1
|
Verma DK, Chaudhary S, Sunil S. Investigation of endocytic pathways during entry of RNA viruses reveal novel host proteins as lipid raft dependent endocytosis mediators. Virology 2025; 608:110531. [PMID: 40262431 DOI: 10.1016/j.virol.2025.110531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
Entry of viruses inside host cell after successful attachment is an essential step to ensure its genome replication and progeny production using host cell machinery. Targeting viral entry has been proven an effective therapeutic approach to prevent or treat viral infections. Viruses exploit different operational ligand entry routes to gain entry inside the host cell. Host membrane rafts are crucial for membrane mediated events such as ligand binding and internalization, signaling and pathogen entry. However, those host proteins involved in this phenomenon and molecular mechanism of this mode of endocytosis has not yet been elucidated. In present study, we investigated raft-dependent endocytosis as a major route for host cell entry for three different enveloped viruses viz. SARS-CoV-2, DENV and CHIKV. Subsequently, we performed quantitative global proteomics of SARS-CoV-2 infected Vero cells at the time of virus entry and during peak viral infection and compared proteomic changes with uninfected control. Subsequently, we implemented pathway enrichment of differentially regulated host proteins and identified regulated cellular pathways during different stages of infection. Finally, we investigated the role of selected proteins identified as significantly regulated through proteome analysis along with some of those proteins previously reported to be involved in any mode of endocytosis, in the raft-dependent endocytosis using inhibitor assay and further validated their role in viral entry through loss-of-function assays. Our results confirm that enveloped viruses exploit the raft-dependent endocytosis as a major route for host cell entry. We further report novel host cell proteins that participate as mediators of raft-dependent endocytosis.
Collapse
Affiliation(s)
- Dileep Kumar Verma
- Vector-Borne Disease Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sakshi Chaudhary
- Vector-Borne Disease Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sujatha Sunil
- Vector-Borne Disease Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
| |
Collapse
|
2
|
Badralmaa Y, Natarajan V. Aberrant Wnt/β-catenin signaling in the mesenchymal stem cells of LZTFL1-depleted mice leads to increased adipogenesis, with implications for obesity. J Biol Chem 2025; 301:108057. [PMID: 39662832 PMCID: PMC11770550 DOI: 10.1016/j.jbc.2024.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Obesity is one of the main clinical characteristics associated with the heterogeneous genetic disorder Bardet-Biedl syndrome (BBS). Leucine zipper transcription factor like 1 (LZTFL1) is a member of the BBS gene family. Our work showed that Lztfl1knockout (LZKO) mice display the obesity phenotype as early as 3 months of age. Mesenchymal stem cells (MSCs) are multipotent stem cells that can differentiate into various cell types, including adipocytes. To understand the role of LZTFL1 in adipogenesis, we analyzed MSCs isolated from LZKO mouse compact bones (CB-MSCs). Compared to wildtype (WT), LZKO CB-MSCs had elongated primary cilia with tapered tips and increased levels of peroxisome proliferator-activated receptor γ (PPARγ), a key transcription factor that favors adipogenesis, and nuclear glucocorticoid receptor (GR), a transcription factor involved in Pparg activation. Also, LZKO CB-MSCs had a lower level of total β-catenin, a core factor of the antiadipogenic canonical Wnt/b-catenin signaling pathway involved in limiting the nuclear localization of GR. Interaction between caveolin1 (CAV1) and LRP6, the main receptor for canonical Wnt signaling, is known to be critical for Wnt pathway activation and β-catenin stabilization. Compared to WT cells, LZKO cells had elevated total, cell-surface, and lipid-raft-associated LRP6 and reduced CAV1, strongly indicating alterations in the components of the Wnt-signaling pathway. We show that in the absence of LZTFL1, adipogenesis-restraining Wnt/β-catenin signaling is inhibited, and adipogenesis-favorable factors are stimulated in CB-MSCs, leading to enhanced adipogenesis. Evidence provided here could help in understanding the mechanism and molecular basis of obesity in LZTFL1-defective patients.
Collapse
Affiliation(s)
- Yunden Badralmaa
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ven Natarajan
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
| |
Collapse
|
3
|
Jayathirtha M, Jayaweera T, Whitham D, Sullivan I, Petre BA, Darie CC, Neagu AN. Two-Dimensional-PAGE Coupled with nLC-MS/MS-Based Identification of Differentially Expressed Proteins and Tumorigenic Pathways in MCF7 Breast Cancer Cells Transfected for JTB Protein Silencing. Molecules 2023; 28:7501. [PMID: 38005222 PMCID: PMC10673289 DOI: 10.3390/molecules28227501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The identification of new cancer-associated genes/proteins, the characterization of their expression variation, the interactomics-based assessment of differentially expressed genes/proteins (DEGs/DEPs), and understanding the tumorigenic pathways and biological processes involved in BC genesis and progression are necessary and possible by the rapid and recent advances in bioinformatics and molecular profiling strategies. Taking into account the opinion of other authors, as well as based on our own team's in vitro studies, we suggest that the human jumping translocation breakpoint (hJTB) protein might be considered as a tumor biomarker for BC and should be studied as a target for BC therapy. In this study, we identify DEPs, carcinogenic pathways, and biological processes associated with JTB silencing, using 2D-PAGE coupled with nano-liquid chromatography tandem mass spectrometry (nLC-MS/MS) proteomics applied to a MCF7 breast cancer cell line, for complementing and completing our previous results based on SDS-PAGE, as well as in-solution proteomics of MCF7 cells transfected for JTB downregulation. The functions of significant DEPs are analyzed using GSEA and KEGG analyses. Almost all DEPs exert pro-tumorigenic effects in the JTBlow condition, sustaining the tumor suppressive function of JTB. Thus, the identified DEPs are involved in several signaling and metabolic pathways that play pro-tumorigenic roles: EMT, ERK/MAPK, PI3K/AKT, Wnt/β-catenin, mTOR, C-MYC, NF-κB, IFN-γ and IFN-α responses, UPR, and glycolysis/gluconeogenesis. These pathways sustain cancer cell growth, adhesion, survival, proliferation, invasion, metastasis, resistance to apoptosis, tight junctions and cytoskeleton reorganization, the maintenance of stemness, metabolic reprogramming, survival in a hostile environment, and sustain a poor clinical outcome. In conclusion, JTB silencing might increase the neoplastic phenotype and behavior of the MCF7 BC cell line. The data is available via ProteomeXchange with the identifier PXD046265.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Taniya Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Isabelle Sullivan
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Brîndușa Alina Petre
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 11, 700506 Iasi, Romania
- Center for Fundamental Research and Experimental Development in Translation Medicine–TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Bvd. No. 22, 700505 Iasi, Romania
| |
Collapse
|
4
|
Aljiboury AA, Ingram E, Krishnan N, Ononiwu F, Pal D, Manikas J, Taveras C, Hall NA, Da Silva J, Freshour J, Hehnly H. Rab8, Rab11, and Rab35 coordinate lumen and cilia formation during zebrafish left-right organizer development. PLoS Genet 2023; 19:e1010765. [PMID: 37186603 PMCID: PMC10212091 DOI: 10.1371/journal.pgen.1010765] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/25/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
An essential process during Danio rerio's left-right organizer (Kupffer's Vesicle, KV) formation is the formation of a motile cilium by developing KV cells which extends into the KV lumen. Beating of motile cilia within the KV lumen directs fluid flow to establish the embryo's left-right axis. However, the timepoint at which KV cells start to form cilia and how cilia formation is coordinated with KV lumen formation have not been examined. We identified that nascent KV cells form cilia at their centrosomes at random intracellular positions that then move towards a forming apical membrane containing cystic fibrosis transmembrane conductance regulator (CFTR). Using optogenetic clustering approaches, we found that Rab35 positive membranes recruit Rab11 to modulate CFTR delivery to the apical membrane, which is required for lumen opening, and subsequent cilia extension into the lumen. Once the intracellular cilia reach the CFTR positive apical membrane, Arl13b-positive cilia extend and elongate in a Rab8 dependent manner into the forming lumen once the lumen reaches an area of 300 μm2. These studies demonstrate the need to acutely coordinate Rab8, Rab11, and Rab35-mediated membrane trafficking events to ensure appropriate timing in lumen and cilia formation during KV development.
Collapse
Affiliation(s)
- Abrar A. Aljiboury
- Biology Department, Syracuse University, Syracuse, New York, United States of America
- BioInspired Institute, Syracuse University, Syracuse, New York, United States of America
| | - Eric Ingram
- Biology Department, Syracuse University, Syracuse, New York, United States of America
- BioInspired Institute, Syracuse University, Syracuse, New York, United States of America
| | - Nikhila Krishnan
- Biology Department, Syracuse University, Syracuse, New York, United States of America
- BioInspired Institute, Syracuse University, Syracuse, New York, United States of America
| | - Favour Ononiwu
- Biology Department, Syracuse University, Syracuse, New York, United States of America
- BioInspired Institute, Syracuse University, Syracuse, New York, United States of America
| | - Debadrita Pal
- Biology Department, Syracuse University, Syracuse, New York, United States of America
- BioInspired Institute, Syracuse University, Syracuse, New York, United States of America
| | - Julie Manikas
- Biology Department, Syracuse University, Syracuse, New York, United States of America
| | - Christopher Taveras
- Biology Department, Syracuse University, Syracuse, New York, United States of America
| | - Nicole A. Hall
- Biology Department, Syracuse University, Syracuse, New York, United States of America
| | - Jonah Da Silva
- Biology Department, Syracuse University, Syracuse, New York, United States of America
| | - Judy Freshour
- Biology Department, Syracuse University, Syracuse, New York, United States of America
| | - Heidi Hehnly
- Biology Department, Syracuse University, Syracuse, New York, United States of America
- BioInspired Institute, Syracuse University, Syracuse, New York, United States of America
| |
Collapse
|
5
|
Shockley KR, Dunnick JK. Gene expression profiling after exposure to a chemical carcinogen, Pentabrominated Diphenyl Ether, at different life stages. FRONTIERS IN TOXICOLOGY 2023; 4:1028309. [PMID: 36687508 PMCID: PMC9847571 DOI: 10.3389/ftox.2022.1028309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Exposure to environmental hazards occurs at different stages of our lifetime-infant, child, adult. This study integrates recently published toxicogenomics data to examine how exposure to a known rat chemical carcinogen (pentabrominated diphenyl ether (PBDE)) upregulated liver transcriptomic changes at different life cycle stages (PND 4, PND 22, adult). We found that at all three life cycle stages PBDE exposure induced hepatocellular transcriptomic changes in disease pathways including cancer, metabolic, membrane function, and Nrf2 antioxidant pathways, pathways all characteristics of chemical carcinogens. In addition, in the adult rat after a 5-day exposure to the chemical carcinogen, there was upregulation of members of the Ras oncogenic pathway, a specific pathway found to be activated in the PBDE-induced tumors in rats in a previous hazard identification cancer study. The findings of liver transcript changes characteristic of carcinogenic activity after early life exposures and after short-term adult exposures provides data to support the use of transcriptomic data to predict the apical cancer endpoints in model studies. Using data from gene expression profiling studies after neonatal, young, or adult short-term chemical exposure helps to meet the 21st century toxicology goal of developing study designs to reduce, refine, and replace the use of traditional 2-year rodent cancer studies to provide hazard identification information. The studies reported here find that key transcripts associated with carcinogenesis were elevated in neonate (PND 4), young (PND 22) and adult animals after short-term exposure to PBDE, a known experimental chemical carcinogen in model systems.
