1
|
Figorilli M, Velluzzi F, Redolfi S. Obesity and sleep disorders: A bidirectional relationship. Nutr Metab Cardiovasc Dis 2025; 35:104014. [PMID: 40180826 DOI: 10.1016/j.numecd.2025.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025]
Abstract
AIMS Obesity and sleep disorders are highly prevalent conditions with profound implications for public health. Emerging evidence highlights a bidirectional relationship between these two conditions, with each exacerbating the other in a complex interplay of behavioral, physiological, and hormonal mechanisms. Sleep deprivation and poor sleep quality contribute to energy imbalance through dysregulation of appetite hormones (e.g., leptin and ghrelin), increased caloric intake, and reduced physical activity. Conversely, sleep disorders such as obstructive sleep apnea syndrome (OSAS), insomnia, and restless leg syndrome (RLS) are significantly more common in individuals with obesity. DATA SYNTHESIS This review explores the pathophysiological mechanisms underlying this relationship, including the roles of inflammation, autonomic dysregulation, and neuroendocrine pathways. Sleep loss exacerbates metabolic syndrome components, including insulin resistance and dyslipidemia, further perpetuating weight gain. Similarly, obesity-induced sleep disorders lead to pro-inflammatory states, vascular dysfunction, and sympathetic overactivation, compounding cardiometabolic risks. Specific conditions like OSA and RLS are examined as models of this interdependence, emphasizing their shared pathways and clinical implications. CONCLUSIONS The bidirectional link between obesity and sleep disorders underscores the importance of integrating sleep assessment and management into obesity treatment strategies. Addressing this relationship could mitigate the progression of cardiometabolic comorbidities and improve overall health outcomes. Moreover, the intertwined dynamics between obesity, sleep disorders, and mental health-mediated by inflammatory pathways, hormonal dysregulation, and neurobehavioral factors-highlight the critical need for integrated treatment approaches targeting physical, psychological, and sleep-related dimensions to enhance health and quality of life.
Collapse
Affiliation(s)
- Michela Figorilli
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Fernanda Velluzzi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Stefania Redolfi
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
2
|
Cuttone A, Cannavò V, Abdullah RMS, Fugazzotto P, Arena G, Brancati S, Muscarà A, Morace C, Quartarone C, Ruggeri D, Squadrito G, Russo GT. Expanding the Use of SGLT2 Inhibitors in T2D Patients Across Clinical Settings. Cells 2025; 14:668. [PMID: 40358192 PMCID: PMC12071329 DOI: 10.3390/cells14090668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are currently recommended in patients with type 2 diabetes (T2D) to reduce serum glucose levels. Moreover, robust evidence has clearly demonstrated their beneficial cardiovascular and renal effects, making this class of drugs pivotal for the treatment of T2D, especially when complicated by diabetic kidney disease or heart failure. However, several other comorbidities are frequently encountered in T2D patients beyond these long-term diabetes complications, especially in the internal medicine setting. For some of these comorbidities, such as MAFLD and cognitive impairment, the association with diabetes is increasingly recognized, with the hypothesis of a common pathophysiologic background, whereas, for others, a coincident epidemiology linked to the ageing of populations, including that of T2D subjects, may be advocated. In the effort of personalizing T2D treatment, evidence on the potential effects of SGLT2i in these different clinical conditions is accumulating. The purpose of this narrative review is to update current literature on the effects of SGLT2i for the treatment of T2D in different clinical settings beyond glycaemic control, and to elucidate potential molecular mechanisms by which they exert these effects.
Collapse
Affiliation(s)
- Alessandro Cuttone
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (V.C.); (R.M.S.A.); (P.F.); (G.A.); (S.B.); (A.M.); (C.M.); (G.S.); (G.T.R.)
| | - Vittorio Cannavò
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (V.C.); (R.M.S.A.); (P.F.); (G.A.); (S.B.); (A.M.); (C.M.); (G.S.); (G.T.R.)
| | - Raouf Mastan Sheik Abdullah
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (V.C.); (R.M.S.A.); (P.F.); (G.A.); (S.B.); (A.M.); (C.M.); (G.S.); (G.T.R.)
| | - Pierluigi Fugazzotto
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (V.C.); (R.M.S.A.); (P.F.); (G.A.); (S.B.); (A.M.); (C.M.); (G.S.); (G.T.R.)
| | - Giada Arena
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (V.C.); (R.M.S.A.); (P.F.); (G.A.); (S.B.); (A.M.); (C.M.); (G.S.); (G.T.R.)
| | - Simona Brancati
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (V.C.); (R.M.S.A.); (P.F.); (G.A.); (S.B.); (A.M.); (C.M.); (G.S.); (G.T.R.)
| | - Andrea Muscarà
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (V.C.); (R.M.S.A.); (P.F.); (G.A.); (S.B.); (A.M.); (C.M.); (G.S.); (G.T.R.)
| | - Carmela Morace
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (V.C.); (R.M.S.A.); (P.F.); (G.A.); (S.B.); (A.M.); (C.M.); (G.S.); (G.T.R.)
| | - Cristina Quartarone
- Internal Medicine and Diabetology Unit, University Hospital of Messina, 98124 Messina, Italy; (C.Q.); (D.R.)
| | - Domenica Ruggeri
- Internal Medicine and Diabetology Unit, University Hospital of Messina, 98124 Messina, Italy; (C.Q.); (D.R.)
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (V.C.); (R.M.S.A.); (P.F.); (G.A.); (S.B.); (A.M.); (C.M.); (G.S.); (G.T.R.)
| | - Giuseppina Tiziana Russo
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (V.C.); (R.M.S.A.); (P.F.); (G.A.); (S.B.); (A.M.); (C.M.); (G.S.); (G.T.R.)
| |
Collapse
|
3
|
Zuriaga MA, Fuster JJ. Clonal haematopoiesis of indeterminate potential: an emerging risk factor for type 2 diabetes and related complications. Diabetologia 2025; 68:920-929. [PMID: 40064675 DOI: 10.1007/s00125-025-06393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/23/2025] [Indexed: 04/25/2025]
Abstract
The accumulation of acquired somatic mutations is a natural consequence of ageing, but the pathophysiological implications of these mutations beyond cancer are only beginning to be understood. Most somatic mutations are functionally neutral, but a few may confer a competitive advantage to a stem cell, driving its clonal expansion. When such a mutation arises in haematopoietic stem cells, it leads to clonal haematopoiesis, in which a significant proportion of blood cells originate from the mutant stem cell and share the same mutation. Clonal haematopoiesis of indeterminate potential (CHIP), a specific subset of clonal haematopoiesis driven by myeloid leukaemia-related somatic mutations, has been linked to a higher risk of various age-related conditions, particularly CVD, by exacerbating inflammatory responses. Emerging evidence suggests that CHIP may also contribute to the pathogenesis of type 2 diabetes and some of its complications. This review synthesises current knowledge on CHIP and its potential as a novel risk factor for type 2 diabetes, highlighting the need for further research to clarify this relationship and to explore its potential value in developing personalised preventive care strategies for type 2 diabetes and related conditions.
Collapse
Affiliation(s)
- María A Zuriaga
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - José J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain.
| |
Collapse
|
4
|
Hu R, Yagan M, Wang Y, Tong X, Hamilton N, Doss TD, Liu J, Xu Y, Simmons AJ, Lau KS, Stein R, Kaverina I, Coate KC, Liu Q, Gu G. Diabetes-associated MYT1 and MYT3 regulate human β-cell insulin secretion and survival via other diabetes-risk genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639737. [PMID: 40060649 PMCID: PMC11888307 DOI: 10.1101/2025.02.24.639737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Genetic and environmental factors together cause islet β-cell failure, leading to Type 2 diabetes (T2D). Yet how they integrate to regulate β-cells remains largely unclear. Here, we examined how two members of the Myelin transcription factor family (MYT1, 2, and 3) prevent human β-cell failure under obesity-related stress. We have reported that obesity-related nutrient levels induce these factors. They prevent β-cell failure in mouse islets and human β-cell lines. Their variants are all associated with human T2D, and their downregulation accompanies β-cell dysfunction. By knocking down MYT1 or MYT3 separately in primary human donor islets, we show here that they have overlapping but distinct functions. Under normal culture conditions, MYT1 - knockdown (KD) causes β-cell death, while MYT3 - KD compromises glucose-stimulated insulin secretion. Under obesity-induced metabolic stress in vivo , MYT3 - KD also causes β-cell death. Accordingly, these TFs regulate common and unique genes, with MYT1 - KD de-regulating several genes in cell death and Ca 2+ binding, while MYT3-KD de-regulating genes involved in mitochondria, ER, etc. Intriguingly, the MYT1 and MYT3-regulated genes are enriched for T2D-associated genes. These findings suggest that the MYT TFs complement each other to serve as a node that integrates genetic and environmental factors to prevent β-cell failure and T2D. Research in Context It is now known that: All MYT TFs (including MYT1, 2, 3) are associated with the risk of T2D, and their downregulation accompanies β-cell failure during human T2D development.besity-related high glucose/free fatty acids regulate the levels and/or nuclear localization of MYT1 and MYT3 in primary human β-cells, implying them as integrators of genetic and nutrition factors to determine the risk of β-cell failure and T2D.Myt TFs, via coregulators including Sin3, work together to prevent postnatal β-cell failure in mice and the death of a human β-cell line, suggesting they are essential switches for β-cell protection.The key remaining question is: How do these TFs regulate primary human β-cell failure in response to different nutritional signals?Our new findings are: Reduced MYT1 or MYT3 expression levels in primary human islets via knockdown compromised β-cell survival or secretion, respectively, under normal physiology.MYT3-knockdown compromises human β-cell survival in obesity.MYT1/MYT3-regulated genes are enriched for those associated with T2D risk.Impact: Manipulating MYT TF activities, via modulating their associations with coregulators, could be explored to attenuate β-cell failure and risk of T2D.
Collapse
|
5
|
Zhou Z, Liu J. Association between body roundness index and incidence of type 2 diabetes in a population-based cohort study. Sci Rep 2025; 15:13186. [PMID: 40240415 PMCID: PMC12003785 DOI: 10.1038/s41598-025-92652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/03/2025] [Indexed: 04/18/2025] Open
Abstract
There is limited national data on the association between body roundness index (BRI) and type 2 diabetes (T2D). A total of 10,785 participants from the China Health and Retirement Longitudinal Study (CHARLS) with repeated BRI measurements from 2011 to 2020 were included. We used Cox proportional hazards model and restricted cubic splines (RCS) to examine the association between BRI and T2D. During a mean follow-up of 7.72 years, 1,653 incident T2D cases were documented. Multivariable Cox proportional hazards regression model demonstrated a significant correlation between the BRI and the risk of T2D. Specifically, every 1-SD increase in BRI corresponded to a 27% heightened risk of T2D (HR: 1.27, 95% CI 1.20-1.35). The analysis also uncovered a non-linear pattern in this relationship, pinpointed by an inflection point at a BRI value of 3.96. Before the inflection point, the HR was 0.85 (95% CI 0.74-0.96), while after the inflection point, the HR increased to 1.29 (95% CI 1.18-1.41). In the middle-aged and elderly Chinese population, elevated BRI was significantly and positively associated with T2D risk. BRI could be a valuable addition to current clinical and public health strategies aimed at reducing the burden of T2D.
