1
|
Kharel Y, Huang T, Dunnavant K, Foster D, Souza GMPR, Nimchuk KE, Merchak AR, Pavelec CM, Juskiewicz ZJ, Alexander SS, Gaultier A, Abbott SBG, Shin JB, Isakson BE, Xu W, Leitinger N, Santos WL, Lynch KR. Assessment of Spinster homologue 2 (Spns2)-dependent transport of sphingosine-1-phosphate as a therapeutic target. Br J Pharmacol 2025; 182:2014-2030. [PMID: 39894457 PMCID: PMC12034028 DOI: 10.1111/bph.17456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND AND PURPOSE Sphingosine-1-phosphate (S1P) receptor modulator (SRM) drugs suppress immune system function by disrupting lymphocyte trafficking, but SRMs are broadly immunosuppressive with on-target liabilities. Another strategy to modulate the immune system is to block S1P transport. This study tests the hypothesis that blockers of S1P transport (STBs) mediated by Spinster homologue 2 (Spns2) approximate the efficacy of SRMs without their adverse events. EXPERIMENTAL APPROACH We have discovered and optimized STBs to enable investigations of S1P biology and to determine whether S1P transport is a valid drug target. The STB SLF80821178 was administered to rodents to assess its efficacy in a multiple sclerosis model and to test for toxicities associated with SRMs or Spns2-deficient mice. Further, potential biomarkers of STBs, absolute lymphocyte counts (ALCs) in blood and S1P concentrations in plasma and lymph, were measured. KEY RESULTS SLF80821178 resembles SRMs in that it is efficacious in a standard multiple sclerosis model but does not evoke bradycardia or lung leakage, common to the SRM drug class. Also, chronic SLF80821178 administration does not affect auditory responses in adult mice despite the neurosensorial hearing defect observed in Spns2-null mice. While both SRM and STB administration decrease ALCs, the maximal effect is less with an STB (45% vs. 90%). STBs have minimal effects on S1P concentration in plasma or thoracic duct lymph. CONCLUSION AND IMPLICATIONS We found nothing to invalidate Spns2-dependent S1P transport as a drug target. Indeed, STBs could be superior to SRMs as a therapy to modulate immune system function.
Collapse
Affiliation(s)
- Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Kyle Dunnavant
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, USA
| | - Daniel Foster
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, USA
| | - George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Katherine E Nimchuk
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Andrea R Merchak
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Caitlin M Pavelec
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Zuzanna J Juskiewicz
- Robert M. Berne Cardiovascular Research Center and Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, Virginia, USA
| | - Simon S Alexander
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Alban Gaultier
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Jung-Bum Shin
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center and Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, Virginia, USA
| | - Wehao Xu
- Department of Microbiology, Immunology and Cancer Biology and Genetically Engineered Murine Model Core, University of Virginia, Charlottesville, Virginia, USA
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, USA
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Li HZ, Pike ACW, Chang YN, Prakaash D, Gelova Z, Stanka J, Moreau C, Scott HC, Wunder F, Wolf G, Scacioc A, McKinley G, Batoulis H, Mukhopadhyay S, Garofoli A, Pinto-Fernández A, Kessler BM, Burgess-Brown NA, Štefanić S, Wiedmer T, Dürr KL, Puetter V, Ehrmann A, Khalid S, Ingles-Prieto A, Superti-Furga G, Sauer DB. Transport and inhibition of the sphingosine-1-phosphate exporter SPNS2. Nat Commun 2025; 16:721. [PMID: 39820269 PMCID: PMC11739509 DOI: 10.1038/s41467-025-55942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025] Open
Abstract
Sphingosine-1-phosphate (S1P) is a signaling lysolipid critical to heart development, immunity, and hearing. Accordingly, mutations in the S1P transporter SPNS2 are associated with reduced white cell count and hearing defects. SPNS2 also exports the S1P-mimicking FTY720-P (Fingolimod) and thereby is central to the pharmacokinetics of this drug when treating multiple sclerosis. Here, we use a combination of cryo-electron microscopy, immunofluorescence, in vitro binding and in vivo S1P export assays, and molecular dynamics simulations to probe SPNS2's substrate binding and transport. These results reveal the transporter's binding mode to its native substrate S1P, the therapeutic FTY720-P, and the reported SPNS2-targeting inhibitor 33p. Further capturing an inward-facing apo state, our structures illuminate the protein's mechanism for exchange between inward-facing and outward-facing conformations. Finally, using these structural, localization, and S1P transport results, we identify how pathogenic mutations ablate the protein's export activity and thereby lead to hearing loss.
Collapse
Affiliation(s)
- Huanyu Z Li
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ashley C W Pike
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Zuzana Gelova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Christophe Moreau
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hannah C Scott
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andreea Scacioc
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gavin McKinley
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Shubhashish Mukhopadhyay
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Garofoli
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Adán Pinto-Fernández
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt M Kessler
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicola A Burgess-Brown
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Saša Štefanić
- Nanobody Service Facility, University of Zurich, AgroVet-Strickhof, Lindau, Switzerland
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Katharina L Dürr
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | | | | | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| | - David B Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Lodha P, Acari A, Rieck J, Hofmann S, Dieterich LC. The Lymphatic Vascular System in Extracellular Vesicle-Mediated Tumor Progression. Cancers (Basel) 2024; 16:4039. [PMID: 39682225 DOI: 10.3390/cancers16234039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Tumor growth and progression require molecular interactions between malignant and host cells. In recent years, extracellular vesicles (EVs) emerged as an important pillar of such interactions, carrying molecular information from their donor cells to distant recipient cells. Thereby, the phenotype and function of the recipient cells are altered, which may facilitate tumor immune escape and tumor metastasis to other organs through the formation of pre-metastatic niches. A prerequisite for these effects of tumor cell-derived EVs is an efficient transport system from the site of origin to the body periphery. Here, we highlight the role of the lymphatic vascular system in the distribution and progression-promoting functions of tumor cell-derived EVs. Importantly, the lymphatic vascular system is the primary drainage system for interstitial fluid and its soluble, particulate, and cellular contents, and therefore represents the principal route for regional (i.e., to tumor-draining lymph nodes) and systemic distribution of EVs derived from solid tumors. Furthermore, recent studies highlighted the tumor-draining lymph node as a crucial site where tumor-derived EVs exert their effects. A deeper mechanistic understanding of how EVs gain access to the lymphatic vasculature, how they interact with their recipient cells in tumor-draining lymph nodes and beyond, and how they induce phenotypic and functional maladaptation will be instrumental to identify new molecular targets and conceive innovative approaches for cancer therapy.
Collapse
Affiliation(s)
- Pragati Lodha
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Heidelberg Bioscience International Graduate School (HBIGS), Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Alperen Acari
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Heidelberg Bioscience International Graduate School (HBIGS), Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Jochen Rieck
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Sarah Hofmann
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Lothar C Dieterich
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
4
|
Del Gaudio I, Nitzsche A, Boyé K, Bonnin P, Poulet M, Nguyen TQ, Couty L, Ha HTT, Nguyen DT, Cazenave-Gassiot A, Ben Alaya K, Thérond P, Chun J, Wenk MR, Proia RL, Henrion D, Nguyen LN, Eichmann A, Camerer E. Zonation and ligand and dose dependence of sphingosine 1-phosphate receptor-1 signalling in blood and lymphatic vasculature. Cardiovasc Res 2024; 120:1794-1810. [PMID: 39086170 PMCID: PMC11587562 DOI: 10.1093/cvr/cvae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 06/12/2024] [Indexed: 08/02/2024] Open
Abstract
AIMS Circulating levels of sphingosine 1-phosphate (S1P), an HDL-associated ligand for the endothelial cell (EC) protective S1P receptor-1 (S1PR1), are reduced in disease states associated with endothelial dysfunction. Yet, as S1PR1 has high affinity for S1P and can be activated by ligand-independent mechanisms and EC autonomous S1P production, it is unclear if relative reductions in circulating S1P can cause endothelial dysfunction. It is also unclear how EC S1PR1 insufficiency, whether induced by deficiency in circulating ligand or by S1PR1-directed immunosuppressive therapy, affects different vascular subsets. METHODS AND RESULTS We here fine map the zonation of S1PR1 signalling in the murine blood and lymphatic vasculature, superimpose cell-type-specific and relative deficiencies in S1P production to define ligand source and dose dependence, and correlate receptor engagement to essential functions. In naïve blood vessels, despite broad expression, EC S1PR1 engagement was restricted to resistance-size arteries, lung capillaries, and a subset of high-endothelial venules (HEVs). Similar zonation was observed for albumin extravasation in EC S1PR1-deficient mice, and brain extravasation was reproduced with arterial EC-selective S1pr1 deletion. In lymphatic ECs, S1PR1 engagement was high in collecting vessels and lymph nodes and low in blind-ended capillaries that drain tissue fluids. While EC S1P production sustained S1PR1 signalling in lymphatics and HEV, haematopoietic cells provided ∼90% of plasma S1P and sustained signalling in resistance arteries and lung capillaries. S1PR1 signalling and endothelial function were both surprisingly sensitive to reductions in plasma S1P with apparent saturation around 50% of normal levels. S1PR1 engagement did not depend on sex or age but modestly increased in arteries in hypertension and diabetes. Sphingosine kinase (Sphk)-2 deficiency also increased S1PR1 engagement selectively in arteries, which could be attributed to Sphk1-dependent S1P release from perivascular macrophages. CONCLUSION This study highlights vessel subtype-specific S1PR1 functions and mechanisms of engagement and supports the relevance of S1P as circulating biomarker for endothelial function.
Collapse
Affiliation(s)
- Ilaria Del Gaudio
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Anja Nitzsche
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Kevin Boyé
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Philippe Bonnin
- Physiologie Clinique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Lariboisière, Paris, France
- Université Paris Cité, INSERM U1144, UFR de Pharmacie, Paris, France
| | - Mathilde Poulet
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Toan Q Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Ludovic Couty
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Hoa T T Ha
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Dat T Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Amaury Cazenave-Gassiot
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Khaoula Ben Alaya
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Patrice Thérond
- Service de Biochimie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital de Bicêtre, Le Kremlin Bicêtre, France
- UFR de Pharmacie, EA 4529, Châtenay-Malabry, France
| | - Jerold Chun
- Neuroscience Drug Discovery, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Markus R Wenk
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Richard L Proia
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Institutes of Health, Bethesda, MD, USA
| | - Daniel Henrion
- MitoVasc Department, Angers University, Team 2 (CarMe), Angers University Hospital (CHU of Angers), CNRS, INSERM U1083, Angers, France
| | - Long N Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Anne Eichmann
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
- Department of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, USA
| | - Eric Camerer
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| |
Collapse
|
5
|
Hurtado-Lorenzo A, Swantek JL. The landscape of new therapeutic opportunities for IBD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:1-83. [PMID: 39521596 DOI: 10.1016/bs.apha.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This chapter presents an overview of the emerging strategies to address the unmet needs in the management of inflammatory bowel diseases (IBD). IBD poses significant challenges, as over half of patients experience disease progression despite interventions, leading to irreversible complications, and a substantial proportion do not respond to existing therapies, such as biologics. To overcome these limitations, we describe a diverse array of novel therapeutic approaches. In the area of immune homeostasis restoration, the focus is on targeting cytokine networks, leukocyte trafficking, novel immune pathways, and cell therapies involving regulatory T cells and mesenchymal stem cells (MSC). Recognizing the critical role of impaired intestinal barrier integrity in IBD, we highlight therapies aimed at restoring barrier function and promoting mucosal healing, such as those targeting cell proliferation, tight junctions, and lipid mediators. Addressing the challenges posed by fibrosis and fistulas, we describe emerging targets for reversing fibrosis like kinase and cytokine inhibitors and nuclear receptor agonists, as well as the potential of MSC for fistulas. The restoration of a healthy gut microbiome, through strategies like fecal microbiota transplantation, rationally defined bacterial consortia, and targeted antimicrobials, is also highlighted. We also describe innovative approaches to gut-targeted drug delivery to enhance efficacy and minimize side effects. Reinforcing these advancements is the critical role of precision medicine, which emphasizes the use of multiomics analysis for the discovery of biomarkers to enable personalized IBD care. Overall, the emerging landscape of therapeutic opportunities for IBD holds great potential to surpass the therapeutic ceiling of current treatments.
