1
|
Zhao L, Lee ZH, Shah YM. Ammonia as a critical metabolic modulator of anti-tumor immunity. Med Gas Res 2025; 15:446-447. [PMID: 40251027 DOI: 10.4103/mgr.medgasres-d-24-00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/24/2025] [Indexed: 04/20/2025] Open
Affiliation(s)
- Liang Zhao
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA (Zhao L, Shah YM)
| | - Zheng Hong Lee
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA (Lee ZH, Shah YM)
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA (Zhao L, Shah YM)
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA (Lee ZH, Shah YM)
| |
Collapse
|
2
|
Mentis AFA, Dalamaga M. Rare biochemical & genetic conditions: clues for broader mechanistic insights. Cell Mol Life Sci 2025; 82:156. [PMID: 40210765 PMCID: PMC11985829 DOI: 10.1007/s00018-025-05652-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/12/2025]
Abstract
Rare disorders often represent a molecular deviation from hi-fidelity genomic integrity networks and are often perceived as too difficult or unimportant for further mechanistic studies. Here, we synthesize evidence demonstrating how valuable knowledge of biochemical pathways related to rare disorders can be for biomedicine. To this end, we describe several rare congenital lipid, protein, organic acid, and glycan metabolism disorders and discuss how rare phenotypes (such as "extreme responders") and case reports (such as the lenalidomide cases) have provided clues for drug discovery or repurposing. We also discuss how rare disorders such as Gaucher disease and ultra-rare genetic syndromes can provide insights into cancer and mTOR-driven metabolism, respectively. Our discussion highlights the continued value of biochemical pathways and studies in understanding human pathophysiology and drug discovery even in the genomics era.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
3
|
Huang K, Miao T, Dantas E, Han M, Hu Y, Wang K, Sanford J, Goncalves M, Perrimon N. Lipid metabolism of hepatocyte-like cells supports intestinal tumor growth by promoting tracheogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647255. [PMID: 40236168 PMCID: PMC11996582 DOI: 10.1101/2025.04.04.647255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Tumors require metabolic adaptations to support their rapid growth, but how they influence lipid metabolism in distant tissues remains poorly understood. Here, we uncover a novel mechanism by which gut tumors in adult flies reprogram lipid metabolism in distal hepatocyte-like cells, known as oenocytes, to promote tracheal development and tumor growth. We show that tumors secrete a PDGF/VEGF-like factor, Pvf1, that activates the TORC1-Hnf4 signaling pathway in oenocytes. This activation enhances the production of specific lipids, including very long-chain fatty acids and wax esters, that are required for tracheal growth surrounding the gut tumor. Importantly, reducing expression in oenocytes of either the transcription factor Hnf4 , or the elongase mElo that generates very long chain fatty acid suppresses tumor growth, tracheogenesis, and associated organ wasting/cachexia-like phenotypes, while extending lifespan. We further demonstrate that this regulatory pathway is conserved in mammals, as VEGF-A stimulates lipid metabolism gene expression in human hepatocytes, and lung tumor-bearing mice show increased hepatic expression of Hnf4 and the lipid elongation gene Elovl7 . Our findings reveal a previously unrecognized tumor-host interaction where tumors non-autonomously reprogram distal lipid metabolism to support their growth. This study not only identifies a novel non-autonomous role of the TORC1-Hnf4 axis in lipid-mediated tumor progression but also highlights potential targets for therapeutic intervention in cancer-associated metabolic disorders.
Collapse
|
4
|
Xie X, Zhang B, Peng J, Ma N, Pan Q, Wei Y, Jin H, Yu F, Huang X, Zhang P, Wang J, Zheng J, Ying X, Liu RY, Yu H, Lee MH, Meng X. EGF-Upregulated lncRNA ESSENCE Promotes Colorectal Cancer Growth through Stabilizing CAD and Ferroptosis Defense. RESEARCH (WASHINGTON, D.C.) 2025; 8:0649. [PMID: 40190348 PMCID: PMC11969792 DOI: 10.34133/research.0649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 04/09/2025]
Abstract
Epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) signaling is highly activated in various types of cancer. The long noncoding RNAs induced by this pathway and their roles in colorectal cancer (CRC) have not been fully elucidated. In this study, based on the profiling of long noncoding RNAs triggered by EGFR/MAPK signaling, we identified that ESSENCE (EGF [epidermal growth factor] Signal Sensing CAD's Effect; ENST00000415336), which is mediated by the transcription factor early growth response factor 1, functions as a potent oncogenic molecule that predicts poor prognosis in CRC. Mechanistically, ESSENCE directly interacts with carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) and competitively attenuates CAD degradation mediated by its newly discovered E3 ligase KEAP1, thereby suppressing ferroptosis and promoting CRC progression. Importantly, combinational treatment of the mitogen-activated extracellular signal-regulated kinase inhibitor selumetinib and ferroptosis inducer sulfasalazine synergistically suppresses ESSENCE-high CRC in a patient-derived xenograft mouse model. Taken together, these findings demonstrate the crucial role of ESSENCE in mediating CRC progression by regulating CAD stabilization and suggest a therapeutic strategy of targeting the ESSENCE-CAD axis in CRC.
Collapse
Affiliation(s)
- Xiaoshan Xie
- Department of General Surgery, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
| | - Boyu Zhang
- Department of General Surgery, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
| | - Jingxuan Peng
- Department of General Surgery, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
| | - Ning Ma
- Department of General Surgery, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
| | - Qihao Pan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
| | - Yue Wei
- Department of General Surgery, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
| | - Huilin Jin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
| | - Fenghai Yu
- Department of General Surgery, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
| | - Xiaoling Huang
- Department of General Surgery, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
| | - Peng Zhang
- Department of General Surgery, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
| | - Jiarui Wang
- Department of General Surgery, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
| | - Jiaying Zheng
- Department of General Surgery, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
| | - Xiaofang Ying
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430079, China
| | - Ran-yi Liu
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center for Cancer Medicine,
Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hongyan Yu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center,
Guangzhou Medical University, Guangzhou 510623, China
| | - Mong-Hong Lee
- Department of General Surgery, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
| | - Xiangqi Meng
- Department of General Surgery, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital,
Sun Yat-sen University, Guangzhou 510655, China
| |
Collapse
|
5
|
Fan S, Wang W, Che W, Xu Y, Jin C, Dong L, Xia Q. Nanomedicines Targeting Metabolic Pathways in the Tumor Microenvironment: Future Perspectives and the Role of AI. Metabolites 2025; 15:201. [PMID: 40137165 PMCID: PMC11943624 DOI: 10.3390/metabo15030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Tumor cells engage in continuous self-replication by utilizing a large number of resources and capabilities, typically within an aberrant metabolic regulatory network to meet their own demands. This metabolic dysregulation leads to the formation of the tumor microenvironment (TME) in most solid tumors. Nanomedicines, due to their unique physicochemical properties, can achieve passive targeting in certain solid tumors through the enhanced permeability and retention (EPR) effect, or active targeting through deliberate design optimization, resulting in accumulation within the TME. The use of nanomedicines to target critical metabolic pathways in tumors holds significant promise. However, the design of nanomedicines requires the careful selection of relevant drugs and materials, taking into account multiple factors. The traditional trial-and-error process is relatively inefficient. Artificial intelligence (AI) can integrate big data to evaluate the accumulation and delivery efficiency of nanomedicines, thereby assisting in the design of nanodrugs. Methods: We have conducted a detailed review of key papers from databases, such as ScienceDirect, Scopus, Wiley, Web of Science, and PubMed, focusing on tumor metabolic reprogramming, the mechanisms of action of nanomedicines, the development of nanomedicines targeting tumor metabolism, and the application of AI in empowering nanomedicines. We have integrated the relevant content to present the current status of research on nanomedicines targeting tumor metabolism and potential future directions in this field. Results: Nanomedicines possess excellent TME targeting properties, which can be utilized to disrupt key metabolic pathways in tumor cells, including glycolysis, lipid metabolism, amino acid metabolism, and nucleotide metabolism. This disruption leads to the selective killing of tumor cells and disturbance of the TME. Extensive research has demonstrated that AI-driven methodologies have revolutionized nanomedicine development, while concurrently enabling the precise identification of critical molecular regulators involved in oncogenic metabolic reprogramming pathways, thereby catalyzing transformative innovations in targeted cancer therapeutics. Conclusions: The development of nanomedicines targeting tumor metabolic pathways holds great promise. Additionally, AI will accelerate the discovery of metabolism-related targets, empower the design and optimization of nanomedicines, and help minimize their toxicity, thereby providing a new paradigm for future nanomedicine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| |
Collapse
|
6
|
Chaturvedi S, Sibi Karthik S, Sadhukhan S, Sonawane A. Unraveling the potential contribution of DHHC2 in cancer biology via untargeted metabolomics. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159593. [PMID: 39788345 DOI: 10.1016/j.bbalip.2025.159593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/01/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
DHHC-mediated protein-S-palmitoylation is recognized as a distinct and reversible lipid modification, playing a pivotal role in the progression and prevention of multiple diseases, including cancer and neurodegenerative disorders. Over the past decade, growing evidence indicated the crucial role of DHHC2 in preventing tumorigenesis by palmitoylation of various protein substrates. However, a comprehensive understanding of the specific impact of DHHC2 on cancer cell metabolic regulation remains unclear. To investigate the metabolic changes by DHHC2, we conducted untargeted metabolomic profiling on the HEK-293T cell line with DHHC2-Knockdown (DHHC2-KD), DHHC2-Overexpression (DHHC2-OE) and empty vector control (Ctrl) conditions via LC-MS/MS-based analysis. Our dataset revealed the identification of a total of 73 metabolites encompassing all the conditions, with only 22 showing significant differences in univariate analysis. Furthermore, we performed pathway analysis with metabolites having VIP ≥ 0.7, P value ≤ 0.05, and fold change (FC) > 2 in DHHC2-OE (upregulated) and FC < 0.5 in DHHC2-OE or FC > 2 in DHHC2-KD condition (downregulated). We unveiled significant expression of the pyrimidine metabolism, urea cycle, and aspartate metabolism due to the abundance of onco-metabolites such as glutamine, uridine, and glutamic acid in the DHHC2-KD condition. However, DHHC2 overexpression resulted in a higher expression of metabolites previously reported to be associated with anti-cancer activity, such as betaine and 5'-methylthioadenosine (5'-MTA). Overall, this study sheds light on the changes mediated by DHHC2 in a cancer cell metabolome and suggests avenues for further investigation into other DHHC isoforms and their metabolic aspects.
Collapse
Affiliation(s)
- Suchi Chaturvedi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Madhya Pradesh 453552, India
| | - S Sibi Karthik
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Madhya Pradesh 453552, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678623, India; Physical & Chemical Biology Laboratory, Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678623, India.
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Madhya Pradesh 453552, India.
| |
Collapse
|
7
|
Fung TS, Ryu KW, Thompson CB. Arginine: at the crossroads of nitrogen metabolism. EMBO J 2025; 44:1275-1293. [PMID: 39920310 DOI: 10.1038/s44318-025-00379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 02/09/2025] Open
Abstract
L-arginine is the most nitrogen-rich amino acid, acting as a key precursor for the synthesis of nitrogen-containing metabolites and an essential intermediate in the clearance of excess nitrogen. Arginine's side chain possesses a guanidino group which has unique biochemical properties, and plays a primary role in nitrogen excretion (urea), cellular signaling (nitric oxide) and energy buffering (phosphocreatine). The post-translational modification of protein-incorporated arginine by guanidino-group methylation also contributes to epigenetic gene control. Most human cells do not synthesize sufficient arginine to meet demand and are dependent on exogenous arginine. Thus, dietary arginine plays an important role in maintaining health, particularly upon physiologic stress. How cells adapt to changes in extracellular arginine availability is unclear, mostly because nearly all tissue culture media are supplemented with supraphysiologic levels of arginine. Evidence is emerging that arginine-deficiency can influence disease progression. Here, we review new insights into the importance of arginine as a metabolite, emphasizing the central role of mitochondria in arginine synthesis/catabolism and the recent discovery that arginine can act as a signaling molecule regulating gene expression and organelle dynamics.
Collapse
Affiliation(s)
- Tak Shun Fung
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Keun Woo Ryu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Xia J, Liu W, Ni Y, Shahzad A, Cui K, Xu Z, Zhang J, Wei Z, Teng Z, Yang Z, Zhang Q. Advances in the impact of ASS1 dysregulation on metabolic reprogramming of tumor cells. Cell Signal 2025; 127:111593. [PMID: 39778698 DOI: 10.1016/j.cellsig.2025.111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
ASS1(argininosuccinate synthase 1) is a rate-limiting enzyme in the urea cycle, catalyzing the synthesis of argininosuccinate from citrulline and aspartate to ultimately produce arginine and support cellular metabolism. Increasing evidence suggests that ASS1 is commonly dysregulated in the tumor microenvironment, promoting tumor cell metastasis and infiltration. With a deeper understanding of tumor metabolic reprogramming in recent years, the impact of ASS1 dysregulation on abnormal tumor metabolism has attracted growing interest among researchers. In tumors with lacked or downregulated expression of ASS1, tumor cells become 'addicted' to exogenous arginine. Several strategies for arginine deprivation have been developed and entered clinical trials for treating such tumors. Therefore, we focus on elucidating the commonalities and characteristics of ASS1 dysregulation in tumors, as well as its implications for diagnosis, treatment, and prognosis. The mechanisms by which ASS1 gene dysregulation leads to metabolic abnormalities in tumor cells vary across different types of tumors. Extensive experimental studies have demonstrated that overexpression or low expression of ASS1 exhibits varying effects-either inhibitory or stimulatory proliferation-on tumor cells across different types. Restoring its expression can inhibit proliferation in some tumors lacking or downregulating ASS1 but can promote metastasis and infiltration in others (e.g., resistance to arginine deprivation therapy). Additionally, the expression level of ASS1 dynamically changes during tumorigenesis and progression. Finally, this review discusses the diagnostic, therapeutic, and prognostic value of ASS1 in future clinical practice.
