1
|
Nagayama M, Gogokhia L, Longman RS. Precision microbiota therapy for IBD: premise and promise. Gut Microbes 2025; 17:2489067. [PMID: 40190259 PMCID: PMC11980506 DOI: 10.1080/19490976.2025.2489067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/19/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Inflammatory Bowel Disease (IBD) is a spectrum of chronic inflammatory diseases of the intestine that includes subtypes of ulcerative colitis (UC) and Crohn's Disease (CD) and currently has no cure. While IBD results from a complex interplay between genetic, environmental, and immunological factors, sequencing advances over the last 10-15 years revealed signature changes in gut microbiota that contribute to the pathogenesis of IBD. These findings highlight IBD as a disease target for microbiome-based therapies, with the potential to treat the underlying microbial pathogenesis and provide adjuvant therapy to the emerging spectrum of advanced therapies for IBD. Building on the success of fecal microbiota transplantation (FMT) for Clostridioides difficile infection, therapies targeting gut microbiota have emerged as promising approaches for treating IBD; however, unique aspects of IBD pathogenesis highlight the need for more precision in the approach to microbiome therapeutics that leverage aspects of recipient and donor selection, diet and xenobiotics, and strain-specific interactions to enhance the efficacy and safety of IBD therapy. This review focuses on both pre-clinical and clinical studies that support the premise for microbial therapeutics for IBD and aims to provide a framework for the development of precision microbiome therapeutics to optimize clinical outcomes for patients with IBD.
Collapse
Affiliation(s)
- Manabu Nagayama
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Jill Roberts Center for Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lasha Gogokhia
- Jill Roberts Center for Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Randy S. Longman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Jill Roberts Center for Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Lee AH, Rodriguez Jimenez DM, Meisel M. Limosilactobacillus reuteri - a probiotic gut commensal with contextual impact on immunity. Gut Microbes 2025; 17:2451088. [PMID: 39825615 DOI: 10.1080/19490976.2025.2451088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
The gut microbiome plays a key role in human health, influencing various biological processes and disease outcomes. The historical roots of probiotics are traced back to Nobel Laureate Élie Metchnikoff, who linked the longevity of Bulgarian villagers to their consumption of sour milk fermented by Lactobacilli. His pioneering work led to the global recognition of probiotics as beneficial supplements, now a multibillion-dollar industry. Modern probiotics have been extensively studied for their immunomodulatory effects. Limosilactobacillus reuteri (L. reuteri), a widely used probiotic, has garnered significant attention for its systemic immune-regulatory properties, particularly in relation to autoimmunity and cancer. This review delves into the role of L. reuteri in modulating immune responses, with a focus on its impact on systemic diseases.
Collapse
Affiliation(s)
- Amanda H Lee
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Marlies Meisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Xia D, Zheng Q, Liu Y, Wang L, Wei D. Targeting Immune Cell Metabolism: A Promising Therapeutic Approach for Cardiovascular Disease. Immunology 2025; 175:134-150. [PMID: 40129229 DOI: 10.1111/imm.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 03/26/2025] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality globally. Recent groundbreaking preclinical and clinical research underscores the pivotal role of metabolite remodelling in the pathology of CVD. This metabolic transformation not only directly fuels the progression of CVD but also profoundly influences the immune response within the cardiovascular system. In this review, we focused on the complex interactions between cardiovascular metabolic alterations and immune responses during the course of CVD. Furthermore, we explore the potential therapeutic interventions that could be developed based on the understanding of metabolic alterations and immune dysregulation in CVD. By targeting these metabolic and immunological pathways, novel strategies for the prevention and treatment of CVDs might be developed to improve patient outcomes and reduce the global burden of this disease.
Collapse
Affiliation(s)
- Dexiang Xia
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
- Department of Vascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinwen Zheng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Yue Liu
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Wang
- Hengyang Maternal and Child Health Hospital, Hengyang, China
| | - Dangheng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Yang T, Hu X, Cao F, Yun F, Jia K, Zhang M, Kong G, Nie B, Liu Y, Zhang H, Li X, Gao H, Shi J, Liang G, Hu G, Kasper DL, Song X, Qian Y. Targeting symbionts by apolipoprotein L proteins modulates gut immunity. Nature 2025:10.1038/s41586-025-08990-4. [PMID: 40369072 DOI: 10.1038/s41586-025-08990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 04/07/2025] [Indexed: 05/16/2025]
Abstract
The mammalian gut harbours trillions of commensal bacteria that interact with their hosts through various bioactive molecules1,2. However, the mutualistic strategies that hosts evolve to benefit from these symbiotic relationships are largely unexplored. Here we report that mouse enterocytes secrete apolipoprotein L9a and b (APOL9a/b) in the presence of microbiota. By integrating flow cytometry sorting of APOL9-binding bacterial taxa with 16S ribosomal RNA gene sequencing (APOL9-seq), we identify that APOL9a/b, as well as their human equivalent APOL2, coat gut bacteria belonging to the order of Bacteroidales with a high degree of specificity through commensal ceramide-1-phosphate (Cer1P) lipids. Genetic abolition of ceramide-1-phosphate synthesis pathways in gut-dominant symbiote Bacteroides thetaiotaomicron significantly decreases the binding of APOL9a/b to the bacterium. Instead of lysing the bacterial cells, coating of APOL9a/b induces the production of outer membrane vesicles (OMVs) from the target bacteria. Subsequently, the Bacteroides-elicited outer membrane vesicles enhance the host's interferon-γ signalling to promote major histocompatibility complex class II expression in the intestinal epithelial cells. In mice, the loss of Apol9a/b compromises the gut major histocompatibility complex class II-instructed immune barrier function, leading to early mortality from infection by intestinal pathogens. Our data show how a host-elicited factor benefits gut immunological homeostasis by selectively targeting commensal ceramide molecules.
Collapse
Affiliation(s)
- Tao Yang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohu Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fei Cao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fenglin Yun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kaiwen Jia
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Mingxiang Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Gaohui Kong
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Biyu Nie
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuexing Liu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haohao Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyu Li
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongyan Gao
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jiantao Shi
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Guanxiang Liang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dennis L Kasper
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Xinyang Song
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Youcun Qian
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
5
|
Andreu-Sánchez S, Blanco-Míguez A, Wang D, Golzato D, Manghi P, Heidrich V, Fackelmann G, Zhernakova DV, Kurilshikov A, Valles-Colomer M, Weersma RK, Zhernakova A, Fu J, Segata N. Global genetic diversity of human gut microbiome species is related to geographic location and host health. Cell 2025:S0092-8674(25)00416-7. [PMID: 40311618 DOI: 10.1016/j.cell.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/23/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025]
Abstract
The human gut harbors thousands of microbial species, each exhibiting significant inter-individual genetic variability. Although many studies have associated microbial relative abundances with human-health-related phenotypes, the substantial intraspecies genetic variability of gut microbes has not yet been comprehensively considered, limiting the potential of linking such genetic traits with host conditions. Here, we analyzed 32,152 metagenomes from 94 microbiome studies across the globe to investigate the human microbiome intraspecies genetic diversity. We reconstructed 583 species-specific phylogenies and linked them to geographic information and species' horizontal transmissibility. We identified 484 microbial-strain-level associations with 241 host phenotypes, encompassing human anthropometric factors, biochemical measurements, diseases, and lifestyle. We observed a higher prevalence of a Ruminococcus gnavus clade in nonagenarians correlated with distinct plasma bile acid profiles and a melanoma and prostate-cancer-associated Collinsella clade. Our large-scale intraspecies genetic analysis highlights the relevance of strain diversity as it relates to human health.
Collapse
Affiliation(s)
- Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | | | - Daoming Wang
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Davide Golzato
- Department of CIBIO, University of Trento, Trento, Italy
| | - Paolo Manghi
- Department of CIBIO, University of Trento, Trento, Italy
| | - Vitor Heidrich
- Department of CIBIO, University of Trento, Trento, Italy
| | | | - Daria V Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Mireia Valles-Colomer
- Department of CIBIO, University of Trento, Trento, Italy; MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands.
| | - Nicola Segata
- Department of CIBIO, University of Trento, Trento, Italy; IEO, Istituto Europeo di Oncologia IRCSS, Milan, Italy; Department of Twins Research and Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
6
|
Mirab F, Pirhaghi M, Otzen DE, Saboury AA. Parkinson's disease and gut microbiota metabolites: The dual impact of vitamins and functional amyloids. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167862. [PMID: 40254265 DOI: 10.1016/j.bbadis.2025.167862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the abnormal accumulation of alpha-synuclein (α-Syn). Recent research emphasizes the significant role of the gut microbiota, the diverse community of microbes living in the intestines, in modulating α-Syn pathology. This review explores the bi-directional communication along the microbiota-gut-brain axis, highlighting the paradoxical impact of two gut microbiota metabolites-functional bacterial amyloids (FuBA) and vitamins-on neurodegenerative diseases, particularly PD. FuBA contributes to PD pathogenesis by promoting α-Syn aggregation, while vitamins offer neuroprotection through their anti-amyloidogenic, antioxidant, and anti-inflammatory properties. Understanding these processes could lead to precision clinical approaches and novel strategies for managing and preventing PD.
Collapse
Affiliation(s)
- Fatemeh Mirab
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Mitra Pirhaghi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 6673145137, Iran
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, C 1592-224, Denmark
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran.
| |
Collapse
|
7
|
Nemati MH, Yazdanpanah E, Kazemi R, Orooji N, Dadfar S, Oksenych V, Haghmorad D. Microbiota-Driven Mechanisms in Multiple Sclerosis: Pathogenesis, Therapeutic Strategies, and Biomarker Potential. BIOLOGY 2025; 14:435. [PMID: 40282300 PMCID: PMC12025160 DOI: 10.3390/biology14040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Multiple sclerosis (MS) is a well-known, chronic autoimmune disorder of the central nervous system (CNS) involving demyelination and neurodegeneration. Research previously conducted in the area of the gut microbiome has highlighted it as a critical contributor to MS pathogenesis. Changes in the commensal microbiota, or dysbiosis, have been shown to affect immune homeostasis, leading to elevated levels of pro-inflammatory cytokines and disruption of the gut-brain axis. In this review, we provide a comprehensive overview of interactions between the gut microbiota and MS, especially focusing on the immunomodulatory actions of microbiota, such as influencing T-cell balance and control of metabolites, e.g., short-chain fatty acids. Various microbial taxa (e.g., Prevotella and Faecalibacterium) were suggested to lay protective roles, whereas Akkermansia muciniphila was associated with disease aggravation. Interventions focusing on microbiota, including probiotics, prebiotics, fecal microbiota transplantation (FMT), and dietary therapies to normalize gut microbial homeostasis, suppress inflammation and are proven to improve clinical benefits in MS patients. Alterations in gut microbiota represent opportunities for identifying biomarkers for early diagnosis, disease progression and treatment response monitoring. Further studies need to be conducted to potentially address the interplay between genetic predispositions, environmental cues, and microbiota composition to get the precise mechanisms of the gut-brain axis in MS. In conclusion, the gut microbiota plays a central role in MS pathogenesis and offers potential for novel therapeutic approaches, providing a promising avenue for improving clinical outcomes in MS management.
Collapse
Affiliation(s)
- Mohammad Hosein Nemati
- Student Research Committee, Semnan University of Medical Sciences, Semnan 3514799442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Roya Kazemi
- Student Research Committee, Semnan University of Medical Sciences, Semnan 3514799442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Niloufar Orooji
- Student Research Committee, Semnan University of Medical Sciences, Semnan 3514799442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Sepehr Dadfar
- Student Research Committee, Semnan University of Medical Sciences, Semnan 3514799442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| |
Collapse
|
8
|
Zugman M, Wong M, Jaime-Casas S, Pal SK. The gut microbiome and dietary metabolites in the treatment of renal cell carcinoma. Urol Oncol 2025; 43:244-253. [PMID: 39095306 DOI: 10.1016/j.urolonc.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
The gut microbiome is interlinked with renal cell carcinoma (RCC) and its response to systemic treatment. Mounting data suggests that certain elements of the gut microbiome may correlate with improved outcomes. New generation sequencing techniques and advanced bioinformatic data curation are accelerating the investigation of specific markers and metabolites that could predict treatment response. A variety of new therapeutic strategies, such as fecal microbiota transplantation, probiotic supplements, and dietary interventions, are currently being developed to modify the gut microbiome and improve anticancer therapies in patients with RCC. This review discusses the preliminary evidence indicating the role of the microbiome in cancer treatment, the techniques and tools necessary for its proper study and some of the current forms with which the microbiome can be modulated to improve patient outcomes.