Collapse
Affiliation(s)
- Andrés Hurtado-Lorenzo
- Translational Research & IBD Ventures, Research Department, Crohn's & Colitis Foundation, New York, NY, United States.
| | - Jennifer L Swantek
- Translational Research & IBD Ventures, Research Department, Crohn's & Colitis Foundation, New York, NY, United States
| |
Collapse
|
6
|
Tang H, Gao P, Peng W, Wang X, Wang Z, Deng W, Yin K, Zhu X. Spinster homolog 2 (SPNS2) deficiency drives endothelial cell senescence and vascular aging via promoting pyruvate metabolism mediated mitochondrial dysfunction. Cell Commun Signal 2024; 22:492. [PMID: 39394598 PMCID: PMC11470683 DOI: 10.1186/s12964-024-01859-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/29/2024] [Indexed: 10/13/2024] Open
Abstract
Endothelial cell (EC) senescence and vascular aging are important hallmarks of chronic metabolic diseases. An improved understanding of the precise regulation of EC senescence may provide novel therapeutic strategies for EC and vascular aging-related diseases. This study examined the potential functions of Spinster homolog 2 (SPNS2) in EC senescence and vascular aging. We discovered that the expression of SPNS2 was significantly lower in older adults, aged mice, hydrogen peroxide-induced EC senescence models and EC replicative senescence model, and was correlated with the expression of aging-related factors. in vivo experiments showed that the EC-specific knockout of SPNS2 markedly aggravated vascular aging by substantially, impairing vascular structure and function, as evidenced by the abnormal expression of aging factors, increased inflammation, reduced blood flow, pathological vessel dilation, and elevated collagen levels in a naturally aging mouse model. Moreover, RNA sequencing and molecular biology analyses revealed that the loss of SPNS2 in ECs increased cellular senescence biomarkers, aggravated the senescence-associated secretory phenotype (SASP), and inhibited cell proliferation. Mechanistically, silencing SPNS2 disrupts pyruvate metabolism homeostasis via pyruvate kinase M (PKM), resulting in mitochondrial dysfunction and EC senescence. Overall, SPNS2 expression and its functions in the mitochondria are crucial regulators of EC senescence and vascular aging.
Collapse
Affiliation(s)
- Haojun Tang
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Pan Gao
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Weng Peng
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, PR China
| | - Xiaodan Wang
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Zhenbo Wang
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Weiqian Deng
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.
- Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China.
| | - Xiao Zhu
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.
- Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
7
|
Foster DJ, Dunnavant K, Shrader CW, LoPresti M, Seay S, Kharel Y, Brown AM, Huang T, Lynch KR, Santos WL. Discovery of Potent, Orally Bioavailable Sphingosine-1-Phosphate Transporter (Spns2) Inhibitors. J Med Chem 2024; 67:11273-11295. [PMID: 38952222 PMCID: PMC11247503 DOI: 10.1021/acs.jmedchem.4c00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Targeting the S1P pathway has resulted in the development of S1P1 receptor modulators for the treatment of multiple sclerosis and ulcerative colitis. We hypothesize that targeting an upstream node of the S1P pathway may provide an improved adverse event profile. In this report, we performed a structure-activity relationship study focusing on the benzoxazole scaffold in SLB1122168, which lead to the discovery of 11i (SLF80821178) as a potent inhibitor of S1P release from HeLa cells (IC50: 51 ± 3 nM). Administration of SLF80821178 to mice induced ∼50% reduction in circulating lymphocyte counts, recapitulating the lymphopenia characteristic of Spns2 null animals. Molecular modeling studies suggest that SLF80821178 binds Spns2 in its occluded inward-facing state and forms hydrogen bonds with Asn112 and Ser211 and π stacking with Phe234. Taken together, SLF80821178 can serve as a scaffold for future inhibitor development and represents a chemical tool to study the therapeutic implication of inhibiting Spns2.
Collapse
Affiliation(s)
- Daniel J Foster
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kyle Dunnavant
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Christopher W Shrader
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Marion LoPresti
- Department of Biochemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sarah Seay
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Anne M Brown
- Department of Biochemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
8
|
Kharel Y, Huang T, Dunnavant K, Foster D, Souza G, Nimchuk KE, Merchak AR, Pavelec CM, Juskiewicz ZJ, Gaultier A, Abbott S, Shin JB, Isakson BE, Xu W, Leitinger N, Santos WL, Lynch KR. Assessing Spns2-dependent S1P Transport as a Prospective Therapeutic Target. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586765. [PMID: 38746194 PMCID: PMC11092524 DOI: 10.1101/2024.03.26.586765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
S1P (sphingosine 1-phosphate) receptor modulator (SRM) drugs interfere with lymphocyte trafficking by downregulating lymphocyte S1P receptors. While the immunosuppressive activity of SRM drugs has proved useful in treating autoimmune diseases such as multiple sclerosis, that drug class is beset by on-target liabilities such as initial dose bradycardia. The S1P that binds to cell surface lymphocyte S1P receptors is provided by S1P transporters. Mice born deficient in one of these, spinster homolog 2 (Spns2), are lymphocytopenic and have low lymph S1P concentrations. Such observations suggest that inhibition of Spns2-mediated S1P transport might provide another therapeutically beneficial method to modulate immune cell positioning. We report here results using a novel S1P transport blocker (STB), SLF80821178, to investigate the consequences of S1P transport inhibition in rodents. We found that SLF80821178 is efficacious in a multiple sclerosis model but - unlike the SRM fingolimod - neither decreases heart rate nor compromises lung endothelial barrier function. Notably, although Spns2 null mice have a sensorineural hearing defect, mice treated chronically with SLF80821178 have normal hearing acuity. STBs such as SLF80821178 evoke a dose-dependent decrease in peripheral blood lymphocyte counts, which affords a reliable pharmacodynamic marker of target engagement. However, the maximal reduction in circulating lymphocyte counts in response to SLF80821178 is substantially less than the response to SRMs such as fingolimod (50% vs. 90%) due to a lesser effect on T lymphocyte sub-populations by SLF80821178. Finally, in contrast to results obtained with Spns2 deficient mice, lymph S1P concentrations were not significantly changed in response to administration of STBs at doses that evoke maximal lymphopenia, which indicates that current understanding of the mechanism of action of S1P transport inhibitors is incomplete.
Collapse
|
9
|
Houbaert D, Nikolakopoulos AP, Jacobs KA, Meçe O, Roels J, Shankar G, Agrawal M, More S, Ganne M, Rillaerts K, Boon L, Swoboda M, Nobis M, Mourao L, Bosisio F, Vandamme N, Bergers G, Scheele CLGJ, Agostinis P. An autophagy program that promotes T cell egress from the lymph node controls responses to immune checkpoint blockade. Cell Rep 2024; 43:114020. [PMID: 38554280 DOI: 10.1016/j.celrep.2024.114020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/21/2023] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics.
Collapse
Affiliation(s)
- Diede Houbaert
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Apostolos Panagiotis Nikolakopoulos
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Kathryn A Jacobs
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Odeta Meçe
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Jana Roels
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; VIB Single Cell Core, Leuven, Belgium
| | - Gautam Shankar
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Madhur Agrawal
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Sanket More
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Maarten Ganne
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Kristine Rillaerts
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | | | - Magdalena Swoboda
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Max Nobis
- Intravital Imaging Expertise Center, VIB-CCB, Leuven, Belgium
| | - Larissa Mourao
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Francesca Bosisio
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Niels Vandamme
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; VIB Single Cell Core, Leuven, Belgium
| | - Gabriele Bergers
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Colinda L G J Scheele
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium.
| |
Collapse
|
10
|
Sarkar J, Oshi M, Satyananda V, Chida K, Yan L, Maiti A, Hait N, Endo I, Takabe K. Spinster Homologue 2 Expression Correlates With Improved Patient Survival in Hepatocellular Carcinoma Despite Association With Lymph-Angiogenesis. World J Oncol 2024; 15:181-191. [PMID: 38545475 PMCID: PMC10965268 DOI: 10.14740/wjon1732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/30/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Spinster homologue 2 (SPNS2) is a transporter of sphingosine-1-phosphate (S1P), a bioactive lipid linked to cancer progression. We studied the link between SPNS2 gene expression, tumor aggressiveness, and outcomes in patients with hepatocellular carcinoma (HCC). METHODS Gene expression in patients with HCC was analyzed from the Cancer Genome Atlas (TCGA) (n = 350) and GSE76427 (n = 115) as a validation cohort, as well as liver tissue cohort GSE6764 (n = 75). RESULTS High-SPNS2 HCC was significantly associated with high level of lymph-angiogenesis-related factors. SPNS2 expression was significantly higher in normal liver and early HCC versus advanced HCC (P < 0.02). High SPNS2 levels enriched immune response-related gene sets; inflammatory, interferon (IFN)-α, IFN-γ responses, and tumor necrosis factor (TNF)-α, interleukin (IL)-6/Janus kinase/signal transducer and activator of transcription (JAK/STAT3) signaling, complement and allograft rejection, but did not significantly infiltrate specific immune cells nor cytolytic activity score. High-SPNS2 HCC enriched tumor aggravating pathway gene sets such as KRAS (Kirsten rat sarcoma virus) signaling, but inversely correlated with Nottingham histological grade, MKI67 (marker of proliferation Ki-67) expression, and cell proliferation-related gene sets. Further, high-SPNS2 HCC had significantly high infiltration of stromal cells, showing that low-SPNS2 HCC is highly proliferative. Finally, high-SPNS2 HCC was associated with better disease-free, disease-specific, and overall survival (P = 0.031, 0.046, and 0.040, respectively). CONCLUSIONS Although SPNS2 expression correlated with lymph-angiogenesis and other cancer-promoting pathways, it also enriched immune response. SPNS2 levels were higher in normal liver compared to HCC, and inversely correlated with cancer cell proliferation and better survival. SPNS2 expression may be beneficial in HCC patients despite detrimental in-vitro effects.
