of tRNAs in regulating gene expression during neural differentiation in Drosophila larval brains. METHODS We quantified tRNA abundance in neural progenitor-biased and neuron-biased brains using the hydrotRNA-seq method. These tRNA data were combined with cell type-specific mRNA decay measurements and transcriptome profiles in order to model how tRNA abundance affects mRNA stability and translation efficiency. RESULTS We found that (1) tRNA abundance is largely constant between neural progenitors and neurons but significant variation exists for 10 nuclear tRNA genes and 8 corresponding anticodon groups, (2) tRNA abundance correlates with codon-mediated mRNA decay in neuroblasts and neurons, but does not completely explain the different stabilizing or destabilizing effects of certain codons, and (3) changes in tRNA levels support a shift in translation optimization from a program supporting proliferation to a program supporting differentiation. CONCLUSIONS These findings reveal coordination between tRNA expression and codon usage in transcripts that regulate neural development.
Collapse
Affiliation(s)
| | - Michael D. Cleary
- Quantitative and Systems Biology Graduate Program, Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA
| |
Collapse
|
8
|
Li Q, Vetter L, Veith Y, Christ E, Végvári Á, Sahin C, Ribacke U, Wahlgren M, Ankarklev J, Larsson O, Chun-Leung Chan S. tRNA regulation and amino acid usage bias reflect a coordinated metabolic adaptation in Plasmodium falciparum. iScience 2024; 27:111167. [PMID: 39524331 PMCID: PMC11544085 DOI: 10.1016/j.isci.2024.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
An adaptive feature of malaria-causing parasites is the digestion of host hemoglobin (HB) to acquire amino acids (AAs). Here, we describe a link between nutrient availability and translation dependent regulation of gene expression as an adaptive strategy. We show that tRNA expression in Plasmodium falciparum does not match the decoding need expected for optimal translation. A subset of tRNAs decoding AAs that are insufficiently provided by HB are lowly expressed, wherein the abundance of a protein-coding transcript is negatively correlated with the decoding requirement of these tRNAs. Proliferation-related genes have evolved a high requirement of these tRNAs, thereby proliferation can be modulated by repressing protein synthesis of these genes during nutrient stress. We conclude that the parasite modulates translation elongation by maintaining a discordant tRNA profile to exploit variations in AA-composition among genes as an adaptation strategy. This study exemplifies metabolic adaptation as an important driving force for protein evolution.
Collapse
Affiliation(s)
- Qian Li
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Leonie Vetter
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ylva Veith
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Elena Christ
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm, Sweden
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ulf Ribacke
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institutet, Stockholm, Sweden
| | - Sherwin Chun-Leung Chan
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Safieddine A, Benassy MN, Bonte T, Slimani F, Pourcelot O, Kress M, Ernoult-Lange M, Courel M, Coleno E, Imbert A, Laine A, Godebert AM, Vinit A, Blugeon C, Chevreux G, Gautheret D, Walter T, Bertrand E, Bénard M, Weil D. Cell-cycle-dependent mRNA localization in P-bodies. Mol Cell 2024; 84:4191-4208.e7. [PMID: 39368464 DOI: 10.1016/j.molcel.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/05/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Understanding the dynamics of RNA targeting to membraneless organelles is essential to disentangle their functions. Here, we investigate how P-bodies (PBs) evolve during cell-cycle progression in HEK293 cells. PB purification across the cell cycle uncovers widespread changes in their RNA content, partly uncoupled from cell-cycle-dependent changes in RNA expression. Single-molecule fluorescence in situ hybridization (FISH) shows various mRNA localization patterns in PBs peaking in G1, S, or G2, with examples illustrating the timely capture of mRNAs in PBs when their encoded protein becomes dispensable. Rather than directly reflecting absence of translation, cyclic mRNA localization in PBs can be controlled by RBPs, such as HuR in G2, and by RNA features. Indeed, while PB mRNAs are AU rich at all cell-cycle phases, they are specifically longer in G1, possibly related to post-mitotic PB reassembly. Altogether, our study supports a model where PBs are more than a default location for excess untranslated mRNAs.
Collapse
Affiliation(s)
- Adham Safieddine
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France.
| | - Marie-Noëlle Benassy
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Thomas Bonte
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, 75006 Paris, France; Institut Curie, PSL University, 75005 Paris, France; INSERM, U900, 75005 Paris, France
| | - Floric Slimani
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34090 Montpellier, France
| | - Oriane Pourcelot
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34090 Montpellier, France
| | - Michel Kress
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Michèle Ernoult-Lange
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Maïté Courel
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Emeline Coleno
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34090 Montpellier, France
| | - Arthur Imbert
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, 75006 Paris, France
| | - Antoine Laine
- Institute for Integrative Biology of the Cell, UMR 9198, CEA, CNRS, Université Paris-Saclay, 91190 Gif-Sur-Yvette, France
| | - Annie Munier Godebert
- Research Center Saint-Antoine (CRSA), CISA Flow Cytometry Facility, UMRS 938, Sorbonne University, F-75012 Paris, France
| | - Angelique Vinit
- Research Center Saint-Antoine (CRSA), CISA Flow Cytometry Facility, UMRS 938, Sorbonne University, F-75012 Paris, France
| | - Corinne Blugeon
- GenomiqueENS, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Guillaume Chevreux
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Daniel Gautheret
- Institute for Integrative Biology of the Cell, UMR 9198, CEA, CNRS, Université Paris-Saclay, 91190 Gif-Sur-Yvette, France
| | - Thomas Walter
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, 75006 Paris, France; Institut Curie, PSL University, 75005 Paris, France; INSERM, U900, 75005 Paris, France
| | - Edouard Bertrand
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34090 Montpellier, France
| | - Marianne Bénard
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France.
| |
Collapse
|
10
|
K C R, Cheng R, Zhou S, Lizarazo S, Smith DJ, Van Bortle K. Evidence of RNA polymerase III recruitment and transcription at protein-coding gene promoters. Mol Cell 2024; 84:4111-4124.e5. [PMID: 39393362 PMCID: PMC11560567 DOI: 10.1016/j.molcel.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/14/2024] [Accepted: 09/13/2024] [Indexed: 10/13/2024]
Abstract
The transcriptional interplay of human RNA polymerase I (RNA Pol I), RNA Pol II, and RNA Pol III remains largely uncharacterized due to limited integrative genomic analyses for all three enzymes. To address this gap, we applied a uniform framework to quantify global RNA Pol I, RNA Pol II, and RNA Pol III occupancies and identify both canonical and noncanonical patterns of gene localization. Most notably, our survey captures unexpected RNA Pol III recruitment at promoters of specific protein-coding genes. We show that such RNA Pol III-occupied promoters are enriched for small nascent RNAs terminating in a run of 4 Ts-a hallmark of RNA Pol III termination indicative of constrained RNA Pol III transcription. Taken further, RNA Pol III disruption generally reduces the expression of RNA Pol III-occupied protein-coding genes, suggesting RNA Pol III recruitment and transcription enhance RNA Pol II activity. These findings resemble analogous patterns of RNA Pol II activity at RNA Pol III-transcribed genes, altogether uncovering a reciprocal form of crosstalk between RNA Pol II and RNA Pol III.
Collapse
Affiliation(s)
- Rajendra K C
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ruiying Cheng
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Simon Lizarazo
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Duncan J Smith
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
11
|
Li Y, Yu Z, Jiang W, Lyu X, Guo A, Sun X, Yang Y, Zhang Y. tRNA and tsRNA: From Heterogeneity to Multifaceted Regulators. Biomolecules 2024; 14:1340. [PMID: 39456272 PMCID: PMC11506809 DOI: 10.3390/biom14101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
As the most ancient RNA, transfer RNAs (tRNAs) play a more complex role than their constitutive function as amino acid transporters in the protein synthesis process. The transcription and maturation of tRNA in cells are subject to stringent regulation, resulting in the formation of tissue- and cell-specific tRNA pools with variations in tRNA overall abundance, composition, modification, and charging levels. The heterogeneity of tRNA pools contributes to facilitating the formation of histocyte-specific protein expression patterns and is involved in diverse biological processes. Moreover, tRNAs can be recognized by various RNase under physiological and pathological conditions to generate tRNA-derived small RNAs (tsRNAs) and serve as small regulatory RNAs in various biological processes. Here, we summarize these recent insights into the heterogeneity of tRNA and highlight the advances in the regulation of tRNA function and tsRNA biogenesis by tRNA modifications. We synthesize diverse mechanisms of tRNA and tsRNA in embryonic development, cell fate determination, and epigenetic inheritance regulation. We also discuss the potential clinical applications based on the new knowledge of tRNA and tsRNA as diagnostic and prognostic biomarkers and new therapeutic strategies for multiple diseases.
Collapse
Affiliation(s)
- Yun Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Zongyu Yu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Wenlin Jiang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Xinyi Lyu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Ailian Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Xiaorui Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Yiting Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
- NHC Key Laboratory of Reproduction Regulation, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China
| | - Yunfang Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| |
Collapse
|
12
|
Rojas J, Hose J, Dutcher HA, Place M, Wolters JF, Hittinger CT, Gasch AP. Comparative modeling reveals the molecular determinants of aneuploidy fitness cost in a wild yeast model. CELL GENOMICS 2024; 4:100656. [PMID: 39317188 PMCID: PMC11602619 DOI: 10.1016/j.xgen.2024.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/10/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
Although implicated as deleterious in many organisms, aneuploidy can underlie rapid phenotypic evolution. However, aneuploidy will be maintained only if the benefit outweighs the cost, which remains incompletely understood. To quantify this cost and the molecular determinants behind it, we generated a panel of chromosome duplications in Saccharomyces cerevisiae and applied comparative modeling and molecular validation to understand aneuploidy toxicity. We show that 74%-94% of the variance in aneuploid strains' growth rates is explained by the cumulative cost of genes on each chromosome, measured for single-gene duplications using a genomic library, along with the deleterious contribution of small nucleolar RNAs (snoRNAs) and beneficial effects of tRNAs. Machine learning to identify properties of detrimental gene duplicates provided no support for the balance hypothesis of aneuploidy toxicity and instead identified gene length as the best predictor of toxicity. Our results present a generalized framework for the cost of aneuploidy with implications for disease biology and evolution.