Collapse
Affiliation(s)
- Miguel Zugman
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA; Centro de Oncologia e Hematologia Família Dayan-Daycoval Einstein, Hospital Israelita Albert, São Paulo, São Paulo, Brazil
| | - Megan Wong
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Salvador Jaime-Casas
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Sumanta K Pal
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA.
| |
Collapse
|
9
|
Laoguo S, Tang J, Xu X, Huang X, Jiang Y, Mo N, Duan S, Wu W, Li H, Taylor J, Ma J. Causal relationship between gut microbiota and malignant lymphoma: a two-way two-sample mendelian randomization study. Transl Cancer Res 2025; 14:1982-1994. [PMID: 40225002 PMCID: PMC11985171 DOI: 10.21037/tcr-2025-303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/24/2025] [Indexed: 04/15/2025]
Abstract
Background Emerging observational and clinical studies have highlighted the role of gut microbiota in hematologic malignancies, including malignant lymphoma. However, conflicting findings persist regarding the causal direction of this relationship, as traditional studies are susceptible to confounding factors and reverse causality. Mendelian randomization (MR) analysis, leveraging genetic variants as instrumental variables (IVs), offers a robust approach to infer causality by minimizing these biases. Here, we investigate the bidirectional causal links between gut microbiota and malignant lymphoma, addressing controversies in existing population-based studies. Methods Bidirectional two-sample MR analysis was used to examine the causal relationship between malignant lymphoma and gut microbiota. The summary-level data of gut microbiota was obtained from the MiBioGen Consortium, a large-scale genome-wide study, involving 18,340 participants from a multiethnic cohort. Summary statistics for malignant lymphoma were sourced from the OpenGWAS website, which contains data from 490,803 participants. Using the standard quality-controlled single-nucleotide polymorphism (SNP) as an IV, we examined the potential causative link between gut microbiota and malignant lymphoma via the inverse variance weighting, MR Egger, weighted median, weighted model, and simple mode. Reverse MR analysis was further conducted on bacterial taxa identified as causally associated with malignant lymphoma in the forward MR analysis. Results Seven causal relationships between gut microbiota and malignant lymphoma were found, including the phylum Bacteroidetes [odds ratio (OR) =1.31; 95% confidence interval (CI): 1.02-1.68; P=0.03], the class Bacilli (OR =1.22; 95% CI: 1.00-1.49; P=0.048), the family Rikenellaceae (OR =1.27; 95% CI: 1.04-1.55; P=0.02), the genus Eubacterium nodatum group (OR =1.13; 95% CI: 1.00-1.27; P=0.046), the genus Oxalobacter (OR =1.23; 95% CI: 1.06-1.43; P=0.006), the genus Parabacteroides (OR =1.41; 95% CI: 1.00-1.99; P=0.049), and the genus Sellimonas (OR =1.18; 95% CI: 1.03-1.35; P=0.02). No significant level pleiotropy or heterogeneity was detected in the IV, and there was no reverse causality between gut microbiota and malignant lymphoma. Conclusions We investigated the potential causal relationship between gut microbiota and malignant lymphoma. Our findings provide a theoretical foundation for future research on the relationship between gut microbiota and lymphoma, and may facilitate the development of diagnostic, therapeutic, and preventive strategies for lymphoma in clinical practice.
Collapse
Affiliation(s)
- Shixue Laoguo
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Tang
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoyu Xu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xianye Huang
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanfeng Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ning Mo
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanlin Duan
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weizhen Wu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hening Li
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Justin Taylor
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Schwerdtfeger LA, Lanser TB, Montini F, Moreira T, LeServe DS, Cox LM, Weiner HL. Akkermansia mono-colonization modulates microglia and astrocytes in a strain specific manner. J Neuroinflammation 2025; 22:94. [PMID: 40148962 PMCID: PMC11951737 DOI: 10.1186/s12974-025-03417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Microglia and astrocytes are the primary glial cells in the central nervous system (CNS) and their function is shaped by multiple factors. Regulation of CNS glia by the microbiota have been reported, although the role of specific bacteria has not been identified. We colonized germ-free mice with the type strain Akkermansia muciniphila (AmT) and a novel A. muciniphila strain BWH-H3 (Am-H3) isolated from a subject with multiple sclerosis and compared to mice colonized with Bacteroides cellulosilyticus strain BWH-E5 (Bc) isolated from a healthy control subject. We then investigated the effect of these bacteria on microglia and astrocyte gene expression by RNA sequencing. We found altered gene expression profiles in brain microglia, with Akkermansia downregulating genes related to antigen presentation and cell migration. Furthermore, we observed strain specific effects, with Akkermansia H3 upregulating histone and protein binding associated genes and downregulating channel and ion transport genes. Astrocyte pathways that were altered by Akkermansia H3 mono-colonization included upregulation of proliferation pathways and downregulation in cytoskeletal associated genes. Furthermore, animals colonized with type strain Akkermansia and strain H3 had effects on the immune system including elevated splenic γδ-T cells and increased IFNγ production in CD4 + T cells. We also measured intestinal short chain fatty acids and found that both A. muciniphila strains produced proprionate while B. cellulosilyticus produced acetate, proprionate, and isovalerate. Taken together, our study shows that specific members of the intestinal microbiota influence both microglial and astroyctes which may be mediated by changes in short chain fatty acids and peripheral immune signaling.
Collapse
Affiliation(s)
- Luke A Schwerdtfeger
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Toby B Lanser
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Federico Montini
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Thais Moreira
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Danielle S LeServe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Upadhyay V, Ortega EF, Ramirez Hernandez LA, Alexander M, Kaur G, Trepka K, Rock RR, Shima RT, Cheshire WC, Alipanah-Lechner N, Calfee CS, Matthay MA, Lee JV, Goga A, Jain IH, Turnbaugh PJ. Gut bacterial lactate stimulates lung epithelial mitochondria and exacerbates acute lung injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645052. [PMID: 40196632 PMCID: PMC11974820 DOI: 10.1101/2025.03.24.645052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Acute respiratory distress syndrome (ARDS) is an often fatal critical illness where lung epithelial injury leads to intrapulmonary fluid accumulation. ARDS became widespread during the COVID-19 pandemic, motivating a renewed effort to understand the complex etiology of this disease. Rigorous prior work has implicated lung endothelial and epithelial injury in response to an insult such as bacterial infection; however, the impact of microorganisms found in other organs on ARDS remains unclear. Here, we use a combination of gnotobiotic mice, cell culture experiments, and re-analyses of a large metabolomics dataset from ARDS patients to reveal that gut bacteria impact lung cellular respiration by releasing metabolites that alter mitochondrial activity in lung epithelium. Colonization of germ-free mice with a complex gut microbiota stimulated lung mitochondrial gene expression. A single human gut bacterial species, Bifidobacterium adolescentis, was sufficient to replicate this effect, leading to a significant increase in mitochondrial membrane potential in lung epithelial cells. We then used genome sequencing and mass spectrometry to confirm that B. adolescentis produces L -lactate, which was sufficient to increase mitochondrial activity in lung epithelial cells. Finally, we found that serum lactate was significantly associated with disease severity in patients with ARDS from the Early Assessment of Renal and Lung Injury (EARLI) cohort. Together, these results emphasize the importance of more broadly characterizing the microbial etiology of ARDS and other lung diseases given the ability of gut bacterial metabolites to remotely control lung cellular respiration. Our discovery of a single bacteria-metabolite pair provides a proof-of-concept for systematically testing other microbial metabolites and a mechanistic biomarker that could be pursued in future clinical studies. Furthermore, our work adds to the growing literature linking the microbiome to mitochondrial function, raising intriguing questions as to the bidirectional communication between our endo- and ecto-symbionts.
Collapse
|
12
|
He S, Song L, Xiao Y, Huang Y, Ren Z. Genomic, Probiotic, and Functional Properties of Bacteroides dorei RX2020 Isolated from Gut Microbiota. Nutrients 2025; 17:1066. [PMID: 40292459 PMCID: PMC11944543 DOI: 10.3390/nu17061066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND/OBJECTIVES Gut microbiota is essential for maintaining host immune homeostasis and has been confirmed to be closely related to some intestinal and extraintestinal diseases. Bacteroides, as the dominant bacterial genus in the human gut, has attracted great attention due to its excellent metabolic activity, but there are few studies on Bacteroides dorei species. In our previous study, a gut commensal strain, Bacteroides dorei RX2020 (B. dorei), was isolated from healthy human feces and exhibited superior flavonoid metabolic activity, prompting further analysis of its uncharacterized genomic features, probiotic potential, safety, and immunomodulatory activity. RESULTS The results showed that B. dorei exhibited intrinsic probiotic functionalities with preserved genomic and phenotypic stability, demonstrated safety profiles in murine models through in vivo assessments, and conferred antagonistic activity against enteric foodborne pathogens via competitive exclusion. The strain also demonstrated abundant metabolic activity and was involved in the metabolism of tryptophan and bile acids (BAs). Moreover, B. dorei can promote the production of IFNβ by dendritic cells (DCs) to inhibit the replication of influenza virus in epithelial cells, which may be achieved by regulating host metabolism. CONCLUSIONS This study reveals the potential of B. dorei as next-generation probiotics (NGPs), contributing to a broader understanding and application of these novel probiotics in health and disease management.
Collapse
Affiliation(s)
| | | | | | | | - Zhihong Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (S.H.)
| |
Collapse
|
13
|
Turjeman S, Rozera T, Elinav E, Ianiro G, Koren O. From big data and experimental models to clinical trials: Iterative strategies in microbiome research. Cell 2025; 188:1178-1197. [PMID: 40054445 DOI: 10.1016/j.cell.2025.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/02/2024] [Accepted: 01/27/2025] [Indexed: 05/13/2025]
Abstract
Microbiome research has expanded significantly in the last two decades, yet translating findings into clinical applications remains challenging. This perspective discusses the persistent issue of correlational studies in microbiome research and proposes an iterative method leveraging in silico, in vitro, ex vivo, and in vivo studies toward successful preclinical and clinical trials. The evolution of research methodologies, including the shift from small cohort studies to large-scale, multi-cohort, and even "meta-cohort" analyses, has been facilitated by advancements in sequencing technologies, providing researchers with tools to examine multiple health phenotypes within a single study. The integration of multi-omics approaches-such as metagenomics, metatranscriptomics, metaproteomics, and metabolomics-provides a comprehensive understanding of host-microbe interactions and serves as a robust hypothesis generator for downstream in vitro and in vivo research. These hypotheses must then be rigorously tested, first with proof-of-concept experiments to clarify the causative effects of the microbiota, and then with the goal of deep mechanistic understanding. Only following these two phases can preclinical studies be conducted with the goal of translation into the clinic. We highlight the importance of combining traditional microbiological techniques with big-data approaches, underscoring the necessity of iterative experiments in diverse model systems to enhance the translational potential of microbiome research.
Collapse
Affiliation(s)
- Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| | - Tommaso Rozera
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Microbiome & Cancer Division, DKFZ, Heidelberg, Germany
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Liu J, Zou Q, Li D, Wang T, Han J. Gut bacterial and fungal communities of François' langur ( Trachypithecus francoisi) changed coordinate to different seasons. Front Microbiol 2025; 16:1547955. [PMID: 40109980 PMCID: PMC11920163 DOI: 10.3389/fmicb.2025.1547955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction François' langur (Trachypithecus francoisi), an endangered primate endemic to limestone forests in Vietnam and China, relies on gut microbiota to maintain gastrointestinal stability and adapt to dietary shifts. While gut microbial communities are dynamic and sensitive to seasonal and resource variations, their specific responses in François' langurs remain poorly characterized. This study investigates seasonal variations in the composition and diversity of gut bacterial and fungal communities in this species to enhance understanding of its ecological adaptations. Methods Fresh fecal samples from 22 François' langurs in Mayanghe National Nature Reserve, China, were collected across four seasons. Bacterial and fungal communities were analyzed using high-throughput sequencing to assess taxonomic composition and α-diversity. Statistical comparisons were conducted to evaluate seasonal differences at phylum and genus levels. Results Significant seasonal shifts occurred in both bacterial and fungal communities. Bacterial α-diversity peaked in warmer seasons, whereas fungal diversity was higher in colder months. At the genus level, Akkermansia (1.3% relative abundance in summer), a mucin-degrading bacterium linked to gut health, dominated warmer seasons. In contrast, the fungal genus Cercophora, associated with plant biomass degradation, was enriched during colder seasons. Seasonal factors strongly influenced microbial structure, with distinct community assemblages observed across all seasons. Discussion The inverse diversity patterns of bacterial and fungal communities suggest complementary roles in nutrient extraction under seasonal dietary constraints. Akkermansia's summer prevalence may reflect enhanced mucin utilization during fruit-rich periods, while Cercophora's cold-season dominance likely aids cellulose breakdown in leaf-heavy diets. These dynamics highlight the microbiota's role in optimizing energy harvest from seasonally variable diets. By elucidating microbial seasonal plasticity, this study provides critical insights for developing conservation strategies tailored to the nutritional ecology of François' langurs.