Collapse
Affiliation(s)
- Keith R. Shockley
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - June K. Dunnick
- Systems Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| |
Collapse
|
6
|
Imkeller K, Ambrosi G, Klemm N, Claveras Cabezudo A, Henkel L, Huber W, Boutros M. Metabolic balance in colorectal cancer is maintained by optimal Wnt signaling levels. Mol Syst Biol 2022; 18:e10874. [PMID: 35904277 PMCID: PMC9336172 DOI: 10.15252/msb.202110874] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Wnt pathways are important for the modulation of tissue homeostasis, and their deregulation is linked to cancer development. Canonical Wnt signaling is hyperactivated in many human colorectal cancers due to genetic alterations of the negative Wnt regulator APC. However, the expression levels of Wnt-dependent targets vary between tumors, and the mechanisms of carcinogenesis concomitant with this Wnt signaling dosage have not been understood. In this study, we integrate whole-genome CRISPR/Cas9 screens with large-scale multi-omic data to delineate functional subtypes of cancer. We engineer APC loss-of-function mutations and thereby hyperactivate Wnt signaling in cells with low endogenous Wnt activity and find that the resulting engineered cells have an unfavorable metabolic equilibrium compared with cells which naturally acquired Wnt hyperactivation. We show that the dosage level of oncogenic Wnt hyperactivation impacts the metabolic equilibrium and the mitochondrial phenotype of a given cell type in a context-dependent manner. These findings illustrate the impact of context-dependent genetic interactions on cellular phenotypes of a central cancer driver mutation and expand our understanding of quantitative modulation of oncogenic signaling in tumorigenesis.
Collapse
Affiliation(s)
- Katharina Imkeller
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Heidelberg, Germany.,European Molecular Biology Laboratory, Heidelberg, Germany
| | - Giulia Ambrosi
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Heidelberg, Germany
| | - Nancy Klemm
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Heidelberg, Germany.,Brandenburg University of Technology, Cottbus-Senftenberg, Germany
| | - Ainara Claveras Cabezudo
- European Molecular Biology Laboratory, Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Luisa Henkel
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Heidelberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Ye Z, Meng Q, Zhang W, He J, Zhao H, Yu C, Liang W, Li X, Wang H. Exploration of the Shared Gene and Molecular Mechanisms Between Endometriosis and Recurrent Pregnancy Loss. Front Vet Sci 2022; 9:867405. [PMID: 35601407 PMCID: PMC9120926 DOI: 10.3389/fvets.2022.867405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Endometriosis (EMs) is a common benign gynecological disease in women of childbearing age, which usually causes pelvic pain, secondary dysmenorrhea, and infertility. EMs has been linked to recurrent pregnancy loss (RPL) in epidemiological data. The relationship of both, however, remains unknown. The purpose of this study is to explore the underlying pathological mechanisms between EMs and RPL. We searched Gene Expression Omnibus (GEO) database to obtain omics data of EMs and RPL. Co-expression modules for EMs and RPL were investigated by using weighted gene co-expression network analysis (WGCNA). The intersections of gene modules with the strong correlation to EMs or RPL obtained by WGCNA analysis were considered as shared genes. MicroRNAs (miRNAs) and their corresponding target genes linked to EMs and RPL were found though the Human MicroRNA Disease Database (HMDD) and the miRTarbase database. Finally, we constructed miRNAs-mRNAs regulatory networks associated with the two disorders by using the intersection of previously obtained target genes and shared genes. We discovered as significant modules for EMs and RPL, respectively, by WGCNA. The energy metabolism might be the common pathogenic mechanism of EMs and RPL, according to the findings of a Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. We discovered several target genes that might be linked to these two disorders, as well as the potential mechanisms. RAB8B, GNAQ, H2AFZ, SUGT1, and LEO1 could be therapeutic candidates for RPL and EMs. The PI3K-Akt signaling pathway and platelet activation were potentially involved in the mechanisms of EM-induced RPL. Our findings for the first time revealed the underlying pathological mechanisms of EM-induced RPL and identified several useful biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Zhuang Ye
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, China
| | - Qingxue Meng
- Department of Pediatrics, Shenzhen University General Hospital, Shenzhen, China
| | - Weiwen Zhang
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
| | - Junli He
- Department of Pediatrics, Shenzhen University General Hospital, Shenzhen, China
| | - Huanyi Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengwei Yu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Chengwei Yu
| | - Weizheng Liang
- Department of Pediatrics, Shenzhen University General Hospital, Shenzhen, China
- Weizheng Liang
| | - Xiushen Li
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, China
- Xiushen Li
| | - Hao Wang
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, China
- Hao Wang
| |
Collapse
|
8
|
Patel A, Perl A. Redox Control of Integrin-Mediated Hepatic Inflammation in Systemic Autoimmunity. Antioxid Redox Signal 2022; 36:367-388. [PMID: 34036799 PMCID: PMC8982133 DOI: 10.1089/ars.2021.0068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
Significance: Systemic autoimmunity affects 3%-5% of the population worldwide. Systemic lupus erythematosus (SLE) is a prototypical form of such condition, which affects 20-150 of 100,000 people globally. Liver dysfunction, defined by increased immune cell infiltration into the hepatic parenchyma, is an understudied manifestation that affects up to 20% of SLE patients. Autoimmunity in SLE involves proinflammatory lineage specification in the immune system that occurs with oxidative stress and profound changes in cellular metabolism. As the primary metabolic organ of the body, the liver is uniquely capable to encounter oxidative stress through first-pass derivatization and filtering of waste products. Recent Advances: The traffic of immune cells from their development through recirculation in the liver is guided by cell adhesion molecules (CAMs) and integrins, cell surface proteins that tightly anchor cells together. The surface expression of CAMs and integrins is regulated via endocytic traffic that is sensitive to oxidative stress. Reactive oxygen species (ROS) that elicit oxidative stress in the liver may originate from the mitochondria, the cytosol, or the cell membrane. Critical Issues: While hepatic ROS production is a source of vulnerability, it also modulates the development and function of the immune system. In turn, the liver employs antioxidant defense mechanisms to protect itself from damage that can be harnessed to serve as therapeutic mechanisms against autoimmunity, inflammation, and development of hepatocellular carcinoma. Future Directions: This review is aimed at delineating redox control of integrin signaling in the liver and checkpoints of regulatory impact that can be targeted for treatment of inflammation in systemic autoimmunity. Antioxid. Redox Signal. 36, 367-388.
Collapse
Affiliation(s)
- Akshay Patel
- Division of Rheumatology, Department of Medicine, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Microbiology and Immunology, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Andras Perl
- Division of Rheumatology, Department of Medicine, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Microbiology and Immunology, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
9
|
Ambrosi G, Voloshanenko O, Eckert AF, Kranz D, Nienhaus GU, Boutros M. Allele-specific endogenous tagging and quantitative analysis of β-catenin in colorectal cancer cells. eLife 2022; 11:64498. [PMID: 35014953 PMCID: PMC8752093 DOI: 10.7554/elife.64498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Wnt signaling plays important roles in development, homeostasis, and tumorigenesis. Mutations in β-catenin that activate Wnt signaling have been found in colorectal and hepatocellular carcinomas. However, the dynamics of wild-type and mutant forms of β-catenin are not fully understood. Here, we genome-engineered fluorescently tagged alleles of endogenous β-catenin in a colorectal cancer cell line. Wild-type and oncogenic mutant alleles were tagged with different fluorescent proteins, enabling the analysis of both variants in the same cell. We analyzed the properties of both β-catenin alleles using immunoprecipitation, immunofluorescence, and fluorescence correlation spectroscopy approaches, revealing distinctly different biophysical properties. In addition, activation of Wnt signaling by treatment with a GSK3β inhibitor or a truncating APC mutation modulated the wild-type allele to mimic the properties of the mutant β-catenin allele. The one-step tagging strategy demonstrates how genome engineering can be employed for the parallel functional analysis of different genetic variants.
Collapse
Affiliation(s)
- Giulia Ambrosi
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, BioQuant and Medical Faculty Mannheim, Heidelberg, Germany
| | - Oksana Voloshanenko
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, BioQuant and Medical Faculty Mannheim, Heidelberg, Germany
| | - Antonia F Eckert
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dominique Kranz
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, BioQuant and Medical Faculty Mannheim, Heidelberg, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, BioQuant and Medical Faculty Mannheim, Heidelberg, Germany
| |
Collapse
|
10
|
Jeong W, Jho EH. Regulation of the Low-Density Lipoprotein Receptor-Related Protein LRP6 and Its Association With Disease: Wnt/β-Catenin Signaling and Beyond. Front Cell Dev Biol 2021; 9:714330. [PMID: 34589484 PMCID: PMC8473786 DOI: 10.3389/fcell.2021.714330] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Wnt signaling plays crucial roles in development and tissue homeostasis, and its dysregulation leads to various diseases, notably cancer. Wnt/β-catenin signaling is initiated when the glycoprotein Wnt binds to and forms a ternary complex with the Frizzled and low-density lipoprotein receptor-related protein 5/6 (LRP5/6). Despite being identified as a Wnt co-receptor over 20 years ago, the molecular mechanisms governing how LRP6 senses Wnt and transduces downstream signaling cascades are still being deciphered. Due to its role as one of the main Wnt signaling components, the dysregulation or mutation of LRP6 is implicated in several diseases such as cancer, neurodegeneration, metabolic syndrome and skeletal disease. Herein, we will review how LRP6 is activated by Wnt stimulation and explore the various regulatory mechanisms involved. The participation of LRP6 in other signaling pathways will also be discussed. Finally, the relationship between LRP6 dysregulation and disease will be examined in detail.
Collapse
Affiliation(s)
- Wonyoung Jeong
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, South Korea
| |
Collapse
|
11
|
Wu MH, Padilla-Rodriguez M, Blum I, Camenisch A, Figliuolo da Paz V, Ollerton M, Muller J, Momtaz S, Mitchell SAT, Kiela P, Thorne C, Wilson JM, Cox CM. Proliferation in the developing intestine is regulated by the endosomal protein Endotubin. Dev Biol 2021; 480:50-61. [PMID: 34411593 DOI: 10.1016/j.ydbio.2021.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/05/2021] [Accepted: 08/14/2021] [Indexed: 11/19/2022]
Abstract
During postnatal intestinal development, the intestinal epithelium is highly proliferative, and this proliferation is regulated by signaling in the intervillous and crypt regions. This signaling is primarily mediated by Wnt, and requires membrane trafficking. However, the mechanisms by which membrane trafficking regulates signaling during this developmental phase are largely unknown. Endotubin (EDTB, MAMDC4) is an endosomal protein that is highly expressed in the apical endocytic complex (AEC) of villus enterocytes during fetal and postnatal development, and knockout of EDTB results in defective formation of the AEC and giant lysosome. Further, knockout of EDTB in cell lines results in decreased proliferation. However, the role of EDTB in proliferation during the development of the intestine is unknown. Using Villin-CreERT2 in EDTBfl/fl mice, we deleted EDTB in the intestine in the early postnatal period, or in enteroids in vitro after isolation of intervillous cells. Loss of EDTB results in decreased proliferation in the developing intestinal epithelium and decreased ability to form enteroids. EDTB is present in cells that contain the stem cell markers LGR5 and OLFM4, indicating that it is expressed in the proliferative compartment. Further, using immunoblot analysis and TCF/LEF-GFP mice as a reporter of Wnt activity, we find that knockout of EDTB results in decreased Wnt signaling. Our results show that EDTB is essential for normal proliferation during the early stages of intestinal development and suggest that this effect is through modulation of Wnt signaling.
