1
|
Mil J, Soto JA, Matulionis N, Krall A, Day F, Stiles L, Montales KP, Azizad DJ, Gonzalez CE, Nano PR, Martija AA, Perez-Ramirez CA, Nguyen CV, Kan RL, Andrews MG, Christofk HR, Bhaduri A. Metabolic Atlas of Early Human Cortex Identifies Regulators of Cell Fate Transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642470. [PMID: 40161647 PMCID: PMC11952424 DOI: 10.1101/2025.03.10.642470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Characterization of cell type emergence during human cortical development, which enables unique human cognition, has focused primarily on anatomical and transcriptional characterizations. Metabolic processes in the human brain that allow for rapid expansion, but contribute to vulnerability to neurodevelopmental disorders, remain largely unexplored. We performed a variety of metabolic assays in primary tissue and stem cell derived cortical organoids and observed dynamic changes in core metabolic functions, including an unexpected increase in glycolysis during late neurogenesis. By depleting glucose levels in cortical organoids, we increased outer radial glia, astrocytes, and inhibitory neurons. We found the pentose phosphate pathway (PPP) was impacted in these experiments and leveraged pharmacological and genetic manipulations to recapitulate these radial glia cell fate changes. These data identify a new role for the PPP in modulating radial glia cell fate specification and generate a resource for future exploration of additional metabolic pathways in human cortical development.
Collapse
Affiliation(s)
- Jessenya Mil
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jose A. Soto
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nedas Matulionis
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Abigail Krall
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Francesca Day
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Linsey Stiles
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Katrina P. Montales
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daria J. Azizad
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Carlos E. Gonzalez
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Patricia R. Nano
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Antoni A. Martija
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cesar A. Perez-Ramirez
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Claudia V. Nguyen
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ryan L. Kan
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Madeline G. Andrews
- School of Biological and Health Systems Engineering, Arizona State University, Phoenix, AZ, United States
| | - Heather R. Christofk
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
2
|
Bury LAD, Fu S, Wynshaw-Boris A. Neuronal lineage tracing from progenitors in human cortical organoids reveals mechanisms of neuronal production, diversity, and disease. Cell Rep 2024; 43:114862. [PMID: 39395167 DOI: 10.1016/j.celrep.2024.114862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 08/14/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024] Open
Abstract
The contribution of progenitor subtypes to generating the billions of neurons produced during human cortical neurogenesis is not well understood. We developed the cortical organoid lineage-tracing (COR-LT) system for human cortical organoids. Differential fluorescent reporter activation in distinct progenitor cells leads to permanent reporter expression, enabling the progenitor cell lineage of neurons to be determined. Surprisingly, nearly all excitatory neurons produced in cortical organoids were generated indirectly from intermediate progenitor cells. Additionally, neurons of different progenitor lineages were transcriptionally distinct. Isogenic lines made from an autistic individual with and without a likely pathogenic CTNNB1 variant demonstrated that the variant substantially altered the proportion of neurons derived from specific progenitor cell lineages, as well as the lineage-specific transcriptional profiles of these neurons, suggesting a pathogenic mechanism for this mutation. These results suggest individual progenitor subtypes play roles in generating the diverse neurons of the human cerebral cortex.
Collapse
Affiliation(s)
- Luke A D Bury
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Shuai Fu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
3
|
Xing L, Huttner WB, Namba T. Role of cell metabolism in the pathophysiology of brain size-associated neurodevelopmental disorders. Neurobiol Dis 2024; 199:106607. [PMID: 39029564 DOI: 10.1016/j.nbd.2024.106607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Cell metabolism is a key regulator of human neocortex development and evolution. Several lines of evidence indicate that alterations in neural stem/progenitor cell (NPC) metabolism lead to abnormal brain development, particularly brain size-associated neurodevelopmental disorders, such as microcephaly. Abnormal NPC metabolism causes impaired cell proliferation and thus insufficient expansion of NPCs for neurogenesis. Therefore, the production of neurons, which is a major determinant of brain size, is decreased and the size of the brain, especially the size of the neocortex, is significantly reduced. This review discusses recent progress understanding NPC metabolism, focusing in particular on glucose metabolism, fatty acid metabolism and amino acid metabolism (e.g., glutaminolysis and serine metabolism). We provide an overview of the contributions of these metabolic pathways to brain development and evolution, as well as to the etiology of neurodevelopmental disorders. Furthermore, we discuss the advantages and disadvantages of various experimental models to study cell metabolism in the developing brain.
Collapse
Affiliation(s)
- Lei Xing
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Takashi Namba
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Developmental Biology, Fujita Health University School of Medicine, Toyoake, Japan; International Center for Brain Science (ICBS), Fujita Health University, Toyoake, Japan.
| |
Collapse
|
4
|
Noble MA, Ji Y, Yim KM, Yang JW, Morales M, Abu-Shamma R, Pal A, Poulsen R, Baumgartner M, Noonan JP. Human Accelerated Regions regulate gene networks implicated in apical-to-basal neural progenitor fate transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601407. [PMID: 39005466 PMCID: PMC11244942 DOI: 10.1101/2024.06.30.601407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The evolution of the human cerebral cortex involved modifications in the composition and proliferative potential of the neural stem cell (NSC) niche during brain development. Human Accelerated Regions (HARs) exhibit a significant excess of human-specific sequence changes and have been implicated in human brain evolution. Multiple studies support that HARs include neurodevelopmental enhancers with novel activities in humans, but their biological functions in NSCs have not been empirically assessed at scale. Here we conducted a direct-capture Perturb-seq screen repressing 180 neurodevelopmentally active HARs in human iPSC-derived NSCs with single-cell transcriptional readout. After profiling >188,000 NSCs, we identified a set of HAR perturbations with convergent transcriptional effects on gene networks involved in NSC apicobasal polarity, a cellular process whose precise regulation is critical to the developmental emergence of basal radial glia (bRG), a progenitor population that is expanded in humans. Across multiple HAR perturbations, we found convergent dysregulation of specific apicobasal polarity and adherens junction regulators, including PARD3, ABI2, SETD2 , and PCM1 . We found that the repression of one candidate from the screen, HAR181, as well as its target gene CADM1 , disrupted apical PARD3 localization and NSC rosette formation. Our findings reveal interconnected roles for HARs in NSC biology and cortical development and link specific HARs to processes implicated in human cortical expansion.
Collapse
|
5
|
Gkini V, Gómez-Lozano I, Heikinheimo O, Namba T. Dynamic changes in mitochondrial localization in human neocortical basal radial glial cells during cell cycle. J Comp Neurol 2024; 532:e25630. [PMID: 38852043 DOI: 10.1002/cne.25630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 05/09/2024] [Indexed: 06/10/2024]
Abstract
Mitochondria play critical roles in neural stem/progenitor cell proliferation and fate decisions. The subcellular localization of mitochondria in neural stem/progenitor cells during mitosis potentially influences the distribution of mitochondria to the daughter cells and thus their fates. Therefore, understanding the spatial dynamics of mitochondria provides important knowledge about brain development. In this study, we analyzed the subcellular localization of mitochondria in the fetal human neocortex with a particular focus on the basal radial glial cells (bRGCs), a neural stem/progenitor cell subtype attributed to the evolutionary expansion of the human neocortex. During interphase, bRGCs exhibit a polarized localization of mitochondria that is localized at the base of the process or the proximal part of the process. Thereafter, mitochondria in bRGCs at metaphase show unpolarized distribution in which the mitochondria are randomly localized in the cytoplasm. During anaphase and telophase, mitochondria are still localized evenly, but mainly in the periphery of the cytoplasm. Mitochondria start to accumulate at the cleavage furrow during cytokinesis. These results suggest that the mitochondrial localization in bRGCs is tightly regulated during the cell cycle, which may ensure the proper distribution of mitochondria to the daughter cells and, thus in turn, influence their fates.
Collapse
Affiliation(s)
- Vasiliki Gkini
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Inés Gómez-Lozano
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Oskari Heikinheimo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Takashi Namba
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Coquand L, Brunet Avalos C, Macé AS, Farcy S, Di Cicco A, Lampic M, Wimmer R, Bessières B, Attie-Bitach T, Fraisier V, Sens P, Guimiot F, Brault JB, Baffet AD. A cell fate decision map reveals abundant direct neurogenesis bypassing intermediate progenitors in the human developing neocortex. Nat Cell Biol 2024; 26:698-709. [PMID: 38548890 PMCID: PMC11098750 DOI: 10.1038/s41556-024-01393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 02/29/2024] [Indexed: 05/03/2024]
Abstract
The human neocortex has undergone strong evolutionary expansion, largely due to an increased progenitor population, the basal radial glial cells. These cells are responsible for the production of a diversity of cell types, but the successive cell fate decisions taken by individual progenitors remain unknown. Here we developed a semi-automated live/fixed correlative imaging method to map basal radial glial cell division modes in early fetal tissue and cerebral organoids. Through the live analysis of hundreds of dividing progenitors, we show that basal radial glial cells undergo abundant symmetric amplifying divisions, and frequent self-consuming direct neurogenic divisions, bypassing intermediate progenitors. These direct neurogenic divisions are more abundant in the upper part of the subventricular zone. We furthermore demonstrate asymmetric Notch activation in the self-renewing daughter cells, independently of basal fibre inheritance. Our results reveal a remarkable conservation of fate decisions in cerebral organoids, supporting their value as models of early human neurogenesis.
Collapse
Affiliation(s)
- Laure Coquand
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
- Sorbonne Université, Ecole Doctorale complexité du vivant, Paris, France
| | | | - Anne-Sophie Macé
- UMR 144-Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS-Institut Curie, Paris, France
| | - Sarah Farcy
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | | | - Marusa Lampic
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Ryszard Wimmer
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
- Sorbonne Université, Ecole Doctorale complexité du vivant, Paris, France
| | - Betina Bessières
- UF Embryofœtopathologie, Hopital Necker-enfants malades, Paris, France
| | | | - Vincent Fraisier
- UMR 144-Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS-Institut Curie, Paris, France
| | - Pierre Sens
- Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - Fabien Guimiot
- UF de Fœtopathologie - Université de Paris et Inserm UMR1141, Hôpital Robert Debré, Paris, France
| | | | - Alexandre D Baffet
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France.