Collapse
Affiliation(s)
- Jinyuan Liu
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Qixian Zou
- Mayanghe National Nature Reserve Administration, Tongren, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Tao Wang
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Jialiang Han
- Office of Academic Affairs, Chengdu University, Chengdu, China
| |
Collapse
|
15
|
Jans M, Vereecke L. A guide to germ-free and gnotobiotic mouse technology to study health and disease. FEBS J 2025; 292:1228-1251. [PMID: 38523409 DOI: 10.1111/febs.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| |
Collapse
|
16
|
Chen H, Yuan J, Zhou H, Zhan X, Gao Y, Chen B, Aihemaiti N, Xu X, Dong Y, Liu S, Chen Y, Liu D, Xie T, Xu Y. Characterization of the gut microbiota in urinary calculi patients with preoperative urinary tract infection. Front Cell Infect Microbiol 2025; 15:1417403. [PMID: 40093533 PMCID: PMC11906712 DOI: 10.3389/fcimb.2025.1417403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Background Urinary tract infection is one of the most common comorbidities of urinary stones. Disorders of gut microbiota can affect various infectious diseases and the formation of the stones. Therefore, alterations in the gut bacteria profile may be a potential risk factor for the development of infections in patients with urinary tract stones. Methods We conducted a retrospective study to analyze the association of urinary tract infections with gut microbiota and serum metabolism in patients with stones. Results Patients with urolithiasis were predominantly in combination with diabetes mellitus (11.4% vs. 20%) and hypertension (36.4% vs. 50%). There were no statistically significant differences in hematological and urinary parameters. Compared to negative patients, IL-17A was significantly higher in the positive group (25.0 vs 21.1 pg/ml p = 0.038). The majority of pathogens detected in urine cultures were urease-negative bacteria, and urease-positive bacteria accounted for 15% of the total number of patients. We analyzed the community composition of the two groups of patients and found a significant difference in their β-diversity (p = 0.025), suggesting that dysbiosis of the gut bacteria may be associated with the combination of urinary tract infections in urolithiasis. For identification of crucial bacteria, we found changes in the abundance of both Intestinibacter (p = 0.036) and Dialister (p = 0.039), and abundance of Intestinibacter was positively correlated with IFN-α, IL-12P70 (p<0.05), and especially IL-17A (p<0.01), which may result from differences in translational, ribosomal structural and biosynthetic functions in stone patients (p < 0.05). Conclusion Urolithiasis with gut dysbiosis developed a higher incidence of urinary tract infections, which may be associated with the increasing of Intestinibacter and affect the expression of IL-17A by translational, ribosomal structural and biosynthetic function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Tiancheng Xie
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunfei Xu
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
17
|
Blackmer-Raynolds L, Sampson MM, Kozlov A, Yang A, Lipson L, Hamilton AM, Kelly SD, Chopra P, Chang J, Sloan SA, Sampson TR. Indigenous gut microbes modulate neural cell state and neurodegenerative disease susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638718. [PMID: 40027785 PMCID: PMC11870502 DOI: 10.1101/2025.02.17.638718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The native microbiome influences a plethora of host processes, including neurological function. However, its impacts on diverse brain cell types remains poorly understood. Here, we performed single nucleus RNA sequencing on hippocampi from wildtype, germ-free mice and reveal the microbiome-dependent transcriptional landscape across all major neural cell types. We found conserved impacts on key adaptive immune and neurodegenerative transcriptional pathways, underscoring the microbiome's contributions to disease-relevant processes. Mono-colonization with select indigenous microbes identified species-specific effects on the transcriptional state of brain myeloid cells. Colonization by Escherichia coli induced a distinct adaptive immune and neurogenerative disease-associated cell state, suggesting increased disease susceptibility. Indeed, E. coli exposure in the 5xFAD mouse model resulted in exacerbated cognitive decline and amyloid pathology, demonstrating its sufficiency to worsen Alzheimer's disease-relevant outcomes. Together, these results emphasize the broad, species-specific, microbiome-dependent consequences on neurological transcriptional state and highlight the capacity of specific microbes to modulate disease susceptibility. Highlights The microbiome impacts the transcriptional landscape of all major brain cell types.Discrete microbes specifically modulate resident myeloid cell status. Gut E. coli triggers dynamic transcriptional responses across neural cell types. Exposure to E. coli exacerbates behavioral and cellular pathologies in 5xFAD mice.
Collapse
|
18
|
Nai S, Song J, Su W, Liu X. Bidirectional Interplay Among Non-Coding RNAs, the Microbiome, and the Host During Development and Diseases. Genes (Basel) 2025; 16:208. [PMID: 40004537 PMCID: PMC11855195 DOI: 10.3390/genes16020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
It is widely known that the dysregulation of non-coding RNAs (ncRNAs) and dysbiosis of the gut microbiome play significant roles in host development and the progression of various diseases. Emerging evidence has highlighted the bidirectional interplay between ncRNAs and the gut microbiome. This article aims to review the current understanding of the molecular mechanisms underlying the crosstalk between ncRNAs, especially microRNA (miRNA), and the gut microbiome in the context of development and diseases, such as colorectal cancer, inflammatory bowel diseases, neurological disorders, obesity, and cardiovascular disease. Ultimately, this review seeks to provide a foundation for exploring the potential roles of ncRNAs and gut microbiome interactions as biomarkers and therapeutic targets for clinical diagnosis and treatment, such as ncRNA mimics, antisense oligonucleotides, and small-molecule compounds, as well as probiotics, prebiotics, and diets.
Collapse
Affiliation(s)
| | | | | | - Xiaoqian Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (S.N.); (J.S.); (W.S.)
| |
Collapse
|
19
|
Gazzaniga FS, Kasper DL. The gut microbiome and cancer response to immune checkpoint inhibitors. J Clin Invest 2025; 135:e184321. [PMID: 39895632 PMCID: PMC11785914 DOI: 10.1172/jci184321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) are widely used for cancer immunotherapy, yet only a fraction of patients respond. Remarkably, gut bacteria impact the efficacy of ICIs in fighting tumors outside of the gut. Certain strains of commensal gut bacteria promote antitumor responses to ICIs in a variety of preclinical mouse tumor models. Patients with cancer who respond to ICIs have a different microbiome compared with that of patients who don't respond. Fecal microbiota transplants (FMTs) from patients into mice phenocopy the patient tumor responses: FMTs from responders promote response to ICIs, whereas FMTs from nonresponders do not promote a response. In patients, FMTs from patients who have had a complete response to ICIs can overcome resistance in patients who progress on treatment. However, the responses to FMTs are variable. Though emerging studies indicate that gut bacteria can promote antitumor immunity in the absence of ICIs, this Review will focus on studies that demonstrate relationships between the gut microbiome and response to ICIs. We will explore studies investigating which bacteria promote response to ICIs in preclinical models, which bacteria are associated with response in patients with cancer receiving ICIs, the mechanisms by which gut bacteria promote antitumor immunity, and how microbiome-based therapies can be translated to the clinic.
Collapse
Affiliation(s)
- Francesca S. Gazzaniga
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dennis L. Kasper
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Pribyl AL, Hugenholtz P, Cooper MA. A decade of advances in human gut microbiome-derived biotherapeutics. Nat Microbiol 2025; 10:301-312. [PMID: 39779879 DOI: 10.1038/s41564-024-01896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
Microbiome science has evolved rapidly in the past decade, with high-profile publications suggesting that the gut microbiome is a causal determinant of human health. This has led to the emergence of microbiome-focused biotechnology companies and pharmaceutical company investment in the research and development of gut-derived therapeutics. Despite the early promise of this field, the first generation of microbiome-derived therapeutics (faecal microbiota products) have only recently been approved for clinical use. Next-generation therapies based on readily culturable and as-yet-unculturable colonic bacterial species (with the latter estimated to comprise 63% of all detected species) have not yet progressed to pivotal phase 3 trials. This reflects the many challenges involved in developing a new class of drugs in an evolving field. Here we discuss the evolution of the live biotherapeutics field over the past decade, from the development of first-generation products to the emergence of rationally designed second- and third-generation live biotherapeutics. Finally, we present our outlook for the future of this field.
Collapse
Affiliation(s)
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia.
| | | |
Collapse
|
21
|
Giri S, Shi H, Typas A, Huang KC. Harnessing gut microbial communities to unravel microbiome functions. Curr Opin Microbiol 2025; 83:102578. [PMID: 39787728 DOI: 10.1016/j.mib.2024.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
The gut microbiome impacts human health in direct and indirect ways. While many associations have been discovered between specific microbiome compositions and diseases, establishing causality, understanding the underlying mechanisms, and developing successful microbiome-based therapies require novel experimental approaches. In this opinion, we discuss how in vitro cultivation of diverse communities enables systematic investigation of the individual and collective functions of gut microbes. Up to now, the field has relied mostly on simple, bottom-up assembled synthetic communities or more complex, undefined stool-derived communities. Although powerful for dissecting interactions and mapping causal effects, these communities suffer either from ignoring the complexity, diversity, coevolution, and dynamics of natural communities or from lack of control of community composition. These limitations can be overcome in the future by establishing personalized culture collections from stool samples of different donors and assembling personalized communities to investigate native interactions and ecological relationships in a controlled manner.
Collapse
Affiliation(s)
- Samir Giri
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
| | - Handuo Shi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Athanasios Typas
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany.
| | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
22
|
Yang B, Rutkowski N, Ruta A, Gray-Gaillard E, Maestas DR, Kelly SH, Krishnan K, Wu X, Wu S, Chen A, Amelung CD, Mejías JC, Hooks JST, Vanderzee I, Mensah P, Celik N, Eric M, Abraham P, Tam A, Gerecht S, Housseau F, Pardoll DM, Sears CL, Elisseeff JH. Murine gut microbiota dysbiosis via enteric infection modulates the foreign body response to a distal biomaterial implant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632473. [PMID: 39868312 PMCID: PMC11760420 DOI: 10.1101/2025.01.13.632473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The gut microbiota influences systemic immunity and the function of distal tissues, including the brain, liver, skin, lung, and muscle. However, the role of the gut microbiota in the foreign body response (FBR) and fibrosis around medical implants is largely unexplored. To investigate this connection, we perturbed the homeostasis of the murine gut microbiota via enterotoxigenic Bacteroides fragilis (ETBF) infection and implanted the synthetic polymer polycaprolactone (PCL) into a distal muscle injury. ETBF infection in mice led to increased neutrophil and γδ T cell infiltration into the PCL implant site. ETBF infection alone promoted systemic inflammation and increased levels of neutrophils in the blood, spleen, and bone marrow. At the PCL implant site, we found significant changes in the transcriptome of sorted fibroblasts but did not observe gross ETBF- induced differences in the fibrosis levels after 6 weeks. These results demonstrate the ability of the gut microbiota to mediate long-distance effects such as immune and stromal responses to a distal biomaterial implant. Significance Statement The foreign body response to implants leads to chronic inflammation and fibrosis that can be highly variable in the general patient population. Here, we demonstrate that gut dysbiosis via enteric infection promoted systemic inflammation and increased immune cell recruitment to an anatomically distant implant site. These results implicate the gut microbiota as a potential source of variability in the clinical biomaterial response and illustrate that the local tissue environment can be influenced by host factors that modulate systemic interactions.
Collapse
|
23
|
Kellogg TD, Ceglia S, Mortzfeld BM, Tanna TM, Zeamer AL, Mancini MR, Foley SE, Ward DV, Bhattarai SK, McCormick BA, Reboldi A, Bucci V. Succinate-producing microbiota drives tuft cell hyperplasia to protect against Clostridioides difficile. J Exp Med 2025; 222:e20232055. [PMID: 39589553 PMCID: PMC11602550 DOI: 10.1084/jem.20232055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
The role of microbes and their metabolites in modulating tuft cell (TC) dynamics in the large intestine and the relevance of this pathway to infections is unknown. Here, we uncover that microbiome-driven colonic TC hyperplasia protects against Clostridioides difficile infection. Using selective antibiotics, we demonstrate increased type 2 cytokines and TC hyperplasia in the colon but not in the ileum. We demonstrate the causal role of the microbiome in modulating this phenotype using fecal matter transplantation and administration of consortia of succinate-producing bacteria. Administration of succinate production-deficient microbes shows a reduced response in a Pou2f3-dependent manner despite similar intestinal colonization. Finally, antibiotic-treated mice prophylactically administered with succinate-producing bacteria show increased protection against C. difficile-induced morbidity and mortality. This effect is nullified in Pou2f3-/- mice, confirming that the protection occurs via the TC pathway. We propose that activation of TCs by the microbiota in the colon is a mechanism evolved by the host to counterbalance microbiome-derived cues that facilitate invasion by pathogens.
