1
|
Pashos ARS, Meyer AR, Bussey-Sutton C, O'Connor ES, Coradin M, Coulombe M, Riemondy KA, Potlapelly S, Strahl BD, Hansson GC, Dempsey PJ, Brumbaugh J. H3K36 methylation regulates cell plasticity and regeneration in the intestinal epithelium. Nat Cell Biol 2025; 27:202-217. [PMID: 39779942 DOI: 10.1038/s41556-024-01580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
Plasticity is needed during development and homeostasis to generate diverse cell types from stem and progenitor cells. Following differentiation, plasticity must be restricted in specialized cells to maintain tissue integrity and function. For this reason, specialized cell identity is stable under homeostatic conditions; however, cells in some tissues regain plasticity during injury-induced regeneration. While precise gene expression controls these processes, the regulatory mechanisms that restrict or promote cell plasticity are poorly understood. Here we use the mouse small intestine as a model system to study cell plasticity. We find that H3K36 methylation reinforces expression of cell-type-associated genes to maintain specialized cell identity in intestinal epithelial cells. Depleting H3K36 methylation disrupts lineage commitment and activates regenerative gene expression. Correspondingly, we observe rapid and reversible remodelling of H3K36 methylation following injury-induced regeneration. These data suggest a fundamental role for H3K36 methylation in reinforcing specialized lineages and regulating cell plasticity and regeneration.
Collapse
Affiliation(s)
- Alison R S Pashos
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anne R Meyer
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cameron Bussey-Sutton
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erin S O'Connor
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mariel Coradin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marilyne Coulombe
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kent A Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sanjana Potlapelly
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Peter J Dempsey
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA.
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA.
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
2
|
Lorzadeh A, Ye G, Sharma S, Jadhav U. Motif distribution and DNA methylation underlie distinct Cdx2 binding during development and homeostasis. Nat Commun 2025; 16:929. [PMID: 39843425 PMCID: PMC11754732 DOI: 10.1038/s41467-025-56187-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Transcription factors guide tissue development by binding to developmental stage-specific targets and establishing an appropriate enhancer landscape. In turn, DNA and chromatin modifications direct the genomic binding of transcription factors. However, how transcription factors navigate chromatin features to selectively bind a small subset of all the possible genomic target loci remains poorly understood. Here we show that Cdx2-a lineage defining transcription factor that binds distinct targets in developing versus adult intestinal epithelial cells-has a preferential affinity for a non-canonical CpG-containing motif in vivo. A higher frequency of this motif at embryonic Cdx2 targets and methylated state of the CpG during development enables selective Cdx2 binding and activation of developmental enhancers and genes. In adult cells, demethylation at these enhancers prevents ectopic Cdx2 binding, instead directing Cdx2 to its canonical motif without a CpG. This shift in Cdx2 binding facilitates Ctcf and Hnf4 recruitment, establishing super-enhancers during development and homeostatic enhancers in adult cells, respectively. Induced DNA methylation in adult mouse epithelium or cultured cells recruits Cdx2 to developmental targets, promoting corecruitment of partner transcription factors. Thus, Cdx2's differential CpG motif preferences enable it to navigate distinct DNA methylation profiles, activating genes specific to appropriate developmental stages.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - George Ye
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sweta Sharma
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Unmesh Jadhav
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Garnica J, Sole P, Yamanouchi J, Moro J, Mondal D, Fandos C, Serra P, Santamaria P. T-follicular helper cells are epigenetically poised to transdifferentiate into T-regulatory type 1 cells. eLife 2024; 13:RP97665. [PMID: 39576679 PMCID: PMC11584177 DOI: 10.7554/elife.97665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.
Collapse
Affiliation(s)
- Josep Garnica
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Patricia Sole
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Jun Yamanouchi
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgary, AlbertaCanada
| | - Joel Moro
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Debajyoti Mondal
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgary, AlbertaCanada
| | - Cesar Fandos
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Pau Serra
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Pere Santamaria
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgary, AlbertaCanada
| |
Collapse
|
4
|
Tamburri S, Rustichelli S, Amato S, Pasini D. Navigating the complexity of Polycomb repression: Enzymatic cores and regulatory modules. Mol Cell 2024; 84:3381-3405. [PMID: 39178860 DOI: 10.1016/j.molcel.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Polycomb proteins are a fundamental repressive system that plays crucial developmental roles by orchestrating cell-type-specific transcription programs that govern cell identity. Direct alterations of Polycomb activity are indeed implicated in human pathologies, including developmental disorders and cancer. General Polycomb repression is coordinated by three distinct activities that regulate the deposition of two histone post-translational modifications: tri-methylation of histone H3 lysine 27 (H3K27me3) and histone H2A at lysine 119 (H2AK119ub1). These activities exist in large and heterogeneous multiprotein ensembles consisting of common enzymatic cores regulated by heterogeneous non-catalytic modules composed of a large number of accessory proteins with diverse biochemical properties. Here, we have analyzed the current molecular knowledge, focusing on the functional interaction between the core enzymatic activities and their regulation mediated by distinct accessory modules. This provides a comprehensive analysis of the molecular details that control the establishment and maintenance of Polycomb repression, examining their underlying coordination and highlighting missing information and emerging new features of Polycomb-mediated transcriptional control.
Collapse
Affiliation(s)
- Simone Tamburri
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| | - Samantha Rustichelli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Simona Amato
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Diego Pasini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
5
|
Venkadakrishnan VB, Presser AG, Singh R, Booker MA, Traphagen NA, Weng K, Voss NCE, Mahadevan NR, Mizuno K, Puca L, Idahor O, Ku SY, Bakht MK, Borah AA, Herbert ZT, Tolstorukov MY, Barbie DA, Rickman DS, Brown M, Beltran H. Lineage-specific canonical and non-canonical activity of EZH2 in advanced prostate cancer subtypes. Nat Commun 2024; 15:6779. [PMID: 39117665 PMCID: PMC11310309 DOI: 10.1038/s41467-024-51156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and emerging therapeutic target that is overexpressed in most castration-resistant prostate cancers and implicated as a driver of disease progression and resistance to hormonal therapies. Here we define the lineage-specific action and differential activity of EZH2 in both prostate adenocarcinoma and neuroendocrine prostate cancer (NEPC) subtypes of advanced prostate cancer to better understand the role of EZH2 in modulating differentiation, lineage plasticity, and to identify mediators of response and resistance to EZH2 inhibitor therapy. Mechanistically, EZH2 modulates bivalent genes that results in upregulation of NEPC-associated transcriptional drivers (e.g., ASCL1) and neuronal gene programs in NEPC, and leads to forward differentiation after targeting EZH2 in NEPC. Subtype-specific downstream effects of EZH2 inhibition on cell cycle genes support the potential rationale for co-targeting cyclin/CDK to overcome resistance to EZH2 inhibition.
Collapse
Affiliation(s)
- Varadha Balaji Venkadakrishnan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam G Presser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Richa Singh
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Matthew A Booker
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicole A Traphagen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kenny Weng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Boston College, Chestnut Hill, MA, USA
| | - Nathaniel C E Voss
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belmont Hill School, Belmont, MA, USA
| | - Navin R Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kei Mizuno
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Loredana Puca
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Osasenaga Idahor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard University, Cambridge, MA, USA
| | - Sheng-Yu Ku
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin K Bakht
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashir A Borah
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Y Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
Haque PS, Kapur N, Barrett TA, Theiss AL. Mitochondrial function and gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2024; 21:537-555. [PMID: 38740978 PMCID: PMC12036329 DOI: 10.1038/s41575-024-00931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Mitochondria are dynamic organelles that function in cellular energy metabolism, intracellular and extracellular signalling, cellular fate and stress responses. Mitochondria of the intestinal epithelium, the cellular interface between self and enteric microbiota, have emerged as crucial in intestinal health. Mitochondrial dysfunction occurs in gastrointestinal diseases, including inflammatory bowel diseases and colorectal cancer. In this Review, we provide an overview of the current understanding of intestinal epithelial cell mitochondrial metabolism, function and signalling to affect tissue homeostasis, including gut microbiota composition. We also discuss mitochondrial-targeted therapeutics for inflammatory bowel diseases and colorectal cancer and the evolving concept of mitochondrial impairment as a consequence versus initiator of the disease.
Collapse
Affiliation(s)
- Parsa S Haque
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Neeraj Kapur
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Terrence A Barrett
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA.
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.
| |
Collapse
|
7
|
Zenk F, Fleck JS, Jansen SMJ, Kashanian B, Eisinger B, Santel M, Dupré JS, Camp JG, Treutlein B. Single-cell epigenomic reconstruction of developmental trajectories from pluripotency in human neural organoid systems. Nat Neurosci 2024; 27:1376-1386. [PMID: 38914828 PMCID: PMC11239525 DOI: 10.1038/s41593-024-01652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/17/2024] [Indexed: 06/26/2024]
Abstract
Cell fate progression of pluripotent progenitors is strictly regulated, resulting in high human cell diversity. Epigenetic modifications also orchestrate cell fate restriction. Unveiling the epigenetic mechanisms underlying human cell diversity has been difficult. In this study, we use human brain and retina organoid models and present single-cell profiling of H3K27ac, H3K27me3 and H3K4me3 histone modifications from progenitor to differentiated neural fates to reconstruct the epigenomic trajectories regulating cell identity acquisition. We capture transitions from pluripotency through neuroepithelium to retinal and brain region and cell type specification. Switching of repressive and activating epigenetic modifications can precede and predict cell fate decisions at each stage, providing a temporal census of gene regulatory elements and transcription factors. Removing H3K27me3 at the neuroectoderm stage disrupts fate restriction, resulting in aberrant cell identity acquisition. Our single-cell epigenome-wide map of human neural organoid development serves as a blueprint to explore human cell fate determination.
Collapse
Affiliation(s)
- Fides Zenk
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
- Brain Mind Institute, School of Life Sciences EPFL, Lausanne, Switzerland.
| | - Jonas Simon Fleck
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | - Bijan Kashanian
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Benedikt Eisinger
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Małgorzata Santel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Jean-Samuel Dupré
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - J Gray Camp
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
8
|
Larue AEM, Atlasi Y. The epigenetic landscape in intestinal stem cells and its deregulation in colorectal cancer. Stem Cells 2024; 42:509-525. [PMID: 38597726 PMCID: PMC11177158 DOI: 10.1093/stmcls/sxae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Epigenetic mechanisms play a pivotal role in controlling gene expression and cellular plasticity in both normal physiology and pathophysiological conditions. These mechanisms are particularly important in the regulation of stem cell self-renewal and differentiation, both in embryonic development and within adult tissues. A prime example of this finely tuned epigenetic control is observed in the gastrointestinal lining, where the small intestine undergoes renewal approximately every 3-5 days. How various epigenetic mechanisms modulate chromatin functions in intestinal stem cells (ISCs) is currently an active area of research. In this review, we discuss the main epigenetic mechanisms that control ISC differentiation under normal homeostasis. Furthermore, we explore the dysregulation of these mechanisms in the context of colorectal cancer (CRC) development. By outlining the main epigenetic mechanisms contributing to CRC, we highlight the recent therapeutics development and future directions for colorectal cancer research.
