1
|
Agarwal H, Wang Y, Tinsley B, Wang X, Ozcan L. RAP1A suppresses hepatic steatosis by regulating amino acid-mediated mTORC1 activation. JHEP Rep 2025; 7:101303. [PMID: 40124164 PMCID: PMC11929108 DOI: 10.1016/j.jhepr.2024.101303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 03/25/2025] Open
Abstract
Background & Aims Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by triglyceride (TG) build-up in hepatocytes; however, our understanding of the underlying molecular mechanisms is limited. Here, we investigated the role of hepatic GTPase RAP1A in MASLD and its more progressive form, metabolic dysfunction-associated steatohepatitis (MASH). Methods RAP1A was silenced or activated by AAV8-TBG-mediated gene expression or treating mice with a small molecule RAP1 activator (n = 4-12 per group). Primary hepatocytes were used to further probe the newly elucidated pathway. Liver samples from patients with MASH and control livers were analyzed for active RAP1A levels (n = 4 per group). Results Activation of hepatic RAP1A is suppressed in obese mice with MASLD and restoring its activity decreases liver steatosis. RAP1A activation lowers hepatic TG accumulation through decreasing sterol regulatory element-binding protein 1 (SREBP1) cleavage by inhibiting the mechanistic target of rapamycin complex 1 (mTORC1). The mechanism linking RAP1A activation to suppression of mTORC1 involves the lowering of membrane-bound amino acid transporters, which leads to reduced hepatocyte amino acid uptake, decreased intracellular amino acid levels, and inhibition of amino acid-mediated mTORC1 activation. Furthermore, we observed that active-RAP1A levels were decreased in mice fed a MASH-provoking diet (98% lower, p <0.01) and liver extracts from patients with MASH (86% lower, p <0.05). Accordingly, restoration of RAP1A activity in mice liver lowered liver fibrotic gene expression and prevented fibrosis formation, whereas RAP1A silencing promoted the progression of MASH. Conclusions Activation of hepatic RAP1A lowers MASLD and MASH formation by suppressing amino acid-mediated mTORC1 activation and decreasing cleaved SREBP1. These data provide mechanistic insight into amino acid-mediated mTORC1 regulation and raise the possibility that hepatic RAP1A may serve as a mechanistic node linking obesity with MASLD and MASH. Impact and implications Metabolic dysfunction-associated liver pathologies are inadequately treated with currently available therapy. Here we demonstrate that the small GTPase RAS-associated protein 1A (RAP1A) protects against liver steatosis and fibrosis development by decreasing hepatocyte amino acid levels, which results in lower mTORC1 activity and SREBP1 cleavage. The results may present new targets against metabolic dysfunction related liver diseases.
Collapse
Affiliation(s)
- Heena Agarwal
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Yating Wang
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Brea Tinsley
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Xiaobo Wang
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Lale Ozcan
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| |
Collapse
|
2
|
Huang Q, Gu Y, Wu J, Zhan Y, Deng Z, Chen S, Peng M, Yang R, Chen J, Xie J. DACH1 Attenuates Airway Inflammation in Chronic Obstructive Pulmonary Disease by Activating NRF2 Signaling. Am J Respir Cell Mol Biol 2024; 71:121-132. [PMID: 38587806 DOI: 10.1165/rcmb.2023-0337oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/05/2024] [Indexed: 04/09/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease of the airways characterized by impaired lung function induced by cigarette smoke (CS). Reduced DACH1 (dachshund homolog 1) expression has a detrimental role in numerous disorders, but its role in COPD remains understudied. This study aimed to elucidate the role and underlying mechanism of DACH1 in airway inflammation in COPD by measuring DACH1 expression in lung tissues of patients with COPD. Airway epithelium-specific DACH1-knockdown mice and adenoassociated virus-transfected DACH1-overexpressing mice were used to investigate the role of DACH1 and the potential for therapeutic targeting in experimental COPD caused by CS. Furthermore, we discovered a potential mechanism of DACH1 in inflammation induced by CS extract stimulation in vitro. Compared with nonsmokers and smokers without COPD, patients with COPD had reduced DACH1 expression, especially in the airway epithelium. Airway epithelium-specific DACH1 knockdown aggravated airway inflammation and lung function decline caused by CS in mice, whereas DACH1 overexpression protected mice from airway inflammation and lung function decline. DACH1 knockdown and overexpression promoted and inhibited IL-6 and IL-8 secretion, respectively, in 16HBE human bronchial epidermal cells after CS extract stimulation. NRF2 (nuclear factor erythroid 2-related factor 2) was discovered to be a novel downstream target of DACH1, which binds directly to its promoter. By activating NRF2 signaling, DACH1 induction reduced inflammation. DACH1 levels are lower in smokers and nonsmoking patients with COPD than in nonsmokers. DACH1 has protective effects against inflammation induced by CS by activating the NRF2 signaling pathway. Targeting DACH1 is a potentially viable therapeutic approach for COPD treatment.