Collapse
Affiliation(s)
- Julie Rojas
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - H Auguste Dutcher
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John F Wolters
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chris Todd Hittinger
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA; J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA; J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
13
|
Castellano LA, McNamara RJ, Pallarés HM, Gamarnik AV, Alvarez DE, Bazzini AA. Dengue virus preferentially uses human and mosquito non-optimal codons. Mol Syst Biol 2024; 20:1085-1108. [PMID: 39039212 PMCID: PMC11450187 DOI: 10.1038/s44320-024-00052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Codon optimality refers to the effect that codon composition has on messenger RNA (mRNA) stability and translation level and implies that synonymous codons are not silent from a regulatory point of view. Here, we investigated the adaptation of virus genomes to the host optimality code using mosquito-borne dengue virus (DENV) as a model. We demonstrated that codon optimality exists in mosquito cells and showed that DENV preferentially uses nonoptimal (destabilizing) codons and avoids codons that are defined as optimal (stabilizing) in either human or mosquito cells. Human genes enriched in the codons preferentially and frequently used by DENV are upregulated during infection, and so is the tRNA decoding the nonoptimal and DENV preferentially used codon for arginine. We found that adaptation during single-host passaging in human or mosquito cells results in the selection of synonymous mutations towards DENV's preferred nonoptimal codons that increase virus fitness. Finally, our analyses revealed that hundreds of viruses preferentially use nonoptimal codons, with those infecting a single host displaying an even stronger bias, suggesting that host-pathogen interaction shapes virus-synonymous codon choice.
Collapse
Affiliation(s)
- Luciana A Castellano
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Ryan J McNamara
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Horacio M Pallarés
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrea V Gamarnik
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, San Martín B1650, Argentina
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
14
|
Rappol T, Waldl M, Chugunova A, Hofacker I, Pauli A, Vilardo E. tRNA expression and modification landscapes, and their dynamics during zebrafish embryo development. Nucleic Acids Res 2024; 52:10575-10594. [PMID: 38989621 PMCID: PMC11417395 DOI: 10.1093/nar/gkae595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
tRNA genes exist in multiple copies in the genome of all organisms across the three domains of life. Besides the sequence differences across tRNA copies, extensive post-transcriptional modification adds a further layer to tRNA diversification. Whilst the crucial role of tRNAs as adapter molecules in protein translation is well established, whether all tRNAs are actually expressed, and whether the differences across isodecoders play any regulatory role is only recently being uncovered. Here we built upon recent developments in the use of NGS-based methods for RNA modification detection and developed tRAM-seq, an experimental protocol and in silico analysis pipeline to investigate tRNA expression and modification. Using tRAM-seq, we analysed the full ensemble of nucleo-cytoplasmic and mitochondrial tRNAs during embryonic development of the model vertebrate zebrafish. We show that the repertoire of tRNAs changes during development, with an apparent major switch in tRNA isodecoder expression and modification profile taking place around the start of gastrulation. Taken together, our findings suggest the existence of a general reprogramming of the expressed tRNA pool, possibly gearing the translational machinery for distinct stages of the delicate and crucial process of embryo development.
Collapse
Affiliation(s)
- Tom Rappol
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Maria Waldl
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
- Department of Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria
- Institute of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, D-04107 Leipzig, Germany
| | - Anastasia Chugunova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Ivo L Hofacker
- Department of Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria
- Faculty of Computer Science, Research Group Bioinformatics and Computational Biology, University of Vienna, 1090 Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Elisa Vilardo
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
15
|
Nakai M, Hase H, Zhao Y, Okawa K, Honda K, Ikuma K, Kitae K, Tsujikawa K. RNA-modifying enzyme Alkbh8 is involved in mouse embryonic development. iScience 2024; 27:110777. [PMID: 39280612 PMCID: PMC11402254 DOI: 10.1016/j.isci.2024.110777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/19/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
RNAs undergo more than 300 modifications after transcription. Aberrations in RNA modifications can lead to diseases; their involvement in fetal development has been suggested. This study explored the RNA modifications related to fetal development in mice. We quantified changes in RNA modifications present in mouse embryos at each stage: Metaphase II (MII) oocyte; pronucleus; 2-cell; morula; blastocyst; embryonic days (E)10.5, 13.5, 16.5, and 19.5; and newborn (post-natal day [P]0) using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Our results confirm that many RNAs undergo dynamic modifications. In particular, 5-methoxycarbonylmethyluridine (mcm5U) modification was distinctive and increased during the fetal period. In Alkbh8-knockout (KO) mice, the tRNA protein translation efficiency was reduced. Proteome analysis revealed that the factors downregulated in Alkbh8-KO mice were associated with red blood cell and protoporphyrin metabolism. Our results suggest that ALKBH8 facilitates changes in tRNA balance in conjunction with mcm5U, which are essential for normal red blood cell differentiation and embryogenesis in mice.
Collapse
Affiliation(s)
- Manami Nakai
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1- 6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroaki Hase
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1- 6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yutong Zhao
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1- 6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Katsuya Okawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1- 6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kohei Honda
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1- 6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kaori Ikuma
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1- 6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kaori Kitae
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1- 6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1- 6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Wint R, Cleary MD. Transfer RNA levels are tuned to support differentiation during Drosophila neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611608. [PMID: 39282315 PMCID: PMC11398488 DOI: 10.1101/2024.09.06.611608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Neural differentiation requires a multifaceted program to alter gene expression along the proliferation to differentiation axis. While critical changes occur at the level of transcription, post-transcriptional mechanisms allow fine-tuning of protein output. We investigated the role of tRNAs in regulating gene expression during neural differentiation by quantifying tRNA abundance in neural progenitor-biased and neuron-biased Drosophila larval brains. We found that tRNA profiles are largely consistent between progenitor-biased and neuron-biased brains but significant variation occurs for 10 cytoplasmic isodecoders (individual tRNA genes) and this establishes differential tRNA levels for 8 anticodon groups. We used these tRNA data to investigate relationships between tRNA abundance, codon optimality-mediated mRNA decay, and translation efficiency in progenitors and neurons. Our data reveal that tRNA levels strongly correlate with codon optimality-mediated mRNA decay within each cell type but generally do not explain differences in stabilizing versus destabilizing codons between cell types. Regarding translation efficiency, we found that tRNA expression in neural progenitors preferentially supports translation of mRNAs whose products are in high demand in progenitors, such as those associated with protein synthesis. In neurons, tRNA expression shifts to disfavor translation of proliferation-related transcripts and preferentially support translation of transcripts tied to neuron-specific functions like axon pathfinding and synapse formation. Overall, our analyses reveal that changes in tRNA levels along the neural differentiation axis support optimal gene expression in progenitors and neurons.
Collapse
Affiliation(s)
- Rhondene Wint
- Department of Molecular and Cell Biology, Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| | - Michael D. Cleary
- Department of Molecular and Cell Biology, Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| |
Collapse
|
17
|
Weibel CA, Wheeler AL, James JE, Willis SM, McShea H, Masel J. The protein domains of vertebrate species in which selection is more effective have greater intrinsic structural disorder. eLife 2024; 12:RP87335. [PMID: 39239703 PMCID: PMC11379457 DOI: 10.7554/elife.87335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
The nearly neutral theory of molecular evolution posits variation among species in the effectiveness of selection. In an idealized model, the census population size determines both this minimum magnitude of the selection coefficient required for deleterious variants to be reliably purged, and the amount of neutral diversity. Empirically, an 'effective population size' is often estimated from the amount of putatively neutral genetic diversity and is assumed to also capture a species' effectiveness of selection. A potentially more direct measure of the effectiveness of selection is the degree to which selection maintains preferred codons. However, past metrics that compare codon bias across species are confounded by among-species variation in %GC content and/or amino acid composition. Here, we propose a new Codon Adaptation Index of Species (CAIS), based on Kullback-Leibler divergence, that corrects for both confounders. We demonstrate the use of CAIS correlations, as well as the Effective Number of Codons, to show that the protein domains of more highly adapted vertebrate species evolve higher intrinsic structural disorder.
Collapse
Affiliation(s)
- Catherine A Weibel
- Department of Mathematics, University of Arizona, Tucson, United States
- Department of Physics, University of Arizona, Tucson, United States
| | - Andrew L Wheeler
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, United States
| | - Jennifer E James
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
| | - Sara M Willis
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
| | - Hanon McShea
- Department of Earth System Science, Stanford University, Stanford, United States
| | - Joanna Masel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
| |
Collapse
|
18
|
Cheng Y, Wang S, Zhang H, Lee JS, Ni C, Guo J, Chen E, Wang S, Acharya A, Chang TC, Buszczak M, Zhu H, Mendell JT. A non-canonical role for a small nucleolar RNA in ribosome biogenesis and senescence. Cell 2024; 187:4770-4789.e23. [PMID: 38981482 PMCID: PMC11344685 DOI: 10.1016/j.cell.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/20/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
Cellular senescence is an irreversible state of cell-cycle arrest induced by various stresses, including aberrant oncogene activation, telomere shortening, and DNA damage. Through a genome-wide screen, we discovered a conserved small nucleolar RNA (snoRNA), SNORA13, that is required for multiple forms of senescence in human cells and mice. Although SNORA13 guides the pseudouridylation of a conserved nucleotide in the ribosomal decoding center, loss of this snoRNA minimally impacts translation. Instead, we found that SNORA13 negatively regulates ribosome biogenesis. Senescence-inducing stress perturbs ribosome biogenesis, resulting in the accumulation of free ribosomal proteins (RPs) that trigger p53 activation. SNORA13 interacts directly with RPL23, decreasing its incorporation into maturing 60S subunits and, consequently, increasing the pool of free RPs, thereby promoting p53-mediated senescence. Thus, SNORA13 regulates ribosome biogenesis and the p53 pathway through a non-canonical mechanism distinct from its role in guiding RNA modification. These findings expand our understanding of snoRNA functions and their roles in cellular signaling.
