1
|
Gao QC, Liu GL, Wang Q, Zhang SX, Ji ZL, Wang ZJ, Wu MN, Yu Q, He PF. A promising drug repurposing approach for Alzheimer's treatment: Givinostat improves cognitive behavior and pathological features in APP/PS1 mice. Redox Biol 2024; 78:103420. [PMID: 39577323 PMCID: PMC11621940 DOI: 10.1016/j.redox.2024.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by memory loss, speech and motor defects, personality changes, and psychological disorders. The exact cause of AD remains unclear. Current treatments focus on maintaining neurotransmitter levels or targeting β-amyloid (Aβ) protein, but these only alleviate symptoms and do not reverse the disease. Developing new drugs is time-consuming, costly, and has a high failure rate. Utilizing multi-omics for drug repositioning has emerged as a new strategy. Based on transcriptomic perturbation data of over 40,000 drugs in human cells from the LINCS-L1000 database, our study employed the Jaccard index and hypergeometric distribution test for reverse transcriptional feature matching analysis, identifying Givinostat as a potential treatment for AD. Our research found that Givinostat improved cognitive behavior and brain pathology in models and enhanced hippocampal synaptic plasticity. Transcriptome sequencing revealed increased expression of mitochondrial respiratory chain complex proteins in the brains of APP/PS1 mice after Givinostat treatment. Functionally, Givinostat restored mitochondrial membrane potential, reduced reactive oxygen species, and increased ATP content in Aβ-induced HT22 cells. Additionally, it improved mitochondrial morphology and quantity in the hippocampus of APP/PS1 mice and enhanced brain glucose metabolic activity. These effects are linked to Givinostat promoting mitochondrial biogenesis and improving mitochondrial function. In summary, Givinostat offers a promising new strategy for AD treatment by targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Qi-Chao Gao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Big Data for Clinical Decision Research in Shanxi Province, Taiyuan, China; Department of Physiology, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Ge-Liang Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Big Data for Clinical Decision Research in Shanxi Province, Taiyuan, China
| | - Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China; Key Laboratory of Big Data for Clinical Decision Research in Shanxi Province, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, China; Department of Physiology, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Zhi-Lin Ji
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China; School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhao-Jun Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China; Department of Physiology, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Mei-Na Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China; Department of Physiology, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Qi Yu
- Key Laboratory of Big Data for Clinical Decision Research in Shanxi Province, Taiyuan, China; School of Management, Shanxi Medical University, Taiyuan, China.
| | - Pei-Feng He
- Key Laboratory of Big Data for Clinical Decision Research in Shanxi Province, Taiyuan, China; School of Management, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
2
|
Matheoudakis K, O'Connor JJ. Modulatory and protective effects of prolyl hydroxylase domain inhibitors in the central nervous system. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 102:211-235. [PMID: 39929580 DOI: 10.1016/bs.apha.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Oxygen is essential for all mammalian species, with complex organs such as the brain requiring a large and steady supply to function. During times of low or inadequate oxygen supply (hypoxia), adaptation is required in order to continue to function. Hypoxia inducible factors (HIF) are transcription factors which are activated during hypoxia and upregulate protective genes. Normally, when oxygen levels are sufficient (normoxia) HIFs are degraded by oxygen sensing prolyl hydroxylase domain proteins (PHD), but during hypoxia PHDs no longer exert influence on HIFs allowing their activation. Given that PHDs regulate the activity of HIFs, their pharmacological inhibition through PHD inhibitors (PHDIs) is believed to be the basis of their neuroprotective benefits. This review discusses some of the potential therapeutic benefits of PHDIs in a number of neurological disorders which see hypoxia as a major pathophysiological mechanism. These include stroke, Parkinson's disease, and amyotrophic lateral sclerosis. We also explore the potential neuroprotective benefits and limitations of PHDIs in a variety of disorders in the central nervous system (CNS). Additionally, the activation of HIFs by PHDIs can have modulatory effects on CNS functions such as neurotransmission and synaptic plasticity, mechanisms critical to cognitive processes such as learning and memory.
Collapse
Affiliation(s)
- Konstantinos Matheoudakis
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - John J O'Connor
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
3
|
Binder MS, Escobar I, Xu Y, Sokolov AM, Zhang L, Bordey A. Reducing Filamin A Restores Cortical Synaptic Connectivity and Early Social Communication Following Cellular Mosaicism in Autism Spectrum Disorder Pathways. J Neurosci 2024; 44:e1245232024. [PMID: 39164108 PMCID: PMC11426378 DOI: 10.1523/jneurosci.1245-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 08/22/2024] Open
Abstract
Communication in the form of nonverbal, social vocalization, or crying is evolutionary conserved in mammals and is impaired early in human infants that are later diagnosed with autism spectrum disorder (ASD). Defects in infant vocalization have been proposed as an early sign of ASD that may exacerbate ASD development. However, the neural mechanisms associated with early communicative deficits in ASD are not known. Here, we expressed a constitutively active mutant of Rheb (RhebS16H), which is known to upregulate two ASD core pathways, mTOR complex 1 (mTORC1) and ERK1/2, in Layer (L) 2/3 pyramidal neurons of the neocortex of mice of either sex. We found that cellular mosaic expression of RhebS16H in L2/3 pyramidal neurons altered the production of isolation calls from neonatal mice. This was accompanied by an expected misplacement of neurons and dendrite overgrowth, along with an unexpected increase in spine density and length, which was associated with increased excitatory synaptic activity. This contrasted with the known decrease in spine density in RhebS16H neurons of 1-month-old mice. Reducing the levels of the actin cross-linking and adaptor protein filamin A (FLNA), known to be increased downstream of ERK1/2, attenuated dendrite overgrowth and fully restored spine properties, synaptic connectivity, and the production of pup isolation calls. These findings suggest that upper-layer cortical pyramidal neurons contribute to communicative deficits in a condition known to affect two core ASD pathways and that these mechanisms are regulated by FLNA.
Collapse
Affiliation(s)
- Matthew S Binder
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| | - Iris Escobar
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| | - Youfen Xu
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| | - Aidan M Sokolov
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| | - Longbo Zhang
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| | - Angélique Bordey
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| |
Collapse
|
4
|
Falace A, Corbieres L, Palminha C, Guarnieri FC, Schaller F, Buhler E, Tuccari di San Carlo C, Montheil A, Watrin F, Manent JB, Represa A, de Chevigny A, Pallesi-Pocachard E, Cardoso C. FLNA regulates neuronal maturation by modulating RAC1-Cofilin activity in the developing cortex. Neurobiol Dis 2024; 198:106558. [PMID: 38852754 DOI: 10.1016/j.nbd.2024.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024] Open
Abstract
Periventricular nodular heterotopia (PNH), the most common brain malformation diagnosed in adulthood, is characterized by the presence of neuronal nodules along the ventricular walls. PNH is mainly associated with mutations in the FLNA gene - encoding an actin-binding protein - and patients often develop epilepsy. However, the molecular mechanisms underlying the neuronal failure still remain elusive. It has been hypothesized that dysfunctional cortical circuitry, rather than ectopic neurons, may explain the clinical manifestations. To address this issue, we depleted FLNA from cortical pyramidal neurons of a conditional Flnaflox/flox mice by timed in utero electroporation of Cre recombinase. We found that FLNA regulates dendritogenesis and spinogenesis thus promoting an appropriate excitatory/inhibitory inputs balance. We demonstrated that FLNA modulates RAC1 and cofilin activity through its interaction with the Rho-GTPase Activating Protein 24 (ARHGAP24). Collectively, we disclose an uncharacterized role of FLNA and provide strong support for neural circuit dysfunction being a consequence of FLNA mutations.
Collapse
Affiliation(s)
- Antonio Falace
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genova, Italy.
| | - Lea Corbieres
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Catia Palminha
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Fabrizia Claudia Guarnieri
- Institute of Neuroscience, National Research Council (CNR), Vedano al Lambro (MB), Italy; IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Fabienne Schaller
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Emmanuelle Buhler
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Clara Tuccari di San Carlo
- Pediatric Neurology Unit and Laboratories, IRCCS Meyer Children's Hospital University of Florence, Firenze, Italy
| | - Aurelie Montheil
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France; INMED, INSERM UMR1249, Aix Marseille University, Molecular and Cellular Biology Platform, Parc Scientifique de Luminy, Marseille, France
| | - Françoise Watrin
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Jean Bernard Manent
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Alfonso Represa
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Antoine de Chevigny
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Emilie Pallesi-Pocachard
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France; INMED, INSERM UMR1249, Aix Marseille University, Molecular and Cellular Biology Platform, Parc Scientifique de Luminy, Marseille, France
| | - Carlos Cardoso
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France.
| |
Collapse
|
5
|
Xie J, Zhang Z. Recent Advances and Therapeutic Implications of 2-Oxoglutarate-Dependent Dioxygenases in Ischemic Stroke. Mol Neurobiol 2024; 61:3949-3975. [PMID: 38041714 DOI: 10.1007/s12035-023-03790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Ischemic stroke is a common disease with a high disability rate and mortality, which brings heavy pressure on families and medical insurance. Nowadays, the golden treatments for ischemic stroke in the acute phase mainly include endovascular therapy and intravenous thrombolysis. Some drugs are used to alleviate brain injury in patients with ischemic stroke, such as edaravone and 3-n-butylphthalide. However, no effective neuroprotective drug for ischemic stroke has been acknowledged. 2-Oxoglutarate-dependent dioxygenases (2OGDDs) are conserved and common dioxygenases whose activities depend on O2, Fe2+, and 2OG. Most 2OGDDs are expressed in the brain and are essential for the development and functions of the brain. Therefore, 2OGDDs likely play essential roles in ischemic brain injury. In this review, we briefly elucidate the functions of most 2OGDDs, particularly the effects of regulations of 2OGDDs on various cells in different phases after ischemic stroke. It would also provide promising potential therapeutic targets and directions of drug development for protecting the brain against ischemic injury and improving outcomes of ischemic stroke.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
6
|
Batie M, Fasanya T, Kenneth NS, Rocha S. Oxygen-regulated post-translation modifications as master signalling pathway in cells. EMBO Rep 2023; 24:e57849. [PMID: 37877678 DOI: 10.15252/embr.202357849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Oxygen is essential for viability in mammalian organisms. However, cells are often exposed to changes in oxygen availability, due to either increased demand or reduced oxygen supply, herein called hypoxia. To be able to survive and/or adapt to hypoxia, cells activate a variety of signalling cascades resulting in changes to chromatin, gene expression, metabolism and viability. Cellular signalling is often mediated via post-translational modifications (PTMs), and this is no different in response to hypoxia. Many enzymes require oxygen for their activity and oxygen can directly influence several PTMS. Here, we review the direct impact of changes in oxygen availability on PTMs such as proline, asparagine, histidine and lysine hydroxylation, lysine and arginine methylation and cysteine dioxygenation, with a focus on mammalian systems. In addition, indirect hypoxia-dependent effects on phosphorylation, ubiquitination and sumoylation will also be discussed. Direct and indirect oxygen-regulated changes to PTMs are coordinated to achieve the cell's ultimate response to hypoxia. However, specific oxygen sensitivity and the functional relevance of some of the identified PTMs still require significant research.