Collapse
Affiliation(s)
- Qian Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Yiya Gu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Jixing Wu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Zhesong Deng
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Shanshan Chen
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Maocuo Peng
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Ruonan Yang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Jinkun Chen
- Department of Science, Western University, London, Ontario, Canada
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| |
Collapse
|
3
|
Kang H, Park YK, Lee JY, Bae M. Roles of Histone Deacetylase 4 in the Inflammatory and Metabolic Processes. Diabetes Metab J 2024; 48:340-353. [PMID: 38514922 PMCID: PMC11140402 DOI: 10.4093/dmj.2023.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/07/2024] [Indexed: 03/23/2024] Open
Abstract
Histone deacetylase 4 (HDAC4), a class IIa HDAC, has gained attention as a potential therapeutic target in treating inflammatory and metabolic processes based on its essential role in various biological pathways by deacetylating non-histone proteins, including transcription factors. The activity of HDAC4 is regulated at the transcriptional, post-transcriptional, and post-translational levels. The functions of HDAC4 are tissue-dependent in response to endogenous and exogenous factors and their substrates. In particular, the association of HDAC4 with non-histone targets, including transcription factors, such as myocyte enhancer factor 2, hypoxia-inducible factor, signal transducer and activator of transcription 1, and forkhead box proteins, play a crucial role in regulating inflammatory and metabolic processes. This review summarizes the regulatory modes of HDAC4 activity and its functions in inflammation, insulin signaling and glucose metabolism, and cardiac muscle development.
Collapse
Affiliation(s)
- Hyunju Kang
- Department of Food and Nutrition, Keimyung University, Daegu, Korea
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Minkyung Bae
- Department of Food and Nutrition, Yonsei University, Seoul, Korea
| |
Collapse
|
4
|
Agarwal H, Wang Y, Ozcan L. Rap1 Activation Protects Against Fatty Liver and Non-Alcoholic Steatohepatitis Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563728. [PMID: 37961406 PMCID: PMC10634782 DOI: 10.1101/2023.10.24.563728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
We previously demonstrated that hepatic activation of a small G protein of the Ras family, Rap1a, is suppressed in obesity, which results in increased hepatic glucose production and glucose intolerance in obese mice. Here, we show that Rap1a inhibition in obese mice liver also results in fatty liver formation, which is characteristic of the diabetic liver. Specifically, we report that Rap1a activity is decreased in the livers of patients with non-alcoholic steatohepatitis (NASH) and mouse models of non-alcoholic fatty liver disease (NAFLD) and NASH. Restoring hepatic Rap1a activity by overexpressing a constitutively active mutant form of Rap1a lowered the mature, processed form of lipogenic transcription factor, Srebp1, without an effect on the unprocessed Srebp1 and suppressed hepatic TG accumulation, whereas liver Rap1a deficiency increased Srebp1 processing and exacerbated steatosis. Mechanistically, we show that mTORC1, which promotes Srebp1 cleavage, is hyperactivated upon Rap1a deficiency despite disturbed insulin signaling. In proof-of-principle studies, we found that treatment of obese mice with a small molecule activator of Rap1a (8-pCPT) or inhibiting Rap1a's endogenous inhibitor, Rap1Gap, recapitulated our hepatic gain-of-function model and resulted in improved hepatic steatosis and lowered lipogenic genes. Thus, hepatic Rap1a serves as a signaling molecule that suppresses both hepatic gluconeogenesis and steatosis, and inhibition of its activity in the liver contributes to the pathogenesis of glucose intolerance and NAFLD/NASH development.