Collapse
Affiliation(s)
- Zigui Zhou
- School of Exercise and Health, Shanghai University of Sport, 200 Hengren Road, Yangpu, Shanghai, 200438, China
| | - Jingjing Liu
- School of Exercise and Health, Shanghai University of Sport, 200 Hengren Road, Yangpu, Shanghai, 200438, China.
| |
Collapse
|
6
|
Ahmad R, Siddiqui S, Khan H, Mustafa M, Ashraf H, Moinuddin, Habib S. Preventive effects of thymoquinone on glyco-nitro-oxidized human fibrinogen: A comprehensive biophysical study projecting possible therapeutic role in diabetes and associated complications. Int J Biol Macromol 2025; 300:140212. [PMID: 39848355 DOI: 10.1016/j.ijbiomac.2025.140212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/24/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Persistence of long-term hyperglycemia results in the glyco-oxidation of plasma proteins, which is considered to be a significant factor in metabolic dysfunction, linking hyperglycemia to the emergence of vascular complications. Methylglyoxal (MGO), a dicarbonyl species formed excessively under diabetes, elevates the oxidative stress, enhancing the generation of superoxide anion, which ultimately reacts with nitric oxide (NO•) to form peroxynitrite (PON). PON, being a powerful nitro-oxidizing agent distorts protein structure, hampering its function. This article describes the binding mechanism of thymoquinone (TQ) to fibrinogen (Fg) and its protective effects under simultaneous glyco-nitro-oxidation. Thermodynamic investigations revealed hydrogen bonding and Vander Waal interactions stabilise the complex, confirming its spontaneity and exothermic nature. TQ-induced micro-environmental and structural alterations in fibrinogen were observed by synchronous, 3-D fluorescence maps, and red edge excitation shift (REES). Molecular docking confirmed the wet lab experiments. Previous studies have shown that glycation, as well as nitro-oxidation, modifies the key residues of fibrinogen, leading to its aggregation. Our findings showed that TQ prevented MGO + PON-induced damage to fibrinogen. The current study analyzed the protective effects of TQ on glyco-nitro-oxidized fibrinogen using various biochemical, spectroscopic, and computational methods. NBT assay and carbonyl content revealed glyco-nitro-oxidation-mediated oxidative stress, which was effectively mitigated by TQ in a concentration-dependent manner. The secondary structural alterations in fibrinogen were prevented by TQ as observed by circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR). Moreover, multiple assays and electron microscopy confirmed structural perturbations leading to the development of fibrillar aggregates that were reduced in TQ treated samples. Our findings project TQ as a potent protective agent against hyperglycemia and related human complications.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sana Siddiqui
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Hamda Khan
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Mustafa
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Hamid Ashraf
- Department of Endocrinology, Rajiv Gandhi Centre for Diabetes and Endocrinology, AMU, Aligarh, Uttar Pradesh, India
| | - Moinuddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| | - Safia Habib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|
7
|
Tian X, Wang L, Zhong L, Zhang K, Ge X, Luo Z, Zhai X, Liu S. The research progress and future directions in the pathophysiological mechanisms of type 2 diabetes mellitus from the perspective of precision medicine. Front Med (Lausanne) 2025; 12:1555077. [PMID: 40109716 PMCID: PMC11919862 DOI: 10.3389/fmed.2025.1555077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder characterized by pathophysiological mechanisms such as insulin resistance and β-cell dysfunction. Recent advancements in T2DM research have unveiled intricate multi-level regulatory networks and contributing factors underlying this disease. The emergence of precision medicine has introduced new perspectives and methodologies for understanding T2DM pathophysiology. A recent study found that personalized treatment based on genetic, metabolic, and microbiome data can improve the management of T2DM by more than 30%. This perspective aims to summarize the progress in T2DM pathophysiological research from the past 5 years and to outline potential directions for future studies within the framework of precision medicine. T2DM develops through the interplay of factors such as gut microbiota, genetic and epigenetic modifications, metabolic processes, mitophagy, NK cell activity, and environmental influences. Future research should focus on understanding insulin resistance, β-cell dysfunction, interactions between gut microbiota and their metabolites, and the regulatory roles of miRNA and genes. By leveraging artificial intelligence and integrating data from genomics, epigenomics, metabolomics, and microbiomics, researchers can gain deeper insights into the pathophysiological mechanisms and heterogeneity of T2DM. Additionally, exploring the combined effects and interactions of these factors may pave the way for more effective prevention strategies and personalized treatments for T2DM.
Collapse
Affiliation(s)
- Xinyi Tian
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liuqing Wang
- Institute of Chinese Medical History and Literatures, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liuting Zhong
- First School of Clinical Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Kaiqi Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolei Ge
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhengrong Luo
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Zhai
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shaoyan Liu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Huang X, Qin B, Fang Z, Che L, Lin Y, Xu S, Zhuo Y, Hua L, Jiang X, Sun M, Wang H, Wu D, Long Q, Feng B. Reduction of Atp5b protects mice from diet-induced obesity. Genes Dis 2025; 12:101276. [PMID: 39830030 PMCID: PMC11742349 DOI: 10.1016/j.gendis.2024.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/23/2024] [Accepted: 02/28/2024] [Indexed: 01/22/2025] Open
Affiliation(s)
- Xiaohua Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Binting Qin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Hairui Wang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan 610081, China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qingqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
9
|
Senthil Kumar J, Mehboob MZ, Lei X. Exploring CTRP6: a biomarker and therapeutic target in metabolic diseases. Am J Physiol Endocrinol Metab 2025; 328:E139-E147. [PMID: 39701154 DOI: 10.1152/ajpendo.00353.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
The rising prevalence of metabolic diseases is a significant global health concern. Beyond lifestyle management, targeting key molecules involved in metabolic regulation is essential. C1q/TNF-related protein 6 (CTRP6) is notably associated with glucose and lipid metabolism, with numerous studies highlighting its regulatory functions in metabolic diseases. This review summarizes the current knowledge on CTRP6, focusing on its gene expression profiles, protein structure, gene regulation, and role in metabolic diseases. CTRP6 is widely expressed across various tissues and features four distinct domains, with the C1q domain predicted to bind to its receptor. Notably, serum levels of CTRP6 are significantly elevated in patients with obesity and type 2 diabetes. In these conditions, adipose tissue serves as a key source of CTRP6 and its involvement in adipose tissue expansion, inflammation, and nutrient sensing has been observed in several studies. CTRP6 is also implicated in type 1 diabetes, gestational diabetes mellitus, and diabetic complications, particularly diabetic nephropathy. Although some studies have suggested that CTRP6 has protective roles in atherosclerotic cell models, myocardial infarction rat models, and ischemia/reperfusion injury mouse models, methodological issues such as unreliable antibodies and unstrict controls make it difficult to draw accurate conclusions from these studies. Patients with polycystic ovary syndrome (PCOS) exhibit elevated serum levels of CTRP6, although its direct impact on PCOS phenotypes remains unclear. In conclusion, CTRP6 emerges as a promising therapeutic target for metabolic diseases. A deeper understanding of CTRP6 will empower the scientific community to develop effective interventions to address the increasing prevalence of these diseases.
Collapse
Affiliation(s)
- Jeevotham Senthil Kumar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Muhammad Zubair Mehboob
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Xia Lei
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States
| |
Collapse
|
10
|
Gkiouleka M, Karalexi M, Sergentanis TN, Nouvakis D, Proikaki S, Kornarou E, Vassilakou T. The Epigenetic Role of Nutrition Among Children and Adolescents: A Systematic Literature Review. CHILDREN (BASEL, SWITZERLAND) 2025; 12:143. [PMID: 40003245 PMCID: PMC11854644 DOI: 10.3390/children12020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND/OBJECTIVES Recent research has focused on the study of the epigenetic role of nutrition as a tool which is expected to introduce new perspectives in the field of disease prevention and management. Although maternal nutrition is one of the best-studied mechanisms of epigenetic modifications of the fetus/newborn, less is known on the impact of childhood/adolescent nutrition on the regulation of epigenetic mecha-nisms after the first year of life. The aim of the present study was the assessment of the epigenetic role of nutrition in the health and development of children and adolescents. METHODS A systematic review was performed according to the Preferred Reported Items for Systematic Reviews and Meta-analyses guidelines in five databases (PubMed, Cochrane, Science Direct, Scopus, and Google Scholar) up to 31 October 2024, which yielded 17 eligible studies. The Newcastle-Ottawa Scale and the Cochrane Collabora-tion Risk of Bias-2 tool were used for the evaluation of risk of bias in observational studies and randomized trials, respectively. RESULTS Three studies investigated the epi-genetic modifications due to lifestyle interventions combining changes both in diet and physical activity; the remaining 14 studies examined the role of dietary nutrients in the regulation of epigenetic mechanisms in various health conditions, such as Angelman's syndrome, parenteral nutrition in Intensive Care Units, attention deficit hyperactivity disorder, risk of cardiovascular diseases, asthma or food sensitization, obesity, insulin resistance, and type 2 diabetes or evaluated epigenetic markers as new tools for the comprehension and prediction of the participants' response to nutritional interven-tions. CONCLUSIONS The important impact of diet on the regulation of epigenetic mech-anisms and the expression of various genes and gene pathways could be utilized for personalized nutritional interventions in various pediatric health conditions.
Collapse
Affiliation(s)
- Maria Gkiouleka
- MSc in Public Health, Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, 11521 Athens, Greece; (M.G.); (T.N.S.); (S.P.); (E.K.)
| | - Maria Karalexi
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, 45110 Ioannina, Greece;
| | - Theodoros N. Sergentanis
- MSc in Public Health, Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, 11521 Athens, Greece; (M.G.); (T.N.S.); (S.P.); (E.K.)
| | - Dimitrios Nouvakis
- Central Middlesex Hospital, London North West University Healthcare NHS Trust, Harrow HA1 3UJ, UK;
| | - Stella Proikaki
- MSc in Public Health, Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, 11521 Athens, Greece; (M.G.); (T.N.S.); (S.P.); (E.K.)
| | - Eleni Kornarou
- MSc in Public Health, Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, 11521 Athens, Greece; (M.G.); (T.N.S.); (S.P.); (E.K.)
| | - Tonia Vassilakou
- MSc in Public Health, Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, 11521 Athens, Greece; (M.G.); (T.N.S.); (S.P.); (E.K.)
| |
Collapse
|
11
|
Quadros-Pereira L, Nery-Neto JADO, Da Silva EM, Doretto-Silva L, Yariwake VY, Câmara NO, Andrade-Oliveira V. Treatment with sitagliptin exacerbates the M2 phenotype in macrophages in vitro. Int Immunopharmacol 2025; 145:113730. [PMID: 39662268 DOI: 10.1016/j.intimp.2024.113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Macrophages (MØ) participate in the induction and the control of the host's immune response in homeostasis and during inflammatory diseases. Sitagliptin is a drug that inhibits the enzyme dipeptidyl peptidase 4 (DPP-4) and, therefore, increases the bioavailability of the incretins GIP (Gastric inhibitory polypeptide) and GLP-1 (Glucagon-like polypeptide). Thus, sitagliptin has been used to treat obesity and type II diabetes and has recently been associated with anti-inflammatory effects. It is known that the drug can modulate the immune response, however, the underlying mechanisms are not yet completely elucidated, including how they interfere with the activation and function of MØ. Here, we aimed to investigate and characterize the effects of in vitro treatment with sitagliptin on MØ polarization. Bone marrow-derived MØ were differentiated with conditioned medium from the L929 cell line. For M1, MØ were stimulated with IFN-γ and LPS, and for M2, with IL-4 and IL-13 for 24 h. Sitagliptin treatment was performed during MØ polarization. Polarized MØ were assessed for M1/M2 markers, DPP-4, GLP-1 and GIP receptors, mitochondrial dynamics and phagocytosis. Sitagliptin treatment exacerbates the M2 phenotype, featured by increased expression of CD206 and ARG1 and decreased gene expression levels of TNF-α. Sitagliptin-treated M2 altered mitochondrial dynamics with reduced membrane potential and mitochondrial reactive oxygen species production. These differences were accompanied by low gene expression levels of genes related to mitofusion, suggesting that sitagliptin treatment interferes with mitochondria function in M2, and exhibited less phagocytic capacity. In summary, our data suggest that sitagliptin exacerbates M2 profile in vitro.
Collapse
Affiliation(s)
- Laura Quadros-Pereira
- Mucosal Health and Immunology Laboratory (MHIL), Center for Natural and Human Science, Federal University of ABC, Santo André, São Paulo, Brazil
| | - José Arimatéa de Oliveira Nery-Neto
- Mucosal Health and Immunology Laboratory (MHIL), Center for Natural and Human Science, Federal University of ABC, Santo André, São Paulo, Brazil; Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Eloisa Martins Da Silva
- Mucosal Health and Immunology Laboratory (MHIL), Center for Natural and Human Science, Federal University of ABC, Santo André, São Paulo, Brazil; Paulista School of Medicine, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Lorena Doretto-Silva
- Mucosal Health and Immunology Laboratory (MHIL), Center for Natural and Human Science, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Victor Yuji Yariwake
- Mucosal Health and Immunology Laboratory (MHIL), Center for Natural and Human Science, Federal University of ABC, Santo André, São Paulo, Brazil; Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Niels Olsen Câmara
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Vinicius Andrade-Oliveira
- Mucosal Health and Immunology Laboratory (MHIL), Center for Natural and Human Science, Federal University of ABC, Santo André, São Paulo, Brazil; Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Zhu Y, Zhang Q, Chen Y, Gong Y. Letter to the Editor about 'Preoperative duration of type 2 diabetes mellitus and remission after Roux-en-Y gastric bypass: A single center long-term cohort study'. Int J Surg 2025; 111:1650-1651. [PMID: 38704620 PMCID: PMC11745665 DOI: 10.1097/js9.0000000000001549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Affiliation(s)
- Yuhan Zhu
- School of Nursing, Tinggi Medical College of Hashing University of Science and Technology
- Department of Ophthalmology, Kaifeng Eye Hospital, Kaifeng Central Hospital, Kaifeng
| | - Qi Zhang
- School of Medicine, Macau University of Science and Technology, Macau
| | - Yuquan Chen
- Department of Epidemiology and Preventive Medicine Alfred Hospital, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Yuzhi Gong
- Department of Nursing, Liana Hospital, Tinggi Medical College, Hashing University of Science and Technology, Wuhan
| |
Collapse
|
13
|
Yoshihara E. Insulin-producing cells derived from expandable stem cell-derived endoderm are effective for the treatment of type 2 diabetes. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:121. [PMID: 39817230 PMCID: PMC11729811 DOI: 10.21037/atm-24-129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/14/2024] [Indexed: 01/18/2025]
Affiliation(s)
- Eiji Yoshihara
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
14
|
Sartori G, Bertoldo F, Gretter A, Lovati FM, Caprino R, Viterale G, Crisafulli E. Impact of the visceral adipose tissue on bone quality in patients with untreated mild-to-severe obstructive sleep apnea. J Sleep Res 2024:e14397. [PMID: 39658313 DOI: 10.1111/jsr.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024]
Abstract
Obstructive sleep apnea (OSA) predominantly affects patients who are obese and causes systemic organ damage. Little is known about the relationship between fat distribution and bone impairment in these patients. We aimed to evaluate the impact of the visceral adipose tissue (VAT) on the bone quality of patients with OSA. In our prospective study, 49 untreated patients with mild-to-severe OSA underwent dual-energy X-ray absorptiometry. Polygraphy data were also collected. According to the recent reference values for European adults, patients were divided by the sex-related threshold of the VAT index into two categories: VAT index within limits (normal VAT [nVAT]) and increased VAT (iVAT). In all, 63% of the patients were in the iVAT category. Compared to patients with nVAT, those with iVAT had a higher prevalence of arterial hypertension (52% versus 22%) and diabetes (32% versus 6%), and higher values of mean nocturnal desaturation. Patients with iVAT had, in comparison to those with nVAT, lower values of the lumbar spine trabecular bone score (TBS; mean 1.24 versus 1.39; p < 0.001), TBS T-score (mean -1.82 versus -0.52; p < 0.001) and TBS Z-score (mean -0.35 versus 0.75; p = 0.002). Moreover, a close association was present between the VAT index and TBS lumbar spine L1-L4 (r2 linear 0.573; p < 0.001), and altered values of the TBS Z-score were associated with the severity of vertebral fractures. Finally, in a linear regression-adjusted model, the VAT index predicted TBS lumbar spine L1-L4 (β -0.323; p < 0.001). In patients with OSA VAT impacts bone quality. In these patients, the role of VAT as a metabolically active tissue should be considered.