Collapse
Affiliation(s)
- Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Yueli Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China; Qujing Medical College, Qujing 655011, Yunnan Province, China
| | - Jinshan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Zhenyan Wei
- Yunnan Center for Disease Control and Prevention, Kunming 650022, China
| | - Zhuoran Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China.
| | - Zhe Yang
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming 650032, PR China.
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China.
| |
Collapse
|
9
|
Zhu Y, Yao S, Wang X, Wang J, Cao H, Tao Y. Variable cyanobacterial death modes caused by ciprofloxacin in the aquatic environment: Prioritizing antibiotic-photosynthetic protein interactions for risk assessment. WATER RESEARCH 2025; 271:122885. [PMID: 39642793 DOI: 10.1016/j.watres.2024.122885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Antibiotics continuously discharged into the aquatic environment pose threats to phototrophs via high-affinity binding to photosynthetic apparatuses and interfering with their energy metabolism and growth. However, studies attributed the sublethal effects of antibiotics on phototrophs to damaging photosystem (PS) II (PSII) proteins while neglecting PSI proteins as potential targets. Herein, we report that frequently detected ciprofloxacin (CIP) with concentrations of 3-8 μg/L was lethal to Microcystis aeruginosa, the widely distributed phytoplankton in freshwater, via damaging DNA. Besides, CIP damages on different photosynthetic proteins at different exposure levels were evidenced to influence the cyanobacterial death phenotypes. In detail, CIP at 3 μg/L bound to PSII D1 protein exclusively, activating the tricarboxylic acid cycle for energy and proline catabolism. This favored the execution of apoptosis-like regulated cell death (RCD). However, CIP at 8 μg/L exhibited additional binding to the PSI iron-sulfur reaction center, apart from PSII, inducing carbon and arginine starvation. This shifted the RCD from apoptosis-like RCD to mazEF-mediated RCD. Furthermore, microcystin-LR risks were elevated after CIP exposure with enhanced microcystin-LR release and biosynthesis for apoptosis-like and mazEF-mediated RCD, respectively. Thus, the present study underscores the intricate interactions between antibiotics and different photosynthetic apparatuses, which alter antibiotic lethal effects at different exposure levels. This could provide new perspectives on the risk assessment and prediction of antibiotics from the standpoint of chemical-photosynthesis interactions.
Collapse
Affiliation(s)
- Yinjie Zhu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing 100084, PR China
| | - Shishi Yao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Xiaoxiong Wang
- Institute for Ocean Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Jian Wang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing 100084, PR China
| | - Huansheng Cao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu 215300, PR China
| | - Yi Tao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
10
|
Jin K, Chu X, Qian J. Arginine and colorectal cancer: Exploring arginine-related therapeutic strategies and novel insights into cancer immunotherapies. Int Immunopharmacol 2025; 148:114146. [PMID: 39879835 DOI: 10.1016/j.intimp.2025.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Concerning the progression of societies and the evolution of lifestyle and dietary habits, the potential for the development of human malignancies, particularly colorectal cancer (CRC), has markedly escalated, positioning it as one of the most prevalent and lethal forms of cancer globally. Empirical evidence indicates that the metabolic processes of cancerous and healthy cells can significantly impact immune responses and the fate of tumors. Arginine, a multifaceted amino acid, assumes a crucial and paradoxical role in various metabolic pathways, as certain tumors exhibit arginine auxotrophy while others do not. Notably, CRC is classified as arginine non-auxotrophic, possessing the ability to synthesize arginine from citrulline. Systemic arginine deprivation and the inhibition of arginine uptake represent two prevalent therapeutic strategies in oncological treatment. However, given the divergent behaviors of tumors concerning the metabolism and synthesis of arginine, one of these therapeutic approaches-namely systemic arginine deprivation-does not apply to CRC. This review elucidates the characteristics of arginine uptake inhibition and systemic arginine deprivation alongside their respective benefits and limitations in CRC. Furthermore, the involvement of arginine in immunotherapeutic strategies is examined in light of the most recent discoveries on various human malignancies.
Collapse
Affiliation(s)
- Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310003, China.
| | - Xiufeng Chu
- Department of General Surgery, Shaoxing Central Hospital, Shaoxing, Zhejiang 312030, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China.
| |
Collapse
|
11
|
Hu T, Shi R, Xu Y, Xu T, Fang Y, Gu Y, Zhou Z, Shu Y. Multi-omics and single-cell analysis reveals machine learning-based pyrimidine metabolism-related signature in the prognosis of patients with lung adenocarcinoma. Int J Med Sci 2025; 22:1375-1392. [PMID: 40084259 PMCID: PMC11898844 DOI: 10.7150/ijms.107694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025] Open
Abstract
Background: Pyrimidine metabolism is a hallmark of tumor metabolic reprogramming, while its significance in the prognostic and therapeutic implications of patients with lung adenocarcinoma (LUAD) still remains unclear. Methods: In this study, an integrated framework of various machine learning and deep learning algorithms was used to develop the pyrimidine metabolism-related signature (PMRS). Its efficacy in genomic stability, chemotherapy and immunotherapy resistance was evaluated through comprehensive multi-omics analysis. The single-cell landscape of patients between PMRS subgroups was also elucidated. Subsequently, the biological functions of LYPD3, the most important coefficient factor in the PMRS model, were experimentally validated in LUAD cell lines. Results: The PMRS model with "random survival forest" algorithm exhibited the best performance and was utilized for further analysis. It displayed excellent accuracy and stability in various model evaluation assays. Compared to the PMRS-high subgroup, patients with lower PMRS scores had better survival outcomes, more stable genomic characteristics and higher sensitivity to immunotherapy. Single-cell analysis indicated that as PMRS increased, epithelial cells gradually exhibited malignant phenotypes with enhanced pyrimidine metabolism, while PMRS-high patients showed an inhibitory status of tumor immune microenvironment. Further experiments indicated that LYPD3 promoted the malignant progression in LUAD cell lines. Conclusion: Our study constructed the PMRS model, highlighting its potential value in the treatment and prognosis of LUAD patients and providing new insights into the individualized precision treatment for LUAD patients.
Collapse
Affiliation(s)
- Tong Hu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Run Shi
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yangyue Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Fang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunru Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Huang CY. The Loop-In Binding Mode of Dihydroorotase: Implications for Ligand Binding and Therapeutic Targeting. Int J Mol Sci 2025; 26:1359. [PMID: 39941127 PMCID: PMC11818841 DOI: 10.3390/ijms26031359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Dihydroorotase (DHOase; EC 3.5.2.3) is a zinc-dependent metalloenzyme that plays a key role in the de novo pyrimidine biosynthesis pathway, catalyzing the reversible cyclization of N-carbamoyl aspartate to dihydroorotate. This reaction is essential for the production of uridine monophosphate, the precursor of all pyrimidine nucleotides required for DNA and RNA synthesis. Despite its conserved enzymatic function, DHOase exhibits significant structural diversity across species, particularly in its oligomeric states, gene fusion patterns, and active site architecture. A crucial structural feature of DHOase is its flexible active site loop, which undergoes dynamic conformational changes during catalysis. Previously, the loop-in conformation was associated with substrate binding, whereas the loop-out conformation was linked to product release and non-substrate ligand binding. However, recent crystallographic studies challenge this paradigm, revealing that certain non-substrate ligands and inhibitors, including malate, 5-fluoroorotate, plumbagin, 5-aminouracil, and 5-fluorouracil, interact with DHOase via a loop-in binding mechanism rather than the previously assumed loop-out mode. These findings necessitate a reassessment of the catalytic mechanism of DHOase and underscore the active site loop as a potential target for drug development. This review revisits the structural and biochemical mechanisms of DHOase, with a focus on recent crystallographic insights that redefine the loop-in binding mode for ligand interaction. By leveraging the unique conformational dynamics of the active site loop, novel inhibitors may be developed to selectively target pyrimidine biosynthesis in cancer cells and microbial pathogens. These insights emphasize the crucial role of structural biology in therapeutic design and highlight DHOase as a promising drug target.
Collapse
Affiliation(s)
- Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
13
|
Tintelnot J, Paschold L, Goekkurt E, Schultheiss C, Matschl U, Santos Cruz M, Bauer M, Wickenhauser C, Thuss-Patience P, Lorenzen S, Ettrich TJ, Riera-Knorrenschild J, Jacobasch L, Kretzschmar A, Kubicka S, Al-Batran SE, Reinacher-Schick A, Pink D, Bokemeyer C, Sinn M, Lindig U, Hinke A, Hegewisch-Becker S, Stein A, Binder M. Inflammatory Stress Determines the Need for Chemotherapy in Patients with HER2-Positive Esophagogastric Adenocarcinoma Receiving Targeted Therapy and Immunotherapy. Cancer Immunol Res 2025; 13:200-209. [PMID: 39527097 PMCID: PMC11788649 DOI: 10.1158/2326-6066.cir-24-0561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/10/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Anti-PD-1, trastuzumab, and chemotherapy are used in the treatment of patients with advanced HER2-positive esophagogastric adenocarcinoma, but long-term survival remains limited. In this study, we report extended follow-up data from the INTEGA trial (NCT03409848), which investigated the efficacy of the anti-PD-1 nivolumab, trastuzumab, and FOLFOX chemotherapy (FOLFOX arm) in comparison with a chemotherapy-free regimen involving nivolumab, trastuzumab, and the anti-CTLA-4 ipilimumab (Ipi arm) in the first-line setting for advanced disease. The 12-month overall survival (OS) showed no statistical difference between the arms, with 57% OS (95% confidence interval, 41%-71%) in the Ipi arm and 70% OS (95% confidence interval, 54%-82%) in the FOLFOX arm. Crossing of the survival curves indicated a potential long-term benefit for some patients within the Ipi arm, but early progressors in the Ipi arm underlined the need for biomarker-guided strategies to optimize treatment selection. To this end, metabolomic and cytokine analyses demonstrated elevated levels of normetanephrine, cortisol, and IL6 in immunotherapy-unresponsive patients in the Ipi arm, suggesting a role for systemic inflammatory stress in modulating antitumor immune responses. Patients with this signature also showed an increased neutrophil to lymphocyte ratio that persisted in the Ipi arm, but not in the FOLFOX arm, and strongly correlated with survival. Furthermore, a low neutrophil to lymphocyte ratio characterized patients benefiting from immunotherapy and targeted therapy without the need for additional chemotherapy. These data suggest that patient selection based on inflammatory stress-driven immune changes could help customize first-line treatment in patients with advanced HER2-positive esophagogastric adenocarcinoma to potentially improve long-term survival.
Collapse
Affiliation(s)
- Joseph Tintelnot
- II. Medical Clinic and Polyclinic, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Paschold
- Department of Internal Medicine IV - Oncology/Hematology, University Hospital, Martin-Luther University, Halle, Germany
| | - Eray Goekkurt
- II. Medical Clinic and Polyclinic, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hematology-Oncology Practice Eppendorf (HOPE), Hamburg, Germany
| | - Christoph Schultheiss
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Urte Matschl
- Department of Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Mariana Santos Cruz
- II. Medical Clinic and Polyclinic, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Bauer
- Institute of Pathology, University Hospital, Martin-Luther University, Halle, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, University Hospital, Martin-Luther University, Halle, Germany
| | | | - Sylvie Lorenzen
- Rechts der Isar Hospital, Technical University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | - Daniel Pink
- Klinik und Poliklinik für Innere Medizin C, University Greifswald, Greifswald, Germany
- Klinik für Hämatologie, Onkologie und Palliativmedizin, Sarkomzentrum Berlin-Brandenburg, HELIOS Klinikum Bad-Saarow, Bad Saarow, Germany
| | - Carsten Bokemeyer
- II. Medical Clinic and Polyclinic, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marianne Sinn
- II. Medical Clinic and Polyclinic, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Alexander Stein
- II. Medical Clinic and Polyclinic, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mascha Binder
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
14
|
Ma M, Zhang Y, Pu K, Tang W. Nanomaterial-enabled metabolic reprogramming strategies for boosting antitumor immunity. Chem Soc Rev 2025; 54:653-714. [PMID: 39620588 DOI: 10.1039/d4cs00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Immunotherapy has become a crucial strategy in cancer treatment, but its effectiveness is often constrained. Most cancer immunotherapies focus on stimulating T-cell-mediated immunity by driving the cancer-immunity cycle, which includes tumor antigen release, antigen presentation, T cell activation, infiltration, and tumor cell killing. However, metabolism reprogramming in the tumor microenvironment (TME) supports the viability of cancer cells and inhibits the function of immune cells within this cycle, presenting clinical challenges. The distinct metabolic needs of tumor cells and immune cells require precise and selective metabolic interventions to maximize therapeutic outcomes while minimizing adverse effects. Recent advances in nanotherapeutics offer a promising approach to target tumor metabolism reprogramming and enhance the cancer-immunity cycle through tailored metabolic modulation. In this review, we explore cutting-edge nanomaterial strategies for modulating tumor metabolism to improve therapeutic outcomes. We review the design principles of nanoplatforms for immunometabolic modulation, key metabolic pathways and their regulation, recent advances in targeting these pathways for the cancer-immunity cycle enhancement, and future prospects for next-generation metabolic nanomodulators in cancer immunotherapy. We expect that emerging immunometabolic modulatory nanotechnology will establish a new frontier in cancer immunotherapy in the near future.