Collapse
Affiliation(s)
- Axelle E M Larue
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| | - Yaser Atlasi
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
9
|
Dunn-Davies H, Dudnakova T, Nogara A, Rodor J, Thomas AC, Parish E, Gautier P, Meynert A, Ulitsky I, Madeddu P, Caporali A, Baker A, Tollervey D, Mitić T. Control of endothelial cell function and arteriogenesis by MEG3:EZH2 epigenetic regulation of integrin expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102173. [PMID: 38617973 PMCID: PMC11015509 DOI: 10.1016/j.omtn.2024.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
Epigenetic processes involving long non-coding RNAs regulate endothelial gene expression. However, the underlying regulatory mechanisms causing endothelial dysfunction remain to be elucidated. Enhancer of zeste homolog 2 (EZH2) is an important rheostat of histone H3K27 trimethylation (H3K27me3) that represses endothelial targets, but EZH2 RNA binding capacity and EZH2:RNA functional interactions have not been explored in post-ischemic angiogenesis. We used formaldehyde/UV-assisted crosslinking ligation and sequencing of hybrids and identified a new role for maternally expressed gene 3 (MEG3). MEG3 formed the predominant RNA:RNA hybrid structures in endothelial cells. Moreover, MEG3:EZH2 assists recruitment onto chromatin. By EZH2-chromatin immunoprecipitation, following MEG3 depletion, we demonstrated that MEG3 controls recruitment of EZH2/H3K27me3 onto integrin subunit alpha4 (ITGA4) promoter. Both MEG3 knockdown or EZH2 inhibition (A-395) promoted ITGA4 expression and improved endothelial cell migration and adhesion to fibronectin in vitro. The A-395 inhibitor re-directed MEG3-assisted chromatin remodeling, offering a direct therapeutic benefit by increasing endothelial function and resilience. This approach subsequently increased the expression of ITGA4 in arterioles following ischemic injury in mice, thus promoting arteriogenesis. Our findings show a context-specific role for MEG3 in guiding EZH2 to repress ITGA4. Novel therapeutic strategies could antagonize MEG3:EZH2 interaction for pre-clinical studies.
Collapse
Affiliation(s)
- Hywel Dunn-Davies
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building Max Born Crescent, King’s Buildings, Edinburgh EH9 3BF, UK
| | - Tatiana Dudnakova
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Antonella Nogara
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Julie Rodor
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Anita C. Thomas
- Bristol Medical School, Translational Health Sciences, University of Bristol, Research and Teaching Floor Level 7, Queens Building, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Elisa Parish
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Philippe Gautier
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alison Meynert
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann-UK Building rm. 007, Weizmann Institute of Science Rehovot 76100, Israel
| | - Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Research and Teaching Floor Level 7, Queens Building, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Andrea Caporali
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrew Baker
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building Max Born Crescent, King’s Buildings, Edinburgh EH9 3BF, UK
| | - Tijana Mitić
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
10
|
Capdevila C, Miller J, Cheng L, Kornberg A, George JJ, Lee H, Botella T, Moon CS, Murray JW, Lam S, Calderon RI, Malagola E, Whelan G, Lin CS, Han A, Wang TC, Sims PA, Yan KS. Time-resolved fate mapping identifies the intestinal upper crypt zone as an origin of Lgr5+ crypt base columnar cells. Cell 2024; 187:3039-3055.e14. [PMID: 38848677 PMCID: PMC11770878 DOI: 10.1016/j.cell.2024.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/16/2024] [Accepted: 05/01/2024] [Indexed: 06/09/2024]
Abstract
In the prevailing model, Lgr5+ cells are the only intestinal stem cells (ISCs) that sustain homeostatic epithelial regeneration by upward migration of progeny through elusive upper crypt transit-amplifying (TA) intermediates. Here, we identify a proliferative upper crypt population marked by Fgfbp1, in the location of putative TA cells, that is transcriptionally distinct from Lgr5+ cells. Using a kinetic reporter for time-resolved fate mapping and Fgfbp1-CreERT2 lineage tracing, we establish that Fgfbp1+ cells are multi-potent and give rise to Lgr5+ cells, consistent with their ISC function. Fgfbp1+ cells also sustain epithelial regeneration following Lgr5+ cell depletion. We demonstrate that FGFBP1, produced by the upper crypt cells, is an essential factor for crypt proliferation and epithelial homeostasis. Our findings support a model in which tissue regeneration originates from upper crypt Fgfbp1+ cells that generate progeny propagating bi-directionally along the crypt-villus axis and serve as a source of Lgr5+ cells in the crypt base.
Collapse
Affiliation(s)
- Claudia Capdevila
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Jonathan Miller
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Liang Cheng
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Adam Kornberg
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Joel J George
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Hyeonjeong Lee
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Theo Botella
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Christine S Moon
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - John W Murray
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephanie Lam
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ruben I Calderon
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ermanno Malagola
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Gary Whelan
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Chyuan-Sheng Lin
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Arnold Han
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Timothy C Wang
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter A Sims
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA; Departments of Biochemistry & Molecular Biophysics and of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kelley S Yan
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
11
|
Shi TH, Sugishita H, Gotoh Y. Crosstalk within and beyond the Polycomb repressive system. J Cell Biol 2024; 223:e202311021. [PMID: 38506728 PMCID: PMC10955045 DOI: 10.1083/jcb.202311021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
The development of multicellular organisms depends on spatiotemporally controlled differentiation of numerous cell types and their maintenance. To generate such diversity based on the invariant genetic information stored in DNA, epigenetic mechanisms, which are heritable changes in gene function that do not involve alterations to the underlying DNA sequence, are required to establish and maintain unique gene expression programs. Polycomb repressive complexes represent a paradigm of epigenetic regulation of developmentally regulated genes, and the roles of these complexes as well as the epigenetic marks they deposit, namely H3K27me3 and H2AK119ub, have been extensively studied. However, an emerging theme from recent studies is that not only the autonomous functions of the Polycomb repressive system, but also crosstalks of Polycomb with other epigenetic modifications, are important for gene regulation. In this review, we summarize how these crosstalk mechanisms have improved our understanding of Polycomb biology and how such knowledge could help with the design of cancer treatments that target the dysregulated epigenome.
Collapse
Affiliation(s)
- Tianyi Hideyuki Shi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroki Sugishita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
McNamara ME, Jain SS, Oza K, Muralidaran V, Kiliti AJ, McDeed AP, Patil D, Cui Y, Schmidt MO, Riegel AT, Kroemer AH, Wellstein A. Circulating, cell-free methylated DNA indicates cellular sources of allograft injury after liver transplant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588176. [PMID: 38617373 PMCID: PMC11014558 DOI: 10.1101/2024.04.04.588176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Post-transplant complications reduce allograft and recipient survival. Current approaches for detecting allograft injury non-invasively are limited and do not differentiate between cellular mechanisms. Here, we monitor cellular damages after liver transplants from cell-free DNA (cfDNA) fragments released from dying cells into the circulation. We analyzed 130 blood samples collected from 44 patients at different time points after transplant. Sequence-based methylation of cfDNA fragments were mapped to patterns established to identify cell types in different organs. For liver cell types DNA methylation patterns and multi-omic data integration show distinct enrichment in open chromatin and regulatory regions functionally important for the respective cell types. We find that multi-tissue cellular damages post-transplant recover in patients without allograft injury during the first post-operative week. However, sustained elevation of hepatocyte and biliary epithelial cfDNA beyond the first week indicates early-onset allograft injury. Further, cfDNA composition differentiates amongst causes of allograft injury indicating the potential for non-invasive monitoring and timely intervention.
Collapse
Affiliation(s)
- Megan E. McNamara
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Sidharth S. Jain
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Kesha Oza
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
- Department of General Surgery, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Vinona Muralidaran
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Amber J. Kiliti
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - A. Patrick McDeed
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Digvijay Patil
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Yuki Cui
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Marcel O. Schmidt
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Anna T. Riegel
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Alexander H.K. Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Anton Wellstein
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
13
|
Lorzadeh A, Ye G, Sharma S, Jadhav U. DNA methylation-dependent and -independent binding of CDX2 directs activation of distinct developmental and homeostatic genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.11.579850. [PMID: 38405700 PMCID: PMC10888781 DOI: 10.1101/2024.02.11.579850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Precise spatiotemporal and cell type-specific gene expression is essential for proper tissue development and function. Transcription factors (TFs) guide this process by binding to developmental stage-specific targets and establishing an appropriate enhancer landscape. In turn, DNA and chromatin modifications direct the genomic binding of TFs. However, how TFs navigate various chromatin features and selectively bind a small portion of the millions of possible genomic target loci is still not well understood. Here we show that Cdx2 - a pioneer TF that binds distinct targets in developing versus adult intestinal epithelial cells - has a preferential affinity for a non-canonical CpG-containing motif in vivo. A higher frequency of this motif at embryonic and fetal Cdx2 target loci and the specifically methylated state of the CpG during development allows selective Cdx2 binding and activation of developmental enhancers and linked genes. Conversely, demethylation at these enhancers prohibits ectopic Cdx2 binding in adult cells, where Cdx2 binds its canonical motif without a CpG. This differential Cdx2 binding allows for corecruitment of Ctcf and Hnf4, facilitating the establishment of intestinal superenhancers during development and enhancers mediating adult homeostatic functions, respectively. Induced gain of DNA methylation in the adult mouse epithelium or cultured cells causes ectopic recruitment of Cdx2 to the developmental target loci and facilitates cobinding of the partner TFs. Together, our results demonstrate that the differential CpG motif requirements for Cdx2 binding to developmental versus adult target sites allow it to navigate different DNA methylation profiles and activate cell type-specific genes at appropriate times.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| | - George Ye
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| | - Sweta Sharma
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| | - Unmesh Jadhav
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| |
Collapse
|
14
|
Venkadakrishnan VB, Presser AG, Singh R, Booker MA, Traphagen NA, Weng K, Voss NC, Mahadevan NR, Mizuno K, Puca L, Idahor O, Ku SY, Bakht MK, Borah AA, Herbert ZT, Tolstorukov MY, Barbie DA, Rickman DS, Brown M, Beltran H. Lineage-specific canonical and non-canonical activity of EZH2 in advanced prostate cancer subtypes. RESEARCH SQUARE 2024:rs.3.rs-3935288. [PMID: 38405800 PMCID: PMC10889062 DOI: 10.21203/rs.3.rs-3935288/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and emerging therapeutic target that is overexpressed in most castration-resistant prostate cancers and implicated as a driver of disease progression and resistance to hormonal therapies. Here we define the lineage-specific action and differential activity of EZH2 in both prostate adenocarcinoma (PRAD) and neuroendocrine prostate cancer (NEPC) subtypes of advanced prostate cancer to better understand the role of EZH2 in modulating differentiation, lineage plasticity, and to identify mediators of response and resistance to EZH2 inhibitor therapy. Mechanistically, EZH2 modulates bivalent genes that results in upregulation of NEPC-associated transcriptional drivers (e.g., ASCL1) and neuronal gene programs, and leads to forward differentiation after targeting EZH2 in NEPC. Subtype-specific downstream effects of EZH2 inhibition on cell cycle genes support the potential rationale for co-targeting cyclin/CDK to overcome resistance to EZH2 inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Loredana Puca
- Division of Medical Oncology, Weill Cornell Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Josserand M, Rubanova N, Stefanutti M, Roumeliotis S, Espenel M, Marshall OJ, Servant N, Gervais L, Bardin AJ. Chromatin state transitions in the Drosophila intestinal lineage identify principles of cell-type specification. Dev Cell 2023; 58:3048-3063.e6. [PMID: 38056452 DOI: 10.1016/j.devcel.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/20/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
Tissue homeostasis relies on rewiring of stem cell transcriptional programs into those of differentiated cells. Here, we investigate changes in chromatin occurring in a bipotent adult stem cells. Combining mapping of chromatin-associated factors with statistical modeling, we identify genome-wide transitions during differentiation in the adult Drosophila intestinal stem cell (ISC) lineage. Active, stem-cell-enriched genes transition to a repressive heterochromatin protein-1-enriched state more prominently in enteroendocrine cells (EEs) than in enterocytes (ECs), in which the histone H1-enriched Black state is preeminent. In contrast, terminal differentiation genes associated with metabolic functions follow a common path from a repressive, primed, histone H1-enriched Black state in ISCs to active chromatin states in EE and EC cells. Furthermore, we find that lineage priming has an important function in adult ISCs, and we identify histone H1 as a mediator of this process. These data define underlying principles of chromatin changes during adult multipotent stem cell differentiation.