Collapse
Affiliation(s)
- Tasia D. Kellogg
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbial Pathogenesis Program, UMass Chan Medical School, Worcester, MA, USA
| | - Simona Ceglia
- Immunology and Microbial Pathogenesis Program, UMass Chan Medical School, Worcester, MA, USA
- Department of Pathology, UMass Chan Medical School, Worcester, MA, USA
| | - Benedikt M. Mortzfeld
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbial Pathogenesis Program, UMass Chan Medical School, Worcester, MA, USA
| | - Tanvi M. Tanna
- Department of Pathology, UMass Chan Medical School, Worcester, MA, USA
| | - Abigail L. Zeamer
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
| | - Matthew R. Mancini
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
| | - Sage E. Foley
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
| | - Doyle V. Ward
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
| | - Shakti K. Bhattarai
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbial Pathogenesis Program, UMass Chan Medical School, Worcester, MA, USA
| | - Beth A. McCormick
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbial Pathogenesis Program, UMass Chan Medical School, Worcester, MA, USA
| | - Andrea Reboldi
- Immunology and Microbial Pathogenesis Program, UMass Chan Medical School, Worcester, MA, USA
- Department of Pathology, UMass Chan Medical School, Worcester, MA, USA
| | - Vanni Bucci
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbial Pathogenesis Program, UMass Chan Medical School, Worcester, MA, USA
| |
Collapse
|
24
|
An Y, He L, Xu X, Piao M, Wang B, Liu T, Cao H. Gut microbiota in post-acute COVID-19 syndrome: not the end of the story. Front Microbiol 2024; 15:1500890. [PMID: 39777148 PMCID: PMC11703812 DOI: 10.3389/fmicb.2024.1500890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has led to major global health concern. However, the focus on immediate effects was assumed as the tip of iceberg due to the symptoms following acute infection, which was defined as post-acute COVID-19 syndrome (PACS). Gut microbiota alterations even after disease resolution and the gastrointestinal symptoms are the key features of PACS. Gut microbiota and derived metabolites disorders may play a crucial role in inflammatory and immune response after SARS-CoV-2 infection through the gut-lung axis. Diet is one of the modifiable factors closely related to gut microbiota and COVID-19. In this review, we described the reciprocal crosstalk between gut and lung, highlighting the participation of diet and gut microbiota in and after COVID-19 by destroying the gut barrier, perturbing the metabolism and regulating the immune system. Therefore, bolstering beneficial species by dietary supplements, probiotics or prebiotics and fecal microbiota transplantation (FMT) may be a novel avenue for COVID-19 and PACS prevention. This review provides a better understanding of the association between gut microbiota and the long-term consequences of COVID-19, which indicates modulating gut dysbiosis may be a potentiality for addressing this multifaceted condition.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianyu Liu
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
25
|
Jiraskova Zakostelska Z, Kraus M, Coufal S, Prochazkova P, Slavickova Z, Thon T, Hrncir T, Kreisinger J, Kostovcikova K, Kleinova P, Lizrova Preiningerova J, Pavelcova M, Ticha V, Kovarova I, Kubala Havrdova E, Tlaskalova-Hogenova H, Kverka M. Lysate of Parabacteroides distasonis prevents severe forms of experimental autoimmune encephalomyelitis by modulating the priming of T cell response. Front Immunol 2024; 15:1475126. [PMID: 39737164 PMCID: PMC11682988 DOI: 10.3389/fimmu.2024.1475126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/14/2024] [Indexed: 01/01/2025] Open
Abstract
The gut microbiota influences the reactivity of the immune system, and Parabacteroides distasonis has emerged as an anti-inflammatory commensal. Here, we investigated whether its lysate could prevent severe forms of neuroinflammation in experimental autoimmune encephalomyelitis (EAE) in mice and how this preventive strategy affects the gut microbiota and immune response. Lysate of anaerobically cultured P. distasonis (Pd lysate) was orally administered to C57BL/6 mice in four weekly doses. One week later, EAE was induced and disease severity was assessed three weeks after induction. Fecal microbiota changes in both vehicle- and Pd lysate-treated animals was analyzed by 16S V3-V4 amplicon sequencing and qPCR, antimicrobial peptide expression in the intestinal mucosa was measured by qPCR, and immune cell composition in the mesenteric and inguinal lymph nodes was measured by multicolor flow cytometry. Pd lysate significantly delayed the development of EAE and reduced its severity when administered prior to disease induction. EAE induction was the main factor in altering the gut microbiota, decreasing the abundance of lactobacilli and segmented filamentous bacteria. Pd lysate significantly increased the intestinal abundance of the genera Anaerostipes, Parabacteroides and Prevotella, and altered the expression of antimicrobial peptides in the intestinal mucosa. It significantly increased the frequency of regulatory T cells, induced an anti-inflammatory milieu in mesenteric lymph nodes, and reduced the activation of T cells at the priming site. Pd lysate prevents severe forms of EAE by triggering a T regulatory response and modulating T cell priming to autoantigens. Pd lysate could thus be a future modulator of neuroinflammation that increases the resistance to multiple sclerosis.
Collapse
Affiliation(s)
- Zuzana Jiraskova Zakostelska
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Michal Kraus
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Stepan Coufal
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Zaneta Slavickova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Tomas Thon
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Tomas Hrncir
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Jakub Kreisinger
- Laboratory of Animal Evolutionary Biology, Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Klara Kostovcikova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Pavlina Kleinova
- Department of Neurology and Centre of Clinical Neuroscience, First Medical Faculty, Charles University and General Medical Hospital in Prague, Prague, Czechia
| | - Jana Lizrova Preiningerova
- Department of Neurology and Centre of Clinical Neuroscience, First Medical Faculty, Charles University and General Medical Hospital in Prague, Prague, Czechia
| | - Miluse Pavelcova
- Department of Neurology and Centre of Clinical Neuroscience, First Medical Faculty, Charles University and General Medical Hospital in Prague, Prague, Czechia
| | - Veronika Ticha
- Department of Neurology and Centre of Clinical Neuroscience, First Medical Faculty, Charles University and General Medical Hospital in Prague, Prague, Czechia
| | - Ivana Kovarova
- Department of Neurology and Centre of Clinical Neuroscience, First Medical Faculty, Charles University and General Medical Hospital in Prague, Prague, Czechia
| | - Eva Kubala Havrdova
- Department of Neurology and Centre of Clinical Neuroscience, First Medical Faculty, Charles University and General Medical Hospital in Prague, Prague, Czechia
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
26
|
Liu J, Shi J, Hu Y, Su Y, Zhang Y, Wu X. Flumethrin exposure perturbs gut microbiota structure and intestinal metabolism in honeybees (Apis mellifera). JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135886. [PMID: 39298952 DOI: 10.1016/j.jhazmat.2024.135886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Flumethrin mitigates Varroa's harm to honeybee colonies; however, its residues in colonies threaten the fitness of honeybee hosts and gut microbiota. Our previous research has shown that flumethrin induces significant physiological effects on honeybee larvae; but the effects of flumethrin on the gut microbiota and metabolism of adult honeybees are still unknown. In this study, 1-day-old honeybees were exposed to 0, 0.01, 0.1, and 1 mg/L flumethrin for 14 days and the impacts of flumethrin on the intestinal system were evaluated. The results showed that exposure to 1 mg/L flumethrin significantly reduced honeybee survival and the activities of antioxidative enzymes (superoxide dismutase and catalase) and detoxification enzymes (glutathione S-transferase) in honeybee heads. Moreover, exposure to 0.01, 0.1, and 1 mg/L flumethrin significantly decreased the diversity of the honeybee gut microbiota. Results from untargeted metabolomics showed that long-term exposure to 0.01, 0.1, and 1 mg/L flumethrin caused changes in the metabolic pathways of honeybee gut microbes. Furthermore, increased metabolism of phenylalanine, tyrosine, and tryptophan derivatives was observed in honeybee gut microbes. These findings underscore the importance of careful consideration in using pesticides in apiculture and provide a basis for safeguarding honeybees from pollutants, considering the effects on gut microbes.
Collapse
Affiliation(s)
- Jianhui Liu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Jingliang Shi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Yueyang Hu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Yuchen Su
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Yonghong Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China.
| |
Collapse
|
27
|
Sebina I, Bidgood C, Stalley F, Hartel G, Stark T, Callaway L, Amoako A, Lehner C, Dekker Nitert M, Phipps S. Pre-pregnancy obesity is associated with an altered maternal metabolome and reduced Flt3L expression in preterm birth. Sci Rep 2024; 14:30027. [PMID: 39627409 PMCID: PMC11615298 DOI: 10.1038/s41598-024-81194-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Mechanisms linking pre-pregnancy obesity to increased preterm birth risk are unclear. Here, we examined the impact of pre-pregnancy obesity on metabolites, Fms-related tyrosine kinase 3 ligand (Flt3L), and proinflammatory cytokine profiles in preterm birth. We used cytokine bead array, ELISA and Gas Chromatography-Mass Spectrometry (GC-MS) to determine cytokine and metabolite profiles in maternal and cord blood samples from 124 pregnant women in Australia, who gave birth at term (n = 86) or preterm (n = 38). Besides the expected variations in birth weight and gestational age, all demographic characteristics, including pre-pregnancy body mass index, were similar between the term and preterm birth groups. Mothers in the preterm birth group had reduced Flt3L (P = 0.002) and elevated IL-6 (P = 0.002) compared with term birthing mothers. Among mothers who gave birth preterm, those with pre-pregnancy obesity had lower Flt3L levels (P = 0.02) compared with lean mothers. Flt3L and IL-6 were similar in cord blood across both groups, but TNFα levels (P = 0.02) were reduced in preterm newborns. Metabolomic analysis revealed significant shifts in essential metabolites in women with pre-pregnancy obesity, some of which were linked to preterm births. Our findings suggest that maternal pre-pregnancy obesity alters the metabolome and reduces Flt3L expression, potentially increasing risk of preterm birth.
Collapse
Affiliation(s)
- Ismail Sebina
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, 4000, QLD, Australia.
| | - Charles Bidgood
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, 4000, QLD, Australia
| | - Felicity Stalley
- Women's and Newborn Services, Royal Brisbane and Women's Hospital, Herston, QLD, 4006, Australia
| | - Gunter Hartel
- Statistics Unit, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- School of Public Health, The University of Queensland, Brisbane, QLD, Australia
| | - Terra Stark
- Metabolomics Australia (Queensland Node), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Leonie Callaway
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- Women's and Newborn Services, Royal Brisbane and Women's Hospital, Herston, QLD, 4006, Australia
| | - Akwasi Amoako
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- Women's and Newborn Services, Royal Brisbane and Women's Hospital, Herston, QLD, 4006, Australia
| | - Christoph Lehner
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- Women's and Newborn Services, Royal Brisbane and Women's Hospital, Herston, QLD, 4006, Australia
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Simon Phipps
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, 4000, QLD, Australia
| |
Collapse
|
28
|
Antonacci A, Bizzoca C, Barile G, Andriola V, Vincenti L, Bartolomeo N, Abbinante A, Orrù G, Corsalini M. Evaluation of Periodontitis and Fusobacterium nucleatum Among Colorectal Cancer Patients: An Observational Cross-Sectional Study. Healthcare (Basel) 2024; 12:2189. [PMID: 39517401 PMCID: PMC11545387 DOI: 10.3390/healthcare12212189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Periodontitis has been associated with an increased risk of CRC, as well as a worse prognosis due to increased inflammation mediators and carcinogenic factors. Moreover, direct and indirect virulence factors from periodontal pathogens, such as Fusobacterium nucleatum, could play a pivotal role in malignant transformation and progression. This cross-sectional study aims to evaluate the presence and the stage of periodontitis in a cohort of patients with CRC. The secondary aim is to assess the presence of F. nucleatum and its relationship with patients' general characteristics, concomitant pathologies, tumor characteristics, and drug therapy. MATERIALS AND METHODS Patients affected by CRC underwent dental examination and periodontal charting with the "North Carolina" probe to assess the presence and stage of periodontitis, according to the new classification of periodontal diseases of the World Workshop of the European Federation of Periodontology (EFP) and the American Academy of Periodontology (AAP) 2017. F. nucleatum presence was assessed by a dorsal tongue swab and related to the patient's general characteristics, concomitant pathologies, tumor characteristics, and drug therapy. RESULTS Periodontal disease was found in 94.3% of I/II CRC stage patients and 100% of III/IV CRC stage patients. Severe periodontitis was found in 76% of the advanced CRC stage and 87.9% of patients with initial CRC, while initial periodontitis was found in 12.1% of initial CRC and 24% of late CRC stages, respectively, without significant differences. F. nucleatum presence showed no correlation between the patient's and tumor's characteristics, comorbidities, and drug assumed. CONCLUSIONS Periodontal disease showed a high prevalence among CRC patients. Moreover, severe periodontitis has a higher prevalence in CRC patients compared to initial periodontitis. F. nucleatum presence was unrelated to CRC stage, site, other comorbidities, and drug therapies. With these data, it is not possible to admit a direct relationship between CRC and periodontal disease, but further case-control studies must be carried out to further prove this aspect. Preventive and operative targeted strategies to maintain a healthy oral status are suggested in CRC patients.