Collapse
Affiliation(s)
- Muye Ma
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Dr 2, Singapore, 117545, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Dr, Singapore, 117597, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Wei Tang
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
- Department of Pharmacy and Pharmaceutic Sciences, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
15
|
Cao X, Xing L, Ding H, Li H, Hu Y, Dong Y, He H, Gu J, Zhang X. Novel machine learning model for predicting cancer drugs' susceptibilities and discovering novel treatments. J Biomed Inform 2025; 161:104762. [PMID: 39674292 DOI: 10.1016/j.jbi.2024.104762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/18/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND AND OBJECTIVE Timely treatment is crucial for cancer patients, so it's important to administer the appropriate treatment as soon as possible. Because individuals can respond differently to a given drug due to their unique genomic profiles, we aim to use their genomic information to predict how various drugs will affect them and determine the best course of treatment. METHODS We present Kernelized Residual Stacking (KRS), a new multi-task learning approach, and use it to predict the responses to anti-cancer drugs based on genomic data. We demonstrate the superior predictive performance of KRS, outperforming popular competitors, by utilizing the Genomics of Drug Sensitivity in Cancer (GDSC) study and the Cancer Cell Line Encyclopedia (CCLE) study. Downstream analysis of feature genes selected by KRS is conducted to discover novel therapies. RESULTS We used two genomic studies to show that KRS outperforms a few popular competitors in predicting drugs' susceptibilities. Through downstream analysis of feature genes selected by KRS, we found that the PI3K-Akt pathway could alter drugs' susceptibilities, and its expression correlated positively with the hub gene ERBB2. We discovered eight novel small molecules based on these feature genes, which could be developed into novel combination therapies with anti-cancer drugs. CONCLUSIONS KRS outperforms competitors in prediction performance and selects feature genes highly correlated with drugs' susceptibilities. Novel biological results are found by investigating KRS's feature genes.
Collapse
Affiliation(s)
- Xiaowen Cao
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China; Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Li Xing
- Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada
| | - Hao Ding
- School of Science, Hebei University of Technology, Tianjin, China
| | - He Li
- School of Science, Hebei University of Technology, Tianjin, China
| | - Yushan Hu
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Yao Dong
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China; Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Hua He
- School of Science, Hebei University of Technology, Tianjin, China.
| | - Junhua Gu
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China.
| | - Xuekui Zhang
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada.
| |
Collapse
|
16
|
Korleski J, Sudhir S, Rui Y, Caputo CA, Sall S, Johnson AL, Khela HS, Madhvacharyula T, Rasamsetty A, Li Y, Lal B, Zhou W, Smith-Connor K, Tzeng SY, Green JJ, Laterra J, Lopez-Bertoni H. miR-217-5p NanomiRs Inhibit Glioblastoma Growth and Enhance Effects of Ionizing Radiation via EZH2 Inhibition and Epigenetic Reprogramming. Cancers (Basel) 2024; 17:80. [PMID: 39796709 PMCID: PMC11719642 DOI: 10.3390/cancers17010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: CSCs are critical drivers of the tumor and stem cell phenotypes of glioblastoma (GBM) cells. Chromatin modifications play a fundamental role in driving a GBM CSC phenotype. The goal of this study is to further our understanding of how stem cell-driving events control changes in chromatin architecture that contribute to the tumor-propagating phenotype of GBM. Methods: We utilized computational analyses to identify a subset of clinically relevant genes that were predicted to be repressed in a Polycomb repressive complex 2 (PRC2)-dependent manner in GBM upon induction of stem cell-driving events. These associations were validated in patient-derived GBM neurosphere models using state-of-the-art molecular techniques to express, silence, and measure microRNA (miRNA) and gene expression changes. Advanced Poly(β-amino ester) nanoparticle formulations (PBAEs) were used to deliver miRNAs in vivo to orthotopic human GBM tumor models. Results: We show that glioma stem cell (GSC) formation and tumor propagation involve the crosstalk between multiple epigenetic mechanisms, resulting in the repression of the miRNAs that regulate PRC2 function and histone H3 lysine 27 tri-methylation (H3K27me3). We also identified miR-217-5p as an EZH2 regulator repressed in GSCs and showed that miR-217-5p reconstitution using advanced nanoparticle formulations re-activates the PRC2-repressed genes, inhibits GSC formation, impairs tumor growth, and enhances the effects of ionizing radiation in an orthotopic model of GBM. Conclusions: These findings suggest that inhibiting PRC2 function by targeting EZH2 with miR-217-5p advanced nanoparticle formulations could have a therapeutic benefit in GBM.
Collapse
Affiliation(s)
- Jack Korleski
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sweta Sudhir
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Yuan Rui
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Baltimore, MD 21205, USA (S.Y.T.)
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher A. Caputo
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Sophie Sall
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Amanda L. Johnson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Harmon S. Khela
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tanmaya Madhvacharyula
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Anisha Rasamsetty
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Yunqing Li
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bachchu Lal
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Karen Smith-Connor
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Baltimore, MD 21205, USA (S.Y.T.)
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jordan J. Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Baltimore, MD 21205, USA (S.Y.T.)
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Materials Science & Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hernando Lopez-Bertoni
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| |
Collapse
|
17
|
Mao Y, Xia Z, Xia W, Jiang P. Metabolic reprogramming, sensing, and cancer therapy. Cell Rep 2024; 43:115064. [PMID: 39671294 DOI: 10.1016/j.celrep.2024.115064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024] Open
Abstract
The metabolic reprogramming of tumor cells is a crucial strategy for their survival and proliferation, involving tissue- and condition-dependent remodeling of certain metabolic pathways. While it has become increasingly clear that tumor cells integrate extracellular and intracellular signals to adapt and proliferate, nutrient and metabolite sensing also exert direct or indirect influences, although the underlying mechanisms remain incompletely understood. Furthermore, metabolic changes not only support the rapid growth and dissemination of tumor cells but also promote immune evasion by metabolically "educating" immune cells in the tumor microenvironment (TME). Recent studies have highlighted the profound impact of metabolic reprogramming on the TME and the potential of targeting metabolic pathways as a therapeutic strategy, with several enzyme inhibitors showing promising results in clinical trials. Thus, understanding how tumor cells alter their metabolic pathways and metabolically remodel the TME to support their survival and proliferation may offer new strategies for metabolic therapy and immunotherapy.
Collapse
Affiliation(s)
- Youxiang Mao
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ziyan Xia
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wenjun Xia
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
18
|
Duan J, Jiang R, Shen H, Xu X, Sun D. Analysis of nitrogen metabolism-related gene expression in hepatocellular carcinoma to establish relevant indicators for prediction of prognosis and guidance of immunotherapy. Comput Methods Biomech Biomed Engin 2024:1-17. [PMID: 39673385 DOI: 10.1080/10255842.2024.2438922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/14/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND The prognosis of cancers is strongly connected with nitrogen metabolism (NM), which plays a critical role in the microenvironment and growth of tumors. It is unsubstantiated, however, how important NM-related genes are for the prognosis of hepatocellular carcinoma (HCC). METHODS Using publicly available data, we examined potential mechanisms of NM-related genes in HCC, created a predictive model, and assessed immune infiltration and medication sensitivity. RESULTS A prognostic model, which included 12 NM genes (COLQ, GNE, ISCU, MSRA, SARS2, SPHK1, CBS, GOT2, CHST1, EXTL2, GCLM, YARS1), was constructed based on regression analysis. The robustness of the model was validated using multiple methods. The high-risk (HR) and low-risk (LR) groups had varying degrees of immune infiltration, according to an immunology-related study. Of these, B cells and Type_II_IFN_Response were greatly infiltrated in the LR group, whereas aCDs, Macrophages, and Treg were heavily infiltrated in the HR group (p < 0.05). Because of higher immunophenoscore, the low-risk group could benefit from immunotherapy more. Drug sensitivity predictions indicated that people with high CBS expression and low GOT2 and ISCU expression may benefit more from treatment with SCH-772984, Pimasertib, Cobimetinib (isomer1), TAK-733, LY-3214996, ARRY-162, Cladribine, Fludarabine, and Hydroxyurea. CONCLUSION This work created a 12-gene signature based on NM, preliminary investigated immune infiltration in two risk categories, and discovered some possible anti-tumor medications. To sum up, our study findings offer fresh perspectives on the roles played by NM-associated genes in HCC development, prognosis, immunological response, and medication screening.
Collapse
Affiliation(s)
- Jianwen Duan
- Department of Hepatobiliary Surgery, Quzhou Hospital Affiliated of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, Zhejiang, China
| | - Renya Jiang
- Department of Hepatobiliary Surgery, Quzhou Hospital Affiliated of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, Zhejiang, China
| | - Hongbo Shen
- Department of Hepatobiliary Surgery, Quzhou Hospital Affiliated of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, Zhejiang, China
| | - Xiaofang Xu
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Da Sun
- Department of Hepatobiliary Surgery, Quzhou Hospital Affiliated of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, Zhejiang, China
| |
Collapse
|
19
|
Wu E, Wei GF, Li Y, Du MK, Ni JT. Serum urea concentration and risk of 16 site-specific cancers, overall cancer, and cancer mortality in individuals with metabolic syndrome: a cohort study. BMC Med 2024; 22:536. [PMID: 39548477 PMCID: PMC11566152 DOI: 10.1186/s12916-024-03758-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND The relationship between serum urea concentration and cancer in patients with metabolic syndrome (MetS) remains unclear. This study aimed to investigate the association between serum urea concentration and 16 site-specific cancers, overall cancer incidence, and cancer mortality in individuals with MetS. METHODS We analysed the data of 108,284 individuals with MetS obtained from the UK Biobank. The Cox proportional hazards model was used to determine the association between serum urea concentration at recruitment and cancer. The Benjamini-Hochberg correction was used to account for multiple comparisons. RESULTS Over the median follow-up period of 11.86 years, 18,548 new incident cases of cancer were documented. There were inverse associations of urea concentration with overall cancer incidence, and the incidence of oesophageal and lung cancers, with respective hazard ratios (95% confidence intervals) [HR (95% CI)] for the highest (Q4) vs lowest (Q1) urea quartiles of 0.95 (0.91-0.99), 0.68 (0.50-0.92), and 0.76 (0.64-0.90). However, high serum urea concentrations increased the male prostate cancer risk (HR 1.15; 95% CI 1.02-1.30). Although the Cox model indicated a protective effect of higher urea levels against stomach (HR 0.67; 95% CI 0.45-0.98; p = 0.040; FDR 0.120) and colorectal cancer (HR 0.86; 95% CI 0.74-0.99; p = 0.048; FDR 0.123), no strong evidence of association was found after applying the Benjamin-Hochberg correction. Moreover, across the median follow-up period of 13.77 years for cancer mortality outcome, 5034 cancer deaths were detected. An "L-shaped" nonlinear dose-response relationship between urea concentration and cancer mortality was discovered (p-nonlinear < 0.001), and the HR (95% CI) for urea concentration Q4 vs Q1 was 0.83 (0.77-0.91). CONCLUSIONS Serum urea concentration can be considered as a valuable biomarker for evaluating cancer risk in individuals with MetS, potentially contributing to personalised cancer screening and management strategies.
Collapse
Affiliation(s)
- E Wu
- Rehabilitation and Nursing School, Hangzhou Vocational & Technical College, Hangzhou, Zhejiang, 310018, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 310023, China
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Guo-Fang Wei
- Rehabilitation and Nursing School, Hangzhou Vocational & Technical College, Hangzhou, Zhejiang, 310018, China
| | - Yang Li
- Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, 310006, China.
| | - Meng-Kai Du
- Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, 310006, China.
| | - Jun-Tao Ni
- Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
20
|
Elaimy AL, El-Derany MO, James J, Wang Z, Pearson AN, Holcomb EA, Huber AK, Gijón M, Bell HN, Sanghvi VR, Frankel TL, Su GL, Tapper EB, Tai AW, Ramnath N, Centonze CP, Dobrosotskaya I, Moeller JA, Bryant AK, Elliott DA, Choi E, Evans JR, Cuneo KC, Fitzgerald TJ, Wahl DR, Morgan MA, Chang DT, Wicha MS, Lawrence TS, Shah YM, Green MD. SLC4A11 mediates ammonia import and promotes cancer stemness in hepatocellular carcinoma. JCI Insight 2024; 9:e184826. [PMID: 39287988 PMCID: PMC11601557 DOI: 10.1172/jci.insight.184826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
End-stage liver disease is marked by portal hypertension, systemic elevations in ammonia, and development of hepatocellular carcinoma (HCC). While these clinical consequences of cirrhosis are well described, it remains poorly understood whether hepatic insufficiency and the accompanying elevations in ammonia contribute to HCC carcinogenesis. Using preclinical models, we discovered that ammonia entered the cell through the transporter SLC4A11 and served as a nitrogen source for amino acid and nucleotide biosynthesis. Elevated ammonia promoted cancer stem cell properties in vitro and tumor initiation in vivo. Enhancing ammonia clearance reduced HCC stemness and tumor growth. In patients, elevations in serum ammonia were associated with an increased incidence of HCC. Taken together, this study forms the foundation for clinical investigations using ammonia-lowering agents as potential therapies to mitigate HCC incidence and aggressiveness.