Collapse
|
5
|
Ma Y, Wei J, Song J, Hu Z, Zhang R, Li Z, Sun Y. The DACH1 Gene Transcriptional Activation and Protein Degradation Mediated by Transactivator Tas of Prototype Foamy Virus. Viruses 2023; 15:1899. [PMID: 37766305 PMCID: PMC10534306 DOI: 10.3390/v15091899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Foamy viruses are members of the Retroviridae family's Spumaretrovirinae subfamily. They induce cell vacuolation and exhibit a foamy pathogenic impact after infecting cells. DACH1 (dachshund family transcription factor 1) is a crucial cytokine linked to tumor development, and is associated with the growth of many different malignant tumor cells. Additionally, DACH1 suppresses pancreatic cell proliferation and is involved in diabetes insulin signaling. Prototype foamy viruses (PFVs) were used for the investigation of the regulatory mechanism of FVs on cellular DACH1 expression. The results show that DACH1 expression in PFV-infected cells was inconsistent at both the transcriptional and protein levels. At the transcriptional level, DACH1 was significantly activated by PFV transactivator Tas, and dual-luciferase reporter gene tests, EMSA, and ChIP assays found a Tas response element of 21 nucleotides in the DACH1 promoter. PFV and Tas did not boost the levels of DACH1 protein in a manner consistent with the high levels of DACH1 transcription expression. It was noted that Tas increased the expression of the Ser/Thr protein phosphatase PPM1E, causing PPM1E-mediated post-translational SUMOylation alterations of DACH1 to prompt DACH1 to degrade. The reason for DACH1 protein degradation is that DACH1 inhibits PFV replication. To sum up, these findings show that PFV upregulated the transcription of DACH1, while urging its protein into PPM1E-mediated SUMOylation, to eliminate the adverse effect of DACH1 overexpression of host cells on viral replication and promote virus survival.
Collapse
Affiliation(s)
- Yongping Ma
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Jie Wei
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
- College of Environment and Life Sciences, Weinan Normal University, Weinan 714099, China
| | - Jing Song
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
| | - Zhongxiang Hu
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
| | - Ruifen Zhang
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
| | - Zhi Li
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
| | - Yan Sun
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
6
|
Dai W, Zhang H, Lund H, Zhang Z, Castleberry M, Rodriguez M, Kuriakose G, Gupta S, Lewandowska M, Powers HR, Valmiki S, Zhu J, Shapiro AD, Hussain MM, López JA, Sorci-Thomas MG, Silverstein RL, Ginsberg HN, Sahoo D, Tabas I, Zheng Z. Intracellular tPA-PAI-1 interaction determines VLDL assembly in hepatocytes. Science 2023; 381:eadh5207. [PMID: 37651538 PMCID: PMC10697821 DOI: 10.1126/science.adh5207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023]
Abstract
Apolipoprotein B (apoB)-lipoproteins initiate and promote atherosclerotic cardiovascular disease. Plasma tissue plasminogen activator (tPA) activity is negatively associated with atherogenic apoB-lipoprotein cholesterol levels in humans, but the mechanisms are unknown. We found that tPA, partially through the lysine-binding site on its Kringle 2 domain, binds to the N terminus of apoB, blocking the interaction between apoB and microsomal triglyceride transfer protein (MTP) in hepatocytes, thereby reducing very-low-density lipoprotein (VLDL) assembly and plasma apoB-lipoprotein cholesterol levels. Plasminogen activator inhibitor 1 (PAI-1) sequesters tPA away from apoB and increases VLDL assembly. Humans with PAI-1 deficiency have smaller VLDL particles and lower plasma levels of apoB-lipoprotein cholesterol. These results suggest a mechanism that fine-tunes VLDL assembly by intracellular interactions among tPA, PAI-1, and apoB in hepatocytes.