- Institut national de la santé et de la recherche médicale, Paris, France.
| |
Collapse
|
7
|
Walsh RM, Luongo R, Giacomelli E, Ciceri G, Rittenhouse C, Verrillo A, Galimberti M, Bocchi VD, Wu Y, Xu N, Mosole S, Muller J, Vezzoli E, Jungverdorben J, Zhou T, Barker RA, Cattaneo E, Studer L, Baggiolini A. Generation of human cerebral organoids with a structured outer subventricular zone. Cell Rep 2024; 43:114031. [PMID: 38583153 PMCID: PMC11322983 DOI: 10.1016/j.celrep.2024.114031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Outer radial glia (oRG) emerge as cortical progenitor cells that support the development of an enlarged outer subventricular zone (oSVZ) and the expansion of the neocortex. The in vitro generation of oRG is essential to investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 signaling pathway using leukemia inhibitory factor (LIF), which is not expressed in guided cortical organoids, we define a cortical organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ. The oSVZ comprises progenitor cells expressing specific oRG markers such as GFAP, LIFR, and HOPX, closely matching human fetal oRG. Finally, incorporating neural crest-derived LIF-producing cortical pericytes into cortical organoids recapitulates the effects of LIF treatment. These data indicate that increasing the cellular complexity of the organoid microenvironment promotes the emergence of oRG and supports a platform to study oRG in hPSC-derived brain organoids routinely.
Collapse
Affiliation(s)
- Ryan M Walsh
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Raffaele Luongo
- Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS+), 6500 Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Elisa Giacomelli
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriele Ciceri
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chelsea Rittenhouse
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medicine Graduate School of Medical Sciences, Department of Neuroscience, New York, NY 1300, USA
| | - Antonietta Verrillo
- Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS+), 6500 Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Maura Galimberti
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; INGM, Istituto Nazionale Genetica Molecolare, 20122 Milan, Italy
| | - Vittoria Dickinson Bocchi
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Youjun Wu
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Nan Xu
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Simone Mosole
- Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS+), 6500 Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - James Muller
- Developmental Biology and Immunology Programs, Sloan Kettering Institute, New York, NY 10065, USA
| | - Elena Vezzoli
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; INGM, Istituto Nazionale Genetica Molecolare, 20122 Milan, Italy
| | - Johannes Jungverdorben
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ting Zhou
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Roger A Barker
- Cambridge Stem Cell Institute and John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Forvie Site, University of Cambridge, Cambridge, UK
| | - Elena Cattaneo
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; INGM, Istituto Nazionale Genetica Molecolare, 20122 Milan, Italy
| | - Lorenz Studer
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medicine Graduate School of Medical Sciences, Department of Neuroscience, New York, NY 1300, USA.
| | - Arianna Baggiolini
- Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS+), 6500 Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland.
| |
Collapse
|
8
|
Xu L, Yuan Z, Zhou J, Zhao Y, Liu W, Lu S, He Z, Qiang B, Shu P, Chen Y, Peng X. Temporal transcriptomic dynamics in developing macaque neocortex. eLife 2024; 12:RP90325. [PMID: 38415809 PMCID: PMC10911584 DOI: 10.7554/elife.90325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Despite intense research on mice, the transcriptional regulation of neocortical neurogenesis remains limited in humans and non-human primates. Cortical development in rhesus macaque is known to recapitulate multiple facets of cortical development in humans, including the complex composition of neural stem cells and the thicker supragranular layer. To characterize temporal shifts in transcriptomic programming responsible for differentiation from stem cells to neurons, we sampled parietal lobes of rhesus macaque at E40, E50, E70, E80, and E90, spanning the full period of prenatal neurogenesis. Single-cell RNA sequencing produced a transcriptomic atlas of developing parietal lobe in rhesus macaque neocortex. Identification of distinct cell types and neural stem cells emerging in different developmental stages revealed a terminally bifurcating trajectory from stem cells to neurons. Notably, deep-layer neurons appear in the early stages of neurogenesis, while upper-layer neurons appear later. While these different lineages show overlap in their differentiation program, cell fates are determined post-mitotically. Trajectories analysis from ventricular radial glia (vRGs) to outer radial glia (oRGs) revealed dynamic gene expression profiles and identified differential activation of BMP, FGF, and WNT signaling pathways between vRGs and oRGs. These results provide a comprehensive overview of the temporal patterns of gene expression leading to different fates of radial glial progenitors during neocortex layer formation.
Collapse
Affiliation(s)
- Longjiang Xu
- Institute of Medical Biology Chinese Academy of Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical CollegeKunmingChina
| | - Zan Yuan
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural UniversityWuhanChina
| | - Jiafeng Zhou
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major Diseases, Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Yuan Zhao
- Institute of Medical Biology Chinese Academy of Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical CollegeKunmingChina
| | - Wei Liu
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major Diseases, Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Shuaiyao Lu
- Institute of Medical Biology Chinese Academy of Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical CollegeKunmingChina
| | - Zhanlong He
- Institute of Medical Biology Chinese Academy of Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical CollegeKunmingChina
| | - Boqin Qiang
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major Diseases, Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Pengcheng Shu
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major Diseases, Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| | - Yang Chen
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major Diseases, Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Xiaozhong Peng
- Institute of Medical Biology Chinese Academy of Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical CollegeKunmingChina
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
9
|
Barresi M, Hickmott RA, Bosakhar A, Quezada S, Quigley A, Kawasaki H, Walker D, Tolcos M. Toward a better understanding of how a gyrified brain develops. Cereb Cortex 2024; 34:bhae055. [PMID: 38425213 DOI: 10.1093/cercor/bhae055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 03/02/2024] Open
Abstract
The size and shape of the cerebral cortex have changed dramatically across evolution. For some species, the cortex remains smooth (lissencephalic) throughout their lifetime, while for other species, including humans and other primates, the cortex increases substantially in size and becomes folded (gyrencephalic). A folded cortex boasts substantially increased surface area, cortical thickness, and neuronal density, and it is therefore associated with higher-order cognitive abilities. The mechanisms that drive gyrification in some species, while others remain lissencephalic despite many shared neurodevelopmental features, have been a topic of investigation for many decades, giving rise to multiple perspectives of how the gyrified cerebral cortex acquires its unique shape. Recently, a structurally unique germinal layer, known as the outer subventricular zone, and the specialized cell type that populates it, called basal radial glial cells, were identified, and these have been shown to be indispensable for cortical expansion and folding. Transcriptional analyses and gene manipulation models have provided an invaluable insight into many of the key cellular and genetic drivers of gyrification. However, the degree to which certain biomechanical, genetic, and cellular processes drive gyrification remains under investigation. This review considers the key aspects of cerebral expansion and folding that have been identified to date and how theories of gyrification have evolved to incorporate this new knowledge.
Collapse
Affiliation(s)
- Mikaela Barresi
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
- ACMD, St Vincent's Hospital Melbourne, Regent Street, Fitzroy, VIC 3065, Australia
| | - Ryan Alexander Hickmott
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
- ACMD, St Vincent's Hospital Melbourne, Regent Street, Fitzroy, VIC 3065, Australia
| | - Abdulhameed Bosakhar
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
| | - Sebastian Quezada
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
| | - Anita Quigley
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
- ACMD, St Vincent's Hospital Melbourne, Regent Street, Fitzroy, VIC 3065, Australia
- School of Engineering, RMIT University, La Trobe Street, Melbourne, VIC 3000, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Regent Street, Fitzroy, VIC 3065, Australia
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa 920-8640, Japan
| | - David Walker
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
| |
Collapse
|
10
|
Park SHE, Kulkarni A, Konopka G. FOXP1 orchestrates neurogenesis in human cortical basal radial glial cells. PLoS Biol 2023; 21:e3001852. [PMID: 37540706 PMCID: PMC10431666 DOI: 10.1371/journal.pbio.3001852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 08/16/2023] [Accepted: 06/21/2023] [Indexed: 08/06/2023] Open
Abstract
During cortical development, human basal radial glial cells (bRGCs) are highly capable of sustained self-renewal and neurogenesis. Selective pressures on this cell type may have contributed to the evolution of the human neocortex, leading to an increase in cortical size. bRGCs have enriched expression for Forkhead Box P1 (FOXP1), a transcription factor implicated in neurodevelopmental disorders (NDDs) such as autism spectrum disorder. However, the cell type-specific roles of FOXP1 in bRGCs during cortical development remain unexplored. Here, we examine the requirement for FOXP1 gene expression regulation underlying the production of bRGCs using human brain organoids. We examine a developmental time point when FOXP1 expression is highest in the cortical progenitors, and the bRGCs, in particular, begin to actively produce neurons. With the loss of FOXP1, we show a reduction in the number of bRGCs, as well as reduced proliferation and differentiation of the remaining bRGCs, all of which lead to reduced numbers of excitatory cortical neurons over time. Using single-nuclei RNA sequencing and cell trajectory analysis, we uncover a role for FOXP1 in directing cortical progenitor proliferation and differentiation by regulating key signaling pathways related to neurogenesis and NDDs. Together, these results demonstrate that FOXP1 regulates human-specific features in early cortical development.
Collapse
Affiliation(s)
- Seon Hye E. Park
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
11
|
Wimmer R, Baffet AD. The microtubule cytoskeleton of radial glial progenitor cells. Curr Opin Neurobiol 2023; 80:102709. [PMID: 37003105 DOI: 10.1016/j.conb.2023.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
A high number of genetic mutations associated with cortical malformations are found in genes coding for microtubule-related factors. This has stimulated research to understand how the various microtubule-based processes are regulated to build a functional cerebral cortex. Here, we focus our review on the radial glial progenitor cells, the stem cells of the developing neocortex, summarizing research mostly performed in rodents and humans. We highlight how the centrosomal and acentrosomal microtubule networks are organized during interphase to support polarized transport and proper attachment of the apical and basal processes. We describe the molecular mechanism for interkinetic nuclear migration (INM), a microtubule-dependent oscillation of the nucleus. Finally, we describe how the mitotic spindle is built to ensure proper chromosome segregation, with a strong focus on factors mutated in microcephaly.