Collapse
Affiliation(s)
- Anna Antonacci
- Department of Interdisciplinary Medicine, ‘Aldo Moro’, University of Bari, 70100 Bari, Italy; (A.A.); (N.B.); (A.A.)
| | - Cinzia Bizzoca
- Department of General Surgery “Ospedaliera”, Polyclinic Hospital of Bari, 70100 Bari, Italy; (C.B.); (V.A.); (M.C.)
| | - Giuseppe Barile
- Department of Interdisciplinary Medicine, ‘Aldo Moro’, University of Bari, 70100 Bari, Italy; (A.A.); (N.B.); (A.A.)
| | - Valeria Andriola
- Department of General Surgery “Ospedaliera”, Polyclinic Hospital of Bari, 70100 Bari, Italy; (C.B.); (V.A.); (M.C.)
| | - Leonardo Vincenti
- General Surgery Unit, National Institute of Gastroenterology IRCCS Saverio de Bellis, Research Hospital, Via Turi 27, 0013 Bari, Italy;
| | - Nicola Bartolomeo
- Department of Interdisciplinary Medicine, ‘Aldo Moro’, University of Bari, 70100 Bari, Italy; (A.A.); (N.B.); (A.A.)
| | - Antonia Abbinante
- Department of Interdisciplinary Medicine, ‘Aldo Moro’, University of Bari, 70100 Bari, Italy; (A.A.); (N.B.); (A.A.)
| | - Germano Orrù
- Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Massimo Corsalini
- Department of General Surgery “Ospedaliera”, Polyclinic Hospital of Bari, 70100 Bari, Italy; (C.B.); (V.A.); (M.C.)
| |
Collapse
|
29
|
Ahmed HS. The Impact of Prevotella on Neurobiology in Aging: Deciphering Dendritic Cell Activity and Inflammatory Dynamics. Mol Neurobiol 2024; 61:9240-9251. [PMID: 38613648 DOI: 10.1007/s12035-024-04156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Prevotella species, notably Prevotella copri, significantly populate the human gut. In particular, P. copri is prevalent among non-Western populations with diets high in fiber. These species show complex relationships with diverse health aspects, associating with beneficial outcomes, including reduced visceral fat and improved glucose tolerance. Studies implicate various Prevotella species in specific diseases. Prevotella nigrescens and Porphyromonas gingivalis were linked to periodontal disease, promoting immune responses and influencing T helper type 17 (Th17) cells. Prevotella bivia was associated with bacterial vaginosis and a specific increase in activated cells in the vaginal mucosa. In contrast, they have shown substantial potential for inducing connective tissue degradation and alveolar bone resorption. Prevotella's role in neuroinflammatory disorders and autoinflammatory conditions such as Alzheimer's disease and Parkinson's disease has also been noted. The complex relationship between Prevotella and age-related conditions further extends to neurobiological changes in aging, with varying associations with Alzheimer's, Parkinson's, and other inflammatory conditions. Studies have also identified Prevotella to be implicated in cognitive decline in middle aged and the elderly. Future directions in this research area are anticipated to explore Prevotella-associated inflammatory mechanisms and therapeutic interventions. Investigating specific drug targets and immunomodulatory measures could lead to novel therapeutic strategies. Understanding how Prevotella-induced inflammation interacts with aging diseases would offer promising insights for treatments and interventions. This review urges ongoing research to discover therapeutic targets and mechanisms for moderating Prevotella-associated inflammation to further enhance our understanding and improve health outcomes.
Collapse
Affiliation(s)
- H Shafeeq Ahmed
- Bangalore Medical College and Research Institute, K.R Road, Bangalore, 560002, Karnataka, India.
| |
Collapse
|
30
|
Bai YY, Tian R, Qian Y, Zhang Q, Zhao CB, Yan YG, Zhang L, Yue SJ, Tang YP. Integrated Small Intestine Microbiota and Serum Metabolomics Reveal the Potential Mechanisms of Wine Steaming in Alleviating Rhubarb-Induced Diarrhea. J Inflamm Res 2024; 17:7851-7868. [PMID: 39494199 PMCID: PMC11531732 DOI: 10.2147/jir.s479654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024] Open
Abstract
Background Long-term use of rhubarb (RH) commonly leads to diarrhea, which can be alleviated by steaming with wine. However, the specific mechanism by which wine steaming alleviates RH-induced diarrhea remains unknown. Objective This study aims to reveal the underlying mechanisms of wine steaming in alleviating RH-induced diarrhea by examining small intestinal flora and serum metabolomics. Methods Major anthraquinone and anthrone components were detected using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Eighty-four ICR mice were randomly divided into control, RH, and RH steamed with wine (PRH) groups and were administered RH and PRH (1, 4, and 8 g/kg, i.g). for 14 consecutive days. Histopathological analysis was performed using hematoxylin-eosin staining. Levels of inflammatory factors and tight junction proteins, zonula occludens-1 (ZO-1) and occludin, in the small intestine were measured. The small intestine content was analyzed using 16S rRNA sequencing, and UPLC-MS was used to analyze endogenous metabolites. Results Levels of major anthraquinone and anthrone components decreased in PRH. Both RH and PRH groups showed varying degrees of loose stools and increased fecal water rates; the RH group exhibited more severe effects. Compared with the control group, RH caused small intestine injuries, increased levels of inflammatory cytokines, downregulated the expression of ZO-1 and occludin, and induced gut microbiota (GM) imbalance. The relative abundance of Lactobacillus decreased, while the relative abundance of Shigella and Streptococcus increased. However, PRH had a milder impact than RH. The glycerophospholipid metabolic pathway was involved in this effect. The levels of inflammatory cytokines and potential metabolites (sn-glycero-3-phosphoethanolamine) were positively correlated with Streptococcus infection, while the levels of ZO-1 and occludin were negatively correlated with Streptococcus infection. GM imbalance and abnormal glycerophospholipid metabolism contributed to impaired intestinal barrier function and inflammatory factor release, which may underlie RH-induced diarrhea, though PRH had a weaker effect. Conclusion PRH alleviated RH-induced diarrhea by recovering GM balance, reducing ZO-1 and occludin expression, and decreasing the release of inflammatory factors. This mechanism may be linked to the reduced anthraquinone content. This study is the first to explore the mechanism of wine steaming in alleviating RH-induced diarrhea through small intestinal flora and serum metabolomics. It provides data to support the broader clinical use of RH and its safer application.
Collapse
Affiliation(s)
- Ya-Ya Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Rui Tian
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Yan Qian
- Suzhou Institute for Drug Control, Suzhou, Jiangsu Province, 215000, People’s Republic of China
| | - Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Chong-Bo Zhao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Yong-Gang Yan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Li Zhang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, Jiangsu Province, 225300, People’s Republic of China
| | - Shi-Jun Yue
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, People’s Republic of China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
31
|
Nekrasova AI, Kalashnikova IG, Korobeynikova AV, Ashniev GA, Bobrova MM, Bakoev SY, Petryaikina ES, Nekrasov AS, Zagainova AV, Lukashina MV, Tolkacheva LR, Bobrovnitskii IP, Yudin VS, Keskinov AA, Makarov VV, Yudin SM. Characteristics of the Gut Microbiota Composition of the Arctic Zone Residents in the Far Eastern Region. Biomedicines 2024; 12:2472. [PMID: 39595038 PMCID: PMC11591809 DOI: 10.3390/biomedicines12112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Background. In many studies over the past decade, scientists have made a connection between the composition of gut microbiota and human health. A number of publications have shown that gut bacteria are involved in many metabolic and physiological processes of the organism. The composition of the gut microbiome is unique for each person and is formed under the influence of various factors associated with both the individual characteristics of the body and the characteristics of the environment. Different regional characteristics make it necessary for the body to adapt to certain conditions, including temperature fluctuations. Living in areas with low temperatures, such as the Arctic zone, dictates the need for increased energy consumption, which affects the composition of the gut microbiome. Methods. In our study, an extensive questionnaire was conducted among the participants, where many questions were included about the dietary preferences of the study participants, which allowed them us to further divide them into groups according to their diets. Stool samples were collected from participants from 3 groups: Arctic native, Arctic newcomer and the control group. The next step was the isolation of bacterial DNA and sequencing the 16S rRNA gene. The analysis of the results of the diversity of the intestinal microbiota was carried out both with and without taking into account the dietary preferences of the participants. Results. As a result of comparing the intestinal microbiota obtained from residents of the Arctic zone with the gut microbiota of residents of other regions with a milder climate, significant differences are found. These differences may be related to limited food resources and a reduction in the variety of food products characteristic of this Arctic region. t was also found that representatives of the bacterial families Christensenellaceae and Muribaculaceae dominated the control group, both with traditional nutrition and with a dairy-free diet in comparison with the Arctic groups. The control group was dominated by representatives of the Prevotellaceae, Enterobacteriaceae and Comamonadaceae families compared to the Arctic group (with a traditional diet). The results also show that the number of representatives of the families Desulfovibrionaceae (with traditional diet) and Enterobacteriaceae (with milk-free diet) is growing in the Arctic group. Conclusions. In the course of this work, bacterial families characteristic of people living in the Arc-tic zone of the Far Eastern region of the Russian Federation were identified. Poor diet, difficult climatic conditions, and problems with logistics and medical care can have a strong impact on the health of this population. The main type of diet for the inhabitants of the Arctic is the traditional type of diet. They consume a large number of low-cost products, obtainget animal protein from poultry and canned food, and also eat a small number of fresh vegetables and fruits. Such a diet is due to the social status of the study participants and the climatic and geographical features of the region (difficulties in agriculture). With such a diet, we observe a decrease in representatives of the Christensenellaceae, Muribaculaceae, Eubacteriaceae, and Prevotellaceae families and an increase in representatives of the Enterobacteriaceae and Desulfovibrionaceae families among Arctic residents. This imbalance in the futuremay cause, this population may to develop various diseases in the future, including chronic diseases such as obesity, intestinal dysbiosis, inflammatory bowel diseases, and type 2 diabetes.
Collapse
Affiliation(s)
- Alexandra I. Nekrasova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (I.G.K.); (A.V.K.); (G.A.A.); (M.M.B.); (S.Y.B.); (E.S.P.); (A.S.N.); (A.V.Z.); (M.V.L.); (L.R.T.); (V.S.Y.); (A.A.K.); (V.V.M.); (S.M.Y.)
| | - Irina G. Kalashnikova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (I.G.K.); (A.V.K.); (G.A.A.); (M.M.B.); (S.Y.B.); (E.S.P.); (A.S.N.); (A.V.Z.); (M.V.L.); (L.R.T.); (V.S.Y.); (A.A.K.); (V.V.M.); (S.M.Y.)
| | - Anna V. Korobeynikova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (I.G.K.); (A.V.K.); (G.A.A.); (M.M.B.); (S.Y.B.); (E.S.P.); (A.S.N.); (A.V.Z.); (M.V.L.); (L.R.T.); (V.S.Y.); (A.A.K.); (V.V.M.); (S.M.Y.)
| | - German A. Ashniev
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (I.G.K.); (A.V.K.); (G.A.A.); (M.M.B.); (S.Y.B.); (E.S.P.); (A.S.N.); (A.V.Z.); (M.V.L.); (L.R.T.); (V.S.Y.); (A.A.K.); (V.V.M.); (S.M.Y.)
| | - Maria M. Bobrova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (I.G.K.); (A.V.K.); (G.A.A.); (M.M.B.); (S.Y.B.); (E.S.P.); (A.S.N.); (A.V.Z.); (M.V.L.); (L.R.T.); (V.S.Y.); (A.A.K.); (V.V.M.); (S.M.Y.)
| | - Sirozhdin Yu. Bakoev
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (I.G.K.); (A.V.K.); (G.A.A.); (M.M.B.); (S.Y.B.); (E.S.P.); (A.S.N.); (A.V.Z.); (M.V.L.); (L.R.T.); (V.S.Y.); (A.A.K.); (V.V.M.); (S.M.Y.)
| | - Ekaterina S. Petryaikina
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (I.G.K.); (A.V.K.); (G.A.A.); (M.M.B.); (S.Y.B.); (E.S.P.); (A.S.N.); (A.V.Z.); (M.V.L.); (L.R.T.); (V.S.Y.); (A.A.K.); (V.V.M.); (S.M.Y.)