Collapse
Affiliation(s)
- Meng-Han Wu
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| | | | - Isabella Blum
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| | - Abigail Camenisch
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| | | | | | - John Muller
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| | - Samina Momtaz
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| | - Stefanie A T Mitchell
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| | - Pawel Kiela
- Departments of Pediatrics and Immunobiology, University of Arizona, Tucson, AZ, USA; Steele Children's Research Center, University of Arizona, Tucson, AZ, USA.
| | - Curtis Thorne
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA; Bio5 Institute, University of Arizona, Tucson, AZ, USA; Steele Children's Research Center, University of Arizona, Tucson, AZ, USA.
| | - Jean M Wilson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA; Bio5 Institute, University of Arizona, Tucson, AZ, USA.
| | - Christopher M Cox
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
12
|
Lauri A, Fasano G, Venditti M, Dallapiccola B, Tartaglia M. In vivo Functional Genomics for Undiagnosed Patients: The Impact of Small GTPases Signaling Dysregulation at Pan-Embryo Developmental Scale. Front Cell Dev Biol 2021; 9:642235. [PMID: 34124035 PMCID: PMC8194860 DOI: 10.3389/fcell.2021.642235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/12/2021] [Indexed: 12/24/2022] Open
Abstract
While individually rare, disorders affecting development collectively represent a substantial clinical, psychological, and socioeconomic burden to patients, families, and society. Insights into the molecular mechanisms underlying these disorders are required to speed up diagnosis, improve counseling, and optimize management toward targeted therapies. Genome sequencing is now unveiling previously unexplored genetic variations in undiagnosed patients, which require functional validation and mechanistic understanding, particularly when dealing with novel nosologic entities. Functional perturbations of key regulators acting on signals' intersections of evolutionarily conserved pathways in these pathological conditions hinder the fine balance between various developmental inputs governing morphogenesis and homeostasis. However, the distinct mechanisms by which these hubs orchestrate pathways to ensure the developmental coordinates are poorly understood. Integrative functional genomics implementing quantitative in vivo models of embryogenesis with subcellular precision in whole organisms contribute to answering these questions. Here, we review the current knowledge on genes and mechanisms critically involved in developmental syndromes and pediatric cancers, revealed by genomic sequencing and in vivo models such as insects, worms and fish. We focus on the monomeric GTPases of the RAS superfamily and their influence on crucial developmental signals and processes. We next discuss the effectiveness of exponentially growing functional assays employing tractable models to identify regulatory crossroads. Unprecedented sophistications are now possible in zebrafish, i.e., genome editing with single-nucleotide precision, nanoimaging, highly resolved recording of multiple small molecules activity, and simultaneous monitoring of brain circuits and complex behavioral response. These assets permit accurate real-time reporting of dynamic small GTPases-controlled processes in entire organisms, owning the potential to tackle rare disease mechanisms.
Collapse
Affiliation(s)
- Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | | | | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
13
|
Colozza G, Koo BK. Wnt/β-catenin signaling: Structure, assembly and endocytosis of the signalosome. Dev Growth Differ 2021; 63:199-218. [PMID: 33619734 PMCID: PMC8251975 DOI: 10.1111/dgd.12718] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Wnt/β‐catenin signaling is an ancient pathway that regulates key aspects of embryonic development, cell differentiation, proliferation, and adult stem cell homeostasis. Work from different laboratories has shed light on the molecular mechanisms underlying the Wnt pathway, including structural details of ligand–receptor interactions. One key aspect that has emerged from multiple studies is that endocytosis of the receptor complex plays a crucial role in fine‐tuning Wnt/β‐catenin signaling. Endocytosis is a key process involved in both activation as well as attenuation of Wnt signaling, but how this is regulated is still poorly understood. Importantly, recent findings show that Wnt also regulates central metabolic pathways such as the acquisition of nutrients through actin‐driven endocytic mechanisms. In this review, we propose that the Wnt pathway displays diverse characteristics that go beyond the regulation of gene expression, through a connection with the endocytic machinery.
Collapse
Affiliation(s)
- Gabriele Colozza
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
14
|
Efimova N, Yang C, Chia JX, Li N, Lengner CJ, Neufeld KL, Svitkina TM. Branched actin networks are assembled on microtubules by adenomatous polyposis coli for targeted membrane protrusion. J Cell Biol 2021; 219:151902. [PMID: 32597939 PMCID: PMC7480092 DOI: 10.1083/jcb.202003091] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/26/2022] Open
Abstract
Cell migration is driven by pushing and pulling activities of the actin cytoskeleton, but migration directionality is largely controlled by microtubules. This function of microtubules is especially critical for neuron navigation. However, the underlying mechanisms are poorly understood. Here we show that branched actin filament networks, the main pushing machinery in cells, grow directly from microtubule tips toward the leading edge in growth cones of hippocampal neurons. Adenomatous polyposis coli (APC), a protein with both tumor suppressor and cytoskeletal functions, concentrates at the microtubule-branched network interface, whereas APC knockdown nearly eliminates branched actin in growth cones and prevents growth cone recovery after repellent-induced collapse. Conversely, encounters of dynamic APC-positive microtubule tips with the cell edge induce local actin-rich protrusions. Together, we reveal a novel mechanism of cell navigation involving APC-dependent assembly of branched actin networks on microtubule tips.
Collapse
Affiliation(s)
- Nadia Efimova
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Changsong Yang
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Jonathan X Chia
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Ning Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Cell and Developmental Biology, Perelman School of Medicine and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kristi L Neufeld
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Tatyana M Svitkina
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
15
|
Ji P, Chang J, Wei X, Song X, Yuan H, Gong L, Li Y, Ding D, Zhang E, Yan C, Zhu M, Miao X, Wu C, Jin G, Hu Z, Shen H, Ma H. Genetic variants associated with expression of TCF19 contribute to the risk of head and neck cancer in Chinese population. J Med Genet 2021; 59:335-345. [PMID: 34085947 DOI: 10.1136/jmedgenet-2020-107410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/08/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Squamous cell carcinoma of the head and neck (SCCHN) is one of the most common cancers worldwide and includes cancers arising from the oral cavity, pharynx and larynx. Genome-wide association studies have found several genetic variants related to the risk of SCCHN; however, they could only explain a small fraction of the heritability. Thus, more susceptibility loci associated with SCCHN need to be identified. METHODS An association study was conducted by genotyping 555 patients with SCCHN and 1367 controls in a Chinese population. Single-variant association analysis was conducted on 63 373 SNPs, and the promising variants were then confirmed by a two-stage validation with 1875 SCCHN cases and 4637 controls. Bioinformatics analysis and functional assays were applied to uncover the potential pathogenic mechanism of the promising variants and genes associated with SCCHN. RESULTS We first identified three novel genetic variants significantly associated with the risk of SCCHN (p=7.45×10-7 for rs2517611 at 6p22.1, p=1.76×10-9 for rs2524182 at 6p21.33 and p=2.17×10-10 for rs3131018 at 6p21.33). Further analysis and biochemical assays showed that rs3094187, which was in a region in high linkage disequilibrium with rs3131018, could modify TCF19 expression by regulating the binding affinity of the transcription factor SREBF1 to the promoter of TCF19. In addition, experiments revealed that the inhibition of TCF19 may affect several important pathways involved in tumourigenesis and attenuate the cell proliferation and migration of SCCHN. CONCLUSION These findings offer important evidence that functional genetic variants could contribute to development of SCCHN and that TCF19 may function as a putative susceptibility gene for SCCHN.
Collapse
Affiliation(s)
- Pei Ji
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xiaoyu Wei
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Xueyao Song
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Linnan Gong
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Yuancheng Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Dongsheng Ding
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Schiweck J, Murk K, Ledderose J, Münster-Wandowski A, Ornaghi M, Vida I, Eickholt BJ. Drebrin controls scar formation and astrocyte reactivity upon traumatic brain injury by regulating membrane trafficking. Nat Commun 2021; 12:1490. [PMID: 33674568 PMCID: PMC7935889 DOI: 10.1038/s41467-021-21662-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
The brain of mammals lacks a significant ability to regenerate neurons and is thus particularly vulnerable. To protect the brain from injury and disease, damage control by astrocytes through astrogliosis and scar formation is vital. Here, we show that brain injury in mice triggers an immediate upregulation of the actin-binding protein Drebrin (DBN) in astrocytes, which is essential for scar formation and maintenance of astrocyte reactivity. In turn, DBN loss leads to defective astrocyte scar formation and excessive neurodegeneration following brain injuries. At the cellular level, we show that DBN switches actin homeostasis from ARP2/3-dependent arrays to microtubule-compatible scaffolds, facilitating the formation of RAB8-positive membrane tubules. This injury-specific RAB8 membrane compartment serves as hub for the trafficking of surface proteins involved in astrogliosis and adhesion mediators, such as β1-integrin. Our work shows that DBN-mediated membrane trafficking in astrocytes is an important neuroprotective mechanism following traumatic brain injury in mice.
Collapse
Affiliation(s)
- Juliane Schiweck
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kai Murk
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Ledderose
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Marta Ornaghi
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Imre Vida
- grid.6363.00000 0001 2218 4662Institute of Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta J. Eickholt
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany ,grid.6363.00000 0001 2218 4662NeuroCure - Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Stypulkowski E, Feng Q, Joseph I, Farrell V, Flores J, Yu S, Sakamori R, Sun J, Bandyopadhyay S, Das S, Dobrowolski R, Bonder EM, Chen MH, Gao N. Rab8 attenuates Wnt signaling and is required for mesenchymal differentiation into adipocytes. J Biol Chem 2021; 296:100488. [PMID: 33662399 PMCID: PMC8042397 DOI: 10.1016/j.jbc.2021.100488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Differentiation of mesenchymal stem cells into adipocyte requires coordination of external stimuli and depends upon the functionality of the primary cilium. The Rab8 small GTPases are regulators of intracellular transport of membrane-bound structural and signaling cargo. However, the physiological contribution of the intrinsic trafficking network controlled by Rab8 to mesenchymal tissue differentiation has not been fully defined in vivo and in primary tissue cultures. Here, we show that mouse embryonic fibroblasts (MEFs) lacking Rab8 have severely impaired adipocyte differentiation in vivo and ex vivo. Immunofluorescent localization and biochemical analyses of Rab8a-deficient, Rab8b-deficient, and Rab8a and Rab8b double-deficient MEFs revealed that Rab8 controls the Lrp6 vesicular compartment, clearance of basal signalosome, traffic of frizzled two receptor, and thereby a proper attenuation of Wnt signaling in differentiating MEFs. Upon induction of adipogenesis program, Rab8a- and Rab8b-deficient MEFs exhibited severely defective lipid-droplet formation and abnormal cilia morphology, despite overall intact cilia growth and ciliary cargo transport. Our results suggest that intracellular Rab8 traffic regulates induction of adipogenesis via proper positioning of Wnt receptors for signaling control in mesenchymal cells.
Collapse
Affiliation(s)
- Ewa Stypulkowski
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Qiang Feng
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Ivor Joseph
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Victoria Farrell
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Juan Flores
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Shiyan Yu
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Ryotaro Sakamori
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Jiaxin Sun
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | - Soumyashree Das
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Radek Dobrowolski
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Miao-Hsueh Chen
- Department of Pediatrics, Baylor College of Medicine, Children's Nutrition Research Center, Houston, Texas, USA.