Collapse
Affiliation(s)
- Giulia Sartori
- Department of Medicine, Respiratory Medicine Unit, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Francesco Bertoldo
- Emergency Medicine Unit, Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Andrea Gretter
- Department of Medicine, Respiratory Medicine Unit, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Federica Margherita Lovati
- Department of Medicine, Respiratory Medicine Unit, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Rosaria Caprino
- Department of Medicine, Respiratory Medicine Unit, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Giovanni Viterale
- Department of Medicine, Respiratory Medicine Unit, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Ernesto Crisafulli
- Department of Medicine, Respiratory Medicine Unit, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| |
Collapse
|
15
|
Rapps K, Weller A, Meiri N. Epigenetic regulation is involved in reversal of obesity. Neurosci Biobehav Rev 2024; 167:105906. [PMID: 39343077 DOI: 10.1016/j.neubiorev.2024.105906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Epigenetic processes play a crucial role in mediating the impact of environmental energetic challenges, from overconsumption to starvation. Over-nutrition of energy-dense foods and sedentary lifestyles contribute to the development of obesity, characterized by excessive fat storage and impaired metabolic signaling, stemming from disrupted brain signaling. Conversely, dieting and physical activity facilitate body weight rebalancing and trigger adaptive neural responses. These adaptations involve the upregulation of neurogenesis, synaptic plasticity and optimized brain function and energy homeostasis, balanced hormone signaling, normal metabolism, and reduced inflammation. The transition of the brain from a maladaptive to an adaptive state is partially guided by epigenetic mechanisms. While epigenetic mechanisms underlying obesity-related brain changes have been described, their role in mediating the reversal of maladaptation/obesity through lifestyle interventions remains less explored. This review focuses on elucidating epigenetic mechanisms involved in hypothalamic adaptations induced by lifestyle interventions. Given that lifestyle interventions are widely prescribed and accessible approaches for weight loss and maintenance, it is our challenge to uncover epigenetic mechanisms moderating these hypothalamic-functional beneficial changes.
Collapse
Affiliation(s)
- Kayla Rapps
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel; Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Aron Weller
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel.
| |
Collapse
|
16
|
Alanazi YA, Al‐kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, Bahaa MM, Negm WA, AlAnazi FH, Alrouji M, Batiha GE. Role of Autophagy in Type 2 Diabetes Mellitus: The Metabolic Clash. J Cell Mol Med 2024; 28:e70240. [PMID: 39656379 PMCID: PMC11629865 DOI: 10.1111/jcmm.70240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is developed due to the development of insulin resistance (IR) and pancreatic β cell dysfunction with subsequent hyperglycaemia. Hyperglycaemia-induced oxidative stress and endoplasmic reticulum (ER) stress enhances inflammatory disorders, leading to further pancreatic β cell dysfunction. These changes trigger autophagy activation, which recycles cytoplasmic components and injured organelles. Autophagy regulates pancreatic β cell functions by different mechanisms. Though the exact role of autophagy in T2DM is not completely elucidated, that could be beneficial or detrimental. Therefore, this review aims to discuss the exact role of autophagy in the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Yousef Abud Alanazi
- Department of Pediatrics, College of MedicineMajmaah UniversityMajmaahSaudi Arabia
| | - Haydar M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliPunjabIndia
- Department of Research & DevelopmentFunogenAthensGreece
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Mostafa M. Bahaa
- Pharmacy Practice Department, Faculty of PharmacyHorus UniversityNew DamiettaEgypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of PharmacyTanta UniversityTantaEgypt
| | - Faisal Holil AlAnazi
- Department of Internal Medicine, College of MedicineMajmaah UniversityMajmaahSaudi Arabia
| | - Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesShaqra UniversityShaqraSaudi Arabia
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
17
|
Aljasir S, Eid NMS, Volpi EV, Tewfik I. Nutrigenomics-guided lifestyle intervention programmes: A critical scoping review with directions for future research. Clin Nutr ESPEN 2024; 64:296-306. [PMID: 39423923 DOI: 10.1016/j.clnesp.2024.10.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Genetic testing is increasingly used in clinical practice to provide personalized information and recommendations about health risks and lifestyle habits at a relatively low cost. Research on the effectiveness of nutrigenomics-guided lifestyle interventions is growing. A scoping review approach was adopted to identify pertinent published studies on nutrigenomics-guided intervention programmes from 2007 to 2023. The review shows that despite the growing interest in nutrigenomics-guided lifestyle interventions, there are still few empirically supported studies, primarily based on developed countries. Furthermore, the findings on the impact of personalised genetic advice are mixed, leaving the field unclear. Existing studies have some empirical strength, contributing to further understanding of the relationship between food and gene expression. However, some limitations that affect the robustness of findings exist, such as a small sample size, insufficient monitoring of the data collection process, and a short follow-up period. Future research needs to address reliability concerns and provide more robust practical evidence.
Collapse
Affiliation(s)
- Saba Aljasir
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, W1W 6UW London, United Kingdom; Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, PO Box 80215, Jeddah, 21589, Saudi Arabia.
| | - Noura M S Eid
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, PO Box 80215, Jeddah, 21589, Saudi Arabia
| | - Emanuela V Volpi
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, W1W 6UW London, United Kingdom
| | - Ihab Tewfik
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, W1W 6UW London, United Kingdom
| |
Collapse
|
18
|
Sharma G, Duarte S, Shen Q, Khemtong C. Analyses of mitochondrial metabolism in diseases: a review on 13C magnetic resonance tracers. RSC Adv 2024; 14:37871-37885. [PMID: 39606283 PMCID: PMC11600307 DOI: 10.1039/d4ra03605k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Metabolic diseases such as obesity, type 2 diabetes, and cardiovascular diseases have become a global health concern due to their widespread prevalence and profound impact on life expectancy, healthcare expenditures, and the overall economy. Devising effective treatment strategies and management plans for these diseases requires an in-depth understanding of the pathophysiology of the metabolic abnormalities associated with each disease. Mitochondrial dysfunction is intricately linked to a wide range of metabolic abnormalities and is considered an important biomarker for diseases. However, assessing mitochondrial functions in viable tissues remains a challenging task, with measurements of oxygen consumption rate (OCR) and ATP production being the most widely accepted approaches for evaluating the health of mitochondria in tissues. Measurements of cellular metabolism using carbon-13 (or 13C) tracers have emerged as a viable method for characterizing mitochondrial metabolism in a variety of organelles ranging from cultured cells to humans. Information on metabolic activities and mitochondrial functions can be obtained from magnetic resonance (MR) analyses of 13C-labeled metabolites in tissues and organs of interest. Combining novel 13C tracer technologies with advanced analytical and imaging tools in nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) offers the potential to detect metabolic abnormalities associated with mitochondrial dysfunction. These capabilities would enable accurate diagnosis of various metabolic diseases and facilitate the assessment of responses to therapeutic interventions, hence improving patient health and optimizing clinical outcomes.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center Dallas Texas USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center Dallas Texas USA
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center Dallas Texas USA
| | - Sergio Duarte
- Department of Surgery, University of Florida Gainesville FL USA
| | - Qingyang Shen
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida Gainesville Florida USA +1 (352) 273-8646
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville Florida USA
| | - Chalermchai Khemtong
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida Gainesville Florida USA +1 (352) 273-8646
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville Florida USA
| |
Collapse
|
19
|
Ağagündüz D, Yeşildemir Ö, Koçyiğit E, Koçak T, Özen Ünaldı B, Ayakdaş G, Budán F. Oxylipins Derived from PUFAs in Cardiometabolic Diseases: Mechanism of Actions and Possible Nutritional Interactions. Nutrients 2024; 16:3812. [PMID: 39599599 PMCID: PMC11597274 DOI: 10.3390/nu16223812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Oxylipins are oxidized fatty acids, both saturated and unsaturated, formed through pathways that involve singlet oxygen or dioxygen-mediated oxygenation reactions and are primarily produced by enzyme families such as cyclooxygenases, lipoxygenases, and cytochrome P450. These lipid-based complex bioactive molecules are pivotal signal mediators, acting in a hormone-like manner in the pathophysiology of numerous diseases, especially cardiometabolic diseases via modulating plenty of mechanisms. It has been reported that omega-6 and omega-3 oxylipins are important novel biomarkers of cardiometabolic diseases. Moreover, collected literature has noted that diet and dietary components, especially fatty acids, can modulate these oxygenated lipid products since they are mainly derived from dietary omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) or linoleic acid and α-linolenic by elongation and desaturation pathways. This comprehensive review aims to examine their correlations to cardiometabolic diseases and how diets modulate oxylipins. Also, some aspects of developing new biomarkers and therapeutical utilization are detailed in this review.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Türkiye
| | - Özge Yeşildemir
- Department of Nutrition and Dietetics, Bursa Uludag University, Görükle Campus, 16059 Bursa, Türkiye;
| | - Emine Koçyiğit
- Department of Nutrition and Dietetics, Ordu University, Cumhuriyet Yerleşkesi, 52200 Ordu, Türkiye;
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Gümüşhane University, Gümüşhanevî Kampüsü, 29100 Gümüşhane, Türkiye;
| | - Buket Özen Ünaldı
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Türkiye;
| | - Gamze Ayakdaş
- Department of Nutrition and Dietetics, Acıbadem University, Kerem Aydınlar Campus, 34752 İstanbul, Türkiye;
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
20
|
Petersen J, Merrild C, Lund J, Holm S, Clemmensen C. Lead-in calorie restriction enhances the weight-lowering efficacy of incretin hormone-based pharmacotherapies in mice. Mol Metab 2024; 89:102027. [PMID: 39265725 PMCID: PMC11424796 DOI: 10.1016/j.molmet.2024.102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
OBJECTIVES The potential benefits of combining lifestyle changes with weight loss pharmacotherapies for obesity treatment are underexplored. Building on recent clinical observations, this study aimed to determine whether "lead-in" calorie restriction before administering clinically approved weight loss medications enhances the maximum achievable weight loss in preclinical models. METHODS Diet-induced obese mice (DIO) were exposed to 7 or 14 days of calorie restriction before initiating treatment with semaglutide (a glucagon-like peptide-1 receptor (GLP-1R) agonist), tirzepatide (a GLP-1R/glucose insulinotropic peptide receptor (GIPR) co-agonist), or setmelanotide (a melanocortin-4 receptor (MC4R) agonist). Follow-up assessments using indirect calorimetry determined the contributions of energy intake and expenditure linked to consecutive exposure to dieting followed by pharmacotherapy. RESULTS Calorie restriction prior to treatment with semaglutide or tirzepatide enhanced the weight loss magnitude of both incretin-based therapies in DIO mice, reflected by a reduction in fat mass and linked to reduced energy intake and a less pronounced adaptive drop in energy expenditure. These benefits were not observed with the MC4R agonist, setmelanotide. CONCLUSIONS Our findings provide compelling evidence that calorie restriction prior to incretin-based therapy enhances the achievable extent of weight loss, as reflected in a weight loss plateau at a lower level compared to that of treatment without prior calorie reduction. This work suggests that more intensive lifestyle interventions should be considered prior to pharmacological treatment, encouraging further exploration and discussion of the current standard of care.
