1
|
Nugteren S, Wang H, van Kooten C, Gelderman KA, Trouw LA. Autoantibodies and therapeutic antibodies against complement factor H. Immunol Lett 2025; 274:107002. [PMID: 40118156 DOI: 10.1016/j.imlet.2025.107002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
The complement system is a crucial part of our immune defense as, upon recognition, it can kill pathogens fast and effectively. However, misguided complement activation could cause damage to host tissues. Therefore, a well-controlled regulation of the complement system is a necessity to prevent collateral damage. Regulation is achieved by several complement inhibitory proteins, acting at different levels of the complement system. One of these complement regulators is factor H, the main regulator of the alternative complement activation pathway. Factor H can regulate the complement system both in fluid-phase and on the host cell surface by, for example, acting as co-factor for factor I, inactivating C3b. The functional properties of factor H are located within different regions of the protein. Functional impairment of factor H, either because of genetic variants, competing proteins such as the factor H-related proteins and proteins from certain pathogens, but also the presence of autoantibodies will impact on complement activation. However, exact consequences are dependent on the region within factor H that is affected. Autoantibodies binding to factor H have been shown to inhibit several regulatory functions of factor H, which is observed in diseases such as membranoproliferative glomerulonephritis and atypical hemolytic uremic syndrome. As more recently the presence of anti-factor H autoantibodies has also been discovered in several other diseases, ranging from autoimmune diseases to cancer, this review provides an overview of the presence of factor H autoantibodies described in these diseases. Factor H autoantibodies are reported to have inhibitory, or enhancing, effects on factor H, depending on the epitopes that are recognized. Formal conclusions about the pathogenicity of the factor H autoantibodies in some of these diseases cannot be drawn yet. Importantly, understanding the binding and functional impact of anti-factor H (auto)antibodies will allow targeted interventions to diminish pathological consequences of anti-factor H autoantibodies but may also open up additional avenues for the use of anti-factor H antibodies as therapeutic agents.
Collapse
Affiliation(s)
- Saskia Nugteren
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Haiyu Wang
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Cees van Kooten
- Department of Internal Medicine section Nephrology, Center of Expertise for Lupus, Vasculitis and Complement- mediated Systemic Autoimmune Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Kyra A Gelderman
- Erasmus Medical Center, Department of Immunology, Laboratory Medical Immunology, Rotterdam, the Netherlands
| | - Leendert A Trouw
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
2
|
Hamidi H, Boudhabhay I, Dragon-Durey MA. Harnessing complement biomarkers for precision cancer care. Semin Immunol 2025; 78:101963. [PMID: 40378538 DOI: 10.1016/j.smim.2025.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025]
Abstract
The tumor microenvironment (TME) consists of various immune and non-immune cells, along with proteins from different origins, and plays a crucial role in tumor development, treatment response, and patient prognosis. Complement system is a key player in the TME. It is a proteolytic cascade that generates cleavage fragments capable to activate cells through specific receptors or deposit on cells and tissues. This review summarizes current data on the complement system as a potential biomarker in cancer. Transcriptomic analyses have classified tumors based on the impact of complement gene expression on prognosis. Immunostaining provides insights into the expression and deposition of complement proteins and fragments in tumors and TME cells. In body fluids such as blood, measuring complement activation fragments and detecting anti-complement autoantibodies have identified non-invasive biomarkers relevant to certain cancer types. With the rise of complement-targeting therapies and new tools for analyzing the complement system in tumors and body fluids, it is time to define its role in cancer management. This includes its potential for cancer detection, staging, and potentially for treatment monitoring.
Collapse
Affiliation(s)
- Houcine Hamidi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France; Laboratoire d'Immunologie, Hôpital Européen Georges Pompidou, APHP, Paris, France; University Hospital Federation (FHU) COMET, Paris, France
| | - Idris Boudhabhay
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France; University Hospital Federation (FHU) COMET, Paris, France
| | - Marie-Agnes Dragon-Durey
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France; Laboratoire d'Immunologie, Hôpital Européen Georges Pompidou, APHP, Paris, France; University Hospital Federation (FHU) COMET, Paris, France.
| |
Collapse
|
3
|
Ovcinnikovs V, Dijkman K, Zom GG, Beurskens FJ, Trouw LA. Enhancing complement activation by therapeutic anti-tumor antibodies: Mechanisms, strategies, and engineering approaches. Semin Immunol 2025; 77:101922. [PMID: 39742715 DOI: 10.1016/j.smim.2024.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/04/2025]
Abstract
The complement system plays an integral role in both innate and adaptive immune responses. Beyond its protective function against infections, complement is also known to influence tumor immunity, where its activation can either promote tumor progression or mediate tumor cell destruction, depending on the context. One such context can be provided by antibodies, with their inherent capacity to activate the classical complement pathway. In recent years, our understanding of the mechanisms governing complement activation by IgG and IgM antibodies has expanded significantly. At the same time, preclinical and clinical studies on antibodies such as rituximab, ofatumumab, and daratumumab have provided evidence for the role of complement in therapeutic success, encouraging strategies to further enhance its activity. In this review we examine the main determinants of antibody-mediated complement activation, highlighting the importance of antibody subclass, affinity, valency, and geometry of antigen engagement. We summarize the evidence for complement involvement in anti-tumor activity and challenges of accurately estimating the extent of its contribution to therapeutic efficacy. Furthermore, we explore several engineering approaches designed to enhance complement activation, including increased Fc oligomerization and C1q affinity, bispecific C1q-recruiting antibodies, IgG subclass chimeras, as well as antibody and paratope combinations. Strategies targeting membrane-bound complement regulatory proteins to overcome tumor-associated complement inhibition are also discussed as a method to boost therapeutic efficacy. Finally, we highlight the potential of complement-dependent cellular cytotoxicity (CDCC) and complement-dependent cellular phagocytosis (CDCP) as effector mechanisms that warrant deeper investigation. By integrating advances in antibody and complement biology with insights from efforts to enhance complement activation in therapeutic antibodies, this review aims to provide a comprehensive framework of antibody design and engineering strategies that optimize complement activity for improved anti-tumor efficacy.
Collapse
Affiliation(s)
| | - Karin Dijkman
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Leendert A Trouw
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
4
|
Ajona D, Cragg MS, Pio R. The complement system in clinical oncology: Applications, limitations and challenges. Semin Immunol 2025; 77:101921. [PMID: 39700788 DOI: 10.1016/j.smim.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
The complement system, a key component of innate immunity, is involved in seemingly contradictory aspects of tumor progression and cancer therapy. It can act as an immune effector against cancer and modulate the antitumor activity of certain therapeutic antibodies, but it can also contribute to a tumor-promoting microenvironment. Understanding this dual role should lead to the development of better therapeutic tools, strategies for cancer treatment and biomarkers for the clinical management of cancer patients. Here, we review recent advances in the understanding of the role of complement in cancer, focusing on how these findings are being translated into the clinic. We highlight the activity of therapeutic agents that modulate the complement system, as well as combination therapies that integrate complement modulation with existing therapies. We conclude that the role of complement activation in cancer is a rapidly evolving field with the potential to translate findings into new therapeutic strategies and clinically useful biomarkers.
Collapse
Affiliation(s)
- Daniel Ajona
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ruben Pio
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
5
|
Saxena R, Gottlin EB, Campa MJ, He YW, Patz EF. Complement regulators as novel targets for anti-cancer therapy: A comprehensive review. Semin Immunol 2025; 77:101931. [PMID: 39826189 DOI: 10.1016/j.smim.2025.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Cancer remains a formidable global health challenge requiring the continued exploration of innovative therapeutic approaches. While traditional treatment strategies including surgery, chemotherapy, and radiation therapy have had some success, primarily in early-stage disease, the quest for more targeted, personalized, safer, and effective therapies remains an ongoing pursuit. Over the past decade, significant advances in the field of tumor immunology have dramatically shifted a focus towards immunotherapy, although the ability to harness and coopt the immune system to treat cancer is still just beginning to be realized. One important area that has yet to be fully explored is the complement system, an integral part of innate immunity that has gathered attention recently as a source of potential targets for anti-cancer therapy. The complement system has a complex and context dependent role in cancer biology in that it not only contributes to immune surveillance but also may promote tumor progression. Complement regulators, including CD46, CD55, CD59, and complement factor H, exercise defined control over complement activation, and have also been acknowledged for their role in the tumor microenvironment. This review explores the intricate role of complement regulators in cancer development and progression, examining their potential as therapeutic targets, current strategies, challenges, and the evolving landscape of clinical research.
Collapse
Affiliation(s)
- Ruchi Saxena
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Elizabeth B Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - You-Wen He
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
6
|
Campa MJ, Gottlin EB, Wiehe K, Patz EF. A tumor-binding antibody with cross-reactivity to viral antigens. Cancer Immunol Immunother 2025; 74:126. [PMID: 40009215 PMCID: PMC11865367 DOI: 10.1007/s00262-025-03975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND We previously identified in non-small cell lung cancer (NSCLC) patients an autoantibody to complement factor H (CFH) that is associated with non-metastatic disease and longer time to progression in patients with stage I disease. A recombinant human antibody, GT103, was cloned from single B cells isolated from patients with the autoantibody. GT103 inhibits tumor growth and establishes an antitumor microenvironment. The anti-CFH autoantibody and GT103 recognize the epitope PIDNGDIT within the SCR19 domain of CFH. Here, we asked if this autoantibody could have originally arisen as a humoral response to a similar epitope in a viral protein from a prior infection. METHODS Homologous viral peptides with high sequence identity to the core PIDNGDIT epitope sequence were identified and synthesized. NSCLC patient plasma containing anti-CFH autoantibodies were assayed by ELISA against these peptides. GT103 was assayed on a 4345-peptide pathogen microarray. RESULTS Epitopes similar to the GT103 epitope are present in several viruses, including human metapneumovirus-1 (HMPV-1) that contains a sequence within attachment glycoprotein G that differs by one amino acid. Anti-CFH autoantibodies in NSCLC patient plasma weakly bound to an HMPV-1 peptide containing the epitope. GT103 cross-reacted with multiple viral epitopes on a peptide microarray, with the top hits being peptides in the human endogenous retrovirus-K polymerase (HERV-K pol) protein and measles hemagglutinin glycoprotein. GT103 bound the viral HMPV-1, HERV-K pol, and measles epitope peptides but with lower affinity compared to the GT103 epitope peptide. CONCLUSION These findings suggest that memory B cells against a viral target could have affinity matured to produce an antibody that recognizes a similar epitope on tumor cells and exhibits antitumor properties.