Collapse
Affiliation(s)
- Yujing Cheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Siwen Wang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - He Zhang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jong-Sun Lee
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunyang Ni
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jason Guo
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric Chen
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shenming Wang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Asha Acharya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tsung-Cheng Chang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
19
|
Kalita B, Martinez-Cebrian G, McEvoy J, Allensworth M, Knight M, Magli A, Perlingeiro RCR, Dyer MA, Stewart E, Dynlacht BD. PAX fusion proteins deregulate gene networks controlling mitochondrial translation in pediatric rhabdomyosarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606039. [PMID: 39211084 PMCID: PMC11360909 DOI: 10.1101/2024.07.31.606039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alveolar rhabdomyosarcoma (ARMS) patients harboring PAX3-FOXO1 and PAX7-FOXO1 fusion proteins exhibit a greater incidence of tumor relapse, metastasis, and poor survival outcome, thereby underscoring the urgent need to develop effective therapies to treat this subtype of childhood cancer. To uncover mechanisms that contribute to tumor initiation, we developed a novel muscle progenitor model and used epigenomic approaches to unravel genome re-wiring events mediated by PAX3/7 fusion proteins. Importantly, these regulatory mechanisms are conserved across established ARMS cell lines, primary tumors, and orthotopic-patient derived xenografts. Among the key targets of PAX3- and PAX7-fusion proteins, we identified a cohort of oncogenes, FGF receptors, and genes essential for mitochondrial metabolism and protein translation, which we successfully targeted in preclinical trials. Our data suggest an explanation for the relative paucity of recurring mutations in this tumor, provide a compelling list of actionable targets, and suggest promising new strategies to treat this tumor.
Collapse
|
20
|
Li A, Sasaki JI, Huang H, Abe GL, Inubushi T, Takahashi Y, Hayashi M, Imazato S. Effect of Heparan Sulfate on Vasculogenesis and Dentinogenesis of Dental Pulp Stem Cells. J Endod 2024; 50:1108-1116. [PMID: 38719089 DOI: 10.1016/j.joen.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION Heparan sulfate (HS) is a major component of dental pulp tissue. We previously reported that inhibiting HS biosynthesis impedes endothelial differentiation of dental pulp stem cells (DPSCs). However, the underlying mechanisms by which exogenous HS induces DPSC differentiation and pulp tissue regeneration remain unknown. This study explores the impact of exogenous HS on vasculogenesis and dentinogenesis of DPSCs both in vitro and in vivo. METHODS Human-derived DPSCs were cultured in endothelial and odontogenic differentiation media and treated with HS. Endothelial differentiation of DPSCs was investigated by real-time polymerase chain reaction and capillary sprouting assay. Odontogenic differentiation was assessed through real-time polymerase chain reaction and detection of mineralized dentin-like deposition. Additionally, the influence of HS on pulp tissue was assessed with a direct pulp capping model, in which HS was delivered to exposed pulp tissue in rats. Gelatin sponges were loaded with either phosphate-buffered saline or 101-102 μg/mL HS and placed onto the pulp tissue. Following a 28-day period, tissues were investigated by histological analysis and micro-computed tomography imaging. RESULTS HS treatment markedly increased expression levels of key endothelial and odontogenic genes, enhanced the formation of capillary-like structures, and promoted the deposition of mineralized matrices. Treatment of exposed pulp tissue with HS in the in vivo pulp capping study induced formation of capillaries and reparative dentin. CONCLUSIONS Exogenous HS effectively promoted vasculogenesis and dentinogenesis of DPSCs in vitro and induced reparative dentin formation in vivo, highlighting its therapeutic potential for pulp capping treatment.
Collapse
Affiliation(s)
- Aonan Li
- Department of Endodontics, Shandong First Medical University School of Dentistry, Shandong, China; Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Jun-Ichi Sasaki
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Hailing Huang
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Gabriela L Abe
- Joint Research Laboratory of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yusuke Takahashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satoshi Imazato
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Osaka, Japan; Joint Research Laboratory of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
21
|
Yuan W, Zhang R, Lyu H, Xiao S, Guo D, Zhang Q, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Dysregulation of tRNA methylation in cancer: Mechanisms and targeting therapeutic strategies. Cell Death Discov 2024; 10:327. [PMID: 39019857 PMCID: PMC11254935 DOI: 10.1038/s41420-024-02097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
tRNA is the RNA type that undergoes the most modifications among known RNA, and in recent years, tRNA methylation has emerged as a crucial process in regulating gene translation. Dysregulation of tRNA abundance occurs in cancer cells, along with increased expression and activity of tRNA methyltransferases to raise the level of tRNA modification and stability. This leads to hijacking of translation and synthesis of multiple proteins associated with tumor proliferation, metastasis, invasion, autophagy, chemotherapy resistance, and metabolic reprogramming. In this review, we provide an overview of current research on tRNA methylation in cancer to clarify its involvement in human malignancies and establish a theoretical framework for future therapeutic interventions targeting tRNA methylation processes.
Collapse
Affiliation(s)
- Wenbin Yuan
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Qi Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
22
|
Kagermeier T, Hauser S, Sarieva K, Laugwitz L, Groeschel S, Janzarik WG, Yentür Z, Becker K, Schöls L, Krägeloh-Mann I, Mayer S. Human organoid model of pontocerebellar hypoplasia 2a recapitulates brain region-specific size differences. Dis Model Mech 2024; 17:dmm050740. [PMID: 39034883 PMCID: PMC11552497 DOI: 10.1242/dmm.050740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/13/2024] [Indexed: 07/23/2024] Open
Abstract
Pontocerebellar hypoplasia type 2a (PCH2a) is an ultra-rare, autosomal recessive pediatric disorder with limited treatment options. Its anatomical hallmark is hypoplasia of the cerebellum and pons accompanied by progressive microcephaly. A homozygous founder variant in TSEN54, which encodes a tRNA splicing endonuclease (TSEN) complex subunit, is causal. The pathological mechanism of PCH2a remains unknown due to the lack of a model system. Therefore, we developed human models of PCH2a using regionalized neural organoids. We generated induced pluripotent stem cell (iPSC) lines from three males with genetically confirmed PCH2a and subsequently differentiated cerebellar and neocortical organoids. Mirroring clinical neuroimaging findings, PCH2a cerebellar organoids were reduced in size compared to controls starting early in differentiation. Neocortical PCH2a organoids demonstrated milder growth deficits. Although PCH2a cerebellar organoids did not upregulate apoptosis, their stem cell zones showed altered proliferation kinetics, with increased proliferation at day 30 and reduced proliferation at day 50 compared to controls. In summary, we generated a human model of PCH2a, providing the foundation for deciphering brain region-specific disease mechanisms. Our first analyses suggest a neurodevelopmental aspect of PCH2a.
Collapse
Affiliation(s)
- Theresa Kagermeier
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, 72076Tübingen, Germany
| | - Stefan Hauser
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076Tübingen, Germany
- German Center for Neurodegenerative Diseases, 72076Tübingen, Germany
| | - Kseniia Sarieva
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, 72076Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, 72076Tübingen, Germany
| | - Lucia Laugwitz
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, 72076 Tübingen, Germany
| | - Samuel Groeschel
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, 72076 Tübingen, Germany
| | - Wibke G. Janzarik
- Department of Neuropediatrics and Muscle Disorders, Center for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Zeynep Yentür
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, 72076Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, 72076Tübingen, Germany
- Heidelberger Akademie der Wissenschaften, 69117 Heidelberg, Germany
| | - Katharina Becker
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076Tübingen, Germany
| | - Ludger Schöls
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076Tübingen, Germany
- German Center for Neurodegenerative Diseases, 72076Tübingen, Germany
| | - Ingeborg Krägeloh-Mann
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, 72076 Tübingen, Germany
| | - Simone Mayer
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076Tübingen, Germany
- Heidelberger Akademie der Wissenschaften, 69117 Heidelberg, Germany
| |
Collapse
|
23
|
Saha S, Mukherjee B, Banerjee P, Das D. The 'Not-So-Famous Five' in tumorigenesis: tRNAs, tRNA fragments, and tRNA epitranscriptome in concert with AARSs and AIMPs. Biochimie 2024; 222:45-62. [PMID: 38401639 DOI: 10.1016/j.biochi.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
RNA profiling studies have revealed that ∼75% of the human genome is transcribed to RNA but only a meagre fraction of it is translated to proteins. Majority of transcribed RNA constitute a specialized pool of non-coding RNAs. Human genome contains approximately 506 genes encoding a set of 51 different tRNAs, constituting a unique class of non-coding RNAs that not only have essential housekeeping functions as translator molecules during protein synthesis, but have numerous uncharted regulatory functions. Intriguing findings regarding a variety of non-canonical functions of tRNAs, tRNA derived fragments (tRFs), esoteric epitranscriptomic modifications of tRNAs, along with aminoacyl-tRNA synthetases (AARSs) and ARS-interacting multifunctional proteins (AIMPs), envision a 'peripheral dogma' controlling the flow of genetic information in the backdrop of qualitative information wrung out of the long-live central dogma of molecular biology, to drive cells towards either proliferation or differentiation programs. Our review will substantiate intriguing peculiarities of tRNA gene clusters, atypical tRNA-transcription from internal promoters catalysed by another distinct RNA polymerase enzyme, dynamically diverse tRNA epitranscriptome, intricate mechanism of tRNA-charging by AARSs governing translation fidelity, epigenetic regulation of gene expression by tRNA fragments, and the role of tRNAs and tRNA derived/associated molecules as quantitative determinants of the functional proteome, covertly orchestrating the process of tumorigenesis, through a deregulated tRNA-ome mediating selective codon-biased translation of cancer related gene transcripts.