Collapse
Affiliation(s)
- Joy Sarkar
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- These authors contributed equally to this work
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Gastroenterological Surgery, Yokohama, Kanagawa 236-004, Japan
- These authors contributed equally to this work
| | - Vikas Satyananda
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kohei Chida
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Aparna Maiti
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Nitai Hait
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama, Kanagawa 236-004, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Gastroenterological Surgery, Yokohama, Kanagawa 236-004, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, the State University of New York, Buffalo, NY, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Department of Breast Surgery, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
11
|
Shirafkan F, Hensel L, Rattay K. Immune tolerance and the prevention of autoimmune diseases essentially depend on thymic tissue homeostasis. Front Immunol 2024; 15:1339714. [PMID: 38571951 PMCID: PMC10987875 DOI: 10.3389/fimmu.2024.1339714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
The intricate balance of immune reactions towards invading pathogens and immune tolerance towards self is pivotal in preventing autoimmune diseases, with the thymus playing a central role in establishing and maintaining this equilibrium. The induction of central immune tolerance in the thymus involves the elimination of self-reactive T cells, a mechanism essential for averting autoimmunity. Disruption of the thymic T cell selection mechanisms can lead to the development of autoimmune diseases. In the dynamic microenvironment of the thymus, T cell migration and interactions with thymic stromal cells are critical for the selection processes that ensure self-tolerance. Thymic epithelial cells are particularly significant in this context, presenting self-antigens and inducing the negative selection of autoreactive T cells. Further, the synergistic roles of thymic fibroblasts, B cells, and dendritic cells in antigen presentation, selection and the development of regulatory T cells are pivotal in maintaining immune responses tightly regulated. This review article collates these insights, offering a comprehensive examination of the multifaceted role of thymic tissue homeostasis in the establishment of immune tolerance and its implications in the prevention of autoimmune diseases. Additionally, the developmental pathways of the thymus are explored, highlighting how genetic aberrations can disrupt thymic architecture and function, leading to autoimmune conditions. The impact of infections on immune tolerance is another critical area, with pathogens potentially triggering autoimmunity by altering thymic homeostasis. Overall, this review underscores the integral role of thymic tissue homeostasis in the prevention of autoimmune diseases, discussing insights into potential therapeutic strategies and examining putative avenues for future research on developing thymic-based therapies in treating and preventing autoimmune conditions.
Collapse
|
12
|
Sun G, Wang B, Wu X, Cheng J, Ye J, Wang C, Zhu H, Liu X. How do sphingosine-1-phosphate affect immune cells to resolve inflammation? Front Immunol 2024; 15:1362459. [PMID: 38482014 PMCID: PMC10932966 DOI: 10.3389/fimmu.2024.1362459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 04/17/2024] Open
Abstract
Inflammation is an important immune response of the body. It is a physiological process of self-repair and defense against pathogens taken up by biological tissues when stimulated by damage factors such as trauma and infection. Inflammation is the main cause of high morbidity and mortality in most diseases and is the physiological basis of the disease. Targeted therapeutic strategies can achieve efficient toxicity clearance at the inflammatory site, reduce complications, and reduce mortality. Sphingosine-1-phosphate (S1P), a lipid signaling molecule, is involved in immune cell transport by binding to S1P receptors (S1PRs). It plays a key role in innate and adaptive immune responses and is closely related to inflammation. In homeostasis, lymphocytes follow an S1P concentration gradient from the tissues into circulation. One widely accepted mechanism is that during the inflammatory immune response, the S1P gradient is altered, and lymphocytes are blocked from entering the circulation and are, therefore, unable to reach the inflammatory site. However, the full mechanism of its involvement in inflammation is not fully understood. This review focuses on bacterial and viral infections, autoimmune diseases, and immunological aspects of the Sphks/S1P/S1PRs signaling pathway, highlighting their role in promoting intradial-adaptive immune interactions. How S1P signaling is regulated in inflammation and how S1P shapes immune responses through immune cells are explained in detail. We teased apart the immune cell composition of S1P signaling and the critical role of S1P pathway modulators in the host inflammatory immune system. By understanding the role of S1P in the pathogenesis of inflammatory diseases, we linked the genomic studies of S1P-targeted drugs in inflammatory diseases to provide a basis for targeted drug development.
Collapse
Affiliation(s)
- Gehui Sun
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bin Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaoyu Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiangfeng Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Ye
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chunli Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hongquan Zhu
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaofeng Liu
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
13
|
Dixit D, Hallisey VM, Zhu EY, Okuniewska M, Cadwell K, Chipuk JE, Axelrad JE, Schwab SR. S1PR1 inhibition induces proapoptotic signaling in T cells and limits humoral responses within lymph nodes. J Clin Invest 2024; 134:e174984. [PMID: 38194271 PMCID: PMC10869180 DOI: 10.1172/jci174984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
Effective immunity requires a large, diverse naive T cell repertoire circulating among lymphoid organs in search of antigen. Sphingosine 1-phosphate (S1P) and its receptor S1PR1 contribute by both directing T cell migration and supporting T cell survival. Here, we addressed how S1P enables T cell survival and the implications for patients treated with S1PR1 antagonists. We found that S1PR1 limited apoptosis by maintaining the appropriate balance of BCL2 family members via restraint of JNK activity. Interestingly, the same residues of S1PR1 that enable receptor internalization were required to prevent this proapoptotic cascade. Findings in mice were recapitulated in ulcerative colitis patients treated with the S1PR1 antagonist ozanimod, and the loss of naive T cells limited B cell responses. Our findings highlighted an effect of S1PR1 antagonists on the ability to mount immune responses within lymph nodes, beyond their effect on lymph node egress, and suggested both limitations and additional uses of this important class of drugs.
Collapse
Affiliation(s)
- Dhaval Dixit
- Departments of Cell Biology and Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | - Victoria M. Hallisey
- Departments of Cell Biology and Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | - Ethan Y.S. Zhu
- Departments of Cell Biology and Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | - Martyna Okuniewska
- Departments of Cell Biology and Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | - Ken Cadwell
- Department of Medicine and Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jerry E. Chipuk
- Department of Oncological Sciences, Department of Dermatology, and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jordan E. Axelrad
- Division of Gastroenterology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Susan R. Schwab
- Departments of Cell Biology and Pathology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
14
|
Li J, Huang Y, Zhang Y, Liu P, Liu M, Zhang M, Wu R. S1P/S1PR signaling pathway advancements in autoimmune diseases. BIOMOLECULES & BIOMEDICINE 2023; 23:922-935. [PMID: 37504219 PMCID: PMC10655875 DOI: 10.17305/bb.2023.9082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a versatile sphingolipid that is generated through the phosphorylation of sphingosine by sphingosine kinase (SPHK). S1P exerts its functional effects by binding to the G protein-coupled S1P receptor (S1PR). This lipid mediator plays a pivotal role in various cellular activities. The S1P/S1PR signaling pathway is implicated in the pathogenesis of immune-mediated diseases, significantly contributing to the functioning of the immune system. It plays a crucial role in diverse physiological and pathophysiological processes, including cell survival, proliferation, migration, immune cell recruitment, synthesis of inflammatory mediators, and the formation of lymphatic and blood vessels. However, the full extent of the involvement of this signaling pathway in the development of autoimmune diseases remains to be fully elucidated. Therefore, this study aims to comprehensively review recent research on the S1P/S1PR axis in diseases related to autoimmunity.
Collapse
Affiliation(s)
- Jianbin Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiping Huang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yueqin Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengcheng Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mengxia Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rui Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Dixit D, Hallisey VM, Zhu EYS, Okuniewska M, Cadwell K, Chipuk JE, Axelrad JE, Schwab SR. Sphingosine 1-phosphate receptor 1 inhibition induces a pro-apoptotic signaling cascade in T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554104. [PMID: 37662380 PMCID: PMC10473648 DOI: 10.1101/2023.08.21.554104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Effective immunity requires a large, diverse naïve T cell repertoire circulating among lymphoid organs in search of antigen. Sphingosine 1-phosphate (S1P) and its receptor S1PR1 contribute by both directing T cell migration and supporting T cell survival. Here, we address how S1P enables T cell survival, and the implications for patients treated with S1PR1 antagonists. Contrary to expectations, we found that S1PR1 limits apoptosis by maintaining the appropriate balance of BCL2 family members via restraint of JNK activity. Interestingly, the same residues of S1PR1 that enable receptor internalization are required to prevent this pro-apoptotic cascade. Findings in mice were recapitulated in ulcerative colitis patients treated with the S1PR1 antagonist ozanimod, and the loss of naïve T cells limited B cell responses. Our findings highlight an unexpected effect of S1PR1 antagonists on the ability to mount immune responses within lymph nodes, beyond their effect on lymph node egress, and suggest both limitations and novel uses of this important class of drugs.
Collapse
|
16
|
Fang C, Ren P, Bian G, Wang J, Bai J, Huang J, Ding Y, Li X, Li M, Hou Z. Enhancing Spns2/S1P in macrophages alleviates hyperinflammation and prevents immunosuppression in sepsis. EMBO Rep 2023; 24:e56635. [PMID: 37358015 PMCID: PMC10398662 DOI: 10.15252/embr.202256635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023] Open
Abstract
Sepsis is a leading cause of in-hospital mortality resulting from a dysregulated response to infection. Novel immunomodulatory therapies targeting macrophage metabolism have emerged as an important focus for current sepsis research. However, understanding the mechanisms underlying macrophage metabolic reprogramming and how they impact immune response requires further investigation. Here, we identify macrophage-expressed Spinster homolog 2 (Spns2), a major transporter of sphingosine-1-phosphate (S1P), as a crucial metabolic mediator that regulates inflammation through the lactate-reactive oxygen species (ROS) axis. Spns2 deficiency in macrophages significantly enhances glycolysis, thereby increasing intracellular lactate production. As a key effector, intracellular lactate promotes pro-inflammatory response by increasing ROS generation. The overactivity of the lactate-ROS axis drives lethal hyperinflammation during the early phase of sepsis. Furthermore, diminished Spns2/S1P signaling impairs the ability of macrophages to sustain an antibacterial response, leading to significant innate immunosuppression in the late stage of infection. Notably, reinforcing Spns2/S1P signaling contributes to balancing the immune response during sepsis, preventing both early hyperinflammation and later immunosuppression, making it a promising therapeutic target for sepsis.
Collapse
Affiliation(s)
- Chao Fang
- Department of Pharmacology, School of PharmacyFourth Military Medical UniversityXi'anChina
| | - Pan Ren
- Department of Burns and Plastic Surgery, Tangdu HospitalFourth Military Medical UniversityXi'anChina
| | - Ganlan Bian
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Jian Wang
- Department of Neurobiology, School of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Jiaxin Bai
- Department of Pharmacology, School of PharmacyFourth Military Medical UniversityXi'anChina
| | - Jiaxing Huang
- Department of Pharmacology, School of PharmacyFourth Military Medical UniversityXi'anChina
| | - Yixiao Ding
- Department of Pharmacology, School of PharmacyFourth Military Medical UniversityXi'anChina
| | - Xueyong Li
- Department of Burns and Plastic Surgery, Tangdu HospitalFourth Military Medical UniversityXi'anChina
| | - Mingkai Li
- Department of Pharmacology, School of PharmacyFourth Military Medical UniversityXi'anChina
| | - Zheng Hou
- Department of Pharmacology, School of PharmacyFourth Military Medical UniversityXi'anChina
| |
Collapse
|
17
|
Hallisey VM, Schwab SR. Get me out of here: Sphingosine 1-phosphate signaling and T cell exit from tissues during an immune response. Immunol Rev 2023; 317:8-19. [PMID: 37212181 DOI: 10.1111/imr.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023]
Abstract
During an immune response, the duration of T cell residence in lymphoid and non-lymphoid tissues likely affects T cell activation, differentiation, and memory development. The factors that govern T cell transit through inflamed tissues remain incompletely understood, but one important determinant of T cell exit from tissues is sphingosine 1-phosphate (S1P) signaling. In homeostasis, S1P levels are high in blood and lymph compared to lymphoid organs, and lymphocytes follow S1P gradients out of tissues into circulation using varying combinations of five G-protein coupled S1P receptors. During an immune response, both the shape of S1P gradients and the expression of S1P receptors are dynamically regulated. Here we review what is known, and key questions that remain unanswered, about how S1P signaling is regulated in inflammation and in turn how S1P shapes immune responses.