Collapse
Affiliation(s)
| | - Marwa O. El-Derany
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | | | - Ashley N. Pearson
- Department of Radiation Oncology and
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Erin A. Holcomb
- Department of Radiation Oncology and
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Miguel Gijón
- Cayman Chemical Company, Ann Arbor, Michigan, USA
| | - Hannah N. Bell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Viraj R. Sanghvi
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York City, New York, USA
| | | | - Grace L. Su
- Department of Surgery and
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Gastroenterology Section, Department of Internal Medicine, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Elliot B. Tapper
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Gastroenterology Section, Department of Internal Medicine, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Andrew W. Tai
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Gastroenterology Section, Department of Internal Medicine, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology
| | - Nithya Ramnath
- Division of Hematology and Oncology, Department of Internal Medicine, and
| | | | | | | | - Alex K. Bryant
- Department of Radiation Oncology and
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - David A. Elliott
- Department of Radiation Oncology and
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Enid Choi
- Department of Radiation Oncology and
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | | | | | - Thomas J. Fitzgerald
- Department of Radiation Oncology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | | | | | | | - Max S. Wicha
- Division of Hematology and Oncology, Department of Internal Medicine, and
| | | | - Yatrik M. Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael D. Green
- Department of Radiation Oncology and
- Department of Microbiology and Immunology
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Caldovic L, Ahn JJ, Andricovic J, Balick VM, Brayer M, Chansky PA, Dawson T, Edwards AC, Felsen SE, Ismat K, Jagannathan SV, Mann BT, Medina JA, Morizono T, Morizono M, Salameh S, Vashist N, Williams EC, Zhou Z, Morizono H. Datamining approaches for examining the low prevalence of N-acetylglutamate synthase deficiency and understanding transcriptional regulation of urea cycle genes. J Inherit Metab Dis 2024; 47:1175-1193. [PMID: 37847851 PMCID: PMC11586597 DOI: 10.1002/jimd.12687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Ammonia, which is toxic to the brain, is converted into non-toxic urea, through a pathway of six enzymatically catalyzed steps known as the urea cycle. In this pathway, N-acetylglutamate synthase (NAGS, EC 2.3.1.1) catalyzes the formation of N-acetylglutamate (NAG) from glutamate and acetyl coenzyme A. NAGS deficiency (NAGSD) is the rarest of the urea cycle disorders, yet is unique in that ureagenesis can be restored with the drug N-carbamylglutamate (NCG). We investigated whether the rarity of NAGSD could be due to low sequence variation in the NAGS genomic region, high NAGS tolerance for amino acid replacements, and alternative sources of NAG and NCG in the body. We also evaluated whether the small genomic footprint of the NAGS catalytic domain might play a role. The small number of patients diagnosed with NAGSD could result from the absence of specific disease biomarkers and/or short NAGS catalytic domain. We screened for sequence variants in NAGS regulatory regions in patients suspected of having NAGSD and found a novel NAGS regulatory element in the first intron of the NAGS gene. We applied the same datamining approach to identify regulatory elements in the remaining urea cycle genes. In addition to the known promoters and enhancers of each gene, we identified several novel regulatory elements in their upstream regions and first introns. The identification of cis-regulatory elements of urea cycle genes and their associated transcription factors holds promise for uncovering shared mechanisms governing urea cycle gene expression and potentially leading to new treatments for urea cycle disorders.
Collapse
Affiliation(s)
- Ljubica Caldovic
- Center for Genetic Medicine ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
- Department of Genomics and Precision Medicine, School of Medicine and Health SciencesThe George Washington UniversityWashingtonDCUSA
| | - Julie J. Ahn
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
| | - Jacklyn Andricovic
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
| | - Veronica M. Balick
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
| | - Mallory Brayer
- Department of Biological SciencesThe George Washington UniversityWashingtonDCUSA
| | - Pamela A. Chansky
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
| | - Tyson Dawson
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
- AMPEL BioSolutions LLCCharlottesvilleVirginiaUSA
| | - Alex C. Edwards
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
- Center for Neuroscience ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
| | - Sara E. Felsen
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
- Center for Neuroscience ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
| | - Karim Ismat
- Center for Genetic Medicine ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
- Department of Genomics and Precision Medicine, School of Medicine and Health SciencesThe George Washington UniversityWashingtonDCUSA
| | - Sveta V. Jagannathan
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
| | - Brendan T. Mann
- Department of Microbiology, Immunology, and Tropical MedicineSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
| | - Jacob A. Medina
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
| | - Toshio Morizono
- College of Science and EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Michio Morizono
- College of Science and EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Shatha Salameh
- Department of Pharmacology & PhysiologySchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren's National HospitalWashingtonDCUSA
| | - Neerja Vashist
- Center for Genetic Medicine ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
- Department of Genomics and Precision Medicine, School of Medicine and Health SciencesThe George Washington UniversityWashingtonDCUSA
| | - Emily C. Williams
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
- The George Washington University Cancer Center, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDCUSA
| | - Zhe Zhou
- Department of Civil and Environmental EngineeringThe George Washington UniversityWashingtonDCUSA
| | - Hiroki Morizono
- Center for Genetic Medicine ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
- Department of Genomics and Precision Medicine, School of Medicine and Health SciencesThe George Washington UniversityWashingtonDCUSA
| |
Collapse
|
22
|
Gallego-Durán R, Hadjihambi A, Ampuero J, Rose CF, Jalan R, Romero-Gómez M. Ammonia-induced stress response in liver disease progression and hepatic encephalopathy. Nat Rev Gastroenterol Hepatol 2024; 21:774-791. [PMID: 39251708 DOI: 10.1038/s41575-024-00970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/11/2024]
Abstract
Ammonia levels are orchestrated by a series of complex interrelated pathways in which the urea cycle has a central role. Liver dysfunction leads to an accumulation of ammonia, which is toxic and is strongly associated with disruption of potassium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation, hypoxaemia and dysregulation of neurotransmission. Hyperammonaemia is a hallmark of hepatic encephalopathy and has been strongly associated with liver-related outcomes in patients with cirrhosis and liver failure. In addition to the established role of ammonia as a neurotoxin in the pathogenesis of hepatic encephalopathy, an increasing number of studies suggest that it can lead to hepatic fibrosis progression, sarcopenia, immune dysfunction and cancer. However, elevated systemic ammonia levels are uncommon in patients with metabolic dysfunction-associated steatotic liver disease. A clear causal relationship between ammonia-induced immune dysfunction and risk of infection has not yet been definitively proven. In this Review, we discuss the mechanisms by which ammonia produces its diverse deleterious effects and their clinical relevance in liver diseases, the importance of measuring ammonia levels for the diagnosis of hepatic encephalopathy, the prognosis of patients with cirrhosis and liver failure, and how our knowledge of inter-organ ammonia metabolism is leading to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Rocío Gallego-Durán
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Javier Ampuero
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| | - Rajiv Jalan
- Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, London, UK
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Manuel Romero-Gómez
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain.
| |
Collapse
|
23
|
Ghosh N, Mahalanobish S, Sil PC. Reprogramming of urea cycle in cancer: Mechanism, regulation and prospective therapeutic scopes. Biochem Pharmacol 2024; 228:116326. [PMID: 38815626 DOI: 10.1016/j.bcp.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Hepatic urea cycle, previously known as ornithine cycle, is the chief biochemical pathway that deals with the disposal of excessive nitrogen in form of urea, resulted from protein breakdown and concomitant condensation of ammonia. Enzymes involved in urea cycle are expressed differentially outside hepatic tissue and are mostly involved in production of arginine from citrulline in arginine-depleted condition. Inline, cancer cells frequently adapt metabolic rewiring to support sufficient biomass production in order to sustain tumor cell survival, multiplication and subsequent growth. For the accomplishment of this aim, metabolic reprogramming in cancer cells is set in way so that cellular nitrogen and carbon repertoire can be utilized and channelized maximally towards anabolic reactions. A strategy to meet such outcome is to cut down unnecessary catabolic reactions and nitrogen elimination. Thus, transfigured urea cycle is a hallmark of neoplasia. During oncogenesis, altered expression and regulation of enzymes involved in urea cycle is a revolutionary approach meet to maximum incorporation of nitrogen for sustaining tumor specific biogenesis. Currently, we have reviewed neoplasm-specific deregulations of urea cycle-enzymes in different types and stages of cancers suggesting its context-oriented dynamic nature. Considering such insight to be valuable in terms of prospective cancer diagnosis and therapeutics adaptive evolution of deregulated urea cycle has been enlightened.
Collapse
Affiliation(s)
- Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
24
|
Zuzak T, Bogaczyk A, Krata AA, Kamiński R, Paneth P, Kluz T. Isotopic Composition of C, N, and S as an Indicator of Endometrial Cancer. Cancers (Basel) 2024; 16:3169. [PMID: 39335141 PMCID: PMC11430076 DOI: 10.3390/cancers16183169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES The metabolic pathway of cancerous tissue differs from healthy tissue, leading to the unique isotopic composition of stable isotopes at their natural abundance. We have studied if these changes can be developed into diagnostic or prognostic tools in the case of endometrial cancer. METHODS Measurements of stable isotope ratios were performed using isotope ratio mass spectrometry for nitrogen, carbon, and sulfur isotopic assessment. Uterine tissue and serum samples were collected from patients and the control group. RESULTS At a natural abundance, the isotopic compositions of all three of the studied elements of uterus cancerous and healthy tissues are different. However, no correlation of the isotopic composition of the tissues with that of serum was found. CONCLUSIONS Differences in the isotopic composition of the tissues might be a potential prognostic tool. However, the lack of a correlation between the differences in the isotopic composition of the tissues and serum seems to exclude their application as diagnostic biomarkers, which, however, might be possible if a position-specific isotopic analysis is performed.
Collapse
Affiliation(s)
- Tomasz Zuzak
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, Szopena 2, 35-055 Rzeszow, Poland
| | - Anna Bogaczyk
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, Szopena 2, 35-055 Rzeszow, Poland
| | - Agnieszka Anna Krata
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Rafał Kamiński
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, Szopena 2, 35-055 Rzeszow, Poland
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| |
Collapse
|
25
|
De Martino M, Rathmell JC, Galluzzi L, Vanpouille-Box C. Cancer cell metabolism and antitumour immunity. Nat Rev Immunol 2024; 24:654-669. [PMID: 38649722 PMCID: PMC11365797 DOI: 10.1038/s41577-024-01026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Accumulating evidence suggests that metabolic rewiring in malignant cells supports tumour progression not only by providing cancer cells with increased proliferative potential and an improved ability to adapt to adverse microenvironmental conditions but also by favouring the evasion of natural and therapy-driven antitumour immune responses. Here, we review cancer cell-intrinsic and cancer cell-extrinsic mechanisms through which alterations of metabolism in malignant cells interfere with innate and adaptive immune functions in support of accelerated disease progression. Further, we discuss the potential of targeting such alterations to enhance anticancer immunity for therapeutic purposes.
Collapse
Affiliation(s)
- Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
| |
Collapse
|
26
|
Peris-Fernández M, Roca-Marugán MI, Amengual JL, Balaguer-Timor Á, Viejo-Boyano I, Soldevila-Orient A, Devesa-Such R, Sánchez-Pérez P, Hernández-Jaras J. Metabolic Pathways Affected in Patients Undergoing Hemodialysis and Their Relationship with Inflammation. Int J Mol Sci 2024; 25:9364. [PMID: 39273311 PMCID: PMC11394964 DOI: 10.3390/ijms25179364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Worldwide, 3.9 million individuals rely on kidney replacement therapy. They experience heightened susceptibility to cardiovascular diseases and mortality, alongside an increased risk of infections and malignancies, with inflammation being key to explaining this intensified risk. This study utilized semi-targeted metabolomics to explore novel metabolic pathways related to inflammation in this population. We collected pre- and post-session blood samples of patients who had already undergone one year of chronic hemodialysis and used liquid chromatography and high-resolution mass spectrometry to perform a metabolomic analysis. Afterwards, we employed both univariate (Mann-Whitney test) and multivariate (logistic regression with LASSO regularization) to identify metabolites associated with inflammation. In the univariate analysis, indole-3-acetaldehyde, 2-ketobutyric acid, and urocanic acid showed statistically significant decreases in median concentrations in the presence of inflammation. In the multivariate analysis, metabolites positively associated with inflammation included allantoin, taurodeoxycholic acid, norepinephrine, pyroglutamic acid, and L-hydroorotic acid. Conversely, metabolites showing negative associations with inflammation included benzoic acid, indole-3-acetaldehyde, methionine, citrulline, alphaketoglutarate, n-acetyl-ornithine, and 3-4-dihydroxibenzeneacetic acid. Non-inflamed patients exhibit preserved autophagy and reduced mitochondrial dysfunction. Understanding inflammation in this group hinges on the metabolism of arginine and the urea cycle. Additionally, the microbiota, particularly uricase-producing bacteria and those metabolizing tryptophan, play critical roles.