Collapse
Affiliation(s)
- Sutapa Saha
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, WB, India.
| | - Biyas Mukherjee
- Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata, 700064, India
| | - Proma Banerjee
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, WB, India
| | - Debadrita Das
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, WB, India
| |
Collapse
|
24
|
Zhang J, Li Y, Chen Y, Zhang J, Jia Z, He M, Liao X, He S, Bian JS, Nie XW. o 8G Site-Specifically Modified tRF-1-AspGTC: A Novel Therapeutic Target and Biomarker for Pulmonary Hypertension. Circ Res 2024; 135:76-92. [PMID: 38747146 DOI: 10.1161/circresaha.124.324421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/18/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Hypoxia and oxidative stress contribute to the development of pulmonary hypertension (PH). tRNA-derived fragments play important roles in RNA interference and cell proliferation, but their epitranscriptional roles in PH development have not been investigated. We aimed to gain insight into the mechanistic contribution of oxidative stress-induced 8-oxoguanine in pulmonary vascular remodeling. METHODS Through small RNA modification array analysis and quantitative polymerase chain reaction, a significant upregulation of the 8-oxoguanine -modified tRF-1-AspGTC was found in the lung tissues and the serum of patients with PH. RESULTS This modification occurs at the position 5 of the tRF-1-AspGTC (5o8G tRF). Inhibition of the 5o8G tRF reversed hypoxia-induced proliferation and apoptosis resistance in pulmonary artery smooth muscle cells. Further investigation unveiled that the 5o8G tRF retargeted mRNA of WNT5A (Wingless-type MMTV integration site family, member 5A) and CASP3 (Caspase3) and inhibited their expression. Ultimately, BMPR2 (Bone morphogenetic protein receptor 2) -reactive oxygen species/5o8G tRF/WNT5A signaling pathway exacerbated the progression of PH. CONCLUSIONS Our study highlights the role of site-specific 8-oxoguanine-modified tRF in promoting the development of PH. Our findings present a promising therapeutic avenue for managing PH and propose 5o8G tRF as a potential innovative marker for diagnosing this disease.
Collapse
Affiliation(s)
- Junting Zhang
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, China (Junting Zhang, Y.L., S.H.)
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China (Junting Zhang, Z.J., M.H., J.-S.B.)
| | - Yiying Li
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, China (Junting Zhang, Y.L., S.H.)
| | - Yuan Chen
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, China (Y.C.)
| | - Jianchao Zhang
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
| | - Zihui Jia
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China (Junting Zhang, Z.J., M.H., J.-S.B.)
| | - Muhua He
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China (Junting Zhang, Z.J., M.H., J.-S.B.)
| | - Xueyi Liao
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
| | - Siyu He
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, China (Junting Zhang, Y.L., S.H.)
| | - Jin-Song Bian
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China (Junting Zhang, Z.J., M.H., J.-S.B.)
| | - Xiao-Wei Nie
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
- The First Affiliated Hospital, Southern University of Science and Technology), China (Junting Zhang, Y.L., Jianchao Zhang, Z.J., M.H., X.L., S.H., J.-S.B., X.-W.N.)
| |
Collapse
|
25
|
Stewart RK, Nguyen P, Laederach A, Volkan PC, Sawyer JK, Fox DT. Orb2 enables rare-codon-enriched mRNA expression during Drosophila neuron differentiation. Nat Commun 2024; 15:5270. [PMID: 38902233 PMCID: PMC11190236 DOI: 10.1038/s41467-024-48344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/25/2024] [Indexed: 06/22/2024] Open
Abstract
Regulation of codon optimality is an increasingly appreciated layer of cell- and tissue-specific protein expression control. Here, we use codon-modified reporters to show that differentiation of Drosophila neural stem cells into neurons enables protein expression from rare-codon-enriched genes. From a candidate screen, we identify the cytoplasmic polyadenylation element binding (CPEB) protein Orb2 as a positive regulator of rare-codon-dependent mRNA stability in neurons. Using RNA sequencing, we reveal that Orb2-upregulated mRNAs in the brain with abundant Orb2 binding sites have a rare-codon bias. From these Orb2-regulated mRNAs, we demonstrate that rare-codon enrichment is important for mRNA stability and social behavior function of the metabotropic glutamate receptor (mGluR). Our findings reveal a molecular mechanism by which neural stem cell differentiation shifts genetic code regulation to enable critical mRNA stability and protein expression.
Collapse
Affiliation(s)
- Rebeccah K Stewart
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, USA
- Duke Regeneration Center, Duke University, Durham, NC, USA
| | - Patrick Nguyen
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Jessica K Sawyer
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, USA
- Duke Regeneration Center, Duke University, Durham, NC, USA
| | - Donald T Fox
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, USA.
- Duke Regeneration Center, Duke University, Durham, NC, USA.
| |
Collapse
|
26
|
Aubé F, Fontrodona N, Guiguettaz L, Vallin E, Fabbri L, Lapendry A, Vagner S, Ricci EP, Auboeuf D. Metabolism-dependent secondary effect of anti-MAPK cancer therapy on DNA repair. NAR Cancer 2024; 6:zcae019. [PMID: 38690580 PMCID: PMC11059277 DOI: 10.1093/narcan/zcae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024] Open
Abstract
Amino acid bioavailability impacts mRNA translation in a codon-dependent manner. Here, we report that the anti-cancer MAPK inhibitors (MAPKi) decrease the intracellular concentration of aspartate and glutamate in melanoma cells. This coincides with the accumulation of ribosomes on codons corresponding to these amino acids and triggers the translation-dependent degradation of mRNAs encoding aspartate- and glutamate-rich proteins, involved in DNA metabolism such as DNA replication and repair. Consequently, cells that survive MAPKi degrade aspartate and glutamate likely to generate energy, which simultaneously decreases their requirement for amino acids due to the downregulation of aspartate- and glutamate-rich proteins involved in cell proliferation. Concomitantly, the downregulation of aspartate- and glutamate-rich proteins involved in DNA repair increases DNA damage loads. Thus, DNA repair defects, and therefore mutations, are at least in part a secondary effect of the metabolic adaptation of cells exposed to MAPKi.
Collapse
Affiliation(s)
- Fabien Aubé
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, LBMC, ENS, Lyon, France
| | - Nicolas Fontrodona
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, LBMC, ENS, Lyon, France
| | - Laura Guiguettaz
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
| | - Elodie Vallin
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
| | - Lucilla Fabbri
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France
- Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France
- Equipe labellisée Ligue contre le Cancer, Orsay, France
| | - Audrey Lapendry
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, LBMC, ENS, Lyon, France
| | - Stephan Vagner
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France
- Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France
- Equipe labellisée Ligue contre le Cancer, Orsay, France
| | - Emiliano P Ricci
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
| | - Didier Auboeuf
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, LBMC, ENS, Lyon, France
| |
Collapse
|
27
|
Small-Saunders JL, Sinha A, Bloxham TS, Hagenah LM, Sun G, Preiser PR, Dedon PC, Fidock DA. tRNA modification reprogramming contributes to artemisinin resistance in Plasmodium falciparum. Nat Microbiol 2024; 9:1483-1498. [PMID: 38632343 PMCID: PMC11153160 DOI: 10.1038/s41564-024-01664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Plasmodium falciparum artemisinin (ART) resistance is driven by mutations in kelch-like protein 13 (PfK13). Quiescence, a key aspect of resistance, may also be regulated by a yet unidentified epigenetic pathway. Transfer RNA modification reprogramming and codon bias translation is a conserved epitranscriptomic translational control mechanism that allows cells to rapidly respond to stress. We report a role for this mechanism in ART-resistant parasites by combining tRNA modification, proteomic and codon usage analyses in ring-stage ART-sensitive and ART-resistant parasites in response to drug. Post-drug, ART-resistant parasites differentially hypomodify mcm5s2U on tRNA and possess a subset of proteins, including PfK13, that are regulated by Lys codon-biased translation. Conditional knockdown of the terminal s2U thiouridylase, PfMnmA, in an ART-sensitive parasite background led to increased ART survival, suggesting that hypomodification can alter the parasite ART response. This study describes an epitranscriptomic pathway via tRNA s2U reprogramming that ART-resistant parasites may employ to survive ART-induced stress.