Collapse
Affiliation(s)
- Victoria M Hallisey
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Susan R Schwab
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
18
|
Zhang F, Lu Y. The Sphingosine 1-Phosphate Axis: an Emerging Therapeutic Opportunity for Endometriosis. Reprod Sci 2023; 30:2040-2059. [PMID: 36662421 PMCID: PMC9857924 DOI: 10.1007/s43032-023-01167-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
Endometriosis is a common condition in women of reproductive age, but its current interventions are unsatisfactory. Recent research discovered a dysregulation of the sphingosine 1-phosphate (S1P) signaling pathway in endometriosis and showed a positive outcome by targeting it. The S1P axis participates in a series of fundamental pathophysiological processes. This narrative review is trying to expound the reported and putative (due to limited reports in this area for now) interactions between the S1P axis and endometriosis in those pathophysiological processes, to provide some perspectives for future research. In short, S1P signaling pathway is highly activated in the endometriotic lesion. The S1P concentration has a surge in the endometriotic cyst fluid and the peritoneal fluid, with the downstream dysregulation of its receptors. The S1P axis plays an essential role in the migration and activation of the immune cells, fibrosis, angiogenesis, pain-related hyperalgesia, and innervation. S1P receptor (S1PR) modulators showed an impressive therapeutic effect by targeting the different S1P receptors in the endometriosis model, and many other conditions resemble endometriosis. And several of them already got approval for clinical application in many diseases, which means a drug repurposing direction and a rapid clinical translation for endometriosis treatments.
Collapse
Affiliation(s)
- Fengrui Zhang
- Department of Gynecology, The Obstetrics & Gynecology Hospital of Fudan University, 419 Fangxie Rd, Shanghai, 200011, People's Republic of China
| | - Yuan Lu
- Department of Gynecology, The Obstetrics & Gynecology Hospital of Fudan University, 419 Fangxie Rd, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
19
|
Chen H, Ahmed S, Zhao H, Elghobashi-Meinhardt N, Dai Y, Kim JH, McDonald JG, Li X, Lee CH. Structural and functional insights into Spns2-mediated transport of sphingosine-1-phosphate. Cell 2023; 186:2644-2655.e16. [PMID: 37224812 PMCID: PMC10330195 DOI: 10.1016/j.cell.2023.04.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/23/2023] [Accepted: 04/19/2023] [Indexed: 05/26/2023]
Abstract
Sphingosine-1-phosphate (S1P) is an important signaling sphingolipid that regulates the immune system, angiogenesis, auditory function, and epithelial and endothelial barrier integrity. Spinster homolog 2 (Spns2) is an S1P transporter that exports S1P to initiate lipid signaling cascades. Modulating Spns2 activity can be beneficial in treatments of cancer, inflammation, and immune diseases. However, the transport mechanism of Spns2 and its inhibition remain unclear. Here, we present six cryo-EM structures of human Spns2 in lipid nanodiscs, including two functionally relevant intermediate conformations that link the inward- and outward-facing states, to reveal the structural basis of the S1P transport cycle. Functional analyses suggest that Spns2 exports S1P via facilitated diffusion, a mechanism distinct from other MFS lipid transporters. Finally, we show that the Spns2 inhibitor 16d attenuates the transport activity by locking Spns2 in the inward-facing state. Our work sheds light on Spns2-mediated S1P transport and aids the development of advanced Spns2 inhibitors.
Collapse
Affiliation(s)
- Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shahbaz Ahmed
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongtu Zhao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Yaxin Dai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jae Hun Kim
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
20
|
Weigel C, Bellaci J, Spiegel S. Sphingosine-1-phosphate and its receptors in vascular endothelial and lymphatic barrier function. J Biol Chem 2023; 299:104775. [PMID: 37142226 PMCID: PMC10220486 DOI: 10.1016/j.jbc.2023.104775] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
The vascular and lymphatic systems both comprise a series of structurally distinct vessels lined with an inner layer of endothelial cells that function to provide a semipermeable barrier to blood and lymph. Regulation of the endothelial barrier is critical for maintaining vascular and lymphatic barrier homeostasis. One of the regulators of endothelial barrier function and integrity is sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite secreted into the blood by erythrocytes, platelets, and endothelial cells and into the lymph by lymph endothelial cells. Binding of S1P to its G protein-coupled receptors, known as S1PR1-5, regulates its pleiotropic functions. This review outlines the structural and functional differences between vascular and lymphatic endothelium and describes current understanding of the importance of S1P/S1PR signaling in regulation of barrier functions. Most studies thus far have been primarily focused on the role of the S1P/S1PR1 axis in vasculature and have been summarized in several excellent reviews, and thus, we will only discuss new perspectives on the molecular mechanisms of action of S1P and its receptors. Much less is known about the responses of the lymphatic endothelium to S1P and the functions of S1PRs in lymph endothelial cells, and this is the major focus of this review. We also discuss current knowledge related to signaling pathways and factors regulated by the S1P/S1PR axis that control lymphatic endothelial cell junctional integrity. Gaps and limitations in current knowledge are highlighted together with the need to further understand the role of S1P receptors in the lymphatic system.
Collapse
Affiliation(s)
- Cynthia Weigel
- Department of Biochemistry and Molecular Biology Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Jacqueline Bellaci
- Department of Biochemistry and Molecular Biology Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
21
|
Wang N, Li JY, Zeng B, Chen GL. Sphingosine-1-Phosphate Signaling in Cardiovascular Diseases. Biomolecules 2023; 13:biom13050818. [PMID: 37238688 DOI: 10.3390/biom13050818] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is an important sphingolipid molecule involved in regulating cardiovascular functions in physiological and pathological conditions by binding and activating the three G protein-coupled receptors (S1PR1, S1PR2, and S1PR3) expressed in endothelial and smooth muscle cells, as well as cardiomyocytes and fibroblasts. It exerts its actions through various downstream signaling pathways mediating cell proliferation, migration, differentiation, and apoptosis. S1P is essential for the development of the cardiovascular system, and abnormal S1P content in the circulation is involved in the pathogenesis of cardiovascular disorders. This article reviews the effects of S1P on cardiovascular function and signaling mechanisms in different cell types in the heart and blood vessels under diseased conditions. Finally, we look forward to more clinical findings with approved S1PR modulators and the development of S1P-based therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Jing-Yi Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
22
|
Kihara Y, Chun J. Molecular and neuroimmune pharmacology of S1P receptor modulators and other disease-modifying therapies for multiple sclerosis. Pharmacol Ther 2023; 246:108432. [PMID: 37149155 DOI: 10.1016/j.pharmthera.2023.108432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Multiple sclerosis (MS) is a neurological, immune-mediated demyelinating disease that affects people in the prime of life. Environmental, infectious, and genetic factors have been implicated in its etiology, although a definitive cause has yet to be determined. Nevertheless, multiple disease-modifying therapies (DMTs: including interferons, glatiramer acetate, fumarates, cladribine, teriflunomide, fingolimod, siponimod, ozanimod, ponesimod, and monoclonal antibodies targeting ITGA4, CD20, and CD52) have been developed and approved for the treatment of MS. All the DMTs approved to date target immunomodulation as their mechanism of action (MOA); however, the direct effects of some DMTs on the central nervous system (CNS), particularly sphingosine 1-phosphate (S1P) receptor (S1PR) modulators, implicate a parallel MOA that may also reduce neurodegenerative sequelae. This review summarizes the currently approved DMTs for the treatment of MS and provides details and recent advances in the molecular pharmacology, immunopharmacology, and neuropharmacology of S1PR modulators, with a special focus on the CNS-oriented, astrocyte-centric MOA of fingolimod.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, United States of America.
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, United States of America
| |
Collapse
|
23
|
Arroz-Madeira S, Bekkhus T, Ulvmar MH, Petrova TV. Lessons of Vascular Specialization From Secondary Lymphoid Organ Lymphatic Endothelial Cells. Circ Res 2023; 132:1203-1225. [PMID: 37104555 PMCID: PMC10144364 DOI: 10.1161/circresaha.123.322136] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Secondary lymphoid organs, such as lymph nodes, harbor highly specialized and compartmentalized niches. These niches are optimized to facilitate the encounter of naive lymphocytes with antigens and antigen-presenting cells, enabling optimal generation of adaptive immune responses. Lymphatic vessels of lymphoid organs are uniquely specialized to perform a staggering variety of tasks. These include antigen presentation, directing the trafficking of immune cells but also modulating immune cell activation and providing factors for their survival. Recent studies have provided insights into the molecular basis of such specialization, opening avenues for better understanding the mechanisms of immune-vascular interactions and their applications. Such knowledge is essential for designing better treatments for human diseases given the central role of the immune system in infection, aging, tissue regeneration and repair. In addition, principles established in studies of lymphoid organ lymphatic vessel functions and organization may be applied to guide our understanding of specialization of vascular beds in other organs.
Collapse
Affiliation(s)
- Silvia Arroz-Madeira
- Department of Oncology, University of Lausanne, Switzerland (S.A.M., T.V.P.)
- Ludwig Institute for Cancer Research Lausanne, Switzerland (S.A.M., T.V.P.)
| | - Tove Bekkhus
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden (T.B., M.H.U.)
| | - Maria H. Ulvmar
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden (T.B., M.H.U.)
| | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne, Switzerland (S.A.M., T.V.P.)
- Ludwig Institute for Cancer Research Lausanne, Switzerland (S.A.M., T.V.P.)
| |
Collapse
|
24
|
Burgio AL, Shrader CW, Kharel Y, Huang T, Salamoun JM, Lynch KR, Santos WL. 2-Aminobenzoxazole Derivatives as Potent Inhibitors of the Sphingosine-1-Phosphate Transporter Spinster Homolog 2 (Spns2). J Med Chem 2023; 66:5873-5891. [PMID: 37010497 PMCID: PMC10167756 DOI: 10.1021/acs.jmedchem.3c00149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
The S1P1 receptor is the target of four marketed drugs for the treatment of multiple sclerosis and ulcerative colitis. Targeting an S1P exporter, specifically Spns2, that is "upstream" of S1P receptor engagement is an alternate strategy that might recapitulate the efficacy of S1P receptor modulators without cardiac toxicity. We recently reported the first Spns2 inhibitor SLF1081851 (16d) that has modest potency with in vivo activity. To develop more potent compounds, we initiated a structure-activity relationship study that identified 2-aminobenzoxazole as a viable scaffold. Our studies revealed SLB1122168 (33p), which is a potent inhibitor (IC50 = 94 ± 6 nM) of Spns2-mediated S1P release. Administration of 33p to mice and rats resulted in a dose-dependent decrease in circulating lymphocytes, a pharmacodynamic indication of Spns2 inhibition. 33p provides a valuable tool compound to explore both the therapeutic potential of targeting Spns2 and the physiologic consequences of selective S1P export inhibition.
Collapse
Affiliation(s)
- Ariel L. Burgio
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061
| | - Christopher W. Shrader
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Joseph M. Salamoun
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Webster L. Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
25
|
Zinatizadeh MR, Zarandi PK, Ghiasi M, Kooshki H, Mohammadi M, Amani J, Rezaei N. Immunosenescence and inflamm-ageing in COVID-19. Ageing Res Rev 2023; 84:101818. [PMID: 36516928 PMCID: PMC9741765 DOI: 10.1016/j.arr.2022.101818] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The destructive effects of coronavirus disease 2019 (COVID-19) on the elderly and people with cardiovascular disease have been proven. New findings shed light on the role of aging pathways on life span and health age. New therapies that focus on aging-related pathways may positively impact the treatment of this acute respiratory infection. Using new therapies that boost the level of the immune system can support the elderly with co-morbidities against the acute form of COVID-19. This article discusses the effect of the aging immune system against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the pathways affecting this severity of infection.