Collapse
Affiliation(s)
- Michael Batie
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Temitope Fasanya
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Niall S Kenneth
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sonia Rocha
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Ehrenreich H, Gassmann M, Poustka L, Burtscher M, Hammermann P, Sirén AL, Nave KA, Miskowiak K. Exploiting moderate hypoxia to benefit patients with brain disease: Molecular mechanisms and translational research in progress. NEUROPROTECTION 2023; 1:9-19. [PMID: 37671067 PMCID: PMC7615021 DOI: 10.1002/nep3.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 09/07/2023]
Abstract
Hypoxia is increasingly recognized as an important physiological driving force. A specific transcriptional program, induced by a decrease in oxygen (O2) availability, for example, inspiratory hypoxia at high altitude, allows cells to adapt to lower O2 and limited energy metabolism. This transcriptional program is partly controlled by and partly independent of hypoxia-inducible factors. Remarkably, this same transcriptional program is stimulated in the brain by extensive motor-cognitive exercise, leading to a relative decrease in O2 supply, compared to the acutely augmented O2 requirement. We have coined the term "functional hypoxia" for this important demand-responsive, relative reduction in O2 availability. Functional hypoxia seems to be critical for enduring adaptation to higher physiological challenge that includes substantial "brain hardware upgrade," underlying advanced performance. Hypoxia-induced erythropoietin expression in the brain likely plays a decisive role in these processes, which can be imitated by recombinant human erythropoietin treatment. This article review presents hints of how inspiratory O2 manipulations can potentially contribute to enhanced brain function. It thereby provides the ground for exploiting moderate inspiratory plus functional hypoxia to treat individuals with brain disease. Finally, it sketches a planned multistep pilot study in healthy volunteers and first patients, about to start, aiming at improved performance upon motor-cognitive training under inspiratory hypoxia.
Collapse
Affiliation(s)
- Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Max Gassmann
- Institute of Veterinary Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Burtscher
- Faculty of Sports Science, University of Innsbruck, Innsbruck, Austria
| | | | - Anna-Leena Sirén
- Departments of Neurophysiology and Neurosurgery, University of Würzburg, Würzburg, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kamilla Miskowiak
- Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Wang Y, Que H, Li C, Wu Z, Jian F, Zhao Y, Tang H, Chen Y, Gao S, Wong CC, Li Y, Zhao C, Rong Y. ULK phosphorylation of STX17 controls autophagosome maturation via FLNA. J Cell Biol 2023; 222:e202211025. [PMID: 37389864 PMCID: PMC10316704 DOI: 10.1083/jcb.202211025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/11/2023] [Accepted: 05/02/2023] [Indexed: 07/01/2023] Open
Abstract
Autophagy is a conserved and tightly regulated intracellular quality control pathway. ULK is a key kinase in autophagy initiation, but whether ULK kinase activity also participates in the late stages of autophagy remains unknown. Here, we found that the autophagosomal SNARE protein, STX17, is phosphorylated by ULK at residue S289, beyond which it localizes specifically to autophagosomes. Inhibition of STX17 phosphorylation prevents such autophagosome localization. FLNA was then identified as a linker between ATG8 family proteins (ATG8s) and STX17 with essential involvement in STX17 recruitment to autophagosomes. Phosphorylation of STX17 S289 promotes its interaction with FLNA, activating its recruitment to autophagosomes and facilitating autophagosome-lysosome fusion. Disease-causative mutations around the ATG8s- and STX17-binding regions of FLNA disrupt its interactions with ATG8s and STX17, inhibiting STX17 recruitment and autophagosome-lysosome fusion. Cumulatively, our study reveals an unexpected role of ULK in autophagosome maturation, uncovers its regulatory mechanism in STX17 recruitment, and highlights a potential association between autophagy and FLNA.
Collapse
Affiliation(s)
- Yufen Wang
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Huilin Que
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - ChuangPeng Li
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Wu
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Fenglei Jian
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zhao
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Haohao Tang
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, China
| | - Yang Chen
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, China
| | - Shuaixin Gao
- Human Nutrition Program and James Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Catherine C.L. Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ying Li
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chongchong Zhao
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Yueguang Rong
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Li L, Shen S, Bickler P, Jacobson MP, Wu LF, Altschuler SJ. Searching for molecular hypoxia sensors among oxygen-dependent enzymes. eLife 2023; 12:e87705. [PMID: 37494095 PMCID: PMC10371230 DOI: 10.7554/elife.87705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023] Open
Abstract
The ability to sense and respond to changes in cellular oxygen levels is critical for aerobic organisms and requires a molecular oxygen sensor. The prototypical sensor is the oxygen-dependent enzyme PHD: hypoxia inhibits its ability to hydroxylate the transcription factor HIF, causing HIF to accumulate and trigger the classic HIF-dependent hypoxia response. A small handful of other oxygen sensors are known, all of which are oxygen-dependent enzymes. However, hundreds of oxygen-dependent enzymes exist among aerobic organisms, raising the possibility that additional sensors remain to be discovered. This review summarizes known and potential hypoxia sensors among human O2-dependent enzymes and highlights their possible roles in hypoxia-related adaptation and diseases.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Susan Shen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Department of Psychiatry, University of California, San FranciscoSan FranciscoUnited States
| | - Philip Bickler
- Hypoxia Research Laboratory, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Center for Health Equity in Surgery and Anesthesia, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Anesthesia and Perioperative Care, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| |
Collapse
|
10
|
Konecny L, Quadir R, Ninan A, Rodríguez-Contreras A. Neurovascular responses to neuronal activity during sensory development. Front Cell Neurosci 2022; 16:1025429. [DOI: 10.3389/fncel.2022.1025429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the development of intercellular communication in sensory regions is relevant to elucidate mechanisms of physiological and pathological responses to oxygen shortage in the newborn brain. Decades of studies in laboratory rodents show that neuronal activity impacts sensory maturation during two periods of postnatal development distinguished by the maturation of accessory structures at the sensory periphery. During the first of these developmental periods, angiogenesis is modulated by neuronal activity, and physiological levels of neuronal activity cause local tissue hypoxic events. This correlation suggests that neuronal activity is upstream of the production of angiogenic factors, a process that is mediated by intermittent hypoxia caused by neuronal oxygen consumption. In this perspective article we address three theoretical implications based on this hypothesis: first, that spontaneous activity of sensory neurons has properties that favor the generation of intermittent tissue hypoxia in neonate rodents; second, that intermittent hypoxia promotes the expression of hypoxia inducible transcription factors (HIFs) in sensory neurons and astrocytes; and third, that activity-dependent production of angiogenic factors is involved in pathological oxygen contexts.
Collapse
|
11
|
Chen M, Zhang L, Shao M, Du J, Xiao Y, Zhang F, Zhang T, Li Y, Zhou Q, Liu K, Wang Z, Wu B. E4BP4 Coordinates Circadian Control of Cognition in Delirium. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200559. [PMID: 35713240 PMCID: PMC9376827 DOI: 10.1002/advs.202200559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/24/2022] [Indexed: 05/07/2023]
Abstract
Improved understanding of the etiologies of delirium, a common and severe neuropsychiatric syndrome, would facilitate the disease prevention and treatment. Here, the authors invesitgate the role of circadian rhythms in the pathogenesis of delirium. They observe perturbance of circadian rhythms in mouse models of delirium and disrupted clock gene expression in patients with delirium. In turn, physiological and genetic circadian disruptions sensitize mice to delirium with aggravated cognitive impairment. Likewise, global deletion of E4bp4 (E4 promoter-binding protein), a clock gene markedly altered in delirium conditions, results in exacerbated delirium-associated cognitive decline. Cognitive decline in delirium models is attributed to microglial activation and impaired long-term potentiation in the hippocampus. Single-cell RNA-sequencing reveals microglia as the regulatory target of E4bp4. E4bp4 restrains microglial activation via inhibiting the ERK1/2 signaling pathway. Supporting this, mice lacking in microglial E4bp4 are delirious prone, whereas mice with E4bp4 specifically deleted in hippocampal CA1 neurons have a normal phenotype. Mechanistically, E4bp4 inhibits ERK1/2 signaling by trans-repressing Mapk1/3 (genes encoding ERK1/2) via direct binding to a D-box element in the promoter region. These findings define a causal role of clock dysfunction in delirium development and indicate E4bp4 as a regulator of cognition at the crosstalk between circadian clock and delirium.
Collapse
Affiliation(s)
- Min Chen
- Institute of Molecular Rhythm and MetabolismGuangzhou University of Chinese MedicineGuangzhou510006China
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Li Zhang
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Mingting Shao
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhou510632China
| | - Jianhao Du
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Yifei Xiao
- Institute of Molecular Rhythm and MetabolismGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Fugui Zhang
- Institute of Molecular Rhythm and MetabolismGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Tianpeng Zhang
- Institute of Molecular Rhythm and MetabolismGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yifang Li
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Qianqian Zhou
- Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated HospitalSouthern University of Science and Technology)Shenzhen518119China
| | - Kaisheng Liu
- Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated HospitalSouthern University of Science and Technology)Shenzhen518119China
| | - Zhigang Wang
- Department of Intensive Care UnitFirst Affiliated Hospital of Jinan UniversityGuangzhou510630China
| | - Baojian Wu
- Institute of Molecular Rhythm and MetabolismGuangzhou University of Chinese MedicineGuangzhou510006China
| |
Collapse
|
12
|
Miao M, Wu M, Li Y, Zhang L, Jin Q, Fan J, Xu X, Gu R, Hao H, Zhang A, Jia Z. Clinical Potential of Hypoxia Inducible Factors Prolyl Hydroxylase Inhibitors in Treating Nonanemic Diseases. Front Pharmacol 2022; 13:837249. [PMID: 35281917 PMCID: PMC8908211 DOI: 10.3389/fphar.2022.837249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
Hypoxia inducible factors (HIFs) and their regulatory hydroxylases the prolyl hydroxylase domain enzymes (PHDs) are the key mediators of the cellular response to hypoxia. HIFs are normally hydroxylated by PHDs and degraded, while under hypoxia, PHDs are suppressed, allowing HIF-α to accumulate and transactivate multiple target genes, including erythropoiesis, and genes participate in angiogenesis, iron metabolism, glycolysis, glucose transport, cell proliferation, survival, and so on. Aiming at stimulating HIFs, a group of small molecules antagonizing HIF-PHDs have been developed. Of these HIF-PHDs inhibitors (HIF-PHIs), roxadustat (FG-4592), daprodustat (GSK-1278863), vadadustat (AKB-6548), molidustat (BAY 85-3934) and enarodustat (JTZ-951) are approved for clinical usage or have progressed into clinical trials for chronic kidney disease (CKD) anemia treatment, based on their activation effect on erythropoiesis and iron metabolism. Since HIFs are involved in many physiological and pathological conditions, efforts have been made to extend the potential usage of HIF-PHIs beyond anemia. This paper reviewed the progress of preclinical and clinical research on clinically available HIF-PHIs in pathological conditions other than CKD anemia.