Collapse
Affiliation(s)
- Ryszard Wimmer
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France. https://twitter.com/RyWim
| | - Alexandre D Baffet
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France; Institut national de la santé et de la recherche médicale (INSERM), France.
| |
Collapse
|
12
|
Proshchina A, Kharlamova A, Krivova Y, Godovalova O, Otlyga D, Gulimova V, Otlyga E, Junemann O, Sonin G, Saveliev S. Neuromorphological Atlas of Human Prenatal Brain Development: White Paper. Life (Basel) 2023; 13:life13051182. [PMID: 37240827 DOI: 10.3390/life13051182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Recent morphological data on human brain development are quite fragmentary. However, they are highly requested for a number of medical practices, educational programs, and fundamental research in the fields of embryology, cytology and histology, neurology, physiology, path anatomy, neonatology, and others. This paper provides the initial information on the new online Human Prenatal Brain Development Atlas (HBDA). The Atlas will start with forebrain annotated hemisphere maps, based on human fetal brain serial sections at the different stages of prenatal ontogenesis. Spatiotemporal changes in the regional-specific immunophenotype profiles will also be demonstrated on virtual serial sections. The HBDA can serve as a reference database for the neurological research, which provides opportunity to compare the data obtained by noninvasive techniques, such as neurosonography, X-ray computed tomography and magnetic resonance imaging, functional magnetic resonance imaging, 3D high-resolution phase-contrast computed tomography visualization techniques, as well as spatial transcriptomics data. It could also become a database for the qualitative and quantitative analysis of individual variability in the human brain. Systemized data on the mechanisms and pathways of prenatal human glio- and neurogenesis could also contribute to the search for new therapy methods for a large spectrum of neurological pathologies, including neurodegenerative and cancer diseases. The preliminary data are now accessible on the special HBDA website.
Collapse
Affiliation(s)
- Alexandra Proshchina
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Anastasia Kharlamova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Yuliya Krivova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Olga Godovalova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Dmitriy Otlyga
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Victoria Gulimova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Ekaterina Otlyga
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Olga Junemann
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Gleb Sonin
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| | - Sergey Saveliev
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia
| |
Collapse
|
13
|
Mulder LA, Depla JA, Sridhar A, Wolthers K, Pajkrt D, Vieira de Sá R. A beginner's guide on the use of brain organoids for neuroscientists: a systematic review. Stem Cell Res Ther 2023; 14:87. [PMID: 37061699 PMCID: PMC10105545 DOI: 10.1186/s13287-023-03302-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 03/27/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND The first human brain organoid protocol was presented in the beginning of the previous decade, and since then, the field witnessed the development of many new brain region-specific models, and subsequent protocol adaptations and modifications. The vast amount of data available on brain organoid technology may be overwhelming for scientists new to the field and consequently decrease its accessibility. Here, we aimed at providing a practical guide for new researchers in the field by systematically reviewing human brain organoid publications. METHODS Articles published between 2010 and 2020 were selected and categorised for brain organoid applications. Those describing neurodevelopmental studies or protocols for novel organoid models were further analysed for culture duration of the brain organoids, protocol comparisons of key aspects of organoid generation, and performed functional characterisation assays. We then summarised the approaches taken for different models and analysed the application of small molecules and growth factors used to achieve organoid regionalisation. Finally, we analysed articles for organoid cell type compositions, the reported time points per cell type, and for immunofluorescence markers used to characterise different cell types. RESULTS Calcium imaging and patch clamp analysis were the most frequently used neuronal activity assays in brain organoids. Neural activity was shown in all analysed models, yet network activity was age, model, and assay dependent. Induction of dorsal forebrain organoids was primarily achieved through combined (dual) SMAD and Wnt signalling inhibition. Ventral forebrain organoid induction was performed with dual SMAD and Wnt signalling inhibition, together with additional activation of the Shh pathway. Cerebral organoids and dorsal forebrain model presented the most cell types between days 35 and 60. At 84 days, dorsal forebrain organoids contain astrocytes and potentially oligodendrocytes. Immunofluorescence analysis showed cell type-specific application of non-exclusive markers for multiple cell types. CONCLUSIONS We provide an easily accessible overview of human brain organoid cultures, which may help those working with brain organoids to define their choice of model, culture time, functional assay, differentiation, and characterisation strategies.
Collapse
Affiliation(s)
- Lance A Mulder
- Department of Paediatric Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| | - Josse A Depla
- Department of Paediatric Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- uniQure Biopharma B.V., Amsterdam, The Netherlands
| | - Adithya Sridhar
- Department of Paediatric Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Katja Wolthers
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Dasja Pajkrt
- Department of Paediatric Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Renata Vieira de Sá
- Department Medical Microbiology, OrganoVIR Labs, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- uniQure Biopharma B.V., Amsterdam, The Netherlands
| |
Collapse
|
14
|
Sutlive J, Seyyedhosseinzadeh H, Ao Z, Xiu H, Choudhury S, Gou K, Guo F, Chen Z. Mechanics of morphogenesis in neural development: In vivo, in vitro, and in silico. BRAIN MULTIPHYSICS 2023. [DOI: 10.1016/j.brain.2022.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
15
|
Andrews MG, Subramanian L, Salma J, Kriegstein AR. How mechanisms of stem cell polarity shape the human cerebral cortex. Nat Rev Neurosci 2022; 23:711-724. [PMID: 36180551 PMCID: PMC10571506 DOI: 10.1038/s41583-022-00631-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
Apical-basal progenitor cell polarity establishes key features of the radial and laminar architecture of the developing human cortex. The unique diversity of cortical stem cell populations and an expansion of progenitor population size in the human cortex have been mirrored by an increase in the complexity of cellular processes that regulate stem cell morphology and behaviour, including their polarity. The study of human cells in primary tissue samples and human stem cell-derived model systems (such as cortical organoids) has provided insight into these processes, revealing that protein complexes regulate progenitor polarity by controlling cell membrane adherence within appropriate cortical niches and are themselves regulated by cytoskeletal proteins, signalling molecules and receptors, and cellular organelles. Studies exploring how cortical stem cell polarity is established and maintained are key for understanding the features of human brain development and have implications for neurological dysfunction.
Collapse
Affiliation(s)
- Madeline G Andrews
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Lakshmi Subramanian
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmacology, Ideaya Biosciences, South San Francisco, CA, USA
| | - Jahan Salma
- Centre for Regenerative Medicine and Stem Cell Research, The Aga Khan University, Karachi, Pakistan
| | - Arnold R Kriegstein
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
16
|
Brault J, Bardin S, Lampic M, Carpentieri JA, Coquand L, Penisson M, Lachuer H, Victoria GS, Baloul S, El Marjou F, Boncompain G, Miserey‐Lenkei S, Belvindrah R, Fraisier V, Francis F, Perez F, Goud B, Baffet AD. RAB6
and dynein drive
post‐Golgi
apical transport to prevent neuronal progenitor delamination. EMBO Rep 2022; 23:e54605. [PMID: 35979738 PMCID: PMC9535803 DOI: 10.15252/embr.202254605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Radial glial (RG) cells are the neural stem cells of the developing neocortex. Apical RG (aRG) cells can delaminate to generate basal RG (bRG) cells, a cell type associated with human brain expansion. Here, we report that aRG delamination is regulated by the post‐Golgi secretory pathway. Using in situ subcellular live imaging, we show that post‐Golgi transport of RAB6+ vesicles occurs toward the minus ends of microtubules and depends on dynein. We demonstrate that the apical determinant Crumbs3 (CRB3) is also transported by dynein. Double knockout of RAB6A/A' and RAB6B impairs apical localization of CRB3 and induces a retraction of aRG cell apical process, leading to delamination and ectopic division. These defects are phenocopied by knockout of the dynein activator LIS1. Overall, our results identify a RAB6‐dynein‐LIS1 complex for Golgi to apical surface transport in aRG cells, and highlights the role of this pathway in the maintenance of neuroepithelial integrity.
Collapse
Affiliation(s)
| | - Sabine Bardin
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | - Marusa Lampic
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | | | - Laure Coquand
- Institut Curie PSL Research University, CNRS UMR144 Paris France
- Sorbonne University Paris France
| | - Maxime Penisson
- Sorbonne University Paris France
- INSERM UMR‐S 1270 Paris France
- Institut du Fer à Moulin Paris France
| | - Hugo Lachuer
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | | | - Sarah Baloul
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | - Fatima El Marjou
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | | | | | - Richard Belvindrah
- Sorbonne University Paris France
- INSERM UMR‐S 1270 Paris France
- Institut du Fer à Moulin Paris France
| | - Vincent Fraisier
- UMR 144‐Cell and Tissue Imaging Facility (PICT‐IBiSA) CNRS‐Institut Curie Paris France
| | - Fiona Francis
- Sorbonne University Paris France
- INSERM UMR‐S 1270 Paris France
- Institut du Fer à Moulin Paris France
| | - Franck Perez
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | - Bruno Goud
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | - Alexandre D Baffet
- Institut Curie PSL Research University, CNRS UMR144 Paris France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Paris France
| |
Collapse
|
17
|
Suzuki IK. Evolutionary innovations of human cerebral cortex viewed through the lens of high-throughput sequencing. Dev Neurobiol 2022; 82:476-494. [PMID: 35765158 DOI: 10.1002/dneu.22893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
Humans had acquired a tremendously enlarged cerebral cortex containing a huge quantity and variety of cells during evolution. Such evolutionary uniqueness offers a neural basis of our cognitive innovation and human-specific features of neurodevelopmental and psychiatric disorders. Since human brain is hardly examined in vivo with experimental approaches commonly applied on animal models, the recent advancement of sequencing technologies offers an indispensable viewpoint of human brain anatomy and development. This review introduces the recent findings on the unique features in the adult and the characteristic developmental processes of the human cerebral cortex, based on high throughput DNA sequencing technologies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ikuo K Suzuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
18
|
Kaluthantrige Don F, Kalebic N. Forebrain Organoids to Model the Cell Biology of Basal Radial Glia in Neurodevelopmental Disorders and Brain Evolution. Front Cell Dev Biol 2022; 10:917166. [PMID: 35774229 PMCID: PMC9237216 DOI: 10.3389/fcell.2022.917166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
The acquisition of higher intellectual abilities that distinguish humans from their closest relatives correlates greatly with the expansion of the cerebral cortex. This expansion is a consequence of an increase in neuronal cell production driven by the higher proliferative capacity of neural progenitor cells, in particular basal radial glia (bRG). Furthermore, when the proliferation of neural progenitor cells is impaired and the final neuronal output is altered, severe neurodevelopmental disorders can arise. To effectively study the cell biology of human bRG, genetically accessible human experimental models are needed. With the pioneering success to isolate and culture pluripotent stem cells in vitro, we can now routinely investigate the developing human cerebral cortex in a dish using three-dimensional multicellular structures called organoids. Here, we will review the molecular and cell biological features of bRG that have recently been elucidated using brain organoids. We will further focus on the application of this simple model system to study in a mechanistically actionable way the molecular and cellular events in bRG that can lead to the onset of various neurodevelopmental diseases.
