1
|
Baum HE, Santopaolo M, Francis O, Milodowski EJ, Entwistle K, Oliver E, Hitchings B, Diamond D, Thomas AC, Mitchell RE, Kibble M, Gupta K, Di Bartolo N, Klenerman P, Brown A, Morales-Aza B, Oliver J, Berger I, Toye AM, Finn A, Goenka A, Davidson AD, Ring S, Molloy L, Lewcock M, Northstone K, Roth F, Timpson NJ, Wooldridge L, Halliday A, Rivino L. Hybrid B- and T-Cell Immunity Associates With Protection Against Breakthrough Infection After Severe Acute Respiratory Syndrome Coronavirus 2 Vaccination in Avon Longitudinal Study of Parents and Children (ALSPAC) Participants. J Infect Dis 2025:jiaf246. [PMID: 40392230 DOI: 10.1093/infdis/jiaf246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Immunological memory to vaccination and viral infection involves the coordinated action of B and T cells; thus, integrated analysis of these 2 components is critical for understanding their respective contributions to protection against breakthrough infections (BIs) after vaccination. METHODS We investigated cellular and humoral immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and/or vaccination in 300 adult participants from the Avon Longitudinal Study of Parents and Children (ALSPAC). Participants were grouped by those with (cases) and without (controls) a history of SARS-CoV-2 infection. To provide a quantitative correlate for protection against BI in the 8-month period after the study, Youden index thresholds were calculated for all immune measures analyzed. RESULTS The magnitude of antibody and T-cell responses following the second vaccine dose was associated with protection against BI in participants with a history of SARS-CoV-2 infection (cases), but not in infection-naive controls. Over 8 months of follow-up, 2 threshold combinations provided the best performance for protection against BI in cases: (i) anti-spike immunoglobulin G (IgG) (≥666.4 binding antibody units [BAU]/mL) combined with anti-nucleocapsid pan-immunoglobulin (pan-Ig) (≥0.1332 BAU/mL) and (ii) spike 1-specific T cells (≥195.6 spot-forming units/106 peripheral blood mononuclear cells) combined with anti-N pan-Ig (≥0.1332 BAU/mL). Both combinations offered 100% specificity for detecting cases without BI, with sensitivities of 83.3% and 72.2%, respectively. CONCLUSIONS Collectively, these results suggest that hybrid B- and T-cell immunity offers superior protection from BI after coronavirus disease 2019 (COVID-19) vaccination, and this finding has implications for designing next-generation COVID-19 vaccines that are capable of eliciting immunity to a broader repertoire of SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Holly E Baum
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
- Bristol Vaccine Centre, University of Bristol, Bristol, United Kingdom
| | - Marianna Santopaolo
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Ore Francis
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
- Bristol Veterinary School, Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Emily J Milodowski
- Bristol Veterinary School, Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Katrina Entwistle
- Bristol Veterinary School, Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Elizabeth Oliver
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
- Bristol Vaccine Centre, University of Bristol, Bristol, United Kingdom
| | - Benjamin Hitchings
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
- Bristol Vaccine Centre, University of Bristol, Bristol, United Kingdom
| | - Divya Diamond
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Amy C Thomas
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Ruth E Mitchell
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Milla Kibble
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Kapil Gupta
- School of Biochemistry, Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Natalie Di Bartolo
- School of Biochemistry, Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Paul Klenerman
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Begonia Morales-Aza
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
- Bristol Vaccine Centre, University of Bristol, Bristol, United Kingdom
| | - Jennifer Oliver
- Bristol Vaccine Centre, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Imre Berger
- School of Biochemistry, Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Ash M Toye
- School of Biochemistry, Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Adam Finn
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
- Bristol Vaccine Centre, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Anu Goenka
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
- Bristol Vaccine Centre, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Susan Ring
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Lynn Molloy
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Melanie Lewcock
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kate Northstone
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Firona Roth
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Nicholas J Timpson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Linda Wooldridge
- Bristol Veterinary School, Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Alice Halliday
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
- Bristol Vaccine Centre, University of Bristol, Bristol, United Kingdom
| | - Laura Rivino
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
2
|
Browne DJ, Crooks P, Smith C, Doolan DL. Differential reactivity of SARS-CoV-2 S-protein T-cell epitopes in vaccinated versus naturally infected individuals. Clin Transl Immunology 2025; 14:e70031. [PMID: 40342296 PMCID: PMC12056234 DOI: 10.1002/cti2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/20/2025] [Accepted: 03/18/2025] [Indexed: 05/11/2025] Open
Abstract
Objectives Vaccine-induced protective immunity against SARS-CoV-2 has proved difficult to sustain. Robust T-cell responses are thought to play an important role, but T-cell responses against the SARS-CoV-2 spike protein (S-protein), the core vaccine antigen, following vaccination or natural infection are incompletely understood. Methods Herein, the reactivity of 170 putative SARS-CoV-2 S-protein CD8+ and CD4+ T-cell peptide epitopes in the same individuals prior to vaccination, after COVID-19 vaccination, and again following subsequent natural infection was assayed using a high-throughput reverse transcription-quantitative PCR (HTS-RT-qPCR) assay. Results The profile of immunoreactive SARS-CoV-2 S-protein epitopes differed between vaccination and natural infection. Vaccine-induced immunoreactive epitopes were localised primarily into two extra-domanial regions. In contrast, epitopes recognised following natural infection were spread across the antigen. Furthermore, T-cell epitopes in naïve individuals were primarily recognised in association with HLA-A, while natural infection shifted epitope associations towards HLA-B, particularly the B7 supertype. Conclusion This study provides insight into T-cell responses against the SARS-CoV-2 S-protein following vaccination and subsequent natural infection.
Collapse
Affiliation(s)
- Daniel J Browne
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsQLDAustralia
| | - Pauline Crooks
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of ImmunologyQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of ImmunologyQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
- Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsQLDAustralia
- Institute for Molecular BioscienceThe University of QueenslandSt LuciaQLDAustralia
| |
Collapse
|
3
|
Kardava L, Lim J, Buckner CM, Lopes de Assis F, Zhang X, Wang W, Melnyk ML, El Merhebi O, Trihemasava K, Teng IT, Carroll R, Jethmalani Y, Castro M, Lin BC, Praiss LH, Seamon CA, Kwong PD, Koup RA, Serebryannyy L, Nickle DC, Chun TW, Moir S. Phenotypic heterogeneity defines B cell responses to repeated SARS-CoV-2 exposures through vaccination and infection. Cell Rep 2025; 44:115557. [PMID: 40222009 PMCID: PMC12080740 DOI: 10.1016/j.celrep.2025.115557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/29/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
Long-lived humoral memory is key to durable immunity against pathogens yet remains challenging to define due to heterogeneity among antigen-reactive B cells. We addressed this gap through longitudinal sampling over the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccinations with or without breakthrough infection. High-dimensional phenotypic profiling performed on ∼72 million B cells showed that receptor-binding domain (RBD) reactivity was associated with five distinct immunoglobulin G (IgG) B cell populations. Two expressed the activation marker CD71, both correlated with neutralizing antibodies, yet the one lacking the memory marker CD27 was induced by vaccination and blunted by infection. Two were resting memory populations; one lacking CD73 arose early and contributed to cross-reactivity; the other, expressing CD73, arose later and correlated with neutralizing antibodies. The fifth, a rare germinal center-like population, contributed to recall responses and was highly cross reactive. Overall, robust and distinct responses to booster vaccination overcame the superiority of hybrid immunity provided by breakthrough infection.
Collapse
Affiliation(s)
- Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - James Lim
- Monoceros Biosystems, San Diego, CA 29130, USA
| | - Clarisa M Buckner
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Felipe Lopes de Assis
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xiaozhen Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Wei Wang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mattie L Melnyk
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Omar El Merhebi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Krittin Trihemasava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Robin Carroll
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - Mike Castro
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Bob C Lin
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Lauren H Praiss
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Catherine A Seamon
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Richard A Koup
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - David C Nickle
- Monoceros Biosystems, San Diego, CA 29130, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Molinos-Albert LM, Rubio R, Martín-Pérez C, Pradenas E, Torres C, Jiménez A, Canyelles M, Vidal M, Barrios D, Marfil S, Aparicio E, Ramírez-Morros A, Trinité B, Vidal-Alaball J, Santamaria P, Serra P, Izquierdo L, Aguilar R, Ruiz-Comellas A, Blanco J, Dobaño C, Moncunill G. Long-lasting antibody B-cell responses to SARS-CoV-2 three years after the onset of the pandemic. Cell Rep 2025; 44:115498. [PMID: 40173043 DOI: 10.1016/j.celrep.2025.115498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/21/2024] [Accepted: 03/11/2025] [Indexed: 04/04/2025] Open
Abstract
Immune memory is essential for the effectiveness of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination. In the current context of the pandemic, with a diminished vaccine efficacy against emerging variants, it remains crucial to perform long-term studies to evaluate the durability and quality of immune responses. Here, we examined the antibody and memory B-cell responses in a cohort of 113 healthcare workers with distinct exposure histories over a 3-year period. Previously infected and naive participants developed comparable humoral responses by 17 months after receiving a full three-dose mRNA vaccination. In addition, both maintained a substantial SARS-CoV-2-reactive memory B-cell pool, associated with a lower incidence of breakthrough infections in naive participants. Of note, previously infected participants developed an expanded SARS-CoV-2-reactive CD27-CD21- atypical B-cell population that remained stable throughout the follow-up period. Thus, previous SARS-CoV-2 infection differentially imprints the memory B-cell compartment without compromising the development of long-lasting humoral responses.
Collapse
Affiliation(s)
- Luis M Molinos-Albert
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Rocío Rubio
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carla Martín-Pérez
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Edwards Pradenas
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona (Barcelona), Spain
| | - Cèlia Torres
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jiménez
- ISGlobal, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Mar Canyelles
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Marta Vidal
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | | | - Silvia Marfil
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona (Barcelona), Spain
| | - Ester Aparicio
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona (Barcelona), Spain
| | - Anna Ramírez-Morros
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJG), Manresa, Spain
| | - Benjamin Trinité
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona (Barcelona), Spain
| | - Josep Vidal-Alaball
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJG), Manresa, Spain; Health Promotion in Rural Areas Research Group (PROSAARU), Gerència Territorial de la Catalunya Central, Institut Català de la Salut, Manresa, Spain; Universitat de Vic-Universitat Central de Catalunya (uVic-UCC), Vic, Spain
| | - Pere Santamaria
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pau Serra
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Luis Izquierdo
- ISGlobal, Barcelona, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ruth Aguilar
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Anna Ruiz-Comellas
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJG), Manresa, Spain; Health Promotion in Rural Areas Research Group (PROSAARU), Gerència Territorial de la Catalunya Central, Institut Català de la Salut, Manresa, Spain; Centre d'Atenció Primària (CAP) Sant Joan de Vilatorrada, Gerència Territorial de la Catalunya Central, Institut Català de la Salut (ICS), Manresa, Spain; Universitat de Vic-Universitat Central de Catalunya (uVic-UCC), Vic, Spain
| | - Julià Blanco
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona (Barcelona), Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Universitat de Vic-Universitat Central de Catalunya (uVic-UCC), Vic, Spain; Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Badalona (Barcelona), Spain
| | - Carlota Dobaño
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Gemma Moncunill
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Peters MQ, Young AL, Stolarczuk JE, Glad M, Layton E, Logue JK, Minkah NK, Chu HY, Englund JA, Sather DN, Seshadri C, Kachikis A, Harrington WE. Infant CD4 T-cell response to SARS-CoV-2 mRNA vaccination is restricted in cytokine production and modified by vaccine manufacturer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646864. [PMID: 40271053 PMCID: PMC12016048 DOI: 10.1101/2025.04.02.646864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Safe and effective vaccines are a key preventative measure to protect infants from SARS-CoV-2 infection and disease. Although mRNA vaccines induce robust antibody titers in infants, little is known about the quality of CD4 T-cell responses induced by vaccination. CD4 T-cell responses are important in orchestrating coordinated immune responses during infection and may help to limit disease severity. METHODS To characterize the CD4 T-cell response to SARS-CoV-2 mRNA vaccination in infants, we sampled blood from 13 infants before and after primary SARS-CoV-2 mRNA vaccine series; samples from 12 historical vaccinated adults were used for comparisons. PBMC were stimulated with Spike peptide pools and the ability of CD4 T-cells to secrete Th1, Th2, and Th17 cytokines was quantified. A measure of polyfunctionality was generated using the COMPASS algorithm. RESULTS We observed a significant increase in CD4 T-cells producing IL-2 (0.01% vs. 0.08%, p=0.04) and TNF-α (0.007% vs. 0.07%, p=0.007) following vaccination in infants but a more muted induction of IFN-γ production (0.01% vs 0.04%, p=0.08). This contrasted with adults, in whom vaccination induced robust production of IFN-γ, IL-2, and TNF-α. Th2 and Th17 responses were limited in both infants and adults. In infants, CD4 T-cell responses post-vaccination were greater in those who received mRNA-1273 versus BNT162b. In contrast to CD4 T-cell responses, Spike-specific IgG titers were similar in infants and adults. CONCLUSIONS These data suggest that infants have restricted induction of cytokine producing CD4 T-cells following SARS-CoV-2 mRNA vaccination relative to adults.