Collapse
Affiliation(s)
- Mengqiu Miao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mengqiu Wu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yuting Li
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Lingge Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Qianqian Jin
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jiaojiao Fan
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Xinyue Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Ran Gu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Zhou Y, Lu H, Liu Y, Zhao Z, Zhang Q, Xue C, Zou Y, Cao Z, Luo W. Cirbp-PSD95 axis protects against hypobaric hypoxia-induced aberrant morphology of hippocampal dendritic spines and cognitive deficits. Mol Brain 2021; 14:129. [PMID: 34419133 PMCID: PMC8379783 DOI: 10.1186/s13041-021-00827-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Hypobaric hypoxia (HH) is a typical characteristic of high altitude environment and causes a spectrum of pathophysiological effects, including headaches, gliovascular dysfunction and cognitive retardation. Here, we sought to understand the mechanisms underlying cognitive deficits under HH exposure. Our results showed that hypobaric hypoxia exposure impaired cognitive function and suppressed dendritic spine density accompanied with increased neck length in both basal and apical hippocampal CA1 region neurons in mice. The expression of PSD95, a vital synaptic scaffolding molecule, is down-regulated by hypobaric hypoxia exposure and post-transcriptionally regulated by cold-inducible RNA-binding protein (Cirbp) through 3′-UTR region binding. PSD95 expressing alleviates hypoxia-induced dendritic spine morphology changes of hippocampal neurons and memory deterioration. Moreover, overexpressed Cirbp in hippocampus rescues HH-induced abnormal expression of PSD95 and attenuates hypoxia-induced dendritic spine injury and cognitive retardation. Thus, our findings reveal a novel mechanism that Cirbp-PSD-95 axis appears to play an essential role in HH-induced cognitive dysfunction in mice.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Huanyu Lu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Ying Liu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Zaihua Zhao
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Qian Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Chong Xue
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Yuankang Zou
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Zipeng Cao
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China.
| | - Wenjing Luo
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
14
|
Shulman M, Shi R, Zhang Q. Von Hippel-Lindau tumor suppressor pathways & corresponding therapeutics in kidney cancer. J Genet Genomics 2021; 48:552-559. [PMID: 34376376 PMCID: PMC8453047 DOI: 10.1016/j.jgg.2021.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022]
Abstract
The identification and application of the Von Hippel-Lindau (VHL) gene is a seminal breakthrough in kidney cancer research. VHL and its protein pVHL are the root cause of most kidney cancers, and the cascading pathway below them is crucial for understanding hypoxia, in addition to the aforementioned tumorigenesis routes and treatments. We reviewed the history and functions of VHL/pVHL and Hypoxia-inducible factor (HIF), their well-known activities under low-oxygen environments as an E3 ubiquitin ligase and as a transcription factor, respectively, as well as their non-canonical functions revealed recently. Additionally, we discussed how their dysregulation promotes tumorigenesis: beginning with chromosome 3 p-arm (3p) loss/epigenetic methylation, followed by two-allele knockout, before the loss of complimentary tumor suppressor genes leads cells down predictable oncological paths. These different pathways can ultimately determine the grade, outcome, and severity of the deadliest genitourinary cancer. We finished by investigating current and proposed schemes to therapeutically treat clear cell renal cell carcinoma (ccRCC) by manipulating the hypoxic pathway utilizing Vascular Endothelial Growth Factor (VEGF) inhibitors, mammalian target of rapamycin complex 1 (mTORC1) inhibitors, small molecule HIF inhibitors, immune checkpoint blockade therapy, and synthetic lethality.
Collapse
Affiliation(s)
- Maxwell Shulman
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rachel Shi
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Yu M, Lun J, Zhang H, Zhu L, Zhang G, Fang J. The non-canonical functions of HIF prolyl hydroxylases and their dual roles in cancer. Int J Biochem Cell Biol 2021; 135:105982. [PMID: 33894356 DOI: 10.1016/j.biocel.2021.105982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
The hypoxia-inducible factor (HIF) prolyl hydroxylases (PHDs) are dioxygenases using oxygen and 2-oxoglutarate as co-substrates. Under normoxia, PHDs hydroxylate the conserved prolyl residues of HIFα, leading to HIFα degradation. In hypoxia PHDs are inactivated, which results in HIFα accumulation. The accumulated HIFα enters nucleus and initiates gene transcription. Many studies have shown that PHDs have substrates other than HIFα, implying that they have HIF-independent non-canonical functions. Besides modulating protein stability, the PHDs-mediated prolyl hydroxylation affects protein-protein interaction and protein activity for alternative substrates. Increasing evidence indicates that PHDs also have hydroxylase-independent functions. They influence protein stability, enzyme activity, and protein-protein interaction in a hydroxylase-independent manner. These findings highlight the functional diversity and complexity of PHDs. Due to having inhibitory activity on HIFα, PHDs are proposed to act as tumor suppressors. However, research shows that PHDs exert either tumor-promoting or tumor-suppressing features. Here, we try to summarize the current understanding of PHDs hydroxylase-dependent and -independent functions and their roles in cancer.
Collapse
Affiliation(s)
- Mengchao Yu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Jie Lun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital, Jinan, 250014, China
| | - Lei Zhu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Gang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China.
| | - Jing Fang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China.
| |
Collapse
|
16
|
Zhou J, Kang X, An H, Lv Y, Liu X. The function and pathogenic mechanism of filamin A. Gene 2021; 784:145575. [PMID: 33737122 DOI: 10.1016/j.gene.2021.145575] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Filamin A(FLNa) is an actin-binding protein, which participates in the formation of the cytoskeleton, anchors a variety of proteins in the cytoskeleton and regulates cell adhesion and migration. It is involved in signal transduction, cell proliferation and differentiation, pseudopodia formation, vesicle transport, tumor resistance and genetic diseases by binding with interacting proteins. In order to fully elucidate the structure, function and pathogenesis of FLNa, we summarized all substances which directly or indirectly act on FLNa so far, upstream and downstream targets which having effect on it, signaling pathways and their functions. It also recorded the expression and effect of FLNa in different diseases, including hereditary disease and tumors.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
| | - Xinmei Kang
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
| | - Hanxiang An
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
| | - Yun Lv
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
| | - Xin Liu
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
| |
Collapse
|
17
|
Cursano S, Battaglia CR, Urrutia-Ruiz C, Grabrucker S, Schön M, Bockmann J, Braumüller S, Radermacher P, Roselli F, Huber-Lang M, Boeckers TM. A CRHR1 antagonist prevents synaptic loss and memory deficits in a trauma-induced delirium-like syndrome. Mol Psychiatry 2021; 26:3778-3794. [PMID: 32051550 PMCID: PMC8550963 DOI: 10.1038/s41380-020-0659-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/10/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Older patients with severe physical trauma are at high risk of developing neuropsychiatric syndromes with global impairment of cognition, attention, and consciousness. We employed a thoracic trauma (TxT) mouse model and thoroughly analyzed age-dependent spatial and temporal posttraumatic alterations in the central nervous system. Up to 5 days after trauma, we observed a transient 50% decrease in the number of excitatory synapses specifically in hippocampal pyramidal neurons accompanied by alterations in attention and motor activity and disruption of contextual memory consolidation. In parallel, hippocampal corticotropin-releasing hormone (CRH) expression was highly upregulated, and brain-derived neurotrophic factor (BDNF) levels were significantly reduced. In vitro experiments revealed that CRH application induced neuronal autophagy with rapid lysosomal degradation of BDNF via the NF-κB pathway. The subsequent synaptic loss was rescued by BDNF as well as by specific NF-κB and CRH receptor 1 (CRHR1) antagonists. In vivo, the chronic application of a CRHR1 antagonist after TxT resulted in reversal of the observed histological, molecular, and behavioral alterations. The data suggest that neuropsychiatric syndromes (i.e., delirium) after peripheral trauma might be at least in part due to the activation of the hippocampal CRH/NF-κB/BDNF pathway, which results in a dramatic loss of synaptic contacts. The successful rescue by stress hormone receptor antagonists should encourage clinical trials focusing on trauma-induced delirium and/or other posttraumatic syndromes.
Collapse
Affiliation(s)
- Silvia Cursano
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany ,International Graduate School in Molecular Medicine, IGradU, 89081 Ulm, Germany
| | - Chiara R. Battaglia
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany ,International Graduate School in Molecular Medicine, IGradU, 89081 Ulm, Germany
| | - Carolina Urrutia-Ruiz
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Stefanie Grabrucker
- grid.10049.3c0000 0004 1936 9692Department of Biological Sciences, University of Limerick, Limerick, V94 PH61 Ireland
| | - Michael Schön
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jürgen Bockmann
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sonja Braumüller
- grid.6582.90000 0004 1936 9748Institute for Anesthesiological Pathophysiology, Ulm University, Helmholtzstr. 8/1, 89081 Ulm, Germany
| | - Peter Radermacher
- grid.6582.90000 0004 1936 9748Institute for Anesthesiological Pathophysiology, Ulm University, Helmholtzstr. 8/1, 89081 Ulm, Germany
| | - Francesco Roselli
- grid.6582.90000 0004 1936 9748Clinic for Neurology, Ulm University, 89081 Ulm, Germany
| | - Markus Huber-Lang
- grid.6582.90000 0004 1936 9748Institute of Clinical and Experimental Trauma-Immunology, Ulm University, 89081 Ulm, Germany
| | - Tobias M. Boeckers
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
18
|
Tamada H, Blanc J, Korogod N, Petersen CC, Knott GW. Ultrastructural comparison of dendritic spine morphology preserved with cryo and chemical fixation. eLife 2020; 9:56384. [PMID: 33274717 PMCID: PMC7748412 DOI: 10.7554/elife.56384] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
Previously, we showed that cryo fixation of adult mouse brain tissue gave a truer representation of brain ultrastructure in comparison with a standard chemical fixation method (Korogod et al., 2015). Extracellular space matched physiological measurements, there were larger numbers of docked vesicles and less glial coverage of synapses and blood capillaries. Here, using the same preservation approaches, we compared the morphology of dendritic spines. We show that the length of the spine and the volume of its head is unchanged; however, the spine neck width is thinner by more than 30% after cryo fixation. In addition, the weak correlation between spine neck width and head volume seen after chemical fixation was not present in cryo-fixed spines. Our data suggest that spine neck geometry is independent of the spine head volume, with cryo fixation showing enhanced spine head compartmentalization and a higher predicted electrical resistance between spine head and parent dendrite.