Collapse
Affiliation(s)
- María Peris-Fernández
- Health Research Institute Hospital La Fe, 46026 Valencia, Spain
- University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | | | - Julià L Amengual
- Big Data AI and Biostatistics Platform, Health Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Ángel Balaguer-Timor
- Big Data AI and Biostatistics Platform, Health Research Institute Hospital La Fe, 46026 Valencia, Spain
| | | | | | | | | | - Julio Hernández-Jaras
- Health Research Institute Hospital La Fe, 46026 Valencia, Spain
- University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| |
Collapse
|
27
|
Luo Y, Yu J, Lin Z, Wang X, Zhao J, Liu X, Qin W, Xu G. Metabolic characterization of sphere-derived prostate cancer stem cells reveals aberrant urea cycle in stemness maintenance. Int J Cancer 2024; 155:742-755. [PMID: 38647131 DOI: 10.1002/ijc.34967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
Alteration of cell metabolism is one of the essential characteristics of tumor growth. Cancer stem cells (CSCs) are the initiating cells of tumorigenesis, proliferation, recurrence, and other processes, and play an important role in therapeutic resistance and metastasis. Thus, identification of the metabolic profiles in prostate cancer stem cells (PCSCs) is critical to understanding prostate cancer progression. Using untargeted metabolomics and lipidomics methods, we show distinct metabolic differences between prostate cancer cells and PCSCs. Urea cycle is the most significantly altered metabolic pathway in PCSCs, the key metabolites arginine and proline are evidently elevated. Proline promotes cancer stem-like characteristics via the JAK2/STAT3 signaling pathway. Meanwhile, the enzyme pyrroline-5-carboxylate reductase 1 (PYCR1), which catalyzes the conversion of pyrroline-5-carboxylic acid to proline, is highly expressed in PCSCs, and the inhibition of PYCR1 suppresses the stem-like characteristics of prostate cancer cells and tumor growth. In addition, carnitine and free fatty acid levels are significantly increased, indicating reprogramming of fatty acid metabolism in PCSCs. Reduced sphingolipid levels and increased triglyceride levels are also observed. Collectively, our data illustrate the comprehensive landscape of the metabolic reprogramming of PCSCs and provide potential therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Yuanyuan Luo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiachuan Yu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhikun Lin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Jinhui Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Wangshu Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| |
Collapse
|
28
|
Herreros-Cabello A, Bosch-Nicolau P, Pérez-Molina JA, Salvador F, Monge-Maillo B, Rodriguez-Palomares JF, Ribeiro ALP, Sánchez-Montalvá A, Sabino EC, Norman FF, Fresno M, Gironès N, Molina I. Identification of Chagas disease biomarkers using untargeted metabolomics. Sci Rep 2024; 14:18768. [PMID: 39138245 PMCID: PMC11322173 DOI: 10.1038/s41598-024-69205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Untargeted metabolomic analysis is a powerful tool used for the discovery of novel biomarkers. Chagas disease (CD), caused by Trypanosoma cruzi, is a neglected tropical disease that affects 6-7 million people with approximately 30% developing cardiac manifestations. The most significant clinical challenge lies in its long latency period after acute infection, and the lack of surrogate markers to predict disease progression or cure. In this cross-sectional study, we analyzed sera from 120 individuals divided into four groups: 31 indeterminate CD, 41 chronic chagasic cardiomyopathy (CCC), 18 Latin Americans with other cardiomyopathies and 30 healthy volunteers. Using a high-throughput panel of 986 metabolites, we identified three distinct profiles among individuals with cardiomyopathy, indeterminate CD and healthy volunteers. After a more stringent analysis, we identified some potential biomarkers. Among peptides, phenylacetylglutamine and fibrinopeptide B (1-13) exhibited an increasing trend from controls to ICD and CCC. Conversely, reduced levels of bilirubin and biliverdin alongside elevated urobilin correlated with disease progression. Finally, elevated levels of cystathionine, phenol glucuronide and vanillactate among amino acids distinguished CCC individuals from ICD and controls. Our novel exploratory study using metabolomics identified potential biomarker candidates, either alone or in combination that if confirmed, can be translated into clinical practice.
Collapse
Affiliation(s)
- Alfonso Herreros-Cabello
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Pau Bosch-Nicolau
- Infectious Diseases Department, Vall d'Hebron University Hospital, International Health Unit Vall d'Hebron-Drassanes, PROSICS Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José A Pérez-Molina
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Fernando Salvador
- Infectious Diseases Department, Vall d'Hebron University Hospital, International Health Unit Vall d'Hebron-Drassanes, PROSICS Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Begoña Monge-Maillo
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Jose F Rodriguez-Palomares
- Department of Cardiology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Adrián Sánchez-Montalvá
- Infectious Diseases Department, Vall d'Hebron University Hospital, International Health Unit Vall d'Hebron-Drassanes, PROSICS Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ester Cerdeira Sabino
- Faculdade de Medicina, Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, Brazil
| | - Francesca F Norman
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Instituto Universitario de Biología Molecular, Universidad Autónoma de Madrid (IUBM-UAM), Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Instituto Universitario de Biología Molecular, Universidad Autónoma de Madrid (IUBM-UAM), Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Madrid, Spain
| | - Israel Molina
- Infectious Diseases Department, Vall d'Hebron University Hospital, International Health Unit Vall d'Hebron-Drassanes, PROSICS Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
- Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
29
|
Wang J, Zhou C, Lu L, Wang S, Zhang Q, Liu Z. Differentiated metabolomic profiling reveals plasma amino acid signatures for primary glomerular disease. Amino Acids 2024; 56:46. [PMID: 39019998 PMCID: PMC11255010 DOI: 10.1007/s00726-024-03407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Primary glomerular disease (PGD) is an idiopathic cause of renal glomerular lesions that is characterized by proteinuria or hematuria and is the leading cause of chronic kidney disease (CKD). The identification of circulating biomarkers for the diagnosis of PGD requires a thorough understanding of the metabolic defects involved. In this study, ultra-high performance liquid chromatography-tandem mass spectrometry was performed to characterize the amino acid (AA) profiles of patients with pathologically diagnosed PGD, including minimal change disease (MCD), focal segmental glomerular sclerosis (FSGS), membranous nephropathy, and immunoglobulin A nephropathy. The plasma concentrations of asparagine and ornithine were low, and that of aspartic acid was high, in patients with all the pathologic types of PGD, compared to healthy controls. Two distinct diagnostic models were generated using the differential plasma AA profiles using logistic regression and receiver operating characteristic analyses, with areas under the curves of 1.000 and accuracies up to 100.0% in patients with MCD and FSGS. In conclusion, the progression of PGD is associated with alterations in AA profiles, The present findings provide a theoretical basis for the use of AAs as a non-invasive, real-time, rapid, and simple biomarker for the diagnosis of various pathologic types of PGD.
Collapse
Affiliation(s)
- Jiao Wang
- Department of geriatric endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China
| | - Chunyu Zhou
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China
| | - Liqian Lu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China
| | - Shoujun Wang
- Department of endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qing Zhang
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China.
| | - Zhangsuo Liu
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
30
|
Zhan G, Hu L, Li H, Dai J, Zhao L, Zheng Q, Zou X, Shi Y, Wang J, Hou W, Yao Y, Zhang L. Highly selective urea electrooxidation coupled with efficient hydrogen evolution. Nat Commun 2024; 15:5918. [PMID: 39004672 PMCID: PMC11247087 DOI: 10.1038/s41467-024-50343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
Electrochemical urea oxidation offers a sustainable avenue for H2 production and wastewater denitrification within the water-energy nexus; however, its wide application is limited by detrimental cyanate or nitrite production instead of innocuous N2. Herein we demonstrate that atomically isolated asymmetric Ni-O-Ti sites on Ti foam anode achieve a N2 selectivity of 99%, surpassing the connected symmetric Ni-O-Ni counterparts in documented Ni-based electrocatalysts with N2 selectivity below 55%, and also deliver a H2 evolution rate of 22.0 mL h-1 when coupled to a Pt counter cathode under 213 mA cm-2 at 1.40 VRHE. These asymmetric sites, featuring oxygenophilic Ti adjacent to Ni, favor interaction with the carbonyl over amino groups in urea, thus preventing premature resonant C⎓N bond breakage before intramolecular N-N coupling towards N2 evolution. A prototype device powered by a commercial Si photovoltaic cell is further developed for solar-powered on-site urine processing and decentralized H2 production.
Collapse
Affiliation(s)
- Guangming Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Lufa Hu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Hao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.
| | - Jie Dai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Long Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Qian Zheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xingyue Zou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yanbiao Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jiaxian Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Wei Hou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yancai Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.
| |
Collapse
|
31
|
Wu Z, Bezwada D, Cai F, Harris RC, Ko B, Sondhi V, Pan C, Vu HS, Nguyen PT, Faubert B, Cai L, Chen H, Martin-Sandoval M, Do D, Gu W, Zhang Y, Zhang Y, Brooks B, Kelekar S, Zacharias LG, Oaxaca KC, Patricio JS, Mathews TP, Garcia-Bermudez J, Ni M, DeBerardinis RJ. Electron transport chain inhibition increases cellular dependence on purine transport and salvage. Cell Metab 2024; 36:1504-1520.e9. [PMID: 38876105 PMCID: PMC11240302 DOI: 10.1016/j.cmet.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 03/11/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Mitochondria house many metabolic pathways required for homeostasis and growth. To explore how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts from patients with various mitochondrial disorders and cancer cells with electron transport chain (ETC) blockade. These analyses revealed extensive perturbations in purine metabolism, and stable isotope tracing demonstrated that ETC defects suppress de novo purine synthesis while enhancing purine salvage. In human lung cancer, tumors with markers of low oxidative mitochondrial metabolism exhibit enhanced expression of the salvage enzyme hypoxanthine phosphoribosyl transferase 1 (HPRT1) and high levels of the HPRT1 product inosine monophosphate. Mechanistically, ETC blockade activates the pentose phosphate pathway, providing phosphoribosyl diphosphate to drive purine salvage supplied by uptake of extracellular bases. Blocking HPRT1 sensitizes cancer cells to ETC inhibition. These findings demonstrate how cells remodel purine metabolism upon ETC blockade and uncover a new metabolic vulnerability in tumors with low respiration.
Collapse
Affiliation(s)
- Zheng Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Divya Bezwada
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Feng Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert C Harris
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bookyung Ko
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Varun Sondhi
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunxiao Pan
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hieu S Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Phong T Nguyen
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brandon Faubert
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Ling Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongli Chen
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Misty Martin-Sandoval
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duyen Do
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wen Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuanyuan Zhang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bailey Brooks
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sherwin Kelekar
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - K Celeste Oaxaca
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joao S Patricio
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Javier Garcia-Bermudez
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Ni
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
32
|
Lim LQJ, Adler L, Hajaj E, Soria LR, Perry RBT, Darzi N, Brody R, Furth N, Lichtenstein M, Bab-Dinitz E, Porat Z, Melman T, Brandis A, Malitsky S, Itkin M, Aylon Y, Ben-Dor S, Orr I, Pri-Or A, Seger R, Shaul Y, Ruppin E, Oren M, Perez M, Meier J, Brunetti-Pierri N, Shema E, Ulitsky I, Erez A. ASS1 metabolically contributes to the nuclear and cytosolic p53-mediated DNA damage response. Nat Metab 2024; 6:1294-1309. [PMID: 38858597 PMCID: PMC11272581 DOI: 10.1038/s42255-024-01060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/30/2024] [Indexed: 06/12/2024]
Abstract
Downregulation of the urea cycle enzyme argininosuccinate synthase (ASS1) in multiple tumors is associated with a poor prognosis partly because of the metabolic diversion of cytosolic aspartate for pyrimidine synthesis, supporting proliferation and mutagenesis owing to nucleotide imbalance. Here, we find that prolonged loss of ASS1 promotes DNA damage in colon cancer cells and fibroblasts from subjects with citrullinemia type I. Following acute induction of DNA damage with doxorubicin, ASS1 expression is elevated in the cytosol and the nucleus with at least a partial dependency on p53; ASS1 metabolically restrains cell cycle progression in the cytosol by restricting nucleotide synthesis. In the nucleus, ASS1 and ASL generate fumarate for the succination of SMARCC1, destabilizing the chromatin-remodeling complex SMARCC1-SNF5 to decrease gene transcription, specifically in a subset of the p53-regulated cell cycle genes. Thus, following DNA damage, ASS1 is part of the p53 network that pauses cell cycle progression, enabling genome maintenance and survival. Loss of ASS1 contributes to DNA damage and promotes cell cycle progression, likely contributing to cancer mutagenesis and, hence, adaptability potential.
Collapse
Affiliation(s)
- Lisha Qiu Jin Lim
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lital Adler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Emma Hajaj
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Medicine D, Beilinson Hospital, Petah Tikva, Israel
| | - Leandro R Soria
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Rotem Ben-Tov Perry
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Darzi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ruchama Brody
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Furth
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Lichtenstein
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elizabeta Bab-Dinitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Tevie Melman
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Aylon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Orr
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Pri-Or
- The De Botton Protein Profiling Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Rony Seger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Shaul
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eytan Ruppin
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Minervo Perez
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Jordan Meier
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, Medical Genetics, University of Naples Federico II, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - Efrat Shema
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
33
|
Feng X, Ji Z, Fan X, Kong Y, Yu Y, Shao Y, Meng J, Zhou X, Tang R, Ren C, Yang G. ASS1 enhances anoikis resistance via AMPK/CPT1A-mediated fatty acid metabolism in ovarian cancer. Cancer Lett 2024:217082. [PMID: 38914306 DOI: 10.1016/j.canlet.2024.217082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Metastasis is the leading cause of death in ovarian carcinoma (OC), whereas anoikis resistance is a critical step for the survival of the detached OC cells. Despite extensive research, targeting anoikis resistance remains a challenge. Here, we first identified that argininosuccinate synthase 1 (ASS1), a key enzyme in urea cycle markedly upregulated in OC cells of detached culture, is associated with increased anoikis resistance and metastasis. Disruption of the AMP/ATP balance by overexpressing ASS1 activates AMPK and the downstream factor CPT1A. Then, we further found that ASS1 enhances FAO, leading to higher ATP generation and lipid utilization. Inhibition of CPT1A reverses the ASS1-induced FAO, which interrupts the AMP/ATP balance and the activation of AMPK. These results extend ASS1's relevance beyond nitrogen and fatty acid metabolisms, and may provide some new insights into OC metabolism and represent a shift from traditional views. In conclusion, our study reveals a mechanism that the ASS1/AMPK/CPT1A axis is crucial for anoikis resistance and metastasis, which may open up a new avenue for the intervention of OC.