Collapse
|
19
|
Casas Gimeno G, Paridaen JTML. The Symmetry of Neural Stem Cell and Progenitor Divisions in the Vertebrate Brain. Front Cell Dev Biol 2022; 10:885269. [PMID: 35693936 PMCID: PMC9174586 DOI: 10.3389/fcell.2022.885269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 12/23/2022] Open
Abstract
Robust brain development requires the tight coordination between tissue growth, neuronal differentiation and stem cell maintenance. To achieve this, neural stem cells need to balance symmetric proliferative and terminal divisions with asymmetric divisions. In recent years, the unequal distribution of certain cellular components in mitosis has emerged as a key mechanism to regulate the symmetry of division, and the determination of equal and unequal sister cell fates. Examples of such components include polarity proteins, signaling components, and cellular structures such as endosomes and centrosomes. In several types of neural stem cells, these factors show specific patterns of inheritance that correlate to specific cell fates, albeit the underlying mechanism and the potential causal relationship is not always understood. Here, we review these examples of cellular neural stem and progenitor cell asymmetries and will discuss how they fit into our current understanding of neural stem cell function in neurogenesis in developing and adult brains. We will focus mainly on the vertebrate brain, though we will incorporate relevant examples from invertebrate organisms as well. In particular, we will highlight recent advances in our understanding of the complexities related cellular asymmetries in determining division mode outcomes, and how these mechanisms are spatiotemporally regulated to match the different needs for proliferation and differentiation as the brain forms.
Collapse
|
20
|
Vaid S, Huttner WB. Progenitor-Based Cell Biological Aspects of Neocortex Development and Evolution. Front Cell Dev Biol 2022; 10:892922. [PMID: 35602606 PMCID: PMC9119302 DOI: 10.3389/fcell.2022.892922] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
During development, the decision of stem and progenitor cells to switch from proliferation to differentiation is of critical importance for the overall size of an organ. Too early a switch will deplete the stem/progenitor cell pool, and too late a switch will not generate the required differentiated cell types. With a focus on the developing neocortex, a six-layered structure constituting the major part of the cerebral cortex in mammals, we discuss here the cell biological features that are crucial to ensure the appropriate proliferation vs. differentiation decision in the neural progenitor cells. In the last two decades, the neural progenitor cells giving rise to the diverse types of neurons that function in the neocortex have been intensely investigated for their role in cortical expansion and gyrification. In this review, we will first describe these different progenitor types and their diversity. We will then review the various cell biological features associated with the cell fate decisions of these progenitor cells, with emphasis on the role of the radial processes emanating from these progenitor cells. We will also discuss the species-specific differences in these cell biological features that have allowed for the evolutionary expansion of the neocortex in humans. Finally, we will discuss the emerging role of cell cycle parameters in neocortical expansion.
Collapse
Affiliation(s)
- Samir Vaid
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- *Correspondence: Samir Vaid, ; Wieland B. Huttner,
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- *Correspondence: Samir Vaid, ; Wieland B. Huttner,
| |
Collapse
|
21
|
Casingal CR, Descant KD, Anton ES. Coordinating cerebral cortical construction and connectivity: Unifying influence of radial progenitors. Neuron 2022; 110:1100-1115. [PMID: 35216663 PMCID: PMC8989671 DOI: 10.1016/j.neuron.2022.01.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 01/26/2022] [Indexed: 01/02/2023]
Abstract
Radial progenitor development and function lay the foundation for the construction of the cerebral cortex. Radial glial scaffold, through its functions as a source of neurogenic progenitors and neuronal migration guide, is thought to provide a template for the formation of the cerebral cortex. Emerging evidence is challenging this limited view. Intriguingly, radial glial scaffold may also play a role in axonal growth, guidance, and neuronal connectivity. Radial glial cells not only facilitate the generation, placement, and allocation of neurons in the cortex but also regulate how they wire up. The organization and function of radial glial cells may thus be a unifying feature of the developing cortex that helps to precisely coordinate the right patterns of neurogenesis, neuronal placement, and connectivity necessary for the emergence of a functional cerebral cortex. This perspective critically explores this emerging view and its impact in the context of human brain development and disorders.
Collapse
Affiliation(s)
- Cristine R Casingal
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katherine D Descant
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - E S Anton
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
22
|
Caporale N, Leemans M, Birgersson L, Germain PL, Cheroni C, Borbély G, Engdahl E, Lindh C, Bressan RB, Cavallo F, Chorev NE, D'Agostino GA, Pollard SM, Rigoli MT, Tenderini E, Tobon AL, Trattaro S, Troglio F, Zanella M, Bergman Å, Damdimopoulou P, Jönsson M, Kiess W, Kitraki E, Kiviranta H, Nånberg E, Öberg M, Rantakokko P, Rudén C, Söder O, Bornehag CG, Demeneix B, Fini JB, Gennings C, Rüegg J, Sturve J, Testa G. From cohorts to molecules: Adverse impacts of endocrine disrupting mixtures. Science 2022; 375:eabe8244. [PMID: 35175820 DOI: 10.1126/science.abe8244] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Convergent evidence associates exposure to endocrine disrupting chemicals (EDCs) with major human diseases, even at regulation-compliant concentrations. This might be because humans are exposed to EDC mixtures, whereas chemical regulation is based on a risk assessment of individual compounds. Here, we developed a mixture-centered risk assessment strategy that integrates epidemiological and experimental evidence. We identified that exposure to an EDC mixture in early pregnancy is associated with language delay in offspring. At human-relevant concentrations, this mixture disrupted hormone-regulated and disease-relevant regulatory networks in human brain organoids and in the model organisms Xenopus leavis and Danio rerio, as well as behavioral responses. Reinterrogating epidemiological data, we found that up to 54% of the children had prenatal exposures above experimentally derived levels of concern, reaching, for the upper decile compared with the lowest decile of exposure, a 3.3 times higher risk of language delay.
Collapse
Affiliation(s)
- Nicolò Caporale
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy.,Human Technopole, V.le Rita Levi-Montalcini, 1, 20157 Milan, Italy
| | - Michelle Leemans
- UMR 7221, Phyma, CNRS-Muséum National d'Histoire Naturelle, Sorbonne Université, 75005 Paris, France
| | - Lina Birgersson
- Department of Biological and Environmental Sciences, University of Gothenburg, 41463 Gothenburg, Sweden
| | - Pierre-Luc Germain
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Cristina Cheroni
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy.,Human Technopole, V.le Rita Levi-Montalcini, 1, 20157 Milan, Italy
| | - Gábor Borbély
- Swedish Toxicology Sciences Research Center (SWETOX), Södertälje, Sweden
| | - Elin Engdahl
- Swedish Toxicology Sciences Research Center (SWETOX), Södertälje, Sweden.,Department of Organismal Biology, Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-221 85 Lund, Sweden
| | - Raul Bardini Bressan
- Medical Research Council Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh, UK
| | - Francesca Cavallo
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Nadav Even Chorev
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Giuseppe Alessandro D'Agostino
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Steven M Pollard
- Medical Research Council Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh, UK
| | - Marco Tullio Rigoli
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy
| | - Erika Tenderini
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Alejandro Lopez Tobon
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Sebastiano Trattaro
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy
| | - Flavia Troglio
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Matteo Zanella
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Åke Bergman
- Swedish Toxicology Sciences Research Center (SWETOX), Södertälje, Sweden.,Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden.,School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Pauliina Damdimopoulou
- Swedish Toxicology Sciences Research Center (SWETOX), Södertälje, Sweden.,Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Maria Jönsson
- Department of Organismal Biology, Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Wieland Kiess
- Hospital for Children and Adolescents, Department of Women and Child Health, University Hospital, University of Leipzig, 04103 Leipzig, Germany
| | - Efthymia Kitraki
- Lab of Basic Sciences, Faculty of Dentistry, National and Kapodistrian University of Athens, 152 72 Athens, Greece
| | - Hannu Kiviranta
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Kuopio 70210, Finland
| | - Eewa Nånberg
- School of Health Sciences, Örebro University, SE-70182 Örebro, Sweden
| | - Mattias Öberg
- Swedish Toxicology Sciences Research Center (SWETOX), Södertälje, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Panu Rantakokko
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Kuopio 70210, Finland
| | - Christina Rudén
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Olle Söder
- Department of Women's and Children's Health, Pediatric Endocrinology Division, Karolinska Institutet and University Hospital, SE-17176 Stockholm, Sweden
| | - Carl-Gustaf Bornehag
- Faculty of Health, Science and Technology, Department of Health Sciences, Karlstad University, SE- 651 88 Karlstad, Sweden.,Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Barbara Demeneix
- UMR 7221, Phyma, CNRS-Muséum National d'Histoire Naturelle, Sorbonne Université, 75005 Paris, France
| | - Jean-Baptiste Fini
- UMR 7221, Phyma, CNRS-Muséum National d'Histoire Naturelle, Sorbonne Université, 75005 Paris, France
| | - Chris Gennings
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joëlle Rüegg
- Swedish Toxicology Sciences Research Center (SWETOX), Södertälje, Sweden.,Department of Organismal Biology, Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, 41463 Gothenburg, Sweden
| | - Giuseppe Testa
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy.,Human Technopole, V.le Rita Levi-Montalcini, 1, 20157 Milan, Italy
| |
Collapse
|
23
|
Cho AN, Jin Y, An Y, Kim J, Choi YS, Lee JS, Kim J, Choi WY, Koo DJ, Yu W, Chang GE, Kim DY, Jo SH, Kim J, Kim SY, Kim YG, Kim JY, Choi N, Cheong E, Kim YJ, Je HS, Kang HC, Cho SW. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun 2021; 12:4730. [PMID: 34354063 PMCID: PMC8342542 DOI: 10.1038/s41467-021-24775-5] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/06/2021] [Indexed: 11/10/2022] Open
Abstract
Brain organoids derived from human pluripotent stem cells provide a highly valuable in vitro model to recapitulate human brain development and neurological diseases. However, the current systems for brain organoid culture require further improvement for the reliable production of high-quality organoids. Here, we demonstrate two engineering elements to improve human brain organoid culture, (1) a human brain extracellular matrix to provide brain-specific cues and (2) a microfluidic device with periodic flow to improve the survival and reduce the variability of organoids. A three-dimensional culture modified with brain extracellular matrix significantly enhanced neurogenesis in developing brain organoids from human induced pluripotent stem cells. Cortical layer development, volumetric augmentation, and electrophysiological function of human brain organoids were further improved in a reproducible manner by dynamic culture in microfluidic chamber devices. Our engineering concept of reconstituting brain-mimetic microenvironments facilitates the development of a reliable culture platform for brain organoids, enabling effective modeling and drug development for human brain diseases.