Collapse
Affiliation(s)
- Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Elizabeth B Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
7
|
Ricciuti J, Liu Q, Khan ANMNH, Joseph JM, Veuskens BR, Giridharan T, Suzuki S, Emmons TR, Yaffe MB, Kuijpers TW, Jongerius I, Brouwer MC, Pouw RB, Odunsi K, Frederick P, Mager KL, Lele S, Gaulin N, Hakim C, Edwards RP, Olawaiye AB, Sukumanovich P, Taylor S, Elishaev E, Zsiros E, Modugno F, Moysich KB, Segal BH. Prognostic significance of serum complement activation, neutrophil extracellular traps and extracellular DNA in newly diagnosed epithelial ovarian cancer. Gynecol Oncol 2025; 193:49-57. [PMID: 39764857 PMCID: PMC11871990 DOI: 10.1016/j.ygyno.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 02/02/2025]
Abstract
PURPOSE We observed that the tumor microenvironment (TME) in metastatic epithelial ovarian cancer (EOC) and in other solid tumors can reprogram normal neutrophils to acquire a complement-dependent suppressor phenotype characterized by inhibition of stimulated T cell activation. This study aims to evaluate whether serum markers of neutrophil activation and complement at diagnosis of EOC would be associated with clinical outcomes. EXPERIMENTAL DESIGN We conducted a two-center prospective study of patients with newly diagnosed EOC (N = 188). Blood and ascites fluid were collected at diagnosis for biomarker analysis. Patients were evaluated for progression-free survival (PFS) and overall survival (OS). RESULTS The median OS was 47 months (95 % CI: 34-58) and the median PFS was 12 months (95 % CI: 11-15). Pre-treatment serum levels of genomic DNA (gDNA), markers of neutrophil degranulation (myeloperoxidase [MPO]) and neutrophil extracellular traps (NETs) (citrullinated histone H3 [CitH3]), and complement activation (C3b/c) were each associated with worse OS in univariate analysis. In multivariate analyses controlling for age, stage, and optimal debulking, serum gDNA, MPO, and CitH3 remained associated with worse OS, while C3b/c levels were not. In an exploratory analysis, the largest magnitude of difference in 2-year OS occurred in patients with low C3b/c and low CitH3 compared to all other patients (87 % vs 46 % survival, respectively). In ascites fluid, increased factor H, a negative regulator of complement activation, was associated with improved OS in univariate analysis. CONCLUSIONS These results point to serum gDNA, NETs, and complement activation as potential prognostic biomarkers in patients with newly diagnosed EOC.
Collapse
Affiliation(s)
- Jason Ricciuti
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Dr. Ricciuti is currently in the Division of Gynecologic Oncology, Saint Louis University School of Medicine, Saint Louis, MO
| | - Qian Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - ANM Nazmul H. Khan
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Janine M. Joseph
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Bert R.J. Veuskens
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Institute for Immunology and Infection Diseases, Amsterdam, the Netherlands
| | | | - Sora Suzuki
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Tiffany R. Emmons
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Michael B. Yaffe
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Division of Acute Care Surgery, Trauma and Surgical Critical Care, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Taco W. Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Amsterdam, the Netherlands
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Institute for Immunology and Infection Diseases, Amsterdam, the Netherlands
| | - Ilse Jongerius
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Amsterdam, the Netherlands
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Institute for Immunology and Infection Diseases, Amsterdam, the Netherlands
- Current affiliation Genmab, Utrecht, the Netherland
| | - Mieke C. Brouwer
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Institute for Immunology and Infection Diseases, Amsterdam, the Netherlands
| | - Richard B. Pouw
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Institute for Immunology and Infection Diseases, Amsterdam, the Netherlands
- Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - Kunle Odunsi
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL
| | - Peter Frederick
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Katherine LaVigne Mager
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Dr. Ricciuti is currently in the Division of Gynecologic Oncology, Saint Louis University School of Medicine, Saint Louis, MO
| | - Shashikant Lele
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Dr. Ricciuti is currently in the Division of Gynecologic Oncology, Saint Louis University School of Medicine, Saint Louis, MO
| | - Nicole Gaulin
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Dr. Ricciuti is currently in the Division of Gynecologic Oncology, Saint Louis University School of Medicine, Saint Louis, MO
| | - Christiane Hakim
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Robert P. Edwards
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Women’s Cancer Research Center, Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA
| | - Alexander B. Olawaiye
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Paniti Sukumanovich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sarah Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Women’s Cancer Research Center, Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Women’s Cancer Research Center, Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Dr. Ricciuti is currently in the Division of Gynecologic Oncology, Saint Louis University School of Medicine, Saint Louis, MO
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health
- Women’s Cancer Research Center, Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA
| | - Kirsten B. Moysich
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Brahm H. Segal
- Departments of Internal Medicine and Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| |
Collapse
|
8
|
Clarke JM, Simon GR, Mamdani H, Gu L, Herndon JE, Stinchcombe TE, Ready N, Crawford J, Sonpavde G, Balevic S, Nixon AB, Campa M, Gottlin EB, Li H, Saxena R, He YW, Antonia S, Patz EF. Complement factor H targeting antibody GT103 in refractory non-small cell lung cancer: a phase 1b dose escalation trial. Nat Commun 2025; 16:93. [PMID: 39747856 PMCID: PMC11695982 DOI: 10.1038/s41467-024-55092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/01/2024] [Indexed: 01/04/2025] Open
Abstract
GT103 is a first-in-class, fully human, IgG3 monoclonal antibody targeting complement factor H that kills tumor cells and promotes anti-cancer immunity in preclinical models. We conducted a first-in-human phase 1b study dose escalation trial of GT103 in refractory non-small cell lung cancer to assess the safety of GT103 (NCT04314089). Dose escalation was performed using a "3 + 3" schema with primary objectives of determining safety, tolerability, PK profile and maximum tolerated dose (MTD) of GT103. Secondary objectives included describing objective response rate, progression-free survival and overall survival. Dose escalation cohorts included GT103 given intravenously at 0.3, 1, 3, 10, and 15 mg/kg every 3 weeks, and 10 mg/kg every 2 weeks. Thirty one patients were enrolled across 3 institutions. Two dose-limiting adverse events were reported: grade 3 acute kidney injury (0.3 mg/kg) and grade 2 colitis (1 mg/kg). No dose-limiting toxicities were noted at the highest dose levels and the MTD was not reached. No objective responses were seen. Stable disease occurred in 9 patients (29%) and the median overall survival was 25.7 weeks (95% confidence interval [CI], 19.1-30.6). Pharmacokinetic analysis confirmed an estimated half life of 6.5 days. The recommended phase 2 dose of GT103 was 10 mg/kg every 3 weeks, however further dose optimization is needed given the absence of an MTD. The study achieved its primary objective of demonstrating safety and tolerability of GT103 in refractory NSCLC.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/immunology
- Male
- Female
- Lung Neoplasms/drug therapy
- Lung Neoplasms/immunology
- Middle Aged
- Aged
- Maximum Tolerated Dose
- Complement Factor H/immunology
- Dose-Response Relationship, Drug
- Adult
- Aged, 80 and over
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
Collapse
Affiliation(s)
- Jeffrey M Clarke
- Duke Cancer Institute, Durham, NC, USA.
- Duke University School of Medicine, Durham, NC, USA.
| | - George R Simon
- H Lee Moffitt Cancer Center-Advent Health Clinical Research Unit, Celebration, FL, USA
| | - Hirva Mamdani
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Lin Gu
- Duke Cancer Institute, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | - James E Herndon
- Duke Cancer Institute, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | - Thomas E Stinchcombe
- Duke Cancer Institute, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | - Neal Ready
- Duke Cancer Institute, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | - Jeffrey Crawford
- Duke Cancer Institute, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | - Guru Sonpavde
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | | | - Andrew B Nixon
- Duke Cancer Institute, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | - Michael Campa
- Duke University School of Medicine, Durham, NC, USA
- Grid Therapeutics, Durham, NC, USA
| | - Elizabeth B Gottlin
- Duke University School of Medicine, Durham, NC, USA
- Grid Therapeutics, Durham, NC, USA
| | - Huihua Li
- Duke University School of Medicine, Durham, NC, USA
| | - Ruchi Saxena
- Duke University School of Medicine, Durham, NC, USA
| | - You Wen He
- Duke University School of Medicine, Durham, NC, USA
| | - Scott Antonia
- Duke Cancer Institute, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | | |
Collapse
|
9
|
Liu G, He X, Zhao G, Lu Z. Complement regulation in tumor immune evasion. Semin Immunol 2024; 76:101912. [PMID: 39579520 DOI: 10.1016/j.smim.2024.101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
The complement system plays crucial roles in both innate and adaptive immune responses, facilitating the elimination of pathogens such as microorganisms and damaged cells, including cancer cells. It is tightly regulated and integrated with cell-mediated immunity. In the tumor microenvironment, the complement system performs both immune and nonimmune functions in tumor and immune cells through pathways that depend on or are independent of complement activation, thereby promoting immune evasion and tumor progression.
Collapse
Affiliation(s)
- Guijun Liu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, Zhejiang 310029, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, China
| | - Xuxiao He
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, Zhejiang 310029, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, China
| | - Gaoxiang Zhao
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266061, China
| | - Zhimin Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, Zhejiang 310029, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, China.
| |
Collapse
|
10
|
Merle NS, Roumenina LT. The complement system as a target in cancer immunotherapy. Eur J Immunol 2024; 54:e2350820. [PMID: 38996361 DOI: 10.1002/eji.202350820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Malignant cells are part of a complex network within the tumor microenvironment, where their interaction with host cells and soluble mediators, including complement components, is pivotal. The complement system, known for its role in immune defense and homeostasis, exhibits a dual effect on cancer progression. This dichotomy arises from its antitumoral opsonophagocytosis and cytotoxicity versus its protumoral chronic inflammation mediated by the C5a/C5aR1 axis, influencing antitumor T-cell responses. Recent studies have revealed distinct co-expression patterns of complement genes in various cancer types, correlating with prognosis. Notably, some cancers exhibit co-regulated overexpression of complement genes associated with poor prognosis, while others show favorable outcomes. However, significant intra-patient heterogeneity further complicates this classification. Moreover, the involvement of locally produced and intracellular complement proteins adds complexity to the tumor microenvironment dynamics. This review highlights the unique interplay of complement components within different cancers and patient cohorts, showing that "one size does not fit all", for complement in cancer. It summarizes the clinical trials for complement targeting in cancer, emphasizing the need for tailored therapeutic approaches. By elucidating the mechanistic basis of complement's context-dependent role, this review aims to facilitate the development of personalized cancer therapies, ultimately improving patient care and outcomes.