Collapse
Affiliation(s)
- Xu Feng
- Cancer Institute & Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhaodong Ji
- Cancer Institute & Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Xiaoxi Fan
- Cancer Institute & Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Kong
- Cancer Institute & Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yinjue Yu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Central Laboratory, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Yang Shao
- Cancer Institute & Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiao Meng
- Cancer Institute & Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyan Zhou
- Cancer Institute & Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ranran Tang
- Nanjing Medical Research Center for Women and Children, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.
| | - Chunxia Ren
- Center for Reproductive Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Gong Yang
- Cancer Institute & Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Central Laboratory, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, China.
| |
Collapse
|
34
|
Zhang W, Lai Z, Liang X, Yuan Z, Yuan Y, Wang Z, Peng P, Xia L, Yang X, Li Z. Metabolomic biomarkers for benign conditions and malignant ovarian cancer: Advancing early diagnosis. Clin Chim Acta 2024; 560:119734. [PMID: 38777245 DOI: 10.1016/j.cca.2024.119734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Ovarian cancer (OC) is a major global cause of death among gynecological cancers, with a high mortality rate. Early diagnosis, distinguishing between benign conditions and early malignant OC forms, is vital for successful treatment. This research investigates serum metabolites to find diagnostic biomarkers for early OC identification. METHODS Metabolomic profiles derived from the serum of 60 patients with benign conditions and 60 patients with malignant OC were examined using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Comparative analysis revealed differential metabolites linked to OC, aiding biomarker identification for early-diagnosis of OC via machine learning features. The predictive ability of these biomarkers was evaluated against the traditional biomarker, cancer antigen 125 (CA125). RESULTS 84 differential metabolites were identified, including 2-Thiothiazolidine-4-carboxylic acid (TTCA), Methionyl-Cysteine, and Citrulline that could serve as potential biomarkers to identify benign conditions and malignant OC. In the diagnosis of early-stage OC, the area under the curve (AUC) for Citrulline was 0.847 (95 % Confidence Interval (CI): 0.719-0.974), compared to 0.770 (95 % CI: 0.596-0.944) for TTCA, and 0.754 for Methionine-Cysteine (95 % CI: 0.589-0.919). These metabolites demonstrate a superior diagnostic capability relative to CA125, which has an AUC of 0.689 (95 % CI: 0.448-0.931). Among these biomarkers, Citrulline stands out as the most promising. Additionally, in the diagnosis of benign conditions and malignant OC, using logistic regression to combine potential biomarkers with CA125 has an AUC of 0.987 (95 % CI: 0.9708-1) has been proven to be more effective than relying solely on the traditional biomarker CA125 with an AUC of 0.933 (95 % CI: 0.870-0.996). Furthermore, among all the differential metabolites, lipid metabolites dominate, significantly impacting glycerophospholipid metabolism pathway. CONCLUSION The discovered serum metabolite biomarkers demonstrate excellent diagnostic performance for distinguishing between benign conditions and malignant OC and for early diagnosis of malignant OC.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Xiaoyue Liang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, 1 Shuai Fu Yuan, Beijing 100730, China
| | - Zhonghao Yuan
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Yize Yuan
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhigang Wang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Peng Peng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, 1 Shuai Fu Yuan, Beijing 100730, China.
| | - Liangyu Xia
- Department of Clinical Laboratory, Peking Union Medical College Hospital, 1 Shuai Fu Yuan, Beijing 100730, China.
| | - XiaoLin Yang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China.
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China.
| |
Collapse
|
35
|
Gai X, Liu Y, Lan X, Chen L, Yuan T, Xu J, Li Y, Zheng Y, Yan Y, Yang L, Fu Y, Tang S, Cao S, Dai X, Zhu H, Geng M, Ding J, Pu C, Huang M. Oncogenic KRAS Induces Arginine Auxotrophy and Confers a Therapeutic Vulnerability to SLC7A1 Inhibition in Non-Small Cell Lung Cancer. Cancer Res 2024; 84:1963-1977. [PMID: 38502865 DOI: 10.1158/0008-5472.can-23-2095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/08/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
The urea cycle is frequently rewired in cancer cells to meet the metabolic demands of cancer. Elucidation of the underlying mechanism by which oncogenic signaling mediates urea cycle reprogramming could help identify targetable metabolic vulnerabilities. In this study, we discovered that oncogenic activation of KRAS in non-small cell lung cancer (NSCLC) silenced the expression of argininosuccinate synthase 1 (ASS1), a urea cycle enzyme that catalyzes the production of arginine from aspartate and citrulline, and thereby diverted the utilization of aspartate to pyrimidine synthesis to meet the high demand for DNA replication. Specifically, KRAS signaling facilitated a hypoacetylated state in the promoter region of the ASS1 gene in a histone deacetylase 3-dependent manner, which in turn impeded the recruitment of c-MYC for ASS1 transcription. ASS1 suppression in KRAS-mutant NSCLC cells impaired the biosynthesis of arginine and rendered a dependency on the arginine transmembrane transporter SLC7A1 to import extracellular arginine. Depletion of SLC7A1 in both patient-derived organoid and xenograft models inhibited KRAS-driven NSCLC growth. Together, these findings uncover the role of oncogenic KRAS in rewiring urea cycle metabolism and identify SLC7A1-mediated arginine uptake as a therapeutic vulnerability for treating KRAS-mutant NSCLC. SIGNIFICANCE ASS1 deficiency is induced by mutant KRAS in NSCLC to facilitate DNA synthesis and creates a dependency on SLC7A1, revealing dietary arginine restriction and SLC7A1 inhibition as potential therapeutic strategies.
Collapse
Affiliation(s)
- Xiameng Gai
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yingluo Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaojing Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Luoyi Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Tao Yuan
- Institute of Pharmacology and Toxicology, Zhejiang Province Key laboratory of Anticancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yize Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ying Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yiyang Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liya Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yixian Fu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shuai Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Siyuwei Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoyang Dai
- Institute of Pharmacology and Toxicology, Zhejiang Province Key laboratory of Anticancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key laboratory of Anticancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jian Ding
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Congying Pu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| |
Collapse
|
36
|
Fu B, Liu W, Wang Y, Li G, Wang Y, Huang X, Shi H, Qin C. Design and Synthesis of Thiourea-Conjugating Organic Arsenic D-Glucose with Anticancer Activities. Molecules 2024; 29:2850. [PMID: 38930915 PMCID: PMC11206549 DOI: 10.3390/molecules29122850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Organic arsenic compounds such as p-aminophenylarsine oxide (p-APAO) are easier for structural optimization to improve drug-like properties such as pharmacokinetic properties, therapeutic efficacy, and target selectivity. In order to strengthen the selectivity of 4-(1,3,2-dithiarsinan-2-yl) aniline 7 to tumor cell, a thiourea moiety was used to strengthen the anticancer activity. To avoid forming a mixture of α/β anomers, the strategy of 2-acetyl's neighboring group participation was used to lock the configuration of 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl isothiocyanate from 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide. 1-(4-(1,3,2-dithiarsinan-2-yl) aniline)-2-N-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranos-1-yl)-thiourea 2 can increase the selectivity of human colon cancer cells HCT-116 (0.82 ± 0.06 μM vs. 1.82 ± 0.07 μM) to human embryonic kidney 293T cells (1.38 ± 0.01 μM vs. 1.22 ± 0.06 μM) from 0.67 to 1.68, suggesting a feasible approach to improve the therapeutic index of arsenic-containing compounds as chemotherapeutic agents.
Collapse
Affiliation(s)
- Boqiao Fu
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (W.L.); (Y.W.); (C.Q.)
| | - Wenxuan Liu
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (W.L.); (Y.W.); (C.Q.)
| | - Yufeng Wang
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (W.L.); (Y.W.); (C.Q.)
| | - Guorui Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the “Double-First Class” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China;
| | - Yingsha Wang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Biomedical Sciences, Hunan University, Changsha 410082, China;
| | - Xinyuan Huang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life and Technology, Hubei Engineering University, Xiaogan 432000, China; (X.H.); (H.S.)
| | - Hongan Shi
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life and Technology, Hubei Engineering University, Xiaogan 432000, China; (X.H.); (H.S.)
| | - Caiqin Qin
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (W.L.); (Y.W.); (C.Q.)
| |
Collapse
|
37
|
Su HH, Lin ES, Huang YH, Lien Y, Huang CY. Inhibition of SARS-CoV-2 Nsp9 ssDNA-Binding Activity and Cytotoxic Effects on H838, H1975, and A549 Human Non-Small Cell Lung Cancer Cells: Exploring the Potential of Nepenthes miranda Leaf Extract for Pulmonary Disease Treatment. Int J Mol Sci 2024; 25:6120. [PMID: 38892307 PMCID: PMC11173125 DOI: 10.3390/ijms25116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Carnivorous pitcher plants from the genus Nepenthes are renowned for their ethnobotanical uses. This research explores the therapeutic potential of Nepenthes miranda leaf extract against nonstructural protein 9 (Nsp9) of SARS-CoV-2 and in treating human non-small cell lung carcinoma (NSCLC) cell lines. Nsp9, essential for SARS-CoV-2 RNA replication, was expressed and purified, and its interaction with ssDNA was assessed. Initial tests with myricetin and oridonin, known for targeting ssDNA-binding proteins and Nsp9, respectively, did not inhibit the ssDNA-binding activity of Nsp9. Subsequent screenings of various N. miranda extracts identified those using acetone, methanol, and ethanol as particularly effective in disrupting Nsp9's ssDNA-binding activity, as evidenced by electrophoretic mobility shift assays. Molecular docking studies highlighted stigmast-5-en-3-ol and lupenone, major components in the leaf extract of N. miranda, as potential inhibitors. The cytotoxic properties of N. miranda leaf extract were examined across NSCLC lines H1975, A549, and H838, focusing on cell survival, apoptosis, and migration. Results showed a dose-dependent cytotoxic effect in the following order: H1975 > A549 > H838 cells, indicating specificity. Enhanced anticancer effects were observed when the extract was combined with afatinib, suggesting synergistic interactions. Flow cytometry indicated that N. miranda leaf extract could induce G2 cell cycle arrest in H1975 cells, potentially inhibiting cancer cell proliferation. Gas chromatography-mass spectrometry (GC-MS) enabled the tentative identification of the 19 most abundant compounds in the leaf extract of N. miranda. These outcomes underscore the dual utility of N. miranda leaf extract in potentially managing SARS-CoV-2 infection through Nsp9 inhibition and offering anticancer benefits against lung carcinoma. These results significantly broaden the potential medical applications of N. miranda leaf extract, suggesting its use not only in traditional remedies but also as a prospective treatment for pulmonary diseases. Overall, our findings position the leaf extract of N. miranda as a promising source of natural compounds for anticancer therapeutics and antiviral therapies, warranting further investigation into its molecular mechanisms and potential clinical applications.
Collapse
Affiliation(s)
- Hsin-Hui Su
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 717, Taiwan
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Yi Lien
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
38
|
Chen Y, Liu H, Wang C, Chen W, Li L, Wu J, Wang G, Ling GS, Fu R. The histone demethylase JMJD1C regulates CPS1 expression and promotes the proliferation of paroxysmal nocturnal haemoglobinuria clones through cell metabolic reprogramming. Br J Haematol 2024; 204:2468-2479. [PMID: 38650379 DOI: 10.1111/bjh.19477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024]
Abstract
Paroxysmal nocturnal haemoglobinuria (PNH) is a disorder resulting from erythrocyte membrane deficiencies caused by PIG-A gene mutations. While current treatments alleviate symptoms, they fail to address the underlying cause of the disease-the pathogenic PNH clones. In this study, we found that the expression of carbamoyl phosphate synthetase 1 (CPS1) was downregulated in PNH clones, and the level of CPS1 was negatively correlated with the proportion of PNH clones. Using PIG-A knockout K562 (K562 KO) cells, we demonstrated that CPS1 knockdown increased cell proliferation and altered cell metabolism, suggesting that CPS1 participates in PNH clonal proliferation through metabolic reprogramming. Furthermore, we observed an increase in the expression levels of the histone demethylase JMJD1C in PNH clones, and JMJD1C expression was negatively correlated with CPS1 expression. Knocking down JMJD1C in K562 KO cells upregulated CPS1 and H3K36me3 expression, decreased cell proliferation and increased cell apoptosis. Chromatin immunoprecipitation analysis further demonstrated that H3K36me3 regulated CPS1 expression. Finally, we demonstrated that histone demethylase inhibitor JIB-04 can suppressed K562 KO cell proliferation and reduced the proportion of PNH clones in PNH mice. In conclusion, aberrant regulation of the JMJD1C-H3K36me3-CPS1 axis contributes to PNH clonal proliferation. Targeting JMJD1C with a specific inhibitor unveils a potential strategy for treating PNH patients.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
- LKS Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
| | - Chaomeng Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
| | - Weixin Chen
- LKS Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Liyan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
| | - Junshu Wu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
| | - Guanrou Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
| | - Guang Sheng Ling
- LKS Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- Department of Medicine, LKS Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
| |
Collapse
|
39
|
Tangudu NK, Buj R, Wang H, Wang J, Cole AR, Uboveja A, Fang R, Amalric A, Yang B, Chatoff A, Crispim CV, Sajjakulnukit P, Lyons MA, Cooper K, Hempel N, Lyssiotis CA, Chandran UR, Snyder NW, Aird KM. De Novo Purine Metabolism is a Metabolic Vulnerability of Cancers with Low p16 Expression. CANCER RESEARCH COMMUNICATIONS 2024; 4:1174-1188. [PMID: 38626341 PMCID: PMC11064835 DOI: 10.1158/2767-9764.crc-23-0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/04/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in approximately 50% of all human cancers. In its canonical role, p16 inhibits the G1-S-phase cell cycle progression through suppression of cyclin-dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. However, the broader impact of p16/CDKN2A loss on other nucleotide metabolic pathways and potential therapeutic targets remains unexplored. Using CRISPR knockout libraries in isogenic human and mouse melanoma cell lines, we determined several nucleotide metabolism genes essential for the survival of cells with loss of p16/CDKN2A. Consistently, many of these genes are upregulated in melanoma cells with p16 knockdown or endogenously low CDKN2A expression. We determined that cells with low p16/CDKN2A expression are sensitive to multiple inhibitors of de novo purine synthesis, including antifolates. Finally, tumors with p16 knockdown were more sensitive to the antifolate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2Alow tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents. SIGNIFICANCE Antimetabolites were the first chemotherapies, yet many have failed in the clinic due to toxicity and poor patient selection. Our data suggest that p16 loss provides a therapeutic window to kill cancer cells with widely-used antifolates with relatively little toxicity.