Collapse
Affiliation(s)
- Hiromi Tamada
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Biological Electron Microscopy Facility, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Japan Society of the Promotion of Sciences (JSPS), Tokyo, Japan
| | - Jerome Blanc
- Biological Electron Microscopy Facility, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Natalya Korogod
- Biological Electron Microscopy Facility, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, Switzerland
| | - Carl Ch Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Graham W Knott
- Biological Electron Microscopy Facility, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
19
|
Wilson JW, Shakir D, Batie M, Frost M, Rocha S. Oxygen-sensing mechanisms in cells. FEBS J 2020; 287:3888-3906. [PMID: 32446269 DOI: 10.1111/febs.15374] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
Abstract
The importance of oxygen for the survival of multicellular and aerobic organisms is well established and documented. Over the years, increased knowledge of its use for bioenergetics has placed oxygen at the centre of research on mitochondria and ATP-generating processes. Understanding the molecular mechanisms governing cellular oxygen sensing and response has allowed for the discovery of novel pathways oxygen is involved in, culminating with the award of the Nobel Prize for Medicine and Physiology in 2019 to the pioneers of this field, Greg Semenza, Peter Ratcliffe and William Kaelin. However, it is now beginning to be appreciated that oxygen can be a signalling molecule involved in a vast array of molecular processes, most of which impinge on gene expression control. This review will focus on the knowns and unknowns of oxygen as a signalling molecule, highlighting the role of 2-oxoglutarate-dependent dioxygenases as central players in the cellular response to deviations in oxygen tension.
Collapse
Affiliation(s)
- James W Wilson
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Dilem Shakir
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Michael Batie
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Mark Frost
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Sonia Rocha
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| |
Collapse
|
20
|
Tang W, Xin X, O'Connor M, Zhang N, Lai B, Man HY, Xie Y, Wei Y. Transient sublethal hypoxia in neonatal rats causes reduced dendritic spines, aberrant synaptic plasticity, and impairments in memory. J Neurosci Res 2020; 98:1588-1604. [PMID: 32495348 DOI: 10.1002/jnr.24652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 01/06/2023]
Abstract
Hypoxic/ischemic insult, a leading cause of functional brain defects, has been extensively studied in both clinical and experimental animal research, including its etiology, neuropathogenesis, and pharmacological interventions. Transient sublethal hypoxia (TSH) is a common clinical occurrence in the perinatal period. However, its effect on early developing brains remains poorly understood. The present study was designed to investigate the effect of TSH on the dendrite and dendritic spine formation, neuronal and synaptic activity, and cognitive behavior of early postnatal Day 1 rat pups. While TSH showed no obvious effect on gross brain morphology, neuron cell density, or glial activation in the hippocampus, we found transient hypoxia did cause significant changes in neuronal structure and function. In brains exposed to TSH, hippocampal neurons developed shorter and thinner dendrites, with decreased dendritic spine density, and reduced strength in excitatory synaptic transmission. Moreover, TSH-treated rats showed impaired cognitive performance in spatial learning and memory. Our findings demonstrate that TSH in newborn rats can cause significant impairments in synaptic formation and function, and long-lasting brain functional deficits. Therefore, this study provides a useful animal model for the study of TSH on early developing brains and to explore potential pharmaceutical interventions for patients subjected to TSH insult.
Collapse
Affiliation(s)
- Wenjie Tang
- Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoming Xin
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| | | | - Nana Zhang
- Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bin Lai
- Institute of Brain science, Fudan University, Shanghai, China
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, USA
| | - Yuanyun Xie
- National Clinic and Medicine Research Institute for Geriatric Diseases, Gannan Health Promotion and Translational Laboratory, The First Affiliated Hospital, Gannan University of Medical sciences, Ganzhou, China
| | - Youzhen Wei
- Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Liao C, Zhang Q. Understanding the Oxygen-Sensing Pathway and Its Therapeutic Implications in Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1584-1595. [PMID: 32339495 DOI: 10.1016/j.ajpath.2020.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
Abstract
Maintaining oxygen homeostasis is a most basic cellular process for adapting physiological oxygen variations, and its abnormality typically leads to various disorders in the human body. The key molecules of the oxygen-sensing system include the transcriptional regulator hypoxia-inducible factor (HIF), which controls a wide range of oxygen responsive target genes (eg, EPO and VEGF), certain members of the oxygen/2-oxoglutarate-dependent dioxygenase family, including the HIF proline hydroxylase (PHD, alias EGLN), and an E3 ubiquitin ligase component for HIF destruction called von Hippel-Lindau. In this review, we summarize the physiological role and highlight the pathologic function for each protein of the oxygen-sensing system. A better understanding of their molecular mechanisms of action will help uncover novel therapeutic targets and develop more effective treatment approaches for related human diseases, including cancer.
Collapse
Affiliation(s)
- Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
22
|
Son JH, Stevenson TJ, Bowles MD, Scholl EA, Bonkowsky JL. Dopaminergic Co-Regulation of Locomotor Development and Motor Neuron Synaptogenesis is Uncoupled by Hypoxia in Zebrafish. eNeuro 2020; 7:ENEURO.0355-19.2020. [PMID: 32001551 PMCID: PMC7046933 DOI: 10.1523/eneuro.0355-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 11/21/2022] Open
Abstract
Hypoxic injury to the developing human brain is a complication of premature birth and is associated with long-term impairments of motor function. Disruptions of axon and synaptic connectivity have been linked to developmental hypoxia, but the fundamental mechanisms impacting motor function from altered connectivity are poorly understood. We investigated the effects of hypoxia on locomotor development in zebrafish. We found that developmental hypoxia resulted in decreased spontaneous swimming behavior in larva, and that this motor impairment persisted into adulthood. In evaluation of the diencephalic dopaminergic neurons, which regulate early development of locomotion and constitute an evolutionarily conserved component of the vertebrate dopaminergic system, hypoxia caused a decrease in the number of synapses from the descending dopaminergic diencephalospinal tract (DDT) to spinal cord motor neurons. Moreover, dopamine signaling from the DDT was coupled jointly to motor neuron synaptogenesis and to locomotor development. Together, these results demonstrate the developmental processes regulating early locomotor development and a requirement for dopaminergic projections and motor neuron synaptogenesis. Our findings suggest new insights for understanding the mechanisms leading to motor disability from hypoxic injury of prematurity.
Collapse
Affiliation(s)
- Jong-Hyun Son
- Department of Biology, University of Scranton, Scranton, PA 18510
| | - Tamara J Stevenson
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Miranda D Bowles
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Erika A Scholl
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Joshua L Bonkowsky
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132
- Brain and Spine Center, Primary Children's Hospital, Salt Lake City, UT 84108
| |
Collapse
|
23
|
Mohamed HK, Eltony SA. Effect of acute pentylenetetrazol injection induced epileptic seizures on rat dentate gyrus at different postnatal ages. Anat Cell Biol 2020; 53:84-94. [PMID: 32274253 PMCID: PMC7118254 DOI: 10.5115/acb.19.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/30/2019] [Accepted: 09/20/2019] [Indexed: 01/03/2023] Open
Abstract
Epilepsy is one of the most common neurological disorders, its prevalence approximately from 0.5% to 2% of the general population. Generalized seizures could lead to several morphological changes in the brain. This study aimed to investigate the morphological effects of a single convulsive dose of pentylenetetrazol (PTZ) on rat dentate gyrus at different postnatal ages. Thirty-six male Wistar rats were used at the following postnatal ages: P10, P21, and P90 (12 rats per each age). The animals in each age were equally divided into two groups: group I, control and group II, treated with a single intraperitoneal injection of PTZ (55 mg/kg). After confirmation of generalized tonic-clonic seizures, specimens from the right dentate gyrus were processed for light and electron microscopy. In PTZ-treated groups, the number of granule cells significantly decreased. Dark granule cells appeared in the deep layers of the granule cells in P10 and with the progress of age, they significantly increased in number and extended into the superficial layers of the granule cells. The dendritic spines diminished. Glial fibrillary acidic protein and caspase-3 expression increased. Ultrastructurally, granule cells showed irregular shaped nucleus, dilated rough endoplasmic reticulum (RER) cisternae, mitochondria with damaged cristae, large vacuoles, lysosomes, and lipofuscin granules. Dark granule cells characterized by electron-dense nucleus and cytoplasm containing disorganized Golgi bodies, swollen mitochondria with damaged cristae, numerous free ribosomes and few long strands of RER. Astrocytes had hypertrophied cell body. Acute treatment with PTZ-induced epileptic seizures caused toxic effect on the structure of rat dentate gyrus at different postnatal ages.
Collapse
Affiliation(s)
- Heba K Mohamed
- Department of Anatomy, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Sohair A Eltony
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
24
|
Liu X, Zurlo G, Zhang Q. The Roles of Cullin-2 E3 Ubiquitin Ligase Complex in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:173-186. [PMID: 31898228 DOI: 10.1007/978-981-15-1025-0_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Posttranslational protein modifications play an important role in regulating protein stability and cellular function. There are at least eight Cullin family members. Among them, Cullin-2 forms a functional E3 ligase complex with elongin B, elongin C, RING-box protein 1 (RBX1, also called ROC1), as well as the substrate recognition subunit (SRS) to promote the substrate ubiquitination and degradation. In this book chapter, we will review Cullin-2 E3 ligase complexes that include various SRS proteins, including von Hippel Lindau (pVHL), leucine-rich repeat protein-1 (LRR-1), preferentially expressed antigen of melanoma (PRAME), sex-determining protein FEM-1 and early embryogenesis protein ZYG-11. We will focus on the VHL signaling pathway in clear cell renal cell carcinoma (ccRCC), which may reveal various therapeutic avenues in treating this lethal cancer.
Collapse
Affiliation(s)
- Xijuan Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Giada Zurlo
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA.,Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Qing Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA. .,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA. .,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA. .,Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
25
|
Abstract
The discovery of the von Hippel-Lindau (VHL) gene marked a milestone in our understanding of clear cell renal cell carcinoma (ccRCC) pathogenesis. VHL inactivation is not only a defining feature of ccRCC, but also the initiating event. Herein, we discuss canonical and noncanonical pVHL functions, as well as breakthroughs shaping our understanding of ccRCC evolution and evolutionary subtypes. We conclude by presenting evolving strategies to therapeutically exploit effector mechanisms downstream of pVHL.