Collapse
Affiliation(s)
- Jonas Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Merrild
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
21
|
Li FXZ, Xu F, Li CC, Lei LM, Shan SK, Zheng MH, Lin X, Guo B, Tang KX, Duan JY, Wu YY, Cao YC, Liu JJ, Yuan LQ. Cold Exposure Alleviates T2DM Through Plasma-Derived Extracellular Vesicles. Int J Nanomedicine 2024; 19:10077-10095. [PMID: 39371478 PMCID: PMC11456273 DOI: 10.2147/ijn.s441847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/14/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Anecdotal reports have praised the benefits of cold exposure, exemplified by activities like winter swimming and cold water immersion. Cold exposure has garnered acclaim for its potential to confer benefits and potentially alleviate diabetes. We posited that systemic cold temperature (CT, 4-8°C) likely influences the organism's blood components through ambient temperature, prompting our investigation into the effects of chronic cold exposure on type 2 diabetic (T2DM) mice and our initial exploration of how cold exposure mitigates the incidence of T2DM. Methods The effects of CT (4-8°C) or room temperature (RT, 22-25°C) on T2DM mice were investigated. Mice blood and organ specimens were collected for fully automated biochemical testing, ELISA, HE staining, immunohistochemistry, and immunofluorescence. Glucose uptake was assessed using flow cytometry with 2-NBDG. Changes in potential signaling pathways such as protein kinase B (AKT), phosphorylated AKT (p-AKT), insulin receptor substrates 1 (IRS1), and phosphorylated IRS1 (p-IRS1) were evaluated by Western blot. Results CT or CT mice plasma-derived extracellular vesicles (CT-EVs) remarkably reduced blood glucose levels and improved insulin sensitivity in T2DM mice. This treatment enhanced glucose metabolism, systemic insulin sensitivity, and insulin secretion function while promoting glycogen accumulation in the liver and muscle. Additionally, CT-EVs treatment protected against the streptozocin (STZ)-induced destruction of islets in T2DM mice by inhibiting β-cell apoptosis. CT-EVs also shielded islets from destruction and increased the expression of p-IRS1 and p-AKT in adipocytes and hepatocytes. In vitro experiments further confirmed its pro-insulin sensitivity effect. Conclusion Our data indicate that cold exposure may have a potentially beneficial effect on the development of T2DM, mainly through the anti-diabetic effect of plasma-derived EVs released during cold stimulation. This phenomenon could significantly contribute to understanding the lower prevalence of diabetes in colder regions.
Collapse
Affiliation(s)
- Fu-Xing-Zi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Chang-Chun Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Li-Min Lei
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Ke-Xin Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Jia-Yue Duan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Yun-Yun Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Ye-Chi Cao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Jun-Jie Liu
- Department of Periodontal Division, Hunan Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| |
Collapse
|
22
|
Sanyal D. Exploring the genetic basis of childhood monogenic diabetes. World J Diabetes 2024; 15:1829-1832. [PMID: 39280182 PMCID: PMC11372639 DOI: 10.4239/wjd.v15.i9.1829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/29/2024] [Accepted: 06/28/2024] [Indexed: 08/27/2024] Open
Abstract
Monogenic diabetes is caused by one or even more genetic variations, which may be uncommon yet have a significant influence and cause diabetes at an early age. Monogenic diabetes affects 1% to 5% of children, and early detection and genetically focused treatment of neonatal diabetes and maturity-onset diabetes of the young can significantly improve long-term health and well-being. The etiology of monogenic diabetes in childhood is primarily attributed to genetic variations affecting the regulatory genes responsible for beta-cell activity. In rare instances, mutations leading to severe insulin resistance can also result in the development of diabetes. Individuals diagnosed with specific types of monogenic diabetes, which are commonly found, can transition from insulin therapy to sulfonylureas, provided they maintain consistent regulation of their blood glucose levels. Scientists have successfully devised materials and methodologies to distinguish individuals with type 1 or 2 diabetes from those more prone to monogenic diabetes. Genetic screening with appropriate findings and interpretations is essential to establish a prognosis and to guide the choice of therapies and management of these interrelated ailments. This review aims to design a comprehensive literature summarizing genetic insights into monogenetic diabetes in children and adolescents as well as summarizing their diagnosis and management.
Collapse
Affiliation(s)
- Debmalya Sanyal
- Department of Endocrinology, KPC Medical College, Kolkata Pin 700032, West Bengal, India
- Department of Endocrinology, NH RTIICS, Kolkata Pin 700099, West Bengal, India
- School of Medicine, University of New Castle, Callaghan NSW 2308, Australia
| |
Collapse
|
23
|
Zierath JR, Brady AJ, Macgregor KA, de Zevallos JO, Stocks B. Unlocking the secrets of exercise: A pathway to enhanced insulin sensitivity and skeletal muscle health in type 2 diabetes. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 14:100980. [PMID: 39241865 PMCID: PMC11863266 DOI: 10.1016/j.jshs.2024.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
•Exercise impacts skeletal muscle and systemic metabolism, yet understanding the complex molecular mechanisms behind these effects remains a key research challenge. •Mapping the molecular effects of exercise with advanced “omics” can advance our understanding of muscle function and metabolism. •Exercise holds promise for managing and preventing type 2 diabetes, emphasizing the need for more research on individualized training and its molecular effects.
Collapse
Affiliation(s)
- Juleen R Zierath
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 65, Sweden; Section of Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 171 65, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark.
| | - Aidan J Brady
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Kirstin A Macgregor
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Joaquin Ortiz de Zevallos
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Ben Stocks
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 65, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
24
|
Zhou Z, Zhang L, Wei X, Wang A, Hu Y, Xiao M, Zheng Y. 1,25(OH) 2D 3 inhibits pancreatic stellate cells activation and promotes insulin secretion in T2DM. Endocrine 2024; 85:1193-1205. [PMID: 38656750 DOI: 10.1007/s12020-024-03833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE To evaluate the effect and mechanism of 1,25(OH)2D3 on pancreatic stellate cells (PSCs) in type 2 diabetes mellitus (T2DM). METHODS A mouse model of T2DM was successfully established by high-fat diet (HFD) /streptozotocin (STZ) and administered 1,25(OH)2D3 for 3 weeks. Fasting blood glucose (FBG), glycated hemoglobin A1c (GHbA1c), insulin (INS) and glucose tolerance were measured. Histopathology changes and fibrosis of pancreas were examined by hematoxylin and eosin staining and Masson staining. Mouse PSCs were extracted, co-cultured with mouse insulinoma β cells (MIN6 cells) and treated with 1,25(OH)2D3. ELISA detection of inflammatory factor expression. Tissue reactive oxygen species (ROS) levels were also measured. Immunofluorescence or Western blotting were used to measure fibrosis and inflammation-related protein expression. RESULTS PSCs activation and islets fibrosis in T2DM mice. Elevated blood glucose was accompanied by significant increases in serum inflammatory cytokines and tissue ROS levels. 1,25(OH)2D3 attenuated islet fibrosis by reducing hyperglycemia, ROS levels, and inflammatory factors expression. Additionally, the co-culture system confirmed that 1,25(OH)2D3 inhibited PSCs activation, reduced the secretion of pro-inflammatory cytokines, down-regulated the expression of fibrosis and inflammation-related proteins, and promoted insulin secretion. CONCLUSION Our findings identify that PSCs activation contributes to islet fibrosis and β-cell dysfunction. 1,25(OH)2D3 exerts beneficial effects on T2DM potentially by inhibiting PSCs activation and inflammatory response, highlighting promising control strategies of T2DM by vitamin D.
Collapse
Affiliation(s)
- Zhengyu Zhou
- Laboratory Animal Center of Suzhou Medical college, Soochow University, Suzhou, China.
| | - Lewen Zhang
- Laboratory Animal Center of Suzhou Medical college, Soochow University, Suzhou, China
| | - Xun Wei
- Center of Laboratory Animal, Shanghai Jiao Tong University, Shanghai, China
| | - Aiqing Wang
- Suzhou Medical college of Soochow University, Suzhou, China
| | - Yudie Hu
- Laboratory Animal Center of Suzhou Medical college, Soochow University, Suzhou, China
| | - Min Xiao
- Laboratory Animal Center of Suzhou Medical college, Soochow University, Suzhou, China
| | - Yuxuan Zheng
- Laboratory Animal Center of Suzhou Medical college, Soochow University, Suzhou, China
| |
Collapse
|
25
|
Chen S, Zeng Q, Cai X, Xue J, Yin G, Song P, Tang L, Klein C, Tacke F, Guillot A, Liu H. Multiomics analyses decipher intricate changes in the cellular and metabolic landscape of steatotic livers upon dietary restriction and sleeve gastrectomy. Int J Biol Sci 2024; 20:4438-4457. [PMID: 39247824 PMCID: PMC11380448 DOI: 10.7150/ijbs.98362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/04/2024] [Indexed: 09/10/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic, progressive liver disease that encompasses a spectrum of steatosis, steatohepatitis (or MASH), and fibrosis. Evidence suggests that dietary restriction (DR) and sleeve gastrectomy (SG) can lead to remission of hepatic steatosis and inflammation through weight loss, but it is unclear whether these procedures induce distinct metabolic or immunological changes in MASLD livers. This study aims to elucidate the intricate hepatic changes following DR, SG or sham surgery in rats fed a high-fat diet as a model of obesity-related MASLD, in comparison to a clinical cohort of patients undergoing SG. Single-cell and single-nuclei transcriptome analysis, spatial metabolomics, and immunohistochemistry revealed the liver landscape, while circulating biomarkers were measured in serum samples. Artificial intelligence (AI)-assisted image analysis characterized the spatial distribution of hepatocytes, myeloid cells and lymphocytes. In patients and experimental MASLD rats, SG improved body mass index, circulating liver injury biomarkers and triglyceride levels. Both DR and SG attenuated liver steatosis and fibrosis in rats. Metabolism-related genes (Ppara, Cyp2e1 and Cyp7a1) were upregulated in hepatocytes upon DR and SG, while SG broadly upregulated lipid metabolism on cholangiocytes, monocytes, macrophages, and neutrophils. Furthermore, SG promoted restorative myeloid cell accumulation in the liver not only ameliorating inflammation but activating liver repair processes. Regions with potent myeloid infiltration were marked with enhanced metabolic capacities upon SG. Additionally, a disruption of periportal hepatocyte functions was observed upon DR. In conclusion, this study indicates a dynamic cellular crosstalk in steatotic livers of patients undergoing SG. Notably, PPARα- and gut-liver axis-related processes, and metabolically active myeloid cell infiltration indicate intervention-related mechanisms supporting the indication of SG for the treatment of MASLD.
Collapse
Affiliation(s)
- Shuai Chen
- Department of General Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Qinghe Zeng
- Laboratoire d'Informatique Paris Descartes (LIPADE), Université Paris Cité, Paris 75014, France
- Centre d'Histologie, d'Imagerie et de Cytométrie (CHIC), Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris 75014, France
| | | | - Jiaming Xue
- Department of General Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Guo Yin
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin 13353, Germany
| | - Peng Song
- Department of General Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Liming Tang
- Department of General Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Christophe Klein
- Centre d'Histologie, d'Imagerie et de Cytométrie (CHIC), Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris 75014, France
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin 13353, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin 13353, Germany
| | - Hanyang Liu
- Department of General Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin 13353, Germany
| |
Collapse
|
26
|
Kahleova H, Znayenko-Miller T, Motoa G, Eng E, Prevost A, Uribarri J, Holubkov R, Barnard ND. Dietary advanced glycation end-products and their associations with body weight on a Mediterranean diet and low-fat vegan diet: a randomized, cross-over trial. Front Nutr 2024; 11:1426642. [PMID: 39176029 PMCID: PMC11340516 DOI: 10.3389/fnut.2024.1426642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Objective Evidence suggests that changes in dietary advanced glycation end-products (AGEs) may influence body weight, but the effects of different dietary patterns remain to be explored.The aim of this study was to compare the effects of a Mediterranean and a low-fat vegan diet on dietary AGEs and test their association with body weight. Materials and methods In this randomized cross-over trial, 62 overweight adults were assigned to a Mediterranean or a low-fat vegan diet for 16-week periods in random order, separated by a 4-week washout. Body weight was the primary outcome. Three-day diet records were analyzed using the Nutrition Data System for Research software and dietary AGEs were estimated, using an established database. Statistical approaches appropriate for crossover trials were implemented. Results Dietary AGEs decreased by 73%, that is, by 9,413 kilounits AGE/day (95% -10,869 to -7,957); p < 0.001, compared with no change on the Mediterranean diet (treatment effect -10,303 kilounits AGE/day [95% CI -13,090 to -7,516]; p < 0.001). The participants lost 6.0 kg on average on the vegan diet, compared with no change on the Mediterranean diet (treatment effect -6.0 kg [95% CI -7.5 to -4.5]; p < 0.001). Changes in dietary AGEs correlated with changes in body weight (r = +0.47; p < 0.001) and remained significant after adjustment for total energy intake (r = +0.39; p = 0.003). Conclusion Dietary AGEs did not change on the Mediterranean diet but decreased on a low-fat vegan diet, and this decrease was associated with changes in body weight, independent of energy intake. Clinical trial registration https://clinicaltrials.gov/, identifier NCT03698955.