Collapse
Affiliation(s)
- Naveen Kumar Tangudu
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Raquel Buj
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hui Wang
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jiefei Wang
- Department of Biomedical Informatics and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Aidan R. Cole
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Apoorva Uboveja
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Richard Fang
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amandine Amalric
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Baixue Yang
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Tsinghua University School of Medicine, Beijing, P.R. China
| | - Adam Chatoff
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Claudia V. Crispim
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Maureen A. Lyons
- Genomics Facility, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kristine Cooper
- Biostatistics Facility, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nadine Hempel
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Uma R. Chandran
- Department of Biomedical Informatics and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nathaniel W. Snyder
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Katherine M. Aird
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
40
|
Nakagawa S, Yamaguchi K, Takane K, Tabata S, Ikenoue T, Furukawa Y. Wnt/β-catenin signaling regulates amino acid metabolism through the suppression of CEBPA and FOXA1 in liver cancer cells. Commun Biol 2024; 7:510. [PMID: 38684876 PMCID: PMC11058205 DOI: 10.1038/s42003-024-06202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Deregulation of the Wnt/β-catenin pathway is associated with the development of human cancer including colorectal and liver cancer. Although we previously showed that histidine ammonia lyase (HAL) was transcriptionally reduced by the β-catenin/TCF complex in liver cancer cells, the mechanism(s) of its down-regulation by the complex remain to be clarified. In this study, we search for the transcription factor(s) regulating HAL, and identify CEBPA and FOXA1, two factors whose expression is suppressed by the knockdown of β-catenin or TCF7L2. In addition, RNA-seq analysis coupled with genome-wide mapping of CEBPA- and FOXA1-binding regions reveals that these two factors also increase the expression of arginase 1 (ARG1) that catalyzes the hydrolysis of arginine. Metabolome analysis discloses that activated Wnt signaling augments intracellular concentrations of histidine and arginine, and that the signal also increases the level of lactic acid suggesting the induction of the Warburg effect in liver cancer cells. Further analysis reveals that the levels of metabolites of the urea cycle and genes coding its related enzymes are also modulated by the Wnt signaling. These findings shed light on the altered cellular metabolism in the liver by the Wnt/β-catenin pathway through the suppression of liver-enriched transcription factors including CEBPA and FOXA1.
Collapse
Affiliation(s)
- Saya Nakagawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| | - Kiyoko Takane
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Sho Tabata
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata, 997-0052, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
41
|
Luo Y, Zhai B, Li M, Zhou W, Yang J, Shu Y, Fang Y. Self-adhesive, surface adaptive, regenerable SERS substrates for in-situ detection of urea on bio-surfaces. J Colloid Interface Sci 2024; 660:513-521. [PMID: 38262178 DOI: 10.1016/j.jcis.2024.01.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Wearable SERS substrates have gained substantial attention for health monitoring and other applications. Current designs often rely on conventional polymer substrates, leading to discomfort and complexity due to the need of additional adhesive layers. To address the issues, we fabricate a flexible, uniform, ultrathin, transparent and porous SERS substrate via depositing Ag nanoparticles (AgNPs) onto the CdS nanowires (CdSNWs) grown on the surface of a prepared nanofilm (AgNPs-CdSNWs/nanofilm). Unlike the wearable SERS substrates reported in literature, the one presented in this work is self-adhesive to a variety of surfaces, which simplifies structure, enhances comfort and improves performance. Importantly, the new SERS substrate as developed is highly stable and reusable. Artificial sample tests revealed that the substrate showed a great enhancement factor (EF) of 4.2 × 107 and achieved a remarkable detection limit (DL) of 1.0 × 10-14 M for rhodamine 6G (R6G), which are among the highest records observed in wearable SERS substrates reported in literature. Moreover, the substrate enables at real-time and in-situ reliable monitoring of urea dynamics in human sweat and plant leaves, indicating its applicability for health analysis and in precision agriculture.
Collapse
Affiliation(s)
- Yan Luo
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Binbin Zhai
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Min Li
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Wenjingli Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jinglun Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yuanhong Shu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
42
|
García-Díaz HC, Eremiev S, Gómez-Alonso J, Veas Rodriguez J, Farriols A, Carreras MJ, Serrano C. Hyperammonemic encephalopathy after tyrosine kinase inhibitors: A literature review and a case example. J Oncol Pharm Pract 2024; 30:576-583. [PMID: 38258317 DOI: 10.1177/10781552231225188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
OBJECTIVE To review the evidence of uncommon but fatal adverse event of hyperammonemic encephalopathy by tyrosine kinase inhibitors (TKI) and the possible mechanisms underlying this condition and to describe the case of a patient that developed drug-induced hyperammonemic encephalopathy related to TKI. DATA SOURCES Literature search of different databases was performed for studies published from 1 January 1992 to 7 May 2023. The search terms utilized were hyperammonemic encephalopathy, TKI, apatinib, pazopanib, sunitinib, imatinib, sorafenib, regorafenib, trametinib, urea cycle regulation, sorafenib, carbamoyl-phosphate synthetase 1, ornithine transcarbamylase, argininosuccinate synthetase, argininosuccinate lyase, arginase 1, Mitogen activated protein kinases (MAPK) pathway and mTOR pathway, were used individually search or combined. DATA SUMMARY Thirty-seven articles were included. The articles primarily focused in hyperammonemic encephalopathy case reports, management of hyperammonemic encephalopathy, urea cycle regulation, autophagy, mTOR and MAPK pathways, and TKI. CONCLUSION Eighteen cases of hyperammonemic encephalopathy were reported in the literature from various multitargeted TKI. The mechanism of this event is not well-understood but some authors have hypothesized vascular causes since some of TKI are antiangiogenic, however our literature review shows a possible relationship between the urea cycle and the molecular inhibition exerted by TKI. More preclinical evidence is required to unveil the biochemical mechanisms responsible involved in this process and clinical studies are necessary to shed light on the prevalence, risk factors, management and prevention of this adverse event. It is important to monitor neurological symptoms and to measure ammonia levels when manifestations are detected.
Collapse
Affiliation(s)
| | - Simeon Eremiev
- Medical Oncology Service, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Javier Gómez-Alonso
- Department of Pharmacy Service, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | | | - Anna Farriols
- Department of Pharmacy Service, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Maria J Carreras
- Department of Pharmacy Service, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - César Serrano
- Medical Oncology Service, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| |
Collapse
|
43
|
Hajaj E, Pozzi S, Erez A. From the Inside Out: Exposing the Roles of Urea Cycle Enzymes in Tumors and Their Micro and Macro Environments. Cold Spring Harb Perspect Med 2024; 14:a041538. [PMID: 37696657 PMCID: PMC10982720 DOI: 10.1101/cshperspect.a041538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Catabolic pathways change in anabolic diseases such as cancer to maintain metabolic homeostasis. The liver urea cycle (UC) is the main catabolic pathway for disposing excess nitrogen. Outside the liver, the UC enzymes are differentially expressed based on each tissue's needs for UC intermediates. In tumors, there are changes in the expression of UC enzymes selected for promoting tumorigenesis by increasing the availability of essential UC substrates and products. Consequently, there are compensatory changes in the expression of UC enzymes in the cells that compose the tumor microenvironment. Moreover, extrahepatic tumors induce changes in the expression of the liver UC, which contribute to the systemic manifestations of cancer, such as weight loss. Here, we review the multilayer changes in the expression of UC enzymes throughout carcinogenesis. Understanding the changes in UC expression in the tumor and its micro and macro environment can help identify biomarkers for early cancer diagnosis and vulnerabilities that can be targeted for therapy.
Collapse
Affiliation(s)
- Emma Hajaj
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sabina Pozzi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
44
|
Buhas BA, Toma V, Beauval JB, Andras I, Couți R, Muntean LAM, Coman RT, Maghiar TA, Știufiuc RI, Lucaciu CM, Crisan N. Label-Free SERS of Urine Components: A Powerful Tool for Discriminating Renal Cell Carcinoma through Multivariate Analysis and Machine Learning Techniques. Int J Mol Sci 2024; 25:3891. [PMID: 38612705 PMCID: PMC11011951 DOI: 10.3390/ijms25073891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The advent of Surface-Enhanced Raman Scattering (SERS) has enabled the exploration and detection of small molecules, particularly in biological fluids such as serum, blood plasma, urine, saliva, and tears. SERS has been proposed as a simple diagnostic technique for various diseases, including cancer. Renal cell carcinoma (RCC) ranks as the sixth most commonly diagnosed cancer in men and is often asymptomatic, with detection occurring incidentally. The onset of symptoms typically aligns with advanced disease, aggressive histology, and unfavorable prognosis, and therefore new methods for an early diagnosis are needed. In this study, we investigated the utility of label-free SERS in urine, coupled with two multivariate analysis approaches: Principal Component Analysis combined with Linear Discriminant Analysis (PCA-LDA) and Support Vector Machine (SVM), to discriminate between 50 RCC patients and 44 healthy donors. Employing LDA-PCA, we achieved a discrimination accuracy of 100% using 13 principal components, and an 88% accuracy in discriminating between different RCC stages. The SVM approach yielded a training accuracy of 100%, a validation accuracy of 99% for discriminating between RCC and controls, and an 80% accuracy for discriminating between stages. The comparative analysis of raw and normalized SERS spectral data shows that while raw data disclose relative concentration variations in urine metabolites between the two classes, the normalization of spectral data significantly improves the accuracy of discrimination. Moreover, the selection of principal components with markedly distinct scores between the two classes serves to alleviate overfitting risks and reduces the number of components employed for discrimination. We obtained the accuracy of the discrimination between the RCC patients cases and healthy donors of 90% for three PCs and a linear discrimination function, and a 88% accuracy of discrimination between stages using six PCs, mitigating practically the risk of overfitting and increasing the robustness of our analysis. Our findings underscore the potential of label-free SERS of urine in conjunction with chemometrics for non-invasive and early RCC detection.
Collapse
Affiliation(s)
- Bogdan Adrian Buhas
- Department of Urology, La Croix du Sud Hospital, 52 Chemin de Ribaute St., 31130 Quint Fonsegrives, France; (B.A.B.); (J.-B.B.)
- Department of Urology, Clinical Municipal Hospital, 11 Tabacarilor St., 400139 Cluj-Napoca, Romania; (I.A.); (N.C.)
- Faculty of Medicine and Pharmacy, University of Oradea, 1 Universitatii St., 410087 Oradea, Romania; (R.C.); (T.A.M.)
| | - Valentin Toma
- Department of Nanobiophysics, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Pasteur St., 400337 Cluj-Napoca, Romania;
| | - Jean-Baptiste Beauval
- Department of Urology, La Croix du Sud Hospital, 52 Chemin de Ribaute St., 31130 Quint Fonsegrives, France; (B.A.B.); (J.-B.B.)
| | - Iulia Andras
- Department of Urology, Clinical Municipal Hospital, 11 Tabacarilor St., 400139 Cluj-Napoca, Romania; (I.A.); (N.C.)
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes St., 400347 Cluj-Napoca, Romania
| | - Răzvan Couți
- Faculty of Medicine and Pharmacy, University of Oradea, 1 Universitatii St., 410087 Oradea, Romania; (R.C.); (T.A.M.)
| | - Lucia Ana-Maria Muntean
- Department of Medical Education, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes St., 400347 Cluj-Napoca, Romania;
| | - Radu-Tudor Coman
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes St., 400347 Cluj-Napoca, Romania
| | - Teodor Andrei Maghiar
- Faculty of Medicine and Pharmacy, University of Oradea, 1 Universitatii St., 410087 Oradea, Romania; (R.C.); (T.A.M.)
| | - Rareș-Ionuț Știufiuc
- Department of Nanobiophysics, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Pasteur St., 400337 Cluj-Napoca, Romania;
- Department of Pharmaceutical Physics–Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
- Nanotechnology Laboratory, TRANSCEND Research Center, Regional Institute of Oncology, 700483 Iași, Romania
| | - Constantin Mihai Lucaciu
- Department of Pharmaceutical Physics–Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Nicolae Crisan
- Department of Urology, Clinical Municipal Hospital, 11 Tabacarilor St., 400139 Cluj-Napoca, Romania; (I.A.); (N.C.)