Collapse
Affiliation(s)
- Nicolas S Merle
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| |
Collapse
|
11
|
Saxena R, Bushey RT, Campa MJ, Gottlin EB, Guo J, Patz EF, He YW. Promotion of an Antitumor Immune Program by a Tumor-specific, Complement-activating Antibody. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1589-1601. [PMID: 38558134 DOI: 10.4049/jimmunol.2300728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Tumor-targeting Abs can be used to initiate an antitumor immune program, which appears essential to achieve a long-term durable clinical response to cancer. We previously identified an anti-complement factor H (CFH) autoantibody associated with patients with early-stage non-small cell lung cancer. We cloned from their peripheral B cells an mAb, GT103, that specifically recognizes CFH on tumor cells. Although the underlying mechanisms are not well defined, GT103 targets a conformationally distinct CFH epitope that is created when CFH is associated with tumor cells, kills tumor cells in vitro, and has potent antitumor activity in vivo. In the effort to better understand how an Ab targeting a tumor epitope can promote an effective antitumor immune response, we used the syngeneic CMT167 lung tumor C57BL/6 mouse model, and we found that murinized GT103 (mGT103) activates complement and enhances antitumor immunity through multiple pathways. It creates a favorable tumor microenvironment by decreasing immunosuppressive regulatory T cells and myeloid-derived suppressor cells, enhances Ag-specific effector T cells, and has an additive antitumor effect with anti-PD-L1 mAb. Furthermore, the immune landscape of tumors from early-stage patients expressing the anti-CFH autoantibody is associated with an immunologically active tumor microenvironment. More broadly, our results using an mAb cloned from autoantibody-expressing B cells provides novel, to our knowledge, mechanistic insights into how a tumor-specific, complement-activating Ab can generate an immune program to kill tumor cells and inhibit tumor growth.
Collapse
Affiliation(s)
- Ruchi Saxena
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC
| | - Ryan T Bushey
- Department of Radiology, Duke University School of Medicine, Durham, NC
| | - Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC
| | | | - Jian Guo
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC
| | - You-Wen He
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
12
|
Sammut SJ, Galson JD, Minter R, Sun B, Chin SF, De Mattos-Arruda L, Finch DK, Schätzle S, Dias J, Rueda OM, Seoane J, Osbourn J, Caldas C, Bashford-Rogers RJM. Predictability of B cell clonal persistence and immunosurveillance in breast cancer. Nat Immunol 2024; 25:916-924. [PMID: 38698238 PMCID: PMC11065701 DOI: 10.1038/s41590-024-01821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 05/05/2024]
Abstract
B cells and T cells are important components of the adaptive immune system and mediate anticancer immunity. The T cell landscape in cancer is well characterized, but the contribution of B cells to anticancer immunosurveillance is less well explored. Here we show an integrative analysis of the B cell and T cell receptor repertoire from individuals with metastatic breast cancer and individuals with early breast cancer during neoadjuvant therapy. Using immune receptor, RNA and whole-exome sequencing, we show that both B cell and T cell responses seem to coevolve with the metastatic cancer genomes and mirror tumor mutational and neoantigen architecture. B cell clones associated with metastatic immunosurveillance and temporal persistence were more expanded and distinct from site-specific clones. B cell clonal immunosurveillance and temporal persistence are predictable from the clonal structure, with higher-centrality B cell antigen receptors more likely to be detected across multiple metastases or across time. This predictability was generalizable across other immune-mediated disorders. This work lays a foundation for prioritizing antibody sequences for therapeutic targeting in cancer.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/immunology
- B-Lymphocytes/immunology
- Immunologic Surveillance
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- T-Lymphocytes/immunology
- Monitoring, Immunologic
- Exome Sequencing
- Antigens, Neoplasm/immunology
- Neoplasm Metastasis
- Clone Cells
Collapse
Affiliation(s)
- Stephen-John Sammut
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
- The Royal Marsden Hospital NHS Foundation Trust, London, UK.
| | | | | | - Bo Sun
- Wellcome Centre for Human Genetics, Oxford, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Leticia De Mattos-Arruda
- IrsiCaixa, Germans Trias i Pujol University Hospital, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | | | | | | | - Oscar M Rueda
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Joan Seoane
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Institució Catalana de Recerca i Estudis Avançats (ICREA), Universitat Autònoma de Barcelona (UAB), CIBERONC, Barcelona, Spain
| | | | - Carlos Caldas
- School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| | - Rachael J M Bashford-Rogers
- Wellcome Centre for Human Genetics, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
- Oxford Cancer Centre, Oxford, UK.
| |
Collapse
|
13
|
Revel M, Rezola Artero M, Hamidi H, Grunenwald A, Blasco L, Vano YA, Marie Oudard S, Sanchez-Salas R, Macek P, Rodriguez Sanchez L, Cathelineau X, Vedié B, Sautes-Fridman C, Herman Fridman W, Roumenina LT, Dragon-Durey MA. Humoral complementomics - exploration of noninvasive complement biomarkers as predictors of renal cancer progression. Oncoimmunology 2024; 13:2328433. [PMID: 38487624 PMCID: PMC10939156 DOI: 10.1080/2162402x.2024.2328433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
Despite the progress of anti-cancer treatment, the prognosis of many patients with solid tumors is still dismal. Reliable noninvasive biomarkers are needed to predict patient survival and therapy response. Here, we propose a Humoral Complementomics approach: a work-up of assays to comprehensively evaluate complement proteins, activation fragments, and autoantibodies targeting complement proteins in plasma, which we correlated with the intratumoral complement activation, and/or local production, focusing on localized and metastatic clear cell renal cell carcinoma (ccRCC). In two prospective ccRCC cohorts, plasma C2, C5, Factor D and properdin were elevated compared to healthy controls, reflecting an inflammatory phenotype that correlated with plasma calprotectin levels but did not associate with CRP or with patient prognosis. Conversely, autoantibodies against the complement C3 and the reduced form of FH (a tumor neo-epitope reported in lung cancer) correlated with a favorable outcome. Our findings pointed to a specific group of patients with elevated plasma C4d and C1s-C1INH complexes, indicating the initiation of the classical pathway, along with elevated Ba and Bb, indicating alternative pathway activation. Boostrapped Lasso regularized Cox regression revealed that the most predictive complement biomarkers were elevated plasma C4d and Bb levels at the time of surgery, which correlated with poor prognosis. In conclusion, we propose Humoral Complementomics as an unbiased approach to study the global state of the complement system in any pathological plasma sample and disease context. Its implementation for ccRCC revealed that elevated C4d and Bb in plasma are promising prognostic biomarkers, correlating with shorter progression-free survival.
Collapse
Affiliation(s)
- Margot Revel
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| | - Mikel Rezola Artero
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Department of Bacteriology and Immunology, Haartman Institute, and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Houcine Hamidi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Laboratoire d’Immunologie, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Anne Grunenwald
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Department of Nephrology and Hemodialysis, Service de néphrologie - hémodialyse, Poissy, France
| | - Loris Blasco
- Laboratoire d’Immunologie, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Yann A. Vano
- Hôpital Européen Georges-Pompidou, Oncology Department, Assistance Publique Hopitaux de Paris, Université Paris Cité, Paris, France
| | - Stephane Marie Oudard
- Hôpital Européen Georges-Pompidou, Oncology Department, Assistance Publique Hopitaux de Paris, Université Paris Cité, Paris, France
| | | | - Petr Macek
- Department of Urology Institut Mutualiste Montsouris, Paris, France
| | | | | | - Benoit Vedié
- Hôpital Européen Georges-Pompidou, Department of Biochemistry, Assistance Publique Hopitaux de Paris, Paris, France
| | - Catherine Sautes-Fridman
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Equipe labellisée Ligue contre le Cancer, Paris
| | - Wolf Herman Fridman
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Equipe labellisée Ligue contre le Cancer, Paris
| | - Lubka T. Roumenina
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| | - Marie-Agnes Dragon-Durey
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Laboratoire d’Immunologie, Hôpital Européen Georges Pompidou, APHP, Paris, France
| |
Collapse
|
14
|
Sándor N, Schneider AE, Matola AT, Barbai VH, Bencze D, Hammad HH, Papp A, Kövesdi D, Uzonyi B, Józsi M. The human factor H protein family - an update. Front Immunol 2024; 15:1135490. [PMID: 38410512 PMCID: PMC10894998 DOI: 10.3389/fimmu.2024.1135490] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Complement is an ancient and complex network of the immune system and, as such, it plays vital physiological roles, but it is also involved in numerous pathological processes. The proper regulation of the complement system is important to allow its sufficient and targeted activity without deleterious side-effects. Factor H is a major complement regulator, and together with its splice variant factor H-like protein 1 and the five human factor H-related (FHR) proteins, they have been linked to various diseases. The role of factor H in inhibiting complement activation is well studied, but the function of the FHRs is less characterized. Current evidence supports the main role of the FHRs as enhancers of complement activation and opsonization, i.e., counter-balancing the inhibitory effect of factor H. FHRs emerge as soluble pattern recognition molecules and positive regulators of the complement system. In addition, factor H and some of the FHR proteins were shown to modulate the activity of immune cells, a non-canonical function outside the complement cascade. Recent efforts have intensified to study factor H and the FHRs and develop new tools for the distinction, quantification and functional characterization of members of this protein family. Here, we provide an update and overview on the versatile roles of factor H family proteins, what we know about their biological functions in healthy conditions and in diseases.
Collapse
Affiliation(s)
- Noémi Sándor
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | | | | | - Veronika H. Barbai
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Bencze
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hani Hashim Hammad
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Alexandra Papp
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| |
Collapse
|
15
|
Saxena R, Gottlin EB, Campa MJ, Bushey RT, Guo J, Patz EF, He YW. Complement factor H: a novel innate immune checkpoint in cancer immunotherapy. Front Cell Dev Biol 2024; 12:1302490. [PMID: 38389705 PMCID: PMC10883309 DOI: 10.3389/fcell.2024.1302490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
The elimination of cancer cells critically depends on the immune system. However, cancers have evolved a variety of defense mechanisms to evade immune monitoring, leading to tumor progression. Complement factor H (CFH), predominately known for its function in inhibiting the alternative pathway of the complement system, has recently been identified as an important innate immunological checkpoint in cancer. CFH-mediated immunosuppression enhances tumor cells' ability to avoid immune recognition and produce an immunosuppressive tumor microenvironment. This review explores the molecular underpinnings, interactions with immune cells, clinical consequences, and therapeutic possibilities of CFH as an innate immune checkpoint in cancer control. The difficulties and opportunities of using CFH as a target in cancer immunotherapy are also explored.