Collapse
|
6
|
Shah M, Moon SU, Shin J, Choi J, Kim D, Woo HG. Pan-Variant SARS-CoV-2 Vaccines Induce Protective Immunity by Targeting Conserved Epitopes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409919. [PMID: 40014015 PMCID: PMC12021035 DOI: 10.1002/advs.202409919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/27/2025] [Indexed: 02/28/2025]
Abstract
The development of a globally effective COVID-19 vaccine faces significant challenges, particularly in redirecting the B-cell response from immunodominant yet variable regions of viral proteins toward their conserved domains. To address this, an integrated strategy is implemented that combines classical B-cell epitope prediction with protein-antibody cluster docking and antibody titer analysis from 30 vaccinated and convalescent individuals. This approach yields stable immunodominant and immunoprevalent B-cell epitopes capable of eliciting robust antibody responses in BALB/c mice and effectively neutralizing pseudoviruses expressing the Spike protein of SARS-CoV-2 variants of concern, including Alpha, Beta, Gamma, Delta, and Omicron. To achieve a broader T-cell-based immune response, promiscuous T-cell epitopes are identified by integrating classical T-cell epitope predictions, differential scanning fluorimetry, and peptide-MHC structural analysis. Unique peptides with conserved MHC-anchoring residues are identified, enabling binding to a spectrum of MHC-I and MHC-II haplotypes. These peptides elicit strong interferon gamma responses in human peripheral blood mononuclear cells and demonstrate cross-species efficacy by activating both CD4+ and CD8+ T-cells in BALB/c mice. Collectively, these findings highlight the significance of innovative vaccine strategies targeting immunodominant/immunoprevalent B-cell and promiscuous T-cell epitopes to drive broad and robust humoral and cellular immune responses against a wide range of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Masaud Shah
- Department of PhysiologyAjou University School of MedicineSuwon16499Republic of Korea
- Ajou Translational Omics Center (ATOC)Research Institute for Innovative MedicineAjou University Medical CenterSuwon16499Republic of Korea
| | - Sung Ung Moon
- Department of PhysiologyAjou University School of MedicineSuwon16499Republic of Korea
| | - Ji‐Yon Shin
- Department of PhysiologyAjou University School of MedicineSuwon16499Republic of Korea
- AI‐Superconvergence KIURI Translational Research CenterAjou University School of MedicineSuwon16499Republic of Korea
| | - Ji‐Hye Choi
- Department of PhysiologyAjou University School of MedicineSuwon16499Republic of Korea
- Ajou Translational Omics Center (ATOC)Research Institute for Innovative MedicineAjou University Medical CenterSuwon16499Republic of Korea
| | - Doyoon Kim
- Ajou Translational Omics Center (ATOC)Research Institute for Innovative MedicineAjou University Medical CenterSuwon16499Republic of Korea
| | - Hyun Goo Woo
- Department of PhysiologyAjou University School of MedicineSuwon16499Republic of Korea
- Ajou Translational Omics Center (ATOC)Research Institute for Innovative MedicineAjou University Medical CenterSuwon16499Republic of Korea
- Department of Biomedical ScienceGraduate SchoolAjou UniversitySuwon16499Republic of Korea
| |
Collapse
|
7
|
Case JB, Jain S, Suthar MS, Diamond MS. SARS-CoV-2: The Interplay Between Evolution and Host Immunity. Annu Rev Immunol 2025; 43:29-55. [PMID: 39705164 DOI: 10.1146/annurev-immunol-083122-043054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
The persistence of SARS-CoV-2 infections at a global level reflects the repeated emergence of variant strains encoding unique constellations of mutations. These variants have been generated principally because of a dynamic host immune landscape, the countermeasures deployed to combat disease, and selection for enhanced infection of the upper airway and respiratory transmission. The resulting viral diversity creates a challenge for vaccination efforts to maintain efficacy, especially regarding humoral aspects of protection. Here, we review our understanding of how SARS-CoV-2 has evolved during the pandemic, the immune mechanisms that confer protection, and the impact viral evolution has had on transmissibility and adaptive immunity elicited by natural infection and/or vaccination. Evidence suggests that SARS-CoV-2 evolution initially selected variants with increased transmissibility but currently is driven by immune escape. The virus likely will continue to drift to maintain fitness until countermeasures capable of disrupting transmission cycles become widely available.
Collapse
Affiliation(s)
- James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Shilpi Jain
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mehul S Suthar
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael S Diamond
- Department of Pathology & Immunology; Department of Molecular Microbiology; and Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
8
|
Piano Mortari E, Ferrucci F, Zografaki I, Carsetti R, Pacelli L. T and B cell responses in different immunization scenarios for COVID-19: a narrative review. Front Immunol 2025; 16:1535014. [PMID: 40170841 PMCID: PMC11959168 DOI: 10.3389/fimmu.2025.1535014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/25/2025] [Indexed: 04/03/2025] Open
Abstract
Vaccines against COVID-19 have high efficacy and low rates of adverse events. However, none of the available vaccines provide sterilizing immunity, and reinfections remain possible. This review aims to summarize the immunological responses elicited by different immunization strategies, examining the roles of homologous and heterologous vaccination and hybrid immunity. Homologous vaccination regimens exhibit considerable variation in immune responses depending on the vaccine platform, particularly concerning antibody titers, B cell activation, and T cell responses. mRNA vaccines, such as mRNA-1273 and BNT162b2, consistently generate higher and more durable levels of neutralizing antibodies and memory B cells compared to adenovirus-based vaccines like Ad26.COV2.S and ChAdOx1. The combination of two distinct vaccine platforms, each targeting different immune pathways, seems to be more effective in promoting long-lasting B cell responses and potent T cell responses. The high heterogeneity of the available studies, the different dosing schemes, the succession of new variants, and the subjects' immunological background do not allow for a definitive conclusion. Overall, heterologous vaccination strategies, combining sequentially viral vector and mRNA may deliver a more balanced and robust humoral and cellular immune response compared to homologous regimens. Hybrid immunity, which arises from SARS-CoV-2 infection preceded or followed by vaccination produces markedly stronger immune responses than either vaccination or infection alone. The immune response to SARS-CoV-2 variants of concern varies depending on both the vaccine platform and prior infection status. Hybrid immunity leads to a broader antibody repertoire, providing enhanced neutralization of variants of concern. Heterologous vaccination and hybrid immunity may provide further opportunities to enhance immune responses, offering broader protection and greater durability of immunity. However, from all-cause mortality, symptomatic or severe COVID, and serious adverse events at present it is not possible to infer different effects between homologous and heterologous schemes. Next-generation vaccines could involve tweaks to these designs or changes to delivery mechanisms that might improve performance.
Collapse
Affiliation(s)
- Eva Piano Mortari
- B Lymphocytes Unit, Bambino Gesù Children’s Hospital, istituto di ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | | | - Irini Zografaki
- mRNA & Antivirals Medical & Scientific Affairs International Developed Markets, Pfizer, Athens, Greece
| | - Rita Carsetti
- B Lymphocytes Unit, Bambino Gesù Children’s Hospital, istituto di ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Luciano Pacelli
- Medical Department, Internal Medicine, Pfizer s.r.l., Rome, Italy
| |
Collapse
|
9
|
Coish JM, MacNeil LA, MacNeil AJ. The SARS-CoV-2 antibody-dependent enhancement façade. Microbes Infect 2025; 27:105464. [PMID: 39662700 DOI: 10.1016/j.micinf.2024.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Antibody-dependent enhancement (ADE) is an immunological paradox whereby sensitization following a primary viral infection results in the subsequent enhancement of a similar secondary infection. This idiosyncratic immune response has been established in dengue virus infections, driven by four antigenically related serotypes co-circulating in endemic regions. Several coronaviruses exhibit antibody-mediated mechanisms of viral entry, which has led to speculation of an ADE capacity for SARS-CoV-2, though in vivo and epidemiological evidence do not currently support this phenomenon. Three distinct antibody-dependent mechanisms for SARS-CoV-2 entry have recently been demonstrated: 1. FcR-dependent, 2. ACE2-FcR-interdependent, and 3. FcR-independent. These mechanisms of viral entry may be dependent on SARS-CoV-2 antibody specificity; antibodies targeting the receptor binding domain (RBD) typically result in Fc-dependent and ACE2-FcR-interdependent entry, whereas antibodies targeting the N-terminal domain can induce a conformational change to the RBD that optimizes ACE2-receptor binding domain interactions independent of Fc receptors. Whether these antibody-dependent entry mechanisms of SARS-CoV-2 result in the generation of infectious progenies and enhancement of infection has not been robustly demonstrated. Furthermore, ADE of SARS-CoV-2 mediated by antigenic seniority remains a theoretical concern, as no evidence suggests that SARS-CoV-2 imprinting blunts a subsequent immune response, contributing to severe COVID-19 disease.
Collapse
Affiliation(s)
- Jeremia M Coish
- Department of Health Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Lori A MacNeil
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
10
|
Faliti CE, Van TTP, Anam FA, Cheedarla N, Williams ME, Mishra AK, Usman SY, Woodruff MC, Kraker G, Runnstrom MC, Kyu S, Sanz D, Ahmed H, Ghimire M, Morrison-Porter A, Quehl H, Haddad NS, Chen W, Cheedarla S, Neish AS, Roback JD, Antia R, Hom J, Tipton CM, Lindner JM, Ghosn E, Khurana S, Scharer CD, Khosroshahi A, Lee FEH, Sanz I. Disease-associated B cells and immune endotypes shape adaptive immune responses to SARS-CoV-2 mRNA vaccination in human SLE. Nat Immunol 2025; 26:131-145. [PMID: 39533072 PMCID: PMC11695260 DOI: 10.1038/s41590-024-02010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 mRNA vaccination has reduced effectiveness in certain immunocompromised individuals. However, the cellular mechanisms underlying these defects, as well as the contribution of disease-induced cellular abnormalities, remain largely unexplored. In this study, we conducted a comprehensive serological and cellular analysis of patients with autoimmune systemic lupus erythematosus (SLE) who received the Wuhan-Hu-1 monovalent mRNA coronavirus disease 2019 vaccine. Our findings revealed that patients with SLE exhibited reduced avidity of anti-receptor-binding domain antibodies, leading to decreased neutralization potency and breadth. We also observed a sustained anti-spike response in IgD-CD27- 'double-negative (DN)' DN2/DN3 B cell populations persisting during memory responses and with greater representation in the SLE cohort. Additionally, patients with SLE displayed compromised anti-spike T cell immunity. Notably, low vaccine efficacy strongly correlated with higher values of a newly developed extrafollicular B and T cell score, supporting the importance of distinct B cell endotypes. Finally, we found that anti-BAFF blockade through belimumab treatment was associated with poor vaccine immunogenicity due to inhibition of naive B cell priming and an unexpected impact on circulating T follicular helper cells.
Collapse
Affiliation(s)
- Caterina E Faliti
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Trinh T P Van
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Fabliha A Anam
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - M Elliott Williams
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ashish Kumar Mishra
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD, USA
| | - Sabeena Y Usman
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | | | - Martin C Runnstrom
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Shuya Kyu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Daniel Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Midushi Ghimire
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Andrea Morrison-Porter
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Hannah Quehl
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Natalie S Haddad
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
- MicroB-plex, Inc., Atlanta, GA, USA
| | - Weirong Chen
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Suneethamma Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - John D Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Jennifer Hom
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Christopher M Tipton
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | | | - Eliver Ghosn
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Arezou Khosroshahi
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA.
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA.
| |
Collapse
|
11
|
Mahrokhian SH, Tostanoski LH, Vidal SJ, Barouch DH. COVID-19 vaccines: Immune correlates and clinical outcomes. Hum Vaccin Immunother 2024; 20:2324549. [PMID: 38517241 PMCID: PMC10962618 DOI: 10.1080/21645515.2024.2324549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/24/2024] [Indexed: 03/23/2024] Open
Abstract
Severe disease due to COVID-19 has declined dramatically as a result of widespread vaccination and natural immunity in the population. With the emergence of SARS-CoV-2 variants that largely escape vaccine-elicited neutralizing antibody responses, the efficacy of the original vaccines has waned and has required vaccine updating and boosting. Nevertheless, hospitalizations and deaths due to COVID-19 have remained low. In this review, we summarize current knowledge of immune responses that contribute to population immunity and the mechanisms how vaccines attenuate COVID-19 disease severity.
Collapse
Affiliation(s)
- Shant H. Mahrokhian
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Lisa H. Tostanoski
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Samuel J. Vidal
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
12
|
Wang K, Zeng T, Guo Z, Liang J, Sun S, Ni Y, Yan C, Yin L, Wang L, Li H, Wang K, Chong MKC, Tang N, Dai J, Luo Z, Zhao S. Comparing the protection of heterologous booster of inhaled Ad5-nCoV vaccine and hybrid immunity against Omicron BA.5 infection: a cohort study of hospital staff in China. BMC Infect Dis 2024; 24:1401. [PMID: 39695978 DOI: 10.1186/s12879-024-10250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND After the exit "zero-COVID" strategy in mainland China by the end of 2022, a large-scale COVID-19 outbreak seeded by Omicron variants occurred. An inhaled adenovirus type-5 vector-based (i.e., inhaled Ad5-nCoV) COVID-19 vaccine was licensed earlier in 2021. In this study, we aimed to assess the real-world effectiveness of a heterologous booster of inhaled Ad5-nCoV vaccine against Omicron infection and compared with the protection from hybrid immunity (i.e., prior breakthrough infection). METHODS In this retrospective cohort study, we identified 1087 out of a total of 1146 hospital staff from a tertiary hospital in Urumqi city, China from November 22 to December 29, 2022. Demographic characteristics, baseline health status, occupation, behavioral factors, laboratory test of serological IgG antibody, and timeline from immunization to laboratory-testing outcome were obtained. We analysed the individual-level vaccination status of inhaled Ad5-nCoV vaccine, prior SARS-CoV-2 infection status and baseline vaccination status, and other risk factors before follow-up. The protective effects of the heterologous inhaled Ad5-nCoV vaccine and hybrid immunity against Omicron BA.5 infection and hospitalization were calculated as relative rate reduction (RRR), which was estimated using multivariate Poisson regression models. RESULTS A total of 1087 hospital staff (median age of 34 years, and 343 males [31.6%]), including 931 accepted for serological antibody tests, were recruited to assess the vaccine effectiveness (VE) of the inhaled Ad5-nCoV booster and hybrid immunity. Among the 1087 participants, 413 had a history of prior SARS-CoV-2 infection (before follow-up) but did not receive an inhaled Ad5-nCoV booster, and 674 reported no prior infection, including 390 who received an inhaled Ad5-nCoV booster. The highest serological IgG antibody level was detected among the inhaled Ad5-nCoV group, with a median of 294.59 S/CO, followed by the hybrid immunity group, with a median of 93.65 S/CO compared to the reference level of the inactivated vaccine group (most of whom received the Sinopharm/BBIBP-CorV vaccine). The inhaled Ad5-nCoV booster and hybrid immunity yielded RRRs of 41.9% (95% CI: 24.8, 55.0) and 97.9% (95% CI: 94.2, 99.2), respectively, against Omicron BA.5 infection, regardless of symptom status. CONCLUSION We found that hybrid immunity could provide a high level of protection against Omicron infection, while a heterologous inhaled Ad5-nCoV booster conferred a moderate level of protection. Our findings supported the rollout of a heterologous vaccination strategy regardless of preexisting vaccine coverage.
Collapse
Affiliation(s)
- Kai Wang
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China
| | - Ting Zeng
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China
| | - Zihao Guo
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jing Liang
- The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830092, China
| | - Shengzhi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yongkang Ni
- School of Public Health, Xinjiang Medical University, Urumqi, 830017, China
| | - Chunyan Yan
- The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830092, China
| | - Liang Yin
- The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830092, China
| | - Lan Wang
- The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830092, China
| | - Hui Li
- Central Laboratory of Xinjiang Medical University, Urumqi, 830017, China
| | - Kailu Wang
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, 999077, China
- CUHK Shenzhen Research Institute, Shenzhen, 518000, China
| | - Marc K C Chong
- CUHK Shenzhen Research Institute, Shenzhen, 518000, China
| | - Naijun Tang
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Prevention and Control of Major Diseases in the Population (MoE), Tianjin Medical University, Tianjin, 300070, China
| | - Jianghong Dai
- School of Public Health, Xinjiang Medical University, Urumqi, 830017, China
| | - Zhaohui Luo
- The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830092, China.
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China.