Collapse
Affiliation(s)
- Hana Kahleova
- Physicians Committee for Responsible Medicine, Washington, DC, United States
| | | | - Giulianna Motoa
- Physicians Committee for Responsible Medicine, Washington, DC, United States
| | - Emma Eng
- Physicians Committee for Responsible Medicine, Washington, DC, United States
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Alex Prevost
- Physicians Committee for Responsible Medicine, Washington, DC, United States
| | - Jaime Uribarri
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Richard Holubkov
- School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Neal D. Barnard
- Physicians Committee for Responsible Medicine, Washington, DC, United States
- Adjunct Faculty, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
27
|
Tsuji T, Tolstikov V, Zhang Y, Huang TL, Camara H, Halpin M, Narain NR, Yau KW, Lynes MD, Kiebish MA, Tseng YH. Light-responsive adipose-hypothalamus axis controls metabolic regulation. Nat Commun 2024; 15:6768. [PMID: 39117652 PMCID: PMC11310318 DOI: 10.1038/s41467-024-50866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Light is fundamental for biological life, with most mammals possessing light-sensing photoreceptors in various organs. Opsin3 is highly expressed in adipose tissue which has extensive communication with other organs, particularly with the brain through the sympathetic nervous system (SNS). Our study reveals a new light-triggered crosstalk between adipose tissue and the hypothalamus. Direct blue-light exposure to subcutaneous white fat improves high-fat diet-induced metabolic abnormalities in an Opsin3-dependent manner. Metabolomic analysis shows that blue light increases circulating levels of histidine, which activates histaminergic neurons in the hypothalamus and stimulates brown adipose tissue (BAT) via SNS. Blocking central actions of histidine and denervating peripheral BAT blunts the effects of blue light. Human white adipocytes respond to direct blue light stimulation in a cell-autonomous manner, highlighting the translational relevance of this pathway. Together, these data demonstrate a light-responsive metabolic circuit involving adipose-hypothalamus communication, offering a potential strategy to alleviate obesity-induced metabolic abnormalities.
Collapse
Affiliation(s)
- Tadataka Tsuji
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | - Yang Zhang
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Tian Lian Huang
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Henrique Camara
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Meghan Halpin
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew D Lynes
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | | | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
28
|
Das SK, Comeau ME, Langefeld CD. Metaboepigenetic regulation of gene expression in obesity and insulin resistance. Metabolomics 2024; 20:91. [PMID: 39096438 DOI: 10.1007/s11306-024-02159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION Variation in DNA methylation (DNAm) in adipose tissue is associated with the pathogenesis of obesity and insulin resistance. The activity of enzymes involved in altering DNAm levels is dependent on several metabolite cofactors. OBJECTIVES To understand the role of metabolites as mechanistic regulators of epigenetic marks, we tested the association between selected plasma metabolites and DNAm levels in the adipose tissue of African Americans. METHODS In the AAGMEx cohort (N = 256), plasma levels of metabolites were measured by untargeted liquid chromatography-mass spectrometry; adipose tissue DNAm and transcript levels were measured by reduced representation bisulfite sequencing, and expression microarray, respectively. RESULTS Among the 21 one-carbon metabolism pathway metabolites evaluated, six were associated with gluco-metabolic traits (PFDR < 0.05, for BMI, SI, or Matsuda index) in AAGMEx. Methylation levels of 196, 116, and 180 CpG-sites were associated (P < 0.0001) with S-adenosylhomocysteine (SAH), cystine, and hypotaurine, respectively. Cis-expression quantitative trait methylation (cis eQTM) analyses suggested the role of metabolite-level-associated CpG sites in regulating the expression of adipose tissue transcripts, including genes in G-protein coupled receptor signaling pathway. Plasma SAH level-associated CpG sites chr19:3403712 and chr19:3403735 were also associated with the expression of G-protein subunit alpha 15 (GNA15) in adipose. The expression of GNA15 was significantly correlated with BMI (β = 1.87, P = 1.9 × 10-16) and SI (β = -1.61, P = 2.49 × 10-5). CONCLUSION Our study suggests that a subset of metabolites modulates the methylation levels of CpG sites in specific loci and, in turn, regulates the expression of transcripts involved in obesity and insulin resistance.
Collapse
Affiliation(s)
- Swapan K Das
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| | - Mary E Comeau
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
29
|
AlAnazi MM, Ventura EF, Lovegrove JA, Vimaleswaran KS. A Systematic Review of the Gene-Lifestyle Interactions on Metabolic Disease-Related Outcomes in Arab Populations. Nutrients 2024; 16:2519. [PMID: 39125399 PMCID: PMC11314532 DOI: 10.3390/nu16152519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
The increased prevalence of metabolic diseases in the Arab countries is mainly associated with genetic susceptibility, lifestyle behaviours, such as physical inactivity, and an unhealthy diet. The objective of this review was to investigate and summarise the findings of the gene-lifestyle interaction studies on metabolic diseases such as obesity and type 2 diabetes in Arab populations. Relevant articles were retrieved from a literature search on PubMed, Web of Science, and Google Scholar starting at the earliest indexing date through to January 2024. Articles that reported an interaction between gene variants and diet or physical activity were included and excluded if no interaction was investigated or if they were conducted among a non-Arab population. In total, five articles were included in this review. To date, among three out of twenty-two Arab populations, fourteen interactions have been found between the FTO rs9939609, TCF7L2 rs7903146, MC4R rs17782313, and MTHFR rs1801133 polymorphisms and diet or physical activity on obesity and type 2 diabetes outcomes. The majority of the reported gene-diet/ gene-physical activity interactions (twelve) appeared only once in the review. Consequently, replication, comparisons, and generalisation of the findings are limited due to the sample size, study designs, dietary assessment tools, statistical analysis, and genetic heterogeneity of the studied sample.
Collapse
Affiliation(s)
- Maria M. AlAnazi
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK; (M.M.A.); (J.A.L.)
- Department of Human Nutrition, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Eduard Flores Ventura
- Institute of Agrochemistry and Food Technology—Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain;
| | - Julie A. Lovegrove
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK; (M.M.A.); (J.A.L.)
| | - Karani Santhanakrishnan Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK; (M.M.A.); (J.A.L.)
- Institute for Food, Nutrition and Health (IFNH), University of Reading, Reading RG6 6AH, UK
| |
Collapse
|
30
|
He E, Chang K, Dong L, Jia M, Sun W, Cui H. Identification and Validation of CXCL2 as a Key Gene for Childhood Obesity. Biochem Genet 2024; 62:2743-2765. [PMID: 38010448 DOI: 10.1007/s10528-023-10566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023]
Abstract
This study aims to identify the key genes and their regulatory networks by bioinformatics, increasing understanding of childhood obesity. The data comes from the GEO and Immport database. The immune microenvironment was explored in GSE104815. Key genes were identified by intersection of DEGs with the immune gene set. Enrichment analysis revealed gene-related functions and correlation analysis explored the relationship. Regulatory networks were constructed based on miRcode, TarBase and TargetScan databases. GSE29718 was used to validate our findings. Intercellular communication and cell differentiation trends were further explored using single-cell data from GSE153643. Based on our research, the immune microenvironment in the obese group showed higher immune infiltration. We found 962 DEGs and CXCL2 was identified as the key gene. The co-regulatory network of lncRNA-miRNA-mRNA suggested that obtaining TM4SF19-AS1, GUSBP11, AC105020.1, LINC00189, COL4A2-AS2, VIPR1-AS1 and LINC00242 may regulate CXCL2 (r > 0.9 and P < 0.01). Differential expression of CXCL2 was validated in GSE29718 (P < 0.05) and CXCL2 was identified as a biomarker for childhood obesity (AUC = 0.885). GSVA enrichment analysis revealed many pathways of high group obtaining the TNF-α signaling via NF-κB pathway and interferon γ response pathway. In GSE153643, 11 cell types were identified and CXCL2 was highly expressed in monocyte, macrophage, endothelial cell and pericyte. In CXCL2 high expressing macrophages, there was a tendency for cells to polarize toward M1 macrophages (P < 0.05). In summary, we identified CXCL2 as a potential biomarker of childhood obesity. The development of childhood obesity may be associated with the activation of immune infiltration of macrophage M1 polarization by CXCL2 expression.
Collapse
Affiliation(s)
- Enyang He
- Tianjin Medical University, Tianjin, China
| | | | - Liang Dong
- Tianjin Children's Hospital, Tianjin, China
| | - Miao Jia
- Tianjin Medical University, Tianjin, China
| | | | - Hualei Cui
- Tianjin Children's Hospital, Tianjin, China.
| |
Collapse
|
31
|
Yue JTY, Garrido AN, Lam TKT. A metabolic balance of GLP-1 and NMDA receptors in the brain. Cell 2024; 187:3854-3856. [PMID: 39059361 DOI: 10.1016/j.cell.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) and N-methyl-D-aspartate (NMDA) receptors in the brain regulate metabolic homeostasis. In a paper published in Nature, Petersen et al. describe a bimodal molecule that conjugates a GLP-1 analog with MK-801 (NMDA receptor antagonist), which lowers feeding and body weight to a greater extent than the GLP-1R agonist alone.
Collapse
Affiliation(s)
- Jessica T Y Yue
- Department of Physiology, Alberta Diabetes Institute, Neuroscience and Mental Health Institute, and Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB, Canada
| | - Ameth N Garrido
- Toronto General Hospital Research Institute, UHN, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Tony K T Lam
- Toronto General Hospital Research Institute, UHN, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
32
|
Nylén E. Age, Race, Sex and Cardiorespiratory Fitness: Implications for Prevention and Management of Cardiometabolic Disease in Individuals with Diabetes Mellitus. Rev Cardiovasc Med 2024; 25:263. [PMID: 39139417 PMCID: PMC11317329 DOI: 10.31083/j.rcm2507263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 08/15/2024] Open
Abstract
Physical inactivity and poor cardiorespiratory fitness (CRF) are strongly associated with type 2 diabetes (DM2) and all-cause and cardiovascular morbidity and mortality. Incorporating physical activity promotion in the management of DM2 has been a pivotal approach modulating the underlying pathophysiology of DM2 of increased insulin resistance, endothelial dysfunction, and abnormal mitochondrial function. Although CRF is considered a modifiable risk factor, certain immutable aspects such as age, race, and gender impact CRF status and is the focus of this review. Results show that diabetes has often been considered a disease of premature aging manifested by early onset of macro and microvascular deterioration with underlying negative impact on CRF and influencing next generation. Certain races such as Native Americans and African Americans show reduced baseline CRF and decreased gain in CRF in randomized trials. Moreover, multiple biological gender differences translate to lower baseline CRF and muted responsivity to exercise in women with increased morbidity and mortality. Although factors such as age, race, and sex may not have major impacts on CRF their influence should be considered with the aim of optimizing precision medicine.
Collapse
Affiliation(s)
- Eric Nylén
- Veterans Affairs Medical Center, Washington, D.C. 20422, USA
- George Washington University School of Medicine, Washington, D.C. 20037, USA
| |
Collapse
|
33
|
Kallies A, Vasanthakumar A. Transcriptional and hormonal control of adipose Treg heterogeneity and function. Immunol Rev 2024; 324:42-51. [PMID: 38733158 DOI: 10.1111/imr.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Adipose tissue stores excess energy and produces a broad range of factors that regulate multiple physiological processes including systemic energy homeostasis. Visceral adipose tissue (VAT) plays a particularly important role in glucose metabolism as its endocrine function underpins food uptake and energy expenditure. Caloric excess triggers VAT inflammation which can impair insulin sensitivity and cause metabolic deregulation. Regulatory T cells (Tregs) that reside in the VAT suppress inflammation and protect from metabolic disease. The cellular components of VAT and its secretory products play a vital role in fostering the differentiation and maintenance of VAT Tregs. Critically, the physiology and inflammatory tone of VAT exhibit sex-specific disparities, resulting in substantial VAT Treg heterogeneity. Indeed, cytokines and sex hormones promote the differentiation of distinct populations of mature VAT Tregs, each characterized by unique phenotypes, homeostatic requirements, and functions. This review focuses on key findings that have significantly advanced our understanding of VAT Treg biology and the current state of the field, while also discussing open questions that require further exploration.