Collapse
Affiliation(s)
- Manon Josserand
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, Genetics and Developmental Biology Department, 75248 Paris, France
| | - Natalia Rubanova
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, Genetics and Developmental Biology Department, 75248 Paris, France; Institut Curie Bioinformatics Core Facility, PSL Research University, INSERM U900, MINES ParisTech, Paris 75005, France
| | - Marine Stefanutti
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, Genetics and Developmental Biology Department, 75248 Paris, France
| | - Spyridon Roumeliotis
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, Genetics and Developmental Biology Department, 75248 Paris, France
| | - Marion Espenel
- Institut Curie, PSL University, ICGex Next-Generation Sequencing Platform, 75005 Paris, France
| | - Owen J Marshall
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Australia
| | - Nicolas Servant
- Institut Curie Bioinformatics Core Facility, PSL Research University, INSERM U900, MINES ParisTech, Paris 75005, France
| | - Louis Gervais
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, Genetics and Developmental Biology Department, 75248 Paris, France.
| | - Allison J Bardin
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, Genetics and Developmental Biology Department, 75248 Paris, France.
| |
Collapse
|
16
|
Carrasco ME, Thaler R, Nardocci G, Dudakovic A, van Wijnen AJ. Inhibition of Ezh2 redistributes bivalent domains within transcriptional regulators associated with WNT and Hedgehog pathways in osteoblasts. J Biol Chem 2023; 299:105155. [PMID: 37572850 PMCID: PMC10506106 DOI: 10.1016/j.jbc.2023.105155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023] Open
Abstract
Bivalent epigenomic regulatory domains containing both activating histone 3 lysine 4 (H3K4me3) and repressive lysine 27 (H3K27me3) trimethylation are associated with key developmental genes. These bivalent domains repress transcription in the absence of differentiation signals but maintain regulatory genes in a poised state to allow for timely activation. Previous studies demonstrated that enhancer of zeste homolog 2 (Ezh2), a histone 3 lysine 27 (H3K27) methyltransferase, suppresses osteogenic differentiation and that inhibition of Ezh2 enhances commitment of osteoblast progenitors in vitro and bone formation in vivo. Here, we examined the mechanistic effects of Tazemetostat (EPZ6438), an Food and Drug Administration approved Ezh2 inhibitor for epithelioid sarcoma treatment, because this drug could potentially be repurposed to stimulate osteogenesis for clinical indications. We find that Tazemetostat reduces H3K27me3 marks in bivalent domains in enhancers required for bone formation and stimulates maturation of MC3T3 preosteoblasts. Furthermore, Tazemetostat activates bivalent genes associated with the Wingless/integrated (WNT), adenylyl cyclase (cAMP), and Hedgehog (Hh) signaling pathways based on transcriptomic (RNA-seq) and epigenomic (chromatin immunoprecipitation [ChIP]-seq) data. Functional analyses using selective pathway inhibitors and silencing RNAs demonstrate that the WNT and Hh pathways modulate osteogenic differentiation after Ezh2 inhibition. Strikingly, we show that loss of the Hh-responsive transcriptional regulator Gli1, but not Gli2, synergizes with Tazemetostat to accelerate osteoblast differentiation. These studies establish epigenetic cooperativity of Ezh2, Hh-Gli1 signaling, and bivalent regulatory genes in suppressing osteogenesis. Our findings may have important translational ramifications for anabolic applications requiring bone mass accrual and/or reversal of bone loss.
Collapse
Affiliation(s)
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Gino Nardocci
- Program in Molecular Biology and Bioinformatics, Faculty of Medicine, Center for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Santiago, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA.
| |
Collapse
|
17
|
Mu M, Li X, Dong L, Wang J, Cai Q, Hu Y, Wang D, Zhao P, Zhang L, Zhang D, Cheng S, Tan L, Wu F, Shi YG, Xu W, Shi Y, Shen H. METTL14 regulates chromatin bivalent domains in mouse embryonic stem cells. Cell Rep 2023; 42:112650. [PMID: 37314930 DOI: 10.1016/j.celrep.2023.112650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 04/11/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
METTL14 (methyltransferase-like 14) is an RNA-binding protein that partners with METTL3 to mediate N6-methyladenosine (m6A) methylation. Recent studies identified a function for METTL3 in heterochromatin in mouse embryonic stem cells (mESCs), but the molecular function of METTL14 on chromatin in mESCs remains unclear. Here, we show that METTL14 specifically binds and regulates bivalent domains, which are marked by trimethylation of histone H3 lysine 27 (H3K27me3) and lysine 4 (H3K4me3). Knockout of Mettl14 results in decreased H3K27me3 but increased H3K4me3 levels, leading to increased transcription. We find that bivalent domain regulation by METTL14 is independent of METTL3 or m6A modification. METTL14 enhances H3K27me3 and reduces H3K4me3 by interacting with and probably recruiting the H3K27 methyltransferase polycomb repressive complex 2 (PRC2) and H3K4 demethylase KDM5B to chromatin. Our findings identify an METTL3-independent role of METTL14 in maintaining the integrity of bivalent domains in mESCs, thus indicating a mechanism of bivalent domain regulation in mammals.
Collapse
Affiliation(s)
- Mandi Mu
- Longevity and Aging Institute, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinze Li
- Longevity and Aging Institute, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Dong
- Longevity and Aging Institute, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jin Wang
- Longevity and Aging Institute, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qingqing Cai
- Longevity and Aging Institute, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yajun Hu
- Longevity and Aging Institute, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Duanduan Wang
- Longevity and Aging Institute, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Zhao
- Longevity and Aging Institute, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Zhang
- Longevity and Aging Institute, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Daixuan Zhang
- Longevity and Aging Institute, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Siyi Cheng
- Longevity and Aging Institute, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Tan
- Longevity and Aging Institute, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, China
| | - Feizhen Wu
- Longevity and Aging Institute, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yujiang Geno Shi
- Longevity and Aging Institute, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenqi Xu
- Longevity and Aging Institute, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, China.
| | - Yang Shi
- Ludwig Institute for Cancer Research, Oxford Branch, Oxford University, Oxford, UK.
| | - Hongjie Shen
- Longevity and Aging Institute, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Huang L, Li F, Ye L, Yu F, Wang C. Epigenetic regulation of embryonic ectoderm development in stem cell differentiation and transformation during ontogenesis. Cell Prolif 2023; 56:e13413. [PMID: 36727213 PMCID: PMC10068960 DOI: 10.1111/cpr.13413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Dynamic chromatin accessibility regulates stem cell fate determination and tissue homeostasis via controlling gene expression. As a histone-modifying enzyme that predominantly mediates methylation of lysine 27 in histone H3 (H3K27me1/2/3), Polycomb repressive complex 2 (PRC2) plays the canonical role in targeting developmental regulators during stem cell differentiation and transformation. Embryonic ectoderm development (EED), the core scaffold subunit of PRC2 and as an H3K27me3-recognizing protein, has been broadly implicated with PRC2 stabilization and allosterically stimulated PRC2. Accumulating evidences from experimental data indicate that EED-associating epigenetic modifications are indispensable for stem cell maintenance and differentiation into specific cell lineages. In this review, we discuss the most updated advances to summarize the structural architecture of EED and its contributions and underlying mechanisms to mediating lineage differentiation of different stem cells during epigenetic modification to expand our understanding of PRC2.
Collapse
Affiliation(s)
- Liuyan Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Smith RJ, Liang M, Loe AKH, Yung T, Kim JE, Hudson M, Wilson MD, Kim TH. Epigenetic control of cellular crosstalk defines gastrointestinal organ fate and function. Nat Commun 2023; 14:497. [PMID: 36717563 PMCID: PMC9887003 DOI: 10.1038/s41467-023-36228-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
Epithelial-mesenchymal signaling in the gastrointestinal system is vital in establishing regional identity during organogenesis and maintaining adult stem cell homeostasis. Although recent work has demonstrated that Wnt ligands expressed by mesenchymal cells are required during gastrointestinal development and stem cell homeostasis, epigenetic mechanisms driving spatiotemporal control of crosstalk remain unknown. Here, we demonstrate that gastrointestinal mesenchymal cells control epithelial fate and function through Polycomb Repressive Complex 2-mediated chromatin bivalency. We find that while key lineage-determining genes possess tissue-specific chromatin accessibility, Polycomb Repressive Complex 2 controls Wnt expression in mesenchymal cells without altering accessibility. We show that reduction of mesenchymal Wnt secretion rescues gastrointestinal fate and proliferation defects caused by Polycomb Repressive Complex 2 loss. We demonstrate that mesenchymal Polycomb Repressive Complex 2 also regulates niche signals to maintain stem cell function in the adult intestine. Our results highlight a broadly permissive chromatin architecture underlying regionalization in mesenchymal cells, then demonstrate further how chromatin architecture in niches can influence the fate and function of neighboring cells.