- Key Laboratory of Prevention and Control of Major Diseases in the Population (MoE), Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
13
|
Wang N, Fan H, Wang Y, Shu C, Lin Q, Hu P, Wang N, Zhang D. The hybrid immunity defined by weaker immune imprinting of people living with HIV has a stronger neutralizing response against Omicron variants. A suggested explanation for fewer symptoms in people living with HIV after SARS-CoV-2 variants breakthrough infection. Life Sci 2024; 358:123197. [PMID: 39481835 DOI: 10.1016/j.lfs.2024.123197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/12/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
AIMS Human immunodeficiency virus(HIV) co-infection may cause different immune imprinting, which leads to different hybrid immunity and clinical manifestations of coronavirus disease 2019. This study aims to evaluate the immune imprinting from wild-type(WT) vaccination in people living with HIV(PLWH) and analyze its effect on hybrid immunity and clinical manifestations. MATERIALS AND METHODS We enrolled 118 PLWH to compared the differences of BA.5-specific immune response in different immune modes. 20 vaccinated healthy individuals(HC) and 30 vaccinated PLWH were matched to compare the differences of the status of Omicron infection, serum neutralizing antibody levels against WT and BA.5, and specific lymphocytes expression, separately. KEY FINDINGS Hybrid immunity had a higher level of BA.5 IgG than either vaccine immunity only or natural immunity only in PLWH but didn't have a higher level of BA.5-specific lymphocytes responses. PLWH had fewer symptoms than HC after breakthrough infection. The neutralizing inhibition rate of PLWH was higher for BA.5 and lower for WT, while the neutralizing inhibition rate of HC was higher for WT and lower for BA.5. The difference value of specific B lymphocytes/memory B cells/follicular helper T cells of PLWH was greater than that of HC. SIGNIFICANCE Hybrid immunity of PLWH has a higher level of Omicron-specific IgG without a higher level of Omicron-specific lymphocytes due to immune imprinting. However, there is a stronger neutralizing ability against variants of PLWH due to the weaker immune imprinting of PLWH than that of healthy people, which may lead to fewer symptoms in PLWH after breakthrough infection.
Collapse
Affiliation(s)
- Ni Wang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Huimin Fan
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yixuan Wang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chang Shu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qing Lin
- Department of Infectious Diseases, The people's hospital of Jiulongpo district, Chongqing, China.
| | - Peng Hu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China; Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Na Wang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China; Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Dazhi Zhang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China; Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
14
|
Cobey S. Vaccination against rapidly evolving pathogens and the entanglements of memory. Nat Immunol 2024; 25:2015-2023. [PMID: 39384979 DOI: 10.1038/s41590-024-01970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/26/2024] [Indexed: 10/11/2024]
Abstract
Immune memory determines infection risk and responses to future infections and vaccinations over potentially decades of life. Despite its centrality, the dynamics of memory to antigenically variable pathogens remains poorly understood. This Review examines how past exposures shape B cell responses to vaccinations with influenza and SARS-CoV-2. An overriding feature of vaccinations with these pathogens is the recall of primary responses, often termed 'imprinting' or 'original antigenic sin'. These recalled responses can inhibit the generation of new responses unless some incompletely defined conditions are met. Depending on the context, immune memory can increase or decrease the total neutralizing antibody response to variant antigens, with apparent consequences for protection. These effects are easier to measure experimentally than epidemiologically, but there is evidence that both early and recent exposures influence vaccine effectiveness. A few immunological interactions between adaptive immune responses and antigens might explain the seemingly discrepant effects of memory. Overall, the complex observations point to a need for more quantitative approaches to integrate high-dimensional immune data from populations with diverse exposure histories. Such approaches could help identify optimal vaccination strategies against antigenically diverse pathogens.
Collapse
Affiliation(s)
- Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
15
|
Aguirre F, Marro MJ, Rodriguez PE, Rall P, Miglietta EA, Miranda LAL, Poncet V, Pascuale CA, Ballejo CA, Ricardo T, Miragaya Y, Gamarnik A, Rossi AH, Silva AP. [Effect of previous exposure to COVID-19, occurrence of spikes, and type of vaccine on the humoral immune response of institutionalized older adults]. CAD SAUDE PUBLICA 2024; 40:e00155023. [PMID: 39417469 PMCID: PMC11469675 DOI: 10.1590/0102-311xes155023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 10/19/2024] Open
Abstract
This study evaluated the explanatory factors of humoral immune response in older adults admitted to long-term care institutions in Buenos Aires, Argentina, up to 180 days after vaccination. An open-label, prospective, multicenter cohort study was conducted with volunteers who received two doses of the Sputnik V, Sinopharm, or AZD1222 vaccines. Plasma samples were analyzed at 0 and 21 days after the first dose, 21 days after the second dose, and 120 and 180 days after the first dose. Marginal linear models and generalized additives mixed models were adjusted to determine the behavior of anti-spike IgG antibody concentration over time according to exposure group (naïve/no-naïve) and vaccine. Occurrence of an outbreak of COVID-19 in long-term care institutions and comorbidities were the covariates analyzed. A total of 773 participants were included, with a mean age of 83 years (IQR: 76-89). Results showed that antibody levels in the naïve: Sinopharm group were significantly lower to the other groups (p < 0.05). Antibody levels in the no-naïve: Sinopharm group were similar to those in the naïve group who received AZD1222 (p = 0.945) or Sputnik V (p = 1). Participants exposed to outbreaks in long-term care institutions had significantly higher antibody levels, regardless of exposure group and vaccine (p < 0.001). In conclusion, previous exposure to COVID-19, type of vaccine, and admittance into a long-term care institution with a history of outbreaks are factors to be considered in future epidemic events with transmission dynamics and immunological mechanisms similar to COVID-19, in populations similar to the one analyzed.
Collapse
Affiliation(s)
- Fernanda Aguirre
- Instituto Nacional de Epidemiología "Dr. Juan H. Jara", Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Mar del Plata, Argentina
| | - María Jimena Marro
- Instituto Nacional de Epidemiología "Dr. Juan H. Jara", Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Mar del Plata, Argentina
| | - Pamela E Rodriguez
- Fundación Instituto Leloir, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Pablo Rall
- Instituto Nacional de Servicios Sociales para Jubilados y Pensionados, Buenos Aires, Argentina
| | - Esteban A Miglietta
- Fundación Instituto Leloir, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Lucía A López Miranda
- Instituto Nacional de Epidemiología "Dr. Juan H. Jara", Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Mar del Plata, Argentina
| | - Verónica Poncet
- Instituto Nacional de Epidemiología "Dr. Juan H. Jara", Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Mar del Plata, Argentina
| | - Carla A Pascuale
- Fundación Instituto Leloir, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Christian A Ballejo
- Instituto Nacional de Epidemiología "Dr. Juan H. Jara", Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Mar del Plata, Argentina
| | - Tamara Ricardo
- Instituto Nacional de Epidemiología "Dr. Juan H. Jara", Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Mar del Plata, Argentina
| | - Yanina Miragaya
- Instituto Nacional de Servicios Sociales para Jubilados y Pensionados, Buenos Aires, Argentina
| | - Andrea Gamarnik
- Fundación Instituto Leloir, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Andrés H Rossi
- Fundación Instituto Leloir, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Andrea P Silva
- Instituto Nacional de Epidemiología "Dr. Juan H. Jara", Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Mar del Plata, Argentina
| |
Collapse
|
16
|
Song XD, Yang GJ, Shi C, Jiang XL, Wang XJ, Zhang YW, Wu J, Zhao LX, Wang MM, Chen RR, He XJ, Dai EH, Shen Y, Gao HX, Dong G, Ma MJ. Finite immune imprinting on neutralizing antibody responses to Omicron subvariants by repeated vaccinations. Int J Infect Dis 2024; 147:107198. [PMID: 39117174 DOI: 10.1016/j.ijid.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVE To investigate the effects of repeated vaccination with ancestral SARS-CoV-2 (Wuhan-hu-1)-based inactivated, recombinant protein subunit or vector-based vaccines on the neutralizing antibody response to Omicron subvariants. METHODS Individuals who received four-dose vaccinations with the Wuhan-hu-1 strain, individuals who were infected with the BA.5 variant alone without prior vaccination, and individuals who experienced a BA.5 breakthrough infection (BTI) following receiving 2-4 doses of the Wuhan-hu-1 vaccine were enrolled. Neutralizing antibodies against D614G, BA.5, XBB.1.5, EG.5.1, and BA.2.86 were detected using a pseudovirus-based neutralization assay. Antigenic cartography was used to analyze cross-reactivity patterns among D614G, BA.5, XBB.1.5, EG.5.1, and BA.2.86 and sera from individuals. RESULTS The highest neutralizing antibody titers against D614G were observed in individuals who only received four-dose vaccination and those who experienced BA.5 BTI, which was also significantly higher than the antibody titers against XBB.1.5, EG.5.1, and BA.2.86. In contrast, only BA.5 infection elicited comparable neutralizing antibody titers against the tested variants. While neutralizing antibody titers against D614G or BA.5 were similar across the cohorts, the neutralizing capacity of antibodies against XBB.1.5, EG.5.1, and BA.2.86 was significantly reduced. BA.5 BTI following heterologous booster induced significantly higher neutralizing antibody titers against the variants, particularly against XBB.1.5 and EG.5.1, than uninfected vaccinated individuals, only BA.5 infected individuals, or those with BA.5 BTI after primary vaccination. CONCLUSIONS Our findings suggest that repeated vaccination with the Wuhan-hu-1 strain imprinted a neutralizing antibody response toward the Wuhan-hu-1 strain with limited effects on the antibody response to the Omicron subvariants.
Collapse
Affiliation(s)
- Xue-Dong Song
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China; Department of Laboratory Medicine, Handan Central Hospital, Hebei Medical University, Handan, China; Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Guo-Jian Yang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory of Prevention and Control of Emerging Infectious Diseases and Biosafety in Universities of Shandong, Jinan, China
| | - Chao Shi
- Department of Infectious Disease Control and Prevention, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Xiao-Lin Jiang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Provincial Center for Disease Control and Prevention, Jinan, China
| | - Xue-Jun Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yu-Wei Zhang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Provincial Center for Disease Control and Prevention, Jinan, China
| | - Jie Wu
- Department of Infectious Disease Control and Prevention, Binzhou Center for Disease Control and Prevention, Binzhou, China
| | - Lian-Xiang Zhao
- School of Public Health, Binzhou Medical University, Binzhou, China
| | - Ming-Ming Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Rui-Rui Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China; Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xue-Juan He
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China; Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Er-Hei Dai
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Yuan Shen
- Department of Infectious Disease Control and Prevention, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Hui-Xia Gao
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Gang Dong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Mai-Juan Ma
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China; Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory of Prevention and Control of Emerging Infectious Diseases and Biosafety in Universities of Shandong, Jinan, China; Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
17
|
Zhu W, Zhang J, Zhang Y, Zhang H, Miao K, Luo J, Yang M. Establishment of a rapid and sensitive ic-ELISA for the detection of thiacloprid residues in honey and medicinal herbs using a novel highly specific monoclonal antibody. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116911. [PMID: 39191135 DOI: 10.1016/j.ecoenv.2024.116911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/28/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Thiacloprid is one of the first generation of neonicotinoid insecticide with a chloropyridine structure like imidacloprid and acetamiprid. Recent studies have revealed its environmental and non-target organism toxicity, leading to restrictions on its use in many countries and regions. Despite limitations, thiacloprid has been detected in various environmental samples, food sources, and biological specimens, posing a significant threat to human health, necessitating advanced detection methods for monitoring. In this study, a highly specific monoclonal antibody against thiacloprid via a multi-immunogen strategy was prepared and a rapid and sensitive enzyme-linked immunosorbent assay for the detection of thiacloprid residues in honey and medicinal herbs was established. The half maximal inhibitory concentration (IC50) of this method was 0.38 ng/mL, improving the sensitivity by 1.2-480.6 times compared to existing reports, and the limit of detection (IC20) was 0.097 ng/mL. The method was successfully applied to the determination of thiacloprid residues in honey and medicinal herbs (Crataegi fructus, Citri reticulatae pericarpium), achieving recovery rates ranging from 87.50 % to 116.11 %. The obtained results were verified using the LC-MS/MS method. The multi-immunogen strategy proposed in this study provides an approach for the preparation of highly sensitive and specific monoclonal antibodies, and immunoassay established based on it has good application prospects in complex matrices.
Collapse
Affiliation(s)
- Wanxuan Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jing Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuanyuan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Huiru Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Kun Miao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
18
|
Notarbartolo S. T-Cell Immune Responses to SARS-CoV-2 Infection and Vaccination. Vaccines (Basel) 2024; 12:1126. [PMID: 39460293 PMCID: PMC11511197 DOI: 10.3390/vaccines12101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
The innate and adaptive immune systems collaborate to detect SARS-CoV-2 infection, minimize the viral spread, and kill infected cells, ultimately leading to the resolution of the infection. The adaptive immune system develops a memory of previous encounters with the virus, providing enhanced responses when rechallenged by the same pathogen. Such immunological memory is the basis of vaccine function. Here, we review the current knowledge on the immune response to SARS-CoV-2 infection and vaccination, focusing on the pivotal role of T cells in establishing protective immunity against the virus. After providing an overview of the immune response to SARS-CoV-2 infection, we describe the main features of SARS-CoV-2-specific CD4+ and CD8+ T cells, including cross-reactive T cells, generated in patients with different degrees of COVID-19 severity, and of Spike-specific CD4+ and CD8+ T cells induced by vaccines. Finally, we discuss T-cell responses to SARS-CoV-2 variants and hybrid immunity and conclude by highlighting possible strategies to improve the efficacy of COVID-19 vaccination.
Collapse
Affiliation(s)
- Samuele Notarbartolo
- Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
19
|
Jung W, Abdelnour A, Kaplonek P, Herrero R, Shih-Lu Lee J, Barbati DR, Chicz TM, Levine KS, Fantin RC, Loria V, Porras C, Lauffenburger DA, Gail MH, Aparicio A, Hildesheim A, Alter G, McNamara RP. SARS-CoV-2 infection prior to vaccination amplifies Fc-mediated humoral profiles in an age-dependent manner. Cell Rep 2024; 43:114684. [PMID: 39213155 DOI: 10.1016/j.celrep.2024.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Immunity acquired by vaccination following infection, termed hybrid immunity, has been shown to confer enhanced protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by enhancing the breadth and potency of immune responses. Here, we assess Fc-mediated humoral profiles in hybrid immunity and their association with age and vaccine type. Participants are divided into three groups: infection only, vaccination only, and vaccination following infection (i.e., hybrid immunity). Using systems serology, we profile humoral immune responses against spikes and subdomains of SARS-CoV-2 variants. We find that hybrid immunity is characterized by superior Fc receptor binding and natural killer (NK) cell-, neutrophil-, and complement-activating antibodies, which is higher than what can be expected from the sum of the vaccination and infection. These differences between hybrid immunity and vaccine-induced immunity are more pronounced in aged adults, especially for immunoglobulin (Ig)G1, IgG2, and Fcγ receptor-binding antibodies. Our findings suggest that vaccination strategies that aim to mimic hybrid immunity should consider age as an important modifier.
Collapse
Affiliation(s)
- Wonyeong Jung
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Paulina Kaplonek
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Rolando Herrero
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | | | - Domenic R Barbati
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Taras M Chicz
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Kate S Levine
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Romain Clement Fantin
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Viviana Loria
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Carolina Porras
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mitchell H Gail
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Amada Aparicio
- Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Allan Hildesheim
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Galit Alter
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA.
| | - Ryan P McNamara
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
20
|
Tsagkli P, Geropeppa M, Papadatou I, Spoulou V. Hybrid Immunity against SARS-CoV-2 Variants: A Narrative Review of the Literature. Vaccines (Basel) 2024; 12:1051. [PMID: 39340081 PMCID: PMC11436074 DOI: 10.3390/vaccines12091051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence of SARS-CoV-2 led to a global health crisis and the burden of the disease continues to persist. The rapid development and emergency authorization of various vaccines, including mRNA-based vaccines, played a pivotal role in mitigating severe illness and mortality. However, rapid viral mutations, leading to several variants of concern, challenged vaccine effectiveness, particularly concerning immune evasion. Research on immunity, both from natural infection and vaccination, revealed that while neutralizing antibodies provide protection against infection, their effect is short-lived. The primary defense against severe COVID-19 is derived from the cellular immune response. Hybrid immunity, developed from a combination of natural infection and vaccination, offers enhanced protection, with convalescent vaccinated individuals showing significantly higher levels of neutralizing antibodies. As SARS-CoV-2 continues to evolve, understanding the durability and breadth of hybrid immunity becomes crucial. This narrative review examines the latest data on humoral and cellular immunity from both natural infection and vaccination, discussing how hybrid immunity could inform and optimize future vaccination strategies in the ongoing battle against COVID-19 and in fear of a new pandemic.