Collapse
Affiliation(s)
- Axel Kallies
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
- Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ajithkumar Vasanthakumar
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
34
|
Rahimlou M, Ahmadi AR, Cheraghian B, Baghdadi G, Ghalishourani SS, Nozarian S, Hashemi SJ, Rahimi Z, Jahromi NB, Hosseini SA. The association between dietary inflammatory index with some cardio-metabolic risk indices among the patients with type 2 diabetes from Hoveyzeh cohort study: a cross-sectional study. BMC Endocr Disord 2024; 24:91. [PMID: 38890603 PMCID: PMC11186237 DOI: 10.1186/s12902-024-01624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The dietary inflammatory index (DII) serves as a tool to assess the inflammatory impact of an individual's diet. This study aimed to investigate the association between DII and some cardio-metabolic risk indices among patients with T2DM. METHODS Data from the Hoveyzeh Cohort Study, encompassing 2045 adults with T2DM, were analyzed. DII scores were calculated based on food frequency questionnaires. Anthropometric measurements and biochemical tests were performed to assess cardio-metabolic risk factors. RESULTS Higher DII scores were positively associated with elevated triglyceride levels, triglyceride-glucose (TyG) index, lipid accumulation product (LAP), anthropometric indices including a body shape index (ABSI), body roundness index (BRI), body mass index (BMI), hip, waist circumferences (WC), and waist-to-height ratio (all Ptrend < 0.05). Notably, no significant association was observed between DII and fasting blood sugar (FBS) levels (Ptrend > 0.05). Additionally, dietary intake analysis revealed a negative correlation between DII scores and intake of fiber, fruits, vegetables, legumes, fish, seafood, dairy products, magnesium, and vitamins A, C, D, and E (all Ptrend < 0.05). Conversely, higher DII scores were associated with increased consumption of red meat, processed meat, refined cereals, potatoes, and soft drinks (all Ptrend < 0.05). CONCLUSION This study underscores the critical link between dietary inflammation, assessed by the DII score, and a multitude of cardio-metabolic risk factors in patients with T2DM. Notably, while the study did not find a significant association between DII and fasting blood sugar levels, it identified robust associations with novel anthropometric and biochemical indices indicative of cardio-metabolic risk. These findings highlight the potential of dietary interventions as a cornerstone strategy for managing T2DM and mitigating its associated complications.
Collapse
Affiliation(s)
- Mehran Rahimlou
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Bahman Cheraghian
- Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghazal Baghdadi
- Department of Nutrition, School of Public Health, Iran University of Medical Science, Tehran, Iran
| | - Samira Sadat Ghalishourani
- Department of Physical Education and Sport Science, Science of Research Branch, Islamic Azad University, Tehran, Iran
| | - Shadi Nozarian
- Department of Nutritional Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Jalal Hashemi
- Alimentary Tract Research Center, Clinical Sciences Research Institute, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Rahimi
- Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nasrin Banaei Jahromi
- Department of Nutritional Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Department of Nutritional Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
35
|
Wei Y, Hägg S, Mak JKL, Tuomi T, Zhan Y, Carlsson S. Metabolic profiling of smoking, associations with type 2 diabetes and interaction with genetic susceptibility. Eur J Epidemiol 2024; 39:667-678. [PMID: 38555549 PMCID: PMC11249521 DOI: 10.1007/s10654-024-01117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Smokers are at increased risk of type 2 diabetes (T2D), but the underlying mechanisms are unclear. We investigated if the smoking-T2D association is mediated by alterations in the metabolome and assessed potential interaction with genetic susceptibility to diabetes or insulin resistance. METHODS In UK Biobank (n = 93,722), cross-sectional analyses identified 208 metabolites associated with smoking, of which 131 were confirmed in Mendelian Randomization analyses, including glycoprotein acetyls, fatty acids, and lipids. Elastic net regression was applied to create a smoking-related metabolic signature. We estimated hazard ratios (HR) of incident T2D in relation to baseline smoking/metabolic signature and calculated the proportion of the smoking-T2D association mediated by the signature. Additive interaction between the signature and genetic risk scores for T2D (GRS-T2D) and insulin resistance (GRS-IR) on incidence of T2D was assessed as relative excess risk due to interaction (RERI). FINDINGS The HR of T2D was 1·73 (95% confidence interval (CI) 1·54 - 1·94) for current versus never smoking, and 38·3% of the excess risk was mediated by the metabolic signature. The metabolic signature and its mediation role were replicated in TwinGene. The metabolic signature was associated with T2D (HR: 1·61, CI 1·46 - 1·77 for values above vs. below median), with evidence of interaction with GRS-T2D (RERI: 0·81, CI: 0·23 - 1·38) and GRS-IR (RERI 0·47, CI: 0·02 - 0·92). INTERPRETATION The increased risk of T2D in smokers may be mediated through effects on the metabolome, and the influence of such metabolic alterations on diabetes risk may be amplified in individuals with genetic susceptibility to T2D or insulin resistance.
Collapse
Affiliation(s)
- Yuxia Wei
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, 17177, Sweden.
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan K L Mak
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Tiinamaija Tuomi
- Department of Clinical Sciences in Malmö, Clinical Research Centre, Lund University, Malmö, Sweden
- Institute for Molecular Medicine Finland, Helsinki University, Helsinki, Finland
- Department of Endocrinology, Abdominal Center, Research Program for Diabetes and Obesity, Folkhälsan Research Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Yiqiang Zhan
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, 17177, Sweden
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Sofia Carlsson
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, 17177, Sweden
| |
Collapse
|
36
|
Rios FJ, de Ciuceis C, Georgiopoulos G, Lazaridis A, Nosalski R, Pavlidis G, Tual-Chalot S, Agabiti-Rosei C, Camargo LL, Dąbrowska E, Quarti-Trevano F, Hellmann M, Masi S, Lopreiato M, Mavraganis G, Mengozzi A, Montezano AC, Stavropoulos K, Winklewski PJ, Wolf J, Costantino S, Doumas M, Gkaliagkousi E, Grassi G, Guzik TJ, Ikonomidis I, Narkiewicz K, Paneni F, Rizzoni D, Stamatelopoulos K, Stellos K, Taddei S, Touyz RM, Virdis A. Mechanisms of Vascular Inflammation and Potential Therapeutic Targets: A Position Paper From the ESH Working Group on Small Arteries. Hypertension 2024; 81:1218-1232. [PMID: 38511317 DOI: 10.1161/hypertensionaha.123.22483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory responses in small vessels play an important role in the development of cardiovascular diseases, including hypertension, stroke, and small vessel disease. This involves various complex molecular processes including oxidative stress, inflammasome activation, immune-mediated responses, and protein misfolding, which together contribute to microvascular damage. In addition, epigenetic factors, including DNA methylation, histone modifications, and microRNAs influence vascular inflammation and injury. These phenomena may be acquired during the aging process or due to environmental factors. Activation of proinflammatory signaling pathways and molecular events induce low-grade and chronic inflammation with consequent cardiovascular damage. Identifying mechanism-specific targets might provide opportunities in the development of novel therapeutic approaches. Monoclonal antibodies targeting inflammatory cytokines and epigenetic drugs, show promise in reducing microvascular inflammation and associated cardiovascular diseases. In this article, we provide a comprehensive discussion of the complex mechanisms underlying microvascular inflammation and offer insights into innovative therapeutic strategies that may ameliorate vascular injury in cardiovascular disease.
Collapse
Affiliation(s)
- Francisco J Rios
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Carolina de Ciuceis
- Department of Clinical and Experimental Sciences, University of Brescia (C.d.C., C.A.-R., D.R.)
| | - Georgios Georgiopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School (G.G., G.M., K. Stamatelopoulos), National and Kapodistrian University of Athens
| | - Antonios Lazaridis
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Greece (A.L., E.G.)
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute, University of Edinburgh, United Kingdom (R.N., T.J.G.)
- Department of Internal Medicine, Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland (R.N., T.J.G.)
| | - George Pavlidis
- Medical School (G.P., I.I.), National and Kapodistrian University of Athens
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2-Cardiology Department, Attikon Hospital, Athens, Greece (G.P., I.I.)
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, United Kingdom (S.T.-C., K. Stellos)
| | - Claudia Agabiti-Rosei
- Department of Clinical and Experimental Sciences, University of Brescia (C.d.C., C.A.-R., D.R.)
| | - Livia L Camargo
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Edyta Dąbrowska
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Fosca Quarti-Trevano
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (F.Q.-T., G.G.)
| | - Marcin Hellmann
- Cardiac Diagnostics (M.H.), Medical University of Gdansk, Poland
| | - Stefano Masi
- Institute of Cardiovascular Science, University College London, United Kingdom (S.M.)
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| | - Mariarosaria Lopreiato
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| | - Georgios Mavraganis
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School (G.G., G.M., K. Stamatelopoulos), National and Kapodistrian University of Athens
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland (A.M., F.P.)
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa (A.M.)
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Konstantinos Stavropoulos
- Second Medical Department, Hippokration Hospital, Aristotle University of Thessaloniki, Greece (K. Stavropoulos)
| | - Pawel J Winklewski
- Departments of Human Physiology (P.J.W.), Medical University of Gdansk, Poland
| | - Jacek Wolf
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Sarah Costantino
- University Heart Center (S.C., F.P.), University Hospital Zurich, Switzerland
| | - Michael Doumas
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Eugenia Gkaliagkousi
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Greece (A.L., E.G.)
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (F.Q.-T., G.G.)
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute, University of Edinburgh, United Kingdom (R.N., T.J.G.)
- Department of Internal Medicine, Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland (R.N., T.J.G.)
| | - Ignatios Ikonomidis
- Medical School (G.P., I.I.), National and Kapodistrian University of Athens
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2-Cardiology Department, Attikon Hospital, Athens, Greece (G.P., I.I.)
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland (A.M., F.P.)
- University Heart Center (S.C., F.P.), University Hospital Zurich, Switzerland
- Department of Research and Education (F.P.), University Hospital Zurich, Switzerland
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia (C.d.C., C.A.-R., D.R.)
- Division of Medicine, Spedali Civili di Brescia, Italy (D.R.)
| | - Kimon Stamatelopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School (G.G., G.M., K. Stamatelopoulos), National and Kapodistrian University of Athens
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, United Kingdom (S.T.-C., K. Stellos)
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim (K. Stellos), Heidelberg University, Germany
- Department of Cardiology, University Hospital Mannheim (K. Stellos), Heidelberg University, Germany
- German Centre for Cardiovascular Research, Heidelberg/Mannheim Partner Site (K. Stellos)
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| |
Collapse
|
37
|
Li Y, Sun X, Wang M, Jiang Y, Ge QQ, Li T, Hou Z, Shi P, Yao K, Yin J. Meta-analysis and machine learning reveal the antiobesity effects of melatonin on obese rodents. Obes Rev 2024; 25:e13701. [PMID: 38311366 DOI: 10.1111/obr.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
Melatonin appears to be a promising supplement for obesity treatment. The antiobesity effects of melatonin on obese rodents are influenced by various factors, including the species, sex, the dosage of melatonin, treatment duration, administration via, daily treatment time, and initial body weight (IBW). Therefore, we conducted a meta-analysis and machine learning study to evaluate the antiobesity effect of melatonin on obese mice or rats from 31 publications. The results showed that melatonin significantly reduced body weight, serum glucose (GLU), triglycerides (TGs), low-density lipoprotein (LDL), and cholesterol (TC) levels in obese mice or rats but increased high-density lipoprotein (HDL) levels. Melatonin showed a slight positive effect on clock-related genes, although the number of studies was limited. Meta-regression analysis and machine learning indicated that the dosage of melatonin was the primary factor influencing body weight, with higher melatonin dosages leading to a stronger weight reduction effect. Together, male obese C57BL/6 mice and Sprague-Dawley rats with an IBW of 100-200 g showed better body weight reduction when supplemented with a dose of 10-30 mg/kg melatonin administered at night via injection for 5-8 weeks.