Collapse
Affiliation(s)
- Ryan J Smith
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Minggao Liang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Adrian Kwan Ho Loe
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Theodora Yung
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ji-Eun Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Matthew Hudson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
20
|
Soshnikova N. KDM6A/B Demethylases in Gut Homeostasis. Cell Mol Gastroenterol Hepatol 2023; 15:1016-1017. [PMID: 36669530 PMCID: PMC10040958 DOI: 10.1016/j.jcmgh.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023]
Affiliation(s)
- Natalia Soshnikova
- Institute for Molecular Medicine and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
21
|
Macrae TA, Fothergill-Robinson J, Ramalho-Santos M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat Rev Mol Cell Biol 2023; 24:6-26. [PMID: 36028557 DOI: 10.1038/s41580-022-00518-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Cells differentiate and progress through development guided by a dynamic chromatin landscape that mediates gene expression programmes. During development, mammalian cells display a paradoxical chromatin state: histone modifications associated with gene activation (trimethylated histone H3 Lys4 (H3K4me3)) and with gene repression (trimethylated H3 Lys27 (H3K27me3)) co-occur at promoters of developmental genes. This bivalent chromatin modification state is thought to poise important regulatory genes for expression or repression during cell-lineage specification. In this Review, we discuss recent work that has expanded our understanding of the molecular basis of bivalent chromatin and its contributions to mammalian development. We describe the factors that establish bivalency, especially histone-lysine N-methyltransferase 2B (KMT2B) and Polycomb repressive complex 2 (PRC2), and consider evidence indicating that PRC1 shapes bivalency and may contribute to its transmission between generations. We posit that bivalency is a key feature of germline and embryonic stem cells, as well as other types of stem and progenitor cells. Finally, we discuss the relevance of bivalent chromtin to human development and cancer, and outline avenues of future research.
Collapse
Affiliation(s)
- Trisha A Macrae
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Julie Fothergill-Robinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miguel Ramalho-Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
22
|
Kolev HM, Swisa A, Manduchi E, Lan Y, Stine RR, Testa G, Kaestner KH. H3K27me3 Demethylases Maintain the Transcriptional and Epigenomic Landscape of the Intestinal Epithelium. Cell Mol Gastroenterol Hepatol 2022; 15:821-839. [PMID: 36503150 PMCID: PMC9971508 DOI: 10.1016/j.jcmgh.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 02/23/2023]
Abstract
BACKGROUND & AIMS Although trimethylation of histone H3 lysine 27 (H3K27me3) by polycomb repressive complex 2 is required for intestinal function, the role of the antagonistic process-H3K27me3 demethylation-in the intestine remains unknown. The aim of this study was to determine the contribution of H3K27me3 demethylases to intestinal homeostasis. METHODS An inducible mouse model was used to simultaneously ablate the 2 known H3K27me3 demethylases, lysine (K)-specific demethylase 6A (Kdm6a) and lysine (K)-specific demethylase 6B (Kdm6b), from the intestinal epithelium. Mice were analyzed at acute and prolonged time points after Kdm6a/b ablation. Cellular proliferation and differentiation were measured using immunohistochemistry, while RNA sequencing and chromatin immunoprecipitation followed by sequencing for H3K27me3 were used to identify gene expression and chromatin changes after Kdm6a/b loss. Intestinal epithelial renewal was evaluated using a radiation-induced injury model, while Paneth cell homeostasis was measured via immunohistochemistry, immunoblot, and transmission electron microscopy. RESULTS We did not detect any effect of Kdm6a/b ablation on intestinal cell proliferation or differentiation toward the secretory cell lineages. Acute and prolonged Kdm6a/b loss perturbed expression of gene signatures belonging to multiple cell lineages (adjusted P value < .05), and a set of 72 genes was identified as being down-regulated with an associated increase in H3K27me3 levels after Kdm6a/b ablation (false discovery rate, <0.05). After prolonged Kdm6a/b loss, dysregulation of the Paneth cell gene signature was associated with perturbed matrix metallopeptidase 7 localization (P < .0001) and expression. CONCLUSIONS Although KDM6A/B does not regulate intestinal cell differentiation, both enzymes are required to support the full transcriptomic and epigenomic landscape of the intestinal epithelium and the expression of key Paneth cell genes.
Collapse
Affiliation(s)
- Hannah M Kolev
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Avital Swisa
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elisabetta Manduchi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yemin Lan
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rachel R Stine
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Klaus H Kaestner
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
23
|
Abstract
Polycomb group (PcG) proteins are crucial chromatin regulators that maintain repression of lineage-inappropriate genes and are therefore required for stable cell fate. Recent advances show that PcG proteins form distinct multi-protein complexes in various cellular environments, such as in early development, adult tissue maintenance and cancer. This surprising compositional diversity provides the basis for mechanistic diversity. Understanding this complexity deepens and refines the principles of PcG complex recruitment, target-gene repression and inheritance of memory. We review how the core molecular mechanism of Polycomb complexes operates in diverse developmental settings and propose that context-dependent changes in composition and mechanism are essential for proper epigenetic regulation in development.
Collapse
Affiliation(s)
- Jongmin J Kim
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Robert E Kingston
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Zhang L, Li HT, Shereda R, Lu Q, Weisenberger DJ, O'Connell C, Machida K, An W, Lenz HJ, El-Khoueiry A, Jones PA, Liu M, Liang G. DNMT and EZH2 inhibitors synergize to activate therapeutic targets in hepatocellular carcinoma. Cancer Lett 2022; 548:215899. [PMID: 36087682 PMCID: PMC9563073 DOI: 10.1016/j.canlet.2022.215899] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022]
Abstract
The development of more effective targeted therapies for hepatocellular carcinoma (HCC) patients due to its aggressiveness is urgently needed. DNA methyltransferase inhibitors (DNMTis) represented the first clinical breakthrough to target aberrant cancer epigenomes. However, their clinical efficacies are still limited, in part due to an "epigenetic switch" in which a large group of genes that are demethylated by DNMTi treatment remain silenced by polycomb repressive complex 2 (PRC2) occupancy. EZH2 is the member of PRC2 that catalyzes the placement of H3K27me3 marks. EZH2 overexpression is correlated with poor HCC patient survival. We tested the combination of a DNMTi (5-aza-2'-deoxycytidine, DAC) and the EZH2 inhibitor (EZH2i) GSK126 in human HCC cell lines on drug sensitivity, DNA methylation, nucleosome accessibility, and gene expression profiles. Compared with single agent treatments, all HCC cell lines studied showed increased sensitivity after receiving both drugs concomitant with prolonged anti-proliferative changes and sustained reactivation of nascently-silenced genes. The increased number of up-regulated genes after combination treatment correlated with prolonged anti-proliferation effects and increased nucleosome accessibility. Combination treatments also activate demethylated promoters that are repressed by PRC2 occupancy. Furthermore, 13-31% of genes down-regulated by DNA methylation in primary HCC tumors were reactivated through this combination treatment scheme in vitro. Finally, the combination treatment also exacerbates anti-tumor immune responses, while most of these genes were downregulated in over 50% of primary HCC tumors. We have linked the anti-tumor effects of DAC and GSK126 combination treatments to detailed epigenetic alterations in HCC cells, identified potential therapeutic targets and provided a rationale for treatment efficacy for HCC patients.
Collapse
Affiliation(s)
- Lian Zhang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong-Tao Li
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Rachel Shereda
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daniel J Weisenberger
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Casey O'Connell
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Keigo Machida
- Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Woojin An
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Heinz-Josef Lenz
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Anthony El-Khoueiry
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Peter A Jones
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Minmin Liu
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA.
| | - Gangning Liang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
25
|
Toskas K, Yaghmaeian-Salmani B, Skiteva O, Paslawski W, Gillberg L, Skara V, Antoniou I, Södersten E, Svenningsson P, Chergui K, Ringnér M, Perlmann T, Holmberg J. PRC2-mediated repression is essential to maintain identity and function of differentiated dopaminergic and serotonergic neurons. SCIENCE ADVANCES 2022; 8:eabo1543. [PMID: 36026451 PMCID: PMC9417181 DOI: 10.1126/sciadv.abo1543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
How neurons can maintain cellular identity over an entire life span remains largely unknown. Here, we show that maintenance of identity in differentiated dopaminergic and serotonergic neurons is critically reliant on the Polycomb repressive complex 2 (PRC2). Deletion of the obligate PRC2 component, Eed, in these neurons resulted in global loss of H3K27me3, followed by a gradual activation of genes harboring both H3K27me3 and H3K9me3 modifications. Notably, H3K9me3 was lost at these PRC2 targets before gene activation. Neuronal survival was not compromised; instead, there was a reduction in subtype-specific gene expression and a progressive impairment of dopaminergic and serotonergic neuronal function, leading to behavioral deficits characteristic of Parkinson's disease and anxiety. Single-cell analysis revealed subtype-specific vulnerability to loss of PRC2 repression in dopamine neurons of the substantia nigra. Our study reveals that a PRC2-dependent nonpermissive chromatin state is essential to maintain the subtype identity and function of dopaminergic and serotonergic neurons.
Collapse
Affiliation(s)
- Konstantinos Toskas
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Behzad Yaghmaeian-Salmani
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Olga Skiteva
- Department of Physiology and Pharmacology, Karolinska Institutet, BioClinicum J5:20 Neuro, Visionsgatan 4, SE-171 64 Solna, Sweden
| | - Wojciech Paslawski
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Linda Gillberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Vasiliki Skara
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Irene Antoniou
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Erik Södersten
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Karima Chergui
- Department of Physiology and Pharmacology, Karolinska Institutet, BioClinicum J5:20 Neuro, Visionsgatan 4, SE-171 64 Solna, Sweden
| | - Markus Ringnér
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Sölvegatan 35, SE-223 62 Lund, Sweden
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Johan Holmberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Stockholm, Sweden
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
26
|
Bieluszewska A, Wulfridge P, Doherty J, Ren W, Sarma K. ATRX histone binding and helicase activities have distinct roles in neuronal differentiation. Nucleic Acids Res 2022; 50:9162-9174. [PMID: 35998910 PMCID: PMC9458459 DOI: 10.1093/nar/gkac683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
ATRX is a chromatin remodeler, which is mutated in ATRX syndrome, a neurodevelopmental disorder. ATRX mutations that alter histone binding or chromatin remodeling activities cluster in the PHD finger or the helicase domain respectively. Using engineered mouse embryonic stem cells that exclusively express ATRX protein with mutations in the PHD finger (PHDmut) or helicase domains (K1584R), we examine how specific ATRX mutations affect neurodifferentiation. ATRX PHDmut and K1584R proteins interact with the DAXX histone chaperone but show reduced localization to pericentromeres. Neurodifferentiation is both delayed and compromised in PHDmut and K1584R, and manifest differently from complete ATRX loss. We observe reduced enrichment of PHDmut protein to ATRX targets, while K1584R accumulates at these sites. Interestingly, ATRX mutations have distinct effects on the genome-wide localization of the polycomb repressive complex 2 (PRC2), with PHDmut and ATRX knockout showing reduced PRC2 binding at polycomb targets and K1584R showing loss at some sites and gains at others. Notably, each mutation associated with unique gene signatures, suggesting distinct pathways leading to impaired neurodifferentiation. Our results indicate that the histone binding and chromatin remodeling functions of ATRX play non-redundant roles in neurodevelopment, and when mutated lead to ATRX syndrome through separate regulatory pathways.