Collapse
Affiliation(s)
- Mohammad Reza Zinatizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran,Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Peyman Kheirandish Zarandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran,Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohsen Ghiasi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamid Kooshki
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mozafar Mohammadi
- Applied Biotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
26
|
Sasset L, Chowdhury KH, Manzo OL, Rubinelli L, Konrad C, Maschek JA, Manfredi G, Holland WL, Di Lorenzo A. Sphingosine-1-phosphate controls endothelial sphingolipid homeostasis via ORMDL. EMBO Rep 2023; 24:e54689. [PMID: 36408842 PMCID: PMC9827560 DOI: 10.15252/embr.202254689] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 11/22/2022] Open
Abstract
Disruption of sphingolipid homeostasis and signaling has been implicated in diabetes, cancer, cardiometabolic, and neurodegenerative disorders. Yet, mechanisms governing cellular sensing and regulation of sphingolipid homeostasis remain largely unknown. In yeast, serine palmitoyltransferase, catalyzing the first and rate-limiting step of sphingolipid de novo biosynthesis, is negatively regulated by Orm1 and 2. Lowering sphingolipids triggers Orms phosphorylation, upregulation of serine palmitoyltransferase activity and sphingolipid de novo biosynthesis. However, mammalian orthologs ORMDLs lack the N-terminus hosting the phosphosites. Thus, which sphingolipid(s) are sensed by the cells, and mechanisms of homeostasis remain largely unknown. Here, we identify sphingosine-1-phosphate (S1P) as key sphingolipid sensed by cells via S1PRs to maintain homeostasis. The increase in S1P-S1PR signaling stabilizes ORMDLs, restraining SPT activity. Mechanistically, the hydroxylation of ORMDLs at Pro137 allows a constitutive degradation of ORMDLs via ubiquitin-proteasome pathway, preserving SPT activity. Disrupting S1PR/ORMDL axis results in ceramide accrual, mitochondrial dysfunction, impaired signal transduction, all underlying endothelial dysfunction, early event in the onset of cardio- and cerebrovascular diseases. Our discovery may provide the molecular basis for therapeutic intervention restoring sphingolipid homeostasis.
Collapse
Affiliation(s)
- Linda Sasset
- Department of Pathology and Laboratory MedicineCardiovascular Research Institute, Weill Cornell MedicineNew YorkNYUSA
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNYUSA
| | - Kamrul H Chowdhury
- Department of Nutrition and Integrative PhysiologyUniversity of Utah College of HealthSalt Lake CityUTUSA
| | - Onorina L Manzo
- Department of Pathology and Laboratory MedicineCardiovascular Research Institute, Weill Cornell MedicineNew YorkNYUSA
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNYUSA
- Department of PharmacyUniversity of Naples “Federico II”NaplesItaly
| | - Luisa Rubinelli
- Department of Pathology and Laboratory MedicineCardiovascular Research Institute, Weill Cornell MedicineNew YorkNYUSA
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNYUSA
| | - Csaba Konrad
- Department of Nutrition and Integrative PhysiologyUniversity of Utah College of HealthSalt Lake CityUTUSA
| | - J Alan Maschek
- Department of Nutrition and Integrative PhysiologyUniversity of Utah College of HealthSalt Lake CityUTUSA
| | - Giovanni Manfredi
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNYUSA
| | - William L Holland
- Department of Nutrition and Integrative PhysiologyUniversity of Utah College of HealthSalt Lake CityUTUSA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory MedicineCardiovascular Research Institute, Weill Cornell MedicineNew YorkNYUSA
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
27
|
Levesque MV, Hla T. Signal Transduction and Gene Regulation in the Endothelium. Cold Spring Harb Perspect Med 2023; 13:a041153. [PMID: 35667710 PMCID: PMC9722983 DOI: 10.1101/cshperspect.a041153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Extracellular signals act on G-protein-coupled receptors (GPCRs) to regulate homeostasis and adapt to stress. This involves rapid intracellular post-translational responses and long-lasting gene-expression changes that ultimately determine cellular phenotype and fate changes. The lipid mediator sphingosine 1-phosphate (S1P) and its receptors (S1PRs) are examples of well-studied GPCR signaling axis essential for vascular development, homeostasis, and diseases. The biochemical cascades involved in rapid S1P signaling are well understood. However, gene-expression regulation by S1PRs are less understood. In this review, we focus our attention to how S1PRs regulate nuclear chromatin changes and gene transcription to modulate vascular and lymphatic endothelial phenotypic changes during embryonic development and adult homeostasis. Because S1PR-targeted drugs approved for use in the treatment of autoimmune diseases cause substantial vascular-related adverse events, these findings are critical not only for general understanding of stimulus-evoked gene regulation in the vascular endothelium, but also for therapeutic development of drugs for autoimmune and perhaps vascular diseases.
Collapse
Affiliation(s)
- Michel V Levesque
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
28
|
Hasan Z, Nguyen TQ, Lam BWS, Wong JHX, Wong CCY, Tan CKH, Yu J, Thiam CH, Zhang Y, Angeli V, Nguyen LN. Postnatal deletion of Spns2 prevents neuroinflammation without compromising blood vascular functions. Cell Mol Life Sci 2022; 79:541. [PMID: 36198832 PMCID: PMC11802987 DOI: 10.1007/s00018-022-04573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 11/03/2022]
Abstract
Protein Spinster homolog 2 (Spns2) is a sphingosine-1-phosphate (S1P) transporter that releases S1P to regulate lymphocyte egress and trafficking. Global deletion of Spns2 (Spns2-/-) has been shown to reduce disease severity in several autoimmune disease models. To examine whether Spns2 could be exploited as a drug target, we generated and characterized the mice with postnatal knockout of Spns2 (Spns2-Mx1Cre). Our results showed that Spns2-Mx1Cre mice had significantly low number of lymphocytes in blood and lymphoid organs similar to Spns2-/- mice. Lymph but not plasma S1P levels were significantly reduced in both groups of knockout mice. Our lipidomic results also showed that Spns2 releases different S1P species into lymph. Interestingly, lymphatic vessels in the lymph nodes (LNs) of Spns2-/- and Spns2-Mx1Cre mice exhibited morphological defects. The structures of high endothelial venules (HEV) in the LNs of Spns2-Mx1Cre mice were disorganized. These results indicate that lack of Spns2 affects both S1P secretion and LN vasculatures. Nevertheless, blood vasculature of these Spns2 deficient mice was not different to controls under homeostasis and vascular insults. Importantly, Spns2-Mx1Cre mice were resistant to multiple sclerosis in experimental autoimmune encephalomyelitis (EAE) models with significant reduction of pathogenic Th17 cells in the central nervous system (CNS). This study suggests that pharmacological inhibition of Spns2 may be exploited for therapeutic applications in treatment of neuroinflammation.
Collapse
Affiliation(s)
- Zafrul Hasan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Toan Q Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Brenda Wan Shing Lam
- Department of Pharmacology, Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, Singapore
| | - Jovi Hui Xin Wong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Caleb Cheng Yi Wong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Clarissa Kai Hui Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Jiabo Yu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Life Sciences Institute, Immunology Program, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Chung Hwee Thiam
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Life Sciences Institute, Immunology Program, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Life Sciences Institute, Immunology Program, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Veronique Angeli
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Life Sciences Institute, Immunology Program, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
- Life Sciences Institute, Singapore Lipidomics Incubator (SLING), National University of Singapore, Singapore, 117456, Singapore.
- Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
- Life Sciences Institute, Immunology Program, National University of Singapore, Singapore, 117456, Singapore.
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
29
|
Abstract
To ensure proper immune function, most leukocytes constantly move within tissues or between them using the blood and lymphatic vessels as transport routes. While afferent lymphatic vessels transfer leukocytes from peripheral tissues to draining lymph nodes (dLNs), efferent lymphatics return lymphocytes from LNs back into the blood vascular circulation. Over the last decades, great progress has been made in our understanding of leukocyte migration into and within the lymphatic compartment, leading to the approval of new drugs targeting this process. In this review, we first introduce the anatomy of the lymphatic vasculature and the main cell types migrating through lymphatics. We primarily focus on dendritic cells (DCs) and T cells, the most prominent lymph-borne cell types, and discuss the functional significance as well as the main molecules and steps involved in their migration. Additionally, we provide an overview of the different techniques used to study lymphatic trafficking.
Collapse
Affiliation(s)
- Aline Bauer
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Hazal Tatliadim
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
30
|
Wilkerson JL, Basu SK, Stiles MA, Prislovsky A, Grambergs RC, Nicholas SE, Karamichos D, Allegood JC, Proia RL, Mandal N. Ablation of Sphingosine Kinase 1 Protects Cornea from Neovascularization in a Mouse Corneal Injury Model. Cells 2022; 11:2914. [PMID: 36139489 PMCID: PMC9497123 DOI: 10.3390/cells11182914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to investigate the role of sphingosine kinase 1 (SphK1), which generates sphingosine-1-phosphate (S1P), in corneal neovascularization (NV). Wild-type (WT) and Sphk1 knockout (Sphk1-/-) mice received corneal alkali-burn treatment to induce corneal NV by placing a 2 mm round piece of Whatman No. 1 filter paper soaked in 1N NaOH on the center of the cornea for 20 s. Corneal sphingolipid species were extracted and identified using liquid chromatography/mass spectrometry (LC/MS). The total number of tip cells and those positive for ethynyl deoxy uridine (EdU) were quantified. Immunocytochemistry was done to examine whether pericytes were present on newly forming blood vessels. Cytokine signaling and angiogenic markers were compared between the two groups using multiplex assays. Data were analyzed using appropriate statistical tests. Here, we show that ablation of SphK1 can significantly reduce NV invasion in the cornea following injury. Corneal sphingolipid analysis showed that total levels of ceramides, monohexosyl ceramides (HexCer), and sphingomyelin were significantly elevated in Sphk-/- corneas compared to WT corneas, with a comparable level of sphingosine among the two genotypes. The numbers of total and proliferating endothelial tip cells were also lower in the Sphk1-/- corneas following injury. This study underscores the role of S1P in post-injury corneal NV and raises further questions about the roles played by ceramide, HexCer, and sphingomyelin in regulating corneal NV. Further studies are needed to unravel the role played by bioactive sphingolipids in maintenance of corneal transparency and clear vision.
Collapse
Affiliation(s)
- Joseph L. Wilkerson
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sandip K. Basu
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Megan A. Stiles
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amanda Prislovsky
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Richard C. Grambergs
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jeremy C. Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Richard L. Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nawajes Mandal
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
- Departments of Anatomy and Neurobiology, and Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
- Memphis VA Medical Center, Memphis, TN 38104, USA
| |
Collapse
|
31
|
Becher N, Swaminath A, Sultan K. A Literature Review of Ozanimod Therapy in Inflammatory Bowel Disease: From Concept to Practical Application. Ther Clin Risk Manag 2022; 18:913-927. [PMID: 36106049 PMCID: PMC9467694 DOI: 10.2147/tcrm.s336139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Inflammatory bowel disease (IBD), namely Ulcerative Colitis (UC) and Crohn's Disease (CD), is believed to be due to a dysregulation of the innate immune response. The complexity of the immune cascade offers both a challenge and an opportunity to researchers seeking out new treatments for IBD, as various points along the inflammatory pathways can be targeted for interruption. Sphinogosine-1-phosphate (S1P) is a phospholipid molecule with wide ranging biological effects caused by binding five known S1P receptor subtypes. Ozanimod is a small molecule drug that selectively targets S1P receptors 1 and 5 which play a crucial role in lymphocyte trafficking. In clinical trials for both UC and CD, it has been shown to induce a reversible lymphopenia which correlates with response to therapy. Reported adverse events include infection, anemia, and elevated liver enzymes. Rare instances of bradycardia, heart block, and macular edema were also reported. As a newly available therapy approved for UC patients, we aim to summarize ozanimod's novel mechanism of action, pre-clinical and clinical trial results, and to give context to this newly available drug that gastroenterologists may utilize in their treatment algorithm.