Collapse
|
26
|
Cockman ME, Lippl K, Tian YM, Pegg HB, Figg WD, Abboud MI, Heilig R, Fischer R, Myllyharju J, Schofield CJ, Ratcliffe PJ. Lack of activity of recombinant HIF prolyl hydroxylases (PHDs) on reported non-HIF substrates. eLife 2019; 8:e46490. [PMID: 31500697 PMCID: PMC6739866 DOI: 10.7554/elife.46490] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Human and other animal cells deploy three closely related dioxygenases (PHD 1, 2 and 3) to signal oxygen levels by catalysing oxygen regulated prolyl hydroxylation of the transcription factor HIF. The discovery of the HIF prolyl-hydroxylase (PHD) enzymes as oxygen sensors raises a key question as to the existence and nature of non-HIF substrates, potentially transducing other biological responses to hypoxia. Over 20 such substrates are reported. We therefore sought to characterise their reactivity with recombinant PHD enzymes. Unexpectedly, we did not detect prolyl-hydroxylase activity on any reported non-HIF protein or peptide, using conditions supporting robust HIF-α hydroxylation. We cannot exclude PHD-catalysed prolyl hydroxylation occurring under conditions other than those we have examined. However, our findings using recombinant enzymes provide no support for the wide range of non-HIF PHD substrates that have been reported.
Collapse
Affiliation(s)
| | - Kerstin Lippl
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Ya-Min Tian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | | | - William D Figg
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Martine I Abboud
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Raphael Heilig
- Target Discovery Institute, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Peter J Ratcliffe
- The Francis Crick InstituteLondonUnited Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
27
|
Nasyrov E, Nolan KA, Wenger RH, Marti HH, Kunze R. The neuronal oxygen-sensing pathway controls postnatal vascularization of the murine brain. FASEB J 2019; 33:12812-12824. [PMID: 31469589 DOI: 10.1096/fj.201901385rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The contribution of neurons to growth and refinement of the microvasculature during postnatal brain development is only partially understood. Tissue hypoxia is the physiologic stimulus for angiogenesis by enhancing angiogenic mediators partly through activation of hypoxia-inducible factors (HIFs). Hence, we investigated the HIF oxygen-sensing pathway in postmitotic neurons for physiologic angiogenesis in the murine forebrain during postnatal development by using mice lacking the HIF suppressing enzyme prolyl-4-hydroxylase domain (PHD)2 and/or HIF-1/2α in postmitotic neurons. Perinatal activation or inactivation of the HIF pathway in neurons inversely modulated brain vascularization, including endothelial cell number and proliferation, density of total and perfused microvessels, and vascular branching. Accordingly, several angiogenesis-related genes were up-regulated in vivo and in primary neurons derived from PHD2-deficient mice. Among them, only VEGF and adrenomedullin (Adm) promoted angiogenic sprouting of brain endothelial cells. VEGF and Adm additively enhanced endothelial sprouting through activation of multiple pathways. PHD2 deficiency in neurons caused HIF-α stabilization and increased VEGF mRNA levels not only in neurons but unexpectedly also in astrocytes, suggesting a new mechanism of neuron-to-astrocyte signaling. Collectively, our results identify the PHD-HIF pathway in neurons as an important determinant for vascularization of the brain during postnatal development.-Nasyrov, E., Nolan, K. A., Wenger, R. H., Marti, H. H., Kunze, R. The neuronal oxygen-sensing pathway controls postnatal vascularization of the murine brain.
Collapse
Affiliation(s)
- Emil Nasyrov
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Karen A Nolan
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research Kidney.CH, Zurich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research Kidney.CH, Zurich, Switzerland
| | - Hugo H Marti
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Reiner Kunze
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
28
|
Zhou H, Song H, Wu Y, Liu X, Li J, Zhao H, Tang M, Ji X, Zhang L, Su Y, He Y, Feng K, Jiao Y, Xu H. Oxygen-induced circRNA profiles and coregulatory networks in a retinopathy of prematurity mouse model. Exp Ther Med 2019; 18:2037-2050. [PMID: 31452702 PMCID: PMC6704537 DOI: 10.3892/etm.2019.7819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Retinopathy of prematurity (ROP) is a leading cause of childhood blindness. At present, the molecular mechanisms underlying ROP are still far from being clearly understood. Circular RNAs (circRNAs), a novel class of noncoding RNAs, have been reported to serve vital regulatory roles in several human diseases. However, it is still unclear how circRNAs are involved in ROP. In the present study, oxygen-induced retinopathy (OIR) murine retinal samples and paired normal tissues were chosen for high-throughput transcriptome RNA sequencing and bioinformatic analyses. As a result, a total of 236 differentially expressed circRNAs, 14 differentially expressed miRNAs, and 9,756 differentially expressed mRNAs were identified in the OIR samples. Gene ontology analysis showed that angiogenesis ranked in the top five upregulated biological processes associated with differential mRNA expression. Then, 66 co-expression pairs of circRNA-mRNA were predicted according to the mRNAs that were enriched in angiogenesis. Furthermore, coregulation prediction was separately performed to identify the differentially expressed miRNAs that targeted angiogenesis-associated circRNAs or mRNAs. Finally, nine differentially expressed circRNAs were predicted to be competing endogenous RNAs by constructing a circRNA-miRNA-mRNA network followed by reverse transcription-quantitative PCR validation. The results of the present study suggest that the identified set of circRNA transcripts and the potential regulatory mechanisms for the development of ROP are worthy of functional studies.
Collapse
Affiliation(s)
- Huiting Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Huihui Song
- Department of Medical Imaging, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu 215137, P.R. China
| | - Yi Wu
- Department of Pathology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Xiang Liu
- Department of Ophthalmology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Jing Li
- Department of Ophthalmology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - He Zhao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Miaomiao Tang
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xiaoyuan Ji
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lu Zhang
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yuanyuan Su
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Kehong Feng
- Department of Ophthalmology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Yang Jiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,State Key Laboratory of Radiological Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Hua Xu
- Department of Ophthalmology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| |
Collapse
|
29
|
Chen PY, Tsai YW, Cheng YJ, Giangrande A, Chien CT. Glial response to hypoxia in mutants of NPAS1/3 homolog Trachealess through Wg signaling to modulate synaptic bouton organization. PLoS Genet 2019; 15:e1007980. [PMID: 31381576 PMCID: PMC6695205 DOI: 10.1371/journal.pgen.1007980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/15/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
Synaptic structure and activity are sensitive to environmental alterations. Modulation of synaptic morphology and function is often induced by signals from glia. However, the process by which glia mediate synaptic responses to environmental perturbations such as hypoxia remains unknown. Here, we report that, in the mutant for Trachealess (Trh), the Drosophila homolog for NPAS1 and NPAS3, smaller synaptic boutons form clusters named satellite boutons appear at larval neuromuscular junctions (NMJs), which is induced by the reduction of internal oxygen levels due to defective tracheal branches. Thus, the satellite bouton phenotype in the trh mutant is suppressed by hyperoxia, and recapitulated in wild-type larvae raised under hypoxia. We further show that hypoxia-inducible factor (HIF)-1α/Similar (Sima) is critical in mediating hypoxia-induced satellite bouton formation. Sima upregulates the level of the Wnt/Wingless (Wg) signal in glia, leading to reorganized microtubule structures within presynaptic sites. Finally, hypoxia-induced satellite boutons maintain normal synaptic transmission at the NMJs, which is crucial for coordinated larval locomotion.
Collapse
Affiliation(s)
- Pei-Yi Chen
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Wei Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ying-Ju Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Cheng-Ting Chien
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
30
|
Vähätupa M, Nättinen J, Jylhä A, Aapola U, Kataja M, Kööbi P, Järvinen TAH, Uusitalo H, Uusitalo-Järvinen H. SWATH-MS Proteomic Analysis of Oxygen-Induced Retinopathy Reveals Novel Potential Therapeutic Targets. Invest Ophthalmol Vis Sci 2019; 59:3294-3306. [PMID: 30025079 DOI: 10.1167/iovs.18-23831] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Oxygen-induced retinopathy (OIR) is the most widely used model for ischemic retinopathies such as retinopathy of prematurity (ROP), proliferative diabetic retinopathy (PDR), and retinal vein occlusion (RVO). The purpose of this study was to perform the most comprehensive characterization of OIR by a recently developed technique, sequential window acquisition of all theoretical mass spectra (SWATH-MS) proteomics. Methods Control and OIR retina samples collected from various time points were subjected to SWATH-MS and detailed data analysis. Immunohistochemistry from mouse retinas as well as neovascular membranes from human PDR and RVO patients were used for the detection of the localization of the proteins showing altered expression in the retina and to address their relevance to human ischemic retinopathies. Results We report the most extensive proteomic profiling of OIR to date by quantifying almost 3000 unique proteins and their expression differences between control and OIR retinas. Crystallins were the most prominent proteins induced by hypoxia in the retina, while angiogenesis related proteins such as Filamin A and nonmuscle myosin IIA stand out at the peak of angiogenesis. Majority of the changes in protein expression return to normal at P42, but there is evidence to suggest that proteins involved in neurotransmission remain at reduced level. Conclusions The results reveal new potential therapeutic targets to address hypoxia-induced pathological angiogenesis taking place in number of retinal diseases. The extensive proteomic profiling combined with pathway analysis also identifies novel molecular networks that could contribute to the pathogenesis of retinal diseases.
Collapse
Affiliation(s)
- Maria Vähätupa
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland
| | - Janika Nättinen
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland
| | - Antti Jylhä
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland
| | - Ulla Aapola
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland
| | - Marko Kataja
- Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Peeter Kööbi
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Tero A H Järvinen
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,Department of Musculoskeletal Disorders, Tampere University Hospital, Tampere, Finland
| | - Hannu Uusitalo
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland.,Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Hannele Uusitalo-Järvinen
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,Eye Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
31
|
Abstract
The brain is the most complex organ of the body, and many pathological processes underlying various brain disorders are poorly understood. Limited accessibility hinders observation of such processes in the in vivo brain, and experimental freedom is often insufficient to enable informative manipulations. In vitro preparations (brain slices or cultures of dissociated neurons) offer much better accessibility and reduced complexity and have yielded valuable new insights into various brain disorders. Both types of preparations have their advantages and limitations with regard to lifespan, preservation of in vivo brain structure, composition of cell types, and the link to behavioral outcome is often unclear in in vitro models. While these limitations hamper general usage of in vitro preparations to study, e.g., brain development, in vitro preparations are very useful to study neuronal and synaptic functioning under pathologic conditions. This chapter addresses several brain disorders, focusing on neuronal and synaptic functioning, as well as network aspects. Recent progress in the fields of brain circulation disorders, excitability disorders, and memory disorders will be discussed, as well as limitations of current in vitro models.