Collapse
Affiliation(s)
- Ruchi Saxena
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| | - Elizabeth B Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Ryan T Bushey
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Jian Guo
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
| | - You-Wen He
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
16
|
Pan X, López Acevedo SN, Cuziol C, De Tavernier E, Fahad AS, Longjam PS, Rao SP, Aguilera-Rodríguez D, Rezé M, Bricault CA, Gutiérrez-González MF, de Souza MO, DiNapoli JM, Vigne E, Shahsavarian MA, DeKosky BJ. Large-scale antibody immune response mapping of splenic B cells and bone marrow plasma cells in a transgenic mouse model. Front Immunol 2023; 14:1137069. [PMID: 37346047 PMCID: PMC10280637 DOI: 10.3389/fimmu.2023.1137069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/30/2023] [Indexed: 06/23/2023] Open
Abstract
Molecular characterization of antibody immunity and human antibody discovery is mainly carried out using peripheral memory B cells, and occasionally plasmablasts, that express B cell receptors (BCRs) on their cell surface. Despite the importance of plasma cells (PCs) as the dominant source of circulating antibodies in serum, PCs are rarely utilized because they do not express surface BCRs and cannot be analyzed using antigen-based fluorescence-activated cell sorting. Here, we studied the antibodies encoded by the entire mature B cell populations, including PCs, and compared the antibody repertoires of bone marrow and spleen compartments elicited by immunization in a human immunoglobulin transgenic mouse strain. To circumvent prior technical limitations for analysis of plasma cells, we applied single-cell antibody heavy and light chain gene capture from the entire mature B cell repertoires followed by yeast display functional analysis using a cytokine as a model immunogen. We performed affinity-based sorting of antibody yeast display libraries and large-scale next-generation sequencing analyses to follow antibody lineage performance, with experimental validation of 76 monoclonal antibodies against the cytokine antigen that identified three antibodies with exquisite double-digit picomolar binding affinity. We observed that spleen B cell populations generated higher affinity antibodies compared to bone marrow PCs and that antigen-specific splenic B cells had higher average levels of somatic hypermutation. A degree of clonal overlap was also observed between bone marrow and spleen antibody repertoires, indicating common origins of certain clones across lymphoid compartments. These data demonstrate a new capacity to functionally analyze antigen-specific B cell populations of different lymphoid organs, including PCs, for high-affinity antibody discovery and detailed fundamental studies of antibody immunity.
Collapse
Affiliation(s)
- Xiaoli Pan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Sheila N. López Acevedo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| | - Camille Cuziol
- Large Molecule Research, Sanofi, Vitry sur Seine, France
| | | | - Ahmed S. Fahad
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | | | | | - Mathilde Rezé
- Large Molecule Research, Sanofi, Vitry sur Seine, France
| | | | - Matías F. Gutiérrez-González
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Matheus Oliveira de Souza
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | | | | | - Brandon J. DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS, United States
| |
Collapse
|
17
|
Kleczko EK, Poczobutt JM, Navarro AC, Laskowski J, Johnson AM, Korpela SP, Gurule NJ, Heasley LE, Hopp K, Weiser-Evans MC, Gottlin EB, Bushey RT, Campa MJ, Patz EF, Thurman JM, Nemenoff RA. Upregulation of complement proteins in lung cancer cells mediates tumor progression. Front Oncol 2023; 12:1045690. [PMID: 36686777 PMCID: PMC9849673 DOI: 10.3389/fonc.2022.1045690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction In vivo, cancer cells respond to signals from the tumor microenvironment resulting in changes in expression of proteins that promote tumor progression and suppress anti-tumor immunity. This study employed an orthotopic immunocompetent model of lung cancer to define pathways that are altered in cancer cells recovered from tumors compared to cells grown in culture. Methods Studies used four murine cell lines implanted into the lungs of syngeneic mice. Cancer cells were recovered using FACS, and transcriptional changes compared to cells grown in culture were determined by RNA-seq. Results Changes in interferon response, antigen presentation and cytokine signaling were observed in all tumors. In addition, we observed induction of the complement pathway. We previously demonstrated that activation of complement is critical for tumor progression in this model. Complement can play both a pro-tumorigenic role through production of anaphylatoxins, and an anti-tumorigenic role by promoting complement-mediated cell killing of cancer cells. While complement proteins are produced by the liver, expression of complement proteins by cancer cells has been described. Silencing cancer cell-specific C3 inhibited tumor growth In vivo. We hypothesized that induction of complement regulatory proteins was critical for blocking the anti-tumor effects of complement activation. Silencing complement regulatory proteins also inhibited tumor growth, with different regulatory proteins acting in a cell-specific manner. Discussion Based on these data we propose that localized induction of complement in cancer cells is a common feature of lung tumors that promotes tumor progression, with induction of complement regulatory proteins protecting cells from complement mediated-cell killing.
Collapse
Affiliation(s)
- Emily K. Kleczko
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joanna M. Poczobutt
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andre C. Navarro
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jennifer Laskowski
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Amber M. Johnson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sean P. Korpela
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Natalia J. Gurule
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lynn E. Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Katharina Hopp
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Mary C.M. Weiser-Evans
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Elizabeth B. Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Ryan T. Bushey
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Michael J. Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Edward F. Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke School of Medicine, Durham, NC, United States
| | - Joshua M. Thurman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Raphael A. Nemenoff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
18
|
Overview on the role of complement-specific autoantibodies in diseases. Mol Immunol 2022; 151:52-60. [PMID: 36084516 DOI: 10.1016/j.molimm.2022.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
The complement system is recognized as a major pathogenic or contributing factor in an ever-growing number of diseases. In addition to inherited factors, autoantibodies to complement proteins have been detected in various systemic and organ-specific disorders. These include antibodies directed against complement components, regulators and receptors, but also protein complexes such as autoantibodies against complement convertases. In some cases, the autoantibodies are relatively well characterized and a pathogenic role is incurred and their detection has diagnostic value. In other cases, the relevance of the autoantibodies is rather unclear. This review summarizes what we know of complement specific autoantibodies in diseases and identifies unresolved questions regarding their functional effect and relevance.
Collapse
|
19
|
Poli E, Barbon V, Lucchetta S, Cattelan M, Santoro L, Zin A, Milano GM, Zanetti I, Bisogno G, Bonvini P. Immunoreactivity against fibroblast growth factor 8 in alveolar rhabdomyosarcoma patients and its involvement in tumor aggressiveness. Oncoimmunology 2022; 11:2096349. [PMID: 35813575 PMCID: PMC9262361 DOI: 10.1080/2162402x.2022.2096349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive pediatric soft tissue sarcoma characterized by a very poor prognosis when relapses occur after front-line therapy. Therefore, a major challenge for patients’ management remains the identification of markers associated with refractory and progressive disease. In this context, cancer autoantibodies are natural markers of disease onset and progression, useful to unveil novel therapeutic targets. Herein, we matched autoantibody profiling of alveolar RMS (ARMS) patients with genes under regulatory control of PAX3-FOXO1 transcription factor and revealed fibroblast growth factor 8 (FGF8) as a novel ARMS tumor antigen of diagnostic, prognostic, and therapeutic potential. We demonstrated that high levels of FGF8 autoantibodies distinguished ARMS patients from healthy subjects and represented an independent prognostic factor of better event-free survival. FGF8 was overexpressed in ARMS tumors compared to other types of pediatric soft tissue sarcomas, acting as a positive regulator of cell signaling. Indeed, FGF8 was capable of stimulating ARMS cells migration and expression of pro-angiogenic and metastasis-related factors, throughout MAPK signaling activation. Of note, FGF8 was found to increase in recurrent tumors, independently of PAX3-FOXO1 expression dynamics. Risk of recurrence correlated positively with FGF8 expression levels at diagnosis and reduced FGF8 autoantibodies titer, almost as if to suggest a failure of the immune response to control tumor growth in recurring patients. This study provides evidence about the crucial role of FGF8 in ARMS and the protective function of natural autoantibodies, giving new insights into ARMS biology and laying the foundations for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Elena Poli
- Department of Woman’s and Children’s Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Vanessa Barbon
- Department of Woman’s and Children’s Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Silvia Lucchetta
- Department of Woman’s and Children’s Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Manuela Cattelan
- Department of Statistical Sciences, University of Padua, Padua, Italy
| | - Luisa Santoro
- Department of Medicine, Surgical Pathology and Cytopathology Unit, University of Padua, Padua, Italy
| | - Angelica Zin
- Fondazione Città Della Speranza, Institute of Pediatric Research (IRP), Padua, Italy
| | - Giuseppe Maria Milano
- Department of Pediatric Hematology and Oncology and of Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens’ Hospital, Rome, Italy
| | - Ilaria Zanetti
- Department of Woman’s and Children’s Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Gianni Bisogno
- Department of Woman’s and Children’s Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Paolo Bonvini
- Fondazione Città Della Speranza, Institute of Pediatric Research (IRP), Padua, Italy
| |
Collapse
|
20
|
Kolev M, Das M, Gerber M, Baver S, Deschatelets P, Markiewski MM. Inside-Out of Complement in Cancer. Front Immunol 2022; 13:931273. [PMID: 35860237 PMCID: PMC9291441 DOI: 10.3389/fimmu.2022.931273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
The role of complement in cancer has received increasing attention over the last decade. Recent studies provide compelling evidence that complement accelerates cancer progression. Despite the pivotal role of complement in fighting microbes, complement seems to suppress antitumor immunity via regulation of host cell in the tumor microenvironment. Although most studies link complement in cancer to complement activation in the extracellular space, the discovery of intracellular activation of complement, raises the question: what is the relevance of this process for malignancy? Intracellular activation is pivotal for the survival of immune cells. Therefore, complement can be important for tumor cell survival and growth regardless of the role in immunosuppression. On the other hand, because intracellular complement (the complosome) is indispensable for activation of T cells, these functions will be essential for priming antitumor T cell responses. Here, we review functions of complement in cancer with the consideration of extra and intracellular pathways of complement activation and spatial distribution of complement proteins in tumors and periphery and provide our take on potential significance of complement as biomarker and target for cancer therapy.