Collapse
Affiliation(s)
- Panagiota Tsagkli
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| | - Maria Geropeppa
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| | - Ioanna Papadatou
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| |
Collapse
|
21
|
Priest DG, Ebihara T, Tulyeu J, Søndergaard JN, Sakakibara S, Sugihara F, Nakao S, Togami Y, Yoshimura J, Ito H, Onishi S, Muratsu A, Mitsuyama Y, Ogura H, Oda J, Okusaki D, Matsumoto H, Wing JB. Atypical and non-classical CD45RB lo memory B cells are the majority of circulating SARS-CoV-2 specific B cells following mRNA vaccination or COVID-19. Nat Commun 2024; 15:6811. [PMID: 39122676 PMCID: PMC11315995 DOI: 10.1038/s41467-024-50997-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Resting memory B cells can be divided into classical or atypical groups, but the heterogenous marker expression on activated memory B cells makes similar classification difficult. Here, by longitudinal analysis of mass cytometry and CITE-seq data from cohorts with COVID-19, bacterial sepsis, or BNT162b2 mRNA vaccine, we observe that resting B cell memory consist of classical CD45RB+ memory and CD45RBlo memory, of which the latter contains of two distinct groups of CD11c+ atypical and CD23+ non-classical memory cells. CD45RB levels remain stable in these cells after activation, thereby enabling the tracking of activated B cells and plasmablasts derived from either CD45RB+ or CD45RBlo memory B cells. Moreover, in both COVID-19 patients and mRNA vaccination, CD45RBlo B cells formed the majority of SARS-CoV2 specific memory B cells and correlated with serum antibodies, while CD45RB+ memory are activated by bacterial sepsis. Our results thus identify that stably expressed CD45RB levels can be exploited to trace resting memory B cells and their activated progeny, and suggest that atypical and non-classical CD45RBlo memory B cells contribute to SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
- David G Priest
- Laboratory of Human Single Cell Immunology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, 563-0793, Japan
| | - Takeshi Ebihara
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Janyerkye Tulyeu
- Human Single Cell Immunology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Jonas N Søndergaard
- Human Single Cell Immunology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, IFReC, Osaka University, Suita, Osaka, 563-0793, Japan
- Graduate School of Medical Safety Management, Jikei University of Health Care Sciences, Osaka, 532-0003, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Immunology Frontier Research Center and Research Institute for Microbial Disease, Osaka University, Suita, Osaka, 563-0793, Japan
- Research Institute for Microbial Disease, Osaka University, Suita, Osaka, 563-0793, Japan
| | - Shunichiro Nakao
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yuki Togami
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Jumpei Yoshimura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Ito
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shinya Onishi
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Arisa Muratsu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yumi Mitsuyama
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, 558-8558, Japan
| | - Hiroshi Ogura
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Jun Oda
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Daisuke Okusaki
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
- Laboratory of Human Immunology (Single Cell Genomics), WPI-IFReC, Osaka University, Suita, 565-0871, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, 565-0871, Japan
| | - Hisatake Matsumoto
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan.
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - James B Wing
- Laboratory of Human Single Cell Immunology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, 563-0793, Japan.
- Human Single Cell Immunology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan.
| |
Collapse
|
22
|
Tobias J, Steinberger P, Wilkinson J, Klais G, Kundi M, Wiedermann U. SARS-CoV-2 Vaccines: The Advantage of Mucosal Vaccine Delivery and Local Immunity. Vaccines (Basel) 2024; 12:795. [PMID: 39066432 PMCID: PMC11281395 DOI: 10.3390/vaccines12070795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Immunity against respiratory pathogens is often short-term, and, consequently, there is an unmet need for the effective prevention of such infections. One such infectious disease is coronavirus disease 19 (COVID-19), which is caused by the novel Beta coronavirus SARS-CoV-2 that emerged around the end of 2019. The World Health Organization declared the illness a pandemic on 11 March 2020, and since then it has killed or sickened millions of people globally. The development of COVID-19 systemic vaccines, which impressively led to a significant reduction in disease severity, hospitalization, and mortality, contained the pandemic's expansion. However, these vaccines have not been able to stop the virus from spreading because of the restricted development of mucosal immunity. As a result, breakthrough infections have frequently occurred, and new strains of the virus have been emerging. Furthermore, SARS-CoV-2 will likely continue to circulate and, like the influenza virus, co-exist with humans. The upper respiratory tract and nasal cavity are the primary sites of SARS-CoV-2 infection and, thus, a mucosal/nasal vaccination to induce a mucosal response and stop the virus' transmission is warranted. In this review, we present the status of the systemic vaccines, both the approved mucosal vaccines and those under evaluation in clinical trials. Furthermore, we present our approach of a B-cell peptide-based vaccination applied by a prime-boost schedule to elicit both systemic and mucosal immunity.
Collapse
Affiliation(s)
- Joshua Tobias
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Joy Wilkinson
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gloria Klais
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Kundi
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
23
|
Manteghinejad A, Rasti S, Nasirian M, Javanmard SH. Association of Prior COVID-19 Infection with Risk of Breakthrough Infection Following Vaccination: A Cohort Study in Isfahan, Iran. Int J Prev Med 2024; 15:18. [PMID: 39170924 PMCID: PMC11338365 DOI: 10.4103/ijpvm.ijpvm_173_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/20/2024] [Indexed: 08/23/2024] Open
Abstract
Background Many people worldwide have developed a combination of natural and vaccine-induced immunity to COVID-19. This study investigated whether exposure to SARS-CoV-2 before full vaccination promotes protection against a breakthrough infection. Methods We studied a total of 2,902,545 people in the Isfahan COVID-19 Registry. All the participants had received two doses of either Sinopharm BIBP, ChAdOx1-nCoV-19, Gam-COVID-Vac, or BIV1-CovIran vaccines. A cohort study examined the association between prior COVID-19 infection and the risk of a breakthrough infection for each vaccine. Cohorts in each pair were matched by gender, age group, calendar week of the first dose, the interval between the first and second doses, and the proportion of healthcare workers. The probable virus variant for the previous infections was also considered. Each individual's follow-up started 14 days after their second vaccine dose until either the end of the study censoring date, occurrence of a COVID-19 infection, or death. The breakthrough infection risk was compared between each cohort pair by using the hazard ratio (HR) and incidence rate ratio (IRR). Results Total breakthrough HRs (95% confidence interval) (previously infected over infection-naïve matched cohort) were 0.36 (0.23-0.55), 0.35 (0.32-0.40), 0.37 (0.30-0.46), and 0.43 (0.32-0.56) for the BIV1-CovIran, Sinopharm BIBP, Gam-COVID-Vac, and ChAdOx1-nCoV-19 vaccine groups, respectively. The breakthrough infection IRRs were approximately similar to the total HRs mentioned above. Conclusion Prior SARS-CoV-2 infection conferred additive immunity against breakthrough after vaccination, no matter which vaccine brand was injected. Such a result could guide health authorities to codify low-cost high-benefit vaccination protocols and protect the community's well-being.
Collapse
Affiliation(s)
- Amirreza Manteghinejad
- Cancer Prevention Research Center, Omid Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Rasti
- Craniofacial and Cleft Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Nasirian
- Department of Epidemiology and Biostatistics, Health School, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
24
|
Gutierrez-Camacho JR, Avila-Carrasco L, Gamón-Madrid A, Muñoz-Torres JR, Murillo-Ruiz-Esparza A, Garza-Veloz I, Trejo-Ortiz PM, Mollinedo-Montaño FE, Araujo-Espino R, Rodriguez-Sanchez IP, Delgado-Enciso I, Martinez-Fierro ML. Evaluation of the Effect of Influenza Vaccine on the Development of Symptoms in SARS-CoV-2 Infection and Outcome in Patients Hospitalized due to COVID-19. Vaccines (Basel) 2024; 12:765. [PMID: 39066403 PMCID: PMC11281370 DOI: 10.3390/vaccines12070765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND COVID-19 is an infectious disease caused by SARS-CoV-2. It is unclear whether influenza vaccination reduces the severity of disease symptoms. Previous studies have suggested a beneficial effect of influenza vaccination on the severity of COVID-19. The aim of this study was to evaluate the possible protective effect of the influenza vaccine on the occurrence of SARS-CoV-2 infection symptoms and prognosis in patients hospitalized with COVID-19. METHODS This was a retrospective cohort study of patients who tested positive for SARS-CoV-2, identified by quantitative real-time polymerase chain reaction. Chi-square tests, Kaplan-Meier analysis, and multivariate analysis were performed to assess the association between influenza vaccination and the presence of symptoms in hospitalized patients with COVID-19 and their outcome. RESULTS In this study, 1712 patients received positive laboratory tests for SARS-CoV-2; influenza vaccination was a protective factor against the presence of characteristic COVID-19 symptoms such as polypnea, anosmia, dysgeusia, and fever (p < 0.001). Influenza-vaccinated patients had fewer days of hospitalization (p = 0.029). CONCLUSIONS The findings of this study support that influenza vaccination is associated with a decrease in the number of symptoms in patients hospitalized due to COVID-19, with fewer days of hospitalization, but not with the outcome of disease.
Collapse
Affiliation(s)
- Jose Roberto Gutierrez-Camacho
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | - Lorena Avila-Carrasco
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | - Araceli Gamón-Madrid
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | - Jose Ramon Muñoz-Torres
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | | | - Idalia Garza-Veloz
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | - Perla M. Trejo-Ortiz
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | - Fabiana E. Mollinedo-Montaño
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | - Roxana Araujo-Espino
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | - Iram P. Rodriguez-Sanchez
- Laboratorio de Fisiologia Molecular y Estructural, Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, San Nicolas de Los Garza 66450, Mexico;
| | - Ivan Delgado-Enciso
- Department of Molecular Medicine, School of Medicine, Cancerology State Institute, IMSS-Bienestar, University of Colima, Colima 28040, Mexico;
| | - Margarita L. Martinez-Fierro
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| |
Collapse
|
25
|
Qui M, Hariharaputran S, Hang SK, Zhang J, Tan CW, Chong CY, Low J, Wang L, Bertoletti A, Yung CF, Le Bert N. T cell hybrid immunity against SARS-CoV-2 in children: a longitudinal study. EBioMedicine 2024; 105:105203. [PMID: 38896919 PMCID: PMC11237860 DOI: 10.1016/j.ebiom.2024.105203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Hybrid immunity to SARS-CoV-2, resulting from both vaccination and natural infection, remains insufficiently understood in paediatric populations, despite increasing rates of breakthrough infections among vaccinated children. METHODS We conducted a prospective longitudinal study to investigate the magnitude, specificity, and cytokine profile of antigen-specific T cell responses elicited by breakthrough SARS-CoV-2 infection in a cohort of mRNA-vaccinated children (n = 29) aged 5-11. This longitudinal analysis involved six distinct time points spanning a 16-month period post-vaccination, during which we analysed a total of 159 blood samples. All children who were followed for at least 12 months (n = 26) experienced a breakthrough infection. We conducted cytokine release assays using minimal blood samples, and we verified the cellular origin of these responses through intracellular cytokine staining. FINDINGS After breakthrough infection, children who had received mRNA vaccines showed enhanced Th1 responses specific to Spike peptides. Additionally, their Spike-specific T cells exhibited a distinctive enrichment of CD4+ IFN-γ+IL10+ cells, a characteristic akin to adults with hybrid immunity. Importantly, vaccination did not impede the development of multi-specific T cell responses targeting Membrane, Nucleoprotein, and ORF3a/7/8 antigens. INTERPRETATION Children, previously primed with a Spike-based mRNA vaccine and experiencing either symptomatic or asymptomatic breakthrough infection, retained the ability to enhance and diversify Th1/IL-10 antigen-specific T cell responses against multiple SARS-CoV-2 proteins. These findings mirror characteristics associated with hybrid cellular immunity in adults, known to confer resistance against severe COVID-19. FUNDING This study was funded by the National Medical Research Council (NMRC) Singapore (COVID19RF-0019, MOH-000019, MOH-000535, OFLCG19May-0034 and MOH-OFYIRG19nov-0002).
Collapse
Affiliation(s)
- Martin Qui
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | | | - Shou Kit Hang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Jinyan Zhang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chia Yin Chong
- KK Women's and Children's Hospital, Department of Paediatrics, Infectious Diseases Service, Singapore; Duke-NUS Medical School, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Jenny Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Singapore General Hospital, Department of Infectious Diseases, Singapore
| | - Linfa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Singapore Immunology Network, A∗STAR, Singapore
| | - Chee Fu Yung
- KK Women's and Children's Hospital, Department of Paediatrics, Infectious Diseases Service, Singapore; Duke-NUS Medical School, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Nina Le Bert
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.
| |
Collapse
|
26
|
Nelson CE, Foreman TW, Fukutani ER, Kauffman KD, Sakai S, Fleegle JD, Gomez F, Gould ST, Le Nouën C, Liu X, Burdette TL, Garza NL, Lafont BAP, Brooks K, Lindestam Arlehamn CS, Weiskopf D, Sette A, Hickman HD, Buchholz UJ, Johnson RF, Brenchley JM, Oberman JP, Quieroz ATL, Andrade BB, Via LE, Barber DL. IL-10 suppresses T cell expansion while promoting tissue-resident memory cell formation during SARS-CoV-2 infection in rhesus macaques. PLoS Pathog 2024; 20:e1012339. [PMID: 38950078 PMCID: PMC11244803 DOI: 10.1371/journal.ppat.1012339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/12/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
The regulation of inflammatory responses and pulmonary disease during SARS-CoV-2 infection is incompletely understood. Here we examine the roles of the prototypic pro- and anti-inflammatory cytokines IFNγ and IL-10 using the rhesus macaque model of mild COVID-19. We find that IFNγ drives the development of 18fluorodeoxyglucose (FDG)-avid lesions in the lungs as measured by PET/CT imaging but is not required for suppression of viral replication. In contrast, IL-10 limits the duration of acute pulmonary lesions, serum markers of inflammation and the magnitude of virus-specific T cell expansion but does not impair viral clearance. We also show that IL-10 induces the subsequent differentiation of virus-specific effector T cells into CD69+CD103+ tissue resident memory cells (Trm) in the airways and maintains Trm cells in nasal mucosal surfaces, highlighting an unexpected role for IL-10 in promoting airway memory T cells during SARS-CoV-2 infection of macaques.