Collapse
Affiliation(s)
- Wen Dai
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Heng Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Hayley Lund
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ziyu Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | | | - Maya Rodriguez
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- College of Arts and Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - George Kuriakose
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sweta Gupta
- Indiana Hemophilia and Thrombosis Center, Indianapolis, IN 46260, USA
| | | | - Hayley R. Powers
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Swati Valmiki
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Jieqing Zhu
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amy D. Shapiro
- Indiana Hemophilia and Thrombosis Center, Indianapolis, IN 46260, USA
| | - M. Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - José A. López
- Bloodworks Research Institute, Seattle, WA 98102, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mary G. Sorci-Thomas
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Roy L. Silverstein
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Henry N. Ginsberg
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Daisy Sahoo
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ze Zheng
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
7
|
Zhu S, Li W, Zhang H, Yan Y, Mei Q, Wu K. Retinal determination gene networks: from biological functions to therapeutic strategies. Biomark Res 2023; 11:18. [PMID: 36750914 PMCID: PMC9906957 DOI: 10.1186/s40364-023-00459-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
The retinal determinant gene network (RDGN), originally discovered as a critical determinator in Drosophila eye specification, has become an important regulatory network in tumorigenesis and progression, as well as organogenesis. This network is not only associated with malignant biological behaviors of tumors, such as proliferation, and invasion, but also regulates the development of multiple mammalian organs. Three members of this conservative network have been extensively investigated, including DACH, SIX, and EYA. Dysregulated RDGN signaling is associated with the initiation and progression of tumors. In recent years, it has been found that the members of this network can be used as prognostic markers for cancer patients. Moreover, they are considered to be potential therapeutic targets for cancer. Here, we summarize the research progress of RDGN members from biological functions to signaling transduction, especially emphasizing their effects on tumors. Additionally, we discuss the roles of RDGN members in the development of organs and tissue as well as their correlations with the pathogenesis of chronic kidney disease and coronary heart disease. By summarizing the roles of RDGN members in human diseases, we hope to promote future investigations into RDGN and provide potential therapeutic strategies for patients.
Collapse
Affiliation(s)
- Shuangli Zhu
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Wanling Li
- grid.412793.a0000 0004 1799 5032Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,grid.470966.aCancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Hao Zhang
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yuheng Yan
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qi Mei
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. .,Cancer Center, Tongji hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Cuttini E, Goi C, Pellarin E, Vida R, Brancolini C. HDAC4 in cancer: A multitasking platform to drive not only epigenetic modifications. Front Mol Biosci 2023; 10:1116660. [PMID: 36762207 PMCID: PMC9902726 DOI: 10.3389/fmolb.2023.1116660] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Controlling access to genomic information and maintaining its stability are key aspects of cell life. Histone acetylation is a reversible epigenetic modification that allows access to DNA and the assembly of protein complexes that regulate mainly transcription but also other activities. Enzymes known as histone deacetylases (HDACs) are involved in the removal of the acetyl-group or in some cases of small hydrophobic moieties from histones but also from the non-histone substrate. The main achievement of HDACs on histones is to repress transcription and promote the formation of more compact chromatin. There are 18 different HDACs encoded in the human genome. Here we will discuss HDAC4, a member of the class IIa family, and its possible contribution to cancer development.
Collapse
Affiliation(s)
- Emma Cuttini
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy
| | - Camilla Goi
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy
| | - Ester Pellarin
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy
| | - Riccardo Vida
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy
| | - Claudio Brancolini
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy,Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy,*Correspondence: Claudio Brancolini,
| |
Collapse
|
9
|
Bourebaba L, Serwotka-Suszczak A, Pielok A, Sikora M, Mularczyk M, Marycz K. The PTP1B inhibitor MSI-1436 ameliorates liver insulin sensitivity by modulating autophagy, ER stress and systemic inflammation in Equine metabolic syndrome affected horses. Front Endocrinol (Lausanne) 2023; 14:1149610. [PMID: 37020593 PMCID: PMC10067883 DOI: 10.3389/fendo.2023.1149610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Equine metabolic syndrome (EMS) is a multifactorial pathology gathering insulin resistance, low-grade inflammation and past or chronic laminitis. Among the several molecular mechanisms underlying EMS pathogenesis, increased negative insulin signalling regulation mediated by protein tyrosine phosphatase 1 B (PTP1B) has emerged as a critical axis in the development of liver insulin resistance and general metabolic distress associated to increased ER stress, inflammation and disrupted autophagy. Thus, the use of PTP1B selective inhibitors such as MSI-1436 might be considered as a golden therapeutic tool for the proper management of EMS and associated conditions. Therefore, the present investigation aimed at verifying the clinical efficacy of MSI-1436 systemic administration on liver metabolic balance, insulin sensitivity and inflammatory status in EMS affected horses. Moreover, the impact of MSI-1436 treatment on liver autophagy machinery and associated ER stress in liver tissue has been analysed. METHODS Liver explants isolated from healthy and EMS horses have been treated with MSI-1436 prior to gene and protein expression analysis of main markers mediating ER stress, mitophagy and autophagy. Furthermore, EMS horses have been intravenously treated with a single dose of MSI-1436, and evaluated for their metabolic and inflammatory status. RESULTS Clinical application of MSI-1436 to EMS horses restored proper adiponectin levels and attenuated the typical hyperinsulinemia and hyperglycemia. Moreover, administration of MSI-1436 further reduced the circulating levels of key pro-inflammatory mediators including IL-1β, TNF-α and TGF-β and triggered the Tregs cells activation. At the molecular level, PTP1B inhibition resulted in a noticeable mitigation of liver ER stress, improvement of mitochondrial dynamics and consequently, a regulation of autophagic response. Similarly, short-term ex vivo treatment of EMS liver explants with trodusquemine (MSI-1436) substantially enhanced autophagy by upregulating the levels of HSC70 and Beclin-1 at both mRNA and protein level. Moreover, the PTP1B inhibitor potentiated mitophagy and associated expression of MFN2 and PINK1. Interestingly, inhibition of PTP1B resulted in potent attenuation of ER stress key mediators' expression namely, CHOP, ATF6, HSPA5 and XBP1. CONCLUSION Presented findings shed for the first time promising new insights in the development of an MSI-1436-based therapy for proper equine metabolic syndrome intervention and may additionally find potential translational application to human metabolic syndrome treatment.