Collapse
Affiliation(s)
- Martin Kolev
- Discovery, Apellis Pharmaceuticals, Waltham, MA, United States
- *Correspondence: Martin Kolev, ; Maciej M. Markiewski,
| | - Madhumita Das
- Discovery, Apellis Pharmaceuticals, Waltham, MA, United States
| | - Monica Gerber
- Legal Department, Apellis Pharmaceuticals, Waltham, MA, United States
| | - Scott Baver
- Medical Affairs, Apellis Pharmaceuticals, Waltham, MA, United States
| | | | - Maciej M. Markiewski
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
- *Correspondence: Martin Kolev, ; Maciej M. Markiewski,
| |
Collapse
|
21
|
Yokoo T, Tanabe A, Yoshida Y, Caaveiro JMM, Nakakido M, Ikeda Y, Fujimura Y, Matsumoto M, Entzminger K, Maruyama T, Okumura CJ, Nangaku M, Tsumoto K. Antibody recognition of complement Factor H reveals a flexible loop involved in Atypical Hemolytic Uremic Syndrome pathogenesis. J Biol Chem 2022; 298:101962. [PMID: 35452676 PMCID: PMC9127587 DOI: 10.1016/j.jbc.2022.101962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 11/28/2022] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a disease associated with dysregulation of the immune complement system, especially of the alternative pathway (AP). Complement factor H (CFH), consisting of 20 domains called CCP1-20, downregulates the AP as a cofactor for mediating C3 inactivation by complement factor I (CFI). However, anomalies related to CFH are known to cause excessive complement activation and cytotoxicity. In aHUS, mutations and the presence of anti-CFH autoantibodies (AAbs) have been reported as plausible causes of CFH dysfunction, and it is known that CFH-related aHUS carries a high probability of end-stage renal disease. Elucidating the detailed functions of CFH at the molecular level will help to understand aHUS pathogenesis. Herein, we used biophysical data to reveal that a heavy-chain antibody fragment, termed VHH4, recognized CFH with high affinity. Hemolytic assays also indicated that VHH4 disrupted the protective function of CFH on sheep erythrocytes. Furthermore, X-ray crystallography revealed that VHH4 recognized the Leu1181-Leu1189CCP20 loop, a known anti-CFH AAbs epitope. We next analyzed the dynamics of the C-terminal region of CFH, and showed that the epitopes recognized by anti-CFH AAbs and VHH4 were the most flexible regions in CCP18-20. Finally, we conducted mutation analyses to elucidate the mechanism of VHH4 recognition of CFH, and revealed that VHH4 inserts Trp1183CCP20 residue of CFH into the pocket formed by the complementary determining region 3 loop. These results suggested that anti-CFH AAbs may adopt a similar molecular mechanism to recognize the flexible loop of Leu1181-Leu1189CCP20, leading to aHUS pathogenesis.
Collapse
Affiliation(s)
- Takanori Yokoo
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Aki Tanabe
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoko Yoshida
- Division of Nephrology and Endocrinology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Jose M M Caaveiro
- Department of Global Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Makoto Nakakido
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Yoichiro Ikeda
- Division of Nephrology and Endocrinology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshihiro Fujimura
- Department of Blood Transfusion Medicine, Nara Medical University, 840, Shijo-Cho, Kashihara, Nara, 634-8521, Japan
| | - Masanori Matsumoto
- Department of Blood Transfusion Medicine, Nara Medical University, 840, Shijo-Cho, Kashihara, Nara, 634-8521, Japan
| | - Kevin Entzminger
- Abwiz Bio Inc, 9823 Pacific Heights Blvd, Ste J, San Diego, California, 92121, USA
| | - Toshiaki Maruyama
- Abwiz Bio Inc, 9823 Pacific Heights Blvd, Ste J, San Diego, California, 92121, USA
| | - C J Okumura
- Abwiz Bio Inc, 9823 Pacific Heights Blvd, Ste J, San Diego, California, 92121, USA
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; The institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
22
|
Belousov PV. The Autoantibodies against Tumor-Associated Antigens as Potential Blood-Based Biomarkers in Thyroid Neoplasia: Rationales, Opportunities and Challenges. Biomedicines 2022; 10:biomedicines10020468. [PMID: 35203677 PMCID: PMC8962333 DOI: 10.3390/biomedicines10020468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
The Autoantibodies targeting Tumor-Associated Antigens (TAA-AAbs) emerge as a result of a variety of tumor-related immunogenic stimuli and may be regarded as the eyewitnesses to the anti-tumor immune response. TAA-AAbs may be readily detected in peripheral blood to unveil the presence of a particular TAA-expressing tumor, and a fair number of TAAs eliciting the tumor-associated autoantibody response have been identified. The potential of TAA-AAbs as tumor biomarkers has been extensively studied in many human malignancies with a major influence on public health; however, tumors of the endocrine system, and, in particular, the well-differentiated follicular cell-derived thyroid neoplasms, remain understudied in this context. This review provides a detailed perspective on and legitimate rationales for the potential use of TAA-AAbs in thyroid neoplasia, with particular reference to the already established diagnostic implications of the TAA-AAbs in human cancer, to the windows for improvement and diagnostic niches in the current workup strategies in nodular thyroid disease and differentiated thyroid cancer that TAA-AAbs may successfully occupy, as well as to the proof-of-concept studies demonstrating the usefulness of TAA-AAbs in thyroid oncology, particularly for the pre-surgical discrimination between tumors of different malignant potential in the context of the indeterminate results of the fine-needle aspiration cytology.
Collapse
Affiliation(s)
- Pavel V. Belousov
- National Center for Personalized Medicine of Endocrine Diseases, National Medical Research Center for Endocrinology, Ministry of Health of the Russian Federation, 117036 Moscow, Russia; or
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
23
|
Karagiannis P, Correa I, Chauhan J, Cheung A, Dominguez-Rodriguez D, Terranova-Barberio M, Harris RJ, Crescioli S, Spicer J, Bokemeyer C, Lacy KE, Karagiannis SN. Innate stimulation of B cells ex vivo enhances antibody secretion and identifies tumour-reactive antibodies from cancer patients. Clin Exp Immunol 2022; 207:84-94. [PMID: 35020866 PMCID: PMC8802180 DOI: 10.1093/cei/uxab005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/26/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Human B cells and their expressed antibodies are crucial in conferring immune protection. Identifying pathogen-specific antibodies following infection is possible due to enhanced humoral immunity against well-described molecules on the pathogen surface. However, screening for cancer-reactive antibodies remains challenging since target antigens are often not identified a priori and the frequency of circulating B cells recognizing cancer cells is likely very low. We investigated whether combined ex vivo culture of human B cells with three innate stimuli, interleukin-17 (IL-17), B-cell activation factor (BAFF), and the toll-like receptor 9 (TLR-9) agonist DNA motif CpG ODN 2006 (CpG), each known to activate B cells through different signalling pathways, promote cell activation, proliferation, and antibody production. Combined IL-17+BAFF+CpG prolonged B-cell survival and increased proliferation compared with single stimuli. IL-17+BAFF+CpG triggered higher IgG secretion, likely by activating differentiated, memory and class-switched CD19+CD20+CD27+IgD- B cells. Regardless of anti-FOLR antibody seropositive status, IL-17+BAFF+CpG combined with a monovalent tumour-associated antigen (folate receptor alpha [FOLR]) led to secreted antibodies recognizing the antigen and the antigen-expressing IGROV1 cancer cells. In a seropositive individual, FOLR stimulation favoured class-switched memory B-cell precursors (CD27-CD38-IgD-), class-switched memory B cells and anti-FOLR antibody production, while IL-17+BAFF+CpG combined with FOLR, promoted class-switched memory B-cell precursors and antibody-secreting (CD138+IgD-) plasma cells. Furthermore, IL-17+BAFF+CpG stimulation of peripheral blood B cells from patients with melanoma revealed tumour cell-reactive antibodies in culture supernatants. These findings suggest that innate signals stimulate B-cell survival and antibody production and may help identify low-frequency antigen-reactive humoral responses.
Collapse
Affiliation(s)
- Panagiotis Karagiannis
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Isabel Correa
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Anthony Cheung
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK.,Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| | - Diana Dominguez-Rodriguez
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Manuela Terranova-Barberio
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Robert J Harris
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - James Spicer
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Carsten Bokemeyer
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK.,Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| |
Collapse
|
24
|
Gottlin EB, Campa MJ, Gandhi R, Bushey RT, Herndon nd JE, Patz Jr. EF. Prognostic significance of a complement factor H autoantibody in early stage NSCLC. Cancer Biomark 2022; 34:385-392. [DOI: 10.3233/cbm-210355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND: Biomarkers that predict which patients with early stage NSCLC will develop recurrent disease would be of clinical value. We previously discovered that an autoantibody to a complement regulatory protein, complement factor H (CFH), is associated with early stage, non-recurrent NSCLC, and hypothesized that the anti-CFH antibody inhibits metastasis. OBJECTIVES: The primary objective of this study was to evaluate the anti-CFH antibody as a prognostic marker for recurrence in stage I NSCLC. A secondary objective was to determine if changes in antibody serum level one year after resection were associated with recurrence. METHODS: Anti-CFH antibody was measured in the sera of 157 stage I NSCLC patients designated as a prognostic cohort: 61% whose cancers did not recur, and 39% whose cancers recurred following resection. Impact of anti-CFH antibody positivity on time to recurrence was assessed using a competing risk analysis. Anti-CFH antibody levels were measured before resection and one year after resection in an independent temporal cohort of 47 antibody-positive stage I NSCLC patients: 60% whose cancers did not recur and 40% whose cancers recurred following resection. The non-recurrent and recurrent groups were compared with respect to the one-year percent change in antibody level. RESULTS: In the prognostic cohort, the 60-month cumulative incidence of recurrence was 40% and 22% among antibody negative and positive patients, respectively; this difference was significant (Gray’s test, P= 0.0425). In the temporal cohort, the antibody persisted in the serum at one year post-tumor resection. The change in antibody levels over the one year period was not statistically different between the non-recurrent and recurrent groups (Wilcoxon two-sample test, P= 0.4670). CONCLUSIONS: The anti-CFH autoantibody may be a useful prognostic marker signifying non-recurrence in early stage NSCLC patients. However, change in the level of this antibody in antibody-positive patients one year after resection had no association with recurrence.
Collapse
Affiliation(s)
| | - Michael J. Campa
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Rikesh Gandhi
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
- Department of Orthopaedic Surgery, Penn Medicine, Philadelphia, PA, USA
| | - Ryan T. Bushey
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - James E. Herndon nd
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Edward F. Patz Jr.
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
25
|
Lu J, Ding J, Liu Z, Chen T. Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review). Int J Oncol 2022; 60:12. [PMID: 34981814 PMCID: PMC8759346 DOI: 10.3892/ijo.2022.5302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Monoclonal antibody technology plays a vital role in biomedical and immunotherapy, which greatly promotes the study of the structure and function of genes and proteins. To date, monoclonal antibodies have gone through four stages: murine monoclonal antibody, chimeric monoclonal antibody, humanised monoclonal antibody and fully human monoclonal antibody; thousands of monoclonal antibodies have been used in the fields of biology and medicine, playing a special role in the pathogenesis, diagnosis and treatment of disease. In this review, we compare the advantages and disadvantages of hybridoma technology, phage display technology, ribosome display technology, transgenic mouse technology, single B cell monoclonal antibody generation technologies, and forecast the promising applications of these technologies in clinical medicine, disease diagnosis and tumour treatment.