| | - Alexander S. Nekrasov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (I.G.K.); (A.V.K.); (G.A.A.); (M.M.B.); (S.Y.B.); (E.S.P.); (A.S.N.); (A.V.Z.); (M.V.L.); (L.R.T.); (V.S.Y.); (A.A.K.); (V.V.M.); (S.M.Y.)
| | - Angelika V. Zagainova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (I.G.K.); (A.V.K.); (G.A.A.); (M.M.B.); (S.Y.B.); (E.S.P.); (A.S.N.); (A.V.Z.); (M.V.L.); (L.R.T.); (V.S.Y.); (A.A.K.); (V.V.M.); (S.M.Y.)
| | - Mariya V. Lukashina
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (I.G.K.); (A.V.K.); (G.A.A.); (M.M.B.); (S.Y.B.); (E.S.P.); (A.S.N.); (A.V.Z.); (M.V.L.); (L.R.T.); (V.S.Y.); (A.A.K.); (V.V.M.); (S.M.Y.)
| | - Larisa R. Tolkacheva
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (I.G.K.); (A.V.K.); (G.A.A.); (M.M.B.); (S.Y.B.); (E.S.P.); (A.S.N.); (A.V.Z.); (M.V.L.); (L.R.T.); (V.S.Y.); (A.A.K.); (V.V.M.); (S.M.Y.)
| | - Igor P. Bobrovnitskii
- Federal State Budgetary Scientific Institution “Institute of General Pathology and Pathophysiology”, Baltiyskaya Str., 8, 125315 Moscow, Russia;
- State Scientific Center, the Russian Federation Institute of Biomedical Problems, the Russian Academy of Sciences, Khoroshevskoe Shosse, 76A, 123007 Moscow, Russia
| | - Vladimir S. Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (I.G.K.); (A.V.K.); (G.A.A.); (M.M.B.); (S.Y.B.); (E.S.P.); (A.S.N.); (A.V.Z.); (M.V.L.); (L.R.T.); (V.S.Y.); (A.A.K.); (V.V.M.); (S.M.Y.)
| | - Anton A. Keskinov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (I.G.K.); (A.V.K.); (G.A.A.); (M.M.B.); (S.Y.B.); (E.S.P.); (A.S.N.); (A.V.Z.); (M.V.L.); (L.R.T.); (V.S.Y.); (A.A.K.); (V.V.M.); (S.M.Y.)
| | - Valentin V. Makarov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (I.G.K.); (A.V.K.); (G.A.A.); (M.M.B.); (S.Y.B.); (E.S.P.); (A.S.N.); (A.V.Z.); (M.V.L.); (L.R.T.); (V.S.Y.); (A.A.K.); (V.V.M.); (S.M.Y.)
| | - Sergey M. Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (I.G.K.); (A.V.K.); (G.A.A.); (M.M.B.); (S.Y.B.); (E.S.P.); (A.S.N.); (A.V.Z.); (M.V.L.); (L.R.T.); (V.S.Y.); (A.A.K.); (V.V.M.); (S.M.Y.)
| |
Collapse
|
32
|
Ren X, Yuan S, Ren J, Ma L, Liu J, Wang G. Effect of caffeic acid grafted chitosan loaded quercetin lyophilized powder formulation on avian colibacillosis and tissue distribution. Front Vet Sci 2024; 11:1470781. [PMID: 39512917 PMCID: PMC11540789 DOI: 10.3389/fvets.2024.1470781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/18/2024] [Indexed: 11/15/2024] Open
Abstract
Quercetin (QR), recognized as a natural antibacterial ingredient, has found widespread application in the poultry industry. This study investigated the bacteriostatic mechanism and evaluated the in vivo inhibitory impact of caffeic acid-grafted chitosan self-assembled micelles loaded quercetin (CA-g-CS/QR) on avian Escherichia coli (E. coli). The findings indicate that the bactericidal mechanism of CA-g-CS/QR exhibits enhanced efficacy compared to QR alone, disrupting bacterial cell walls, disassembling biofilm structures, and impeding essential components necessary for bacterial growth. Following an avian E. coli attack in broilers, CA-g-CS/QR demonstrated the capacity to enhance the population of beneficial bacteria while concurrently decreasing harmful bacteria within the intestinal tract. Moreover, within 3 days of oral administration of CA-g-CS/QR, a significant decrease in Escherichia spp. count was evident, resulting in the restoration of broilers to a healthy state. CA-g-CS/QR proved to be a significant and more efficacious solution than QR alone for avian E. coli disease. Furthermore, CA-g-CS/QR displayed a broader distribution range and higher concentration within the body. Ten metabolites have been identified in the liver for both QR and CA-g-CS/QR. In conclusion, CA-g-CS/QR has demonstrated a notable capacity to enhance in vitro and in vivo bacterial inhibitory effects, providing foundation for the clinical application of QR in combating avian E. coli infections in broilers.
Collapse
Affiliation(s)
- Xin Ren
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Sikun Yuan
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- Baoding Institute for Food and Drug Control, Baoding, China
| | - Juan Ren
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Leying Ma
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Gengnan Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| |
Collapse
|
33
|
Kalashnikova IG, Nekrasova AI, Korobeynikova AV, Bobrova MM, Ashniev GA, Bakoev SY, Zagainova AV, Lukashina MV, Tolkacheva LR, Petryaikina ES, Nekrasov AS, Mitrofanov SI, Shpakova TA, Frolova LV, Bulanova NV, Snigir EA, Mukhin VE, Yudin VS, Makarov VV, Keskinov AA, Yudin SM. The Association between Gut Microbiota and Serum Biomarkers in Children with Atopic Dermatitis. Biomedicines 2024; 12:2351. [PMID: 39457662 PMCID: PMC11505256 DOI: 10.3390/biomedicines12102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background. Currently, it is known that the gut microbiota plays an important role in the functioning of the immune system, and a rebalancing of the bacterial community can arouse complex immune reactions and lead to immune-mediated responses in an organism, in particular, the development of atopic dermatitis (AD). Cytokines and chemokines are regulators of the innate and adaptive immune response and represent the most important biomarkers of the immune system. It is known that changes in cytokine profiles are a hallmark of many diseases, including atopy. However, it remains unclear how the bacterial imbalance disrupts the function of the immune response in AD. Objectives. We attempted to determine the role of gut bacteria in modulating cytokine pathways and their role in atopic inflammation. Methods. We sequenced the 16S rRNA gene from 50 stool samples of children aged 3-12 years who had confirmed atopic dermatitis, and 50 samples from healthy children to serve as a control group. To evaluate the immune status, we conducted a multiplex immunofluorescence assay and measured the levels of 41 cytokines and chemokines in the serum of all participants. Results. To find out whether changes in the composition of the gut microbiota were significantly associated with changes in the level of inflammatory cytokines, a correlation was calculated between each pair of bacterial family and cytokine. In the AD group, 191 correlations were significant (Spearman's correlation coefficient, p ≤ 0.05), 85 of which were positive and 106 which were negative. Conclusions. It has been demonstrated that intestinal dysbiosis is associated with alterations in cytokine profiles, specifically an increase in proinflammatory cytokine concentrations. This may indicate a systemic impact of these conditions, leading to an imbalance in the immune system's response to the Th2 type. As a result, atopic conditions may develop. Additionally, a correlation between known AD biomarkers (IL-5, IL-8, IL-13, CCL22, IFN-γ, TNF-α) and alterations in the abundance of bacterial families (Pasteurellaceae, Barnesiellaceae, Eubacteriaceae) was observed.
Collapse
Affiliation(s)
- Irina G. Kalashnikova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.I.N.); (A.V.K.); (M.M.B.); (G.A.A.); (S.Y.B.); (A.V.Z.); (M.V.L.); (L.R.T.); (E.S.P.); (A.S.N.); (S.I.M.); (T.A.S.); (L.V.F.); (N.V.B.); (E.A.S.); (V.E.M.); (V.S.Y.); (V.V.M.); (A.A.K.); (S.M.Y.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Heidari M, Maleki Vareki S, Yaghobi R, Karimi MH. Microbiota activation and regulation of adaptive immunity. Front Immunol 2024; 15:1429436. [PMID: 39445008 PMCID: PMC11496076 DOI: 10.3389/fimmu.2024.1429436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/30/2024] [Indexed: 10/25/2024] Open
Abstract
In the mucosa, T cells and B cells of the immune system are essential for maintaining immune homeostasis by suppressing reactions to harmless antigens and upholding the integrity of intestinal mucosal barrier functions. Host immunity and homeostasis are regulated by metabolites produced by the gut microbiota, which has developed through the long-term coevolution of the host and the gut biome. This is achieved by the immunological system's tolerance for symbiote microbiota, and its ability to generate a proinflammatory response against invasive organisms. The imbalance of the intestinal immune system with commensal organisms is causing a disturbance in the homeostasis of the gut microbiome. The lack of balance results in microbiota dysbiosis, the weakened integrity of the gut barrier, and the development of inflammatory immune reactions toward symbiotic organisms. Researchers may uncover potential therapeutic targets for preventing or regulating inflammatory diseases by understanding the interactions between adaptive immunity and the microbiota. This discussion will explore the connection between adaptive immunity and microbiota.
Collapse
Affiliation(s)
- Mozhdeh Heidari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Maleki Vareki
- Department of Oncology, Western University, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Ramin Yaghobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
35
|
Zhang ZJ, Cole CG, Coyne MJ, Lin H, Dylla N, Smith RC, Pappas TE, Townson SA, Laliwala N, Waligurski E, Ramaswamy R, Woodson C, Burgo V, Little JC, Moran D, Rose A, McMillin M, McSpadden E, Sundararajan A, Sidebottom AM, Pamer EG, Comstock LE. Comprehensive analyses of a large human gut Bacteroidales culture collection reveal species- and strain-level diversity and evolution. Cell Host Microbe 2024; 32:1853-1867.e5. [PMID: 39293438 PMCID: PMC11466702 DOI: 10.1016/j.chom.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/27/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024]
Abstract
Species of the Bacteroidales order are among the most abundant and stable bacterial members of the human gut microbiome, with diverse impacts on human health. We cultured and sequenced the genomes of 408 Bacteroidales isolates from healthy human donors representing nine genera and 35 species and performed comparative genomic, gene-specific, metabolomic, and horizontal gene transfer analyses. Families, genera, and species could be grouped based on many distinctive features. We also observed extensive DNA transfer between diverse families, allowing for shared traits and strain evolution. Inter- and intra-species diversity is also apparent in the metabolomic profiling studies. This highly characterized and diverse Bacteroidales culture collection with strain-resolved genomic and metabolomic analyses represents a valuable resource to facilitate informed selection of strains for microbiome reconstitution.
Collapse
Affiliation(s)
- Zhenrun J Zhang
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA
| | - Cody G Cole
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA
| | - Michael J Coyne
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA
| | - Huaiying Lin
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Nicholas Dylla
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Rita C Smith
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Téa E Pappas
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Shannon A Townson
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Nina Laliwala
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Emily Waligurski
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA
| | - Ramanujam Ramaswamy
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Che Woodson
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Victoria Burgo
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Jessica C Little
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - David Moran
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Amber Rose
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Mary McMillin
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Emma McSpadden
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Anitha Sundararajan
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Ashley M Sidebottom
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Eric G Pamer
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Medicine, Section of Infectious Diseases & Global Health, University of Chicago Medicine, 5841 South Maryland Ave., Chicago, IL 60637, USA; Department of Pathology, University of Chicago Medicine, 5841 South Maryland Ave., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA.
| | - Laurie E Comstock
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA.
| |
Collapse
|
36
|
Ayabe T, Shinohara M, Kita M, Takahashi C, Saito J, Furuyashiki T, Toba K, Umeda S, Ano Y. Supplementation with whey peptide rich in β-lactolin improves trait anxiety and subjective stress in healthy adults: a randomized, double-blind, placebo-controlled study. Sci Rep 2024; 14:23444. [PMID: 39379481 PMCID: PMC11461648 DOI: 10.1038/s41598-024-73780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
Mental disorders have become one of the most burdensome health concerns. We have previously demonstrated that whey-derived β-lactolin (glycine-thereonine-tryptophan-tyrosine tetrapeptide) activates dopaminergic systems and improves psychiatric function in rodents. However, the effects of β-lactolin on human mood states have not been investigated. This randomized, double-blind, placebo-controlled study aimed to evaluate the effects of supplementation with β-lactolin-rich whey peptide on human mood states. Sixty healthy adults (aged 45-64 years) with relatively low psychological health were randomly allocated to receive either whey peptide (containing β-lactolin 1.6 mg/day) or placebo for 6 weeks. Mood states (primary outcomes) were evaluated using self-reporting questionnaires. Health-related quality of life (QOL), salivary stress marker and lipid mediator levels were evaluated as secondary outcomes. Compared with placebo, supplementation with β-lactolin improved changes in trait anxiety (p = 0.046), as assessed using the state-trait anxiety inventory, and in subjective stress (p = 0.043), as assessed using the Perceived Stress Scale. In the assessment of QOL, changes in the vitality subscale and mental health summary score of the 36-Item Short-Form Health Survey were improved in the β-lactolin group. The levels of salivary immunoglobulin A were significantly higher in the β-lactolin group. In a subgroup analysis by median age (54.5 years), subjective stress and salivary prostaglandin levels were significantly decreased by β-lactolin supplementation in the 45-54 -year-old subgroup. In conclusion, supplementation with β-lactolin improves trait anxiety, subjective stress, and psychological QOL, which may be associated with immunologic responses detected via salivary analysis.