Collapse
Affiliation(s)
- Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xihang Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Mansheng Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yayun Jiang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qian Qian Ge
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Tiejun Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
| | - Zhenping Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Pengjun Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Kang Yao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
38
|
Nakamura M. Lipotoxicity as a therapeutic target in obesity and diabetic cardiomyopathy. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12568. [PMID: 38706718 PMCID: PMC11066298 DOI: 10.3389/jpps.2024.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Unhealthy sources of fats, ultra-processed foods with added sugars, and a sedentary lifestyle make humans more susceptible to developing overweight and obesity. While lipids constitute an integral component of the organism, excessive and abnormal lipid accumulation that exceeds the storage capacity of lipid droplets disrupts the intracellular composition of fatty acids and results in the release of deleterious lipid species, thereby giving rise to a pathological state termed lipotoxicity. This condition induces endoplasmic reticulum stress, mitochondrial dysfunction, inflammatory responses, and cell death. Recent advances in omics technologies and analytical methodologies and clinical research have provided novel insights into the mechanisms of lipotoxicity, including gut dysbiosis, epigenetic and epitranscriptomic modifications, dysfunction of lipid droplets, post-translational modifications, and altered membrane lipid composition. In this review, we discuss the recent knowledge on the mechanisms underlying the development of lipotoxicity and lipotoxic cardiometabolic disease in obesity, with a particular focus on lipotoxic and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, United States
| |
Collapse
|
39
|
Ángel-Martín A, Vaillant F, Moreno-Castellanos N. Daily Consumption of Golden Berry ( Physalis peruviana) Has Been Shown to Halt the Progression of Insulin Resistance and Obesity in Obese Rats with Metabolic Syndrome. Nutrients 2024; 16:365. [PMID: 38337650 PMCID: PMC10857591 DOI: 10.3390/nu16030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
In a study addressing the high risk of chronic diseases in people with diabetes and obesity linked to metabolic syndrome, the impact of a Golden Berry diet was investigated using a diabetic animal model. Obese rats with diabetic characteristics were fed a diet containing five percent Golden Berry for 16 days. This study focused on various parameters including organ weights, expression of metabolic genes, and urinary biomarkers. Post-Golden Berry intake, there was a notable decrease in the body, liver, pancreas, visceral, and subcutaneous adipose tissue weights in these obese, hyperglycemic rats. In contrast, an increase in brown adipose tissue (BAT) cell mass was observed. This diet also resulted in reduced blood glucose levels and normalized plasma biochemical profiles, including cholesterol, triglycerides, LDL, and HDL levels. Additionally, it modulated specific urinary biomarkers, particularly pipe-colic acid, a primary marker for type 2 diabetes. Bioinformatics analysis linked these dietary effects to improved insulin signaling and adipogenesis. Regular consumption of Golden Berry effectively prevented insulin resistance and obesity in rats, underscoring its significant health benefits and the protective role of an antioxidant-rich diet against metabolic syndrome. These findings offer promising insights for future therapeutic strategies to manage and prevent obesity and related chronic diseases.
Collapse
Affiliation(s)
- Alberto Ángel-Martín
- Observatorio Epidemiológico de Nutrición y Enfermedades Crónicas, Nutrition School, Health Faculty, Universidad Industrial de Santander, Cra 32 # 29-31, Bucaramanga 680002, Colombia;
| | - Fabrice Vaillant
- Colombian Corporation for Agricultural Research-Agrosavia, La Selva Research Center, Kilometer 7, Vía a Las Palmas, Vereda Llanogrande, Rionegro 054048, Colombia;
- French Center for Agricultural Research for International Development (CIRAD), UMR Qualisud, 34398 Montpellier, France
| | - Natalia Moreno-Castellanos
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Department of Basic Sciences, Medicine School, Health Faculty, Universidad Industrial de Santander, Cra 27 calle 9, Bucaramanga 680002, Colombia
| |
Collapse
|
40
|
Haider N, Kahn CR. Interactions among insulin resistance, epigenetics, and donor sex in gene expression regulation of iPSC-derived myoblasts. J Clin Invest 2024; 134:e172333. [PMID: 38032738 PMCID: PMC10786688 DOI: 10.1172/jci172333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
About 25% of people in the general population are insulin resistant, increasing the risk for type 2 diabetes (T2D) and metabolic disease. Transcriptomic analysis of induced pluripotent stem cells differentiated into myoblasts (iMyos) from insulin-resistant (I-Res) versus insulin-sensitive (I-Sen) nondiabetic individuals revealed that 306 genes increased and 271 genes decreased in expression in iMyos from I-Res donors with differences of 2-fold or more. Over 30 of the genes changed in I-Res iMyos were associated with T2D by SNPs and were functionally linked to insulin action and control of metabolism. Interestingly, we also identified more than 1,500 differences in gene expression that were dependent on the sex of the cell donor, some of which modified the insulin resistance effects. Many of these sex differences were associated with increased DNA methylation in cells from female donors and were reversed by 5-azacytidine. By contrast, the insulin sensitivity differences were not reversed and thus appear to reflect genetic or methylation-independent epigenetic effects.
Collapse
|
41
|
Fabregat-Andrés Ó, Pérez-de-Lucía P, Vallejo-García VE, Vera-Ivars P, Valverde-Navarro AA, Tormos JM. New atherogenic index for the prediction of carotid atherosclerosis based on the non-ultrasensitive c-reactive protein/HDL ratio. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024; 36:12-21. [PMID: 37625908 DOI: 10.1016/j.arteri.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023]
Abstract
INTRODUCTION Current guidelines recommend cardiovascular risk assessment as a preventive measure for cardiovascular diseases, whose fundamental etiology is arteriosclerosis. One of the tools used to estimate risk in clinical practice are atherogenic indices (AI), ratios between lipid fractions with well-established reference ranges. Despite its widespread use, there is still limited information on its clinical utility. In recent years, some research has reinforced the role of inflammation in the etiology and chronicity of the atherosclerotic process. The inclusion of inflammatory parameters in the AI calculation could improve its diagnostic performance in the detection of arteriosclerosis. We sought to evaluate a new AI as a ratio between C-reactive protein (CRP) values and high-density lipoprotein cholesterol (HDL) values. METHODS A total of 282 asymptomatic patients with no history of cardiovascular disease were included in the study. Laboratory tests with lipid profile and CRP, and carotid ultrasound to assess the presence of atheromatosis were performed in all of them. The new AI is established as the ratio between non-ultrasensitive CRP value in mg/dL (multiplied by 100) and HDL value in mg/dL. It was compared with the Castelli I and II indices, and the plasma atherogenic index. The optimal cut-off point of the new AI was value=1 as determined by ROC curve, with an area under the curve of 0.678 (95% CI 0.60-0.75; p<0.001). RESULTS Mean age of patients was 60.4±14.5 years. A total of 118 patients (41.8% of total) had carotid arteriosclerosis. When evaluating the diagnostic performance of different AIs, we found that CRP·100/HDL ratio showed the highest values of sensitivity and positive predictive value (0.73 and 0.68, respectively) compared to the Castelli I and II indices, and the plasma atherogenic index. It was also the only predictor of carotid atheromatosis both when considering its values quantitatively (with OR 1.4 [95% CI 1.1-1.7]; p=0.005), and qualitatively (with OR 2.9 [95% CI 1.5-5.5]; p<0.001) in patients with a CRP·100/HDL ratio>1. CONCLUSIONS The new PCR·100/HDL index showed the best diagnostic performance in the detection of carotid atheromatosis compared to other classic AIs in this Spanish population of asymptomatic patients.
Collapse
Affiliation(s)
- Óscar Fabregat-Andrés
- Servicio de Cardiología, Hospital IMED Valencia, Burjassot, Valencia, España; Departamento de Anatomía y Embriología, Universitat de València, Valencia, España.
| | | | | | - Pablo Vera-Ivars
- Departamento de Medicina, Universidad Católica de Valencia, Valencia, España
| | | | - José María Tormos
- Departamento de Medicina, Universidad Católica de Valencia, Valencia, España
| |
Collapse
|
42
|
Williams SA, Sandholdt CM, Fine JR, Mbe KA. Perceptions of Adult Obesity Education: A Pilot Study. JOURNAL OF MEDICAL EDUCATION AND CURRICULAR DEVELOPMENT 2024; 11:23821205241269371. [PMID: 39371647 PMCID: PMC11450567 DOI: 10.1177/23821205241269371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/27/2024] [Indexed: 10/08/2024]
Abstract
Objectives This pilot research study, conducted at a large academic healthcare facility, used mixed methodology to (1) administer a survey to a group of primary care trainees and faculty and (2) conduct key informant interviews with the program directors, or their delegates of these primary care training programs, so as to gain insight into respondents' perceptions about their training on adult obesity. To maintain confidentiality of the key informants, they were defined as "Administrators." Faculty and trainees were from family medicine and internal medicine residency programs, as well as family nurse practitioner and physician assistant training programs. Methods This study used a quantitative survey and four qualitative key informant (Administrator) interviews. Descriptive statistics, χ2, or Fisher exact tests were used to analyze select survey responses. Administrator interviews were analyzed with thematic analysis. Results Survey respondents (n = 75) included primary care trainees (n=34), faculty (n=30), other (n=2), did not answer (n=9). Surveys indicated that additional training is needed for bariatric surgery, weight loss medications, and clinical nutrition. The three highest ranked topics in the surveys on adult obesity were basic nutrition, behavioral weight management, and a rotation on adult obesity. Most agreed on the need for interprofessional collaboration, a centralized obesity treatment center, and an introductory obesity course. Key themes from the four Administrator interviews revealed the need: for more training; to build upon current curriculum; use innovative technology; fiscal challenges; and time management. Conclusions Both faculty and trainees perceive that academic and clinical training on adult obesity is inadequate, and that trainees need more education on such topics as nutrition, physical activity, behavioral health, antiobesity medications, and bariatric surgery. Competency to treat varied by topic. It also showed that more interprofessional collaboration and a centralized obesity treatment center are needed. Recommendations included integrating modular units about obesity into already established primary care training programs and providing additional resources.
Collapse
Affiliation(s)
- Seleda Ann Williams
- Departments of Internal Medicine & Public Health Sciences, University of California Davis Health, Sacramento, CA, USA
| | - Cara Marie Sandholdt
- Betty Irene Moore School of Nursing, University of California Davis Health, Sacramento, CA, USA
| | - Jeffrey Robert Fine
- Department of Biostatistics, Epidemiology and Research Design, University of California Davis Health, Sacramento, CA, USA
| | - Kougang Anne Mbe
- Betty Irene Moore School of Nursing, University of California Davis Health, Sacramento, CA, USA
| |
Collapse
|
43
|
Latini A, Benedittis GD, Ciccacci C, Novelli G, Spallone V, Borgiani P. Low expression levels of miRNA-155 and miRNA-499a are associated with obesity in Type 2 diabetes. Epigenomics 2024; 16:85-91. [PMID: 38221897 DOI: 10.2217/epi-2023-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Background & aims: This study investigated a possible correlation between three circulating miRNAs, previously observed to be associated to diabetic polyneuropathy, and the obesity condition. Methods & results: The expression levels of miR-128a, miR-155 and miR499a were evaluated in 49 participants with Type 2 diabetes, divided into different groups based on the presence or absence of obesity and central obesity. The analyses revealed a significant decrease of miR-155 and miR-499a expression levels in obese subjects. In particular, the reduction appears to be even more significant in Type 2 diabetes subjects with central obesity. Conclusion: The results suggest that these miRNAs could be involved in obesity-driven pathogenetic mechanisms.
Collapse
Affiliation(s)
- Andrea Latini
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Giada De Benedittis
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Cinzia Ciccacci
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, 00131, Italy
| | - Giuseppe Novelli
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, Rome, 00133, Italy
- IRCCS NEUROMED, Pozzilli, IS, 86077, Italy
- School of Medicine, Department of Pharmacology, Reno University of Nevada, NV 89557, USA
| | - Vincenza Spallone
- Department of Systems Medicine, Endocrinology Section, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Paola Borgiani
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, Rome, 00133, Italy
| |
Collapse
|
44
|
Sun HY, Lin XY. Genetic perspectives on childhood monogenic diabetes: Diagnosis, management, and future directions. World J Diabetes 2023; 14:1738-1753. [PMID: 38222792 PMCID: PMC10784795 DOI: 10.4239/wjd.v14.i12.1738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 12/14/2023] Open
Abstract
Monogenic diabetes is caused by one or even more genetic variations, which may be uncommon yet have a significant influence and cause diabetes at an early age. Monogenic diabetes affects 1 to 5% of children, and early detection and gene-tically focused treatment of neonatal diabetes and maturity-onset diabetes of the young can significantly improve long-term health and well-being. The etiology of monogenic diabetes in childhood is primarily attributed to genetic variations affecting the regulatory genes responsible for beta-cell activity. In rare instances, mutations leading to severe insulin resistance can also result in the development of diabetes. Individuals diagnosed with specific types of monogenic diabetes, which are commonly found, can transition from insulin therapy to sulfonylureas, provided they maintain consistent regulation of their blood glucose levels. Scientists have successfully devised materials and methodologies to distinguish individuals with type 1 or 2 diabetes from those more prone to monogenic diabetes. Genetic screening with appropriate findings and interpretations is essential to establish a prognosis and to guide the choice of therapies and management of these interrelated ailments. This review aims to design a comprehensive literature summarizing genetic insights into monogenetic diabetes in children and adolescents as well as summarizing their diagnosis and mana-gement.