Collapse
Affiliation(s)
- Ann-Na Cho
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yoonhee Jin
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yeonjoo An
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jin Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yi Sun Choi
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jung Seung Lee
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Junghoon Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Won-Young Choi
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Dong-Jun Koo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Weonjin Yu
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Gyeong-Eon Chang
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Dong-Yoon Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Jihun Kim
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Yon Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ju Young Kim
- Department of Advanced Materials Engineering, Kangwon National University, Samcheok, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Eunji Cheong
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Young-Joon Kim
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Hyunsoo Shawn Je
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea.
- Center for Nanomedicine, Institute for Basic science (IBS), Seoul, Republic of Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Centrosome regulation and function in mammalian cortical neurogenesis. Curr Opin Neurobiol 2021; 69:256-266. [PMID: 34303132 DOI: 10.1016/j.conb.2021.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023]
Abstract
As the primary microtubule-organizing center in animal cells, centrosomes regulate microtubule cytoskeleton to support various cellular behaviors. They also serve as the base for nucleating primary cilia, the hub of diverse signaling pathways. Cells typically possess one centrosome that contains two inequal centrioles and undergoes semi-conservative duplication during cell division, resulting in two centrosomes with an inherent asymmetry in age and properties. While the centrosome is ubiquitously present, mutations of centrosome proteins are strongly associated with human microcephaly characterized by a small cerebral cortex, underscoring the importance of an intact centrosome in supporting cortical neurogenesis. Here we review recent advances on centrosome regulation and function in mammalian cortical neural progenitors and discuss the implications for a better understanding of cortical neurogenesis and related disease mechanisms.
Collapse
|
25
|
Brémond Martin C, Simon Chane C, Clouchoux C, Histace A. Recent Trends and Perspectives in Cerebral Organoids Imaging and Analysis. Front Neurosci 2021; 15:629067. [PMID: 34276279 PMCID: PMC8283195 DOI: 10.3389/fnins.2021.629067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/20/2021] [Indexed: 01/04/2023] Open
Abstract
Purpose: Since their first generation in 2013, the use of cerebral organoids has spread exponentially. Today, the amount of generated data is becoming challenging to analyze manually. This review aims to overview the current image acquisition methods and to subsequently identify the needs in image analysis tools for cerebral organoids. Methods: To address this question, we went through all recent articles published on the subject and annotated the protocols, acquisition methods, and algorithms used. Results: Over the investigated period of time, confocal microscopy and bright-field microscopy were the most used acquisition techniques. Cell counting, the most common task, is performed in 20% of the articles and area; around 12% of articles calculate morphological parameters. Image analysis on cerebral organoids is performed in majority using ImageJ software (around 52%) and Matlab language (4%). Treatments remain mostly semi-automatic. We highlight the limitations encountered in image analysis in the cerebral organoid field and suggest possible solutions and implementations to develop. Conclusions: In addition to providing an overview of cerebral organoids cultures and imaging, this work highlights the need to improve the existing image analysis methods for such images and the need for specific analysis tools. These solutions could specifically help to monitor the growth of future standardized cerebral organoids.
Collapse
Affiliation(s)
- Clara Brémond Martin
- ETIS Laboratory UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, Cergy, France
- WITSEE, Paris, France
| | - Camille Simon Chane
- ETIS Laboratory UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, Cergy, France
| | | | - Aymeric Histace
- ETIS Laboratory UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, Cergy, France
| |
Collapse
|
26
|
Vasistha NA, Khodosevich K. The impact of (ab)normal maternal environment on cortical development. Prog Neurobiol 2021; 202:102054. [PMID: 33905709 DOI: 10.1016/j.pneurobio.2021.102054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/01/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022]
Abstract
The cortex in the mammalian brain is the most complex brain region that integrates sensory information and coordinates motor and cognitive processes. To perform such functions, the cortex contains multiple subtypes of neurons that are generated during embryogenesis. Newly born neurons migrate to their proper location in the cortex, grow axons and dendrites, and form neuronal circuits. These developmental processes in the fetal brain are regulated to a large extent by a great variety of factors derived from the mother - starting from simple nutrients as building blocks and ending with hormones. Thus, when the normal maternal environment is disturbed due to maternal infection, stress, malnutrition, or toxic substances, it might have a profound impact on cortical development and the offspring can develop a variety of neurodevelopmental disorders. Here we first describe the major developmental processes which generate neuronal diversity in the cortex. We then review our knowledge of how most common maternal insults affect cortical development, perturb neuronal circuits, and lead to neurodevelopmental disorders. We further present a concept of selective vulnerability of cortical neuronal subtypes to maternal-derived insults, where the vulnerability of cortical neurons and their progenitors to an insult depends on the time (developmental period), place (location in the developing brain), and type (unique features of a cell type and an insult). Finally, we provide evidence for the existence of selective vulnerability during cortical development and identify the most vulnerable neuronal types, stages of differentiation, and developmental time for major maternal-derived insults.
Collapse
Affiliation(s)
- Navneet A Vasistha
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
27
|
Kawaguchi A. Neuronal Delamination and Outer Radial Glia Generation in Neocortical Development. Front Cell Dev Biol 2021; 8:623573. [PMID: 33614631 PMCID: PMC7892903 DOI: 10.3389/fcell.2020.623573] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022] Open
Abstract
During neocortical development, many neuronally differentiating cells (neurons and intermediate progenitor cells) are generated at the apical/ventricular surface by the division of neural progenitor cells (apical radial glial cells, aRGs). Neurogenic cell delamination, in which these neuronally differentiating cells retract their apical processes and depart from the apical surface, is the first step of their migration. Since the microenvironment established by the apical endfeet is crucial for maintaining neuroepithelial (NE)/aRGs, proper timing of the detachment of the apical endfeet is critical for the quantitative control of neurogenesis in cerebral development. During delamination, the microtubule-actin-AJ (adherens junction) configuration at the apical endfeet shows dynamic changes, concurrent with the constriction of the AJ ring at the apical endfeet and downregulation of cadherin expression. This process is mediated by transcriptional suppression of AJ-related molecules and multiple cascades to regulate cell adhesion and cytoskeletal architecture in a posttranscriptional manner. Recent advances have added molecules to the latter category: the interphase centrosome protein AKNA affects microtubule dynamics to destabilize the microtubule-actin-AJ complex, and the microtubule-associated protein Lzts1 inhibits microtubule assembly and activates actomyosin systems at the apical endfeet of differentiating cells. Moreover, Lzts1 induces the oblique division of aRGs, and loss of Lzts1 reduces the generation of outer radial glia (oRGs, also called basal radial glia, bRGs), another type of neural progenitor cell in the subventricular zone. These findings suggest that neurogenic cell delamination, and in some cases oRG generation, could be caused by a spectrum of interlinked mechanisms.
Collapse
Affiliation(s)
- Ayano Kawaguchi
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
28
|
Abstract
Brain structures change shape dramatically during development. Elucidating the mechanisms of morphogenesis provides insights relevant to understanding brain function in health and disease. The tension-based morphogenesis (TBM) hypothesis posits that mechanical tension along axons, dendrites, and glial processes contributes to many aspects of central nervous system morphogenesis. Since TBM was proposed in 1997, extensive evidence supports a role for tension in diverse cellular phenomena, but tension’s role in cortical folding has been controversial. An extensively revised version of the TBM model for cerebral cortex addresses limitations of the original model, incorporates new features, and can be tested by many experimental approaches. For cerebellar cortex, a revised model accounts for many aspects of its development and adult architecture. Mechanical tension along the length of axons, dendrites, and glial processes has been proposed as a major contributor to morphogenesis throughout the nervous system [D. C. Van Essen, Nature 385, 313–318 (1997)]. Tension-based morphogenesis (TBM) is a conceptually simple and general hypothesis based on physical forces that help shape all living things. Moreover, if each axon and dendrite strive to shorten while preserving connectivity, aggregate wiring length would remain low. TBM can explain key aspects of how the cerebral and cerebellar cortices remain thin, expand in surface area, and acquire their distinctive folds. This article reviews progress since 1997 relevant to TBM and other candidate morphogenetic mechanisms. At a cellular level, studies of diverse cell types in vitro and in vivo demonstrate that tension plays a major role in many developmental events. At a tissue level, I propose a differential expansion sandwich plus (DES+) revision to the original TBM model for cerebral cortical expansion and folding. It invokes tangential tension and “sulcal zipping” forces along the outer cortical margin as well as tension in the white matter core, together competing against radially biased tension in the cortical gray matter. Evidence for and against the DES+ model is discussed, and experiments are proposed to address key tenets of the DES+ model. For cerebellar cortex, a cerebellar multilayer sandwich (CMS) model is proposed that can account for many distinctive features, including its unique, accordion-like folding in the adult, and experiments are proposed to address its specific tenets.