Collapse
Affiliation(s)
- Jiachen Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianing Ding
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
26
|
Paull ML, Bozekowski JD, Daugherty PS. Mapping antibody binding using multiplexed epitope substitution analysis. J Immunol Methods 2021; 499:113178. [PMID: 34757083 DOI: 10.1016/j.jim.2021.113178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 01/24/2023]
Abstract
A more complete understanding of antibody epitopes would aid the development of diagnostics, therapeutic antibodies, and vaccines. However, current methods for mapping antibody binding to epitopes require a targeted experimental approach, which limits throughput. To address these limitations, we developed Multiplexed Epitope Substitution Analysis (MESA) which can rapidly characterize various distinct epitopes using millions of antibody-binding peptides. We screened peptides from a random 12-mer library that bound to human serum antibody repertoires and determined their sequences using next-generation sequencing (NGS). Computationally, we divided target epitope sequences into overlapping k-mer subsequences and substituted the positions in each k-mer with all 20 amino acids, mimicking a saturation mutagenesis. We then determined enrichments of the substituted k-mers in the screened peptide dataset and used these enrichments to identify substitutions favored for binding at each position in the target epitope, ultimately revealing the precise binding motif. To validate MESA, we determined binding motifs for monoclonal antibodies spiked into serum, recovering the expected binding positions and amino acid preferences. To characterize epitopes bound by a population, we analyzed 50 serum specimens to determine the binding motifs within various target epitopes from common pathogens. Additionally, by analyzing various HSV-1 glycoprotein epitopes, MESA revealed unique binding signatures for HSV-1 seropositive specimens and demonstrated the variability of binding signatures within a population. These results demonstrate that MESA can rapidly identify and characterize binding motifs for an unlimited number of epitopes from a single experiment, accelerating discoveries and enhancing our understanding of antibody-epitope interactions.
Collapse
Affiliation(s)
- Michael L Paull
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Joel D Bozekowski
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA.
| | - Patrick S Daugherty
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
27
|
Fridman WH, Petitprez F, Meylan M, Chen TWW, Sun CM, Roumenina LT, Sautès-Fridman C. B cells and cancer: To B or not to B? J Exp Med 2021; 218:211614. [PMID: 33601413 PMCID: PMC7754675 DOI: 10.1084/jem.20200851] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
Whereas T cells have been considered the major immune cells of the tumor microenvironment able to induce tumor regression and control cancer clinical outcome, a burst of recent publications pointed to the fact that B cells may also play a prominent role. Activated in germinal centers of tertiary lymphoid structures, B cells can directly present tumor-associated antigens to T cells or produce antibodies that increase antigen presentation to T cells or kill tumor cells, resulting in a beneficial clinical impact. Immune complexes can also increase inflammation, angiogenesis, and immunosuppression via macrophage and complement activation, resulting in deleterious impact.
Collapse
Affiliation(s)
- Wolf Herman Fridman
- Centre de Recherche des Cordeliers, Sorbonne Université, Institut national de la santé et de la recherche médicale, Université de Paris, Paris, France
| | - Florent Petitprez
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale contre le Cancer, Paris, France
| | - Maxime Meylan
- Centre de Recherche des Cordeliers, Sorbonne Université, Institut national de la santé et de la recherche médicale, Université de Paris, Paris, France
| | - Tom Wei-Wu Chen
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Ming Sun
- Centre de Recherche des Cordeliers, Sorbonne Université, Institut national de la santé et de la recherche médicale, Université de Paris, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, Sorbonne Université, Institut national de la santé et de la recherche médicale, Université de Paris, Paris, France
| | - Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, Sorbonne Université, Institut national de la santé et de la recherche médicale, Université de Paris, Paris, France
| |
Collapse
|
28
|
Complement factor H protects tumor cell-derived exosomes from complement-dependent lysis and phagocytosis. PLoS One 2021; 16:e0252577. [PMID: 34133431 PMCID: PMC8208531 DOI: 10.1371/journal.pone.0252577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes are a class of extracellular vesicles (EVs) that are mediators of normal intercellular communication, but exosomes are also used by tumor cells to promote oncogenesis and metastasis. Complement factor H (CFH) protects host cells from attack and destruction by the alternative pathway of complement-dependent cytotoxicity (CDC). Here we show that CFH can protect exosomes from complement-mediated lysis and phagocytosis. CFH was found to be associated with EVs from a variety of tumor cell lines as well as EVs isolated from the plasma of patients with metastatic non-small cell lung cancer. Higher levels of CFH-containing EVs correlated with higher metastatic potential of cell lines. GT103, a previously described antibody to CFH that preferentially causes CDC of tumor cells, was used to probe the susceptibility of tumor cell-derived exosomes to destruction. Exosomes were purified from EVs using CD63 beads. Incubation of GT103 with tumor cell-derived exosomes triggered exosome lysis primarily by the classical complement pathway as well as antibody-dependent exosome phagocytosis by macrophages. These results imply that GT103-mediated exosome destruction can be triggered by antibody Fc-C1q interaction (in the case of lysis), and antibody-Fc receptor interactions (in the case of phagocytosis). Thus, this work demonstrates CFH is expressed on tumor cell derived exosomes, can protect them from complement lysis and phagocytosis, and that an anti-CFH antibody can be used to target tumor-derived exosomes for exosome destruction via innate immune mechanisms. These findings suggest that a therapeutic CFH antibody has the potential to inhibit tumor progression and reduce metastasis promoted by exosomes.
Collapse
|
29
|
Daugan MV, Revel M, Thouenon R, Dragon-Durey MA, Robe-Rybkine T, Torset C, Merle NS, Noé R, Verkarre V, Oudard SM, Mejean A, Validire P, Cathelineau X, Sanchez-Salas R, Pickering MC, Cremer I, Mansuet-Lupo A, Alifano M, Sautès-Fridman C, Damotte D, Fridman WH, Roumenina LT. Intracellular Factor H Drives Tumor Progression Independently of the Complement Cascade. Cancer Immunol Res 2021; 9:909-925. [PMID: 34039652 DOI: 10.1158/2326-6066.cir-20-0787] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/03/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022]
Abstract
The complement system is a powerful and druggable innate immune component of the tumor microenvironment. Nevertheless, it is challenging to elucidate the exact mechanisms by which complement affects tumor growth. In this study, we examined the processes by which the master complement regulator factor H (FH) affects clear cell renal cell carcinoma (ccRCC) and lung cancer, two cancers in which complement overactivation predicts poor prognosis. FH was present in two distinct cellular compartments: the membranous (mb-FH) and intracellular (int-FH) compartments. Int-FH resided in lysosomes and colocalized with C3. In ccRCC and lung adenocarcinoma, FH exerted protumoral action through an intracellular, noncanonical mechanism. FH silencing in ccRCC cell lines resulted in decreased proliferation, due to cell-cycle arrest and increased mortality, and this was associated with increased p53 phosphorylation and NFκB translocation to the nucleus. Moreover, the migration of the FH-silenced cells was reduced, likely due to altered morphology. These effects were cell type-specific because no modifications occurred upon CFH silencing in other FH-expressing cells tested: tubular cells (from which ccRCC originates), endothelial cells (human umbilical vein endothelial cells), and squamous cell lung cancer cells. Consistent with this, in ccRCC and lung adenocarcinoma, but not in lung squamous cell carcinoma, int-FH conferred poor prognosis in patient cohorts. Mb-FH performed its canonical function of complement regulation but had no impact on tumor cell phenotype or patient survival. The discovery of intracellular functions for FH redefines the role of the protein in tumor progression and its use as a prognostic biomarker or potential therapeutic target.See article by Daugan et al., p. 891 (36).
Collapse
Affiliation(s)
- Marie V Daugan
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Margot Revel
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Romane Thouenon
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Marie-Agnès Dragon-Durey
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,Department of Biologic Immunology, Hôpital Européen Georges-Pompidou, Assistance Publique Hopitaux de Paris, Paris, France
| | - Tania Robe-Rybkine
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Carine Torset
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Nicolas S Merle
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Rémi Noé
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Virginie Verkarre
- Université de Paris, Paris, France.,Department of Pathology, Hôpital Européen Georges-Pompidou, Assistance Publique Hopitaux de Paris, Paris, France
| | - Stephane Marie Oudard
- Université de Paris, Paris, France.,Department of Oncology, Hôpital Européen Georges-Pompidou, Assistance Publique Hopitaux de Paris, Paris, France
| | - Arnaud Mejean
- Université de Paris, Paris, France.,Department of Urology, Hôpital Européen Georges-Pompidou, Assistance Publique Hopitaux de Paris, Paris, France
| | - Pierre Validire
- Department of Pathology, Institut Mutualiste Montsouris, Paris, France
| | - Xavier Cathelineau
- Université de Paris, Paris, France.,Department of Urology, Institut Mutualiste Montsouris, Paris, France
| | | | - Mathew C Pickering
- Centre for Complement and Inflammation Research, Imperial College, London, United Kingdom
| | - Isabelle Cremer
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Audrey Mansuet-Lupo
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,Departments of Pathology and Thoracic Surgery, Hôpital Cochin, Assistance Publique Hopitaux de Paris, Paris, France
| | - Marco Alifano
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,Departments of Pathology and Thoracic Surgery, Hôpital Cochin, Assistance Publique Hopitaux de Paris, Paris, France
| | - Catherine Sautès-Fridman
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Diane Damotte
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,Departments of Pathology and Thoracic Surgery, Hôpital Cochin, Assistance Publique Hopitaux de Paris, Paris, France
| | - Wolf H Fridman
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Lubka T Roumenina
- Team Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
30
|
Mao X, Zhou L, Tey SK, Ma APY, Yeung CLS, Ng TH, Wong SWK, Liu BHM, Fung YME, Patz EF, Cao P, Gao Y, Yam JWP. Tumour extracellular vesicle-derived Complement Factor H promotes tumorigenesis and metastasis by inhibiting complement-dependent cytotoxicity of tumour cells. J Extracell Vesicles 2020; 10:e12031. [PMID: 33708358 PMCID: PMC7890557 DOI: 10.1002/jev2.12031] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/02/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system is involved in the immunosurveillance of pathogens and tumour cells. Proteomic profiling revealed that extracellular vesicles (EVs) released by metastatic hepatocellular carcinoma (HCC) cells contained a significant number of complement proteins. Complement Factor H (CFH), an abundant soluble serum protein that inhibits the alternative complement pathway, was found to be highly expressed in EVs of metastatic HCC cell lines. Here, we investigated the functional role of EV-CFH and explored the therapeutic efficacy of targeting EV-CFH with an anti-CFH antibody in HCC. The results showed that EVs that are enriched in CFH promoted HCC cell growth, migration, invasiveness and enhanced liver tumour formation in mice. EV-CFH also promoted metastasis, which was significantly abrogated when treated with an anti-CFH antibody. These findings demonstrate an unexplored function of EV-CFH in protecting HCC cells by evading complement attack, thereby facilitating tumorigenesis and metastasis. Lastly, we demonstrated the therapeutic efficacy of an anti-CFH antibody in suppressing tumour formation in a syngeneic mouse model. This study suggests a new therapeutic strategy for HCC, by inhibiting EV-CFH with a tumour specific anti-CFH antibody.