Collapse
Affiliation(s)
- Hong-Yan Sun
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| | - Xiao-Yan Lin
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| |
Collapse
|
45
|
Geng S, Chen D, Wang Y, Yu X, Zuo D, Lv X, Zhou X, Hu C, Yang X, Ma X, Hu W, Xi J, Yu S. Serum levels of Vanin-2 increase with obesity in relation to inflammation of adipose tissue and may be a predictor of bariatric surgery outcomes. Front Nutr 2023; 10:1270435. [PMID: 38156278 PMCID: PMC10753581 DOI: 10.3389/fnut.2023.1270435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023] Open
Abstract
Objective Excessive obesity can lead to dysfunction in adipose tissue, which contributes to the development of comorbidities associated with obesity, such as type 2 diabetes (T2D), cardiovascular and cerebrovascular disease, among others. Previous research has mainly focused on the Vanin family in systemic inflammatory diseases or predicting its role in tumor prognosis, while neglecting its role as a secretory protein in adipose tissue inflammation and metabolism. The objective of this study was to compare the changes in Vanin-2 levels in the circulating blood of normal and obese individuals, and to assess its correlation with inflammatory factors in vivo. Furthermore, the study aimed to systematically evaluate its effectiveness in human weight loss surgery. Methods Serum concentrations of Vanin-2 and inflammatory indicators were measured in 518 volunteers. Furthermore, the concentrations of Vanin-2 were measured both before and after weight loss through a dietetic program or laparoscopic sleeve gastrectomy (LSG). Additionally, we assessed the levels of insulin, adiponectin, and inflammation-related factors. The hormonal profile and changes in body weight were evaluated at baseline and 3 months after surgery. Results Serum levels of Vanin-2 were found to be significantly increased in individuals with overweight/obesity (OW/OB) group (controls 438.98 ± 72.44, OW/OB 530.89 ± 79.39 ug/L; p < 0.001). These increased levels were associated with IL-18, BMI, FAT%, and HOMA-IR. However, levels of Vanin-2 remained unchanged after conventional dietary treatment. On the other hand, weight loss induced by LSG resulted in a significant decrease in Vanin-2 concentrations from 586.44 ± 48.84 to 477.67 ± 30.27 ug/L (p < 0.001), and this decrease was associated with the Vanin-2 concentrations observed before the operation. Conclusion Serum Vanin-2 is a highly effective biomarker for assessing adipose tissue inflammation in obesity and has the potential to serve as a predictor of bariatric surgery outcomes.
Collapse
Affiliation(s)
- Shan Geng
- The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Dongmei Chen
- Department of Otorhinolaryngology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Yanping Wang
- The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Xingrui Yu
- Institute of Information, Xiamen University, Xiamen, China
| | - Dan Zuo
- Department of Clinical Nutrition, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Xinlu Lv
- Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Xuelian Zhou
- The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Chengju Hu
- The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Xuesong Yang
- Department of General Surgery, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Xujue Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Wenjing Hu
- Department of Clinical Nutrition, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazhuang Xi
- The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Shaohong Yu
- Department of General Surgery, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
46
|
Abraham A, Yaghootkar H. Identifying obesity subtypes: A review of studies utilising clinical biomarkers and genetic data. Diabet Med 2023; 40:e15226. [PMID: 37704218 DOI: 10.1111/dme.15226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023]
Abstract
Obesity is a complex and multifactorial condition that poses significant health risks. Recent advancements in our understanding of obesity have highlighted the heterogeneity within this disorder. Identifying distinct subtypes of obesity is crucial for personalised treatment and intervention strategies. This review paper aims to examine studies that have utilised clinical biomarkers and genetic data to identify clusters or subtypes of obesity. The findings of these studies may provide valuable insights into the underlying mechanisms and potential targeted approaches for managing obesity-related health issues such as type 2 diabetes.
Collapse
Affiliation(s)
- Angela Abraham
- Joseph Banks Laboratories, College of Health and Science, University of Lincoln, Lincoln, Lincolnshire, UK
| | - Hanieh Yaghootkar
- Joseph Banks Laboratories, College of Health and Science, University of Lincoln, Lincoln, Lincolnshire, UK
| |
Collapse
|
47
|
Münzberg H, Berthoud HR, Neuhuber WL. Sensory spinal interoceptive pathways and energy balance regulation. Mol Metab 2023; 78:101817. [PMID: 37806487 PMCID: PMC10590858 DOI: 10.1016/j.molmet.2023.101817] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Interoception plays an important role in homeostatic regulation of energy intake and metabolism. Major interoceptive pathways include gut-to-brain and adipose tissue-to brain signaling via vagal sensory nerves and hormones, such as leptin. However, signaling via spinal sensory neurons is rapidly emerging as an additional important signaling pathway. Here we provide an in-depth review of the known anatomy and functions of spinal sensory pathways and discuss potential mechanisms relevant for energy balance homeostasis in health and disease. Because sensory innervation by dorsal root ganglia (DRG) neurons goes far beyond vagally innervated viscera and includes adipose tissue, skeletal muscle, and skin, it is in a position to provide much more complete metabolic information to the brain. Molecular and anatomical identification of function specific DRG neurons will be important steps in designing pharmacological and neuromodulation approaches to affect energy balance regulation in disease states such as obesity, diabetes, and cancer.
Collapse
Affiliation(s)
- Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Winfried L Neuhuber
- Institute for Anatomy and Cell Biology, Friedrich-Alexander University, Erlangen, Germany.
| |
Collapse
|
48
|
Vázquez LA, Romera I, Rubio-de Santos M, Escalada J. Glycaemic Control and Weight Reduction: A Narrative Review of New Therapies for Type 2 Diabetes. Diabetes Ther 2023; 14:1771-1784. [PMID: 37713104 PMCID: PMC10570244 DOI: 10.1007/s13300-023-01467-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023] Open
Abstract
Early and intensive treatment of type 2 diabetes (T2D) has been associated with lower risk of diabetes-related complications. Control of overweight and obesity, which are strongly associated with T2D and many of its complications, is also key in the management of the disease. New therapies allow for individualised glycaemic control targets with greater safety. Thus, in patients with a higher cardiovascular and renal risk profile, current guidelines encourage early treatment with metformin together with glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sodium-glucose co-transporter-2 inhibitors with proven cardiovascular benefit. GLP-1 RAs combine highly efficacious glucose-lowering activity with a reduced risk of hypoglycaemia. Recently, tirzepatide, a first-in-class drug that activates both glucose-dependent insulinotropic polypeptide and GLP-1 receptors, has demonstrated very high efficacy in glycated haemoglobin (HbA1c) and weight reduction in clinical trials. Tirzepatide has the potential to help people with T2D reach recommended glycaemic and weight targets (HbA1c < 7% and > 5% weight reduction) and to allow some patients to reach HbA1c measurements close to normal physiological levels and substantial weight reduction. In 2022, tirzepatide was approved by the US Food and Drug Administration and the European Medicines Agency for treatment of people with T2D and is currently in development for chronic weight management.
Collapse
Affiliation(s)
- Luis Alberto Vázquez
- Department of Endocrinology, Diabetes and Nutrition, University Hospital Marqués de Valdecilla, University of Cantabria, Santander, Spain
| | - Irene Romera
- Eli Lilly and Company, Lilly SA, Av. de la Industria 30, Alcobendas, 28108, Madrid, Spain.
| | - Miriam Rubio-de Santos
- Eli Lilly and Company, Lilly SA, Av. de la Industria 30, Alcobendas, 28108, Madrid, Spain
| | - Javier Escalada
- Department of Endocrinology and Nutrition, University Clinic of Navarra, Pamplona, Spain
| |
Collapse
|
49
|
Li S, Zhang D, Wang Z, Song W, Chen W, Hu G, Han L, Zhou J. Anti-obesity effects exerted by Dioscorea opposita Thunb. polysaccharides in diet-induced obese mice. Food Sci Nutr 2023; 11:6459-6469. [PMID: 37823169 PMCID: PMC10563686 DOI: 10.1002/fsn3.3588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/12/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Obesity is characterized by chronic inflammation, insulin resistance, and gut microbiota dysbiosis. Dioscorea opposita Thunb. is a traditional food and medicine homolog from China. In the present study, polysaccharides isolated from a water extract of Dioscorea opposita Thunb. (DOTPs) were prepared. We showed that DOTPs reduced body weight, accumulation of fat tissues, insulin resistance, and inflammation in high-fat diet (HFD)-fed mice. Further experiments showed that DOTPs could regulate the composition of the gut microbiota in HFD mice. DOTPs supplementation in HFD-fed mice resulted in the reduction of the Firmicutes-to-Bacteroidetes ratio. We further demonstrated that DOTPs supplementation enhanced bacterial levels of Akkermansia and reduced levels of Ruminiclostridium_9. A significant reduction of glycolysis metabolism related to obesity and gut microbiota dysbiosis was also observed upon administration of DOTPs. Our results suggest that DOTPs can produce significant anti-obesity effects, by inhibiting systematic inflammation and ameliorating gut microbiota dysbiosis in diet-induced obese mice.
Collapse
Affiliation(s)
- Sheng‐Nan Li
- School of MedicineHenan Polytechnic UniversityJiaozuoChina
| | | | - Zhen‐Hui Wang
- School of MedicineHenan Polytechnic UniversityJiaozuoChina
| | - Wen‐Ting Song
- School of MedicineHenan Polytechnic UniversityJiaozuoChina
| | - Wen‐Bo Chen
- School of MedicineHenan Polytechnic UniversityJiaozuoChina
| | - Ge‐Li Hu
- School of MedicineHenan Polytechnic UniversityJiaozuoChina
| | - Lu‐Ying Han
- School of MedicineHenan Polytechnic UniversityJiaozuoChina
| | | |
Collapse
|
50
|
Mengozzi A, de Ciuceis C, Dell'oro R, Georgiopoulos G, Lazaridis A, Nosalski R, Pavlidis G, Tual-Chalot S, Agabiti-Rosei C, Anyfanti P, Camargo LL, Dąbrowska E, Quarti-Trevano F, Hellmann M, Masi S, Mavraganis G, Montezano AC, Rios FJ, Winklewski PJ, Wolf J, Costantino S, Gkaliagkousi E, Grassi G, Guzik TJ, Ikonomidis I, Narkiewicz K, Paneni F, Rizzoni D, Stamatelopoulos K, Stellos K, Taddei S, Touyz RM, Triantafyllou A, Virdis A. The importance of microvascular inflammation in ageing and age-related diseases: a position paper from the ESH working group on small arteries, section of microvascular inflammation. J Hypertens 2023; 41:1521-1543. [PMID: 37382158 DOI: 10.1097/hjh.0000000000003503] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Microcirculation is pervasive and orchestrates a profound regulatory cross-talk with the surrounding tissue and organs. Similarly, it is one of the earliest biological systems targeted by environmental stressors and consequently involved in the development and progression of ageing and age-related disease. Microvascular dysfunction, if not targeted, leads to a steady derangement of the phenotype, which cumulates comorbidities and eventually results in a nonrescuable, very high-cardiovascular risk. Along the broad spectrum of pathologies, both shared and distinct molecular pathways and pathophysiological alteration are involved in the disruption of microvascular homeostasis, all pointing to microvascular inflammation as the putative primary culprit. This position paper explores the presence and the detrimental contribution of microvascular inflammation across the whole spectrum of chronic age-related diseases, which characterise the 21st-century healthcare landscape. The manuscript aims to strongly affirm the centrality of microvascular inflammation by recapitulating the current evidence and providing a clear synoptic view of the whole cardiometabolic derangement. Indeed, there is an urgent need for further mechanistic exploration to identify clear, very early or disease-specific molecular targets to provide an effective therapeutic strategy against the otherwise unstoppable rising prevalence of age-related diseases.
Collapse
Affiliation(s)
- Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa
| | - Carolina de Ciuceis
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia
| | - Raffaella Dell'oro
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Georgios Georgiopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Antonios Lazaridis
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute; University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Department of Internal Medicine
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - George Pavlidis
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2 Cardiology Department, Attikon Hospital, Athens
- Medical School, National and Kapodistrian University of Athens, Greece
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Panagiota Anyfanti
- Second Medical Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Edyta Dąbrowska
- Department of Hypertension and Diabetology, Center of Translational Medicine
- Center of Translational Medicine
| | - Fosca Quarti-Trevano
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marcin Hellmann
- Department of Cardiac Diagnostics, Medical University, Gdansk, Poland
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Institute of Cardiovascular Science, University College London, London, UK
| | - Georgios Mavraganis
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Francesco J Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | | | - Jacek Wolf
- Department of Hypertension and Diabetology, Center of Translational Medicine
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich
| | - Eugenia Gkaliagkousi
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute; University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Department of Internal Medicine
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Ignatios Ikonomidis
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2 Cardiology Department, Attikon Hospital, Athens
- Medical School, National and Kapodistrian University of Athens, Greece
| | | | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia
- Division of Medicine, Spedali Civili di Brescia, Montichiari, Brescia, Italy
| | - Kimon Stamatelopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Heidelberg/Mannheim Partner Site
- Department of Cardiology, University Hospital Mannheim, Heidelberg University, Manheim, Germany
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Areti Triantafyllou
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|