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
| |
Collapse
|
18
|
Abstract
The WNT/β-catenin signalling pathway is a rich and complex network of cellular proteins that orchestrates diverse short-range cell-to-cell communication in metazoans and is essential for both embryonic development and adult homeostasis. Due to its fundamental importance in controlling cell behaviour at multiple levels, its deregulation is associated with a wide range of diseases in humans and identification of drugs targeting the pathway has attracted strong interest in the pharmaceutical sector. Transduction of WNT signals across the plasma membrane of cells involves a staggering degree of complexity and variety with respect to ligand-receptor, receptor-receptor and receptor-co-receptor interactions (Niehrs, Nat Rev Mol Cell Biol 13:767-779, 2012). Although the low-density-lipoprotein-receptor-related-protein (LRP) family is best known for its role in binding and endocytosis of lipoproteins, specific members appear to have additional roles in cellular communication. Indeed, for WNT/β-catenin signalling one apparently universal requirement is the presence of either LRP5 or LRP6 in combination with one of the ten Frizzled (FZD) WNT receptors (FZD1-10). In the 20 years since their discovery as WNT/FZD co-receptors, research on the LRP family has contributed greatly to our understanding of WNT signalling and LRPs have emerged as central players in WNT/β-catenin signalling. LRP5/6 are highly similar and represent the least redundant class of WNT receptor that transduce WNT/β-catenin signalling from a wide range of different WNT and FZD subtypes. This apparent simplicity however belies the complex arrangement of binding sites in the extracellular domain (ECD) of LRP5/6, which regulate interaction not only with WNTs but also with several inhibitors of WNT signalling. This chapter provides a historical overview, chronologically charting this remarkable progress in the field during the last 20 years of research on LRPs and their role in WNT/-catenin signalling. A more focused overview of the structural, functional and mechanistic aspects of LRP biology is also provided, together with the implications this has for pharmacological targeting of this notoriously intractable pathway.
Collapse
Affiliation(s)
- Gary Davidson
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBSC-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
19
|
Kumar R, Donakonda S, Müller SA, Bötzel K, Höglinger GU, Koeglsperger T. FGF2 Affects Parkinson's Disease-Associated Molecular Networks Through Exosomal Rab8b/Rab31. Front Genet 2020; 11:572058. [PMID: 33101391 PMCID: PMC7545478 DOI: 10.3389/fgene.2020.572058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/02/2020] [Indexed: 01/24/2023] Open
Abstract
Ras-associated binding (Rab) proteins are small GTPases that regulate the trafficking of membrane components during endocytosis and exocytosis including the release of extracellular vesicles (EVs). Parkinson’s disease (PD) is one of the most prevalent neurodegenerative disorder in the elderly population, where pathological proteins such as alpha-synuclein (α-Syn) are transmitted in EVs from one neuron to another neuron and ultimately across brain regions, thereby facilitating the spreading of pathology. We recently demonstrated fibroblast growth factor-2 (FGF2) to enhance the release of EVs and delineated the proteomic signature of FGF2-triggered EVs in cultured primary hippocampal neurons. Out of 235 significantly upregulated proteins, we found that FGF2 specifically enriched EVs for the two Rab family members Rab8b and Rab31. Consequently, we investigated the interactions of Rab8b and Rab31 using a network analysis approach in order to estimate the global influence of their enrichment in EVs. To achieve this, we have demarcated a protein–protein interaction network (PPiN) for these Rabs and identified the proteins associated with PD in various cellular components of the central nervous system (CNS), in different brain regions, and in the enteric nervous system (ENS). A total of 126 direct or indirect interactions were reported for two Rab candidates, out of which 114 are Rab8b interactions and 54 are Rab31 interactions, ultimately resulting in an individual interaction score (IS) of 90.48 and 42.86%, respectively. Conclusively, these results for the first time demonstrate the relevance of FGF2-induced Rab-enrichment in EVs and its potential to regulate PD pathophysiology.
Collapse
Affiliation(s)
- Rohit Kumar
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Faculty of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, Ludwig Maximilian University, Munich, Germany
| | - Sainitin Donakonda
- Institute of Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig Maximilian University, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Faculty of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, Hannover Medical School, Hanover, Germany
| | - Thomas Koeglsperger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
20
|
Linnemannstöns K, Witte L, Karuna M P, Kittel JC, Danieli A, Müller D, Nitsch L, Honemann-Capito M, Grawe F, Wodarz A, Gross JC. Ykt6-dependent endosomal recycling is required for Wnt secretion in the Drosophila wing epithelium. Development 2020; 147:dev.185421. [PMID: 32611603 PMCID: PMC7438013 DOI: 10.1242/dev.185421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/08/2020] [Indexed: 01/09/2023]
Abstract
Morphogens are important signalling molecules for tissue development and their secretion requires tight regulation. In the wing imaginal disc of flies, the morphogen Wnt/Wingless is apically presented by the secreting cell and re-internalized before final long-range secretion. Why Wnt molecules undergo these trafficking steps and the nature of the regulatory control within the endosomal compartment remain unclear. Here, we have investigated how Wnts are sorted at the level of endosomes by the versatile v-SNARE Ykt6. Using in vivo genetics, proximity-dependent proteomics and in vitro biochemical analyses, we show that most Ykt6 is present in the cytosol, but can be recruited to de-acidified compartments and recycle Wnts to the plasma membrane via Rab4-positive recycling endosomes. Thus, we propose a molecular mechanism by which producing cells integrate and leverage endocytosis and recycling via Ykt6 to coordinate extracellular Wnt levels.
Collapse
Affiliation(s)
- Karen Linnemannstöns
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Leonie Witte
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Pradhipa Karuna M
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Jeanette Clarissa Kittel
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Adi Danieli
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Denise Müller
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Lena Nitsch
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Mona Honemann-Capito
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Ferdinand Grawe
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne 50931, Germany.,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Andreas Wodarz
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne 50931, Germany.,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Julia Christina Gross
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany .,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| |
Collapse
|
21
|
Haack F, Budde K, Uhrmacher AM. Exploring the mechanistic and temporal regulation of LRP6 endocytosis in canonical WNT signaling. J Cell Sci 2020; 133:jcs243675. [PMID: 32661084 DOI: 10.1242/jcs.243675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
Endocytosis plays a pivotal regulatory role in canonical WNT signaling. Internalization of the low-density lipoprotein receptor-related protein 6 (LRP6) receptor complex can either promote or attenuate canonical WNT signaling, depending on the employed internalization pathway. Detailed analysis of the mechanism of LRP6 internalization and its temporal regulation is crucial for understanding the different cellular responses to WNT stimulation under varying conditions and in various cell types. Here, we elucidate the mechanisms involved in the internalization of LRP6 and re-evaluate existing, partly contradicting, theories on the regulation of LRP6 receptor internalization. We utilize a computational approach that aims at finding a set of mechanisms that accounts for the temporal dynamics of LRP6 receptor internalization upon WNT stimulation. Starting with a simple simulation model, we successively extend and probe the model's behavior based on quantitative measurements. The final model confirms that LRP6 internalization is clathrin independent in vertebrates, is not restricted to microdomains, and that signalosome formation delays LRP6 internalization within the microdomains. These findings partly revise the current understanding of LRP6 internalization in vertebrates.
Collapse
Affiliation(s)
- Fiete Haack
- Institute for Visual and Analytic Computing, Modeling and Simulation Group, Albert-Einstein-Str. 22, 18051 Rostock, Germany
| | - Kai Budde
- Institute for Visual and Analytic Computing, Modeling and Simulation Group, Albert-Einstein-Str. 22, 18051 Rostock, Germany
| | - Adelinde M Uhrmacher
- Institute for Visual and Analytic Computing, Modeling and Simulation Group, Albert-Einstein-Str. 22, 18051 Rostock, Germany
| |
Collapse
|
22
|
Wesslowski J, Kozielewicz P, Wang X, Cui H, Schihada H, Kranz D, Karuna M P, Levkin P, Gross JC, Boutros M, Schulte G, Davidson G. eGFP-tagged Wnt-3a enables functional analysis of Wnt trafficking and signaling and kinetic assessment of Wnt binding to full-length Frizzled. J Biol Chem 2020; 295:8759-8774. [PMID: 32381507 PMCID: PMC7324525 DOI: 10.1074/jbc.ra120.012892] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
The Wingless/Int1 (Wnt) signaling system plays multiple, essential roles in embryonic development, tissue homeostasis, and human diseases. Although many of the underlying signaling mechanisms are becoming clearer, the binding mode, kinetics, and selectivity of 19 mammalian WNTs to their receptors of the class Frizzled (FZD1–10) remain obscure. Attempts to investigate Wnt-FZD interactions are hampered by the difficulties in working with Wnt proteins and their recalcitrance to epitope tagging. Here, we used a fluorescently tagged version of mouse Wnt-3a for studying Wnt-FZD interactions. We observed that the enhanced GFP (eGFP)-tagged Wnt-3a maintains properties akin to wild-type (WT) Wnt-3a in several biologically relevant contexts. The eGFP-tagged Wnt-3a was secreted in an evenness interrupted (EVI)/Wntless-dependent manner, activated Wnt/β-catenin signaling in 2D and 3D cell culture experiments, promoted axis duplication in Xenopus embryos, stimulated low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation in cells, and associated with exosomes. Further, we used conditioned medium containing eGFP-Wnt-3a to visualize its binding to FZD and to quantify Wnt-FZD interactions in real time in live cells, utilizing a recently established NanoBRET-based ligand binding assay. In summary, the development of a biologically active, fluorescent Wnt-3a reported here opens up the technical possibilities to unravel the intricate biology of Wnt signaling and Wnt-receptor selectivity.
Collapse
Affiliation(s)
- Janine Wesslowski
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Pawel Kozielewicz
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Xianxian Wang
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Haijun Cui
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Hannes Schihada
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Dominique Kranz
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Pradhipa Karuna M
- Hematology and Oncology/Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Pavel Levkin
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Julia Christina Gross
- Hematology and Oncology/Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Gunnar Schulte
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Gary Davidson
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
23
|
Wang X, Qiao D, Chen L, Xu M, Chen S, Huang L, Wang F, Chen Z, Cai J, Fu L. Chemotherapeutic drugs stimulate the release and recycling of extracellular vesicles to assist cancer cells in developing an urgent chemoresistance. Mol Cancer 2019; 18:182. [PMID: 31830995 PMCID: PMC6907227 DOI: 10.1186/s12943-019-1114-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/02/2019] [Indexed: 01/07/2023] Open
Abstract
Background Chemotherapy is a widely used treatment for cancer. However, the development of acquired multidrug resistance (MDR) is a serious issue. Emerging evidence has shown that the extracellular vesicles (EVs) mediate MDR, but the underlying mechanism remains unclear, especially the effects of chemotherapeutic agents on this process. Methods Extracellular vesicles isolation was performed by differential centrifugation. The recipient cells that acquired ATP-binding cassette sub-family B member 1 (ABCB1) proteins were sorted out from co-cultures according to a stringent multi-parameter gating strategy by fluorescence-activated cell sorting (FACS). The transfer rate of ABCB1 was measured by flow cytometry. The xenograft tumor models in mice were established to evaluate the transfer of ABCB1 in vivo. Gene expression was detected by real-time PCR and Western blotting. Results Herein, we show that a transient exposure to chemotherapeutic agents can strikingly increase Rab8B-mediated release of extracellular vesicles (EVs) containing ABCB1 from drug-resistant cells, and accelerate these EVs to circulate back onto plasma membrane of sensitive tumor cells via the down-regulation of Rab5. Therefore, intercellular ABCB1 transfer is significantly enhanced; sensitive recipient cells acquire a rapid but unsustainable resistance to evade the cytotoxicity of chemotherapeutic agents. More fascinatingly, in the xenograft tumor models, chemotherapeutical drugs also locally or distantly increase the transfer of ABCB1 molecules. Furthermore, some Non-small-cell lung carcinoma (NSCLC) patients who are undergoing primary chemotherapy have a rapid increase of ABCB1 protein in their monocytes, and this is obviously associated with poor chemotherapeutic efficacy. Conclusions Chemotherapeutic agents stimulate the secretion and recycling of ABCB1-enriched EVs through the dysregulation of Rab8B and Rab5, leading to a significant increase of ABCB1 intercellular transfer, thus assisting sensitive cancer cells to develop an urgent resistant phenotype. Our findings provide a new molecular mechanism of how chemotherapeutic drugs assist sensitive cancer cells in acquiring an urgent resistance.