Collapse
Affiliation(s)
- Christine E. Nelson
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Taylor W. Foreman
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eduardo R. Fukutani
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Keith D. Kauffman
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shunsuke Sakai
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joel D. Fleegle
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Felipe Gomez
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - NIAID/DIR Tuberculosis Imaging Program
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sydnee T. Gould
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xueqiao Liu
- RNA Viruses Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tracey L. Burdette
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicole L. Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bernard A. P. Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cecilia S. Lindestam Arlehamn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, United States of America
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, United States of America
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, California, United States of America
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ursula J. Buchholz
- RNA Viruses Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Reed F. Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James P. Oberman
- Holy Cross Germantown Hospital, Affiliate of National Breathe Free Sinus and ENT Center, Frederick Breathe Free Sinus and ENT Center, Frederick, Maryland, United States of America
| | - Artur T. L. Quieroz
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Bruno B. Andrade
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laura E. Via
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
- Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Daniel L. Barber
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
27
|
Gray-Gaillard SL, Solis SM, Chen HM, Monteiro C, Ciabattoni G, Samanovic MI, Cornelius AR, Williams T, Geesey E, Rodriguez M, Ortigoza MB, Ivanova EN, Koralov SB, Mulligan MJ, Herati RS. SARS-CoV-2 inflammation durably imprints memory CD4 T cells. Sci Immunol 2024; 9:eadj8526. [PMID: 38905326 PMCID: PMC11824880 DOI: 10.1126/sciimmunol.adj8526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
Memory CD4 T cells are critical to human immunity, yet it is unclear whether viral inflammation during memory formation has long-term consequences. Here, we compared transcriptional and epigenetic landscapes of Spike (S)-specific memory CD4 T cells in 24 individuals whose first exposure to S was via SARS-CoV-2 infection or mRNA vaccination. Nearly 2 years after memory formation, S-specific CD4 T cells established by infection remained enriched for transcripts related to cytotoxicity and for interferon-stimulated genes, likely because of a chromatin accessibility landscape altered by inflammation. Moreover, S-specific CD4 T cells primed by infection had reduced proliferative capacity in vitro relative to vaccine-primed cells. Furthermore, the transcriptional state of S-specific memory CD4 T cells was minimally altered by booster immunization and/or breakthrough infection. Thus, infection-associated inflammation durably imprints CD4 T cell memory, which affects the function of these cells and may have consequences for long-term immunity.
Collapse
Affiliation(s)
| | - Sabrina M. Solis
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Han M. Chen
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Clarice Monteiro
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Grace Ciabattoni
- Department of Microbiology, New York University School of
Medicine; New York, NY, USA
| | - Marie I. Samanovic
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Amber R. Cornelius
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Tijaana Williams
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Emilie Geesey
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Miguel Rodriguez
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Mila Brum Ortigoza
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Ellie N. Ivanova
- Department of Pathology, New York University School of
Medicine; New York, NY, USA
| | - Sergei B. Koralov
- Department of Pathology, New York University School of
Medicine; New York, NY, USA
| | - Mark J. Mulligan
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
- Department of Microbiology, New York University School of
Medicine; New York, NY, USA
| | - Ramin Sedaghat Herati
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
- Department of Microbiology, New York University School of
Medicine; New York, NY, USA
| |
Collapse
|
28
|
Bezanovic MR, Obradovic ZB, Bujandric N, Kocic N, Milanovic MK, Majkic M, Obrovski B, Grujic J. Reactivity of anti-SARS-CoV-2 antibodies in Serbian voluntary blood donors. Transfus Med 2024; 34:200-210. [PMID: 38561316 DOI: 10.1111/tme.13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 02/07/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND The COVID-19 pandemic has major implications on the entire blood supply system worldwide. Seroepidemiological studies are certainly necessary for better understanding the global burden that the COVID-19 pandemic represents. OBJECTIVES In this study, we analysed the association between demographic factors, COVID-19 severity, vaccination status and the reactivity of anti-SARS-CoV-2 IgG antibodies in Serbian blood donors. MATERIALS AND METHODS In a prospective study, demographic data and data related to previous SARS-CoV-2 infection, COVID-19 severity and vaccination status among whole blood donors were analysed, from February 10 to August 10, 2022, at the Blood Transfusion Institute of Vojvodina, Serbia. The detection and determination of the level of anti-SARS-CoV-2 IgG antibodies were performed using LIAISON® SARS-CoV-2 TrimericS IgG immunoassay. RESULTS A total of 1190 blood donors were included, 24.5% were female and 75.5% were male while their average age was 41 years. Anti-SARS-CoV-2 antibody values ranged from 2.40 to 3120 BAU/ml with a mean value of 1354.56 BAU/ml. Statistical analysis showed that COVID-19 severity and vaccination status are linked with reactivity of anti-SARS-CoV-2 antibodies, while gender and age of voluntary blood donors are not related to the values of anti-SARS-CoV-2 antibodies. CONCLUSION The values of anti-SARS-CoV-2 antibodies in voluntary blood donors in Serbia are kept relatively high, especially in blood donors who have overcome the severe COVID-19, as well as in donors who have been vaccinated against COVID-19. Further SARS-CoV-2 seroprevalence studies in our country are certainly still necessary so global strategies to fight against COVID-19 would be adequately evaluated.
Collapse
Affiliation(s)
- Milomir Radoslav Bezanovic
- Department for Blood Collection, Testing and Production of Blood Products, Blood Transfusion Institute of Vojvodina, Novi Sad, Serbia
| | - Zorana Budakov Obradovic
- Department for Blood Collection, Testing and Production of Blood Products, Blood Transfusion Institute of Vojvodina, Novi Sad, Serbia
- Department of Transfusiology, Faculty of Medicine in Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Nevenka Bujandric
- Department for Blood Collection, Testing and Production of Blood Products, Blood Transfusion Institute of Vojvodina, Novi Sad, Serbia
- Department of Transfusiology, Faculty of Medicine in Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Neda Kocic
- Department for Blood Collection, Testing and Production of Blood Products, Blood Transfusion Institute of Vojvodina, Novi Sad, Serbia
| | - Mirjana Krga Milanovic
- Department for Blood Collection, Testing and Production of Blood Products, Blood Transfusion Institute of Vojvodina, Novi Sad, Serbia
| | - Milan Majkic
- Clinic for Orthopedic Surgery and Traumatology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Boris Obrovski
- Department of Environmental Engineering and Occupational Health and Safety, Faculty of Technical Sciences in Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Jasmina Grujic
- Department for Blood Collection, Testing and Production of Blood Products, Blood Transfusion Institute of Vojvodina, Novi Sad, Serbia
- Department of Transfusiology, Faculty of Medicine in Novi Sad, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
29
|
Aguilar-Bretones M, den Hartog Y, van Dijk LLA, Malahe SRK, Dieterich M, Mora HT, Mueller YM, Koopmans MPG, Reinders MEJ, Baan CC, van Nierop GP, de Vries RD. SARS-CoV-2-specific immune responses converge in kidney disease patients and controls with hybrid immunity. NPJ Vaccines 2024; 9:93. [PMID: 38806532 PMCID: PMC11133345 DOI: 10.1038/s41541-024-00886-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
Healthy individuals with hybrid immunity, due to a SARS-CoV-2 infection prior to first vaccination, have stronger immune responses compared to those who were exclusively vaccinated. However, little is known about the characteristics of antibody, B- and T-cell responses in kidney disease patients with hybrid immunity. Here, we explored differences between kidney disease patients and controls with hybrid immunity after asymptomatic or mild coronavirus disease-2019 (COVID-19). We studied the kinetics, magnitude, breadth and phenotype of SARS-CoV-2-specific immune responses against primary mRNA-1273 vaccination in patients with chronic kidney disease or on dialysis, kidney transplant recipients, and controls with hybrid immunity. Although vaccination alone is less immunogenic in kidney disease patients, mRNA-1273 induced a robust immune response in patients with prior SARS-CoV-2 infection. In contrast, kidney disease patients with hybrid immunity develop SARS-CoV-2 antibody, B- and T-cell responses that are equally strong or stronger than controls. Phenotypic analysis showed that Spike (S)-specific B-cells varied between groups in lymph node-homing and memory phenotypes, yet S-specific T-cell responses were phenotypically consistent across groups. The heterogeneity amongst immune responses in hybrid immune kidney patients warrants further studies in larger cohorts to unravel markers of long-term protection that can be used for the design of targeted vaccine regimens.
Collapse
Affiliation(s)
| | - Yvette den Hartog
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Rotterdam, The Netherlands
| | - Laura L A van Dijk
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - S Reshwan K Malahe
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Rotterdam, The Netherlands
| | - Marjolein Dieterich
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Rotterdam, The Netherlands
| | - Héctor Tejeda Mora
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Rotterdam, The Netherlands
| | - Yvonne M Mueller
- Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marlies E J Reinders
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Rotterdam, The Netherlands
| | | | - Rory D de Vries
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
30
|
Livieratos A, Gogos C, Akinosoglou K. Impact of Prior COVID-19 Immunization and/or Prior Infection on Immune Responses and Clinical Outcomes. Viruses 2024; 16:685. [PMID: 38793566 PMCID: PMC11125779 DOI: 10.3390/v16050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Cellular and humoral immunity exhibit dynamic adaptation to the mutating SARS-CoV-2 virus. It is noteworthy that immune responses differ significantly, influenced by whether a patient has received vaccination or whether there is co-occurrence of naturally acquired and vaccine-induced immunity, known as hybrid immunity. The different immune reactions, conditional on vaccination status and the viral variant involved, bear implications for inflammatory responses, patient outcomes, pathogen transmission rates, and lingering post-COVID conditions. Considering these developments, we have performed a review of recently published literature, aiming to disentangle the intricate relationships among immunological profiles, transmission, the long-term health effects post-COVID infection poses, and the resultant clinical manifestations. This investigation is directed toward understanding the variability in the longevity and potency of cellular and humoral immune responses elicited by immunization and hybrid infection.
Collapse
Affiliation(s)
| | - Charalambos Gogos
- Department of Medicine, University of Patras, 26504 Rio, Greece; (C.G.); (K.A.)
| | - Karolina Akinosoglou
- Department of Medicine, University of Patras, 26504 Rio, Greece; (C.G.); (K.A.)
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Rio, Greece
| |
Collapse
|
31
|
Torresi J, Edeling MA. Immune imprinting of SARS-CoV-2 responses: changing first immune impressions. mSphere 2024; 9:e0075823. [PMID: 38477577 PMCID: PMC11036796 DOI: 10.1128/msphere.00758-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Since the emergence of the ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and the successful rollout of protective vaccines based on this original strain, SARS-CoV-2 has evolved into several variants, in a classical virus-host arms race typical of RNA viruses, to progressively evade the host immune response. Next-generation bivalent vaccines have been developed with broader protection against emerging variants than the ancestral vaccine. Nonetheless, even these vaccines show lower protection against the latest Omicron variants. Immune printing describes how an immune response to an immunogen is impacted by earlier exposures to a related immunogen. Several lessons about the effect of immune imprinting on responses to SARS-CoV-2 infection and vaccination, including age-associated impacts, can be learned from influenza. Understanding the mechanisms of imprinting of SARS-CoV-2 will be important to inform the design of vaccines that produce broader and more durable protective immune responses to emerging variants.
Collapse
Affiliation(s)
- J. Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - M. A. Edeling
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
32
|
Domènech-Montoliu S, Puig-Barberà J, Pac-Sa MR, Orrico-Sanchéz A, Gómez-Lanas L, Sala-Trull D, Domènech-Leon C, Del Rio-González A, Sánchez-Urbano M, Satorres-Martinez P, Aparisi-Esteve L, Badenes-Marques G, Blasco-Gari R, Casanova-Suarez J, Gil-Fortuño M, Hernández-Pérez N, Jovani-Sales D, López-Diago L, Notari-Rodríguez C, Pérez-Olaso O, Romeu-Garcia MA, Ruíz-Puig R, Arnedo-Pena A. Cellular Immunity of SARS-CoV-2 in the Borriana COVID-19 Cohort: A Nested Case-Control Study. EPIDEMIOLOGIA 2024; 5:167-186. [PMID: 38651389 PMCID: PMC11036210 DOI: 10.3390/epidemiologia5020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Our goal was to determine the cellular immune response (CIR) in a sample of the Borriana COVID-19 cohort (Spain) to identify associated factors and their relationship with infection, reinfection and sequelae. We conducted a nested case-control study using a randomly selected sample of 225 individuals aged 18 and older, including 36 individuals naïve to the SARS-CoV-2 infection and 189 infected patients. We employed flow-cytometry-based immunoassays for intracellular cytokine staining, using Wuhan and BA.2 antigens, and chemiluminescence microparticle immunoassay to detect SARS-CoV-2 antibodies. Logistic regression models were applied. A total of 215 (95.6%) participants exhibited T-cell response (TCR) to at least one antigen. Positive responses of CD4+ and CD8+ T cells were 89.8% and 85.3%, respectively. No difference in CIR was found between naïve and infected patients. Patients who experienced sequelae exhibited a higher CIR than those without. A positive correlation was observed between TCR and anti-spike IgG levels. Factors positively associated with the TCR included blood group A, number of SARS-CoV-2 vaccine doses received, and anti-N IgM; factors inversely related were the time elapsed since the last vaccine dose or infection, and blood group B. These findings contribute valuable insights into the nuanced immune landscape shaped by SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
| | - Joan Puig-Barberà
- Vaccines Research Unit, Foundation for the Promotion of Health and Biomedical Research in Valencia Region FISABIO-Public Health, 46020 Valencia, Spain; (J.P.-B.); (A.O.-S.)
| | - María Rosario Pac-Sa
- Public Health Center, 12003 Castelló de la Plana, Spain; (M.R.P.-S.); (M.A.R.-G.)
| | - Alejandro Orrico-Sanchéz
- Vaccines Research Unit, Foundation for the Promotion of Health and Biomedical Research in Valencia Region FISABIO-Public Health, 46020 Valencia, Spain; (J.P.-B.); (A.O.-S.)
- Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Secretary of Chair of Vaccines Catholic University of Valencia, 46001 Valencia, Spain
| | - Lorna Gómez-Lanas
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | - Diego Sala-Trull
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | - Carmen Domènech-Leon
- Department of Medicine, University CEU Cardenal Herrera, 12006 Castelló de la Plana, Spain;
| | | | - Manuel Sánchez-Urbano
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | - Paloma Satorres-Martinez
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | | | - Gema Badenes-Marques
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | - Roser Blasco-Gari
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | | | - María Gil-Fortuño
- Microbiology Service University Hospital de la Plana, 12540 Vila-real, Spain; (M.G.-F.); (N.H.-P.); (O.P.-O.)
| | - Noelia Hernández-Pérez
- Microbiology Service University Hospital de la Plana, 12540 Vila-real, Spain; (M.G.-F.); (N.H.-P.); (O.P.-O.)
| | - David Jovani-Sales
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | - Laura López-Diago
- Clinical Analysis Service University Hospital de la Plana, 12540 Vila-real, Spain;
| | - Cristina Notari-Rodríguez
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | - Oscar Pérez-Olaso
- Microbiology Service University Hospital de la Plana, 12540 Vila-real, Spain; (M.G.-F.); (N.H.-P.); (O.P.-O.)
| | | | - Raquel Ruíz-Puig
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | - Alberto Arnedo-Pena
- Public Health Center, 12003 Castelló de la Plana, Spain; (M.R.P.-S.); (M.A.R.-G.)
- Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Health Science, Public University Navarra, 31006 Pamplona, Spain
| |
Collapse
|
33
|
Campos GRF, Almeida NBF, Filgueiras PS, Corsini CA, Gomes SVC, de Miranda DAP, de Assis JV, Silva TBDS, Alves PA, Fernandes GDR, de Oliveira JG, Rahal P, Grenfell RFQ, Nogueira ML. Second booster dose improves antibody neutralization against BA.1, BA.5 and BQ.1.1 in individuals previously immunized with CoronaVac plus BNT162B2 booster protocol. Front Cell Infect Microbiol 2024; 14:1371695. [PMID: 38638823 PMCID: PMC11024236 DOI: 10.3389/fcimb.2024.1371695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction SARS-CoV-2 vaccines production and distribution enabled the return to normalcy worldwide, but it was not fast enough to avoid the emergence of variants capable of evading immune response induced by prior infections and vaccination. This study evaluated, against Omicron sublineages BA.1, BA.5 and BQ.1.1, the antibody response of a cohort vaccinated with a two doses CoronaVac protocol and followed by two heterologous booster doses. Methods To assess vaccination effectiveness, serum samples were collected from 160 individuals, in 3 different time points (9, 12 and 18 months after CoronaVac protocol). For each time point, individuals were divided into 3 subgroups, based on the number of additional doses received (No booster, 1 booster and 2 boosters), and a viral microneutralization assay was performed to evaluate neutralization titers and seroconvertion rate. Results The findings presented here show that, despite the first booster, at 9m time point, improved neutralization level against omicron ancestor BA.1 (133.1 to 663.3), this trend was significantly lower for BQ.1.1 and BA.5 (132.4 to 199.1, 63.2 to 100.2, respectively). However, at 18m time point, the administration of a second booster dose considerably improved the antibody neutralization, and this was observed not only against BA.1 (2361.5), but also against subvariants BQ.1.1 (726.1) and BA.5 (659.1). Additionally, our data showed that, after first booster, seroconvertion rate for BA.5 decayed over time (93.3% at 12m to 68.4% at 18m), but after the second booster, seroconvertion was completely recovered (95% at 18m). Discussion Our study reinforces the concerns about immunity evasion of the SARS-CoV-2 omicron subvariants, where BA.5 and BQ.1.1 were less neutralized by vaccine induced antibodies than BA.1. On the other hand, the administration of a second booster significantly enhanced antibody neutralization capacity against these subvariants. It is likely that, as new SARS-CoV-2 subvariants continue to emerge, additional immunizations will be needed over time.
Collapse
Affiliation(s)
- Guilherme R. F. Campos
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | | | - Priscilla Soares Filgueiras
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | - Camila Amormino Corsini
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | - Sarah Vieira Contin Gomes
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | - Daniel Alvim Pena de Miranda
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | - Jéssica Vieira de Assis
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | - Thaís Bárbara de Souza Silva
- Laboratório de Imunologia de Doenças Virais, Instituto Rene Rachou - Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Pedro Augusto Alves
- Laboratório de Imunologia de Doenças Virais, Instituto Rene Rachou - Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Gabriel da Rocha Fernandes
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | | | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista (Unesp), São José do Rio Preto, Brazil
| | - Rafaella Fortini Queiroz Grenfell
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Maurício L. Nogueira
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
- Hospital de Base, São José do Rio Preto, Brazil
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
34
|
Abul Y, Nugent C, Vishnepolskiy I, Wallace T, Dickerson E, Holland L, Esparza I, Winkis M, Wali KT, Chan PA, Baier RR, Recker A, Kaczynski M, Kamojjala S, Pralea A, Rice H, Osias O, Oyebanji OA, Olagunju O, Cao Y, Li CJ, Roederer A, Pfeifer WM, King CL, Bosch J, Nanda A, McNicoll L, Mujahid N, Raza S, Tyagi R, Wilson BM, White EM, Canaday DH, Gravenstein S, Balazs AB. Broad immunogenicity to prior SARS-CoV-2 strains and JN.1 variant elicited by XBB.1.5 vaccination in nursing home residents. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.21.24303684. [PMID: 38585784 PMCID: PMC10996740 DOI: 10.1101/2024.03.21.24303684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Background SARS-CoV-2 vaccination has reduced hospitalization and mortality for nursing home residents (NHRs). However, emerging variants coupled with waning immunity, immunosenescence, and variability of vaccine efficacy undermine vaccine effectiveness. We therefore need to update our understanding of the immunogenicity of the most recent XBB.1.5 monovalent vaccine to variant strains among NHRs. Methods The current study focuses on a subset of participants from a longitudinal study of consented NHRs and HCWs who have received serial blood draws to assess immunogenicity with each SARS-CoV-2 mRNA vaccine dose. We report data on participants who received the XBB.1.5 monovalent vaccine after FDA approval in Fall 2023. NHRs were classified based on whether they had an interval SARS-CoV-2 infection between their first bivalent vaccine dose and their XBB.1.5 monovalent vaccination. Results The sample included 61 NHRs [median age 76 (IQR 68-86), 51% female] and 28 HCWs [median age 45 (IQR 31-58), 46% female). Following XBB.1.5 monovalent vaccination, there was a robust geometric mean fold rise (GMFR) in XBB.1.5-specific neutralizing antibody titers of 17.3 (95% confidence interval [CI] 9.3, 32.4) and 11.3 (95% CI 5, 25.4) in NHRs with and without interval infection, respectively. The GMFR in HCWs was 13.6 (95% CI 8.4,22). Similarly, we noted a robust GMFR in JN.1-specific neutralizing antibody titers of 14.9 (95% CI 7.9, 28) and 6.5 (95% CI 3.3, 13.1) among NHRs with and without interval infection, and a GMFR of 11.4 (95% CI 6.2, 20.9) in HCWs. NHRs with interval SARS-CoV-2 infection had higher neutralizing antibody titers across all analyzed strains following XBB.1.5 monovalent vaccination, compared to NHRs without interval infection. Conclusion The XBB.1.5 monovalent vaccine significantly elevates Omicron-specific neutralizing antibody titers to XBB.1.5 and JN.1 strains in both NHRs and HCWs. This response was more pronounced in individuals known to be infected with SARS-CoV-2 since bivalent vaccination. Impact Statement All authors certify that this work entitled " Broad immunogenicity to prior strains and JN.1 variant elicited by XBB.1.5 vaccination in nursing home residents " is novel. It shows that the XBB.1.5 monovalent vaccine significantly elevates Omicron-specific neutralizing antibody titers in both nursing home residents and healthcare workers to XBB and BA.28.6/JN.1 strains. This work is important since JN.1 increased from less than 0.1% to 94% of COVID-19 cases from October 2023 to February 2024 in the US. This information is timely given the CDC's latest recommendation that adults age 65 and older receive a Spring 2024 XBB booster. Since the XBB.1.5 monovalent vaccine produces compelling immunogenicity to the most prevalent circulating JN.1 strain in nursing home residents, our findings add important support and rationale to encourage vaccine uptake. Key Points Emerging SARS-CoV-2 variants together with waning immunity, immunosenescence, and variable vaccine efficacy reduce SARS-CoV-2 vaccine effectiveness in nursing home residents.XBB.1.5 monovalent vaccination elicited robust response in both XBB.1.5 and JN.1 neutralizing antibodies in nursing home residents and healthcare workers, although the absolute titers to JN.1 were less than titers to XBB.1.5Why does this paper matter? Among nursing home residents, the XBB.1.5 monovalent SARS-CoV-2 vaccine produces compelling immunogenicity to the JN.1 strain, which represents 94% of all COVID-19 cases in the U.S. as of February 2024.
Collapse
|
35
|
Phelps A, Pazos-Castro D, Urselli F, Grydziuszko E, Mann-Delany O, Fang A, Walker TD, Guruge RT, Tome-Amat J, Diaz-Perales A, Waserman S, Boonyaratanakornkit J, Jordana M, Taylor JJ, Koenig JFE. Production and use of antigen tetramers to study antigen-specific B cells. Nat Protoc 2024; 19:727-751. [PMID: 38243093 DOI: 10.1038/s41596-023-00930-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/20/2023] [Indexed: 01/21/2024]
Abstract
B cells generate antibodies that provide protection from infection, but also cause pathology in autoimmune and allergic conditions. Antigen-specific B cells can be detected by binding their surface antibody receptors with native antigens conjugated to fluorescent probes, a technique that has revealed substantial insight into B cell activation and function. This protocol describes the process of generating fluorescent antigen tetramer probes and delineates a process of enriching large samples based on antigen-specificity for high-resolution analyses of the antigen-specific B cell repertoire. Enrichment of tetramer-binding cells allows for detection of antigen-specific B cells as rare as 1 in 100 million cells, providing sufficient resolution to study naive B cells and IgE-expressing cells by flow cytometry. The generation of antigen tetramers involves antigen biotinylation, assessment of biotin:antigen ratio for optimal tetramer loading and polymerization around a streptavidin-fluorophore backbone. We also describe the construction of a control tetramer to exclude B cells binding to the tetramer backbone. We provide a framework to validate whether tetramer probes are detecting true antigen-specific B cells and discuss considerations for experimental design. This protocol can be performed by researchers trained in basic biomedical/immunological research techniques, using instrumentation commonly found in most laboratories. Constructing the antigen and control tetramers takes 9 h, though their specificity should be assessed before experimentation and may take weeks to months depending on the method of validation. Sample enrichment requires ~2 h but is generally time and cost neutral as fewer cells are run through the flow cytometer.
Collapse
Affiliation(s)
- Allyssa Phelps
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Diego Pazos-Castro
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (UPM-INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Francesca Urselli
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Emily Grydziuszko
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Olivia Mann-Delany
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Allison Fang
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Tina D Walker
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Rangana Talpe Guruge
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Jaime Tome-Amat
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (UPM-INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain
| | - Araceli Diaz-Perales
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (UPM-INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Susan Waserman
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Jim Boonyaratanakornkit
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Manel Jordana
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA.
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Joshua F E Koenig
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
36
|
Zha G, Chen Z, Wu N, Huang T, Deng Z, Cai D, Peng M, Hu P, Ren H. Clinical characteristics and immunogenicity after Omicron breakthrough infection in patients with chronic hepatitis B infection: A longitudinal observational study. J Med Virol 2024; 96:e29548. [PMID: 38511555 DOI: 10.1002/jmv.29548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
The clinical and immunological features after breakthrough infection (BTI) during Omicron wave in patients with chronic hepatitis B virus infection (CHB) are still unclear. A total of 101 patients with CHB from our previous coronavirus disease 2019 (COVID-19) vaccination cohort (NCT05007665), were continued to be followed up at the Second Affiliated Hospital of Chongqing Medical University after BTI, while an additional 39 healthcare workers after BTI were recruited as healthy controls (HCs). Clinical data were collected using questionnaire survey and electronic medical record. Blood samples were used to determine the antibody responses, as well as B and T cell responses. After BTI, the clinical symptoms of COVID-19 were mild to moderate in patients with CHB, with a median duration of 5 days. Compared with HCs, patients with CHB were more susceptible to develop moderate COVID-19. The liver function was not significantly damaged, and HBV-DNA was not activated in patients with CHB after BTI. Patients with CHB could elicit robust antibody responses after BTI (NAbs 13.0-fold, BA.5 IgG: 24.2-fold, respectively), which was also significantly higher than that in every period after vaccination (all p < 0.001), and compared to that in HCs after BTI. The CD4+, cTfh, and CD8+ T cell responses were also augmented in patients with CHB after BTI, while exhibiting comparability to those observed in HCs. In patients with CHB after BTI, the immune imprint was observed in B cell responses, rather than in T cell responses. In conclusion, Omicron breakthrough infection induced mild to moderate COVID-19 symptoms in patients with CHB, without exacerbating the progress of liver diseases. Meanwhile, BTI demonstrated the ability to induce robust antibody and T cell responses in patients with CHB, which was comparable to those observed in HCs.
Collapse
Affiliation(s)
- Guanhua Zha
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiwei Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Na Wu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianquan Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiling Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dachuan Cai
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingli Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
37
|
Baxter RM, Cabrera-Martinez B, Ghosh T, Rester C, Moreno MG, Borko TL, Selva S, Fleischer CL, Haakonsen N, Mayher A, Bowhay E, Evans C, Miller TM, Huey L, McWilliams J, van Bokhoven A, Deane KD, Knight V, Jordan KR, Ghosh D, Klarquist J, Kedl RM, Piquet AL, Hsieh EWY. SARS-CoV-2 Vaccine-Elicited Immunity after B Cell Depletion in Multiple Sclerosis. Immunohorizons 2024; 8:254-268. [PMID: 38483384 PMCID: PMC10985059 DOI: 10.4049/immunohorizons.2300108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024] Open
Abstract
The impact of B cell deficiency on the humoral and cellular responses to SARS-CoV2 mRNA vaccination remains a challenging and significant clinical management question. We evaluated vaccine-elicited serological and cellular responses in 1) healthy individuals who were pre-exposed to SARS-CoV-2 (n = 21), 2) healthy individuals who received a homologous booster (mRNA, n = 19; or Novavax, n = 19), and 3) persons with multiple sclerosis on B cell depletion therapy (MS-αCD20) receiving mRNA homologous boosting (n = 36). Pre-exposure increased humoral and CD4 T cellular responses in immunocompetent individuals. Novavax homologous boosting induced a significantly more robust serological response than mRNA boosting. MS-α CD20 had an intact IgA mucosal response and an enhanced CD8 T cell response to mRNA boosting compared with immunocompetent individuals. This enhanced cellular response was characterized by the expansion of only effector, not memory, T cells. The enhancement of CD8 T cells in the setting of B cell depletion suggests a regulatory mechanism between B and CD8 T cell vaccine responses.