Collapse
Affiliation(s)
- Tatsuhiro Ayabe
- KIRIN Central Research Institute, Kirin Holdings Company, Limited, Fujisawa, Japan.
- Institute of Health Sciences, Kirin Holdings Company, Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa-shi, Fujisawa, 251-8555, Japan.
| | - Masakazu Shinohara
- Division of Molecular Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Kita
- KIRIN Central Research Institute, Kirin Holdings Company, Limited, Fujisawa, Japan
| | - Chika Takahashi
- KIRIN Central Research Institute, Kirin Holdings Company, Limited, Fujisawa, Japan
| | - Jiro Saito
- Medical Station Clinic, Takaban, Meguro-ku, Tokyo, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenji Toba
- National Center for Geriatrics and Gerontology, Tokyo, Japan
| | - Satoshi Umeda
- Department of Psychology, Keio University, Tokyo, Japan
| | - Yasuhisa Ano
- KIRIN Central Research Institute, Kirin Holdings Company, Limited, Fujisawa, Japan
| |
Collapse
|
37
|
Kedmi R, Littman DR. Antigen-presenting cells as specialized drivers of intestinal T cell functions. Immunity 2024; 57:2269-2279. [PMID: 39383844 DOI: 10.1016/j.immuni.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
The immune system recognizes a multitude of innocuous antigens from food and intestinal commensal microbes toward which it orchestrates appropriate, non-inflammatory responses. This process requires antigen-presenting cells (APCs) that induce T cells with either regulatory or effector functions. Compromised APC function disrupts the T cell balance, leading to inflammation and dysbiosis. Although their precise identities continue to be debated, it has become clear that multiple APC lineages direct the differentiation of distinct microbiota-specific CD4+ T cell programs. Here, we review how unique APC subsets instruct T cell differentiation and function in response to microbiota and dietary antigens. These discoveries provide new opportunities to investigate T cell-APC regulatory networks controlling immune homeostasis and perturbations associated with inflammatory and allergic diseases.
Collapse
Affiliation(s)
- Ranit Kedmi
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Dan R Littman
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Howard Hughes Medical Institute, New York, NY 10016, USA.
| |
Collapse
|
38
|
Yang Y, Azzuolo A, Fodil N, Gros P. Gene: environment interactions in immune and inflammatory responses to severe acute respiratory syndrome coronavirus 2 infection. Curr Opin Immunol 2024; 90:102459. [PMID: 39243725 DOI: 10.1016/j.coi.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Despite its devastating human cost, the rapid spread and global establishment of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) pandemic had the benefit of providing unique insights into the intricate interplay between genetic, environmental, and socioeconomic factors, which collectively impact susceptibility to infection with SARS-CoV-2. Preceding the implementation of broad vaccination programs and assuming the absence of significant acquired immunity, examining the innate vulnerability to the virus becomes essential. There is indeed considerable heterogeneity observed at both the population and individual levels for various SARS-CoV-2 infection phenotypes, including emergence, progression, and survival from the coronavirus disease 2019 (COVID-19) syndrome. Particularly intriguing is the seemingly milder course of COVID-19 disease reported for the African continent early during the pandemic. This was characterized by significantly lower mortality rates in SARS-CoV-2 patients compared with the European and American continents and globally. We will discuss some of the demographic and socioeconomic factors that may have contributed to these observations. We review the mapped COVID-19 genetic architecture, including the remarkable association of type I interferon as a single protective mechanism and a major determinant of susceptibility. Furthermore, we speculate on potential 'environmental' modulators of penetrance and expressivity of intrinsic vulnerability factors, with a focus on the microbiome and associated metabolomes. Additionally, this review explores the potential immunomodulatory contribution of helminth parasites to the human host immune and inflammatory responses to respiratory viral infections.
Collapse
Affiliation(s)
- Yunxiang Yang
- Department of Biochemistry, McGill Research Center of Complex Traits, and Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Alessia Azzuolo
- Department of Biochemistry, McGill Research Center of Complex Traits, and Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Nassima Fodil
- Department of Biochemistry, McGill Research Center of Complex Traits, and Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Philippe Gros
- Department of Biochemistry, McGill Research Center of Complex Traits, and Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
39
|
Fu Y, Gu Z, Cao H, Zuo C, Huang Y, Song Y, Jiang Y, Wang F. The role of the gut microbiota in neurodegenerative diseases targeting metabolism. Front Neurosci 2024; 18:1432659. [PMID: 39391755 PMCID: PMC11464490 DOI: 10.3389/fnins.2024.1432659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
In recent years, the incidence of neurodegenerative diseases (NDs) has gradually increased over the past decades due to the rapid aging of the global population. Traditional research has had difficulty explaining the relationship between its etiology and unhealthy lifestyle and diets. Emerging evidence had proved that the pathogenesis of neurodegenerative diseases may be related to changes of the gut microbiota's composition. Metabolism of gut microbiota has insidious and far-reaching effects on neurodegenerative diseases and provides new directions for disease intervention. Here, we delineated the basic relationship between gut microbiota and neurodegenerative diseases, highlighting the metabolism of gut microbiota in neurodegenerative diseases and also focusing on treatments for NDs based on gut microbiota. Our review may provide novel insights for neurodegeneration and approach a broadly applicable basis for the clinical therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yufeng Fu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongya Gu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Cao
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chengchao Zuo
- Department of Rehabilitation, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Song
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Furong Wang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging (HUST), Ministry of Education, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
40
|
Mani A, Henn C, Couch C, Patel S, Lieke T, Chan JTH, Korytar T, Salinas I. A brain microbiome in salmonids at homeostasis. SCIENCE ADVANCES 2024; 10:eado0277. [PMID: 39292785 PMCID: PMC11409976 DOI: 10.1126/sciadv.ado0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Ectotherms have peculiar relationships with microorganisms. For instance, bacteria are recovered from the blood and internal organs of healthy teleosts. However, the presence of microbial communities in the healthy teleost brain has not been proposed. Here, we report a living bacterial community in the brain of healthy salmonids with bacterial loads comparable to those of the spleen and 1000-fold lower than in the gut. Brain bacterial communities share >50% of their diversity with gut and blood bacterial communities. Using culturomics, we obtained 54 bacterial isolates from the brains of healthy trout. Comparative genomics suggests that brain bacteria may have adaptations for niche colonization and polyamine biosynthesis. In a natural system, Chinook salmon brain microbiomes shift from juveniles to reproductively mature adults. Our study redefines the physiological relationships between the brain and bacteria in teleosts. This symbiosis may endow salmonids with a direct mechanism to sense and respond to environmental microbes.
Collapse
Affiliation(s)
- Amir Mani
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87108, USA
| | - Cory Henn
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87108, USA
| | - Claire Couch
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Sonal Patel
- Norwegian Veterinary Institute, Thormøhlens Gate 53C, 5006 Bergen, Norway
| | - Thora Lieke
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia, České Budějovice, Czech Republic
| | - Justin T H Chan
- Fish Health Division, University of Veterinary Medicine, Vienna, Austria
| | - Tomas Korytar
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87108, USA
| |
Collapse
|
41
|
Duan X, Wang X, Li Z, Liu C, Bao Y, Shi W, Zhao X. Effects of supplemental feeding of Chinese herbal mixtures to perinatal sows on antioxidant capacity and gut microbiota of sows and their offspring piglets. Front Microbiol 2024; 15:1459188. [PMID: 39328912 PMCID: PMC11424466 DOI: 10.3389/fmicb.2024.1459188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
The stress response of pig herds poses a significant challenge in the pig breeding industry, and investigating strategies to mitigate this stress is of paramount importance. The objective of this study was to investigate the impacts of supplemental feeding of Chinese herbal mixtures to perinatal sows on antioxidant capacity and gut microbiota of sows and their offspring piglets. A total of 60 healthy sows (Large white) at fourth parity were randomly assigned to five treatment groups. The control group received a basal diet, while the TRT1 group received a basal diet supplemented with 2kg/t Bazhen powder (BZP). The TRT2, TRT3, and TRT4 groups were fed a basal diet supplemented with 1kg/t, 2kg/t, and 3kg/t Qi-Zhu- Gui-Shao soothing liver and replenishing blood powder (QZGSP), respectively. The trial lasted for 5weeks, starting from day 100 of gestation until day 21 of delivery. The results demonstrated that the inclusion of 2kg/t and 3kg/t QZGSP significantly enhanced the antioxidant capacity of sows and their offspring piglets to different degrees, thereby effectively alleviating oxidative stress. Analysis of gut microbiota revealed that QZGSP influenced the composition of gut microbiota in both sows and their offspring piglets. Specifically, at the genus level, the abundance of Christensenellaceae_R-7_group in the gut microbiota of sows in the TRT4 group was significantly lower than that in the TRT1 group (p < 0.05), while the relative abundance of Lactobacillus in the gut microbiota of sows in the TRT4 group was significantly higher than that in the CON group (p < 0.05). Furthermore, at the genus level, compared to those in the TRT1 group, piglets from the TRT4 group exhibited a significant decrease in relative abundance of Escherichia-Shigella, Parabacteroides, and Methanobrevivacter (p < 0.05), but a significant increase in Phascolarctobacterium (p < 0.05). Spearman correlation analysis indicated a positive correlation between relative abundance of Christensenellaceae_R-7_group and serum contents of T-AOC and CAT (p < 0.05), as well as a negative correlation with serum concentration MDA (p < 0.05). Additionally, there was a positive correlation between relative abundance Lactobacillus and serum levels SOD (p < 0.01) and GSH-Px (p < 0.05). Therefore, supplementation of 3kg/t QZGSP in the periparturient sow diet significantly augmented antioxidant capacity in both sows and offspring piglets, while concurrently modulating the composition and structure of their intestinal microflora. The findings from this study demonstrate that QZGSP represents a beneficial feed additive for perinatal sows.
Collapse
Affiliation(s)
- Xuelei Duan
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Zhaonian Li
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Chenggong Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding, China
- Hebei Provincial Traditional Chinese Veterinary Medicine Technology Innovation Center, Baoding, China
| | - Xinghua Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| |
Collapse
|
42
|
Li F, Liu J, Maldonado-Gómez MX, Frese SA, Gänzle MG, Walter J. Highly accurate and sensitive absolute quantification of bacterial strains in human fecal samples. MICROBIOME 2024; 12:168. [PMID: 39244633 PMCID: PMC11380787 DOI: 10.1186/s40168-024-01881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/26/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Next-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these techniques have limitations in that they are only semi-quantitative, suffer from high detection limits, and generate data that is compositional. The present study aimed to systematically compare quantitative PCR (qPCR) and droplet digital PCR (ddPCR) for the absolute quantification of Limosilactobacillus reuteri strains in human fecal samples and to develop an optimized protocol for the absolute quantification of bacterial strains in fecal samples. RESULTS Using strain-specific PCR primers for L. reuteri 17938, ddPCR showed slightly better reproducibility, but qPCR was almost as reproducible and showed comparable sensitivity (limit of detection [LOD] around 104 cells/g feces) and linearity (R2 > 0.98) when kit-based DNA isolation methods were used. qPCR further had a wider dynamic range and is cheaper and faster. Based on these findings, we conclude that qPCR has advantages over ddPCR for the absolute quantification of bacterial strains in fecal samples. We provide an optimized and easy-to-follow step-by-step protocol for the design of strain-specific qPCR assays, starting from primer design from genome sequences to the calibration of the PCR system. Validation of this protocol to design PCR assays for two L. reuteri strains, PB-W1 and DSM 20016 T, resulted in a highly accurate qPCR with a detection limit in spiked fecal samples of around 103 cells/g feces. Applying our strain-specific qPCR assays to fecal samples collected from human subjects who received live L. reuteri PB-W1 or DSM 20016 T during a human trial demonstrated a highly accurate quantification and sensitive detection of these two strains, with a much lower LOD and a broader dynamic range compared to NGS approaches (16S rRNA gene sequencing and whole metagenome sequencing). CONCLUSIONS Based on our analyses, we consider qPCR with kit-based DNA extraction approaches the best approach to accurately quantify gut bacteria at the strain level in fecal samples. The provided step-by-step protocol will allow scientists to design highly sensitive strain-specific PCR systems for the accurate quantification of bacterial strains of not only L. reuteri but also other bacterial taxa in a broad range of applications and sample types. Video Abstract.