Collapse
Affiliation(s)
- Xiaokun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Dongjuan Qiao
- Department of Chemistry, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Likun Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Meng Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shupeng Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Liyan Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhen Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jiye Cai
- Department of Chemistry, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
24
|
Sada R, Kimura H, Fukata Y, Fukata M, Yamamoto H, Kikuchi A. Dynamic palmitoylation controls the microdomain localization of the DKK1 receptors CKAP4 and LRP6. Sci Signal 2019; 12:12/608/eaat9519. [PMID: 31744930 DOI: 10.1126/scisignal.aat9519] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dickkopf1 (DKK1) was originally identified as an antagonist of Wnt signaling that binds to and induces the clathrin-mediated endocytosis of the Wnt coreceptors low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6). DKK1 also binds to cytoskeleton-associated protein 4 (CKAP4), which was originally identified as an endoplasmic reticulum (ER) protein but also functions at the plasma membrane as a receptor for various ligands. The DKK1-CKAP4 pathway is activated in several human cancers and promotes cell proliferation by activating signaling through the kinases PI3K and AKT. We found that both CKAP4 and LRP6 primarily localized to detergent-resistant membrane (DRM) fractions of the plasma membrane in a palmitoylation-dependent manner and that palmitoylation of CKAP4 was required for it to promote cell proliferation. DKK1 induced the depalmitoylation of both CKAP4 and LRP6 by acylprotein thioesterases (APTs), resulting in their translocation to the non-DRM fractions. Moreover, DKK1-dependent depalmitoylation of both receptors required activation of the PI3K-AKT pathway. DKK1 simultaneously bound CKAP4 and LRP6, resulting in the formation of a ternary complex. LRP5/6 knockdown decreased DKK1-dependent AKT activation and cancer cell proliferation through CKAP4, whereas CKAP4 knockdown did not affect DKK1-dependent inhibition of Wnt signaling through LRP5/6. These results indicate that the palmitoylation states of CKAP4 and LRP6 play important roles in their signaling and that LRP5/6 enhance DKK1-CKAP4 signaling.
Collapse
Affiliation(s)
- Ryota Sada
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Hirokazu Kimura
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki 444-8787, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, Okazaki 444-8787, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki 444-8787, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, Okazaki 444-8787, Japan
| | - Hideki Yamamoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan.
| |
Collapse
|
25
|
MEK inhibitors activate Wnt signalling and induce stem cell plasticity in colorectal cancer. Nat Commun 2019. [PMID: 31097693 DOI: 10.1038/s41467‐019‐09898‐0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In colorectal cancer (CRC), aberrant Wnt signalling is essential for tumorigenesis and maintenance of cancer stem cells. However, how other oncogenic pathways converge on Wnt signalling to modulate stem cell homeostasis in CRC currently remains poorly understood. Using large-scale compound screens in CRC, we identify MEK1/2 inhibitors as potent activators of Wnt/β-catenin signalling. Targeting MEK increases Wnt activity in different CRC cell lines and murine intestine in vivo. Truncating mutations of APC generated by CRISPR/Cas9 strongly synergize with MEK inhibitors in enhancing Wnt responses in isogenic CRC models. Mechanistically, we demonstrate that MEK inhibition induces a rapid downregulation of AXIN1. Using patient-derived CRC organoids, we show that MEK inhibition leads to increased Wnt activity, elevated LGR5 levels and enrichment of gene signatures associated with stemness and cancer relapse. Our study demonstrates that clinically used MEK inhibitors inadvertently induce stem cell plasticity, revealing an unknown side effect of RAS pathway inhibition.
Collapse
|
26
|
MEK inhibitors activate Wnt signalling and induce stem cell plasticity in colorectal cancer. Nat Commun 2019; 10:2197. [PMID: 31097693 PMCID: PMC6522484 DOI: 10.1038/s41467-019-09898-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 04/05/2019] [Indexed: 12/19/2022] Open
Abstract
In colorectal cancer (CRC), aberrant Wnt signalling is essential for tumorigenesis and maintenance of cancer stem cells. However, how other oncogenic pathways converge on Wnt signalling to modulate stem cell homeostasis in CRC currently remains poorly understood. Using large-scale compound screens in CRC, we identify MEK1/2 inhibitors as potent activators of Wnt/β-catenin signalling. Targeting MEK increases Wnt activity in different CRC cell lines and murine intestine in vivo. Truncating mutations of APC generated by CRISPR/Cas9 strongly synergize with MEK inhibitors in enhancing Wnt responses in isogenic CRC models. Mechanistically, we demonstrate that MEK inhibition induces a rapid downregulation of AXIN1. Using patient-derived CRC organoids, we show that MEK inhibition leads to increased Wnt activity, elevated LGR5 levels and enrichment of gene signatures associated with stemness and cancer relapse. Our study demonstrates that clinically used MEK inhibitors inadvertently induce stem cell plasticity, revealing an unknown side effect of RAS pathway inhibition. Wnt signaling is necessary for colorectal cancer tumorigenesis and stem cell maintenance. Here, the authors identify MEK1/2 inhibitors as potent activators of Wnt/β-catenin signalling and show that clinically approved MEK inhibitors inadvertently induce stem cell plasticity in colorectal cancer
Collapse
|
27
|
Blondelle J, Marrocco V, Clark M, Desmond P, Myers S, Nguyen J, Wright M, Bremner S, Pierantozzi E, Ward S, Estève E, Sorrentino V, Ghassemian M, Lange S. Murine obscurin and Obsl1 have functionally redundant roles in sarcolemmal integrity, sarcoplasmic reticulum organization, and muscle metabolism. Commun Biol 2019; 2:178. [PMID: 31098411 PMCID: PMC6509138 DOI: 10.1038/s42003-019-0405-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/28/2019] [Indexed: 12/19/2022] Open
Abstract
Biological roles of obscurin and its close homolog Obsl1 (obscurin-like 1) have been enigmatic. While obscurin is highly expressed in striated muscles, Obsl1 is found ubiquitously. Accordingly, obscurin mutations have been linked to myopathies, whereas mutations in Obsl1 result in 3M-growth syndrome. To further study unique and redundant functions of these closely related proteins, we generated and characterized Obsl1 knockouts. Global Obsl1 knockouts are embryonically lethal. In contrast, skeletal muscle-specific Obsl1 knockouts show a benign phenotype similar to obscurin knockouts. Only deletion of both proteins and removal of their functional redundancy revealed their roles for sarcolemmal stability and sarcoplasmic reticulum organization. To gain unbiased insights into changes to the muscle proteome, we analyzed tibialis anterior and soleus muscles by mass spectrometry, uncovering additional changes to the muscle metabolism. Our analyses suggest that all obscurin protein family members play functions for muscle membrane systems.
Collapse
Affiliation(s)
- Jordan Blondelle
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Valeria Marrocco
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Madison Clark
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Patrick Desmond
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Stephanie Myers
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Jim Nguyen
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Matthew Wright
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Shannon Bremner
- Department of Orthopedic Surgery, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, 53100 Italy
| | - Samuel Ward
- Department of Orthopedic Surgery, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Eric Estève
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
- Université Grenoble Alpes, HP2, Grenoble, 38706 France
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, 53100 Italy
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California, San Diego, 92093 CA USA
| | - Stephan Lange
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, 413 45 Sweden
| |
Collapse
|
28
|
Adorno M, di Robilant BN, Sikandar SS, Acosta VH, Antony J, Heller CH, Clarke MF. Usp16 modulates Wnt signaling in primary tissues through Cdkn2a regulation. Sci Rep 2018; 8:17506. [PMID: 30504774 PMCID: PMC6269430 DOI: 10.1038/s41598-018-34562-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 08/13/2018] [Indexed: 11/09/2022] Open
Abstract
Regulation of the Wnt pathway in stem cells and primary tissues is still poorly understood. Here we report that Usp16, a negative regulator of Bmi1/PRC1 function, modulates the Wnt pathway in mammary epithelia, primary human fibroblasts and MEFs, affecting their expansion and self-renewal potential. In mammary glands, reduced levels of Usp16 increase tissue responsiveness to Wnt, resulting in upregulation of the downstream Wnt target Axin2, expansion of the basal compartment and increased in vitro and in vivo epithelial regeneration. Usp16 regulation of the Wnt pathway in mouse and human tissues is at least in part mediated by activation of Cdkn2a, a regulator of senescence. At the molecular level, Usp16 affects Rspo-mediated phosphorylation of LRP6. In Down’s Syndrome (DS), triplication of Usp16 dampens the activation of the Wnt pathway. Usp16 copy number normalization restores normal Wnt activation in Ts65Dn mice models. Genetic upregulation of the Wnt pathway in Ts65Dn mice rescues the proliferation defect observed in mammary epithelial cells. All together, these findings link important stem cell regulators like Bmi1/Usp16 and Cdkn2a to Wnt signaling, and have implications for designing therapies for conditions, like DS, aging or degenerative diseases, where the Wnt pathway is hampered.
Collapse
Affiliation(s)
- Maddalena Adorno
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Benedetta Nicolis di Robilant
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Shaheen Shabbir Sikandar
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Veronica Haro Acosta
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, 94305, USA.,Molecular and Computational Biology Department, University of Southern California, Los Angeles, California, 90087, USA
| | - Jane Antony
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Craig H Heller
- Department of Biology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Michael F Clarke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, 94305, USA.
| |
Collapse
|
29
|
Brunt L, Scholpp S. The function of endocytosis in Wnt signaling. Cell Mol Life Sci 2018; 75:785-795. [PMID: 28913633 PMCID: PMC5809524 DOI: 10.1007/s00018-017-2654-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/17/2017] [Accepted: 09/06/2017] [Indexed: 10/31/2022]
Abstract
Wnt growth factors regulate one of the most important signaling networks during development, tissue homeostasis and disease. Despite the biological importance of Wnt signaling, the mechanism of endocytosis during this process is ill described. Wnt molecules can act as paracrine signals, which are secreted from the producing cells and transported through neighboring tissue to activate signaling in target cells. Endocytosis of the ligand is important at several stages of action: One central function of endocytic trafficking in the Wnt pathway occurs in the source cell. Furthermore, the β-catenin-dependent Wnt ligands require endocytosis for signal activation and to regulate gene transcription in the responding cells. Alternatively, Wnt/β-catenin-independent signaling regulates endocytosis of cell adherence plaques to control cell migration. In this comparative review, we elucidate these three fundamental interconnected functions, which together regulate cellular fate and cellular behavior. Based on established hypotheses and recent findings, we develop a revised picture for the complex function of endocytosis in the Wnt signaling network.