Collapse
Affiliation(s)
- Anna Bieluszewska
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA,Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Phillip Wulfridge
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA,Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Doherty
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA,Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenqing Ren
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA,Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kavitha Sarma
- To whom correspondence should be addressed. Tel: +1 215 898 3970;
| |
Collapse
|
27
|
Nicu AT, Medar C, Chifiriuc MC, Gradisteanu Pircalabioru G, Burlibasa L. Epigenetics and Testicular Cancer: Bridging the Gap Between Fundamental Biology and Patient Care. Front Cell Dev Biol 2022; 10:861995. [PMID: 35465311 PMCID: PMC9023878 DOI: 10.3389/fcell.2022.861995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 11/15/2022] Open
Abstract
Testicular cancer is the most common solid tumor affecting young males. Most testicular cancers are testicular germ cell tumors (TGCTs), which are divided into seminomas (SGCTs) and non-seminomatous testicular germ cell tumors (NSGCTs). During their development, primordial germ cells (PGCs) undergo epigenetic modifications and any disturbances in their pattern might lead to cancer development. The present study provides a comprehensive review of the epigenetic mechanisms–DNA methylation, histone post-translational modifications, bivalent marks, non-coding RNA–associated with TGCT susceptibility, initiation, progression and response to chemotherapy. Another important purpose of this review is to highlight the recent investigations regarding the identification and development of epigenetic biomarkers as powerful tools for the diagnostic, prognostic and especially for epigenetic-based therapy.
Collapse
Affiliation(s)
- Alina-Teodora Nicu
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Genetics, University of Bucharest, Bucharest, Romania
| | - Cosmin Medar
- University of Medicine and Pharmacy “Carol Davila”, Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest (ICUB), Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| | | | - Liliana Burlibasa
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Genetics, University of Bucharest, Bucharest, Romania
| |
Collapse
|
28
|
Induction of senescence-associated secretory phenotype underlies the therapeutic efficacy of PRC2 inhibition in cancer. Cell Death Dis 2022; 13:155. [PMID: 35169119 PMCID: PMC8847585 DOI: 10.1038/s41419-022-04601-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
The methyltransferase Polycomb Repressive Complex 2 (PRC2), composed of EZH2, SUZ12, and EED subunits, is associated with transcriptional repression via tri-methylation of histone H3 on lysine 27 residue (H3K27me3). PRC2 is a valid drug target, as the EZH2 gain-of-function mutations identified in patient samples drive tumorigenesis. PRC2 inhibitors have been discovered and demonstrated anti-cancer efficacy in clinic. However, their pharmacological mechanisms are poorly understood. MAK683 is a potent EED inhibitor in clinical development. Focusing on MAK683-sensitive tumors with SMARCB1 or ARID1A loss, we identified a group of PRC2 target genes with high H3K27me3 signal through epigenomic and transcriptomic analysis. Multiple senescence-associated secretory phenotype (SASP) genes, such as GATA4, MMP2/10, ITGA2 and GBP1, are in this group besides previously identified CDKN2A/p16. Upon PRC2 inhibition, the de-repression of SASP genes is detected in multiple sensitive models and contributes to decreased Ki67+, extracellular matrix (ECM) reorganization, senescence associated inflammation and tumor regression even in CDKN2A/p16 knockout tumor. And the combination of PRC2 inhibitor and CDK4/6 inhibitor leads to better effect. The genes potential regulated by PRC2 in neuroblastoma samples exhibited significant enrichment of ECM and senescence associated inflammation, supporting the clinical relevance of our results. Altogether, our results unravel the pharmacological mechanism of PRC2 inhibitors and propose a combination strategy for MAK683 and other PRC2 drugs. ![]()
Collapse
|
29
|
CpG island reconfiguration for the establishment and synchronization of polycomb functions upon exit from naive pluripotency. Mol Cell 2022; 82:1169-1185.e7. [PMID: 35202573 DOI: 10.1016/j.molcel.2022.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/03/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
Polycomb group (PcG) proteins are essential for post-implantation development by depositing repressive histone modifications at promoters, mainly CpG islands (CGIs), of developmental regulator genes. However, promoter PcG marks are erased after fertilization and de novo established in peri-implantation embryos, coinciding with the transition from naive to primed pluripotency. Nevertheless, the molecular basis for this establishment remains unknown. In this study, we show that the expression of the long KDM2B isoform (KDM2BLF), which contains the demethylase domain, is specifically induced at peri-implantation and that its H3K36me2 demethylase activity is required for PcG enrichment at CGIs. Moreover, KDM2BLF interacts with BRG1/BRM-associated factor (BAF) and stabilizes BAF occupancy at CGIs for subsequent gain of accessibility, which precedes PcG enrichment. Consistently, KDM2BLF inactivation results in significantly delayed post-implantation development. In summary, our data unveil dynamic chromatin configuration of CGIs during exit from naive pluripotency and provide a conceptual framework for the spatiotemporal establishment of PcG functions.
Collapse
|
30
|
Grinat J, Kosel F, Goveas N, Kranz A, Alexopoulou D, Rajewsky K, Sigal M, Stewart AF, Heuberger J. Epigenetic modifier balances Mapk and Wnt signalling in differentiation of goblet and Paneth cells. Life Sci Alliance 2022; 5:5/4/e202101187. [PMID: 35064075 PMCID: PMC8807877 DOI: 10.26508/lsa.202101187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
The histone methyltransferase Mll1 controls intestinal secretory cell fate by promoting Wnt-driven Paneth and restricting Mapk-dependent goblet cell differentiation through regulation of Gata4/6 transcription factors Differentiation and lineage specification are controlled by cooperation of growth factor signalling. The involvement of epigenetic regulators in lineage specification remains largely elusive. Here, we show that the histone methyltransferase Mll1 prevents intestinal progenitor cells from differentiation, whereas it is also involved in secretory lineage specification of Paneth and goblet cells. Using conditional mutagenesis in mice and intestinal organoids, we demonstrate that loss of Mll1 renders intestinal progenitor cells permissive for Wnt-driven secretory differentiation. However, Mll1-deficient crypt cells fail to segregate Paneth and goblet cell fates. Mll1 deficiency causes Paneth cell-determined crypt progenitors to exhibit goblet cell features by unleashing Mapk signalling, resulting in increased numbers of mixed Paneth/goblet cells. We show that loss of Mll1 abolishes the pro-proliferative effect of Mapk signalling in intestinal progenitor cells and promotes Mapk-induced goblet cell differentiation. Our data uncover Mll1 and its downstream targets Gata4/6 as a regulatory hub of Wnt and Mapk signalling in the control of lineage specification of intestinal secretory Paneth and goblet cells.
Collapse
Affiliation(s)
- Johanna Grinat
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Frauke Kosel
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Neha Goveas
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Andrea Kranz
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Dimitra Alexopoulou
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Klaus Rajewsky
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Michael Sigal
- Medical Department, Division of Gastroenterology and Hepatology, Charité University Medicine, Berlin, Germany.,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - A Francis Stewart
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Julian Heuberger
- Medical Department, Division of Gastroenterology and Hepatology, Charité University Medicine, Berlin, Germany .,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
31
|
Gu W, Wang H, Huang X, Kraiczy J, Singh PNP, Ng C, Dagdeviren S, Houghton S, Pellon-Cardenas O, Lan Y, Nie Y, Zhang J, Banerjee KK, Onufer EJ, Warner BW, Spence J, Scherl E, Rafii S, Lee RT, Verzi MP, Redmond D, Longman R, Helin K, Shivdasani RA, Zhou Q. SATB2 preserves colon stem cell identity and mediates ileum-colon conversion via enhancer remodeling. Cell Stem Cell 2022; 29:101-115.e10. [PMID: 34582804 PMCID: PMC8741647 DOI: 10.1016/j.stem.2021.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 01/09/2023]
Abstract
Adult stem cells maintain regenerative tissue structure and function by producing tissue-specific progeny, but the factors that preserve their tissue identities are not well understood. The small and large intestines differ markedly in cell composition and function, reflecting their distinct stem cell populations. Here we show that SATB2, a colon-restricted chromatin factor, singularly preserves LGR5+ adult colonic stem cell and epithelial identity in mice and humans. Satb2 loss in adult mice leads to stable conversion of colonic stem cells into small intestine ileal-like stem cells and replacement of the colonic mucosa with one that resembles the ileum. Conversely, SATB2 confers colonic properties on the mouse ileum. Human colonic organoids also adopt ileal characteristics upon SATB2 loss. SATB2 regulates colonic identity in part by modulating enhancer binding of the intestinal transcription factors CDX2 and HNF4A. Our study uncovers a conserved core regulator of colonic stem cells able to mediate cross-tissue plasticity in mature intestines.