Collapse
|
29
|
García-Moreno F, Molnár Z. Variations of telencephalic development that paved the way for neocortical evolution. Prog Neurobiol 2020; 194:101865. [PMID: 32526253 PMCID: PMC7656292 DOI: 10.1016/j.pneurobio.2020.101865] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022]
Abstract
Charles Darwin stated, "community in embryonic structure reveals community of descent". Thus, to understand how the neocortex emerged during mammalian evolution we need to understand the evolution of the development of the pallium, the source of the neocortex. In this article, we review the variations in the development of the pallium that enabled the production of the six-layered neocortex. We propose that an accumulation of subtle modifications from very early brain development accounted for the diversification of vertebrate pallia and the origin of the neocortex. Initially, faint differences of expression of secretable morphogens promote a wide variety in the proportions and organization of sectors of the early pallium in different vertebrates. It prompted different sectors to host varied progenitors and distinct germinative zones. These cells and germinative compartments generate diverse neuronal populations that migrate and mix with each other through radial and tangential migrations in a taxon-specific fashion. Together, these early variations had a profound influence on neurogenetic gradients, lamination, positioning, and connectivity. Gene expression, hodology, and physiological properties of pallial neurons are important features to suggest homologies, but the origin of cells and their developmental trajectory are fundamental to understand evolutionary changes. Our review compares the development of the homologous pallial sectors in sauropsids and mammals, with a particular focus on cell lineage, in search of the key changes that led to the appearance of the mammalian neocortex.
Collapse
Affiliation(s)
- Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; IKERBASQUE Foundation, María Díaz de Haro 3, 6th Floor, 48013, Bilbao, Spain; Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Bizkaia, Spain.
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, OX1 3QX, UK.
| |
Collapse
|
30
|
Modeling human neuronal migration deficits in 3D. Curr Opin Neurobiol 2020; 66:30-36. [PMID: 33069990 DOI: 10.1016/j.conb.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/23/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
During the past few decades, we have witnessed an impressive gain in the knowledge regarding the basic mechanisms underlying human neuronal migration disorders by the usage of mouse models. Nevertheless, despite the remarkable conservation both in the genetic encoded information and the developmental processes, there are still numerous important differences between human and mouse. This may explain the vast excitement following the realization that technological breakthroughs enabled generating tissue-like human-based organoids for modeling human neuronal migration diseases. This review will provide a short introduction on human and mouse neuronal migration processes, and highlight human brain organoid models of neuronal migration diseases.
Collapse
|
31
|
Andrews MG, Subramanian L, Kriegstein AR. mTOR signaling regulates the morphology and migration of outer radial glia in developing human cortex. eLife 2020; 9:58737. [PMID: 32876565 PMCID: PMC7467727 DOI: 10.7554/elife.58737] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
Outer radial glial (oRG) cells are a population of neural stem cells prevalent in the developing human cortex that contribute to its cellular diversity and evolutionary expansion. The mammalian Target of Rapamycin (mTOR) signaling pathway is active in human oRG cells. Mutations in mTOR pathway genes are linked to a variety of neurodevelopmental disorders and malformations of cortical development. We find that dysregulation of mTOR signaling specifically affects oRG cells, but not other progenitor types, by changing the actin cytoskeleton through the activity of the Rho-GTPase, CDC42. These effects change oRG cellular morphology, migration, and mitotic behavior, but do not affect proliferation or cell fate. Thus, mTOR signaling can regulate the architecture of the developing human cortex by maintaining the cytoskeletal organization of oRG cells and the radial glia scaffold. Our study provides insight into how mTOR dysregulation may contribute to neurodevelopmental disease.
Collapse
Affiliation(s)
- Madeline G Andrews
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, United States.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, United States
| | - Lakshmi Subramanian
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, United States.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, United States
| | - Arnold R Kriegstein
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, United States.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, United States
| |
Collapse
|
32
|
Kalebic N, Huttner WB. Basal Progenitor Morphology and Neocortex Evolution. Trends Neurosci 2020; 43:843-853. [PMID: 32828546 DOI: 10.1016/j.tins.2020.07.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 11/28/2022]
Abstract
The evolutionary expansion of the mammalian neocortex is widely considered to be a basis of increased cognitive abilities. This expansion is a consequence of the enhanced production of neurons during the fetal/embryonic development of the neocortex, which in turn reflects an increased proliferative capacity of neural progenitor cells; in particular basal progenitors (BPs). The remarkable heterogeneity of BP subtypes across mammals, notably their various morphotypes and molecular fingerprints, which has recently been revealed, corroborates the importance of BPs for neocortical expansion. Here, we argue that the morphology of BPs is a key cell biological basis for maintaining their high proliferative capacity and therefore plays crucial roles in the evolutionary expansion of the neocortex.
Collapse
Affiliation(s)
- Nereo Kalebic
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Human Technopole, Milan, Italy.
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
33
|
Subramanian L, Calcagnotto ME, Paredes MF. Cortical Malformations: Lessons in Human Brain Development. Front Cell Neurosci 2020; 13:576. [PMID: 32038172 PMCID: PMC6993122 DOI: 10.3389/fncel.2019.00576] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Creating a functional cerebral cortex requires a series of complex and well-coordinated developmental steps. These steps have evolved across species with the emergence of cortical gyrification and coincided with more complex behaviors. The presence of diverse progenitor cells, a protracted timeline for neuronal migration and maturation, and diverse neuronal types are developmental features that have emerged in the gyrated cortex. These factors could explain how the human brain has expanded in size and complexity. However, their complex nature also renders new avenues of vulnerability by providing additional cell types that could contribute to disease and longer time windows that could impact the composition and organization of the cortical circuit. We aim to discuss the unique developmental steps observed in human corticogenesis and propose how disruption of these species-unique processes could lead to malformations of cortical development.
Collapse
Affiliation(s)
- Lakshmi Subramanian
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mercedes F. Paredes
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Neuroscience Graduate Division, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
34
|
Outer Radial Glia-like Cancer Stem Cells Contribute to Heterogeneity of Glioblastoma. Cell Stem Cell 2020; 26:48-63.e6. [PMID: 31901251 PMCID: PMC7029801 DOI: 10.1016/j.stem.2019.11.015] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/08/2019] [Accepted: 11/22/2019] [Indexed: 12/24/2022]
Abstract
Glioblastoma is a devastating form of brain cancer. To identify aspects of tumor heterogeneity that may illuminate drivers of tumor invasion, we created a glioblastoma tumor cell atlas with single-cell transcriptomics of cancer cells mapped onto a reference framework of the developing and adult human brain. We find that multiple GSC subtypes exist within a single tumor. Within these GSCs, we identify an invasive cell population similar to outer radial glia (oRG), a fetal cell type that expands the stem cell niche in normal human cortex. Using live time-lapse imaging of primary resected tumors, we discover that tumor-derived oRG-like cells undergo characteristic mitotic somal translocation behavior previously only observed in human development, suggesting a reactivation of developmental programs. In addition, we show that PTPRZ1 mediates both mitotic somal translocation and glioblastoma tumor invasion. These data suggest that the presence of heterogeneous GSCs may underlie glioblastoma's rapid progression and invasion.
Collapse
|
35
|
THE MORPHOLOGY OF RADIAL GLIAL SPINAL CORD OF EMBRYOS AND HUMAN FETUSES. WORLD OF MEDICINE AND BIOLOGY 2020. [DOI: 10.26724/2079-8334-2020-2-72-229-234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
O'Neill AC, Kyrousi C, Klaus J, Leventer RJ, Kirk EP, Fry A, Pilz DT, Morgan T, Jenkins ZA, Drukker M, Berkovic SF, Scheffer IE, Guerrini R, Markie DM, Götz M, Cappello S, Robertson SP. A Primate-Specific Isoform of PLEKHG6 Regulates Neurogenesis and Neuronal Migration. Cell Rep 2019; 25:2729-2741.e6. [PMID: 30517861 DOI: 10.1016/j.celrep.2018.11.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/06/2018] [Accepted: 11/05/2018] [Indexed: 12/24/2022] Open
Abstract
The mammalian neocortex has undergone remarkable changes through evolution. A consequence of such rapid evolutionary events could be a trade-off that has rendered the brain susceptible to certain neurodevelopmental and neuropsychiatric conditions. We analyzed the exomes of 65 patients with the structural brain malformation periventricular nodular heterotopia (PH). De novo coding variants were observed in excess in genes defining a transcriptomic signature of basal radial glia, a cell type linked to brain evolution. In addition, we located two variants in human isoforms of two genes that have no ortholog in mice. Modulating the levels of one of these isoforms for the gene PLEKHG6 demonstrated its role in regulating neuroprogenitor differentiation and neuronal migration via RhoA, with phenotypic recapitulation of PH in human cerebral organoids. This suggests that this PLEKHG6 isoform is an example of a primate-specific genomic element supporting brain development.