Collapse
Affiliation(s)
- Lucy Brunt
- Living Systems Institute, School of Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, EX4 4QD, UK
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, EX4 4QD, UK.
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
30
|
Rauscher B, Heigwer F, Henkel L, Hielscher T, Voloshanenko O, Boutros M. Toward an integrated map of genetic interactions in cancer cells. Mol Syst Biol 2018; 14:e7656. [PMID: 29467179 PMCID: PMC5820685 DOI: 10.15252/msb.20177656] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Cancer genomes often harbor hundreds of molecular aberrations. Such genetic variants can be drivers or passengers of tumorigenesis and create vulnerabilities for potential therapeutic exploitation. To identify genotype-dependent vulnerabilities, forward genetic screens in different genetic backgrounds have been conducted. We devised MINGLE, a computational framework to integrate CRISPR/Cas9 screens originating from different libraries building on approaches pioneered for genetic network discovery in model organisms. We applied this method to integrate and analyze data from 85 CRISPR/Cas9 screens in human cancer cells combining functional data with information on genetic variants to explore more than 2.1 million gene-background relationships. In addition to known dependencies, we identified new genotype-specific vulnerabilities of cancer cells. Experimental validation of predicted vulnerabilities identified GANAB and PRKCSH as new positive regulators of Wnt/β-catenin signaling. By clustering genes with similar genetic interaction profiles, we drew the largest genetic network in cancer cells to date. Our scalable approach highlights how diverse genetic screens can be integrated to systematically build informative maps of genetic interactions in cancer, which can grow dynamically as more data are included.
Collapse
Affiliation(s)
- Benedikt Rauscher
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Florian Heigwer
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Luisa Henkel
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oksana Voloshanenko
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
31
|
Glaeser K, Urban M, Fenech E, Voloshanenko O, Kranz D, Lari F, Christianson JC, Boutros M. ERAD-dependent control of the Wnt secretory factor Evi. EMBO J 2018; 37:embj.201797311. [PMID: 29378775 PMCID: PMC5813261 DOI: 10.15252/embj.201797311] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/01/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022] Open
Abstract
Active regulation of protein abundance is an essential strategy to modulate cellular signaling pathways. Within the Wnt signaling cascade, regulated degradation of β-catenin by the ubiquitin-proteasome system (UPS) affects the outcome of canonical Wnt signaling. Here, we found that abundance of the Wnt cargo receptor Evi (Wls/GPR177), which is required for Wnt protein secretion, is also regulated by the UPS through endoplasmic reticulum (ER)-associated degradation (ERAD). In the absence of Wnt ligands, Evi is ubiquitinated and targeted for ERAD in a VCP-dependent manner. Ubiquitination of Evi involves the E2-conjugating enzyme UBE2J2 and the E3-ligase CGRRF1. Furthermore, we show that a triaging complex of Porcn and VCP determines whether Evi enters the secretory or the ERAD pathway. In this way, ERAD-dependent control of Evi availability impacts the scale of Wnt protein secretion by adjusting the amount of Evi to meet the requirement of Wnt protein export. As Wnt and Evi protein levels are often dysregulated in cancer, targeting regulatory ERAD components might be a useful approach for therapeutic interventions.
Collapse
Affiliation(s)
- Kathrin Glaeser
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Manuela Urban
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Emma Fenech
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Oksana Voloshanenko
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Dominique Kranz
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Federica Lari
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | | | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
32
|
Lu Y, Xie S, Zhang W, Zhang C, Gao C, Sun Q, Cai Y, Xu Z, Xiao M, Xu Y, Huang X, Wu X, Liu W, Wang F, Kang Y, Zhou T. Twa1/Gid8 is a β-catenin nuclear retention factor in Wnt signaling and colorectal tumorigenesis. Cell Res 2017; 27:1422-1440. [PMID: 28829046 PMCID: PMC5717399 DOI: 10.1038/cr.2017.107] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/25/2016] [Accepted: 07/04/2017] [Indexed: 12/26/2022] Open
Abstract
Hyperactivation of Wnt/β-catenin signaling is one of the major causes of human colorectal cancer (CRC). A hallmark of Wnt signaling is the nuclear accumulation of β-catenin. Although β-catenin nuclear import and export have been widely investigated, the underlying mechanism of β-catenin's nuclear retention remains largely unknown. Here, we report that Twa1/Gid8 is a key nuclear retention factor for β-catenin during Wnt signaling and colorectal carcinogenesis. In the absence of Wnt, Twa1 exists together with β-catenin in the Axin complex and undergoes ubiquitination and degradation. Upon Wnt signaling, Twa1 translocates into the nucleus, where it binds and retains β-catenin. Depletion of Twa1 attenuates Wnt-stimulated gene expression, dorsal development of zebrafish embryos and xenograft tumor growth of CRC cells. Moreover, nuclear Twa1 is significantly upregulated in human CRC tissues, correlating with the nuclear accumulation of β-catenin and poor prognosis. Thus, our results identify Twa1 as a previously undescribed regulator of the Wnt pathway for promoting colorectal tumorigenesis by facilitating β-catenin nuclear retention.
Collapse
Affiliation(s)
- Yi Lu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Shanshan Xie
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wen Zhang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Cheng Zhang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Cheng Gao
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qiang Sun
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yuqi Cai
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Current address: Division of Pulmonary Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Zhangqi Xu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min Xiao
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yanjun Xu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Xiao Huang
- Institute of Cellular and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ximei Wu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wei Liu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Fudi Wang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Tianhua Zhou
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
33
|
Tao Z, Meng X, Han YQ, Xue MM, Wu S, Wu P, Yuan Y, Zhu Q, Zhang TJ, Wong CCL. Therapeutic Mechanistic Studies of ShuFengJieDu Capsule in an Acute Lung Injury Animal Model Using Quantitative Proteomics Technology. J Proteome Res 2017; 16:4009-4019. [PMID: 28880561 DOI: 10.1021/acs.jproteome.7b00409] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ShuFengJieDu capsule (SFJDC), a traditional Chinese medicine (TCM) that contains eight medicinal herbs, has been extensively utilized for the treatment of acute lung injury (ALI) and respiratory infections for more than 30 years in China. SFJDC has also been listed in the official guidelines of the China Food and Drug Administration (CFDA) due to its stable clinical manifestations. However, the underlying mechanism of SFJDC during ALI repair remains unclear. In the present study, we explored the protective and therapeutic mechanisms of SFJDC in a rat model by performing qualitative and label-free quantitative proteomics studies. After establishing lipopolysaccharide (LPS)-induced ALI rat models, we profiled macrophage cells isolated from freshly resected rat lung tissues derived from ALI models and ALI rat lung tissue sections using a high performance liquid chromatography-mass spectrometry (HPLC-MS/MS) shotgun proteomics approach to identify changes in the expression levels of proteins of interest. On the basis of our proteomics results and the results of a protein dysregulation analysis of ALI rat lung tissues and rat lung macrophages, AKT1 was selected as a putative key factor that may play an important role in mediating the effects of SFJDC treatment during ALI progression. Follow-up validation studies demonstrated that AKT1 expression effectively regulates various ALI-related molecules, and Gene Ontology analysis indicated that SFJDC-treated ALI rat macrophages were influenced by AKT1-based networks. Gain- and loss-of-function analyses following lentivirus-AKT1 or lentivirus-si-AKT1 infection in macrophages also indicated that AKT1 was essential for the development of ALI due to its ability to regulate oxidative stress, apoptosis, or inflammatory responses. In summary, SFJDC effectively modulated anti-inflammatory and immunomodulation activity during ALI, potentially due to AKT1 regulation during ALI progression. New insights into SFJDC mechanisms may facilitate the development of novel pharmaceutical strategies to control the expression of inflammatory factors.
Collapse
Affiliation(s)
| | - Xia Meng
- National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 201210, China
| | - Yan-Qi Han
- Tianjin Institute of Pharmaceutical Research , Tianjin 300193, China
| | | | - Shifei Wu
- National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 201210, China
| | - Ping Wu
- National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 201210, China
| | | | - Qiang Zhu
- Anhui Jiren Pharmaceutical Co., Ltd., Bozhou 236800, China
| | - Tie-Jun Zhang
- Tianjin Institute of Pharmaceutical Research , Tianjin 300193, China
| | - Catherine C L Wong
- National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 201210, China
| |
Collapse
|
34
|
Yamamoto H, Umeda D, Matsumoto S, Kikuchi A. LDL switches the LRP6 internalization route from flotillin dependent to clathrin dependent in hepatic cells. J Cell Sci 2017; 130:3542-3556. [PMID: 28821575 DOI: 10.1242/jcs.202135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/14/2017] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein (LDL) receptor-related protein 6 (LRP6) was originally identified as a co-receptor of the Wnt signalling pathway and has been shown to be involved in LDL transport. In polarized hepatocytes, many apical proteins are sorted to the basolateral membrane and then internalized and transported to the apical bile canalicular membrane - a process known as transcytosis. We show that LRP6 is transcytosed to the apical membrane of polarized hepatic HepG2 cells via a flotillin-dependent manner in the absence of LDL. LRP6 formed a complex with Niemann-Pick type C1-like 1 (NPC1L1), which is localized to the bile canalicular membrane of the liver and is involved in cholesterol absorption from the bile. LRP6 was required for apical membrane localization of NPC1L1 in the absence of LDL. Clathrin-dependent LRP6 internalization occurred in the presence of LDL, which resulted in trafficking of LRP6 to the lysosome, thereby reducing apical sorting of LRP6 and NPC1L1. These results suggest that LRP6 endocytosis proceeds by two routes, depending on the presence of LDL, and that LRP6 controls the intracellular destination of NPC1L1 in hepatocytes.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Umeda
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
35
|
Voloshanenko O, Gmach P, Winter J, Kranz D, Boutros M. Mapping of Wnt-Frizzled interactions by multiplex CRISPR targeting of receptor gene families. FASEB J 2017; 31:4832-4844. [PMID: 28733458 PMCID: PMC5636703 DOI: 10.1096/fj.201700144r] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/05/2017] [Indexed: 12/19/2022]
Abstract
Signaling pathway modules are often encoded by several closely related paralogous genes that can have redundant roles and are therefore difficult to analyze by loss-of-function analysis. A typical example is the Wnt signaling pathway, which in mammals is mediated by 19 Wnt ligands that can bind to 10 Frizzled (FZD) receptors. Although significant progress in understanding Wnt-FZD receptor interactions has been made in recent years, tools to generate systematic interaction maps have been largely lacking. Here we generated cell lines with multiplex mutant alleles of FZD1, FZD2, and FZD7 and demonstrate that these cells are unresponsive to canonical Wnt ligands. Subsequently, we performed genetic rescue experiments with combinations of FZDs and canonical Wnts to create a functional ligand–receptor interaction map. These experiments showed that whereas several Wnt ligands, such as Wnt3a, induce signaling through a broad spectrum of FZD receptors, others, such as Wnt8a, act through a restricted set of FZD genes. Together, our results map functional interactions of FZDs and 10 Wnt ligands and demonstrate how multiplex targeting by clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 can be used to systematically elucidate the functions of multigene families.—Voloshanenko, O., Gmach, P., Winter, J., Kranz, D., Boutros, M. Mapping of Wnt-Frizzled interactions by multiplex CRISPR targeting of receptor gene families.