Collapse
Affiliation(s)
- Noah Becher
- Department of Medicine, Hofstra/Northwell Health at Staten Island University Hospital, Staten Island, NY, USA
| | - Arun Swaminath
- Division of Gastroenterology and Hepatology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Keith Sultan
- Division of Gastroenterology and Hepatology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
32
|
Tolksdorf C, Moritz E, Wolf R, Meyer U, Marx S, Bien-Möller S, Garscha U, Jedlitschky G, Rauch BH. Platelet-Derived S1P and Its Relevance for the Communication with Immune Cells in Multiple Human Diseases. Int J Mol Sci 2022; 23:ijms231810278. [PMID: 36142188 PMCID: PMC9499465 DOI: 10.3390/ijms231810278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a versatile signaling lipid involved in the regulation of numerous cellular processes. S1P regulates cellular proliferation, migration, and apoptosis as well as the function of immune cells. S1P is generated from sphingosine (Sph), which derives from the ceramide metabolism. In particular, high concentrations of S1P are present in the blood. This originates mainly from erythrocytes, endothelial cells (ECs), and platelets. While erythrocytes function as a storage pool for circulating S1P, platelets can rapidly generate S1P de novo, store it in large quantities, and release it when the platelet is activated. Platelets can thus provide S1P in a short time when needed or in the case of an injury with subsequent platelet activation and thereby regulate local cellular responses. In addition, platelet-dependently generated and released S1P may also influence long-term immune cell functions in various disease processes, such as inflammation-driven vascular diseases. In this review, the metabolism and release of platelet S1P are presented, and the autocrine versus paracrine functions of platelet-derived S1P and its relevance in various disease processes are discussed. New pharmacological approaches that target the auto- or paracrine effects of S1P may be therapeutically helpful in the future for pathological processes involving S1P.
Collapse
Affiliation(s)
- Céline Tolksdorf
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Eileen Moritz
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Robert Wolf
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Ulrike Meyer
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Sascha Marx
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Sandra Bien-Möller
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Ulrike Garscha
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | - Gabriele Jedlitschky
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Bernhard H. Rauch
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Correspondence:
| |
Collapse
|
33
|
Dastvan R, Rasouli A, Dehghani-Ghahnaviyeh S, Gies S, Tajkhorshid E. Proton-driven alternating access in a spinster lipid transporter. Nat Commun 2022; 13:5161. [PMID: 36055994 PMCID: PMC9440201 DOI: 10.1038/s41467-022-32759-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Spinster (Spns) lipid transporters are critical for transporting sphingosine-1-phosphate (S1P) across cellular membranes. In humans, Spns2 functions as the main S1P transporter in endothelial cells, making it a potential drug target for modulating S1P signaling. Here, we employed an integrated approach in lipid membranes to identify unknown conformational states of a bacterial Spns from Hyphomonas neptunium (HnSpns) and to define its proton- and substrate-coupled conformational dynamics. Our systematic study reveals conserved residues critical for protonation steps and their regulation, and how sequential protonation of these proton switches coordinates the conformational transitions in the context of a noncanonical ligand-dependent alternating access. A conserved periplasmic salt bridge (Asp60TM2:Arg289TM7) keeps the transporter in a closed conformation, while proton-dependent conformational dynamics are significantly enhanced on the periplasmic side, providing a pathway for ligand exchange.
Collapse
Affiliation(s)
- Reza Dastvan
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| | - Ali Rasouli
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sepehr Dehghani-Ghahnaviyeh
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Samantha Gies
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
34
|
Tanaka S, Zheng S, Kharel Y, Fritzemeier RG, Huang T, Foster D, Poudel N, Goggins E, Yamaoka Y, Rudnicka KP, Lipsey JE, Radel HV, Ryuh SM, Inoue T, Yao J, Rosin DL, Schwab SR, Santos WL, Lynch KR, Okusa MD. Sphingosine 1-phosphate signaling in perivascular cells enhances inflammation and fibrosis in the kidney. Sci Transl Med 2022; 14:eabj2681. [PMID: 35976996 PMCID: PMC9873476 DOI: 10.1126/scitranslmed.abj2681] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chronic kidney disease (CKD), characterized by sustained inflammation and progressive fibrosis, is highly prevalent and can eventually progress to end-stage kidney disease. However, current treatments to slow CKD progression are limited. Sphingosine 1-phosphate (S1P), a product of sphingolipid catabolism, is a pleiotropic mediator involved in many cellular functions, and drugs targeting S1P signaling have previously been studied particularly for autoimmune diseases. The primary mechanism of most of these drugs is functional antagonism of S1P receptor-1 (S1P1) expressed on lymphocytes and the resultant immunosuppressive effect. Here, we documented the role of local S1P signaling in perivascular cells in the progression of kidney fibrosis using primary kidney perivascular cells and several conditional mouse models. S1P was predominantly produced by sphingosine kinase 2 in kidney perivascular cells and exported via spinster homolog 2 (Spns2). It bound to S1P1 expressed in perivascular cells to enhance production of proinflammatory cytokines/chemokines upon injury, leading to immune cell infiltration and subsequent fibrosis. A small-molecule Spns2 inhibitor blocked S1P transport, resulting in suppression of inflammatory signaling in human and mouse kidney perivascular cells in vitro and amelioration of kidney fibrosis in mice. Our study provides insight into the regulation of inflammation and fibrosis by S1P and demonstrates the potential of Spns2 inhibition as a treatment for CKD and potentially other inflammatory and fibrotic diseases that avoids the adverse events associated with systemic modulation of S1P receptors.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA.,Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Shuqiu Zheng
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Russell G. Fritzemeier
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Daniel Foster
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Nabin Poudel
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Eibhlin Goggins
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Yusuke Yamaoka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Kinga P. Rudnicka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Jonathan E. Lipsey
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Hope V. Radel
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Sophia M. Ryuh
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Tsuyoshi Inoue
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Junlan Yao
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Diane L. Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Susan R. Schwab
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, NY, New York 10016, USA
| | - Webster L. Santos
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Mark D. Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA.,Corresponding author.
| |
Collapse
|
35
|
Le TNU, Nguyen TQ, Kalailingam P, Nguyen YTK, Sukumar VK, Tan CKH, Tukijan F, Couty L, Hasan Z, Del Gaudio I, Wenk MR, Cazenave-Gassiot A, Camerer E, Nguyen LN. Mfsd2b and Spns2 are essential for maintenance of blood vessels during development and in anaphylactic shock. Cell Rep 2022; 40:111208. [PMID: 35977478 DOI: 10.1016/j.celrep.2022.111208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 05/23/2022] [Accepted: 07/21/2022] [Indexed: 01/22/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a potent lipid mediator that is secreted by several cell types. We recently showed that Mfsd2b is an S1P transporter from hematopoietic cells that contributes approximately 50% plasma S1P. Here we report the characterization of compound deletion of Mfsd2b and Spns2, another S1P transporter active primarily in endothelial cells. Global deletion of Mfsd2b and Spns2 (global double knockout [gDKO]) results in embryonic lethality beyond embryonic day 14.5 (E14.5), with severe hemorrhage accompanied by defects of tight junction proteins, indicating that Mfsd2b and Spns2 provide S1P for signaling, which is essential for blood vessel integrity. Compound postnatal deletion of Mfsd2b and Spns2 using Mx1Cre (ctDKO-Mx1Cre) results in maximal 80% reduction of plasma S1P. ctDKO-Mx1Cre mice exhibit severe susceptibility to anaphylaxis, indicating that S1P from Mfsd2b and Spns2 is indispensable for vascular homeostasis. Our results show that S1P export from Mfsd2b and Spns2 is essential for developing and mature vasculature.
Collapse
Affiliation(s)
- Thanh Nha Uyen Le
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Toan Q Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Pazhanichamy Kalailingam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Yen Thi Kim Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Viresh Krishnan Sukumar
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Clarissa Kai Hui Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Farhana Tukijan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Ludovic Couty
- Université Paris Cité, PARCC, INSERM U970, 56 Rue Leblanc, 75015 Paris, France
| | - Zafrul Hasan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Ilaria Del Gaudio
- Université Paris Cité, PARCC, INSERM U970, 56 Rue Leblanc, 75015 Paris, France
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore; Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore; Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Eric Camerer
- Université Paris Cité, PARCC, INSERM U970, 56 Rue Leblanc, 75015 Paris, France
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore; Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Cardiovascular Disease Research (CVD) Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
36
|
Tian L, Ogretmen B, Chung BY, Yu XZ. Sphingolipid metabolism in T cell responses after allogeneic hematopoietic cell transplantation. Front Immunol 2022; 13:904823. [PMID: 36052066 PMCID: PMC9425084 DOI: 10.3389/fimmu.2022.904823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective immunotherapy against hematopoietic malignancies. The infused donor lymphocytes attack malignant cells and normal tissues, termed a graft-verse-leukemia (GVL) effect and graft-verse-host (GVH) response or disease (GVHD), respectively. Although engineering techniques toward donor graft selection have made HCT more specific and effective, primary tumor relapse and GVHD are still major concerns post allo-HCT. High-dose systemic steroids remain to be the first line of GVHD treatment, which may lead to steroid-refractory GVHD with a dismal outcome. Therefore, identifying novel therapeutic strategies that prevent GVHD while preserving GVL activity is highly warranted. Sphingolipid metabolism and metabolites play pivotal roles in regulating T-cell homeostasis and biological functions. In this review, we summarized the recent research progress in this evolving field of sphingolipids with a focus on alloreactive T-cell responses in the context of allo-HCT. We discussed how sphingolipid metabolism regulates T-cell mediated GVH and GVL responses in allo-HCT and presented the rationale and means to target sphingolipid metabolism for the control of GVHD and leukemia relapse.
Collapse
Affiliation(s)
- Linlu Tian
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Brian Y. Chung
- The Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- The Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Xue-Zhong Yu,
| |
Collapse
|
37
|
Abstract
The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Petrusca DN, Lee KP, Galson DL. Role of Sphingolipids in Multiple Myeloma Progression, Drug Resistance, and Their Potential as Therapeutic Targets. Front Oncol 2022; 12:925807. [PMID: 35756630 PMCID: PMC9213658 DOI: 10.3389/fonc.2022.925807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is an incapacitating hematological malignancy characterized by accumulation of cancerous plasma cells in the bone marrow (BM) and production of an abnormal monoclonal protein (M-protein). The BM microenvironment has a key role in myeloma development by facilitating the growth of the aberrant plasma cells, which eventually interfere with the homeostasis of the bone cells, exacerbating osteolysis and inhibiting osteoblast differentiation. Recent recognition that metabolic reprograming has a major role in tumor growth and adaptation to specific changes in the microenvironmental niche have led to consideration of the role of sphingolipids and the enzymes that control their biosynthesis and degradation as critical mediators of cancer since these bioactive lipids have been directly linked to the control of cell growth, proliferation, and apoptosis, among other cellular functions. In this review, we present the recent progress of the research investigating the biological implications of sphingolipid metabolism alterations in the regulation of myeloma development and its progression from the pre-malignant stage and discuss the roles of sphingolipids in in MM migration and adhesion, survival and proliferation, as well as angiogenesis and invasion. We introduce the current knowledge regarding the role of sphingolipids as mediators of the immune response and drug-resistance in MM and tackle the new developments suggesting the manipulation of the sphingolipid network as a novel therapeutic direction for MM.