Collapse
Affiliation(s)
- Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- International Institute of Translational Medicine, Wisznia Mała, Poland
| | - Anna Serwotka-Suszczak
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ariadna Pielok
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Mateusz Sikora
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Malwina Mularczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- International Institute of Translational Medicine, Wisznia Mała, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- *Correspondence: Krzysztof Marycz,
| |
Collapse
|
10
|
Zheng W, Sun Q, Li L, Cheng Y, Chen Y, Lv M, Xiang X. Role of endoplasmic reticulum stress in hepatic glucose and lipid metabolism and therapeutic strategies for metabolic liver disease. Int Immunopharmacol 2022; 113:109458. [DOI: 10.1016/j.intimp.2022.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/22/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
|
11
|
Zhou L, Shen H, Li X, Wang H. Endoplasmic reticulum stress in innate immune cells - a significant contribution to non-alcoholic fatty liver disease. Front Immunol 2022; 13:951406. [PMID: 35958574 PMCID: PMC9361020 DOI: 10.3389/fimmu.2022.951406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
Liver disease and its complications affect millions of people worldwide. NAFLD (non-alcoholic fatty liver disease) is the liver disease associated with metabolic dysfunction and consists of four stages: steatosis with or without mild inflammation (NAFLD), non-alcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. With increased necroinflammation and progression of liver fibrosis, NAFLD may progress to cirrhosis or even hepatocellular carcinoma. Although the underlying mechanisms have not been clearly elucidated in detail, what is clear is that complex immune responses are involved in the pathogenesis of NASH, activation of the innate immune system is critically involved in triggering and amplifying hepatic inflammation and fibrosis in NAFLD/NASH. Additionally, disruption of endoplasmic reticulum (ER) homeostasis in cells, also known as ER stress, triggers the unfolded protein response (UPR) which has been shown to be involved to inflammation and apoptosis. To further develop the prevention and treatment of NAFLD/NASH, it is imperative to clarify the relationship between NAFLD/NASH and innate immune cells and ER stress. As such, this review focuses on innate immune cells and their ER stress in the occurrence of NAFLD and the progression of cirrhosis.