Collapse
Affiliation(s)
- Oksana Voloshanenko
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany; and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Philipp Gmach
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany; and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Jan Winter
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany; and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Dominique Kranz
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany; and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany; and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
36
|
Extracellular LDLR repeats modulate Wnt signaling activity by promoting LRP6 receptor endocytosis mediated by the Itch E3 ubiquitin ligase. Genes Cancer 2017; 8:613-627. [PMID: 28966723 PMCID: PMC5620007 DOI: 10.18632/genesandcancer.146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The LOW-density lipoprotein related protein 6 (LRP6) receptor is an important effector of canonical Wnt signaling, a developmental pathway, whose dysregulation has been implicated in various diseases including cancer. The membrane proximal low-density lipoprotein (LDL) receptor repeats in LRP6 exhibit homology to ligand binding repeats in the LDL receptor (LDLR), but lack known function. We generated single amino acid substitutions of LRP6-LDLR repeat residues, which are highly conserved in the human LDLR and mutated in patients with Familial Hypercholesteremia (FH). These substitutions negatively impacted LRP6 internalization and activation of Wnt signaling. By mass spectrometry, we observed that the Itch E3 ubiquitin ligase associated with and ubiquitinated wild type LRP6 but not the LDLR repeat mutants. These findings establish the involvement of LRP6-LDLR repeats in the regulation of canonical Wnt signaling.
Collapse
|
37
|
Kikuchi A, Fumoto K, Kimura H. The Dickkopf1-cytoskeleton-associated protein 4 axis creates a novel signalling pathway and may represent a molecular target for cancer therapy. Br J Pharmacol 2017; 174:4651-4665. [PMID: 28514532 DOI: 10.1111/bph.13863] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 12/17/2022] Open
Abstract
Dickkopf 1 (DKK1) is a secreted protein and antagonizes oncogenic Wnt signalling by binding to the Wnt co-receptor, low-density lipoprotein receptor-related protein 6. DKK1 has also been suggested to regulate its own signalling, associated with tumour aggressiveness. However, the underlying mechanism by which DKK1 promotes cancer cell proliferation has remained to be clarified for a long time. The cytoskeleton-associated protein 4 (CKAP4), originally identified as an endoplasmic reticulum membrane protein, was recently found to act as a novel DKK1 receptor. DKK1 stimulates cancer cell proliferation when CKAP4 is expressed on the cell surface membrane. Although there are no tyrosine residues in the intracellular region of CKAP4, CKAP4 forms a complex with PI3K upon the binding of DKK1, leading to the activation of Akt. Both DKK1 and CKAP4 are frequently expressed in pancreatic and lung tumours, and their simultaneous expression is negatively correlated with prognosis. Knockdown of CKAP4 in cancer cells and treatment of mice with the anti-CKAP4 antibody inhibit Akt activity in cancer cells and suppress xenograft tumour formation, suggesting that CKAP4 may represent a therapeutic target for cancers expressing both DKK1 and CKAP4. This review will provide details of the novel DKK1-CKAP4 signalling axis that promotes cancer proliferation and discuss the possibility of targeting this pathway in future cancer drug development. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Akira Kikuchi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Katsumi Fumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hirokazu Kimura
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
38
|
Jiang X, Cong F. Novel Regulation of Wnt Signaling at the Proximal Membrane Level. Trends Biochem Sci 2016; 41:773-783. [PMID: 27377711 DOI: 10.1016/j.tibs.2016.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 02/06/2023]
Abstract
Wnt pathways are crucial for embryonic development and adult tissue homeostasis in all multicellular animals. Our understanding of Wnt signaling networks has grown increasingly complex. Recent studies have revealed many regulatory proteins that function at the proximal membrane level to fine-tune signaling output and enhance signaling specificity. These proteins regulate crucial points in Wnt signaling, including post-translational modification of Wnt proteins, regulation of Wnt receptor degradation, internalization of Wnt receptor complex, and specific ligand-receptor complex formation. Such regulators not only provide us with molecular details of Wnt regulation but also serve as potential targets for therapeutic intervention. In this review we highlight new insights into Wnt regulation at the plasma membrane, especially newly identified feedback regulators.
Collapse
Affiliation(s)
- Xiaomo Jiang
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Feng Cong
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
39
|
Kimura H, Fumoto K, Shojima K, Nojima S, Osugi Y, Tomihara H, Eguchi H, Shintani Y, Endo H, Inoue M, Doki Y, Okumura M, Morii E, Kikuchi A. CKAP4 is a Dickkopf1 receptor and is involved in tumor progression. J Clin Invest 2016; 126:2689-705. [PMID: 27322059 DOI: 10.1172/jci84658] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 04/19/2016] [Indexed: 12/11/2022] Open
Abstract
Dickkopf1 (DKK1) is a secretory protein that antagonizes oncogenic Wnt signaling by binding to the Wnt coreceptor low-density lipoprotein receptor-related protein 6 (LRP6). DKK1 may also regulate its own signaling to promote cancer cell proliferation, but the mechanism is not understood. Here, we identified cytoskeleton-associated protein 4 (CKAP4) as a DKK1 receptor and evaluated CKAP4-mediated DKK1 signaling in cancer cell proliferation. We determined that DKK1 binds CKAP4 and LRP6 with similar affinity but interacts with these 2 receptors with different cysteine-rich domains. DKK1 induced internalization of CKAP4 in a clathrin-dependent manner, further supporting CKAP4 as a receptor for DKK1. DKK1/CKAP4 signaling activated AKT by forming a complex between the proline-rich domain of CKAP4 and the Src homology 3 domain of PI3K, resulting in proliferation of normal cells and cancer cells. Expression of DKK1 and CKAP4 was frequent in tumor lesions of human pancreatic and lung cancers, and simultaneous expression of both proteins in patient tumors was negatively correlated with prognosis and relapse-free survival. An anti-CKAP4 antibody blocked the binding of DKK1 to CKAP4, suppressed AKT activity in a human cancer cell line, and attenuated xenograft tumor formation in immunodeficient mice. Together, our results suggest that CKAP4 is a potential therapeutic target for cancers that express both DKK1 and CKAP4.
Collapse
|
40
|
Zhang X, Gao N. RAB and RHO GTPases regulate intestinal crypt cell homeostasis and enterocyte function. Small GTPases 2016; 7:59-64. [PMID: 27142493 DOI: 10.1080/21541248.2016.1159274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recent human and mouse genetic studies have highlighted important contributions of several small GTPases, in particular Rab8a, (1) Cdc42, (2-4) and Rab11a, (5-8) to the proper morphogenesis and function of the mature intestinal epithelia. Additional insights about the involvement of these factors in maintaining intestinal stem cell homeostasis have also been obtained. (9,10) These studies suggest a conserved vesicular and membrane trafficking program utilized by the gastrointestinal tissue to support the rapid epithelial cell turnover and the highly sophisticated physiology of mature epithelial cells.
Collapse
Affiliation(s)
- Xiao Zhang
- a Department of Biological Sciences , Rutgers University , Newark , NJ , USA
| | - Nan Gao
- a Department of Biological Sciences , Rutgers University , Newark , NJ , USA
| |
Collapse
|
41
|
Barbieri E, Di Fiore PP, Sigismund S. Endocytic control of signaling at the plasma membrane. Curr Opin Cell Biol 2016; 39:21-7. [DOI: 10.1016/j.ceb.2016.01.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/18/2016] [Accepted: 01/23/2016] [Indexed: 01/26/2023]
|
42
|
Wada Y, Sun-Wada GH, Kawamura N, Yasukawa J. Membrane dynamics in mammalian embryogenesis: Implication in signal regulation. ACTA ACUST UNITED AC 2016; 108:33-44. [PMID: 26992153 DOI: 10.1002/bdrc.21124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/23/2016] [Indexed: 11/11/2022]
Abstract
Eukaryotes have evolved an array of membrane compartments constituting secretory and endocytic pathways that allow the flow of materials. Both pathways perform important regulatory roles. The secretory pathway is essential for the production of extracellular, secreted signal molecules, but its function is not restricted to a mere route connecting intra- and extracellular compartments. Post-translational modifications also play an integral function in the secretory pathway and are implicated in developmental regulation. The endocytic pathway serves as a platform for relaying signals from the extracellular stimuli to intracellular mediators, and then ultimately inducing signal termination. Here, we discuss recent studies showing that dysfunction in membrane dynamics causes patterning defects in embryogenesis and tissue morphogenesis in mammals.
Collapse
Affiliation(s)
- Yoh Wada
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Ge-Hong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kohdo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Nobuyuki Kawamura
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kohdo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Jyunichiro Yasukawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kohdo, Kyotanabe, Kyoto, 610-0395, Japan
| |
Collapse
|
43
|
Abstract
Wnt proteins act as potent morphogens in various aspects of embryonic development and adult tissue homeostasis. However, in addition to its physiological importance, aberrant Wnt signaling has been linked to the onset and progression of different types of cancer. On the cellular level, the secretion of Wnt proteins involves trafficking of lipid-modified Wnts from the endoplasmic reticulum (ER) to Golgi and further compartments via the Wnt cargo receptor evenness interrupted. Others and we have recently shown that Wnt proteins are secreted on extracellular vesicles (EVs) such as microvesicles and exosomes. Although more details about specific regulation of Wnt secretion steps are emerging, it remains largely unknown how Wnt proteins are channeled into different release pathways such as lipoprotein particles, EVs and cytonemes. Here, we describe protocols to purify and quantify Wnts from the supernatant of cells by either assessing total Wnt proteins in the supernatant or monitoring Wnt proteins on EVs. Purified Wnts from the supernatant as well as total cellular protein content can be investigated by immunoblotting. Additionally, the relative activity of canonical Wnts in the supernatant can be assessed by a dual-luciferase Wnt reporter assay. Quantifying the amount of secreted Wnt proteins and their activity in the supernatant of cells allows the investigation of intracellular trafficking events that regulate Wnt secretion and the role of extracellular modulators of Wnt spreading.
Collapse
Affiliation(s)
- Kathrin Glaeser
- Division Signaling and Functional Genomics and Heidelberg University, Department for Cell and Molecular Biology, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics and Heidelberg University, Department for Cell and Molecular Biology, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Julia Christina Gross
- Haematology and Oncology and Developmental Biochemistry, University Medicine Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
44
|
Cheng JPX, Nichols BJ. Caveolae: One Function or Many? Trends Cell Biol 2015; 26:177-189. [PMID: 26653791 DOI: 10.1016/j.tcb.2015.10.010] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/16/2015] [Accepted: 10/22/2015] [Indexed: 02/07/2023]
Abstract
Caveolae are small, bulb-shaped plasma membrane invaginations. Mutations that ablate caveolae lead to diverse phenotypes in mice and humans, making it challenging to uncover their molecular mechanisms. Caveolae have been described to function in endocytosis and transcytosis (a specialized form of endocytosis) and in maintaining membrane lipid composition, as well as acting as signaling platforms. New data also support a model in which the central function of caveolae could be related to the protection of cells from mechanical stress within the plasma membrane. We present evidence for these diverse roles and consider in vitro and in vivo experiments confirming a mechanoprotective role. We conclude by highlighting current gaps in our knowledge of how mechanical signals may be transduced by caveolae.