Collapse
Affiliation(s)
- Adam C O'Neill
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand; Institute of Stem Cell Research, Helmholtz Center, Munich, Germany; Physiological Genomics, Biomedical Center Ludwig-Maximilians-Universitaet, Munich, Germany
| | | | | | - Richard J Leventer
- Department of Neurology, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Edwin P Kirk
- Sydney Children's Hospital, University of New South Wales, Randwick, NSW, Australia; New South Wales Health Pathology, Randwick, NSW, Australia
| | - Andrew Fry
- Institute of Medical Genetics, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Daniela T Pilz
- West of Scotland Genetics Service, Laboratory Medicine Building, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Tim Morgan
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - Zandra A Jenkins
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - Micha Drukker
- Institute of Stem Cell Research, Helmholtz Center, Munich, Germany
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - David M Markie
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Center, Munich, Germany; Physiological Genomics, Biomedical Center Ludwig-Maximilians-Universitaet, Munich, Germany; Excellence Cluster of Systems Neurology (SYNERGY), 82152 Planegg/Martinsried, Germany
| | | | - Stephen P Robertson
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
37
|
Penisson M, Ladewig J, Belvindrah R, Francis F. Genes and Mechanisms Involved in the Generation and Amplification of Basal Radial Glial Cells. Front Cell Neurosci 2019; 13:381. [PMID: 31481878 PMCID: PMC6710321 DOI: 10.3389/fncel.2019.00381] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/05/2019] [Indexed: 12/22/2022] Open
Abstract
The development of the cerebral cortex relies on different types of progenitor cell. Among them, the recently described basal radial glial cell (bRG) is suggested to be of critical importance for the development of the brain in gyrencephalic species. These cells are highly numerous in primate and ferret brains, compared to lissencephalic species such as the mouse in which they are few in number. Their somata are located in basal subventricular zones in gyrencephalic brains and they generally possess a basal process extending to the pial surface. They sometimes also have an apical process directed toward the ventricular surface, similar to apical radial glial cells (aRGs) from which they are derived, and whose somata are found more apically in the ventricular zone. bRGs share similarities with aRGs in terms of gene expression (SOX2, PAX6, and NESTIN), whilst also expressing a range of more specific genes (such as HOPX). In primate brains, bRGs can divide multiple times, self-renewing and/or generating intermediate progenitors and neurons. They display a highly specific cytokinesis behavior termed mitotic somal translocation. We focus here on recently identified molecular mechanisms associated with the generation and amplification of bRGs, including bRG-like cells in the rodent. These include signaling pathways such as the FGF-MAPK cascade, SHH, PTEN/AKT, PDGF pathways, and proteins such as INSM, GPSM2, ASPM, TRNP1, ARHGAP11B, PAX6, and HIF1α. A number of these proteins were identified through transcriptome comparisons in human aRGs vs. bRGs, and validated by modifying their activities or expression levels in the mouse. This latter experiment often revealed enhanced bRG-like cell production, even in some cases generating folds (gyri) on the surface of the mouse cortex. We compare the features of the identified cells and methods used to characterize them in each model. These important data converge to indicate pathways essential for the production and expansion of bRGs, which may help us understand cortical development in health and disease.
Collapse
Affiliation(s)
- Maxime Penisson
- Inserm, Institut du Fer à Moulin, Sorbonne Université, Paris, France.,Inserm UMR-S 1270, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Julia Ladewig
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research (gGmbH), Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Richard Belvindrah
- Inserm, Institut du Fer à Moulin, Sorbonne Université, Paris, France.,Inserm UMR-S 1270, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Fiona Francis
- Inserm, Institut du Fer à Moulin, Sorbonne Université, Paris, France.,Inserm UMR-S 1270, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
38
|
Pinson A, Namba T, Huttner WB. Malformations of Human Neocortex in Development - Their Progenitor Cell Basis and Experimental Model Systems. Front Cell Neurosci 2019; 13:305. [PMID: 31338027 PMCID: PMC6629864 DOI: 10.3389/fncel.2019.00305] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/24/2019] [Indexed: 12/31/2022] Open
Abstract
Malformations of the human neocortex in development constitute a heterogeneous group of complex disorders, resulting in pathologies such as intellectual disability and abnormal neurological/psychiatric conditions such as epilepsy or autism. Advances in genomic sequencing and genetic techniques have allowed major breakthroughs in the field, revealing the molecular basis of several of these malformations. Here, we focus on those malformations of the human neocortex, notably microcephaly, and macrocephaly, where an underlying basis has been established at the level of the neural stem/progenitor cells (NPCs) from which neurons are directly or indirectly derived. Particular emphasis is placed on NPC cell biology and NPC markers. A second focus of this review is on experimental model systems used to dissect the underlying mechanisms of malformations of the human neocortex in development at the cellular and molecular level. The most commonly used model system have been genetically modified mice. However, although basic features of neocortical development are conserved across the various mammalian species, some important differences between mouse and human exist. These pertain to the abundance of specific NPC types and/or their proliferative capacity, as exemplified in the case of basal radial glia. These differences limit the ability of mouse models to fully recapitulate the phenotypes of malformations of the human neocortex. For this reason, additional experimental model systems, notably the ferret, non-human primates and cerebral organoids, have recently emerged as alternatives and shown to be of increasing relevance. It is therefore important to consider the benefits and limitations of each of these model systems for studying malformations of the human neocortex in development.
Collapse
Affiliation(s)
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
39
|
Lzts1 controls both neuronal delamination and outer radial glial-like cell generation during mammalian cerebral development. Nat Commun 2019; 10:2780. [PMID: 31239441 PMCID: PMC6592889 DOI: 10.1038/s41467-019-10730-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/24/2019] [Indexed: 01/09/2023] Open
Abstract
In the developing central nervous system, cell departure from the apical surface is the initial and fundamental step to form the 3D, organized architecture. Both delamination of differentiating cells and repositioning of progenitors to generate outer radial glial cells (oRGs) contribute to mammalian neocortical expansion; however, a comprehensive understanding of their mechanisms is lacking. Here, we demonstrate that Lzts1, a molecule associated with microtubule components, promotes both cell departure events. In neuronally committed cells, Lzts1 functions in apical delamination by altering apical junctional organization. In apical RGs (aRGs), Lzts1 expression is variable, depending on Hes1 expression levels. According to its differential levels, Lzts1 induces diverse RG behaviors: planar division, oblique divisions of aRGs that generate oRGs, and their mitotic somal translocation. Loss-of-function of lzts1 impairs all these cell departure processes. Thus, Lzts1 functions as a master modulator of cellular dynamics, contributing to increasing complexity of the cerebral architecture during evolution. Outer radial glial cells (oRGs) are undifferentiated cells that divide in the subventricular zone during neurodevelopment, but the underlying mechanisms are not fully understood. Here the authors show that Lzts1 positively controls both neuronal delamination and generation of oRG-like cell types.
Collapse
|
40
|
Kim S, Cho AN, Min S, Kim S, Cho SW. Organoids for Advanced Therapeutics and Disease Models. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Suran Kim
- Department of Biotechnology; Yonsei University; Seoul 03722 Republic of Korea
| | - Ann-Na Cho
- Department of Biotechnology; Yonsei University; Seoul 03722 Republic of Korea
| | - Sungjin Min
- Department of Biotechnology; Yonsei University; Seoul 03722 Republic of Korea
| | - Sooyeon Kim
- Department of Biotechnology; Yonsei University; Seoul 03722 Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology; Yonsei University; Seoul 03722 Republic of Korea
| |
Collapse
|
41
|
Zhang L, Mubarak T, Chen Y, Lee T, Pollock A, Sun T. Counter-Balance Between Gli3 and miR-7 Is Required for Proper Morphogenesis and Size Control of the Mouse Brain. Front Cell Neurosci 2018; 12:259. [PMID: 30210296 PMCID: PMC6121149 DOI: 10.3389/fncel.2018.00259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022] Open
Abstract
Brain morphogenesis requires precise regulation of multiple genes to control specification of distinct neural progenitors (NPs) and neuronal production. Dysregulation of these genes results in severe brain malformation such as macrocephaly and microcephaly. Despite studies of the effect of individual pathogenic genes, the counter-balance between multiple factors in controlling brain size remains unclear. Here we show that cortical deletion of Gli3 results in enlarged brain and folding structures in the cortical midline at the postnatal stage, which is mainly caused by the increased percentage of intermediate progenitors (IPs) and newborn neurons. In addition, dysregulation of neuronal migration also contributes to the folding defects in the cortical midline region. Knockdown of microRNA (miRNA) miR-7 can rescue abnormal brain morphology in Gli3 knockout mice by recovering progenitor specification, neuronal production and migration through a counter-balance of the Gli3 activity. Moreover, miR-7 likely exerts its function through silencing target gene Pax6. Our results indicate that proper brain morphogenesis is an outcome of interactive regulations of multiple molecules such as Gli3 and miR-7. Because miRNAs are easy to synthesize and deliver, miR-7 could be a potential therapeutic means to macrocephaly caused by Gli3-deficiency.
Collapse
Affiliation(s)
- Longbin Zhang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Taufif Mubarak
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Yase Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Trevor Lee
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Andrew Pollock
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
42
|
Zhang H, Zhang L, Sun T. Cohesive Regulation of Neural Progenitor Development by microRNA miR-26, Its Host Gene Ctdsp and Target Gene Emx2 in the Mouse Embryonic Cerebral Cortex. Front Mol Neurosci 2018. [PMID: 29515367 PMCID: PMC5825903 DOI: 10.3389/fnmol.2018.00044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Proper proliferation and differentiation of neural progenitors (NPs) in the developing cerebral cortex are critical for normal brain formation and function. Emerging evidence has shown the importance of microRNAs (miRNAs) in regulating cortical development and the etiology of neurological disorders. Here we show that miR-26 is co-expressed with its host gene Ctdsp in the mouse embryonic cortex. We demonstrate that similar to its host gene Ctdsp2, miR-26 positively regulates proliferation of NPs through controlling the cell-cycle progression, by using miR-26 overexpression and sponge approaches. On the contrary, miR-26 target gene Emx2 limits expansion of cortical NPs, and promotes transcription of miR-26 host gene Ctdsp. Our study suggests that miR-26, its target Emx2 and its host gene Ctdsp cohesively regulate proliferation of NPs during the mouse cortical development.