Collapse
Affiliation(s)
- Wei Gu
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Hua Wang
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, 430 E 67th Street, New York, NY, 10065, USA
| | - Xiaofeng Huang
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Judith Kraiczy
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Pratik N. P. Singh
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Charles Ng
- Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medicine, 1283 York Avenue, New York, NY, 10065, USA
| | - Sezin Dagdeviren
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Sean Houghton
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Oscar Pellon-Cardenas
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Ying Lan
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Yaohui Nie
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Jiaoyue Zhang
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Kushal K Banerjee
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Emily J. Onufer
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, 660 S Euclid Avenue, St. Louis, MO, 63110, USA
| | - Brad W. Warner
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, 660 S Euclid Avenue, St. Louis, MO, 63110, USA
| | - Jason Spence
- Department of Internal Medicine, University of Michigan, 1500 E Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Ellen Scherl
- Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medicine, 1283 York Avenue, New York, NY, 10065, USA
| | - Shahin Rafii
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Michael P. Verzi
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - David Redmond
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Randy Longman
- Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medicine, 1283 York Avenue, New York, NY, 10065, USA
| | - Kristian Helin
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, 430 E 67th Street, New York, NY, 10065, USA,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200 Denmark,The Novo Nordisk Foundation for Stem Cell Biology (Danstem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Ramesh A. Shivdasani
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Qiao Zhou
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA,Lead Contact ()
| |
Collapse
|
32
|
Epigenomic signatures on paralogous genes reveal underappreciated universality of active histone codes adopted across animals. Comput Struct Biotechnol J 2022; 20:353-367. [PMID: 35035788 PMCID: PMC8741409 DOI: 10.1016/j.csbj.2021.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/21/2022] Open
|
33
|
Terranova CJ. Chromatin state profiling reveals PRC2 inhibition as a therapeutic target in NRAS-mutant melanoma. Mol Cell Oncol 2021; 8:1986350. [PMID: 34859147 PMCID: PMC8632323 DOI: 10.1080/23723556.2021.1986350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recently, we have generated 284 epigenomic maps in melanoma. Using chromatin state profiling we identify an association of NRAS-mutants with bivalent Histone H3 lysine 27 trimethylation (H3K27me3) and broad H3K4me3 domains. Reprogramming of bivalent H3K27me3 occurs on critical invasive-regulators and its resolution using Enhancer of Zeste Homolog 2 (EZH2) inhibition reduces invasive capacity and tumor burden in NRAS-mutant patient samples.
Collapse
Affiliation(s)
- Christopher J Terranova
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
34
|
He M, Raftrey B, Hsu YC. Epigenetic fun(ction) in the sun. Dev Cell 2021; 56:2537-2539. [PMID: 34582768 DOI: 10.1016/j.devcel.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tanning, or increased epidermal pigmentation, protects organisms from ultraviolet radiation (UV)-induced damages. In this issue of Development Cell, Li et al. demonstrate a key role for a chromatin regulator-the Polycomb complex-in epidermal stem cells (EpSCs) in mediating UV-induced tanning responses and epidermal pigmentation.
Collapse
Affiliation(s)
- Megan He
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institue, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Brian Raftrey
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institue, Cambridge, MA 02138, USA
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institue, Cambridge, MA 02138, USA.
| |
Collapse
|
35
|
Terranova CJ, Tang M, Maitituoheti M, Raman AT, Ghosh AK, Schulz J, Amin SB, Orouji E, Tomczak K, Sarkar S, Oba J, Creasy C, Wu CJ, Khan S, Lazcano R, Wani K, Singh A, Barrodia P, Zhao D, Chen K, Haydu LE, Wang WL, Lazar AJ, Woodman SE, Bernatchez C, Rai K. Reprogramming of bivalent chromatin states in NRAS mutant melanoma suggests PRC2 inhibition as a therapeutic strategy. Cell Rep 2021; 36:109410. [PMID: 34289358 PMCID: PMC8369408 DOI: 10.1016/j.celrep.2021.109410] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 05/13/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022] Open
Abstract
The dynamic evolution of chromatin state patterns during metastasis, their relationship with bona fide genetic drivers, and their therapeutic vulnerabilities are not completely understood. Combinatorial chromatin state profiling of 46 melanoma samples reveals an association of NRAS mutants with bivalent histone H3 lysine 27 trimethylation (H3K27me3) and Polycomb repressive complex 2. Reprogramming of bivalent domains during metastasis occurs on master transcription factors of a mesenchymal phenotype, including ZEB1, TWIST1, and CDH1. Resolution of bivalency using pharmacological inhibition of EZH2 decreases invasive capacity of melanoma cells and markedly reduces tumor burden in vivo, specifically in NRAS mutants. Coincident with bivalent reprogramming, the increased expression of pro-metastatic and melanocyte-specific cell-identity genes is associated with exceptionally wide H3K4me3 domains, suggesting a role for this epigenetic element. Overall, we demonstrate that reprogramming of bivalent and broad domains represents key epigenetic alterations in metastatic melanoma and that EZH2 plus MEK inhibition may provide a promising therapeutic strategy for NRAS mutant melanoma patients.
Collapse
Affiliation(s)
- Christopher J Terranova
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ming Tang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; FAS informatics, Department of Molecular Biology, Harvard, Cambridge, MA 02138, USA
| | - Mayinuer Maitituoheti
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ayush T Raman
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Graduate Program in Quantitative Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Archit K Ghosh
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jonathan Schulz
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Samir B Amin
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Elias Orouji
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Epigenetics Initiative, Princess Margaret Genomics Centre, Toronto, ON M5G 2C1, Canada
| | - Katarzyna Tomczak
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Sharmistha Sarkar
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Junna Oba
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Caitlin Creasy
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Samia Khan
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Khalida Wani
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Anand Singh
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Praveen Barrodia
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dongyu Zhao
- Houston Methodist Academic Institute, Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lauren E Haydu
- Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Wei-Lien Wang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Alexander J Lazar
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Scott E Woodman
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Kunal Rai
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
36
|
Petracovici A, Bonasio R. Distinct PRC2 subunits regulate maintenance and establishment of Polycomb repression during differentiation. Mol Cell 2021; 81:2625-2639.e5. [PMID: 33887196 PMCID: PMC8217195 DOI: 10.1016/j.molcel.2021.03.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/10/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
The Polycomb repressive complex 2 (PRC2) is an essential epigenetic regulator that deposits repressive H3K27me3. PRC2 subunits form two holocomplexes-PRC2.1 and PRC2.2-but the roles of these two PRC2 assemblies during differentiation are unclear. We employed auxin-inducible degradation to deplete PRC2.1 subunit MTF2 or PRC2.2 subunit JARID2 during differentiation of embryonic stem cells (ESCs) to neural progenitors (NPCs). Depletion of either MTF2 or JARID2 resulted in incomplete differentiation due to defects in gene regulation. Distinct sets of Polycomb target genes were derepressed in the absence of MTF2 or JARID2. MTF2-sensitive genes were marked by H3K27me3 in ESCs and remained silent during differentiation, whereas JARID2-sensitive genes were preferentially active in ESCs and became newly repressed in NPCs. Thus, MTF2 and JARID2 contribute non-redundantly to Polycomb silencing, suggesting that PRC2.1 and PRC2.2 have distinct functions in maintaining and establishing, respectively, Polycomb repression during differentiation.
Collapse
Affiliation(s)
- Ana Petracovici
- Graduate Group in Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Lorzadeh A, Romero-Wolf M, Goel A, Jadhav U. Epigenetic Regulation of Intestinal Stem Cells and Disease: A Balancing Act of DNA and Histone Methylation. Gastroenterology 2021; 160:2267-2282. [PMID: 33775639 PMCID: PMC8169626 DOI: 10.1053/j.gastro.2021.03.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Genetic mutations or regulatory failures underlie cellular malfunction in many diseases, including colorectal cancer and inflammatory bowel diseases. However, mutational defects alone fail to explain the complexity of such disorders. Epigenetic regulation-control of gene action through chemical and structural changes of chromatin-provides a platform to integrate multiple extracellular inputs and prepares the cellular genome for appropriate gene expression responses. Coregulation by polycomb repressive complex 2-mediated trimethylation of lysine 27 on histone 3 and DNA methylation has emerged as one of the most influential epigenetic controls in colorectal cancer and many other diseases, but molecular details remain inadequate. Here we review the molecular interplay of these epigenetic features in relation to gastrointestinal development, homeostasis, and disease biology. We discuss other epigenetic mechanisms pertinent to the balance of trimethylation of lysine 27 on histone 3 and DNA methylation and their actions in gastrointestinal cancers. We also review the current molecular understanding of chromatin control in the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Maile Romero-Wolf
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Unmesh Jadhav
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
38
|
Parmar N, Burrows K, Vornewald PM, Lindholm HT, Zwiggelaar RT, Díez-Sánchez A, Martín-Alonso M, Fosslie M, Vallance BA, Dahl JA, Zaph C, Oudhoff MJ. Intestinal-epithelial LSD1 controls goblet cell maturation and effector responses required for gut immunity to bacterial and helminth infection. PLoS Pathog 2021; 17:e1009476. [PMID: 33788902 PMCID: PMC8041206 DOI: 10.1371/journal.ppat.1009476] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/12/2021] [Accepted: 03/14/2021] [Indexed: 11/18/2022] Open
Abstract
Infectious and inflammatory diseases in the intestine remain a serious threat for patients world-wide. Reprogramming of the intestinal epithelium towards a protective effector state is important to manage inflammation and immunity and can be therapeutically targeted. The role of epigenetic regulatory enzymes within these processes is not yet defined. Here, we use a mouse model that has an intestinal-epithelial specific deletion of the histone demethylase Lsd1 (cKO mice), which maintains the epithelium in a fixed reparative state. Challenge of cKO mice with bacteria-induced colitis or a helminth infection model both resulted in increased pathogenesis. Mechanistically, we discovered that LSD1 is important for goblet cell maturation and goblet-cell effector molecules such as RELMß. We propose that this may be in part mediated by directly controlling genes that facilitate cytoskeletal organization, which is important in goblet cell biology. This study therefore identifies intestinal-epithelial epigenetic regulation by LSD1 as a critical element in host protection from infection. The epithelium that lines our intestine has the important task of taking up nutrients, while also providing a barrier against pathogens. The intestinal epithelium performs these different tasks by having specialized cell types; enterocytes take up nutrients whereas goblet cells are in charge of producing a mucus layer. In addition, goblet cells can be stimulated to make special antimicrobial proteins. This occurs in response to cues called cytokines that come from immune cells, which are able to detect and act on the presence of pathogens such as bacteria or parasitic worms. In this study, we found that LSD1, an enzyme that controls gene expression, was important for goblet cells. Mice that lacked LSD1 specifically in their intestinal epithelium were unable to respond to cytokines and could not defend themselves against bacterial and parasitic infections. In part, we also made use of a specific inhibitor against the enzyme activity of LSD1. This inhibitor also blocked goblet cell differentiation and goblet-cell specific antimicrobial responses to cytokines. We are thus able to manipulate epithelial responses, which may be an important tool in the future to treat patients with infectious diseases.