Collapse
|
32
|
Lanigan SM, O'Connor JJ. Prolyl hydroxylase domain inhibitors: can multiple mechanisms be an opportunity for ischemic stroke? Neuropharmacology 2018; 148:117-130. [PMID: 30578795 DOI: 10.1016/j.neuropharm.2018.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022]
Abstract
Stroke and cerebrovascular disease are now the fifth most common cause of death behind other diseases such as heart, cancer and respiratory disease and accounts for approximately 40-50 fatalities per 100,000 people each year in the United States. Currently the only therapy for acute stroke, is intravenous administration of tissue plasminogen activator which was approved in 1996 by the FDA. Surprisingly no new treatments have come on the market since, although endovascular mechanical thrombectomy is showing promising results in trials. Recently focus has shifted towards a preventative therapy rather than trying to reverse or limit the amount of damage occurring following stroke onset. During one of the components of ischemia, hypoxia, a number of physiological changes occur within neurons which include the stabilization of hypoxia-inducible factors. The activity of these proteins is regulated by O2, Fe2+, 2-OG and ascorbate-dependant hydroxylases which contain prolyl-4-hydroxylase domains (PHDs). PHD inhibitors are capable of pharmacologically activating the body's own endogenous adaptive response to low levels of oxygen and have therefore become an attractive therapeutic target for treating ischemia. They have been widely used in the periphery and have been shown to have a preconditioning and protective effect against a later and more severe ischemic insult. Currently there are a number of these agents in phase 1, 2 and 3 clinical trials for the treatment of anemia. In this review we assess the neuroprotective effects of PHD inhibitors, including dimethyloxalylglycine and deferoxamine and suggest that not all of their effects in the CNS are HIF-dependent. Unravelling new roles and a better understanding of the function of PHD inhibitors in the CNS may be of great benefit especially when investigating their use in the treatment of stroke and other ischemic diseases.
Collapse
Affiliation(s)
- Sinead M Lanigan
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - John J O'Connor
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
33
|
Bonkowsky JL, Son JH. Hypoxia and connectivity in the developing vertebrate nervous system. Dis Model Mech 2018; 11:11/12/dmm037127. [PMID: 30541748 PMCID: PMC6307895 DOI: 10.1242/dmm.037127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The developing nervous system depends upon precise regulation of oxygen levels. Hypoxia, the condition of low oxygen concentration, can interrupt developmental sequences and cause a range of molecular, cellular and neuronal changes and injuries. The roles and effects of hypoxia on the central nervous system (CNS) are poorly characterized, even though hypoxia is simultaneously a normal component of development, a potentially abnormal environmental stressor in some settings, and a clinically important complication, for example of prematurity. Work over the past decade has revealed that hypoxia causes specific disruptions in the development of CNS connectivity, altering axon pathfinding and synapse development. The goals of this article are to review hypoxia's effects on the development of CNS connectivity, including its genetic and molecular mediators, and the changes it causes in CNS circuitry and function due to regulated as well as unintended mechanisms. The transcription factor HIF1α is the central mediator of the CNS response to hypoxia (as it is elsewhere in the body), but hypoxia also causes a dysregulation of gene expression. Animals appear to have evolved genetic and molecular responses to hypoxia that result in functional behavioral alterations to adapt to the changes in oxygen concentration during CNS development. Understanding the molecular pathways underlying both the normal and abnormal effects of hypoxia on CNS connectivity may reveal novel insights into common neurodevelopmental disorders. In addition, this Review explores the current gaps in knowledge, and suggests important areas for future studies. Summary: The nervous system's exposure to hypoxia has developmental and clinical relevance. In this Review, the authors discuss the effects of hypoxia on the development of the CNS, and its long-term behavioral and neurodevelopmental consequences.
Collapse
Affiliation(s)
- Joshua L Bonkowsky
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA
| | - Jong-Hyun Son
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA.,Department of Biology, University of Scranton, Scranton, PA 18510, USA
| |
Collapse
|
34
|
Nishimura A, Shimauchi T, Tanaka T, Shimoda K, Toyama T, Kitajima N, Ishikawa T, Shindo N, Numaga-Tomita T, Yasuda S, Sato Y, Kuwahara K, Kumagai Y, Akaike T, Ide T, Ojida A, Mori Y, Nishida M. Hypoxia-induced interaction of filamin with Drp1 causes mitochondrial hyperfission-associated myocardial senescence. Sci Signal 2018; 11:11/556/eaat5185. [PMID: 30425165 DOI: 10.1126/scisignal.aat5185] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Defective mitochondrial dynamics through aberrant interactions between mitochondria and actin cytoskeleton is increasingly recognized as a key determinant of cardiac fragility after myocardial infarction (MI). Dynamin-related protein 1 (Drp1), a mitochondrial fission-accelerating factor, is activated locally at the fission site through interactions with actin. Here, we report that the actin-binding protein filamin A acted as a guanine nucleotide exchange factor for Drp1 and mediated mitochondrial fission-associated myocardial senescence in mice after MI. In peri-infarct regions characterized by mitochondrial hyperfission and associated with myocardial senescence, filamin A colocalized with Drp1 around mitochondria. Hypoxic stress induced the interaction of filamin A with the GTPase domain of Drp1 and increased Drp1 activity in an actin-binding-dependent manner in rat cardiomyocytes. Expression of the A1545T filamin mutant, which potentiates actin aggregation, promoted mitochondrial hyperfission under normoxia. Furthermore, pharmacological perturbation of the Drp1-filamin A interaction by cilnidipine suppressed mitochondrial hyperfission-associated myocardial senescence and heart failure after MI. Together, these data demonstrate that Drp1 association with filamin and the actin cytoskeleton contributes to cardiac fragility after MI and suggests a potential repurposing of cilnidipine, as well as provides a starting point for innovative Drp1 inhibitor development.
Collapse
Affiliation(s)
- Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tsukasa Shimauchi
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Tomohiro Tanaka
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan
| | - Kakeru Shimoda
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan
| | - Takashi Toyama
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Naoyuki Kitajima
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tatsuya Ishikawa
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,EA Pharma Co. Inc., Tokyo 104-0042, Japan
| | - Naoya Shindo
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takuro Numaga-Tomita
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan
| | - Satoshi Yasuda
- National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Yoji Sato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | | | - Yoshito Kumagai
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takaaki Akaike
- Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tomomi Ide
- Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan. .,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
35
|
Verstraelen P, Van Dyck M, Verschuuren M, Kashikar ND, Nuydens R, Timmermans JP, De Vos WH. Image-Based Profiling of Synaptic Connectivity in Primary Neuronal Cell Culture. Front Neurosci 2018; 12:389. [PMID: 29997468 PMCID: PMC6028601 DOI: 10.3389/fnins.2018.00389] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/22/2018] [Indexed: 12/04/2022] Open
Abstract
Neurological disorders display a broad spectrum of clinical manifestations. Yet, at the cellular level, virtually all these diseases converge into a common phenotype of dysregulated synaptic connectivity. In dementia, synapse dysfunction precedes neurodegeneration and cognitive impairment by several years, making the synapse a crucial entry point for the development of diagnostic and therapeutic strategies. Whereas high-resolution imaging and biochemical fractionations yield detailed insight into the molecular composition of the synapse, standardized assays are required to quickly gauge synaptic connectivity across large populations of cells under a variety of experimental conditions. Such screening capabilities have now become widely accessible with the advent of high-throughput, high-content microscopy. In this review, we discuss how microscopy-based approaches can be used to extract quantitative information about synaptic connectivity in primary neurons with deep coverage. We elaborate on microscopic readouts that may serve as a proxy for morphofunctional connectivity and we critically analyze their merits and limitations. Finally, we allude to the potential of alternative culture paradigms and integrative approaches to enable comprehensive profiling of synaptic connectivity.