Collapse
Affiliation(s)
- Ryan M. Baxter
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | | | - Tusharkanti Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO
| | - Cody Rester
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Miguel Guerrero Moreno
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Tyler L. Borko
- Department of Neurology, Sections of Neuroimmunology, Neuroinfectious Disease, and Neurohospitalist, University of Colorado School of Medicine, Aurora, CO
| | - Sean Selva
- Department of Neurology, Sections of Neuroimmunology, Neuroinfectious Disease, and Neurohospitalist, University of Colorado School of Medicine, Aurora, CO
| | - Chelsie L. Fleischer
- Department of Medicine, Division of Rheumatology, University of Colorado, School of Medicine, Aurora, CO
| | - Nicola Haakonsen
- Department of Medicine, Division of Infectious Diseases, University of Colorado, School of Medicine, Aurora, CO
| | - Ariana Mayher
- Allergy and Immunology Research, Research Institute, Children’s Hospital Colorado, Aurora, CO
| | - Emily Bowhay
- Allergy and Immunology Research, Research Institute, Children’s Hospital Colorado, Aurora, CO
| | - Courtney Evans
- Allergy and Immunology Research, Research Institute, Children’s Hospital Colorado, Aurora, CO
| | - Todd M. Miller
- Analytics Resource Center, Children’s Hospital Colorado, Aurora, CO
| | - Leah Huey
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado, School of Medicine, Aurora, CO
| | - Jennifer McWilliams
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Adrie van Bokhoven
- Department of Pathology, Section of Pathology Shared Resource, University of Colorado, Aurora, CO
| | - Kevin D. Deane
- Department of Medicine, Division of Rheumatology, University of Colorado, School of Medicine, Aurora, CO
| | - Vijaya Knight
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado, School of Medicine, Aurora, CO
| | - Kimberly R. Jordan
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO
| | - Jared Klarquist
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Ross M. Kedl
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Amanda L. Piquet
- Department of Neurology, Sections of Neuroimmunology, Neuroinfectious Disease, and Neurohospitalist, University of Colorado School of Medicine, Aurora, CO
| | - Elena W. Y. Hsieh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado, School of Medicine, Aurora, CO
| |
Collapse
|
38
|
Matsumoto N, Sasaki A, Kadowaki T, Mitsuhashi T, Takao S, Yorifuji T. Longitudinal antibody dynamics after COVID-19 vaccine boosters based on prior infection status and booster doses. Sci Rep 2024; 14:4564. [PMID: 38403650 PMCID: PMC10894855 DOI: 10.1038/s41598-024-55245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/21/2024] [Indexed: 02/27/2024] Open
Abstract
Global concern over COVID-19 vaccine distribution disparities highlights the need for strategic booster shots. We explored longitudinal antibody responses post-booster during the Omicron wave in a Japanese cohort, emphasizing prior infection and booster doses. This prospective cohort study included 1763 participants aged 18 years and older with at least three vaccine doses (7376 datapoints). Antibody levels were measured every 2 months. We modeled temporal declines in antibody levels after COVID-19 vaccine boosters according to prior infection status and booster doses using a Bayesian linear mixed-effects interval-censored model, considering age, sex, underlying conditions, and lifestyle. Prior infection enhanced post-booster immunity (posterior median 0.346, 95% credible interval [CrI] 0.335-0.355), maintaining antibody levels (posterior median 0.021; 95% CrI 0.019-0.023) over 1 year, in contrast to uninfected individuals whose levels had waned by 8 months post-vaccination. Each additional booster was correlated with higher baseline antibody levels and slower declines, comparing after the third dose. Female sex, older age, immunosuppressive status, and smoking history were associated with lower baseline post-vaccination antibodies, but not associated with decline rates except for older age in the main model. Prior infection status and tailored, efficient, personalized booster strategies are crucial, considering sex, age, health conditions, and lifestyle.
Collapse
Affiliation(s)
- Naomi Matsumoto
- Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Ayako Sasaki
- Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomoka Kadowaki
- Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toshiharu Mitsuhashi
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Soshi Takao
- Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Takashi Yorifuji
- Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
39
|
Chen L, He Y, Liu H, Shang Y, Guo G. Potential immune evasion of the severe acute respiratory syndrome coronavirus 2 Omicron variants. Front Immunol 2024; 15:1339660. [PMID: 38464527 PMCID: PMC10924305 DOI: 10.3389/fimmu.2024.1339660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic. The Omicron variant (B.1.1.529) was first discovered in November 2021 in specimens collected from Botswana, South Africa. Omicron has become the dominant variant worldwide, and several sublineages or subvariants have been identified recently. Compared to those of other mutants, the Omicron variant has the most highly expressed amino acid mutations, with almost 60 mutations throughout the genome, most of which are in the spike (S) protein, especially in the receptor-binding domain (RBD). These mutations increase the binding affinity of Omicron variants for the ACE2 receptor, and Omicron variants may also lead to immune escape. Despite causing milder symptoms, epidemiological evidence suggests that Omicron variants have exceptionally higher transmissibility, higher rates of reinfection and greater spread than the prototype strain as well as other preceding variants. Additionally, overwhelming amounts of data suggest that the levels of specific neutralization antibodies against Omicron variants decrease in most vaccinated populations, although CD4+ and CD8+ T-cell responses are maintained. Therefore, the mechanisms underlying Omicron variant evasion are still unclear. In this review, we surveyed the current epidemic status and potential immune escape mechanisms of Omicron variants. Especially, we focused on the potential roles of viral epitope mutations, antigenic drift, hybrid immunity, and "original antigenic sin" in mediating immune evasion. These insights might supply more valuable concise information for us to understand the spreading of Omicron variants.
Collapse
Affiliation(s)
- Luyi Chen
- Chongqing Nankai Secondary School, Chongqing, China
| | - Ying He
- Department of Orthopedics, Kweichow MouTai Hospital, Renhuai, Zunyi, Guizhou, China
| | - Hongye Liu
- Department of Orthopedics, Kweichow MouTai Hospital, Renhuai, Zunyi, Guizhou, China
| | - Yongjun Shang
- Department of Orthopedics, Kweichow MouTai Hospital, Renhuai, Zunyi, Guizhou, China
| | - Guoning Guo
- Department of Orthopedics, Kweichow MouTai Hospital, Renhuai, Zunyi, Guizhou, China
| |
Collapse
|
40
|
Nesamari R, Omondi MA, Baguma R, Höft MA, Ngomti A, Nkayi AA, Besethi AS, Magugu SFJ, Mosala P, Walters A, Clark GM, Mennen M, Skelem S, Adriaanse M, Grifoni A, Sette A, Keeton RS, Ntusi NAB, Riou C, Burgers WA. Post-pandemic memory T cell response to SARS-CoV-2 is durable, broadly targeted, and cross-reactive to the hypermutated BA.2.86 variant. Cell Host Microbe 2024; 32:162-169.e3. [PMID: 38211583 PMCID: PMC10901529 DOI: 10.1016/j.chom.2023.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024]
Abstract
Ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution has given rise to recombinant Omicron lineages that dominate globally (XBB.1), as well as the emergence of hypermutated variants (BA.2.86). In this context, durable and cross-reactive T cell immune memory is critical for continued protection against severe COVID-19. We examined T cell responses to SARS-CoV-2 approximately 1.5 years since Omicron first emerged. We describe sustained CD4+ and CD8+ spike-specific T cell memory responses in healthcare workers in South Africa (n = 39) who were vaccinated and experienced at least one SARS-CoV-2 infection. Spike-specific T cells are highly cross-reactive with all Omicron variants tested, including BA.2.86. Abundant nucleocapsid and membrane-specific T cells are detectable in most participants. The bulk of SARS-CoV-2-specific T cell responses have an early-differentiated phenotype, explaining their persistent nature. Overall, hybrid immunity leads to the accumulation of spike and non-spike T cells evident 3.5 years after the start of the pandemic, with preserved recognition of highly mutated SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Rofhiwa Nesamari
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Millicent A Omondi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Maxine A Höft
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Amkele Ngomti
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Anathi A Nkayi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Asiphe S Besethi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Siyabulela F J Magugu
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Paballo Mosala
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Avril Walters
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Gesina M Clark
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mathilda Mennen
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa; Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; South African Medical Research Council Extramural Unit on Intersection of Non-communicable Disease and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Sango Skelem
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa; Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; South African Medical Research Council Extramural Unit on Intersection of Non-communicable Disease and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Marguerite Adriaanse
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa; Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; South African Medical Research Council Extramural Unit on Intersection of Non-communicable Disease and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Roanne S Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ntobeko A B Ntusi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa; Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; South African Medical Research Council Extramural Unit on Intersection of Non-communicable Disease and Infectious Diseases, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa.
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
41
|
Samanta S, Banerjee J, Das A, Das S, Ahmed R, Das S, Pal A, Ali KM, Mukhopadhyay R, Giri B, Dash SK. Enhancing Immunological Memory: Unveiling Booster Doses to Bolster Vaccine Efficacy Against Evolving SARS-CoV-2 Mutant Variants. Curr Microbiol 2024; 81:91. [PMID: 38311669 DOI: 10.1007/s00284-023-03597-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024]
Abstract
A growing number of re-infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in previously immunized individuals has sparked discussions about the potential need for a booster vaccine dosage to counteract declining antibody levels and new strains. The protective immunity produced by vaccinations, and past illnesses relies on immunological memory. CD4 + T cells, CD8 + T cells, B cells, and long-lasting antibody responses are all components of the adaptive immune system that can generate and maintain this immunological memory. Since novel mutant variants have emerged one after the other, the world has been hit by repeated waves. Various vaccine formulations against SARS-CoV-2 have been administered across the globe. Thus, estimating the efficacy of those vaccines against gradually developed mutant stains is the essential parameter regarding the fate of those vaccine formulations and the necessity of booster doses and their frequency. In this review, focus has also been given to how vaccination stacks up against moderate and severe acute infections in terms of the longevity of the immune cells, neutralizing antibody responses, etc. However, hybrid immunity shows a greater accuracy of re-infection of variants of concern (VOCs) of SARS-CoV-2 than infection and immunization. The review conveys knowledge of detailed information about several marketed vaccines and the status of their efficacy against specific mutant strains of SARS-CoV-2. Furthermore, this review discusses the status of immunological memory after infection, mixed infection, and vaccination.
Collapse
Affiliation(s)
- Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Aparna Das
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Sourav Das
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Rubai Ahmed
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Swarnali Das
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Amitava Pal
- Department of Physiology, City College, 102/1, Raja Rammohan Sarani, Kolkata, 700009, West Bengal, India
| | - Kazi Monjur Ali
- Department of Nutrition, Maharajadhiraj Uday Chand Women's College, B.C. Road, Bardhaman, 713104, West Bengal, India
| | - Rupanjan Mukhopadhyay
- Department of Physiology, City College, 102/1, Raja Rammohan Sarani, Kolkata, 700009, West Bengal, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India.
| |
Collapse
|
42
|
Lapuente D, Winkler TH, Tenbusch M. B-cell and antibody responses to SARS-CoV-2: infection, vaccination, and hybrid immunity. Cell Mol Immunol 2024; 21:144-158. [PMID: 37945737 PMCID: PMC10805925 DOI: 10.1038/s41423-023-01095-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 prompted scientific, medical, and biotech communities to investigate infection- and vaccine-induced immune responses in the context of this pathogen. B-cell and antibody responses are at the center of these investigations, as neutralizing antibodies (nAbs) are an important correlate of protection (COP) from infection and the primary target of SARS-CoV-2 vaccine modalities. In addition to absolute levels, nAb longevity, neutralization breadth, immunoglobulin isotype and subtype composition, and presence at mucosal sites have become important topics for scientists and health policy makers. The recent pandemic was and still is a unique setting in which to study de novo and memory B-cell (MBC) and antibody responses in the dynamic interplay of infection- and vaccine-induced immunity. It also provided an opportunity to explore new vaccine platforms, such as mRNA or adenoviral vector vaccines, in unprecedented cohort sizes. Combined with the technological advances of recent years, this situation has provided detailed mechanistic insights into the development of B-cell and antibody responses but also revealed some unexpected findings. In this review, we summarize the key findings of the last 2.5 years regarding infection- and vaccine-induced B-cell immunity, which we believe are of significant value not only in the context of SARS-CoV-2 but also for future vaccination approaches in endemic and pandemic settings.
Collapse
Affiliation(s)
- Dennis Lapuente
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany.
| | - Matthias Tenbusch
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany
| |
Collapse
|
43
|
Lenart K, Arcoverde Cerveira R, Hellgren F, Ols S, Sheward DJ, Kim C, Cagigi A, Gagne M, Davis B, Germosen D, Roy V, Alter G, Letscher H, Van Wassenhove J, Gros W, Gallouët AS, Le Grand R, Kleanthous H, Guebre-Xabier M, Murrell B, Patel N, Glenn G, Smith G, Loré K. Three immunizations with Novavax's protein vaccines increase antibody breadth and provide durable protection from SARS-CoV-2. NPJ Vaccines 2024; 9:17. [PMID: 38245545 PMCID: PMC10799869 DOI: 10.1038/s41541-024-00806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
The immune responses to Novavax's licensed NVX-CoV2373 nanoparticle Spike protein vaccine against SARS-CoV-2 remain incompletely understood. Here, we show in rhesus macaques that immunization with Matrix-MTM adjuvanted vaccines predominantly elicits immune events in local tissues with little spillover to the periphery. A third dose of an updated vaccine based on the Gamma (P.1) variant 7 months after two immunizations with licensed NVX-CoV2373 resulted in significant enhancement of anti-spike antibody titers and antibody breadth including neutralization of forward drift Omicron variants. The third immunization expanded the Spike-specific memory B cell pool, induced significant somatic hypermutation, and increased serum antibody avidity, indicating considerable affinity maturation. Seven months after immunization, vaccinated animals controlled infection by either WA-1 or P.1 strain, mediated by rapid anamnestic antibody and T cell responses in the lungs. In conclusion, a third immunization with an adjuvanted, low-dose recombinant protein vaccine significantly improved the quality of B cell responses, enhanced antibody breadth, and provided durable protection against SARS-CoV-2 challenge.
Collapse
Affiliation(s)
- Klara Lenart
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo Arcoverde Cerveira
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrika Hellgren
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Ols
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alberto Cagigi
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandon Davis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Hélène Letscher
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Jérôme Van Wassenhove
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Wesley Gros
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Harry Kleanthous
- Bill & Melinda Gates Foundation, Seattle, WA, USA
- SK Biosciences, Boston, MA, USA
| | | | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Karin Loré
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden.
- Karolinska University Hospital, Stockholm, Sweden.
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
44
|
Sánchez-de Prada L, Martínez-García AM, González-Fernández B, Gutiérrez-Ballesteros J, Rojo-Rello S, Garcinuño-Pérez S, Álvaro-Meca A, Ortiz De Lejarazu R, Sanz-Muñoz I, Eiros JM. Impact on the time elapsed since SARS-CoV-2 infection, vaccination history, and number of doses, on protection against reinfection. Sci Rep 2024; 14:353. [PMID: 38172152 PMCID: PMC10764833 DOI: 10.1038/s41598-023-50335-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
SARS-CoV-2 reinfections have been frequent, even among those vaccinated. The aim of this study is to know if hybrid immunity (infection + vaccination) is affected by the moment of vaccination and number of doses received. We conducted a retrospective study in 746 patients with a history of COVID-19 reinfection and recovered the dates of infection and reinfection and vaccination status (date and number of doses). To assess differences in the time to reinfection(tRI) between unvaccinated, vaccinated before 6 months, and later; and comparing one, two or three doses (incomplete, complete and booster regime) we performed the log-rank test of the cumulative incidence calculated as 1 minus the Kaplan-Meier estimator. Also, an adjusted Cox-regression was performed to evaluate the risk of reinfection in all groups. The tRI was significantly higher in those vaccinated vs. non-vaccinated (p < 0.001). However, an early incomplete regime protects similar time than not receiving a vaccine. Vaccination before 6 months after infection showed a lower tRI compared to those vaccinated later with the same regime (adj-p < 0.001). Actually, early vaccination with complete and booster regimes provided lower length of protection compared to vaccinating later with incomplete and complete regime, respectively. Vaccination with complete and booster regimes significantly increases the tRI (adj-p < 0.001). Vaccination increases the time it takes for a person to become reinfected with SARS-CoV-2. Increasing the time from infection to vaccination increases the time in which a person could be reinfected and reduces the risk of reinfection, especially in complete and booster regimes. Those results emphasize the role of vaccines and boosters during the pandemic and can guide strategies on future vaccination policy.
Collapse
Affiliation(s)
- Laura Sánchez-de Prada
- Faculty of Medicine, University of Valladolid, Valladolid, Spain.