Collapse
Affiliation(s)
- Liangliang Zhou
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Haiyuan Shen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xiaofeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- *Correspondence: Hua Wang,
| |
Collapse
|
12
|
Flessa C, Kyrou I, Nasiri‐Ansari N, Kaltsas G, Kassi E, Randeva HS. Endoplasmic reticulum stress in nonalcoholic (metabolic associated) fatty liver disease (NAFLD/MAFLD). J Cell Biochem 2022; 123:1585-1606. [PMID: 35490371 DOI: 10.1002/jcb.30247] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Christina‐Maria Flessa
- Department of Biological Chemistry, Medical School National and Kapodistrian University of Athens Athens Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM) University Hospitals Coventry and Warwickshire NHS Trust Coventry UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM) University Hospitals Coventry and Warwickshire NHS Trust Coventry UK
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School University of Warwick Coventry UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing Coventry University Coventry UK
- Aston Medical School, College of Health and Life Sciences Aston University Birmingham UK
- Department of Food Science & Human Nutrition Agricultural University of Athens Athens Greece
| | - Narjes Nasiri‐Ansari
- Department of Biological Chemistry, Medical School National and Kapodistrian University of Athens Athens Greece
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital National and Kapodistrian University of Athens Athens Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School National and Kapodistrian University of Athens Athens Greece
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital National and Kapodistrian University of Athens Athens Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM) University Hospitals Coventry and Warwickshire NHS Trust Coventry UK
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School University of Warwick Coventry UK
| |
Collapse
|
13
|
Marrocco V, Tran T, Zhu S, Choi SH, Gamo AM, Li S, Fu Q, Cunado MD, Roland J, Hull M, Nguyen-Tran V, Joseph S, Chatterjee AK, Rogers N, Tremblay MS, Shen W. A small molecule UPR modulator for diabetes identified by high throughput screening. Acta Pharm Sin B 2021; 11:3983-3993. [PMID: 35024320 PMCID: PMC8727761 DOI: 10.1016/j.apsb.2021.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 01/06/2023] Open
Abstract
Unfolded protein response (UPR) is a stress response that is specific to the endoplasmic reticulum (ER). UPR is activated upon accumulation of unfolded (or misfolded) proteins in the ER's lumen to restore protein folding capacity by increasing the synthesis of chaperones. In addition, UPR also enhances degradation of unfolded proteins and reduces global protein synthesis to alleviate additional accumulation of unfolded proteins in the ER. Herein, we describe a cell-based ultra-high throughput screening (uHTS) campaign that identifies a small molecule that can modulate UPR and ER stress in cellular and in vivo disease models. Using asialoglycoprotein receptor 1 (ASGR) fused with Cypridina luciferase (CLuc) as reporter assay for folding capacity, we have screened a million small molecule library and identified APC655 as a potent activator of protein folding, that appears to act by promoting chaperone expression. Furthermore, APC655 improved pancreatic β cell viability and insulin secretion under ER stress conditions induced by thapsigargin or cytokines. APC655 was also effective in preserving β cell function and decreasing lipid accumulation in the liver of the leptin-deficient (ob/ob) mouse model. These results demonstrate a successful uHTS campaign that identified a modulator of UPR, which can provide a novel candidate for potential therapeutic development for a host of metabolic diseases.
Collapse
Key Words
- ASGR, asialoglycoprotein receptor 1
- ATF4, activating transcription factor 4
- ATF6, activating transcription factor 6α/β
- BID, twice a day
- CLuc, Cypridina luciferase
- Cell signaling
- Chaperones
- Diabetes
- EGFP-VSVG, enhanced green fluorescence protein-vesicular stomatitis virus ts045 G protein
- ER stress
- ER, endoplasmic reticulum
- ERP72, endoplasmic reticulum proteins 72
- Endoplasmic reticulum
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- GLuc, Gaussia luciferase
- GRP78, 78-kDa glucose-regulated protein
- GRPRP94, glucose-regulated protein 94
- GSIS, glucose stimulated insulin secretion
- IKKβ, inhibitor of nuclear factor kappa-B kinase subunit beta
- IL1β, interleukin 1β
- INFγ, interferon gamma
- IRE1, inositol requiring enzyme 1α/β
- Liver
- Metabolic diseases
- NASH, nonalcoholic steatohepatitis
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- Nod, non-obese diabetic
- OGTT, oral glucose tolerance test
- PERK, PKR-like ER kinase
- Pancreas
- Protein folding
- SP1/2, serine protease1/2
- Small molecules
- T1/2D, type1/2 diabetes
- TG, thapsigargin
- TNFα, tumor necrosis factor alpha
- Tm, tunicamycin
- UPR, unfolded protein response
- Unfolded protein response
- XBP1, X-box-binding protein 1
- i.p., intraperitoneal
- uHTS, ultra-high throughput screening
- β cells
Collapse
|
14
|
Dai W, Choubey M, Patel S, Singer HA, Ozcan L. Adipocyte CAMK2 deficiency improves obesity-associated glucose intolerance. Mol Metab 2021; 53:101300. [PMID: 34303021 PMCID: PMC8365526 DOI: 10.1016/j.molmet.2021.101300] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Obesity-related adipose tissue dysfunction has been linked to the development of insulin resistance, type 2 diabetes, and cardiovascular disease. Impaired calcium homeostasis is associated with altered adipose tissue metabolism; however, the molecular mechanisms that link disrupted calcium signaling to metabolic regulation are largely unknown. Here, we investigated the contribution of a calcium-sensing enzyme, calcium/calmodulin-dependent protein kinase II (CAMK2), to adipocyte function, obesity-associated insulin resistance, and glucose intolerance. METHODS To determine the impact of adipocyte CAMK2 deficiency on metabolic regulation, we generated a conditional knockout mouse model and acutely deleted CAMK2 in mature adipocytes. We further used in vitro differentiated adipocytes to dissect the mechanisms by which CAMK2 regulates adipocyte function. RESULTS CAMK2 activity was increased in obese adipose tissue, and depletion of adipocyte CAMK2 in adult mice improved glucose intolerance and insulin resistance without an effect on body weight. Mechanistically, we found that activation of CAMK2 disrupted adipocyte insulin signaling and lowered the amount of insulin receptor. Further, our results revealed that CAMK2 contributed to adipocyte lipolysis, tumor necrosis factor alpha (TNFα)-induced inflammation, and insulin resistance. CONCLUSIONS These results identify a new link between adipocyte CAMK2 activity, metabolic regulation, and whole-body glucose homeostasis.