Collapse
Affiliation(s)
- Naveen Parmar
- CEMIR-Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kyle Burrows
- The Biomedical Research Centre, University of British Columbia, Vancouver, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| | - Pia M Vornewald
- CEMIR-Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Håvard T Lindholm
- CEMIR-Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rosalie T Zwiggelaar
- CEMIR-Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alberto Díez-Sánchez
- CEMIR-Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mara Martín-Alonso
- CEMIR-Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Madeleine Fosslie
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Bruce A Vallance
- Department of Pediatrics, Division of Gastroenterology, BC Children's Hospital Research Institute, Vancouver, British Columbia
| | - John Arne Dahl
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Colby Zaph
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Menno J Oudhoff
- CEMIR-Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
39
|
Danilova L, Wrangle J, Herman JG, Cope L. DNA-methylation for the detection and distinction of 19 human malignancies. Epigenetics 2021; 17:191-201. [PMID: 33666134 PMCID: PMC8865329 DOI: 10.1080/15592294.2021.1890885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The contribution of DNA-methylation based gene silencing to carcinogenesis is well established. Increasingly, DNA-methylation is examined using genome-wide techniques, with recent public efforts yielding immense data sets of diverse malignancies representing the vast majority of human cancer related disease burden. Whereas mutation events may group preferentially or in high frequency with a given histology, mutations are poor classifiers of tumour type. Here we examine the hypothesis that cancer-specific DNA-methylation reflects the tissue of origin or carcinogenic risk factor, and these methylation abnormalities may be used to faithfully classify tumours according to histology. We present an analysis of 7427 tumours representing 19 human malignancies and 708 normal samples demonstrating that specific tumour changes in methylation can correctly determine site of origin and tumour histology with 86% overall accuracy. Examination of misclassified tumours reveals underlying shared biology as the source of misclassifications, including common cell of origin or risk factors.
Collapse
Affiliation(s)
- Ludmila Danilova
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Laboratory of System Biology and Computational Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - John Wrangle
- Hollings Cancer Center, Department of Medicine, The Medical University of South Carolina, Charleston, SC, USA
| | - James G Herman
- UPMC Hillman Cancer Center, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, USA
| | - Leslie Cope
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
40
|
van der Velde A, Fan K, Tsuji J, Moore JE, Purcaro MJ, Pratt HE, Weng Z. Annotation of chromatin states in 66 complete mouse epigenomes during development. Commun Biol 2021; 4:239. [PMID: 33619351 PMCID: PMC7900196 DOI: 10.1038/s42003-021-01756-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/26/2021] [Indexed: 01/31/2023] Open
Abstract
The morphologically and functionally distinct cell types of a multicellular organism are maintained by their unique epigenomes and gene expression programs. Phase III of the ENCODE Project profiled 66 mouse epigenomes across twelve tissues at daily intervals from embryonic day 11.5 to birth. Applying the ChromHMM algorithm to these epigenomes, we annotated eighteen chromatin states with characteristics of promoters, enhancers, transcribed regions, repressed regions, and quiescent regions. Our integrative analyses delineate the tissue specificity and developmental trajectory of the loci in these chromatin states. Approximately 0.3% of each epigenome is assigned to a bivalent chromatin state, which harbors both active marks and the repressive mark H3K27me3. Highly evolutionarily conserved, these loci are enriched in silencers bound by polycomb repressive complex proteins, and the transcription start sites of their silenced target genes. This collection of chromatin state assignments provides a useful resource for studying mammalian development.
Collapse
Affiliation(s)
- Arjan van der Velde
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Kaili Fan
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Junko Tsuji
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jill E Moore
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael J Purcaro
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Henry E Pratt
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
41
|
Kashima K, Kawai T, Nishimura R, Shiwa Y, Urayama KY, Kamura H, Takeda K, Aoto S, Ito A, Matsubara K, Nagamatsu T, Fujii T, Omori I, Shimizu M, Hyodo H, Kugu K, Matsumoto K, Shimizu A, Oka A, Mizuguchi M, Nakabayashi K, Hata K, Takahashi N. Identification of epigenetic memory candidates associated with gestational age at birth through analysis of methylome and transcriptional data. Sci Rep 2021; 11:3381. [PMID: 33564054 PMCID: PMC7873311 DOI: 10.1038/s41598-021-83016-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/28/2021] [Indexed: 11/09/2022] Open
Abstract
Preterm birth is known to be associated with chronic disease risk in adulthood whereby epigenetic memory may play a mechanistic role in disease susceptibility. Gestational age (GA) is the most important prognostic factor for preterm infants, and numerous DNA methylation alterations associated with GA have been revealed by epigenome-wide association studies. However, in human preterm infants, whether the methylation changes relate to transcription in the fetal state and persist after birth remains to be elucidated. Here, we identified 461 transcripts associated with GA (range 23-41 weeks) and 2093 candidate CpG sites for GA-involved epigenetic memory through analysis of methylome (110 cord blood and 47 postnatal blood) and transcriptional data (55 cord blood). Moreover, we discovered the trends of chromatin state, such as polycomb-binding, among these candidate sites. Fifty-four memory candidate sites showed correlation between methylation and transcription, and the representative corresponding gene was UCN, which encodes urocortin.
Collapse
Affiliation(s)
- Kohei Kashima
- Department of Pediatrics, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan. .,Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan.
| | - Tomoko Kawai
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Riki Nishimura
- Department of Pediatrics, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yuh Shiwa
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan
| | - Kevin Y Urayama
- Department of Social Medicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Graduate School of Public Health, St. Luke's International University, Tokyo, Japan
| | - Hiromi Kamura
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazue Takeda
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Saki Aoto
- Medical Genome Center, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Atsushi Ito
- Department of Pediatrics, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, The University of Tokyo Hospital, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, The University of Tokyo Hospital, Tokyo, Japan
| | - Isaku Omori
- Department of Neonatology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Mitsumasa Shimizu
- Department of Neonatology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Hironobu Hyodo
- Department of Obstetrics and Gynecology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Koji Kugu
- Department of Obstetrics and Gynecology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan.,Division of Biomedical Information Analysis, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
| | - Akira Oka
- Department of Pediatrics, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masashi Mizuguchi
- Department of Developmental Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Naoto Takahashi
- Department of Pediatrics, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
42
|
Parental nucleosome segregation and the inheritance of cellular identity. Nat Rev Genet 2021; 22:379-392. [PMID: 33500558 DOI: 10.1038/s41576-020-00312-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
Gene expression programmes conferring cellular identity are achieved through the organization of chromatin structures that either facilitate or impede transcription. Among the key determinants of chromatin organization are the histone modifications that correlate with a given transcriptional status and chromatin state. Until recently, the details for the segregation of nucleosomes on DNA replication and their implications in re-establishing heritable chromatin domains remained unclear. Here, we review recent findings detailing the local segregation of parental nucleosomes and highlight important advances as to how histone methyltransferases associated with the establishment of repressive chromatin domains facilitate epigenetic inheritance.
Collapse
|
43
|
Transcriptional programmes underlying cellular identity and microbial responsiveness in the intestinal epithelium. Nat Rev Gastroenterol Hepatol 2021; 18:7-23. [PMID: 33024279 PMCID: PMC7997278 DOI: 10.1038/s41575-020-00357-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2020] [Indexed: 12/19/2022]
Abstract
The intestinal epithelium serves the unique and critical function of harvesting dietary nutrients, while simultaneously acting as a cellular barrier separating tissues from the luminal environment and gut microbial ecosystem. Two salient features of the intestinal epithelium enable it to perform these complex functions. First, cells within the intestinal epithelium achieve a wide range of specialized identities, including different cell types and distinct anterior-posterior patterning along the intestine. Second, intestinal epithelial cells are sensitive and responsive to the dynamic milieu of dietary nutrients, xenobiotics and microorganisms encountered in the intestinal luminal environment. These diverse identities and responsiveness of intestinal epithelial cells are achieved in part through the differential transcription of genes encoded in their shared genome. Here, we review insights from mice and other vertebrate models into the transcriptional regulatory mechanisms underlying intestinal epithelial identity and microbial responsiveness, including DNA methylation, chromatin accessibility, histone modifications and transcription factors. These studies are revealing that most transcription factors involved in intestinal epithelial identity also respond to changes in the microbiota, raising both opportunities and challenges to discern the underlying integrative transcriptional regulatory networks.
Collapse
|
44
|
Grinat J, Heuberger J, Vidal RO, Goveas N, Kosel F, Berenguer-Llergo A, Kranz A, Wulf-Goldenberg A, Behrens D, Melcher B, Sauer S, Vieth M, Batlle E, Stewart AF, Birchmeier W. The epigenetic regulator Mll1 is required for Wnt-driven intestinal tumorigenesis and cancer stemness. Nat Commun 2020; 11:6422. [PMID: 33349639 PMCID: PMC7752919 DOI: 10.1038/s41467-020-20222-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/16/2020] [Indexed: 12/30/2022] Open
Abstract
Wnt/β-catenin signaling is crucial for intestinal carcinogenesis and the maintenance of intestinal cancer stem cells. Here we identify the histone methyltransferase Mll1 as a regulator of Wnt-driven intestinal cancer. Mll1 is highly expressed in Lgr5+ stem cells and human colon carcinomas with increased nuclear β-catenin. High levels of MLL1 are associated with poor survival of colon cancer patients. The genetic ablation of Mll1 in mice prevents Wnt/β-catenin-driven adenoma formation from Lgr5+ intestinal stem cells. Ablation of Mll1 decreases the self-renewal of human colon cancer spheres and halts tumor growth of xenografts. Mll1 controls the expression of stem cell genes including the Wnt/β-catenin target gene Lgr5. Upon the loss of Mll1, histone methylation at the stem cell promoters switches from activating H3K4 tri-methylation to repressive H3K27 tri-methylation, indicating that Mll1 sustains stem cell gene expression by antagonizing gene silencing through polycomb repressive complex 2 (PRC2)-mediated H3K27 tri-methylation. Transcriptome profiling of Wnt-mutated intestinal tumor-initiating cells reveals that Mll1 regulates Gata4/6 transcription factors, known to sustain cancer stemness and to control goblet cell differentiation. Our results demonstrate that Mll1 is an essential epigenetic regulator of Wnt/β-catenin-induced intestinal tumorigenesis and cancer stemness. Intestinal cancer stem cells (CSC) are associated with colon cancer. Here, the authors show that Wnt/beta-catenin signalling in CSC requires the epigenetic regulator Mll1 to promote stemness and tumourigenesis in murine and human colon cancer models.