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes St., 400347 Cluj-Napoca, Romania
| |
Collapse
|
45
|
Shao J, Zhang E, Chen H, Cai Z, Dong M. The Ratio of Serum Urea Nitrogen to Albumin Is a Better Predictor of Overall Survival in Multiple Myeloma Patients than Urea Nitrogen Alone. Acta Haematol 2024; 148:36-47. [PMID: 38527425 PMCID: PMC11809460 DOI: 10.1159/000538479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/16/2024] [Indexed: 03/27/2024]
Abstract
INTRODUCTION Multiple myeloma (MM) is a malignant proliferative disease of plasma cells. Abnormally cloned plasma cells secrete large amounts of monoclonal immunoglobulins in the bone marrow of MM patients. Serum urea nitrogen (sUN) is a byproduct of protein metabolism, and its effect on MM patients' prognoses remains unknown. Therefore, we analyzed MM patients' clinical data to explore the role of sUN and sUN/serum albumin (sUAR) in the baseline tumor load and MM prognosis of MM patients. METHODS We downloaded the clinical data of 762 MM patients from the MMRF database. After excluding those without baseline sUN, 452 patients were finally included in the study. Smoothed curve fitting, threshold analysis, Tamhane's T2 test, multivariate-adjusted Cox regression analysis, Kaplan-Meier (K-M) curves, and receiver operating characteristic (ROC) analysis were applied in the study. RESULTS There were 452 newly diagnosed MM patients included in this study. In most patient groups, sUN and sUAR were positively linked with β2-microglobulin (β2-MG) and lactic dehydrogenase (LDH) according to smoothing curve fitting and threshold analysis. The higher the ISS stage, the greater the values of sUN and sUAR. Furthermore, smoothed curve fitting and threshold analysis showed that sUN was correlated with overall survival (OS), although sUAR had a stronger correlation with OS and could be applied to a broader group. The results of a multivariate-adjusted Cox regression analysis demonstrated that sUN and sUAR were independent prognostic factors for OS. The K-M curve confirmed the correlation between higher sUN and sUAR levels and worse OS. β2-MG and LDH are generally recognized prognostic factors of OS. ROC analysis revealed that sUN might boost β2-MG and LDH's predictive value and sUAR had a higher predictive value. CONCLUSION This retrospective study based on the MMRF database showed that high sUN and sUAR levels were positively associated with β2-MG, LDH, and ISS staging, and sUAR exhibited a stronger correlation with OS than sUN alone. INTRODUCTION Multiple myeloma (MM) is a malignant proliferative disease of plasma cells. Abnormally cloned plasma cells secrete large amounts of monoclonal immunoglobulins in the bone marrow of MM patients. Serum urea nitrogen (sUN) is a byproduct of protein metabolism, and its effect on MM patients' prognoses remains unknown. Therefore, we analyzed MM patients' clinical data to explore the role of sUN and sUN/serum albumin (sUAR) in the baseline tumor load and MM prognosis of MM patients. METHODS We downloaded the clinical data of 762 MM patients from the MMRF database. After excluding those without baseline sUN, 452 patients were finally included in the study. Smoothed curve fitting, threshold analysis, Tamhane's T2 test, multivariate-adjusted Cox regression analysis, Kaplan-Meier (K-M) curves, and receiver operating characteristic (ROC) analysis were applied in the study. RESULTS There were 452 newly diagnosed MM patients included in this study. In most patient groups, sUN and sUAR were positively linked with β2-microglobulin (β2-MG) and lactic dehydrogenase (LDH) according to smoothing curve fitting and threshold analysis. The higher the ISS stage, the greater the values of sUN and sUAR. Furthermore, smoothed curve fitting and threshold analysis showed that sUN was correlated with overall survival (OS), although sUAR had a stronger correlation with OS and could be applied to a broader group. The results of a multivariate-adjusted Cox regression analysis demonstrated that sUN and sUAR were independent prognostic factors for OS. The K-M curve confirmed the correlation between higher sUN and sUAR levels and worse OS. β2-MG and LDH are generally recognized prognostic factors of OS. ROC analysis revealed that sUN might boost β2-MG and LDH's predictive value and sUAR had a higher predictive value. CONCLUSION This retrospective study based on the MMRF database showed that high sUN and sUAR levels were positively associated with β2-MG, LDH, and ISS staging, and sUAR exhibited a stronger correlation with OS than sUN alone.
Collapse
Affiliation(s)
- Jiaqi Shao
- Zhejiang University, School of Medicine, Hangzhou, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haoguang Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Mengmeng Dong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Yu HJ, Jang E, Woo A, Han IW, Jeon HG, Linh VTN, Park SG, Jung HS, Lee MY. Cancer screening through surface-enhanced Raman spectroscopy fingerprinting analysis of urinary metabolites using surface-carbonized silver nanowires on a filter membrane. Anal Chim Acta 2024; 1292:342233. [PMID: 38309850 DOI: 10.1016/j.aca.2024.342233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/05/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Label-free surface-enhanced Raman spectroscopy (SERS)-based metabolic profiling has great potential for early cancer diagnosis, but further advancements in analytical methods and clinical evidence studies are required for clinical applications. To improve the cancer diagnostic accuracy of label-free SERS spectral analysis of complex biological fluids, it is necessary to obtain specifically enhanced SERS signals of cancer-related metabolites present at low concentrations. RESULTS This study presents a novel 3D SERS sensor, comprising a surface-carbonized silver nanowire (AgNW)-stacked filter membrane, alongside an optimized urine/methanol/chloroform extraction technique, which specifically changes the molecular adsorption and orientation of aromatic metabolites onto SERS substrates. By analyzing the pretreated urine samples on the surface-carbonized AgNW 3D SERS sensor, distinct and highly enhanced SERS peaks derived from semi-polar aromatic metabolites were observed for pancreatic cancer and prostate cancer samples compared with normal controls. Urine metabolite analysis using SERS fingerprinting successfully differentiated pancreatic cancer and prostate cancer groups from normal control group: normal control (n = 56), pancreatic cancer (n = 40), and prostate cancer (n = 39). SIGNIFICANCE AND NOVELTY We confirmed the clinical feasibility of performing fingerprint analysis of urinary metabolites based on the surface-carbonized AgNW 3D SERS sensor and methanol/chloroform extraction for noninvasive cancer screening. This technology holds potential for large-scale screening owing to its high accuracy, and cost effective, simple and rapid detection method.
Collapse
Affiliation(s)
- Ho-Jae Yu
- Medical Device Research Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Eunji Jang
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, Republic of Korea
| | - Ayoung Woo
- Medical Device Research Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - In Woong Han
- Division of Hepato Biliary Pancreatic Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Hwang Gyun Jeon
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Vo Thi Nhat Linh
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, Republic of Korea
| | - Sung-Gyu Park
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, Republic of Korea
| | - Ho Sang Jung
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, Republic of Korea.
| | - Min-Young Lee
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, Republic of Korea.
| |
Collapse
|
47
|
Benichou E, Seffou B, Topçu S, Renoult O, Lenoir V, Planchais J, Bonner C, Postic C, Prip-Buus C, Pecqueur C, Guilmeau S, Alves-Guerra MC, Dentin R. The transcription factor ChREBP Orchestrates liver carcinogenesis by coordinating the PI3K/AKT signaling and cancer metabolism. Nat Commun 2024; 15:1879. [PMID: 38424041 PMCID: PMC10904844 DOI: 10.1038/s41467-024-45548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer cells integrate multiple biosynthetic demands to drive unrestricted proliferation. How these cellular processes crosstalk to fuel cancer cell growth is still not fully understood. Here, we uncover the mechanisms by which the transcription factor Carbohydrate responsive element binding protein (ChREBP) functions as an oncogene during hepatocellular carcinoma (HCC) development. Mechanistically, ChREBP triggers the expression of the PI3K regulatory subunit p85α, to sustain the activity of the pro-oncogenic PI3K/AKT signaling pathway in HCC. In parallel, increased ChREBP activity reroutes glucose and glutamine metabolic fluxes into fatty acid and nucleic acid synthesis to support PI3K/AKT-mediated HCC growth. Thus, HCC cells have a ChREBP-driven circuitry that ensures balanced coordination between PI3K/AKT signaling and appropriate cell anabolism to support HCC development. Finally, pharmacological inhibition of ChREBP by SBI-993 significantly suppresses in vivo HCC tumor growth. Overall, we show that targeting ChREBP with specific inhibitors provides an attractive therapeutic window for HCC treatment.
Collapse
Affiliation(s)
- Emmanuel Benichou
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Bolaji Seffou
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Selin Topçu
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Ophélie Renoult
- Nantes Université, INSERM U1307, CNRS 6075, CRCI2NA, Nantes, France
| | - Véronique Lenoir
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Julien Planchais
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Caroline Bonner
- Institut Pasteur de Lille, Lille, France
- INSERM, U1011, Lille, France
- European Genomic Institute for Diabetes, Lille, France
- Université de Lille, Lille, France
| | - Catherine Postic
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Carina Prip-Buus
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Claire Pecqueur
- Nantes Université, INSERM U1307, CNRS 6075, CRCI2NA, Nantes, France
| | - Sandra Guilmeau
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | | | - Renaud Dentin
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France.
- Institut Cochin, Faculté de Médecine 3ème étage, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France.
| |
Collapse
|
48
|
Chuang YM, Tzeng SF, Ho PC, Tsai CH. Immunosurveillance encounters cancer metabolism. EMBO Rep 2024; 25:471-488. [PMID: 38216787 PMCID: PMC10897436 DOI: 10.1038/s44319-023-00038-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024] Open
Abstract
Tumor cells reprogram nutrient acquisition and metabolic pathways to meet their energetic, biosynthetic, and redox demands. Similarly, metabolic processes in immune cells support host immunity against cancer and determine differentiation and fate of leukocytes. Thus, metabolic deregulation and imbalance in immune cells within the tumor microenvironment have been reported to drive immune evasion and to compromise therapeutic outcomes. Interestingly, emerging evidence indicates that anti-tumor immunity could modulate tumor heterogeneity, aggressiveness, and metabolic reprogramming, suggesting that immunosurveillance can instruct cancer progression in multiple dimensions. This review summarizes our current understanding of how metabolic crosstalk within tumors affects immunogenicity of tumor cells and promotes cancer progression. Furthermore, we explain how defects in the metabolic cascade can contribute to developing dysfunctional immune responses against cancers and discuss the contribution of immunosurveillance to these defects as a feedback mechanism. Finally, we highlight ongoing clinical trials and new therapeutic strategies targeting cellular metabolism in cancer.
Collapse
Affiliation(s)
- Yu-Ming Chuang
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Sheue-Fen Tzeng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| | - Chin-Hsien Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
49
|
Gao P, Mei Z, Liu Z, Zhu D, Yuan H, Zhao R, Xu K, Zhang T, Jiang Y, Suo C, Chen X. Association between serum urea concentrations and the risk of colorectal cancer, particularly in individuals with type 2 diabetes: A cohort study. Int J Cancer 2024; 154:297-306. [PMID: 37671773 DOI: 10.1002/ijc.34719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023]
Abstract
Dysregulation of the urea cycle (UC) has been detected in colorectal cancer (CRC). However, the impact of the UC's end product, urea, on CRC development remains unclear. We investigated the association between serum urea and CRC risk based on the data of 348 872 participants cancer-free at recruitment from the UK Biobank. Multivariable Cox proportional hazards models were fitted to conduct risk estimates. Stratification analyses based on sex, diet pattern, metabolic factors (including body mass index [BMI], the estimated glomerular filtration rate [eGFR] and type 2 diabetes [T2D]) and genetic profiles (the polygenic risk score [PRS] of CRC) were conducted to find potential modifiers. During an average of 9.0 years of follow-up, we identified 3408 (1.0%) CRC incident cases. Serum urea showed a nonlinear relationship with CRC risk (P-nonlinear: .035). Lower serum urea levels were associated with a higher CRC risk, with a fully-adjusted hazard ratio (HR) of 1.26 (95% confidence interval [CI]: 1.13-1.41) in the first quartile (Q1) of urea, compared to the Q4. This association was largely consistent across subgroups of sex, protein diet, BMI, eGFR and CRC-PRSs (P-interaction >.05); however, it was stronger in the T2D, with an interaction between urea and T2D on both additive (synergy index: 3.32, [95% CI: 1.24-8.88]) and multiplicative scales (P-interaction: .019). Lower serum urea concentrations were associated with an increased risk of CRC, with a more pronounced effect observed in individuals with T2D. Maintaining stable levels of serum urea has important implications for CRC prevention, particularly in individuals with T2D.
Collapse
Affiliation(s)
- Peipei Gao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Zhendong Mei
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zhenqiu Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Dongliang Zhu
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Department of Epidemiology and Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Huangbo Yuan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Renjia Zhao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Kelin Xu
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Tiejun Zhang
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Department of Epidemiology and Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Department of Epidemiology and Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China
| |
Collapse
|
50
|
Chen J, Cui L, Lu S, Xu S. Amino acid metabolism in tumor biology and therapy. Cell Death Dis 2024; 15:42. [PMID: 38218942 PMCID: PMC10787762 DOI: 10.1038/s41419-024-06435-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Amino acid metabolism plays important roles in tumor biology and tumor therapy. Accumulating evidence has shown that amino acids contribute to tumorigenesis and tumor immunity by acting as nutrients, signaling molecules, and could also regulate gene transcription and epigenetic modification. Therefore, targeting amino acid metabolism will provide new ideas for tumor treatment and become an important therapeutic approach after surgery, radiotherapy, and chemotherapy. In this review, we systematically summarize the recent progress of amino acid metabolism in malignancy and their interaction with signal pathways as well as their effect on tumor microenvironment and epigenetic modification. Collectively, we also highlight the potential therapeutic application and future expectation.
Collapse
Affiliation(s)
- Jie Chen
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Likun Cui
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Shaoteng Lu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|