Collapse
Affiliation(s)
- Jennifer L Small-Saunders
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA.
| | - Ameya Sinha
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
| | - Talia S Bloxham
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Laura M Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Guangxin Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
| | - Peter C Dedon
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David A Fidock
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
28
|
Scheepbouwer C, Aparicio-Puerta E, Gómez-Martin C, van Eijndhoven MA, Drees EE, Bosch L, de Jong D, Wurdinger T, Zijlstra JM, Hackenberg M, Gerber A, Pegtel DM. Full-length tRNAs lacking a functional CCA tail are selectively sorted into the lumen of extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593148. [PMID: 38765958 PMCID: PMC11100784 DOI: 10.1101/2024.05.12.593148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Small extracellular vesicles (sEVs) are heterogenous lipid membrane particles typically less than 200 nm in size and secreted by most cell types either constitutively or upon activation signals. sEVs isolated from biofluids contain RNAs, including small non-coding RNAs (ncRNAs), that can be either encapsulated within the EV lumen or bound to the EV surface. EV-associated microRNAs (miRNAs) are, despite a relatively low abundance, extensively investigated for their selective incorporation and their role in cell-cell communication. In contrast, the sorting of highly-structured ncRNA species is understudied, mainly due to technical limitations of traditional small RNA sequencing protocols. Here, we adapted ALL-tRNAseq to profile the relative abundance of highly structured and potentially methylated small ncRNA species, including transfer RNAs (tRNAs), small nucleolar RNAs (snoRNAs), and Y RNAs in bulk EV preparations. We determined that full-length tRNAs, typically 75 to 90 nucleotides in length, were the dominant small ncRNA species (>60% of all reads in the 18-120 nucleotides size-range) in all cell culture-derived EVs, as well as in human plasma-derived EV samples, vastly outnumbering 21 nucleotides-long miRNAs. Nearly all EV-associated tRNAs were protected from external RNAse treatment, indicating a location within the EV lumen. Strikingly, the vast majority of luminal-sorted, full-length, nucleobase modification-containing EV-tRNA sequences, harbored a dysfunctional 3' CCA tail, 1 to 3 nucleotides truncated, rendering them incompetent for amino acid loading. In contrast, in non-EV associated extracellular particle fractions (NVEPs), tRNAs appeared almost exclusively fragmented or 'nicked' into tRNA-derived small RNAs (tsRNAs) with lengths between 18 to 35 nucleotides. We propose that in mammalian cells, tRNAs that lack a functional 3' CCA tail are selectively sorted into EVs and shuttled out of the producing cell, offering a new perspective into the physiological role of secreted EVs and luminal cargo-selection.
Collapse
Affiliation(s)
- Chantal Scheepbouwer
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, Netherlands
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
| | - Ernesto Aparicio-Puerta
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Cristina Gómez-Martin
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Monique A.J. van Eijndhoven
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Esther E.E. Drees
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
| | - Leontien Bosch
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Daphne de Jong
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Josée M. Zijlstra
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
| | - Michael Hackenberg
- Bioinformatics Laboratory, Biomedical Research Centre (CIBM), Biotechnology Institute, PTS, Avda. del Conocimiento s/n, 18100 Granada, Spain
- Genetics Department, Faculty of Science, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n 18100, Granada. Spain
| | - Alan Gerber
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, Netherlands
| | - D. Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| |
Collapse
|
29
|
Karpagavalli M, Sivagurunathan S, Panda TS, Srikakulam N, Arora R, Dohadwala L, Tiwary BK, Sadras SR, Arunachalam JP, Pandi G, Chidambaram S. piRNAs in the human retina and retinal pigment epithelium reveal a potential role in intracellular trafficking and oxidative stress. Mol Omics 2024; 20:248-264. [PMID: 38314503 DOI: 10.1039/d3mo00122a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Long considered active only in the germline, the PIWI/piRNA pathway is now known to play a significant role in somatic cells, especially neurons. In this study, piRNAs were profiled in the human retina and retinal pigment epithelium (RPE). Furthermore, RNA immunoprecipitation with HIWI2 (PIWIL4) in ARPE19 cells yielded 261 piRNAs, and the expression of selective piRNAs in donor eyes was assessed by qRT-PCR. Intriguingly, computational analysis revealed complete and partial seed sequence similarity between piR-hsa-26131 and the sensory organ specific miR-183/96/182 cluster. Furthermore, the expression of retina-enriched piR-hsa-26131 was positively correlated with miR-182 in HIWI2-silenced Y79 cells. In addition, the lnc-ZNF169 sequence matched with two miRNAs of the let-7 family, and piRNAs, piR-hsa-11361 and piR-hsa-11360, which could modulate the regulatory network of retinal differentiation. Interestingly, we annotated four enriched motifs among the piRNAs and found that the piRNAs containing CACAATG and CTCATCAKYG motifs were snoRNA-derived piRNAs, which are significantly associated with developmental functions. However, piRNAs consisting of ACCACTANACCAC and AKCACGYTCSC motifs were mainly tRNA-derived fragments linked to stress response and sensory perception. Additionally, co-expression network analysis revealed cell cycle control, intracellular transport and stress response as the important biological functions regulated by piRNAs in the retina. Moreover, loss of piRNAs in HIWI2 knockdown ARPE19 confirmed altered expression of targets implicated in intracellular transport, circadian clock, and retinal degeneration. Moreover, piRNAs were dysregulated under oxidative stress conditions, indicating their potential role in retinal pathology. Therefore, we postulate that piRNAs, miRNAs, and lncRNAs might have a functional interplay during retinal development and functions to regulate retinal homeostasis.
Collapse
Affiliation(s)
| | - Suganya Sivagurunathan
- RS Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, India
| | - T Sayamsmruti Panda
- Department of Bioinformatics, Pondicherry University, Puducherry-605014, India
| | - Nagesh Srikakulam
- Laboratory of RNA Biology and Epigenomics, Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Reety Arora
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | | | - Basant K Tiwary
- Department of Bioinformatics, Pondicherry University, Puducherry-605014, India
| | - Sudha Rani Sadras
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry-605014, India.
| | - Jayamuruga Pandian Arunachalam
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry-607402, India
| | - Gopal Pandi
- Laboratory of RNA Biology and Epigenomics, Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Subbulakshmi Chidambaram
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry-605014, India.
| |
Collapse
|
30
|
Kapur M, Molumby MJ, Guzman C, Heinz S, Ackerman SL. Cell-type-specific expression of tRNAs in the brain regulates cellular homeostasis. Neuron 2024; 112:1397-1415.e6. [PMID: 38377989 PMCID: PMC11065635 DOI: 10.1016/j.neuron.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/23/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Defects in tRNA biogenesis are associated with multiple neurological disorders, yet our understanding of these diseases has been hampered by an inability to determine tRNA expression in individual cell types within a complex tissue. Here, we developed a mouse model in which RNA polymerase III is conditionally epitope tagged in a Cre-dependent manner, allowing us to accurately profile tRNA expression in any cell type in vivo. We investigated tRNA expression in diverse nervous system cell types, revealing dramatic heterogeneity in the expression of tRNA genes between populations. We found that while maintenance of levels of tRNA isoacceptor families is critical for cellular homeostasis, neurons are differentially vulnerable to insults to distinct tRNA isoacceptor families. Cell-type-specific translatome analysis suggests that the balance between tRNA availability and codon demand may underlie such differential resilience. Our work provides a platform for investigating the complexities of mRNA translation and tRNA biology in the brain.
Collapse
Affiliation(s)
- Mridu Kapur
- Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; The Howard Hughes Medical Institute
| | - Michael J Molumby
- Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; The Howard Hughes Medical Institute
| | - Carlos Guzman
- Department of Medicine, Division of Endocrinology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, Bioinformatics & Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sven Heinz
- Department of Medicine, Division of Endocrinology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, Bioinformatics & Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan L Ackerman
- Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; The Howard Hughes Medical Institute; Department of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
31
|
Tomaz da Silva P, Zhang Y, Theodorakis E, Martens LD, Yépez VA, Pelechano V, Gagneur J. Cellular energy regulates mRNA degradation in a codon-specific manner. Mol Syst Biol 2024; 20:506-520. [PMID: 38491213 PMCID: PMC11066088 DOI: 10.1038/s44320-024-00026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/18/2024] Open
Abstract
Codon optimality is a major determinant of mRNA translation and degradation rates. However, whether and through which mechanisms its effects are regulated remains poorly understood. Here we show that codon optimality associates with up to 2-fold change in mRNA stability variations between human tissues, and that its effect is attenuated in tissues with high energy metabolism and amplifies with age. Mathematical modeling and perturbation data through oxygen deprivation and ATP synthesis inhibition reveal that cellular energy variations non-uniformly alter the effect of codon usage. This new mode of codon effect regulation, independent of tRNA regulation, provides a fundamental mechanistic link between cellular energy metabolism and eukaryotic gene expression.
Collapse
Affiliation(s)
- Pedro Tomaz da Silva
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Munich Center for Machine Learning, Munich, Germany
| | - Yujie Zhang
- Scilifelab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Evangelos Theodorakis
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Laura D Martens
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Vicente A Yépez
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Vicent Pelechano
- Scilifelab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
32
|
Rojas J, Hose J, Auguste Dutcher H, Place M, Wolters JF, Hittinger CT, Gasch AP. Comparative modeling reveals the molecular determinants of aneuploidy fitness cost in a wild yeast model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588778. [PMID: 38645209 PMCID: PMC11030387 DOI: 10.1101/2024.04.09.588778] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Although implicated as deleterious in many organisms, aneuploidy can underlie rapid phenotypic evolution. However, aneuploidy will only be maintained if the benefit outweighs the cost, which remains incompletely understood. To quantify this cost and the molecular determinants behind it, we generated a panel of chromosome duplications in Saccharomyces cerevisiae and applied comparative modeling and molecular validation to understand aneuploidy toxicity. We show that 74-94% of the variance in aneuploid strains' growth rates is explained by the additive cost of genes on each chromosome, measured for single-gene duplications using a genomic library, along with the deleterious contribution of snoRNAs and beneficial effects of tRNAs. Machine learning to identify properties of detrimental gene duplicates provided no support for the balance hypothesis of aneuploidy toxicity and instead identified gene length as the best predictor of toxicity. Our results present a generalized framework for the cost of aneuploidy with implications for disease biology and evolution.
Collapse
Affiliation(s)
- Julie Rojas
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - H Auguste Dutcher
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John F Wolters
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chris Todd Hittinger
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
33
|
Chen S, Navickas A, Goodarzi H. Translational adaptation in breast cancer metastasis and emerging therapeutic opportunities. Trends Pharmacol Sci 2024; 45:304-318. [PMID: 38453522 DOI: 10.1016/j.tips.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
Breast cancer's tendency to metastasize poses a critical barrier to effective treatment, making it a leading cause of mortality among women worldwide. A growing body of evidence is showing that translational adaptation is emerging as a key mechanism enabling cancer cells to thrive in the dynamic tumor microenvironment (TME). Here, we systematically summarize how breast cancer cells utilize translational adaptation to drive metastasis, highlighting the intricate regulation by specific translation machinery and mRNA attributes such as sequences and structures, along with the involvement of tRNAs and other trans-acting RNAs. We provide an overview of the latest findings and emerging concepts in this area, discussing their potential implications for therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Albertas Navickas
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France.