Collapse
Affiliation(s)
- Haijun Zhang
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York, NY, United States.,Department of Genetic Medicine, Weill Cornell Medical College, Cornell University, New York, NY, United States
| | - Longbin Zhang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Tao Sun
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York, NY, United States.,Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| |
Collapse
|
43
|
Bertipaglia C, Gonçalves JC, Vallee RB. Nuclear migration in mammalian brain development. Semin Cell Dev Biol 2017; 82:57-66. [PMID: 29208348 DOI: 10.1016/j.semcdb.2017.11.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 01/05/2023]
Abstract
During development of the mammalian brain, neural stem cells divide and give rise to adult stem cells, glia and neurons, which migrate to their final locations. Nuclear migration is an important feature of neural stem cell (radial glia progenitor) proliferation and subsequent postmitotic neuronal migration. Defects in nuclear migration contribute to severe neurodevelopmental disorders such as microcephaly and lissencephaly. In this review, we address the cellular and molecular mechanisms responsible for nuclear migration during the radial glia cell cycle and postmitotic neuronal migration, with a particular focus on the role of molecular motors and cytoskeleton dynamics in regulating nuclear behavior.
Collapse
Affiliation(s)
- Chiara Bertipaglia
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, United States
| | - João Carlos Gonçalves
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, United States; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Richard Bert Vallee
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, United States.
| |
Collapse
|
44
|
Beattie R, Hippenmeyer S. Mechanisms of radial glia progenitor cell lineage progression. FEBS Lett 2017; 591:3993-4008. [PMID: 29121403 PMCID: PMC5765500 DOI: 10.1002/1873-3468.12906] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Abstract
The mammalian cerebral cortex is responsible for higher cognitive functions such as perception, consciousness, and acquiring and processing information. The neocortex is organized into six distinct laminae, each composed of a rich diversity of cell types which assemble into highly complex cortical circuits. Radial glia progenitors (RGPs) are responsible for producing all neocortical neurons and certain glia lineages. Here, we discuss recent discoveries emerging from clonal lineage analysis at the single RGP cell level that provide us with an inaugural quantitative framework of RGP lineage progression. We further discuss the importance of the relative contribution of intrinsic gene functions and non‐cell‐autonomous or community effects in regulating RGP proliferation behavior and lineage progression.
Collapse
Affiliation(s)
- Robert Beattie
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
45
|
Li R, Sun L, Fang A, Li P, Wu Q, Wang X. Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease. Protein Cell 2017; 8:823-833. [PMID: 29058117 PMCID: PMC5676597 DOI: 10.1007/s13238-017-0479-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/01/2017] [Indexed: 11/26/2022] Open
Abstract
The development of a cerebral organoid culture in vitro offers an opportunity to generate human brain-like organs to investigate mechanisms of human disease that are specific to the neurogenesis of radial glial (RG) and outer radial glial (oRG) cells in the ventricular zone (VZ) and subventricular zone (SVZ) of the developing neocortex. Modeling neuronal progenitors and the organization that produces mature subcortical neuron subtypes during early stages of development is essential for studying human brain developmental diseases. Several previous efforts have shown to grow neural organoid in culture dishes successfully, however we demonstrate a new paradigm that recapitulates neocortical development process with VZ, OSVZ formation and the lamination organization of cortical layer structure. In addition, using patient-specific induced pluripotent stem cells (iPSCs) with dysfunction of the Aspm gene from a primary microcephaly patient, we demonstrate neurogenesis defects result in defective neuronal activity in patient organoids, suggesting a new strategy to study human developmental diseases in central nerve system.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Sun
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ai Fang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Li
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Wu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Brain Disorders, Beijing, 100069, China.
| |
Collapse
|
46
|
Bershteyn M, Nowakowski TJ, Pollen AA, Di Lullo E, Nene A, Wynshaw-Boris A, Kriegstein AR. Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell 2017; 20:435-449.e4. [PMID: 28111201 DOI: 10.1016/j.stem.2016.12.007] [Citation(s) in RCA: 401] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/16/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023]
Abstract
Classical lissencephaly is a genetic neurological disorder associated with mental retardation and intractable epilepsy, and Miller-Dieker syndrome (MDS) is the most severe form of the disease. In this study, to investigate the effects of MDS on human progenitor subtypes that control neuronal output and influence brain topology, we analyzed cerebral organoids derived from control and MDS-induced pluripotent stem cells (iPSCs) using time-lapse imaging, immunostaining, and single-cell RNA sequencing. We saw a cell migration defect that was rescued when we corrected the MDS causative chromosomal deletion and severe apoptosis of the founder neuroepithelial stem cells, accompanied by increased horizontal cell divisions. We also identified a mitotic defect in outer radial glia, a progenitor subtype that is largely absent from lissencephalic rodents but critical for human neocortical expansion. Our study, therefore, deepens our understanding of MDS cellular pathogenesis and highlights the broad utility of cerebral organoids for modeling human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marina Bershteyn
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Tomasz J Nowakowski
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elizabeth Di Lullo
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aishwarya Nene
- California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony Wynshaw-Boris
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Arnold R Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
47
|
Division modes and physical asymmetry in cerebral cortex progenitors. Curr Opin Neurobiol 2016; 42:75-83. [PMID: 27978481 DOI: 10.1016/j.conb.2016.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022]
Abstract
Neural stem cells go through a sequence of timely regulated gene expression and pattern of division mode to generate diverse neurons during brain development. During vertebrate cerebral cortex development, neural stem cells begin with proliferative symmetric divisions, subsequently undergo neurogenic asymmetric divisions, and finally gliogenic divisions. In this review, we explore the relationship between stem cell versus neural fate specification and the division mode. Specifically, we discuss recent findings on the mechanisms of asymmetric divisions, division mode, and developmental progression of neural progenitor identity.
Collapse
|
48
|
Ostrem B, Di Lullo E, Kriegstein A. oRGs and mitotic somal translocation - a role in development and disease. Curr Opin Neurobiol 2016; 42:61-67. [PMID: 27978479 DOI: 10.1016/j.conb.2016.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 12/30/2022]
Abstract
The evolution of the human brain has been characterized by an increase in the size of the neocortex. Underlying this expansion is a significant increase in the number of neurons produced by neural stem cells during early stages of cortical development. Here we highlight recent advances in our understating of these cell populations, consisting of ventricular radial glia and outer radial glia. We highlight how gene expression studies have identified molecular signatures for radial glial cell populations and outline what has been learned about the mechanisms underlying the characteristic mode of division observed in outer radial glia cells, mitotic somal translocation. Understanding the significance of this behavior may help us explain human cortical expansion and further elucidate neurodevelopmental diseases.
Collapse
Affiliation(s)
- Bridget Ostrem
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Elizabeth Di Lullo
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Arnold Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
49
|
Müller S, Liu SJ, Di Lullo E, Malatesta M, Pollen AA, Nowakowski TJ, Kohanbash G, Aghi M, Kriegstein AR, Lim DA, Diaz A. Single-cell sequencing maps gene expression to mutational phylogenies in PDGF- and EGF-driven gliomas. Mol Syst Biol 2016; 12:889. [PMID: 27888226 PMCID: PMC5147052 DOI: 10.15252/msb.20166969] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive type of primary brain tumor. Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) receptors are frequently amplified and/or possess gain-of-function mutations in GBM However, clinical trials of tyrosine-kinase inhibitors have shown disappointing efficacy, in part due to intra-tumor heterogeneity. To assess the effect of clonal heterogeneity on gene expression, we derived an approach to map single-cell expression profiles to sequentially acquired mutations identified from exome sequencing. Using 288 single cells, we constructed high-resolution phylogenies of EGF-driven and PDGF-driven GBMs, modeling transcriptional kinetics during tumor evolution. Descending the phylogenetic tree of a PDGF-driven tumor corresponded to a progressive induction of an oligodendrocyte progenitor-like cell type, expressing pro-angiogenic factors. In contrast, phylogenetic analysis of an EGFR-amplified tumor showed an up-regulation of pro-invasive genes. An in-frame deletion in a specific dimerization domain of PDGF receptor correlates with an up-regulation of growth pathways in a proneural GBM and enhances proliferation when ectopically expressed in glioma cell lines. In-frame deletions in this domain are frequent in public GBM data.
Collapse
Affiliation(s)
- Sören Müller
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Siyuan John Liu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth Di Lullo
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Martina Malatesta
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Manish Aghi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Arnold R Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Daniel A Lim
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Aaron Diaz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
50
|
Namba T, Huttner WB. Neural progenitor cells and their role in the development and evolutionary expansion of the neocortex. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 6. [PMID: 27865053 DOI: 10.1002/wdev.256] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 01/16/2023]
Abstract
The evolutionary expansion of the mammalian brain, notably the neocortex, provides a platform for the higher cognitive abilities that characterize humans. Cortical expansion is accompanied by increased folding of the pial surface, which gives rise to a gyrencephalic (folded) rather than lissencephalic (unfolded) neocortex. This expansion reflects the prolonged and increased proliferation of neural stem and progenitor cells (NPCs). Distinct classes of NPCs can be distinguished based on either cell biological criteria (apical progenitors [APs], basal progenitors [BPs]) or lineage (primary progenitors and secondary progenitors). Cortical expansion in development and evolution is linked to an increased abundance and proliferative capacity of BPs, notably basal radial glial cells, a recently characterized type of secondary progenitor derived from apical radial glial cells, the primary progenitors. To gain insight into the molecular basis underlying the prolonged and increased proliferation of NPCs and in particular BPs, comparative genomic and transcriptomic approaches, mostly for human versus mouse, have been employed and applied to specific NPC types and subpopulations. These have revealed two principal sets of molecular changes. One concerns differences in the expression of common genes between species with different degrees of cortical expansion. The other comprises human-specific genes or genomic regulatory sequences. Various systems that allow functional testing of these genomic and gene expression differences between species have emerged, including transient and stable transgenesis, genome editing, cerebral organoids, and organotypic slice cultures. These provide future avenues for uncovering the molecular basis of cortical expansion. WIREs Dev Biol 2017, 6:e256. doi: 10.1002/wdev.256 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|