- National Influenza Center of Valladolid, Valladolid, Spain.
| | - Ana María Martínez-García
- Department of Microbiology and Immunology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Belén González-Fernández
- Department of Microbiology and Immunology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | | | - Silvia Rojo-Rello
- Faculty of Medicine, University of Valladolid, Valladolid, Spain
- National Influenza Center of Valladolid, Valladolid, Spain
- Department of Microbiology and Immunology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Sonsoles Garcinuño-Pérez
- Department of Microbiology and Immunology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Alejandro Álvaro-Meca
- Department of Preventive Medicine and Public Health, Rey Juan Carlos University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - José M Eiros
- Faculty of Medicine, University of Valladolid, Valladolid, Spain
- National Influenza Center of Valladolid, Valladolid, Spain
- Department of Microbiology and Immunology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
45
|
Hall VJ, Insalata F, Foulkes S, Kirwan P, Sparkes D, Atti A, Cole M, de Lacy E, Price L, Corrigan D, Brown CS, Islam J, Charlett A, Hopkins S. Effectiveness of BNT162b2 mRNA vaccine third doses and previous infection in protecting against SARS-CoV-2 infections during the Delta and Omicron variant waves; the UK SIREN cohort study September 2021 to February 2022. J Infect 2024; 88:30-40. [PMID: 37926119 DOI: 10.1016/j.jinf.2023.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Third doses of COVID-19 vaccines were widely deployed following the primary vaccine course waning and the emergence of the Omicron-variant. We investigated protection from third-dose vaccines and previous infection against SARS-CoV-2 infection during Delta-variant and Omicron-variant (BA.1 & BA.2) waves in our frequently PCR-tested cohort of healthcare-workers. Relative effectiveness of BNT162b2 third doses and infection-acquired immunity was assessed by comparing the time to PCR-confirmed infection in boosted participants with those with waned dose-2 protection (≥254 days after dose-2), by primary series vaccination type. Follow-up time was divided by dominant circulating variant: Delta 07 September 2021 to 30 November 2021, Omicron 13 December 2021t o 28 February 2022. We used a Cox regression model with adjustment/stratification for demographic characteristics and staff-type. We explored protection associated with vaccination, infection and both. We included 19,614 participants, 29% previously infected. There were 278 primary infections (4 per 10,000 person-days of follow-up) and 85 reinfections (0.8/10,000 person-days) during the Delta period and 2467 primary infections (43/10,000 person-days) and 881 reinfections (33/10,000) during the Omicron period. Relative Vaccine Effectiveness (VE) 0-2 months post-3rd dose (3rd dose) (3-doses BNT162b2) in the previously uninfected cohort against Delta infections was 63% (95% Confidence Interval (CI) 40%-77%) and was lower (35%) against Omicron infection (95% CI 21%-47%). The relative VE of 3rd dose (heterologous BNT162b2) was greater for primary course ChAdOX1 recipients, with VE 0-2 months post-3rd dose over ≥68% higher for both variants. Third-dose protection waned rapidly against Omicron, with no significant difference between two and three BNT162b2 doses observed after 4-months. Previous infection continued to provide additional protection against Omicron (67% (CI 56%-75%) 3-6 months post-infection), but this waned to about 25% after 9-months, approximately three times lower than against Delta. Infection rates surged with Omicron emergence. Third doses of BNT162b2 vaccine provided short-term protection, with rapid waning against Omicron infections. Protection associated with infections incurred before Omicron was markedly diminished against the Omicron wave. Our findings demonstrate the complexity of an evolving pandemic with the potential emergence of immune-escape variants and the importance of continued monitoring.
Collapse
Affiliation(s)
- Victoria J Hall
- UK Health Security Agency, 10 South Colonnade, London E14 4PU, United Kingdom.
| | - Ferdinando Insalata
- UK Health Security Agency, 10 South Colonnade, London E14 4PU, United Kingdom; Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom.
| | - Sarah Foulkes
- UK Health Security Agency, 10 South Colonnade, London E14 4PU, United Kingdom.
| | - Peter Kirwan
- UK Health Security Agency, 10 South Colonnade, London E14 4PU, United Kingdom; MRC Biostatistics Unit, University of Cambridge, Institute of Public Health, Forvie Site, Robinson Way, Cambridge CB2 0SR, United Kingdom.
| | - Dominic Sparkes
- UK Health Security Agency, 10 South Colonnade, London E14 4PU, United Kingdom.
| | - Ana Atti
- UK Health Security Agency, 10 South Colonnade, London E14 4PU, United Kingdom.
| | - Michelle Cole
- UK Health Security Agency, 10 South Colonnade, London E14 4PU, United Kingdom.
| | - Elen de Lacy
- Public Health Wales, 2 Capital Quarter, Tyndall Street, Cardiff CF10 4BZ, United Kingdom.
| | - Lesley Price
- Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, United Kingdom; Public Health Scotland, Gyle Square 1 South Gyle Crescent, Edinburgh EH12 9EB, United Kingdom.
| | - Diane Corrigan
- Public Health Agency Northern Ireland, Unit 12-22 Linenhall Street, Belfast BT2 8BS, United Kingdom.
| | - Colin S Brown
- UK Health Security Agency, 10 South Colonnade, London E14 4PU, United Kingdom.
| | - Jasmin Islam
- UK Health Security Agency, 10 South Colonnade, London E14 4PU, United Kingdom.
| | - Andre Charlett
- UK Health Security Agency, UK Health Security Agency, Nobel House, 17 Smith Square, London, SW1P 3JR.
| | - Susan Hopkins
- UK Health Security Agency, UK Health Security Agency, Nobel House, 17 Smith Square, London, SW1P 3JR.
| |
Collapse
|
46
|
Abstract
Recent advances in studies of immune memory in mice and humans have reinforced the concept that memory B cells play a critical role in protection against repeated infections, particularly from variant viruses. Hence, insights into the development of high-quality memory B cells that can generate broadly neutralizing antibodies that bind such variants are key for successful vaccine development. Here, we review the cellular and molecular mechanisms by which memory B cells are generated and how these processes shape the antibody diversity and breadth of memory B cells. Then, we discuss the mechanisms of memory B cell reactivation in the context of established immune memory; the contribution of antibody feedback to this process has now begun to be reappreciated.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.
| |
Collapse
|
47
|
Enssle JC, Campe J, Moter A, Voit I, Gessner A, Yu W, Wolf S, Steffen B, Serve H, Bremm M, Huenecke S, Lohoff M, Vehreschild M, Rabenau HF, Widera M, Ciesek S, Oellerich T, Imkeller K, Rieger MA, von Metzler I, Ullrich E. Cytokine-responsive T- and NK-cells portray SARS-CoV-2 vaccine-responders and infection in multiple myeloma patients. Leukemia 2024; 38:168-180. [PMID: 38049509 PMCID: PMC10776400 DOI: 10.1038/s41375-023-02070-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 12/06/2023]
Abstract
Patients with multiple myeloma (MM) routinely receive mRNA-based vaccines to reduce COVID-19-related mortality. However, whether disease- and therapy-related alterations in immune cells and cytokine-responsiveness contribute to the observed heterogeneous vaccination responses is unclear. Thus, we analyzed peripheral blood mononuclear cells from patients with MM during and after SARS-CoV-2 vaccination and breakthrough infection (BTI) using combined whole-transcriptome and surface proteome single-cell profiling with functional serological and T-cell validation in 58 MM patients. Our results demonstrate that vaccine-responders showed a significant overrepresentation of cytotoxic CD4+ T- and mature CD38+ NK-cells expressing FAS+/TIM3+ with a robust cytokine-responsiveness, such as type-I-interferon-, IL-12- and TNF-α-mediated signaling. Patients with MM experiencing BTI developed strong serological and cellular responses and exhibited similar cytokine-responsive immune cell patterns as vaccine-responders. This study can expand our understanding of molecular and cellular patterns associated with immunization responses and may benefit the design of improved vaccination strategies in immunocompromised patients.
Collapse
Affiliation(s)
- Julius C Enssle
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Julia Campe
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Alina Moter
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Isabel Voit
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Alec Gessner
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Weijia Yu
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Sebastian Wolf
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Björn Steffen
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
| | - Hubert Serve
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Melanie Bremm
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Sabine Huenecke
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Michael Lohoff
- Institute of Medical Microbiology and Hospital Hygiene, Philipps University, Marburg, Germany
| | - Maria Vehreschild
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Infectious Diseases, Frankfurt am Main, Germany
| | - Holger F Rabenau
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt am Main, Germany
| | - Marek Widera
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt am Main, Germany
| | - Sandra Ciesek
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt am Main, Germany
- German Centre for Infection Research, external partner site, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Thomas Oellerich
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Katharina Imkeller
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Edinger Institute (Neurological Institute), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, MSNZ Group of Computational Immunology, Frankfurt am Main, Germany
- University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Michael A Rieger
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Frankfurt am Main, Germany
| | - Ivana von Metzler
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany.
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt am Main, Germany.
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany.
- University Cancer Center (UCT), Frankfurt am Main, Germany.
| |
Collapse
|
48
|
Wang Y, Yang L, Tang K, Zhang Y, Zhang C, Zhang Y, Jin B, Zhang Y, Zhuang R, Ma Y. Ad5-nCoV Vaccination Could Induce HLA-E Restricted CD8 + T Cell Responses Specific for Epitopes on Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein. Viruses 2023; 16:52. [PMID: 38257752 PMCID: PMC10820189 DOI: 10.3390/v16010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
We evaluated cellular immune responses induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in an immunized population based on HLA-E-restricted CD8+ T cell epitope identification. HLA-E-restricted SARS-CoV-2 CD8+ T cell nonamer peptides were predicted with software. An HLA-E-transfected K562 cell binding assay was used to screen for high-affinity peptides. IFN-γ enzyme-linked immunospot assays were used to identify HLA-E-restricted epitopes. An HLA-E/epitope tetramer was employed to detect the frequencies of epitope-specific CD8+ T cells. Four CD8+ T cell epitopes on the spike protein of SARS-CoV-2 restricted by both HLA-E*0101 and E*0103 were identified. HLA-E-restricted epitope-specific IFN-γ-secreting CD8+ T cell responses could be detected in individuals vaccinated with SARS-CoV-2 vaccines. Importantly, the frequencies of epitope-specific CD8+ T cells in Ad5-nCoV vaccinated individuals were higher than in individuals vaccinated with recombinant protein or inactivated vaccines. Moreover, the frequencies of epitope-specific CD8+ T cells could be maintained for at least 120 days after only one dose of Ad5-nCoV vaccine, while the frequencies of epitope-specific CD8+ T cells decreased in individuals after two doses of Ad5-nCoV vaccine. These findings may contribute to a more comprehensive evaluation of the protective effects of vaccines for SARS-CoV-2; meanwhile, they may provide information to characterize HLA-E-restricted CD8+ T cell immunity against SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ran Zhuang
- Department of Immunology, Air Force Medical University, Xi’an 710032, China; (Y.W.); (L.Y.); (K.T.); (Y.Z.); (C.Z.); (Y.Z.); (B.J.); (Y.Z.)
| | - Ying Ma
- Department of Immunology, Air Force Medical University, Xi’an 710032, China; (Y.W.); (L.Y.); (K.T.); (Y.Z.); (C.Z.); (Y.Z.); (B.J.); (Y.Z.)
| |
Collapse
|
49
|
Intawong K, Chariyalertsak S, Chalom K, Wonghirundecha T, Kowatcharakul W, Thongprachum A, Chotirosniramit N, Noppakun K, Khwanngern K, Teacharak W, Piamanant P, Chantaklang P, Khammawan P. Role of booster vaccines and hybrid immunity against severe COVID-19 outcomes during BA.5 omicron predominance in Thailand. Hum Vaccin Immunother 2023; 19:2291882. [PMID: 38083848 PMCID: PMC10732593 DOI: 10.1080/21645515.2023.2291882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Owing to both vaccine- and infection-induced immunity, the COVID-19 seroprevalence is ~90% in most countries. It is important to examine the protective role of booster vaccines and hybrid immunity in the COVID-endemic state. Utilizing a hospital information system for COVID-19, we conducted a cohort study by linking laboratory-confirmed COVID-19 case data to the national immunization records during the BA.5 omicron predominant period (1 August-31 December 2022) in Chiang Mai, Thailand. Out of 63,009 adults with COVID-19 included in the study, there were 125 (0.2%) severe COVID outcomes and 6.4% had a previous omicron infection. Protection against severe COVID-19 was highest among those with at least one booster vaccine (63%; aHR 0.37 [95%CI 0.19-0.73]) as compared to those without prior vaccination or natural infection. Hybrid immunity offered better protection (35%; aHR 0.65 [95%CI 0.09-4.73) than primary vaccine series alone or previous infection alone. Evaluating risk by age group, those aged 70 years or more had nearly 40 times (aHR 39.58 [95%CI 18.92-82.79]) the risk of severe-COVID-19 as compared to the 18-39-year age group. While booster vaccines remain the most effective way of protecting against severe COVID-19, particularly in the elderly, hybrid immunity may offer additional benefit.
Collapse
Affiliation(s)
- Kannikar Intawong
- Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | | | | | | | | - Krit Khwanngern
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Prapon Piamanant
- Nakornping Hospital, Ministry of Public Health, Chiang Mai, Thailand
| | | | | |
Collapse
|
50
|
Cai C, Gao Y, Adamo S, Rivera-Ballesteros O, Hansson L, Österborg A, Bergman P, Sandberg JK, Ljunggren HG, Björkström NK, Strålin K, Llewellyn-Lacey S, Price DA, Qin C, Grifoni A, Weiskopf D, Wherry EJ, Sette A, Aleman S, Buggert M. SARS-CoV-2 vaccination enhances the effector qualities of spike-specific T cells induced by COVID-19. Sci Immunol 2023; 8:eadh0687. [PMID: 38064569 PMCID: PMC7615587 DOI: 10.1126/sciimmunol.adh0687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023]
Abstract
T cells are critical for immune protection against severe COVID-19, but it has remained unclear whether repeated exposure to SARS-CoV-2 antigens delivered in the context of vaccination fuels T cell exhaustion or reshapes T cell functionality. Here, we sampled convalescent donors with a history of mild or severe COVID-19 before and after SARS-CoV-2 vaccination to profile the functional spectrum of hybrid T cell immunity. Using combined single-cell technologies and high-dimensional flow cytometry, we found that the frequencies and functional capabilities of spike-specific CD4+ and CD8+ T cells in previously infected individuals were enhanced by vaccination, despite concomitant increases in the expression of inhibitory receptors such as PD-1 and TIM3. In contrast, CD4+ and CD8+ T cells targeting non-spike proteins remained functionally static and waned over time, and only minimal effects were observed in healthy vaccinated donors experiencing breakthrough infections with SARS-CoV-2. Moreover, hybrid immunity was characterized by elevated expression of IFN-γ, which was linked with clonotype specificity in the CD8+ T cell lineage. Collectively, these findings identify a molecular hallmark of hybrid immunity and suggest that vaccination after infection is associated with cumulative immunological benefits over time, potentially conferring enhanced protection against subsequent episodes of COVID-19.
Collapse
Affiliation(s)
- Curtis Cai
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yu Gao
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sarah Adamo
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Olga Rivera-Ballesteros
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lotta Hansson
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Österborg
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Johan K. Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K. Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kristoffer Strålin
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - David A. Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Chuan Qin
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, California, USA
| | - E. John Wherry
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
| | - Alessandro Sette
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Comparative Medicine Center, Peking Union Medical College, Beijing, China
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, California, USA
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|