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA.
| |
Collapse
|
34
|
Ghashghaei M, Liu Y, Ettles J, Bombaci G, Ramkumar N, Liu Z, Escano L, Miko SS, Kim Y, Waldron JA, Do K, MacPherson K, Yuen KA, Taibi T, Yue M, Arsalan A, Jin Z, Edin G, Karsan A, Morin GB, Kuchenbauer F, Perna F, Bushell M, Vu LP. Translation efficiency driven by CNOT3 subunit of the CCR4-NOT complex promotes leukemogenesis. Nat Commun 2024; 15:2340. [PMID: 38491013 PMCID: PMC10943099 DOI: 10.1038/s41467-024-46665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Protein synthesis is frequently deregulated during tumorigenesis. However, the precise contexts of selective translational control and the regulators of such mechanisms in cancer is poorly understood. Here, we uncovered CNOT3, a subunit of the CCR4-NOT complex, as an essential modulator of translation in myeloid leukemia. Elevated CNOT3 expression correlates with unfavorable outcomes in patients with acute myeloid leukemia (AML). CNOT3 depletion induces differentiation and apoptosis and delayed leukemogenesis. Transcriptomic and proteomic profiling uncovers c-MYC as a critical downstream target which is translationally regulated by CNOT3. Global analysis of mRNA features demonstrates that CNOT3 selectively influences expression of target genes in a codon usage dependent manner. Furthermore, CNOT3 associates with the protein network largely consisting of ribosomal proteins and translation elongation factors in leukemia cells. Overall, our work elicits the direct requirement for translation efficiency in tumorigenesis and propose targeting the post-transcriptional circuitry via CNOT3 as a therapeutic vulnerability in AML.
Collapse
Affiliation(s)
- Maryam Ghashghaei
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Yilin Liu
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada
| | - James Ettles
- CRUK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Giuseppe Bombaci
- Department of Medicine, Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Niveditha Ramkumar
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Zongmin Liu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Leo Escano
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Sandra Spencer Miko
- Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Yerin Kim
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
- Bioinformatics program, University of British Columbia, Vancouver, Canada
| | - Joseph A Waldron
- CRUK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Kim Do
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kyle MacPherson
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Katie A Yuen
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Thilelli Taibi
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Marty Yue
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Aaremish Arsalan
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Zhen Jin
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Glenn Edin
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Aly Karsan
- Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Gregg B Morin
- Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Florian Kuchenbauer
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Fabiana Perna
- Department of Medicine, Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffit Cancer Center, Tampa, FL, USA
| | - Martin Bushell
- CRUK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ly P Vu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada.
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada.
| |
Collapse
|
35
|
Li Z, Hou D, Tang Z, Xiong L, Yan Y. The potential role of stem cells-derived extracellular vesicles in the treatment of musculoskeletal system diseases. Cell Biol Int 2024; 48:237-252. [PMID: 38100269 DOI: 10.1002/cbin.12107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
The therapeutic potential of stem cells-derived extracellular vesicles (EVs) has shown a great progress in the regenerative medicine. EVs are rich in a variety of bioactive substances, which are important carriers of signal transmission and interactions between cells, and they play an important role in the processes of tissue repair and regeneration. Several studies have shown that stem cells-derived EVs regulate immunity, promote cell proliferation and differentiation, enhance bone and vascular regeneration, and play an increasingly important role in musculoskeletal system. This review aimed to describe the biological characteristics of stem cells-derived EVs and discuss their potential role in the therapy of musculoskeletal system diseases.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Spine Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Demiao Hou
- Department of Spine Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Zijin Tang
- Department of Spine Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Lishun Xiong
- Department of Spine Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yiguo Yan
- Department of Spine Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| |
Collapse
|
36
|
Ip JY, Wijaya I, Lee LT, Lim Y, Teoh DEJ, Chan CSC, Cui L, Begley TJ, Dedon PC, Guo H. ROS-induced translational regulation-through spatiotemporal differences in codon recognition-is a key driver of brown adipogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.572954. [PMID: 38463965 PMCID: PMC10925207 DOI: 10.1101/2023.12.22.572954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The role of translational regulation in brown adipogenesis is relatively unknown. Localized translation of mRNAs encoding mitochondrial components enables swift mitochondrial responses, but whether this occurs during brown adipogenesis, which involves massive mitochondrial biogenesis, has not been explored. Here, we used ribosome profiling and RNA-Seq, coupled with cellular fractionation, to obtain spatiotemporal insights into translational regulation. During brown adipogenesis, a translation bias towards G/C-ending codons is triggered first in the mitochondrial vicinity by reactive oxygen species (ROS), which later spreads to the rest of the cell. This translation bias is induced through ROS modulating the activity of the tRNA modification enzyme, ELP3. Intriguingly, functionally relevant mRNAs, including those encoding ROS scavengers, benefit from this bias; in so doing, ROS-induced translation bias both fuels differentiation and concurrently minimizes oxidative damage. These ROS-induced changes could enable sustained mitochondrial biogenesis during brown adipogenesis, and explain in part, the molecular basis for ROS hormesis.
Collapse
|
37
|
Bakhtiar D, Vondraskova K, Pengelly RJ, Chivers M, Kralovicova J, Vorechovsky I. Exonic splicing code and coordination of divalent metals in proteins. Nucleic Acids Res 2024; 52:1090-1106. [PMID: 38055834 PMCID: PMC10853796 DOI: 10.1093/nar/gkad1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Exonic sequences contain both protein-coding and RNA splicing information but the interplay of the protein and splicing code is complex and poorly understood. Here, we have studied traditional and auxiliary splicing codes of human exons that encode residues coordinating two essential divalent metals at the opposite ends of the Irving-Williams series, a universal order of relative stabilities of metal-organic complexes. We show that exons encoding Zn2+-coordinating amino acids are supported much less by the auxiliary splicing motifs than exons coordinating Ca2+. The handicap of the former is compensated by stronger splice sites and uridine-richer polypyrimidine tracts, except for position -3 relative to 3' splice junctions. However, both Ca2+ and Zn2+ exons exhibit close-to-constitutive splicing in multiple tissues, consistent with their critical importance for metalloprotein function and a relatively small fraction of expendable, alternatively spliced exons. These results indicate that constraints imposed by metal coordination spheres on RNA splicing have been efficiently overcome by the plasticity of exon-intron architecture to ensure adequate metalloprotein expression.
Collapse
Affiliation(s)
- Dara Bakhtiar
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Katarina Vondraskova
- Slovak Academy of Sciences, Centre of Biosciences, 840 05 Bratislava, Slovak Republic
| | - Reuben J Pengelly
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Martin Chivers
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
- Slovak Academy of Sciences, Centre of Biosciences, 840 05 Bratislava, Slovak Republic
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
38
|
Hauser M, Zirman A, Rak R, Nachman I. Challenges and opportunities in cell expansion for cultivated meat. Front Nutr 2024; 11:1315555. [PMID: 38385010 PMCID: PMC10879929 DOI: 10.3389/fnut.2024.1315555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
The cultivation of meat using in vitro grown animal stem cells offers a promising solution to pressing global concerns around climate change, ethical considerations, and public health. However, cultivated meat introduces an unprecedented necessity: the generation of mass scales of cellular biomaterial, achieved by fostering cell proliferation within bioreactors. Existing methods for in vitro cell proliferation encounter substantial challenges in terms of both scalability and economic viability. Within this perspective, we discuss the current landscape of cell proliferation optimization, focusing on approaches pertinent to cellular agriculture. We examine the mechanisms governing proliferation rates, while also addressing intrinsic and conditional rate limitations. Furthermore, we expound upon prospective strategies that could lead to a significant enhancement of the overall scalability and cost-efficiency of the cell proliferation phase within the cultivated meat production process. By exploring knowledge from basic cell cycle studies, pathological contexts and tissue engineering, we may identify innovative solutions toward optimizing cell expansion.
Collapse
Affiliation(s)
- Michelle Hauser
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amit Zirman
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Institute for Animal Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Roni Rak
- Institute for Animal Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Iftach Nachman
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
39
|
Coller J, Ignatova Z. tRNA therapeutics for genetic diseases. Nat Rev Drug Discov 2024; 23:108-125. [PMID: 38049504 DOI: 10.1038/s41573-023-00829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 12/06/2023]
Abstract
Transfer RNAs (tRNAs) have a crucial role in protein synthesis, and in recent years, their therapeutic potential for the treatment of genetic diseases - primarily those associated with a mutation altering mRNA translation - has gained significant attention. Engineering tRNAs to readthrough nonsense mutation-associated premature termination of mRNA translation can restore protein synthesis and function. In addition, supplementation of natural tRNAs can counteract effects of missense mutations in proteins crucial for tRNA biogenesis and function in translation. This Review will present advances in the development of tRNA therapeutics with high activity and safety in vivo and discuss different formulation approaches for single or chronic treatment modalities. The field of tRNA therapeutics is still in its early stages, and a series of challenges related to tRNA efficacy and stability in vivo, delivery systems with tissue-specific tropism, and safe and efficient manufacturing need to be addressed.