Collapse
Affiliation(s)
- Xiaowen Mao
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Longyin Zhou
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Sze Keong Tey
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Angel Po Yee Ma
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Cherlie Lot Sum Yeung
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Tung Him Ng
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Samuel Wan Ki Wong
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Bonnie Hei Man Liu
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Yi Man Eva Fung
- Department of Chemistry, State Key Laboratory of Synthetic ChemistryThe University of Hong KongPokfulamHong Kong
| | - Edward F. Patz
- Department of RadiologyDuke University Medical CenterDurhamUSA
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamUSA
| | - Peihua Cao
- Clinical Research Center, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
- Department of Hepatobiliary Surgery II, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
- Institute of Regenerative Medicine, Zhujiang HospitalSouthern Medical UniversityGuangzhouP. R. China
- Artificial Organs and Tissue Engineering Centre of Guangdong ProvinceGuangzhouP. R. China
- State Key Laboratory of Organ Failure ResearchSouthern Medical UniversityGuangzhouP. R. China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
- Department of Hepatobiliary Surgery II, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
- State Key Laboratory of Liver Research (The University of Hong Kong)PokfulamHong Kong
| |
Collapse
|
31
|
Emerging Strategies for Therapeutic Antibody Discovery from Human B Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32949403 DOI: 10.1007/978-981-15-4494-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Monoclonal antibodies from human sources are being increasingly recognized as valuable options in many therapeutic areas. These antibodies can show exquisite specificity and high potency while maintaining a desirable safety profile, having been matured and tolerized within human patients. However, the discovery of these antibodies presents important challenges, since the B cells encoding therapeutic antibodies can be rare in a typical blood draw and are short-lived ex vivo. Furthermore, the unique pairing of VH and VL domains in each B cell contributes to specificity and function; therefore, maintaining antibody chain pairing presents a throughput limitation. This work will review the various approaches aimed at addressing these challenges with an eye to next-generation methods for high-throughput discovery from the human B-cell repertoire.
Collapse
|
32
|
Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, Wu HC. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 2020; 27:1. [PMID: 31894001 PMCID: PMC6939334 DOI: 10.1186/s12929-019-0592-z] [Citation(s) in RCA: 1260] [Impact Index Per Article: 252.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
It has been more than three decades since the first monoclonal antibody was approved by the United States Food and Drug Administration (US FDA) in 1986, and during this time, antibody engineering has dramatically evolved. Current antibody drugs have increasingly fewer adverse effects due to their high specificity. As a result, therapeutic antibodies have become the predominant class of new drugs developed in recent years. Over the past five years, antibodies have become the best-selling drugs in the pharmaceutical market, and in 2018, eight of the top ten bestselling drugs worldwide were biologics. The global therapeutic monoclonal antibody market was valued at approximately US$115.2 billion in 2018 and is expected to generate revenue of $150 billion by the end of 2019 and $300 billion by 2025. Thus, the market for therapeutic antibody drugs has experienced explosive growth as new drugs have been approved for treating various human diseases, including many cancers, autoimmune, metabolic and infectious diseases. As of December 2019, 79 therapeutic mAbs have been approved by the US FDA, but there is still significant growth potential. This review summarizes the latest market trends and outlines the preeminent antibody engineering technologies used in the development of therapeutic antibody drugs, such as humanization of monoclonal antibodies, phage display, the human antibody mouse, single B cell antibody technology, and affinity maturation. Finally, future applications and perspectives are also discussed.
Collapse
Affiliation(s)
- Ruei-Min Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Chyi Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Chi-Chiu Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Han-Zen Tsai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Hsin-Jung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan. .,, 128 Academia Rd., Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
33
|
Shehata L, Maurer DP, Wec AZ, Lilov A, Champney E, Sun T, Archambault K, Burnina I, Lynaugh H, Zhi X, Xu Y, Walker LM. Affinity Maturation Enhances Antibody Specificity but Compromises Conformational Stability. Cell Rep 2019; 28:3300-3308.e4. [PMID: 31553901 DOI: 10.1016/j.celrep.2019.08.056] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/04/2019] [Accepted: 08/16/2019] [Indexed: 11/16/2022] Open
Abstract
Monoclonal antibodies (mAbs) have recently emerged as one of the most promising classes of biotherapeutics. A potential advantage of B cell-derived mAbs as therapeutic agents is that they have been subjected to natural filtering mechanisms, which may enrich for B cell receptors (BCRs) with favorable biophysical properties. Here, we evaluated 400 human mAbs for polyreactivity, hydrophobicity, and thermal stability using high-throughput screening assays. Overall, mAbs derived from memory B cells and long-lived plasma cells (LLPCs) display reduced levels of polyreactivity, hydrophobicity, and thermal stability compared with naive B cell-derived mAbs. Somatic hypermutation (SHM) is inversely associated with all three biophysical properties, as well as BCR expression levels. Finally, the developability profiles of the human B cell-derived mAbs are comparable with those observed for clinical mAbs, suggesting their high therapeutic potential. The results provide insight into the biophysical consequences of affinity maturation and have implications for therapeutic antibody engineering and development.
Collapse
|
34
|
Riihilä P, Nissinen L, Knuutila J, Rahmati Nezhad P, Viiklepp K, Kähäri VM. Complement System in Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20143550. [PMID: 31331124 PMCID: PMC6678994 DOI: 10.3390/ijms20143550] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Epidermal keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer with high mortality rates in the advanced stage. Chronic inflammation is a recognized risk factor for cSCC progression and the complement system, as a part of innate immunity, belongs to the microenvironment of tumors. The complement system is a double-edged sword in cancer, since complement activation is involved in anti-tumor cytotoxicity and immune responses, but it also promotes cancer progression directly and indirectly. Recently, the role of several complement components and inhibitors in the regulation of progression of cSCC has been shown. In this review, we will discuss the role of complement system components and inhibitors as biomarkers and potential new targets for therapeutic intervention in cSCC.
Collapse
Affiliation(s)
- Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Jaakko Knuutila
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Pegah Rahmati Nezhad
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Kristina Viiklepp
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland.
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland.
| |
Collapse
|
35
|
Molecular Docking and Molecular Dynamics (MD) Simulation of Human Anti-Complement Factor H (CFH) Antibody Ab42 and CFH Polypeptide. Int J Mol Sci 2019; 20:ijms20102568. [PMID: 31130605 PMCID: PMC6566401 DOI: 10.3390/ijms20102568] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
An understanding of the interaction between the antibody and its targeted antigen and knowing of the epitopes are critical for the development of monoclonal antibody drugs. Complement factor H (CFH) is implied to play a role in tumor growth and metastasis. An autoantibody to CHF is associated with anti-tumor cell activity. The interaction of a human monoclonal antibody Ab42 that was isolated from a cancer patient with CFH polypeptide (pCFH) antigen was analyzed by molecular docking, molecular dynamics (MD) simulation, free energy calculation, and computational alanine scanning (CAS). Experimental alanine scanning (EAS) was then carried out to verify the results of the theoretical calculation. Our results demonstrated that the Ab42 antibody interacts with pCFH by hydrogen bonds through the Tyr315, Ser100, Gly33, and Tyr53 residues on the complementarity-determining regions (CDRs), respectively, with the amino acid residues of Pro441, Ile442, Asp443, Asn444, Ile447, and Thr448 on the pCFH antigen. In conclusion, this study has explored the mechanism of interaction between Ab42 antibody and its targeted antigen by both theoretical and experimental analysis. Our results have important theoretical significance for the design and development of relevant antibody drugs.
Collapse
|
36
|
|
37
|
Correa I, Ilieva KM, Crescioli S, Lombardi S, Figini M, Cheung A, Spicer JF, Tutt ANJ, Nestle FO, Karagiannis P, Lacy KE, Karagiannis SN. Evaluation of Antigen-Conjugated Fluorescent Beads to Identify Antigen-Specific B Cells. Front Immunol 2018; 9:493. [PMID: 29628923 PMCID: PMC5876289 DOI: 10.3389/fimmu.2018.00493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/26/2018] [Indexed: 11/30/2022] Open
Abstract
Selection of single antigen-specific B cells to identify their expressed antibodies is of considerable interest for evaluating human immune responses. Here, we present a method to identify single antibody-expressing cells using antigen-conjugated fluorescent beads. To establish this, we selected Folate Receptor alpha (FRα) as a model antigen and a mouse B cell line, expressing both the soluble and the membrane-bound forms of a human/mouse chimeric antibody (MOv18 IgG1) specific for FRα, as test antibody-expressing cells. Beads were conjugated to FRα using streptavidin/avidin-biotin bridges and used to select single cells expressing the membrane-bound form of anti-FRα. Bead-bound cells were single cell-sorted and processed for single cell RNA retrotranscription and PCR to isolate antibody heavy and light chain variable regions. Variable regions were then cloned and expressed as human IgG1/k antibodies. Like the original clone, engineered antibodies from single cells recognized native FRα. To evaluate whether antigen-coated beads could identify specific antibody-expressing cells in mixed immune cell populations, human peripheral blood mononuclear cells (PBMCs) were spiked with test antibody-expressing cells. Antigen-specific cells could comprise up to 75% of cells selected with antigen-conjugated beads when the frequency of the antigen-positive cells was 1:100 or higher. In PBMC pools, beads conjugated to recombinant antigens FRα and HER2 bound antigen-specific anti-FRα MOv18 and anti-HER2 Trastuzumab antibody-expressing cells, respectively. From melanoma patient-derived B cells selected with melanoma cell line-derived protein-coated fluorescent beads, we generated a monoclonal antibody that recognized melanoma antigen-coated beads. This approach may be further developed to facilitate analysis of B cells and their antibody profiles at the single cell level and to help unravel humoral immune repertoires.
Collapse
Affiliation(s)
- Isabel Correa
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom
| | - Kristina M Ilieva
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom
| | - Sara Lombardi
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Mariangela Figini
- Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Anthony Cheung
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - James F Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Andrew N J Tutt
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom.,Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Frank O Nestle
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom.,Immunology and Inflammation Therapeutic Research Area, Sanofi US, Cambridge, MA, United States
| | - Panagiotis Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom.,Department of Oncology, Haematology and Stem Cell Transplantation, University Hospital of Hamburg Eppendorf, Hamburg, Germany
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| |
Collapse
|
38
|
Recombinant human B cell repertoires enable screening for rare, specific, and natively paired antibodies. Commun Biol 2018; 1:5. [PMID: 30271892 PMCID: PMC6123710 DOI: 10.1038/s42003-017-0006-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/07/2017] [Indexed: 11/09/2022] Open
Abstract
The human antibody repertoire is increasingly being recognized as a valuable source of therapeutic grade antibodies. However, methods for mining primary antibody-expressing B cells are limited in their ability to rapidly isolate rare and antigen-specific binders. Here we show the encapsulation of two million primary B cells into picoliter-sized droplets, where their cognate V genes are fused in-frame to form a library of scFv cassettes. We used this approach to construct natively paired phage-display libraries from healthy donors and drove selection towards cross-reactive antibodies targeting influenza hemagglutinin. Within 4 weeks we progressed from B cell isolation to a panel of unique monoclonal antibodies, including seven that displayed broad reactivity to different clinically relevant influenza hemagglutinin subtypes. Most isolated antibody sequences were not detected by next-generation sequencing of the paired repertoire, illustrating how this method can isolate extremely rare leads not likely found by existing technologies. Saravanan Rajan et al. describe a high-throughput method for isolating unique human monoclonal antibodies using picoliter sized droplets containing primary B cells. They show this approach can rapidly drive selection towards novel antibodies against clinically-relevant influenza hemagglutinin subtypes.