Collapse
Affiliation(s)
- Johanna Grinat
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125, Berlin, Germany
| | - Julian Heuberger
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125, Berlin, Germany. .,Division of Gastroenterology and Hepatology, Medical Department, Charité University Medicine, 13353, Berlin, Germany.
| | - Ramon Oliveira Vidal
- Laboratory of Functional Genomics, Nutrigenomics and Systems Biology, Scientific Genomics Platforms, Max Delbrück Center for Molecular Medicine (BIMSB/BIH), 13092, Berlin, Germany
| | - Neha Goveas
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Frauke Kosel
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125, Berlin, Germany
| | - Antoni Berenguer-Llergo
- Biostatistics and Bioinformatics Unit, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andrea Kranz
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | | | - Diana Behrens
- Experimental Pharmacology & Oncology (EPO), 13125, Berlin, Germany
| | - Bálint Melcher
- Institute for Pathology, Klinikum Bayreuth, 95445, Bayreuth, Germany
| | - Sascha Sauer
- Laboratory of Functional Genomics, Nutrigenomics and Systems Biology, Scientific Genomics Platforms, Max Delbrück Center for Molecular Medicine (BIMSB/BIH), 13092, Berlin, Germany
| | - Michael Vieth
- Institute for Pathology, Klinikum Bayreuth, 95445, Bayreuth, Germany
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - A Francis Stewart
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Walter Birchmeier
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125, Berlin, Germany.
| |
Collapse
|
45
|
Abstract
The cardinal properties of adult tissue stem cells are self-renewal and the ability to generate diverse resident cell types. The daily losses of terminally differentiated intestinal, skin, and blood cells require "professional" stem cells to produce replacements. This occurs by continuous expansion of stem cells and their immediate progeny, followed by coordinated activation of divergent transcriptional programs to generate stable cells with diverse functions. Other tissues turn over slowly, if at all, and vary widely in strategies for facultative stem cell activity or interconversion among mature resident cell types (transdifferentiation). Cell fate potential is programmed in tissue-specific configurations of chromatin, which restrict the complement of available genes and cis-regulatory elements, hence allowing specific cell types to arise. Using as a model the transcriptional and chromatin basis of cell differentiation and dedifferentiation in intestinal crypts, we discuss here how self-renewing and other tissues execute homeostatic and injury-responsive stem cell activity.
Collapse
Affiliation(s)
- Madhurima Saxena
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; .,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts 02215, USA.,Current affiliation: Translational Medicine, Bristol-Myers-Squibb, Cambridge, Massachusetts 02142, USA;
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; .,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts 02215, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
46
|
Baulies A, Angelis N, Foglizzo V, Danielsen ET, Patel H, Novellasdemunt L, Kucharska A, Carvalho J, Nye E, De Coppi P, Li VS. The Transcription Co-Repressors MTG8 and MTG16 Regulate Exit of Intestinal Stem Cells From Their Niche and Differentiation Into Enterocyte vs Secretory Lineages. Gastroenterology 2020; 159:1328-1341.e3. [PMID: 32553763 PMCID: PMC7607384 DOI: 10.1053/j.gastro.2020.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/07/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Notch signaling maintains intestinal stem cells (ISCs). When ISCs exit the niche, Notch signaling among early progenitor cells at position +4/5 regulates their specification toward secretory vs enterocyte lineages (binary fate). The transcription factor ATOH1 is repressed by Notch in ISCs; its de-repression, when Notch is inactivated, drives progenitor cells to differentiate along the secretory lineage. However, it is not clear what promotes transition of ISCs to progenitors and how this fate decision is established. METHODS We sorted cells from Lgr5-GFP knockin intestines from mice and characterized gene expression patterns. We analyzed Notch regulation by examining expression profiles (by quantitative reverse transcription polymerase chain reaction and RNAscope) of small intestinal organoids incubated with the Notch inhibitor DAPT, intestine tissues from mice given injections of the γ-secretase inhibitor dibenzazepine, and mice with intestine-specific disruption of Rbpj. We analyzed intestine tissues from mice with disruption of the RUNX1 translocation partner 1 gene (Runx1t1, also called Mtg8) or CBFA2/RUNX1 partner transcriptional co-repressor 3 (Cbfa2t3, also called Mtg16), and derived their organoids, by histology, immunohistochemistry, and RNA sequencing (RNA-seq). We performed chromatin immunoprecipitation and sequencing analyses of intestinal crypts to identify genes regulated by MTG16. RESULTS The transcription co-repressors MTG8 and MTG16 were highly expressed by +4/5 early progenitors, compared with other cells along crypt-villus axis. Expression of MTG8 and MTG16 were repressed by Notch signaling via ATOH1 in organoids and intestine tissues from mice. MTG8- and MTG16-knockout intestines had increased crypt hyperproliferation and expansion of ISCs, but enterocyte differentiation was impaired, based on loss of enterocyte markers and functions. Chromatin immunoprecipitation and sequencing analyses showed that MTG16 bound to promoters of genes that are specifically expressed by stem cells (such as Lgr5 and Ascl2) and repressed their transcription. MTG16 also bound to previously reported enhancer regions of genes regulated by ATOH1, including genes that encode Delta-like canonical Notch ligand and other secretory-specific transcription factors. CONCLUSIONS In intestine tissues of mice and human intestinal organoids, MTG8 and MTG16 repress transcription in the earliest progenitor cells to promote exit of ISCs from their niche (niche exit) and control the binary fate decision (secretory vs enterocyte lineage) by repressing genes regulated by ATOH1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Emma Nye
- The Francis Crick Institute, London, UK
| | - Paolo De Coppi
- Department of Paediatric Surgery, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - Vivian S.W. Li
- The Francis Crick Institute, London, UK,Correspondence Address correspondence to: Vivian Li, PhD, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
47
|
Sui B, Chen D, Liu W, Wu Q, Tian B, Li Y, Hou J, Liu S, Xie J, Jiang H, Luo Z, Lv L, Huang F, Li R, Zhang C, Tian Y, Cui M, Zhou M, Chen H, Fu ZF, Zhang Y, Zhao L. A novel antiviral lncRNA, EDAL, shields a T309 O-GlcNAcylation site to promote EZH2 lysosomal degradation. Genome Biol 2020; 21:228. [PMID: 32873321 PMCID: PMC7465408 DOI: 10.1186/s13059-020-02150-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The central nervous system (CNS) is vulnerable to viral infection, yet few host factors in the CNS are known to defend against invasion by neurotropic viruses. Long noncoding RNAs (lncRNAs) have been revealed to play critical roles in a wide variety of biological processes and are highly abundant in the mammalian brain, but their roles in defending against invasion of pathogens into the CNS remain unclear. RESULTS We report here that multiple neurotropic viruses, including rabies virus, vesicular stomatitis virus, Semliki Forest virus, and herpes simplex virus 1, elicit the neuronal expression of a host-encoded lncRNA EDAL. EDAL inhibits the replication of these neurotropic viruses in neuronal cells and rabies virus infection in mouse brains. EDAL binds to the conserved histone methyltransferase enhancer of zest homolog 2 (EZH2) and specifically causes EZH2 degradation via lysosomes, reducing the cellular H3K27me3 level. The antiviral function of EDAL resides in a 56-nt antiviral substructure through which its 18-nt helix-loop intimately contacts multiple EZH2 sites surrounding T309, a known O-GlcNAcylation site. EDAL positively regulates the transcription of Pcp4l1 encoding a 10-kDa peptide, which inhibits the replication of multiple neurotropic viruses. CONCLUSIONS Our findings show that a neuronal lncRNA can exert an effective antiviral function via blocking a specific O-GlcNAcylation that determines EZH2 lysosomal degradation, rather than the traditional interferon-dependent pathway.
Collapse
Affiliation(s)
- Baokun Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dong Chen
- Center for Genome analysis, ABLife Inc., Wuhan, 430075, China
- Center for Genome analysis and Laboratory for Genome Regulation and Human Health, ABLife Inc., Wuhan, 430075, China
| | - Wei Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiong Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingying Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Hou
- Center for Genome analysis, ABLife Inc., Wuhan, 430075, China
- Center for Genome analysis and Laboratory for Genome Regulation and Human Health, ABLife Inc., Wuhan, 430075, China
| | - Shiyong Liu
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Juan Xie
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, 266003, China
| | - Zhaochen Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Lv
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fei Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruiming Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengguang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuling Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Yi Zhang
- Center for Genome analysis, ABLife Inc., Wuhan, 430075, China.
- Center for Genome analysis and Laboratory for Genome Regulation and Human Health, ABLife Inc., Wuhan, 430075, China.
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
48
|
Abstract
Adult stem cells undergo both replicative and chronological aging in their niches, with catastrophic declines in regenerative potential with age. Due to repeated environmental insults during aging, the chromatin landscape of stem cells erodes, with changes in both DNA and histone modifications, accumulation of damage, and altered transcriptional response. A body of work has shown that altered chromatin is a driver of cell fate changes and a regulator of self-renewal in stem cells and therefore a prime target for juvenescence therapeutics. This review focuses on chromatin changes in stem cell aging and provides a composite view of both common and unique epigenetic themes apparent from the studies of multiple stem cell types.
Collapse
Affiliation(s)
- Changyou Shi
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lin Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
49
|
Baulies A, Angelis N, Li VSW. Hallmarks of intestinal stem cells. Development 2020; 147:147/15/dev182675. [PMID: 32747330 DOI: 10.1242/dev.182675] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intestinal stem cells (ISCs) are highly proliferative cells that fuel the continuous renewal of the intestinal epithelium. Understanding their regulatory mechanisms during tissue homeostasis is key to delineating their roles in development and regeneration, as well as diseases such as bowel cancer and inflammatory bowel disease. Previous studies of ISCs focused mainly on the position of these cells along the intestinal crypt and their capacity for multipotency. However, evidence increasingly suggests that ISCs also exist in distinct cellular states, which can be an acquired rather than a hardwired intrinsic property. In this Review, we summarise the recent findings into how ISC identity can be defined by proliferation state, signalling crosstalk, epigenetics and metabolism, and propose an update on the hallmarks of ISCs. We further discuss how these properties contribute to intestinal development and the dynamics of injury-induced regeneration.
Collapse
Affiliation(s)
- Anna Baulies
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nikolaos Angelis
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
50
|
Verzi MP, Shivdasani RA. Epigenetic regulation of intestinal stem cell differentiation. Am J Physiol Gastrointest Liver Physiol 2020; 319:G189-G196. [PMID: 32628072 PMCID: PMC7500269 DOI: 10.1152/ajpgi.00084.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To fulfill the lifelong need to supply diverse epithelial cells, intestinal stem cells (ISCs) rely on executing accurate transcriptional programs. This review addresses the mechanisms that control those programs. Genes that define cell behaviors and identities are regulated principally through thousands of dispersed enhancers, each individually <1 kb long and positioned from a few to hundreds of kilobases away from transcription start sites, upstream or downstream from coding genes or within introns. Wnt, Notch, and other epithelial control signals feed into these cis-regulatory DNA elements, which are also common loci of polymorphisms and mutations that confer disease risk. Cell-specific gene activity requires promoters to interact with the correct combination of signal-responsive enhancers. We review the current state of knowledge in ISCs regarding active enhancers, the nucleosome modifications that may enable appropriate and hinder inappropriate enhancer-promoter contacts, and the roles of lineage-restricted transcription factors.
Collapse
Affiliation(s)
- Michael P. Verzi
- 1Department of Genetics, Rutgers, State University of New Jersey, Piscataway, New Jersey,2Cancer Institute of New Jersey and Human Genetics Institute of New Jersey, Piscataway, New Jersey
| | - Ramesh A. Shivdasani
- 3Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts,4Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts,5Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|