Collapse
Affiliation(s)
- Jade P X Cheng
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Benjamin J Nichols
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
45
|
Amaya C, Fader CM, Colombo MI. Autophagy and proteins involved in vesicular trafficking. FEBS Lett 2015; 589:3343-53. [PMID: 26450776 DOI: 10.1016/j.febslet.2015.09.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 12/16/2022]
Abstract
Autophagy is an intracellular degradation system that, as a basic mechanism it delivers cytoplasmic components to the lysosomes in order to maintain adequate energy levels and cellular homeostasis. This complex cellular process is activated by low cellular nutrient levels and other stress situations such as low ATP levels, the accumulation of damaged proteins or organelles, or pathogen invasion. Autophagy as a multistep process involves vesicular transport events leading to tethering and fusion of autophagic vesicles with several intracellular compartments. This review summarizes our current understanding of the autophagic pathway with emphasis in the trafficking machinery (i.e. Rabs GTPases and SNAP receptors (SNAREs)) involved in specific steps of the pathway.
Collapse
Affiliation(s)
- Celina Amaya
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina
| | - Claudio Marcelo Fader
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina
| | - María Isabel Colombo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina.
| |
Collapse
|
46
|
Das S, Yu S, Sakamori R, Vedula P, Feng Q, Flores J, Hoffman A, Fu J, Stypulkowski E, Rodriguez A, Dobrowolski R, Harada A, Hsu W, Bonder EM, Verzi MP, Gao N. Rab8a vesicles regulate Wnt ligand delivery and Paneth cell maturation at the intestinal stem cell niche. Development 2015; 142:2147-62. [PMID: 26015543 PMCID: PMC4483769 DOI: 10.1242/dev.121046] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/16/2015] [Indexed: 12/11/2022]
Abstract
Communication between stem and niche supporting cells maintains the homeostasis of adult tissues. Wnt signaling is a crucial regulator of the stem cell niche, but the mechanism that governs Wnt ligand delivery in this compartment has not been fully investigated. We identified that Wnt secretion is partly dependent on Rab8a-mediated anterograde transport of Gpr177 (wntless), a Wnt-specific transmembrane transporter. Gpr177 binds to Rab8a, depletion of which compromises Gpr177 traffic, thereby weakening the secretion of multiple Wnts. Analyses of generic Wnt/β-catenin targets in Rab8a knockout mouse intestinal crypts indicate reduced signaling activities; maturation of Paneth cells – a Wnt-dependent cell type – is severely affected. Rab8a knockout crypts show an expansion of Lgr5+ and Hopx+ cells in vivo. However, in vitro, the knockout enteroids exhibit significantly weakened growth that can be partly restored by exogenous Wnts or Gsk3β inhibitors. Immunogold labeling and surface protein isolation identified decreased plasma membrane localization of Gpr177 in Rab8a knockout Paneth cells and fibroblasts. Upon stimulation by exogenous Wnts, Rab8a-deficient cells show ligand-induced Lrp6 phosphorylation and transcriptional reporter activation. Rab8a thus controls Wnt delivery in producing cells and is crucial for Paneth cell maturation. Our data highlight the profound tissue plasticity that occurs in response to stress induced by depletion of a stem cell niche signal. Summary: In maturing mouse Paneth cells, Wnt secretion is partly dependent on a Rab8a-mediated anterograde transport of Gpr177. Rab8a is required for Paneth cell maturation.
Collapse
Affiliation(s)
- Soumyashree Das
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Shiyan Yu
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Ryotaro Sakamori
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Pavan Vedula
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Qiang Feng
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Juan Flores
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Andrew Hoffman
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Jiang Fu
- Department of Biomedical Genetics, Center for Oral Biology, James P. Wilmot Cancer Center, Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ewa Stypulkowski
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Alexis Rodriguez
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Radek Dobrowolski
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Wei Hsu
- Department of Biomedical Genetics, Center for Oral Biology, James P. Wilmot Cancer Center, Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
47
|
Feng Q, Gao N. Keeping Wnt signalosome in check by vesicular traffic. J Cell Physiol 2015; 230:1170-80. [PMID: 25336320 DOI: 10.1002/jcp.24853] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 01/01/2023]
Abstract
Wg/Wnts are paracrine and autocrine ligands that activate distinct signaling pathways while being internalized through surface receptors. Converging and contrasting views are shaping our understanding of whether, where, and how endocytosis may modulate Wnt signaling. We gather considerable amount of evidences to elaborate the point that signal-receiving cells utilize distinct, flexible, and sophisticated vesicular trafficking mechanisms to keep Wnt signaling activity in check. Same molecules in a highly context-dependent fashion serve as regulatory hub for various signaling purposes: amplification, maintenance, inhibition, and termination. Updates are provided for the regulatory mechanisms related to the three critical cell surface complexes, Wnt-Fzd-LRP6, Dkk1-Kremen-LRP6, and R-spondin-LGR5-RNF43, which potently influence Wnt signaling. We pay particular attentions to how cells achieve sustained and delicate control of Wnt signaling strength by employing comprehensive aspects of vesicular trafficking.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | | |
Collapse
|
48
|
Chen Q, Su Y, Wesslowski J, Hagemann AI, Ramialison M, Wittbrodt J, Scholpp S, Davidson G. Tyrosine phosphorylation of LRP6 by Src and Fer inhibits Wnt/β-catenin signalling. EMBO Rep 2014; 15:1254-67. [PMID: 25391905 DOI: 10.15252/embr.201439644] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) function as transmembrane receptors to transduce Wnt signals. A key mechanism for signalling is Wnt-induced serine/threonine phosphorylation at conserved PPPSPxS motifs in the LRP6 cytoplasmic domain, which promotes pathway activation. Conserved tyrosine residues are positioned close to all PPPSPxS motifs, which suggests they have a functional significance. Using a cell culture-based cDNA expression screen, we identified the non-receptor tyrosine kinases Src and Fer as novel LRP6 modifiers. Both Src and Fer associate with LRP6 and phosphorylate LRP6 directly. In contrast to the known PPPSPxS Ser/Thr kinases, tyrosine phosphorylation by Src and Fer negatively regulates LRP6-Wnt signalling. Epistatically, they function upstream of β-catenin to inhibit signalling and in agreement with a negative role in regulating LRP6, MEF cells lacking these kinases show enhanced Wnt signalling. Wnt3a treatment of cells enhances tyrosine phosphorylation of endogenous LRP6 and, mechanistically, Src reduces cell surface LRP6 levels and disrupts LRP6 signalosome formation. Interestingly, CK1γ inhibits Fer-induced LRP6 phosphorylation, suggesting a mechanism whereby CK1γ acts to de-represses inhibitory LRP6 tyrosine phosphorylation. We propose that LRP6 tyrosine phosphorylation by Src and Fer serves a negative regulatory function to prevent over-activation of Wnt signalling at the level of the Wnt receptor, LRP6.
Collapse
Affiliation(s)
- Qing Chen
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Yi Su
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Janine Wesslowski
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Anja I Hagemann
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | | | - Steffen Scholpp
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gary Davidson
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
49
|
Wallkamm V, Dörlich R, Rahm K, Klessing T, Nienhaus GU, Wedlich D, Gradl D. Live imaging of Xwnt5A-ROR2 complexes. PLoS One 2014; 9:e109428. [PMID: 25313906 PMCID: PMC4196911 DOI: 10.1371/journal.pone.0109428] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/30/2014] [Indexed: 12/26/2022] Open
Abstract
Secreted molecules of the Wnt family regulate key decisions in embryogenesis and adult tissue homeostasis by activating a complex network of Wnt signaling pathways. Although the different branches of Wnt signaling have been studied for more than 25 years, fluorophore tagged constructs for live cell imaging of Wnt molecules activating the Wnt/β-catenin pathway have become available only recently. We have generated a fluorophore tagged Wnt construct of the Xenopus Wnt5a protein (Xwnt5A) with the enhanced green fluorescent protein (EGFP), Xwnt5A-EGFP. This construct activates non-canonical Wnt pathways in an endocytosis dependent manner and is capable of compensating for the loss of endogenous Xwnt5A in Xenopus embryos. Strikingly, non-canonical Wnt pathway activation was restricted to short-range signaling while an inhibitory effect was observed in transwell cell cultures taken as long-range signaling model sytem. We used our Xwnt5A-EGFP construct to analyze in vivo binding of Wnt5A to its co-receptor ROR2 on the microscopic and on the molecular level. On the microscopic level, Xwnt5A-EGFP clusters in the membrane and recruits ROR2-mCherry to these clusters. Applying dual-colour dual-focus line-scanning fluorescence correlation spectroscopy on dorsal marginal zone explants, we identified membrane tethered Xwnt5A-EGFP molecules binding to ROR2-mCherry molecules. Our data favour a model, in which membrane-tethered Wnt-5A recruits ROR2 to form large ligand/receptor clusters and signals in an endocytosis-dependent manner.
Collapse
Affiliation(s)
- Veronika Wallkamm
- Zoological Institute, Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Rene Dörlich
- Institute of Applied Physics and Insitute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Karolin Rahm
- Zoological Institute, Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tina Klessing
- Zoological Institute, Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics and Insitute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Doris Wedlich
- Zoological Institute, Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dietmar Gradl
- Zoological Institute, Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
50
|
Hagemann AIH, Kurz J, Kauffeld S, Chen Q, Reeves PM, Weber S, Schindler S, Davidson G, Kirchhausen T, Scholpp S. In vivo analysis of formation and endocytosis of the Wnt/β-catenin signaling complex in zebrafish embryos. J Cell Sci 2014; 127:3970-82. [PMID: 25074807 PMCID: PMC4163645 DOI: 10.1242/jcs.148767] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
After activation by Wnt/β-Catenin ligands, a multi-protein complex assembles at the clustering membrane-bound receptors and intracellular signal transducers into the so-called Lrp6-signalosome. However, the mechanism of signalosome formation and dissolution is yet not clear. Our imaging studies of live zebrafish embryos show that the signalosome is a highly dynamic structure. It is continuously assembled by Dvl2-mediated recruitment of the transducer complex to the activated receptors and partially disassembled by endocytosis. We find that, after internalization, the ligand-receptor complex and the transducer complex take separate routes. The Wnt–Fz–Lrp6 complex follows a Rab-positive endocytic path. However, when still bound to the transducer complex, Dvl2 forms intracellular aggregates. We show that this endocytic process is not only essential for ligand-receptor internalization but also for signaling. The μ2-subunit of the endocytic Clathrin adaptor Ap2 interacts with Dvl2 to maintain its stability during endocytosis. Blockage of Ap2μ2 function leads to Dvl2 degradation, inhibiton of signalosome formation at the plasma membrane and, consequently, reduction of signaling. We conclude that Ap2μ2-mediated endocytosis is important to maintain Wnt/β-catenin signaling in vertebrates.
Collapse
Affiliation(s)
- Anja I H Hagemann
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Jennifer Kurz
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Silke Kauffeld
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Qing Chen
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Patrick M Reeves
- Departments of Cell Biology and Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine at Boston Children's Hospital, Boston, 02115 MA, USA
| | - Sabrina Weber
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Simone Schindler
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Gary Davidson
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Tomas Kirchhausen
- Departments of Cell Biology and Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine at Boston Children's Hospital, Boston, 02115 MA, USA
| | - Steffen Scholpp
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| |
Collapse
|