Collapse
Affiliation(s)
- Wen Dai
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mayank Choubey
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sonal Patel
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Lale Ozcan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
15
|
Insects as a New Complex Model in Hormonal Basis of Obesity. Int J Mol Sci 2021; 22:ijms222011066. [PMID: 34681728 PMCID: PMC8540125 DOI: 10.3390/ijms222011066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 11/30/2022] Open
Abstract
Nowadays, one of the biggest problems in healthcare is an obesity epidemic. Consumption of cheap and low-quality energy-rich diets, low physical activity, and sedentary work favor an increase in the number of obesity cases within many populations/nations. This is a burden on society, public health, and the economy with many deleterious consequences. Thus, studies concerning this disorder are extremely needed, including searching for new, effective, and fitting models. Obesity may be related, among other factors, to disrupting adipocytes activity, disturbance of metabolic homeostasis, dysregulation of hormonal balance, cardiovascular problems, or disorders in nutrition which may lead to death. Because of the high complexity of obesity, it is not easy to find an ideal model for its studies which will be suitable for genetic and physiological analysis including specification of different compounds’ (hormones, neuropeptides) functions, as well as for signaling pathways analysis. In recent times, in search of new models for human diseases there has been more and more attention paid to insects, especially in neuro-endocrine regulation. It seems that this group of animals might also be a new model for human obesity. There are many arguments that insects are a good, multidirectional, and complex model for this disease. For example, insect models can have similar conservative signaling pathways (e.g., JAK-STAT signaling pathway), the presence of similar hormonal axis (e.g., brain–gut axis), or occurrence of structural and functional homologues between neuropeptides (e.g., neuropeptide F and human neuropeptide Y, insulin-like peptides, and human insulin) compared to humans. Here we give a hint to use insects as a model for obesity that can be used in multiple ways: as a source of genetic and peptidomic data about etiology and development correlated with obesity occurrence as well as a model for novel hormonal-based drug activity and their impact on mechanism of disease occurrence.
Collapse
|
16
|
Flessa CM, Kyrou I, Nasiri-Ansari N, Kaltsas G, Papavassiliou AG, Kassi E, Randeva HS. Endoplasmic Reticulum Stress and Autophagy in the Pathogenesis of Non-alcoholic Fatty Liver Disease (NAFLD): Current Evidence and Perspectives. Curr Obes Rep 2021; 10:134-161. [PMID: 33751456 DOI: 10.1007/s13679-021-00431-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease with rising prevalence worldwide. Herein, we provide a comprehensive overview of the current knowledge supporting the role of ER stress and autophagy processes in NAFLD pathogenesis and progression. We also highlight the interrelation between these two pathways and the impact of ER stress and autophagy modulators on NAFLD treatment. RECENT FINDINGS The pathophysiological mechanisms involved in NAFLD progression are currently under investigation. The endoplasmic reticulum (ER) stress and the concomitant unfolded protein response (UPR) seem to contribute to its pathogenesis mainly due to high ER content in the liver which exerts significant metabolic functions and can be dysregulated. Furthermore, disruption of autophagy processes has also been identified in NAFLD. The crucial role of these two pathways in NAFLD is underlined by the fact that they have recently emerged as promising targets of therapeutic interventions. There is a greater need for finding the natural/chemical compounds and drugs which can modulate the ER stress pathway and autophagy for the treatment of NAFLD. Clarifying the inter-relation between these two pathways and their interaction with inflammatory and apoptotic mechanisms will allow the development of additional therapeutic options which can better target and reprogram the underlying pathophysiological pathways, aiming to attenuate NAFLD progression.