Collapse
Affiliation(s)
- Daniela N Petrusca
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kelvin P Lee
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Deborah L Galson
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, McGowan Institute for Regenerative Medicine, HCC Research Pavilion, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
39
|
Fritzemeier R, Foster D, Peralta A, Payette M, Kharel Y, Huang T, Lynch KR, Santos WL. Discovery of In Vivo Active Sphingosine-1-phosphate Transporter (Spns2) Inhibitors. J Med Chem 2022; 65:7656-7681. [PMID: 35609189 PMCID: PMC9733493 DOI: 10.1021/acs.jmedchem.1c02171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a pleiotropic signaling molecule that interacts with five G-protein-coupled receptors (S1P1-5) to regulate cellular signaling pathways. S1P export is facilitated by Mfsd2b and spinster homologue 2 (Spns2). While mouse genetic studies suggest that Spns2 functions to maintain lymph S1P, Spns2 inhibitors are necessary to understand its biology and to learn whether Spns2 is a viable drug target. Herein, we report a structure-activity relationship study that identified the first Spns2 inhibitor 16d (SLF1081851). In vitro studies in HeLa cells demonstrated that 16d inhibited S1P release with an IC50 of 1.93 μM. Administration of 16d to mice and rats drove significant decreases in circulating lymphocyte counts and plasma S1P concentrations, recapitulating the phenotype observed in mice made deficient in Spns2. Thus, 16d has the potential for development and use as a probe to investigate Spns2 biology and to determine the potential of Spns2 as a drug target.
Collapse
Affiliation(s)
- Russell Fritzemeier
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Daniel Foster
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Ashley Peralta
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Michael Payette
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
40
|
Hu Y, Dai K. Sphingosine 1-Phosphate Metabolism and Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:67-76. [PMID: 35503175 DOI: 10.1007/978-981-19-0394-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a well-defined bioactive lipid molecule derived from membrane sphingolipid metabolism. In the past decades, a series of key enzymes involved in generation of S1P have been identified and characterized in detail, as well as enzymes degrading S1P. S1P requires transporter to cross the plasma membrane and carrier to deliver to its cognate receptors and therefore transduces signaling in autocrine, paracrine, or endocrine fashions. The essential roles in regulation of development, metabolism, inflammation, and many other aspects of life are mainly executed when S1P binds to receptors provoking the downstream signaling cascades in distinct cells. This chapter will review the synthesis, degradation, transportation, and signaling of S1P and try to provide a comprehensive view of the biology of S1P, evoking new enthusiasms and ideas into the field of the fascinating S1P.
Collapse
Affiliation(s)
- Yan Hu
- Department of Psychiatry, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Kezhi Dai
- Department of Psychiatry, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
41
|
Sphingosine 1-phosphate receptor-targeted therapeutics in rheumatic diseases. Nat Rev Rheumatol 2022; 18:335-351. [PMID: 35508810 DOI: 10.1038/s41584-022-00784-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
Sphingosine 1-phosphate (S1P), which acts via G protein-coupled S1P receptors (S1PRs), is a bioactive lipid essential for vascular integrity and lymphocyte trafficking. The S1P-S1PR signalling axis is a key component of the inflammatory response in autoimmune rheumatic diseases. Several drugs that target S1PRs have been approved for the treatment of multiple sclerosis and inflammatory bowel disease and are under clinical testing for patients with systemic lupus erythematosus (SLE). Preclinical studies support the hypothesis that targeting the S1P-S1PR axis would be beneficial to patients with SLE, rheumatoid arthritis (RA) and systemic sclerosis (SSc) by reducing pathological inflammation. Whereas most preclinical research and development efforts are focused on reducing lymphocyte trafficking, protective effects of circulating S1P on endothelial S1PRs, which maintain the vascular barrier and enable blood circulation while dampening leukocyte extravasation, have been largely overlooked. In this Review, we take a holistic view of S1P-S1PR signalling in lymphocyte and vascular pathobiology. We focus on the potential of S1PR modulators for the treatment of SLE, RA and SSc and summarize the rationale, pathobiology and evidence from preclinical models and clinical studies. Improved understanding of S1P pathobiology in autoimmune rheumatic diseases and S1PR therapeutic modulation is anticipated to lead to efficacious and safer management of these diseases.
Collapse
|
42
|
Kuo A, Checa A, Niaudet C, Jung B, Fu Z, Wheelock CE, Singh SA, Aikawa M, Smith LE, Proia RL, Hla T. Murine endothelial serine palmitoyltransferase 1 (SPTLC1) is required for vascular development and systemic sphingolipid homeostasis. eLife 2022; 11:78861. [PMID: 36197001 PMCID: PMC9578713 DOI: 10.7554/elife.78861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/04/2022] [Indexed: 02/04/2023] Open
Abstract
Serine palmitoyl transferase (SPT), the rate-limiting enzyme in the de novo synthesis of sphingolipids (SL), is needed for embryonic development, physiological homeostasis, and response to stress. The functions of de novo SL synthesis in vascular endothelial cells (EC), which line the entire circulatory system, are not well understood. Here, we show that the de novo SL synthesis in EC not only regulates vascular development but also maintains circulatory and peripheral organ SL levels. Mice with an endothelial-specific gene knockout of SPTLC1 (Sptlc1 ECKO), an essential subunit of the SPT complex, exhibited reduced EC proliferation and tip/stalk cell differentiation, resulting in delayed retinal vascular development. In addition, Sptlc1 ECKO mice had reduced retinal neovascularization in the oxygen-induced retinopathy model. Mechanistic studies suggest that EC SL produced from the de novo pathway are needed for lipid raft formation and efficient VEGF signaling. Post-natal deletion of the EC Sptlc1 also showed rapid reduction of several SL metabolites in plasma, red blood cells, and peripheral organs (lung and liver) but not in the retina, part of the central nervous system (CNS). In the liver, EC de novo SL synthesis was important for acetaminophen-induced rapid ceramide elevation and hepatotoxicity. These results suggest that EC-derived SL metabolites are in constant flux between the vasculature, circulatory elements, and parenchymal cells of non-CNS organs. Taken together, our data point to the central role of the endothelial SL biosynthesis in maintaining vascular development, neovascular proliferation, non-CNS tissue metabolic homeostasis, and hepatocyte response to stress.
Collapse
Affiliation(s)
- Andrew Kuo
- Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical SchoolBostonUnited States
| | - Antonio Checa
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska InstituteStockholmSweden
| | - Colin Niaudet
- Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical SchoolBostonUnited States
| | - Bongnam Jung
- Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical SchoolBostonUnited States
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska InstituteStockholmSweden,Department of Respiratory Medicine and Allergy, Karolinska University HospitalStockholmSweden,Gunma University Initiative for Advanced Research, Gunma UniversityMaebashiJapan
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Lois E Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Richard L Proia
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Timothy Hla
- Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
43
|
Chatzikonstantinou S, Poulidou V, Arnaoutoglou M, Kazis D, Heliopoulos I, Grigoriadis N, Boziki M. Signaling through the S1P-S1PR Axis in the Gut, the Immune and the Central Nervous System in Multiple Sclerosis: Implication for Pathogenesis and Treatment. Cells 2021; 10:cells10113217. [PMID: 34831439 PMCID: PMC8626013 DOI: 10.3390/cells10113217] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 01/14/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a signaling molecule with complex biological functions that are exerted through the activation of sphingosine 1-phosphate receptors 1–5 (S1PR1–5). S1PR expression is necessary for cell proliferation, angiogenesis, neurogenesis and, importantly, for the egress of lymphocytes from secondary lymphoid organs. Since the inflammatory process is a key element of immune-mediated diseases, including multiple sclerosis (MS), S1PR modulators are currently used to ameliorate systemic immune responses. The ubiquitous expression of S1PRs by immune, intestinal and neural cells has significant implications for the regulation of the gut–brain axis. The dysfunction of this bidirectional communication system may be a significant factor contributing to MS pathogenesis, since an impaired intestinal barrier could lead to interaction between immune cells and microbiota with a potential to initiate abnormal local and systemic immune responses towards the central nervous system (CNS). It appears that the secondary mechanisms of S1PR modulators affecting the gut immune system, the intestinal barrier and directly the CNS, are coordinated to promote therapeutic effects. The scope of this review is to focus on S1P−S1PR functions in the cells of the CNS, the gut and the immune system with particular emphasis on the immunologic effects of S1PR modulation and its implication in MS.
Collapse
Affiliation(s)
- Simela Chatzikonstantinou
- 3rd Department of Neurology, Aristotle University of Thessaloniki, “G.Papanikolaou” Hospital, Leoforos Papanikolaou, Exohi, 57010 Thessaloniki, Greece; (S.C.); (D.K.)
| | - Vasiliki Poulidou
- 1st Department of Neurology, Aristotle University of Thessaloniki, AHEPA Hospital, 1, Stilp Kyriakidi st., 54636 Thessaloniki, Greece; (V.P.); (M.A.)
| | - Marianthi Arnaoutoglou
- 1st Department of Neurology, Aristotle University of Thessaloniki, AHEPA Hospital, 1, Stilp Kyriakidi st., 54636 Thessaloniki, Greece; (V.P.); (M.A.)
| | - Dimitrios Kazis
- 3rd Department of Neurology, Aristotle University of Thessaloniki, “G.Papanikolaou” Hospital, Leoforos Papanikolaou, Exohi, 57010 Thessaloniki, Greece; (S.C.); (D.K.)
| | - Ioannis Heliopoulos
- Department of Neurology, University General Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupoli, Greece;
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center, Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, Aristotle University of Thessaloniki, AHEPA Hospital, 1, Stilp Kyriakidi st., 54636 Thessaloniki, Greece;
| | - Marina Boziki
- Multiple Sclerosis Center, Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, Aristotle University of Thessaloniki, AHEPA Hospital, 1, Stilp Kyriakidi st., 54636 Thessaloniki, Greece;
- Correspondence:
| |
Collapse
|
44
|
Peters S, Fohmann I, Rudel T, Schubert-Unkmeir A. A Comprehensive Review on the Interplay between Neisseria spp. and Host Sphingolipid Metabolites. Cells 2021; 10:cells10113201. [PMID: 34831424 PMCID: PMC8623382 DOI: 10.3390/cells10113201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids represent a class of structural related lipids involved in membrane biology and various cellular processes including cell growth, apoptosis, inflammation and migration. Over the past decade, sphingolipids have become the focus of intensive studies regarding their involvement in infectious diseases. Pathogens can manipulate the sphingolipid metabolism resulting in cell membrane reorganization and receptor recruitment to facilitate their entry. They may recruit specific host sphingolipid metabolites to establish a favorable niche for intracellular survival and proliferation. In contrast, some sphingolipid metabolites can also act as a first line defense against bacteria based on their antimicrobial activity. In this review, we will focus on the strategies employed by pathogenic Neisseria spp. to modulate the sphingolipid metabolism and hijack the sphingolipid balance in the host to promote cellular colonization, invasion and intracellular survival. Novel techniques and innovative approaches will be highlighted that allow imaging of sphingolipid derivatives in the host cell as well as in the pathogen.
Collapse
Affiliation(s)
- Simon Peters
- Institute for Hygiene and Microbiology, University of Wuerzburg, 97080 Wuerzburg, Germany; (S.P.); (I.F.)
| | - Ingo Fohmann
- Institute for Hygiene and Microbiology, University of Wuerzburg, 97080 Wuerzburg, Germany; (S.P.); (I.F.)
| | - Thomas Rudel
- Chair of Microbiology, University of Wuerzburg, 97080 Wuerzburg, Germany;
| | - Alexandra Schubert-Unkmeir
- Institute for Hygiene and Microbiology, University of Wuerzburg, 97080 Wuerzburg, Germany; (S.P.); (I.F.)