Collapse
Affiliation(s)
- Peter Verstraelen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Michiel Van Dyck
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Rony Nuydens
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Cell Systems and Imaging, Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
36
|
Xiong R, Verstraelen P, Demeester J, Skirtach AG, Timmermans JP, De Smedt SC, De Vos WH, Braeckmans K. Selective Labeling of Individual Neurons in Dense Cultured Networks With Nanoparticle-Enhanced Photoporation. Front Cell Neurosci 2018; 12:80. [PMID: 29651235 PMCID: PMC5884872 DOI: 10.3389/fncel.2018.00080] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/07/2018] [Indexed: 12/22/2022] Open
Abstract
Neurodevelopmental and neurodegenerative disorders are characterized by subtle alterations in synaptic connections and perturbed neuronal network functionality. A hallmark of neuronal connectivity is the presence of dendritic spines, micron-sized protrusions of the dendritic shaft that compartmentalize single synapses to fine-tune synaptic strength. However, accurate quantification of spine density and morphology in mature neuronal networks is hampered by the lack of targeted labeling strategies. To resolve this, we have optimized a method to deliver cell-impermeable compounds into selected cells based on Spatially resolved NAnoparticle-enhanced Photoporation (SNAP). We show that SNAP enables efficient labeling of selected individual neurons and their spines in dense cultured networks without affecting short-term viability. We compare SNAP with widely used spine labeling techniques such as the application of lipophilic dyes and genetically encoded fluorescent markers. Using SNAP, we demonstrate a time-dependent increase in spine density in healthy cultures as well as a reduction in spine density after chemical mimicry of hypoxia. Since the sparse labeling procedure can be automated using an intelligent acquisition scheme, SNAP holds promise for high-content screening campaigns of neuronal connectivity in the context of neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ranhua Xiong
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.,Centre for Nano- and Biophotonics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Peter Verstraelen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Jo Demeester
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Andre G Skirtach
- Centre for Nano- and Biophotonics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.,College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, China
| | - Winnok H De Vos
- Centre for Nano- and Biophotonics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.,Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.,Centre for Nano- and Biophotonics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.,Univ Lille 1, Univ Lille Nord France, IEMN, UMR 8520, Villeneuve D'Ascq, France.,Univ Lille 1, Univ Lille Nord France, Lab Phys Lasers Atomes & Mol, UMR 8523, Villeneuve D'Ascq, France
| |
Collapse
|
37
|
Zhang J, Zhang Q. VHL and Hypoxia Signaling: Beyond HIF in Cancer. Biomedicines 2018; 6:biomedicines6010035. [PMID: 29562667 PMCID: PMC5874692 DOI: 10.3390/biomedicines6010035] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 12/12/2022] Open
Abstract
Von Hippel-Lindau (VHL) is an important tumor suppressor that is lost in the majority of clear cell carcinoma of renal cancer (ccRCC). Its regulatory pathway involves the activity of E3 ligase, which targets hypoxia inducible factor α (including HIF1α and HIF2α) for proteasome degradation. In recent years, emerging literature suggests that VHL also possesses other HIF-independent functions. This review will focus on VHL-mediated signaling pathways involving the latest identified substrates/binding partners, including N-Myc downstream-regulated gene 3 (NDRG3), AKT, and G9a, etc., and their physiological roles in hypoxia signaling and cancer. We will also discuss the crosstalk between VHL and NF-κB signaling. Lastly, we will review the latest findings on targeting VHL signaling in cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Qing Zhang
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Pharmacology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
38
|
Berger SM, Fernández-Lamo I, Schönig K, Fernández Moya SM, Ehses J, Schieweck R, Clementi S, Enkel T, Grothe S, von Bohlen Und Halbach O, Segura I, Delgado-García JM, Gruart A, Kiebler MA, Bartsch D. Forebrain-specific, conditional silencing of Staufen2 alters synaptic plasticity, learning, and memory in rats. Genome Biol 2017; 18:222. [PMID: 29149906 PMCID: PMC5693596 DOI: 10.1186/s13059-017-1350-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/26/2017] [Indexed: 12/16/2022] Open
Abstract
Background Dendritic messenger RNA (mRNA) localization and subsequent local translation in dendrites critically contributes to synaptic plasticity and learning and memory. Little is known, however, about the contribution of RNA-binding proteins (RBPs) to these processes in vivo. Results To delineate the role of the double-stranded RBP Staufen2 (Stau2), we generate a transgenic rat model, in which Stau2 expression is conditionally silenced by Cre-inducible expression of a microRNA (miRNA) targeting Stau2 mRNA in adult forebrain neurons. Known physiological mRNA targets for Stau2, such as RhoA, Complexin 1, and Rgs4 mRNAs, are found to be dysregulated in brains of Stau2-deficient rats. In vivo electrophysiological recordings reveal synaptic strengthening upon stimulation, showing a shift in the frequency-response function of hippocampal synaptic plasticity to favor long-term potentiation and impair long-term depression in Stau2-deficient rats. These observations are accompanied by deficits in hippocampal spatial working memory, spatial novelty detection, and in tasks investigating associative learning and memory. Conclusions Together, these experiments reveal a critical contribution of Stau2 to various forms of synaptic plasticity including spatial working memory and cognitive management of new environmental information. These findings might contribute to the development of treatments for conditions associated with learning and memory deficits. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1350-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan M Berger
- Department of Molecular Biology, CIMH and Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Iván Fernández-Lamo
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain.,Present Address: Institute Cajal (CSIC), 28002, Madrid, Spain
| | - Kai Schönig
- Department of Molecular Biology, CIMH and Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Sandra M Fernández Moya
- BioMedical Center, Medical Faculty, Ludwig Maximilians University, 82152, Planegg-Martinsried, Germany
| | - Janina Ehses
- BioMedical Center, Medical Faculty, Ludwig Maximilians University, 82152, Planegg-Martinsried, Germany
| | - Rico Schieweck
- BioMedical Center, Medical Faculty, Ludwig Maximilians University, 82152, Planegg-Martinsried, Germany
| | - Stefano Clementi
- Department of Molecular Biology, CIMH and Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Thomas Enkel
- Department of Molecular Biology, CIMH and Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Sascha Grothe
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, 17487, Greifswald, Germany
| | | | - Inmaculada Segura
- BioMedical Center, Medical Faculty, Ludwig Maximilians University, 82152, Planegg-Martinsried, Germany.
| | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| | - Michael A Kiebler
- BioMedical Center, Medical Faculty, Ludwig Maximilians University, 82152, Planegg-Martinsried, Germany.
| | - Dusan Bartsch
- Department of Molecular Biology, CIMH and Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
39
|
Kim I, Kang J, Gee HY, Park JW. A novel HIF1AN substrate KANK3 plays a tumor-suppressive role in hepatocellular carcinoma. Cell Biol Int 2017; 42:303-312. [PMID: 29047187 DOI: 10.1002/cbin.10895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/14/2017] [Indexed: 11/09/2022]
Abstract
The KN motif and ankyrin repeat domain-containing protein (KANK) family is involved in actin cytoskeleton organization and cell motility. Compared with other KANK members, the biological function of KANK3 is not clear. Here, we identified KANK3 as a new substrate for the oxygen sensor hypoxia-inducible factor 1-alpha inhibitor (HIF1AN), which hydroxylates HIF-1/2α and other ankyrin repeat domain-containing proteins at asparagine residues. An in vitro hydroxylation assay clearly demonstrated asparaginyl hydroxylation of KANK3 by HIF1AN, and mass spectroscopic analysis revealed that KANK3 is hydroxylated at three asparagine residues within the ankyrin repeat domain. Bioinformatics analysis revealed that KANK3 downregulation is correlated with a poor prognosis in several types of cancers, including hepatocellular carcinoma (HCC). In HCC cells, KANK3 knockdown enhanced cell migration and invasion, while its overexpression inhibited these cell behaviors. Interestingly, such effects of KANK3 were not observed under hypoxic conditions, suggesting oxygen-dependent activity of KANK3. Based on these data, we propose that KANK3 acts as a tumor suppressor to control cancer behavior in an oxygen-dependent manner.
Collapse
Affiliation(s)
- Iljin Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jengmin Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong-Wan Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| |
Collapse
|
40
|
Agnati LF, Guidolin D, Maura G, Marcoli M. Functional roles of three cues that provide nonsynaptic modes of communication in the brain: electromagnetic field, oxygen, and carbon dioxide. J Neurophysiol 2017; 119:356-368. [PMID: 29070628 DOI: 10.1152/jn.00413.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The integrative actions of the brain depend on the exchange of information among its computational elements. Hence, this phenomenon plays the key role in driving the complex dynamics of the central nervous system, in which true computations interact with noncomputational dynamical processes to generate brain representations of the body and of the body in the external world, and hence the finalistic behavior of the organism. In this context, it should be pointed out that, besides the intercellular interactions mediated by classical electrochemical signals, other types of interactions, namely, "cues" and "coercions," also appear to be exploited by the system to achieve its function. The present review focuses mainly on cues present in the environment and on those produced by cells of the body, which "pervade" the brain and contribute to its dynamics. These cues can also be metabolic substrates, and, in most cases, they are of fundamental importance to brain function and the survival of the entire organism. Three of these highly pervasive cues will be analyzed in greater detail, namely, oxygen, carbon dioxide, and electromagnetic fields (EMF). Special emphasis will be placed on EMF, since several authors have suggested that these highly pervasive energy fluctuations may play an important role in the global integrative actions of the brain; hence, EMF signaling may transcend classical connectionist models of brain function. Thus the new concept of "broadcasted neuroconnectomics" has been introduced, which transcends the current connectomics view of the brain.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of Diagnostics, Clinical Medicine and Public Health, University of Modena and Reggio Emilia , Modena , Italy.,Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Diego Guidolin
- Department of Neuroscience, University of Padova , Padua , Italy
| | - Guido Maura
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova , Genoa , Italy
| | - Manuela Marcoli
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova , Genoa , Italy
| |
Collapse
|
41
|
Shaw AE, Bamburg JR. Peptide regulation of cofilin activity in the CNS: A novel therapeutic approach for treatment of multiple neurological disorders. Pharmacol Ther 2017; 175:17-27. [PMID: 28232023 PMCID: PMC5466456 DOI: 10.1016/j.pharmthera.2017.02.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cofilin is a ubiquitous protein which cooperates with many other actin-binding proteins in regulating actin dynamics. Cofilin has essential functions in nervous system development including neuritogenesis, neurite elongation, growth cone pathfinding, dendritic spine formation, and the regulation of neurotransmission and spine function, components of synaptic plasticity essential for learning and memory. Cofilin's phosphoregulation is a downstream target of many transmembrane signaling processes, and its misregulation in neurons has been linked in rodent models to many different neurodegenerative and neurological disorders including Alzheimer disease (AD), aggression due to neonatal isolation, autism, manic/bipolar disorder, and sleep deprivation. Cognitive and behavioral deficits of these rodent models have been largely abrogated by modulation of cofilin activity using viral-mediated, genetic, and/or small molecule or peptide therapeutic approaches. Neuropathic pain in rats from sciatic nerve compression has also been reduced by modulating the cofilin pathway within neurons of the dorsal root ganglia. Neuroinflammation, which occurs following cerebral ischemia/reperfusion, but which also accompanies many other neurodegenerative syndromes, is markedly reduced by peptides targeting specific chemokine receptors, which also modulate cofilin activity. Thus, peptide therapeutics offer potential for cost-effective treatment of a wide variety of neurological disorders. Here we discuss some recent results from rodent models using therapeutic peptides with a surprising ability to cross the rodent blood brain barrier and alter cofilin activity in brain. We also offer suggestions as to how neuronal-specific cofilin regulation might be achieved.
Collapse
Affiliation(s)
- Alisa E Shaw
- Department of Biochemistry and Molecular Biology, Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523-1870, United States
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523-1870, United States.
| |
Collapse
|
42
|
van Vliet AR, Giordano F, Gerlo S, Segura I, Van Eygen S, Molenberghs G, Rocha S, Houcine A, Derua R, Verfaillie T, Vangindertael J, De Keersmaecker H, Waelkens E, Tavernier J, Hofkens J, Annaert W, Carmeliet P, Samali A, Mizuno H, Agostinis P. The ER Stress Sensor PERK Coordinates ER-Plasma Membrane Contact Site Formation through Interaction with Filamin-A and F-Actin Remodeling. Mol Cell 2017; 65:885-899.e6. [PMID: 28238652 DOI: 10.1016/j.molcel.2017.01.020] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/27/2016] [Accepted: 01/17/2017] [Indexed: 01/11/2023]
Abstract
Loss of ER Ca2+ homeostasis triggers endoplasmic reticulum (ER) stress and drives ER-PM contact sites formation in order to refill ER-luminal Ca2+. Recent studies suggest that the ER stress sensor and mediator of the unfolded protein response (UPR) PERK regulates intracellular Ca2+ fluxes, but the mechanisms remain elusive. Here, using proximity-dependent biotin identification (BioID), we identified the actin-binding protein Filamin A (FLNA) as a key PERK interactor. Cells lacking PERK accumulate F-actin at the cell edges and display reduced ER-PM contacts. Following ER-Ca2+ store depletion, the PERK-FLNA interaction drives the expansion of ER-PM juxtapositions by regulating F-actin-assisted relocation of the ER-associated tethering proteins Stromal Interaction Molecule 1 (STIM1) and Extended Synaptotagmin-1 (E-Syt1) to the PM. Cytosolic Ca2+ elevation elicits rapid and UPR-independent PERK dimerization, which enforces PERK-FLNA-mediated ER-PM juxtapositions. Collectively, our data unravel an unprecedented role of PERK in the regulation of ER-PM appositions through the modulation of the actin cytoskeleton.