Collapse
Affiliation(s)
- Jeff Coller
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
40
|
Sizer RE, Butterfield SP, Hancocks LA, Gato De Sousa L, White RJ. Selective Occupation by E2F and RB of Loci Expressed by RNA Polymerase III. Cancers (Basel) 2024; 16:481. [PMID: 38339234 PMCID: PMC10854548 DOI: 10.3390/cancers16030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
In all cases tested, TFIIIB is responsible for recruiting pol III to its genetic templates. In mammalian cells, RB binds TFIIIB and prevents its interactions with both promoter DNA and pol III, thereby suppressing transcription. As TFIIIB is not recruited to its target genes when bound by RB, the mechanism predicts that pol III-dependent templates will not be occupied by RB; this contrasts with the situation at most genes controlled by RB, where it can be tethered by promoter-bound sequence-specific DNA-binding factors such as E2F. Contrary to this prediction, however, ChIP-seq data reveal the presence of RB in multiple cell types and the related protein p130 at many loci that rely on pol III for their expression, including RMRP, RN7SL, and a variety of tRNA genes. The sets of genes targeted varies according to cell type and growth state. In such cases, recruitment of RB and p130 can be explained by binding of E2F1, E2F4 and/or E2F5. Genes transcribed by pol III had not previously been identified as common targets of E2F family members. The data provide evidence that E2F may allow for the selective regulation of specific non-coding RNAs by RB, in addition to its influence on overall pol III output through its interaction with TFIIIB.
Collapse
Affiliation(s)
| | | | | | | | - Robert J. White
- Department of Biology, University of York, York YO10 5DD, UK; (R.E.S.)
| |
Collapse
|
41
|
Giguère S, Wang X, Huber S, Xu L, Warner J, Weldon SR, Hu J, Phan QA, Tumang K, Prum T, Ma D, Kirsch KH, Nair U, Dedon P, Batista FD. Antibody production relies on the tRNA inosine wobble modification to meet biased codon demand. Science 2024; 383:205-211. [PMID: 38207021 PMCID: PMC10954030 DOI: 10.1126/science.adi1763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Antibodies are produced at high rates to provide immunoprotection, which puts pressure on the B cell translational machinery. Here, we identified a pattern of codon usage conserved across antibody genes. One feature thereof is the hyperutilization of codons that lack genome-encoded Watson-Crick transfer RNAs (tRNAs), instead relying on the posttranscriptional tRNA modification inosine (I34), which expands the decoding capacity of specific tRNAs through wobbling. Antibody-secreting cells had increased I34 levels and were more reliant on I34 for protein production than naïve B cells. Furthermore, antibody I34-dependent codon usage may influence B cell passage through regulatory checkpoints. Our work elucidates the interface between the tRNA pool and protein production in the immune system and has implications for the design and selection of antibodies for vaccines and therapeutics.
Collapse
Affiliation(s)
- Sophie Giguère
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Xuesong Wang
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Sabrina Huber
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Liling Xu
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - John Warner
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Stephanie R. Weldon
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jennifer Hu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Quynh Anh Phan
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Katie Tumang
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Thavaleak Prum
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Duanduan Ma
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kathrin H. Kirsch
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Usha Nair
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Peter Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Singapore-MIT Alliance for Research and Technology, Singapore 138602
| | - Facundo D. Batista
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
42
|
Cherkaoui S, Yang L, McBride M, Turn CS, Lu W, Eigenmann C, Allen GE, Panasenko OO, Zhang L, Vu A, Liu K, Li Y, Gandhi OH, Surrey L, Wierer M, White E, Rabinowitz JD, Hogarty MD, Morscher RJ. Reprogramming neuroblastoma by diet-enhanced polyamine depletion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.573662. [PMID: 38260457 PMCID: PMC10802427 DOI: 10.1101/2024.01.07.573662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neuroblastoma is a highly lethal childhood tumor derived from differentiation-arrested neural crest cells1,2. Like all cancers, its growth is fueled by metabolites obtained from either circulation or local biosynthesis3,4. Neuroblastomas depend on local polyamine biosynthesis, with the inhibitor difluoromethylornithine showing clinical activity5. Here we show that such inhibition can be augmented by dietary restriction of upstream amino acid substrates, leading to disruption of oncogenic protein translation, tumor differentiation, and profound survival gains in the TH-MYCN mouse model. Specifically, an arginine/proline-free diet decreases the polyamine precursor ornithine and augments tumor polyamine depletion by difluoromethylornithine. This polyamine depletion causes ribosome stalling, unexpectedly specifically at adenosine-ending codons. Such codons are selectively enriched in cell cycle genes and low in neuronal differentiation genes. Thus, impaired translation of these codons, induced by the diet-drug combination, favors a pro-differentiation proteome. These results suggest that the genes of specific cellular programs have evolved hallmark codon usage preferences that enable coherent translational rewiring in response to metabolic stresses, and that this process can be targeted to activate differentiation of pediatric cancers.
Collapse
Affiliation(s)
- Sarah Cherkaoui
- Pediatric Cancer Metabolism Laboratory, Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
- Division of Oncology, University Children’s Hospital Zurich and Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
| | - Lifeng Yang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ 08544, USA
| | - Matthew McBride
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ 08544, USA
| | - Christina S. Turn
- Division of Oncology and Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenyun Lu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ 08544, USA
| | - Caroline Eigenmann
- Pediatric Cancer Metabolism Laboratory, Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
- Division of Oncology, University Children’s Hospital Zurich and Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
| | - George E. Allen
- Bioinformatics Support Platform, Faculty of Medicine, University of Geneva 1211, Switzerland
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Olesya O. Panasenko
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- BioCode: RNA to proteins (R2P) Platform, University of Geneva, 1211 Geneva, Switzerland
| | - Lu Zhang
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08901, USA
- Department of Molecular Biology and Biochemistry, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Annette Vu
- Division of Oncology and Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kangning Liu
- Division of Oncology and Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yimei Li
- Division of Oncology and Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Om H. Gandhi
- Division of Oncology and Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lea Surrey
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael Wierer
- Proteomics Research Infrastructure, Panum Institute, Blegdamsvej 3B, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Eileen White
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08901, USA
- Department of Molecular Biology and Biochemistry, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Joshua D. Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ 08544, USA
| | - Michael D. Hogarty
- Division of Oncology and Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raphael J. Morscher
- Pediatric Cancer Metabolism Laboratory, Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
- Division of Oncology, University Children’s Hospital Zurich and Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
- Division of Human Genetics, Medical University Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
| |
Collapse
|
43
|
Lucas MC, Pryszcz LP, Medina R, Milenkovic I, Camacho N, Marchand V, Motorin Y, Ribas de Pouplana L, Novoa EM. Quantitative analysis of tRNA abundance and modifications by nanopore RNA sequencing. Nat Biotechnol 2024; 42:72-86. [PMID: 37024678 PMCID: PMC10791586 DOI: 10.1038/s41587-023-01743-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
Transfer RNAs (tRNAs) play a central role in protein translation. Studying them has been difficult in part because a simple method to simultaneously quantify their abundance and chemical modifications is lacking. Here we introduce Nano-tRNAseq, a nanopore-based approach to sequence native tRNA populations that provides quantitative estimates of both tRNA abundances and modification dynamics in a single experiment. We show that default nanopore sequencing settings discard the vast majority of tRNA reads, leading to poor sequencing yields and biased representations of tRNA abundances based on their transcript length. Re-processing of raw nanopore current intensity signals leads to a 12-fold increase in the number of recovered tRNA reads and enables recapitulation of accurate tRNA abundances. We then apply Nano-tRNAseq to Saccharomyces cerevisiae tRNA populations, revealing crosstalks and interdependencies between different tRNA modification types within the same molecule and changes in tRNA populations in response to oxidative stress.
Collapse
Affiliation(s)
- Morghan C Lucas
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Leszek P Pryszcz
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rebeca Medina
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ivan Milenkovic
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Noelia Camacho
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Virginie Marchand
- CNRS-Université de Lorraine, UAR2008 IBSLor/UMR7365 IMoPA, Nancy, France
| | - Yuri Motorin
- CNRS-Université de Lorraine, UAR2008 IBSLor/UMR7365 IMoPA, Nancy, France
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
44
|
Gao L, Behrens A, Rodschinka G, Forcelloni S, Wani S, Strasser K, Nedialkova DD. Selective gene expression maintains human tRNA anticodon pools during differentiation. Nat Cell Biol 2024; 26:100-112. [PMID: 38191669 PMCID: PMC10791582 DOI: 10.1038/s41556-023-01317-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/16/2023] [Indexed: 01/10/2024]
Abstract
Transfer RNAs are essential for translating genetic information into proteins. The human genome contains hundreds of predicted tRNA genes, many in multiple copies. How their expression is regulated to control tRNA repertoires is unknown. Here we combined quantitative tRNA profiling and chromatin immunoprecipitation with sequencing to measure tRNA expression following the differentiation of human induced pluripotent stem cells into neuronal and cardiac cells. We find that tRNA transcript levels vary substantially, whereas tRNA anticodon pools, which govern decoding rates, are more stable among cell types. Mechanistically, RNA polymerase III transcribes a wide range of tRNA genes in human induced pluripotent stem cells but on differentiation becomes constrained to a subset we define as housekeeping tRNAs. This shift is mediated by decreased mTORC1 signalling, which activates the RNA polymerase III repressor MAF1. Our data explain how tRNA anticodon pools are buffered to maintain decoding speed across cell types and reveal that mTORC1 drives selective tRNA expression during differentiation.
Collapse
Affiliation(s)
- Lexi Gao
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andrew Behrens
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Geraldine Rodschinka
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sergio Forcelloni
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sascha Wani
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Katrin Strasser
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Danny D Nedialkova
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany.
| |
Collapse
|
45
|
Shi Y, Feng Y, Wang Q, Dong G, Xia W, Jiang F. The Role of tRNA-Centered Translational Regulatory Mechanisms in Cancer. Cancers (Basel) 2023; 16:77. [PMID: 38201505 PMCID: PMC10778012 DOI: 10.3390/cancers16010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. While numerous factors have been identified as contributing to the development of malignancy, our understanding of the mechanisms involved remains limited. Early cancer detection and the development of effective treatments are therefore critical areas of research. One class of molecules that play a crucial role in the transmission of genetic information are transfer RNAs (tRNAs), which are the most abundant RNA molecules in the human transcriptome. Dysregulated synthesis of tRNAs directly results in translation disorders and diseases, including cancer. Moreover, various types of tRNA modifications and the enzymes responsible for these modifications have been implicated in tumor biology. Furthermore, alterations in tRNA modification can impact tRNA stability, and impaired stability can prompt the cleavage of tRNAs into smaller fragments known as tRNA fragments (tRFs). Initially believed to be random byproducts lacking any physiological function, tRFs have now been redefined as non-coding RNA molecules with distinct roles in regulating RNA stability, translation, target gene expression, and other biological processes. In this review, we present recent findings on translational regulatory models centered around tRNAs in tumors, providing a deeper understanding of tumorigenesis and suggesting new directions for cancer treatment.