- Correspondence: ; Tel.: +49-931-31-46721; Fax: +49-931-31-46445
| |
Collapse
|
45
|
Honig G, Larkin PB, Heller C, Hurtado-Lorenzo A. Research-Based Product Innovation to Address Critical Unmet Needs of Patients with Inflammatory Bowel Diseases. Inflamm Bowel Dis 2021; 27:S1-S16. [PMID: 34791292 PMCID: PMC8922161 DOI: 10.1093/ibd/izab230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 12/09/2022]
Abstract
Despite progress in recent decades, patients with inflammatory bowel diseases face many critical unmet needs, demonstrating the limitations of available treatment options. Addressing these unmet needs will require interventions targeting multiple aspects of inflammatory bowel disease pathology, including disease drivers that are not targeted by available therapies. The vast majority of late-stage investigational therapies also focus primarily on a narrow range of fundamental mechanisms. Thus, there is a pressing need to advance to clinical stage differentiated investigational therapies directly targeting a broader range of key mechanistic drivers of inflammatory bowel diseases. In addition, innovations are critically needed to enable treatments to be tailored to the specific underlying abnormal biological pathways of patients; interventions with improved safety profiles; biomarkers to develop prognostic, predictive, and monitoring tests; novel devices for nonpharmacological approaches such as minimally invasive monitoring; and digital health technologies. To address these needs, the Crohn's & Colitis Foundation launched IBD Ventures, a venture philanthropy-funding mechanism, and IBD Innovate®, an innovative, product-focused scientific conference. This special IBD Innovate® supplement is a collection of articles reflecting the diverse and exciting research and development that is currently ongoing in the inflammatory bowel disease field to deliver innovative and differentiated products addressing critical unmet needs of patients. Here, we highlight the pipeline of new product opportunities currently advancing at the preclinical and early clinical development stages. We categorize and describe novel and differentiated potential product opportunities based on their potential to address the following critical unmet patient needs: (1) biomarkers for prognosis of disease course and prediction/monitoring of treatment response; (2) restoration of eubiosis; (3) restoration of barrier function and mucosal healing; (4) more effective and safer anti-inflammatories; (5) neuromodulatory and behavioral therapies; (6) management of disease complications; and (7) targeted drug delivery.
Collapse
|
46
|
Okuniewska M, Fang V, Baeyens A, Raghavan V, Lee JY, Littman DR, Schwab SR. SPNS2 enables T cell egress from lymph nodes during an immune response. Cell Rep 2021; 36:109368. [PMID: 34260944 PMCID: PMC8351797 DOI: 10.1016/j.celrep.2021.109368] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 03/24/2021] [Accepted: 06/17/2021] [Indexed: 01/27/2023] Open
Abstract
T cell expression of sphingosine 1-phosphate (S1P) receptor 1 (S1PR1) enables T cell exit from lymph nodes (LNs) into lymph, while endothelial S1PR1 expression regulates vascular permeability. Drugs targeting S1PR1 treat autoimmune disease by trapping pathogenic T cells within LNs, but they have adverse cardiovascular side effects. In homeostasis, the transporter SPNS2 supplies lymph S1P and enables T cell exit, while the transporter MFSD2B supplies most blood S1P and supports vascular function. It is unknown whether SPNS2 remains necessary to supply lymph S1P during an immune response, or whether in inflammation other compensatory transporters are upregulated. Here, using a model of dermal inflammation, we demonstrate that SPNS2 supplies the S1P that guides T cells out of LNs with an ongoing immune response. Furthermore, deletion of Spns2 is protective in a mouse model of multiple sclerosis. These results support the therapeutic potential of SPNS2 inhibitors to achieve spatially specific modulation of S1P signaling.
Collapse
Affiliation(s)
- Martyna Okuniewska
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Victoria Fang
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Audrey Baeyens
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Varsha Raghavan
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - June-Yong Lee
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Dan R Littman
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York, NY 10016, USA
| | - Susan R Schwab
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
47
|
Chandrakanthan M, Nguyen TQ, Hasan Z, Muralidharan S, Vu TM, Li AWL, Le UTN, Thi Thuy Ha H, Baik SH, Tan SH, Foo JC, Wenk MR, Cazenave-Gassiot A, Torta F, Ong WY, Chan MYY, Nguyen LN. Deletion of Mfsd2b impairs thrombotic functions of platelets. Nat Commun 2021; 12:2286. [PMID: 33863882 PMCID: PMC8052357 DOI: 10.1038/s41467-021-22642-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/23/2021] [Indexed: 11/09/2022] Open
Abstract
We recently discovered that Mfsd2b, which is the S1P exporter found in blood cells. Here, we report that Mfsd2b is critical for the release of all S1P species in both resting and activated platelets. We show that resting platelets store S1P in the cytoplasm. After activation, this S1P pool is delivered to the plasma membrane, where Mfsd2b is predominantly localized for export. Employing knockout mice of Mfsd2b, we reveal that platelets contribute a minor amount of plasma S1P. Nevertheless, Mfsd2b deletion in whole body or platelets impairs platelet morphology and functions. In particular, Mfsd2b knockout mice show significantly reduced thrombus formation. We show that loss of Mfsd2b affects intrinsic platelet functions as part of remarkable sphingolipid accumulation. These findings indicate that accumulation of sphingolipids including S1P by deletion of Mfsd2b strongly impairs platelet functions, which suggests that the transporter may be a target for the prevention of thrombotic disorders.
Collapse
Affiliation(s)
- Madhuvanthi Chandrakanthan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Toan Quoc Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zafrul Hasan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sneha Muralidharan
- Department of Medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thiet Minh Vu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Aaron Wei Liang Li
- Department of Medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Uyen Thanh Nha Le
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hoa Thi Thuy Ha
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sang-Ha Baik
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sock Hwee Tan
- Department of Medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Juat Chin Foo
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Federico Torta
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Wei Yi Ong
- Department of Anatomy, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mark Yan Yee Chan
- Department of Medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore. .,Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Immunology Program Research Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
48
|
Harlé G, Kowalski C, Dubrot J, Brighouse D, Clavel G, Pick R, Bessis N, Niven J, Scheiermann C, Gannagé M, Hugues S. Macroautophagy in lymphatic endothelial cells inhibits T cell-mediated autoimmunity. J Exp Med 2021; 218:212000. [PMID: 33861848 PMCID: PMC8056750 DOI: 10.1084/jem.20201776] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Lymphatic endothelial cells (LECs) present peripheral tissue antigens to induce T cell tolerance. In addition, LECs are the main source of sphingosine-1-phosphate (S1P), promoting naive T cell survival and effector T cell exit from lymph nodes (LNs). Autophagy is a physiological process essential for cellular homeostasis. We investigated whether autophagy in LECs modulates T cell activation in experimental arthritis. Whereas genetic abrogation of autophagy in LECs does not alter immune homeostasis, it induces alterations of the regulatory T cell (T reg cell) population in LNs from arthritic mice, which might be linked to MHCII-mediated antigen presentation by LECs. Furthermore, inflammation-induced autophagy in LECs promotes the degradation of Sphingosine kinase 1 (SphK1), resulting in decreased S1P production. Consequently, in arthritic mice lacking autophagy in LECs, pathogenic Th17 cell migration toward LEC-derived S1P gradients and egress from LNs are enhanced, as well as infiltration of inflamed joints, resulting in exacerbated arthritis. Our results highlight the autophagy pathway as an important regulator of LEC immunomodulatory functions in inflammatory conditions.
Collapse
Affiliation(s)
- Guillaume Harlé
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Camille Kowalski
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Juan Dubrot
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Dale Brighouse
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaëlle Clavel
- Institut National de la Santé et de la Recherche Médicale, UMR 1125, Université Sorbonne Paris Cité, Université Paris, Paris, France
| | - Robert Pick
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Natacha Bessis
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Jennifer Niven
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Christoph Scheiermann
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Monique Gannagé
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
49
|
Goto H, Miyamoto M, Kihara A. Direct uptake of sphingosine-1-phosphate independent of phospholipid phosphatases. J Biol Chem 2021; 296:100605. [PMID: 33785361 PMCID: PMC8093947 DOI: 10.1016/j.jbc.2021.100605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a lipid mediator that is relatively abundant in plasma and plays an important role in the vascular and immune systems. To date, the only known mechanism for removing S1P from plasma has been dephosphorylation by phospholipid phosphatases (PLPPs) on the surface of cells in contact with the plasma. However, there remains a possibility that PLPP-independent dephosphorylation or direct S1P uptake into cells could occur. To examine these possibilities, here we generated triple KO (TKO) HAP1 cells that lacked all PLPPs (PLPP1–3) present in mammals. In the TKO cells, the intracellular metabolism of externally added deuterium-labeled S1P to ceramide was reduced to 17% compared with the WT cells, indicating that most extracellular S1P is dephosphorylated by PLPPs and then taken up into cells. However, this result also reveals the existence of a PLPP-independent S1P uptake pathway. Tracer experiments using [32P]S1P showed the existence of a direct S1P uptake pathway that functions without prior dephosphorylation. Overexpression of sphingolipid transporter 2 (SPNS2) or of major facilitator superfamily domain containing 2B (MFSD2B), both known S1P efflux transporters, in TKO cells increased the direct uptake of S1P, whereas KO of MFSD2B in TKO cells reduced this uptake. These results suggest that these are channel-type transporters and capable of not only exporting but also importing S1P. Furthermore, we observed that erythroid cells expressing MFSD2B, exhibited high S1P uptake activity. Our findings describing direct S1P uptake may contribute to the elucidation of the molecular mechanisms that regulate plasma S1P concentration.
Collapse
Affiliation(s)
- Hirotaka Goto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
50
|
Wigger D, Schumacher F, Schneider-Schaulies S, Kleuser B. Sphingosine 1-phosphate metabolism and insulin signaling. Cell Signal 2021; 82:109959. [PMID: 33631318 DOI: 10.1016/j.cellsig.2021.109959] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022]
Abstract
Insulin is the main anabolic hormone secreted by β-cells of the pancreas stimulating the assimilation and storage of glucose in muscle and fat cells. It modulates the postprandial balance of carbohydrates, lipids and proteins via enhancing lipogenesis, glycogen and protein synthesis and suppressing glucose generation and its release from the liver. Resistance to insulin is a severe metabolic disorder related to a diminished response of peripheral tissues to the insulin action and signaling. This leads to a disturbed glucose homeostasis that precedes the onset of type 2 diabetes (T2D), a disease reaching epidemic proportions. A large number of studies reported an association between elevated circulating fatty acids and the development of insulin resistance. The increased fatty acid lipid flux results in the accumulation of lipid droplets in a variety of tissues. However, lipid intermediates such as diacylglycerols and ceramides are also formed in response to elevated fatty acid levels. These bioactive lipids have been associated with the pathogenesis of insulin resistance. More recently, sphingosine 1-phosphate (S1P), another bioactive sphingolipid derivative, has also been shown to increase in T2D and obesity. Although many studies propose a protective role of S1P metabolism on insulin signaling in peripheral tissues, other studies suggest a causal role of S1P on insulin resistance. In this review, we critically summarize the current state of knowledge of S1P metabolism and its modulating role on insulin resistance. A particular emphasis is placed on S1P and insulin signaling in hepatocytes, skeletal muscle cells, adipocytes and pancreatic β-cells. In particular, modulation of receptors and enzymes that regulate S1P metabolism can be considered as a new therapeutic option for the treatment of insulin resistance and T2D.
Collapse
Affiliation(s)
- Dominik Wigger
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany; Institute of Nutritional Science, Nutritional Toxicology, University of Potsdam, Nuthetal, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany; Institute of Nutritional Science, Nutritional Toxicology, University of Potsdam, Nuthetal, Germany
| | | | - Burkhard Kleuser
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany; Institute of Nutritional Science, Nutritional Toxicology, University of Potsdam, Nuthetal, Germany.
| |
Collapse
|