Collapse
|
39
|
Ereño-Orbea J, Sicard T, Cui H, Carson J, Hermans P, Julien JP. Structural Basis of Enhanced Crystallizability Induced by a Molecular Chaperone for Antibody Antigen-Binding Fragments. J Mol Biol 2017; 430:322-336. [PMID: 29277294 DOI: 10.1016/j.jmb.2017.12.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022]
Abstract
Monoclonal antibodies constitute one of the largest groups of drugs to treat cancers and immune disorders, and are guiding the design of vaccines against infectious diseases. Fragments antigen-binding (Fabs) have been preferred over monoclonal antibodies for the structural characterization of antibody-antigen complexes due to their relatively low flexibility. Nonetheless, Fabs often remain challenging to crystallize because of the surface characteristics of complementary determining regions and the residual flexibility in the hinge region between the variable and constant domains. Here, we used a variable heavy-chain (VHH) domain specific for the human kappa light chain to assist in the structure determination of three therapeutic Fabs that were recalcitrant to crystallization on their own. We show that this ligand alters the surface properties of the antibody-ligand complex and lowers its aggregation temperature to favor crystallization. The VHH crystallization chaperone also restricts the flexible hinge of Fabs to a narrow range of angles, and so independently of the variable region. Our findings contribute a valuable approach to antibody structure determination and provide biophysical insight into the principles that govern the crystallization of macromolecules.
Collapse
Affiliation(s)
- June Ereño-Orbea
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
| | - Taylor Sicard
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4; Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Hong Cui
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
| | - Jacob Carson
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
| | - Pim Hermans
- BAC, BV, part of Thermo Fisher Scientific, Leiden, the Netherlands
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4; Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8; Department of Immunology, University of Toronto, Toronto, ON, Canada M5S 1A8.
| |
Collapse
|
40
|
Hennenberg EM, Eyking A, Reis H, Cario E. MDR1A deficiency restrains tumor growth in murine colitis-associated carcinogenesis. PLoS One 2017; 12:e0180834. [PMID: 28686677 PMCID: PMC5501609 DOI: 10.1371/journal.pone.0180834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
Patients with Ulcerative Colitis (UC) have an increased risk to develop colitis-associated colorectal cancer (CAC). Here, we found that protein expression of ABCB1 (ATP Binding Cassette Subfamily B Member 1) / MDR1 (multidrug resistance 1) was diminished in the intestinal mucosa of patients with active UC with or without CAC, but not in non-UC patients with sporadic colon cancer. We investigated the consequences of ABCB1/MDR1 loss-of-function in a common murine model for CAC (AOM/DSS). Mice deficient in MDR1A (MDR1A KO) showed enhanced intratumoral inflammation and cellular damage, which were associated with reduced colonic tumor size and decreased degree of dysplasia, when compared to wild-type (WT). Increased cell injury correlated with reduced capacity for growth of MDR1A KO tumor spheroids cultured ex-vivo. Gene expression analysis by microarray demonstrated that MDR1A deficiency shaped the inflammatory response towards an anti-tumorigenic microenvironment by downregulating genes known to be important mediators of cancer progression (PTGS2 (COX2), EREG, IL-11). MDR1A KO tumors showed increased gene expression of TNFSF10 (TRAIL), a known inducer of cancer cell death, and CCL12, a strong trigger of B cell chemotaxis. Abundant B220+ B lymphocyte infiltrates with interspersed CD138+ plasma cells were recruited to the MDR1A KO tumor microenvironment, concomitant with high levels of immunoglobulin light chain genes. In contrast, MDR1A deficiency in RAG2 KO mice that lack both B and T cells aggravated colonic tumor progression. MDR1A KO CD19+ B cells, but not WT CD19+ B cells, suppressed growth of colonic tumor-derived spheroids from AOM/DSS-WT mice in an ex-vivo co-culture system, implying that B-cell regulated immune responses contributed to delayed tumor development in MDR1A deficiency. In conclusion, we provide first evidence that loss of ABCB1/MDR1 function may represent an essential tumor-suppressive host defense mechanism in CAC.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/immunology
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Carcinogenesis/genetics
- Carcinogenesis/immunology
- Carcinogenesis/pathology
- Chemotaxis
- Colitis, Ulcerative/complications
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/pathology
- Colorectal Neoplasms/complications
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/pathology
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/immunology
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- Disease Models, Animal
- Epiregulin/genetics
- Epiregulin/immunology
- Gene Expression Regulation, Neoplastic
- Genes, Immunoglobulin Light Chain/genetics
- Humans
- Interleukin-11/genetics
- Interleukin-11/immunology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Leukocyte Common Antigens/genetics
- Leukocyte Common Antigens/immunology
- Male
- Mice
- Mice, Knockout
- Monocyte Chemoattractant Proteins/genetics
- Monocyte Chemoattractant Proteins/immunology
- Signal Transduction
- TNF-Related Apoptosis-Inducing Ligand/genetics
- TNF-Related Apoptosis-Inducing Ligand/immunology
Collapse
Affiliation(s)
- Eva Maria Hennenberg
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
- Medical School, University of Duisburg-Essen, Essen, Germany
| | - Annette Eyking
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
- Medical School, University of Duisburg-Essen, Essen, Germany
| | - Henning Reis
- Medical School, University of Duisburg-Essen, Essen, Germany
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Elke Cario
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
- Medical School, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
41
|
Winkler MT, Bushey RT, Gottlin EB, Campa MJ, Guadalupe ES, Volkheimer AD, Weinberg JB, Patz EF. Enhanced CDC of B cell chronic lymphocytic leukemia cells mediated by rituximab combined with a novel anti-complement factor H antibody. PLoS One 2017; 12:e0179841. [PMID: 28658265 PMCID: PMC5489178 DOI: 10.1371/journal.pone.0179841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/05/2017] [Indexed: 12/29/2022] Open
Abstract
Rituximab therapy for B cell chronic lymphocytic leukemia (B-CLL) has met with mixed success. Among several factors to which resistance can be attributed is failure to activate complement dependent cytotoxicity (CDC) due to protective complement regulatory proteins, including the soluble regulator complement factor H (CFH). We hypothesized that rituximab killing of non-responsive B-CLL cells could be augmented by a novel human monoclonal antibody against CFH. The B cells from 11 patients with B-CLL were tested ex vivo in CDC assays with combinations of CFH monoclonal antibody, rituximab, and a negative control antibody. CDC of rituximab non-responsive malignant B cells from CLL patients could in some cases be augmented by the CFH monoclonal antibody. Antibody-mediated cytotoxicity of cells was dependent upon functional complement. In one case where B-CLL cells were refractory to CDC by the combination of rituximab plus CFH monoclonal antibody, additionally neutralizing the membrane complement regulatory protein CD59 allowed CDC to occur. Inhibiting CDC regulatory proteins such as CFH holds promise for overcoming resistance to rituximab therapy in B-CLL.
Collapse
Affiliation(s)
- Mark T. Winkler
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ryan T. Bushey
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Elizabeth B. Gottlin
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael J. Campa
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Eross S. Guadalupe
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Alicia D. Volkheimer
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Durham VA Medical Center, Durham, North Carolina, United States of America
| | - J. Brice Weinberg
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Durham VA Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Edward F. Patz
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
42
|
Parente R, Clark SJ, Inforzato A, Day AJ. Complement factor H in host defense and immune evasion. Cell Mol Life Sci 2016; 74:1605-1624. [PMID: 27942748 PMCID: PMC5378756 DOI: 10.1007/s00018-016-2418-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/30/2022]
Abstract
Complement is the major humoral component of the innate immune system. It recognizes pathogen- and damage-associated molecular patterns, and initiates the immune response in coordination with innate and adaptive immunity. When activated, the complement system unleashes powerful cytotoxic and inflammatory mechanisms, and thus its tight control is crucial to prevent damage to host tissues and allow restoration of immune homeostasis. Factor H is the major soluble inhibitor of complement, where its binding to self markers (i.e., particular glycan structures) prevents complement activation and amplification on host surfaces. Not surprisingly, mutations and polymorphisms that affect recognition of self by factor H are associated with diseases of complement dysregulation, such as age-related macular degeneration and atypical haemolytic uremic syndrome. In addition, pathogens (i.e., non-self) and cancer cells (i.e., altered-self) can hijack factor H to evade the immune response. Here we review recent (and not so recent) literature on the structure and function of factor H, including the emerging roles of this protein in the pathophysiology of infectious diseases and cancer.
Collapse
Affiliation(s)
- Raffaella Parente
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Simon J Clark
- Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Antonio Inforzato
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy. .,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy.
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
43
|
Zhang YF, Ho M. Humanization of high-affinity antibodies targeting glypican-3 in hepatocellular carcinoma. Sci Rep 2016; 6:33878. [PMID: 27667400 PMCID: PMC5036187 DOI: 10.1038/srep33878] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/05/2016] [Indexed: 01/03/2023] Open
Abstract
Glypican-3 (GPC3) is a cell-surface heparan sulfate proteoglycan highly expressed in hepatocellular carcinoma (HCC). We have generated a group of high-affinity mouse monoclonal antibodies targeting GPC3. Here, we report the humanization and testing of these antibodies for clinical development. We compared the affinity and cytotoxicity of recombinant immunotoxins containing mouse single-chain variable regions fused with a Pseudomonas toxin. To humanize the mouse Fvs, we grafted the combined KABAT/IMGT complementarity determining regions (CDR) into a human IgG germline framework. Interestingly, we found that the proline at position 41, a non-CDR residue in heavy chain variable regions (VH), is important for humanization of mouse antibodies. We also showed that two humanized anti-GPC3 antibodies (hYP7 and hYP9.1b) in the IgG format induced antibody-dependent cell-mediated cytotoxicity and complement-dependent-cytotoxicity in GPC3-positive cancer cells. The hYP7 antibody was tested and showed inhibition of HCC xenograft tumor growth in nude mice. This study successfully humanizes and validates high affinity anti-GPC3 antibodies and sets a foundation for future development of these antibodies in various clinical formats in the treatment of liver cancer.
Collapse
Affiliation(s)
- Yi-Fan Zhang
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Mitchell Ho
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|