Collapse
Affiliation(s)
- Fuyong Li
- Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| | - Junhong Liu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | | | - Steven A Frese
- Department of Nutrition, University of Nevada, Reno, NV, 89557, USA
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
- School of Microbiology, Department of Medicine, and APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
| |
Collapse
|
43
|
Gonzalez X, Irazoqui JE. Distinct members of the Caenorhabditis elegans CeMbio reference microbiota exert cryptic virulence that is masked by host defense. Mol Microbiol 2024; 122:387-402. [PMID: 38623070 PMCID: PMC11480257 DOI: 10.1111/mmi.15258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
Microbiotas are complex microbial communities that colonize specific niches in the host and provide essential organismal functions that are important in health and disease. Understanding the ability of each distinct community member to promote or impair host health, alone or in the context of the community, is imperative for understanding how differences in community structure affect host health and vice versa. Recently, a reference 12-member microbiota for the model organism Caenorhabditis elegans, known as CeMbio, was defined. Here, we show the differential ability of each CeMbio bacterial species to activate innate immunity through the conserved PMK-1/p38 MAPK, ACh-WNT, and HLH-30/TFEB pathways. Although distinct CeMbio members differed in their ability to activate the PMK-1/p38 pathway, the ability to do so did not correlate with bacterial-induced lifespan reduction in wild-type or immunodeficient animals. In contrast, most species activated HLH-30/TFEB and showed virulence toward hlh-30-deficient animals. These results suggest that the microbiota of C. elegans is rife with bacteria that can shorten the host's lifespan if host defense is compromised and that HLH-30/TFEB is a fundamental and key host protective factor.
Collapse
Affiliation(s)
- Xavier Gonzalez
- Immunology and Microbiology graduate program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester MA 01605
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester MA 01605
| | - Javier E. Irazoqui
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester MA 01605
| |
Collapse
|
44
|
Guo S, Peng J, Xiao Y, Chen J, Gao R. Synergistic effects of oral inoculation with a recombinant Lactobacillus plantarum NC8 strain co-expressing interleukin-2 and interleukin-17B on the efficacy of the infectious bronchitis vaccine in chickens. Poult Sci 2024; 103:103908. [PMID: 38981363 PMCID: PMC11279255 DOI: 10.1016/j.psj.2024.103908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/11/2024] Open
Abstract
Mucosal vaccination strategies are easier to implement than others in large-scale poultry farming. However, the adjuvants that are approved for veterinary use, which are predominantly aluminum- and oil-emulsion-based adjuvants, are not suitable for mucosal vaccination and carry a risk of adverse reactions. In this study, we engineered a novel Lactobacillus plantarum NC8 strain that co-expresses chicken interleukin-2 (IL-2) and IL-17B, which we designated NC8-ChIL2-17B, and evaluated its potential as an oral immunoadjuvant. The immunomodulatory properties of NC8-ChIL2-17B were evidenced by its ability to activate macrophages and inhibit the proliferation of infectious bronchitis virus (IBV) in vitro. We then confirmed its immunoadjuvant activity in vivo by orally administering NC8-ChIL2-17B along with a commercial IBV vaccine to chicks. The results indicated that NC8-ChIL2-17B enhanced the immune response elicited by the IBV vaccine and increased the levels of IBV-specific IgG and sIgA antibodies produced in response to IBV infection. Additionally, administration of NC8-ChIL2-17B promoted weight gain and beneficially modulated the gut microbiota, resulting in improved chicken performance. These findings suggest that oral administration of NC8-ChIL2-17B is a promising strategy to enhance the immune efficacy of the IBV vaccine in chickens, offering an efficacious alternative adjuvant.
Collapse
Affiliation(s)
- Shaohua Guo
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Junjie Peng
- Key Laboratory for Bio-resource and Eco-Environment of Education Ministry, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Yongle Xiao
- School of Medicine, Sichuan University of Arts and Science, Dazhou, 635000, PR China
| | - Jianlin Chen
- School of Laboratory Medicine/Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Rong Gao
- Key Laboratory for Bio-resource and Eco-Environment of Education Ministry, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
45
|
Miller PF. Targeting microbial pathogenic mechanisms as a novel therapeutic strategy in IBD. Mol Med 2024; 30:122. [PMID: 39135000 PMCID: PMC11321147 DOI: 10.1186/s10020-024-00840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/19/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Current therapy for patients suffering from inflammatory bowel diseases (IBD) is focused on inflammatory mechanisms exclusively and not the dysbiotic microbiota, despite growing evidence implicating a role for intestinal microbes in disease. MAIN BODY Ongoing research into the intestinal microbiota of IBD patients, using new technologies and/or deeper application of existing ones, has identified a number of microorganisms whose properties and behaviors warrant consideration as causative factors in disease. Such studies have implicated both bacteria and fungi in the pathogenesis of disease. Some of these organisms manifest mechanisms that should be amenable to therapeutic intervention via either conventional or novel drug discovery platforms. Of particular note is a deeper characterization of microbial derived proteases and their destructive potential. CONCLUSION Given the steady progress on the mechanistic role of the microbiota in inflammatory diseases, it is reasonable to anticipate a future in which therapeutics targeting microbial derived pathogenic factors play an important role in improving the lives of IBD patients.
Collapse
Affiliation(s)
- Paul F Miller
- Lighthouse Biopharma Consulting, LLC, 39 Emerald Glen Lane, Salem, CT, 06420, USA.
| |
Collapse
|
46
|
Nayak RR, Orellana DA. The impact of the human gut microbiome on the treatment of autoimmune disease. Immunol Rev 2024; 325:107-130. [PMID: 38864582 PMCID: PMC11338731 DOI: 10.1111/imr.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Autoimmune (or rheumatic) diseases are increasing in prevalence but selecting the best therapy for each patient proceeds in trial-and-error fashion. This strategy can lead to ineffective therapy resulting in irreversible damage and suffering; thus, there is a need to bring the promise of precision medicine to patients with autoimmune disease. While host factors partially determine the therapeutic response to immunosuppressive drugs, these are not routinely used to tailor therapy. Thus, non-host factors likely contribute. Here, we consider the impact of the human gut microbiome in the treatment of autoimmunity. We propose that the gut microbiome can be manipulated to improve therapy and to derive greater benefit from existing therapies. We focus on the mechanisms by which the human gut microbiome impacts treatment response, provide a framework to interrogate these mechanisms, review a case study of a widely-used anti-rheumatic drug, and discuss challenges with studying multiple complex systems: the microbiome, the human immune system, and autoimmune disease. We consider open questions that remain in the field and speculate on the future of drug-microbiome-autoimmune disease interactions. Finally, we present a blue-sky vision for how the microbiome can be used to bring the promise of precision medicine to patients with rheumatic disease.
Collapse
Affiliation(s)
- Renuka R Nayak
- Rheumatology Division, Department of Medicine, University of California, San Francisco, California, USA
- Veterans Affairs Medical Center, San Francisco, California, USA
| | - Diego A Orellana
- Rheumatology Division, Department of Medicine, University of California, San Francisco, California, USA
- Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
47
|
You M, Chen N, Yang Y, Cheng L, He H, Cai Y, Liu Y, Liu H, Hong G. The gut microbiota-brain axis in neurological disorders. MedComm (Beijing) 2024; 5:e656. [PMID: 39036341 PMCID: PMC11260174 DOI: 10.1002/mco2.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Previous studies have shown a bidirectional communication between human gut microbiota and the brain, known as the microbiota-gut-brain axis (MGBA). The MGBA influences the host's nervous system development, emotional regulation, and cognitive function through neurotransmitters, immune modulation, and metabolic pathways. Factors like diet, lifestyle, genetics, and environment shape the gut microbiota composition together. Most research have explored how gut microbiota regulates host physiology and its potential in preventing and treating neurological disorders. However, the individual heterogeneity of gut microbiota, strains playing a dominant role in neurological diseases, and the interactions of these microbial metabolites with the central/peripheral nervous systems still need exploration. This review summarizes the potential role of gut microbiota in driving neurodevelopmental disorders (autism spectrum disorder and attention deficit/hyperactivity disorder), neurodegenerative diseases (Alzheimer's and Parkinson's disease), and mood disorders (anxiety and depression) in recent years and discusses the current clinical and preclinical gut microbe-based interventions, including dietary intervention, probiotics, prebiotics, and fecal microbiota transplantation. It also puts forward the current insufficient research on gut microbiota in neurological disorders and provides a framework for further research on neurological disorders.
Collapse
Affiliation(s)
- Mingming You
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Nan Chen
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yuanyuan Yang
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Lingjun Cheng
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Hongzhang He
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yanhua Cai
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yating Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Haiyue Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Guolin Hong
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
48
|
Fuhri Snethlage CM, de Wit D, Wortelboer K, Rampanelli E, Hanssen NMJ, Nieuwdorp M. Can fecal microbiota transplantations modulate autoimmune responses in type 1 diabetes? Immunol Rev 2024; 325:46-63. [PMID: 38752578 DOI: 10.1111/imr.13345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease targeting insulin-producing pancreatic beta cells. T1D is a multifactorial disease incorporating genetic and environmental factors. In recent years, the advances in high-throughput sequencing have allowed researchers to elucidate the changes in the gut microbiota taxonomy and functional capacity that accompany T1D development. An increasing number of studies have shown a role of the gut microbiota in mediating immune responses in health and disease, including autoimmunity. Fecal microbiota transplantations (FMT) have been largely used in murine models to prove a causal role of the gut microbiome in disease progression and have been shown to be a safe and effective treatment in inflammatory human diseases. In this review, we summarize and discuss recent research regarding the gut microbiota-host interactions in T1D, the current advancement in therapies for T1D, and the usefulness of FMT studies to explore microbiota-host immunity encounters in murine models and to shape the course of human type 1 diabetes.
Collapse
Affiliation(s)
- Coco M Fuhri Snethlage
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Douwe de Wit
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Koen Wortelboer
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| | - Nordin M J Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Schnell A. Stem-like T cells in cancer and autoimmunity. Immunol Rev 2024; 325:9-22. [PMID: 38804499 DOI: 10.1111/imr.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Stem-like T cells are characterized by their ability to self-renew, survive long-term, and give rise to a heterogeneous pool of effector and memory T cells. Recent advances in single-cell RNA-sequencing (scRNA-seq) and lineage tracing technologies revealed an important role for stem-like T cells in both autoimmunity and cancer. In cancer, stem-like T cells constitute an important arm of the anti-tumor immune response by giving rise to effector T cells that mediate tumor control. In contrast, in autoimmunity stem-like T cells perform an unfavorable role by forming a reservoir of long-lived autoreactive cells that replenish the pathogenic, effector T-cell pool and thereby driving disease pathology. This review provides background on the discovery of stem-like T cells and their function in cancer and autoimmunity. Moreover, the influence of the microbiota and metabolism on the stem-like T-cell pool is summarized. Lastly, the implications of our knowledge about stem-like T cells for clinical treatment strategies for cancer and autoimmunity will be discussed.
Collapse
Affiliation(s)
- Alexandra Schnell
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
50
|
Dinakis E, O'Donnell JA, Marques FZ. The gut-immune axis during hypertension and cardiovascular diseases. Acta Physiol (Oxf) 2024; 240:e14193. [PMID: 38899764 DOI: 10.1111/apha.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/04/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
The gut-immune axis is a relatively novel phenomenon that provides mechanistic links between the gut microbiome and the immune system. A growing body of evidence supports it is key in how the gut microbiome contributes to several diseases, including hypertension and cardiovascular diseases (CVDs). Evidence over the past decade supports a causal link of the gut microbiome in hypertension and its complications, including myocardial infarction, atherosclerosis, heart failure, and stroke. Perturbations in gut homeostasis such as dysbiosis (i.e., alterations in gut microbial composition) may trigger immune responses that lead to chronic low-grade inflammation and, ultimately, the development and progression of these conditions. This is unsurprising, as the gut harbors one of the largest numbers of immune cells in the body, yet is a phenomenon not entirely understood in the context of cardiometabolic disorders. In this review, we discuss the role of the gut microbiome, the immune system, and inflammation in the context of hypertension and CVD, and consolidate current evidence of this complex interplay, whilst highlighting gaps in the literature. We focus on diet as one of the major modulators of the gut microbiota, and explain key microbial-derived metabolites (e.g., short-chain fatty acids, trimethylamine N-oxide) as potential mediators of the communication between the gut and peripheral organs such as the heart, arteries, kidneys, and the brain via the immune system. Finally, we explore the dual role of both the gut microbiome and the immune system, and how they work together to not only contribute, but also mitigate hypertension and CVD.
Collapse
Affiliation(s)
- Evany Dinakis
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|