Collapse
Affiliation(s)
- Yuanjian Shi
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210029, China
| | - Yipeng Feng
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210029, China
| | - Qinglin Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210029, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Wenjie Xia
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Feng Jiang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
46
|
Nakano Y, Gamper H, McGuigan H, Maharjan S, Sun Z, Krishnan K, Yigit E, Li NS, Piccirilli JA, Kleiner R, Nichols N, Hou YM. Genome-Wide Profiling of tRNA Using an Unexplored Reverse Transcriptase with High Processivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.09.569604. [PMID: 38106225 PMCID: PMC10723452 DOI: 10.1101/2023.12.09.569604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Monitoring the dynamic changes of cellular tRNA pools is challenging, due to the extensive post-transcriptional modifications of individual species. The most critical component in tRNAseq is a processive reverse transcriptase (RT) that can read through each modification with high efficiency. Here we show that the recently developed group-II intron RT Induro has the processivity and efficiency necessary to profile tRNA dynamics. Using our Induro-tRNAseq, simpler and more comprehensive than the best methods to date, we show that Induro progressively increases readthrough of tRNA over time and that the mechanism of increase is selective removal of RT stops, without altering the misincorporation frequency. We provide a parallel dataset of the misincorporation profile of Induro relative to the related TGIRT RT to facilitate the prediction of non-annotated modifications. We report an unexpected modification profile among human proline isoacceptors, absent from mouse and lower eukaryotes, that indicates new biology of decoding proline codons.
Collapse
|
47
|
van Breugel ME, van Kruijsbergen I, Mittal C, Lieftink C, Brouwer I, van den Brand T, Kluin RJC, Hoekman L, Menezes RX, van Welsem T, Del Cortona A, Malik M, Beijersbergen RL, Lenstra TL, Verstrepen KJ, Pugh BF, van Leeuwen F. Locus-specific proteome decoding reveals Fpt1 as a chromatin-associated negative regulator of RNA polymerase III assembly. Mol Cell 2023; 83:4205-4221.e9. [PMID: 37995691 PMCID: PMC11289708 DOI: 10.1016/j.molcel.2023.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/27/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Transcription of tRNA genes by RNA polymerase III (RNAPIII) is tuned by signaling cascades. The emerging notion of differential tRNA gene regulation implies the existence of additional regulatory mechanisms. However, tRNA gene-specific regulators have not been described. Decoding the local chromatin proteome of a native tRNA gene in yeast revealed reprogramming of the RNAPIII transcription machinery upon nutrient perturbation. Among the dynamic proteins, we identified Fpt1, a protein of unknown function that uniquely occupied RNAPIII-regulated genes. Fpt1 binding at tRNA genes correlated with the efficiency of RNAPIII eviction upon nutrient perturbation and required the transcription factors TFIIIB and TFIIIC but not RNAPIII. In the absence of Fpt1, eviction of RNAPIII was reduced, and the shutdown of ribosome biogenesis genes was impaired upon nutrient perturbation. Our findings provide support for a chromatin-associated mechanism required for RNAPIII eviction from tRNA genes and tuning the physiological response to changing metabolic demands.
Collapse
Affiliation(s)
- Maria Elize van Breugel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Ila van Kruijsbergen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Chitvan Mittal
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | - Cor Lieftink
- Division of Molecular Carcinogenesis and Robotics and Screening Center, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Ineke Brouwer
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Division of Gene Regulation, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066 CX, the Netherlands
| | - Teun van den Brand
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Roelof J C Kluin
- Genomics Core Facility, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Renée X Menezes
- Biostatistics Centre and Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Andrea Del Cortona
- VIB-KU Leuven Center for Microbiology, KU Leuven, 3001 Heverlee-Leuven, Belgium
| | - Muddassir Malik
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis and Robotics and Screening Center, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Genomics Core Facility, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Tineke L Lenstra
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Division of Gene Regulation, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066 CX, the Netherlands
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, KU Leuven, 3001 Heverlee-Leuven, Belgium
| | - B Franklin Pugh
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands.
| |
Collapse
|
48
|
Collart MA, Audebert L, Bushell M. Roles of the CCR4-Not complex in translation and dynamics of co-translation events. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1827. [PMID: 38009591 PMCID: PMC10909573 DOI: 10.1002/wrna.1827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
The Ccr4-Not complex is a global regulator of mRNA metabolism in eukaryotic cells that is most well-known to repress gene expression. Delivery of the complex to mRNAs through a multitude of distinct mechanisms accelerates their decay, yet Ccr4-Not also plays an important role in co-translational processes, such as co-translational association of proteins and delivery of translating mRNAs to organelles. The recent structure of Not5 interacting with the translated ribosome has brought to light that embedded information within the codon sequence can be monitored by recruitment of the Ccr4-Not complex to elongating ribosomes. Thereby, the Ccr4-Not complex is empowered with regulatory decisions determining the fate of proteins being synthesized and their encoding mRNAs. This review will focus on the roles of the complex in translation and dynamics of co-translation events. This article is categorized under: Translation > Mechanisms Translation > Regulation.
Collapse
Affiliation(s)
- Martine A. Collart
- Department of Microbiology and Molecular MedicineInstitute of Genetics and Genomics Geneva, University of Geneva, Faculty of MedicineGenèveSwitzerland
| | - Léna Audebert
- Department of Microbiology and Molecular MedicineInstitute of Genetics and Genomics Geneva, University of Geneva, Faculty of MedicineGenèveSwitzerland
| | - Martin Bushell
- Cancer Research UK Beatson InstituteGlasgowUK
- School of Cancer Sciences, University of GlasgowGlasgowUK
| |
Collapse
|
49
|
Wu EY, Landry L. Conserved spatiotemporal expression landscape of dominant tRNA genes in human and mouse. Biochem Biophys Res Commun 2023; 681:173-179. [PMID: 37776749 DOI: 10.1016/j.bbrc.2023.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
Transfer RNAs are integral for protein synthesis and the interpretation of the information contained in DNA. To date, a few methods, including custom microarrays and custom targeted sequencing, have been used to quantify tRNA. However, methods using available RNA-sequencing data have not yet been reported. We created a bioinformatics pipeline to quantify the highly expressed tRNAs in RNA-Seq effectively, demonstrated by the preserved ratio of the expression levels of two massively duplicated tRNAAla genes in mouse. Using this quantification, we examined the tRNA expression with relation to tissue type and developmental stage in both human and mouse. Heart exhibited the highest overall tRNA expression for both human and mouse. Furthermore, tRNA expression grew to a peak before decreasing steadily with developmental stage, a trend that was conserved in both human and mouse. The two mitochondrial tRNA genes, tRNASer(TCA)(m) and tRNALeu(TTA)(m), which partly contribute to these trends, have been attributed to various human diseases. The tissue-specific high expression of tRNAGln(CAG) and tRNAGln(CAA) in human brains, especially in hindbrain and cerebellum, suggests their important roles in neurological disorders. In summary, our approach revealed conserved spatiotemporal expression of highly expressed tRNAs in both human and mouse. Our method can be applied to other RNA-Seq data to examine the roles of these tRNAs in different human diseases or scientific studies.
Collapse
Affiliation(s)
- Evan Y Wu
- Memphis University School, 6191 Park Ave, Memphis, TN, 38119, USA.
| | - Laura Landry
- Memphis University School, 6191 Park Ave, Memphis, TN, 38119, USA.
| |
Collapse
|
50
|
Huang J, Zhang L, Yang R, Yao L, Gou J, Cao D, Pan Z, Li D, Pan Y, Zhang W. Eukaryotic translation initiation factor 4A1 in the pathogenesis and treatment of cancers. Front Mol Biosci 2023; 10:1289650. [PMID: 38028556 PMCID: PMC10666758 DOI: 10.3389/fmolb.2023.1289650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Abnormal translate regulation is an important phenomenon in cancer initiation and progression. Eukaryotic translation initiation factor 4A1 (eIF4A1) protein is an ATP-dependent Ribonucleic Acid (RNA) helicase, which is essential for translation and has bidirectional RNA unwinders function. In this review, we discuss the levels of expression, regulatory mechanisms and protein functions of eIF4A1 in different human tumors. eIF4A1 is often involved as a target of microRNAs or long non-coding RNAs during the epithelial-mesenchymal transition, associating with the proliferation and metastasis of tumor cells. eIF4A1 protein exhibits the promising biomarker for rapid diagnosis of pre-cancer lesions, histological phenotypes, clinical staging diagnosis and outcome prediction, which provides a novel strategy for precise medical care and target therapy for patients with tumors at the same time, relevant small molecule inhibitors have also been applied in clinical practice, providing reliable theoretical support and clinical basis for the development of this gene target.
Collapse
Affiliation(s)
- Jinghong Huang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Lei Zhang
- Clinical Laboratory, First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Rui Yang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Lixia Yao
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Jinming Gou
- Troops of the People’s Liberation Army, Urumqi, Xinjiang, China
| | - Dongdong Cao
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Zeming Pan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Dongmei Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Wei Zhang
- Shihezi People’s Hospital, Shihezi, Xinjiang, China
| |
Collapse
|