Collapse
Affiliation(s)
- Alexander R van Vliet
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, B-3000, Belgium
| | - Francesca Giordano
- Institut Jacques Monod-UMR 7592 CNRS-Université Paris Diderot, Paris Cedex 7, France
| | - Sarah Gerlo
- VIB Medical Biotechnology Center, UGent Department of Biochemistry, UGent, Gent B-9000, Belgium
| | - Inmaculada Segura
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven B-3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven B-3000, Belgium
| | - Sofie Van Eygen
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, B-3000, Belgium
| | - Geert Molenberghs
- Leuven Biostatistics and Statistical Bioinformatics Centre (L-BioStat), KU Leuven, Leuven, B-3000 Belgium
| | - Susana Rocha
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Leuven, B-3000 Belgium
| | - Audrey Houcine
- Institut Jacques Monod-UMR 7592 CNRS-Université Paris Diderot, Paris Cedex 7, France
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, B-3000 Belgium; SyBioMa, KU Leuven, Leuven, B-3000 Belgium
| | - Tom Verfaillie
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, B-3000, Belgium
| | - Jeroen Vangindertael
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Leuven, B-3000 Belgium
| | - Herlinde De Keersmaecker
- Laboratory for Biomolecular Network Dynamics, Biochemistry, Department of Chemistry, KU Leuven, Leuven, B-3000 Belgium
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, B-3000 Belgium; SyBioMa, KU Leuven, Leuven, B-3000 Belgium
| | - Jan Tavernier
- VIB Medical Biotechnology Center, UGent Department of Biochemistry, UGent, Gent B-9000, Belgium
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Leuven, B-3000 Belgium
| | - Wim Annaert
- VIB Center for Brain & Disease Research, Department of Neurosciences & Leuven Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven B-3000, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven B-3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven B-3000, Belgium
| | | | - Hideaki Mizuno
- Laboratory for Biomolecular Network Dynamics, Biochemistry, Department of Chemistry, KU Leuven, Leuven, B-3000 Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, B-3000, Belgium.
| |
Collapse
|
43
|
Marti HH, Kunze R. Oxygen sensors and neuronal adaptation to ischemia. Oncotarget 2017; 8:1955-1956. [PMID: 28002794 PMCID: PMC5356769 DOI: 10.18632/oncotarget.13938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 11/25/2022] Open
Affiliation(s)
- Hugo H Marti
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| | - Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
44
|
Lee G, Schwarz TL. Filamin, a synaptic organizer in Drosophila, determines glutamate receptor composition and membrane growth. eLife 2016; 5. [PMID: 27914199 PMCID: PMC5173320 DOI: 10.7554/elife.19991] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/23/2016] [Indexed: 11/27/2022] Open
Abstract
Filamin is a scaffolding protein that functions in many cells as an actin-crosslinker. FLN90, an isoform of the Drosophila ortholog Filamin/cheerio that lacks the actin-binding domain, is here shown to govern the growth of postsynaptic membrane folds and the composition of glutamate receptor clusters at the larval neuromuscular junction. Genetic and biochemical analyses revealed that FLN90 is present surrounding synaptic boutons. FLN90 is required in the muscle for localization of the kinase dPak and, downstream of dPak, for localization of the GTPase Ral and the exocyst complex to this region. Consequently, Filamin is needed for growth of the subsynaptic reticulum. In addition, in the absence of filamin, type-A glutamate receptor subunits are lacking at the postsynapse, while type-B subunits cluster correctly. Receptor composition is dependent on dPak, but independent of the Ral pathway. Thus two major aspects of synapse formation, morphological plasticity and subtype-specific receptor clustering, require postsynaptic Filamin. DOI:http://dx.doi.org/10.7554/eLife.19991.001
Collapse
Affiliation(s)
- GaYoung Lee
- The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Thomas L Schwarz
- The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
45
|
Neuronal prolyl-4-hydroxylase 2 deficiency improves cognitive abilities in a murine model of cerebral hypoperfusion. Exp Neurol 2016; 286:93-106. [PMID: 27720797 DOI: 10.1016/j.expneurol.2016.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/14/2016] [Accepted: 10/04/2016] [Indexed: 12/29/2022]
Abstract
Episodes of cerebral hypoxia/ischemia increase the risk of dementia, which is associated with impaired learning and memory. Previous studies in rodent models of dementia indicated a favorable effect of the hypoxia-inducible factor (HIF) targets VEGF (vascular endothelial growth factor) and erythropoietin (Epo). In the present study we thus investigated whether activation of the entire adaptive HIF pathway in neurons by cell-specific deletion of the HIF suppressor prolyl-4-hydroxylase 2 (PHD2) improves cognitive abilities in young (3months) and old (18-28months) mice suffering from chronic brain hypoperfusion. Mice underwent permanent occlusion of the left common carotid artery, and cognitive function was assessed using the Morris water navigation task. Under conditions of both normal and decreased brain perfusion, neuronal PHD2 deficiency resulted in improved and faster spatial learning in young mice, which was preserved to some extent also in old animals. The loss of PHD2 in neurons resulted in enhanced hippocampal mRNA and protein levels of Epo and VEGF, but did not alter local microvascular density, dendritic spine morphology, or expression of synaptic plasticity-related genes in the hippocampus. Instead, better cognitive function in PHD2 deficient animals was accompanied by an increased number of neuronal precursor cells along the subgranular zone of the dentate gyrus. Overall, our current pre-clinical findings indicate an important role for the endogenous oxygen sensing machinery, encompassing PHDs, HIFs and HIF target genes, for proper cognitive function. Thus, pharmacological compounds affecting the PHD-HIF axis might well be suited to treat cognitive dysfunction and neurodegenerative processes.
Collapse
|
46
|
Zurlo G, Guo J, Takada M, Wei W, Zhang Q. New Insights into Protein Hydroxylation and Its Important Role in Human Diseases. Biochim Biophys Acta Rev Cancer 2016; 1866:208-220. [PMID: 27663420 DOI: 10.1016/j.bbcan.2016.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 12/26/2022]
Abstract
Protein hydroxylation is a post-translational modification catalyzed by 2-oxoglutarate-dependent dioxygenases. The hydroxylation modification can take place on various amino acids, including but not limited to proline, lysine, asparagine, aspartate and histidine. A classical example of this modification is hypoxia inducible factor alpha (HIF-α) prolyl hydroxylation, which affects HIF-α protein stability via the Von-Hippel Lindau (VHL) tumor suppressor pathway, a Cullin 2-based E3 ligase adaptor protein frequently mutated in kidney cancer. In addition to protein stability regulation, protein hydroxylation may influence other post-translational modifications or the kinase activity of the modified protein (such as Akt and DYRK1A/B). In other cases, protein hydroxylation may alter protein-protein interaction and its downstream signaling events in vivo (such as OTUB1, MAPK6 and eEF2K). In this review, we highlight the recently identified protein hydroxylation targets and their pathophysiological roles, especially in cancer settings. Better understanding of protein hydroxylation will help identify novel therapeutic targets and their regulation mechanisms to foster development of more effective treatment strategies for various human cancers.
Collapse
Affiliation(s)
- Giada Zurlo
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Mamoru Takada
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | - Qing Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
47
|
Lange C, Storkebaum E, de Almodóvar CR, Dewerchin M, Carmeliet P. Vascular endothelial growth factor: a neurovascular target in neurological diseases. Nat Rev Neurol 2016; 12:439-54. [PMID: 27364743 DOI: 10.1038/nrneurol.2016.88] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Brain function critically relies on blood vessels to supply oxygen and nutrients, to establish a barrier for neurotoxic substances, and to clear waste products. The archetypal vascular endothelial growth factor, VEGF, arose in evolution as a signal affecting neural cells, but was later co-opted by blood vessels to regulate vascular function. Consequently, VEGF represents an attractive target to modulate brain function at the neurovascular interface. On the one hand, VEGF is neuroprotective, through direct effects on neural cells and their progenitors and indirect effects on brain perfusion. In accordance, preclinical studies show beneficial effects of VEGF administration in neurodegenerative diseases, peripheral neuropathies and epilepsy. On the other hand, pathologically elevated VEGF levels enhance vessel permeability and leakage, and disrupt blood-brain barrier integrity, as in demyelinating diseases, for which blockade of VEGF may be beneficial. Here, we summarize current knowledge on the role and therapeutic potential of VEGF in neurological diseases.
Collapse
Affiliation(s)
- Christian Lange
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Department of Oncology (KU Leuven) and Vesalius Research Center (VIB), Campus Gasthuisberg O&N4, Herestraat 49 - 912, B-3000, Leuven, Belgium
| | - Erik Storkebaum
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, D-48149 Muenster, Germany.,Faculty of Medicine, University of Muenster, Roentgenstrasse 20, D-48149 Muenster, Germany
| | | | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Department of Oncology (KU Leuven) and Vesalius Research Center (VIB), Campus Gasthuisberg O&N4, Herestraat 49 - 912, B-3000, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Department of Oncology (KU Leuven) and Vesalius Research Center (VIB), Campus Gasthuisberg O&N4, Herestraat 49 - 912, B-3000, Leuven, Belgium
| |
Collapse
|
48
|
Tsc1 haploinsufficiency is sufficient to increase dendritic patterning and Filamin A levels. Neurosci Lett 2016; 629:15-18. [PMID: 27345385 DOI: 10.1016/j.neulet.2016.06.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 12/22/2022]
Abstract
Most individuals with tuberous sclerosis complex (TSC) are born with a mutant allele of either TSC1 or TSC2 and a mosaic of psychological and cognitive defects. Tsc1 loss of heterozygosity contributes to severe dendritic abnormalities that are rescued by normalizing the levels of the actin-cross linking protein, Filamin A (FLNA). However, it is unclear whether dendrites and FLNA levels are abnormal in an heterozygote Tsc1 condition. Here, we examined dendritic morphology and FLNA levels in the olfactory bulb of Tsc1 wild type and heterozygote mice. Using in vivo neonatal electroporation to label newborn neurons followed by sholl analysis, we found that Tsc1 haploinsufficiency is associated with increased dendritic complexity and total dendritic length as well as increased FLNA levels. Since reducing FLNA levels has been shown to decrease Tsc1(+/-) dendritic complexity, these data suggest that increased FLNA levels in Tsc1(+/-) mice contribute to abnormal dendritic patterning in the Tsc1 heterozygote condition of individuals with TSC.
Collapse
|