Collapse
Affiliation(s)
- Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, B4 7ET, Birmingham, UK
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| | - Harpal S Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK.
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
17
|
Liu Y, Yang H, Liu X, Gu H, Li Y, Sun C. Protein acetylation: a novel modus of obesity regulation. J Mol Med (Berl) 2021; 99:1221-1235. [PMID: 34061242 DOI: 10.1007/s00109-021-02082-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/09/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022]
Abstract
Obesity is a chronic epidemic disease worldwide which has become one of the important public health issues. It is a process that excessive accumulation of adipose tissue caused by long-term energy intake exceeding energy expenditure. So far, the prevention and treatment strategies of obesity on individuals and population have not been successful in the long term. Acetylation is one of the most common ways of protein post-translational modification (PTM). It exists on thousands of non-histone proteins in almost every cell chamber. It has many influences on protein levels and metabolome levels, which is involved in a variety of metabolic reactions, including sugar metabolism, tricarboxylic acid cycle, and fatty acid metabolism, which are closely related to biological activities. Studies have shown that protein acetylation levels are dynamically regulated by lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Protein acetylation modifies protein-protein and protein-DNA interactions and regulates the activity of enzymes or cytokines which is related to obesity in order to participate in the occurrence and treatment of obesity-related metabolic diseases. Therefore, we speculated that acetylation was likely to become effective means of controlling obesity in the future. In consequence, this review focuses on the mechanisms of protein acetylation controlled obesity, to provide theoretical basis for controlling obesity and curing obesity-related diseases, which is a significance for regulating obesity in the future. This review will focus on the role of protein acetylation in controlling obesity.
Collapse
Affiliation(s)
- Yuexia Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hong Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuanchen Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huihui Gu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yizhou Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
18
|
Ozcan L, Kasikara C, Yurdagul A, Kuriakose G, Hubbard B, Serrano-Wu MH, Tabas I. Allosteric MAPKAPK2 inhibitors improve plaque stability in advanced atherosclerosis. PLoS One 2021; 16:e0246600. [PMID: 33983975 PMCID: PMC8118275 DOI: 10.1371/journal.pone.0246600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/20/2021] [Indexed: 11/19/2022] Open
Abstract
Atherosclerotic vascular disease resulting from unstable plaques is the leading cause of morbidity and mortality in subjects with type 2 diabetes (T2D), and thus a major therapeutic goal is to discover T2D drugs that can also promote atherosclerotic plaque stability. Genetic or pharmacologic inhibition of mitogen-activated protein kinase-activated protein kinase-2 (MAPKAPK2 or MK2) in obese mice improves glucose homeostasis and enhances insulin sensitivity. We developed two novel orally active small-molecule inhibitors of MK2, TBX-1 and TBX-2, and tested their effects on metabolism and atherosclerosis in high-fat Western diet (WD)-fed Ldlr-/- mice. Ldlr-/- mice were first fed the WD to allow atherosclerotic lesions to become established, and the mice were then treated with TBX-1 or TBX-2. Both compounds improved glucose metabolism and lowered plasma cholesterol and triglyceride, without an effect on body weight. Most importantly, the compounds decreased lesion area, lessened plaque necrosis, and increased fibrous cap thickness in the aortic root lesions of the mice. Thus, in a preclinical model of high-fat feeding and established atherosclerosis, MK2 inhibitors improved metabolism and also enhanced atherosclerotic plaque stability, suggesting potential for further clinical development to address the epidemic of T2D associated with atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Lale Ozcan
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Canan Kasikara
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Arif Yurdagul
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - George Kuriakose
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Brian Hubbard
- Tabomedex Biosciences, Boxford, Massachusetts, United States of America
| | | | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
19
|
Cui A, Ding D, Li Y. Regulation of Hepatic Metabolism and Cell Growth by the ATF/CREB Family of Transcription Factors. Diabetes 2021; 70:653-664. [PMID: 33608424 PMCID: PMC7897342 DOI: 10.2337/dbi20-0006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
The liver is a major metabolic organ that regulates the whole-body metabolic homeostasis and controls hepatocyte proliferation and growth. The ATF/CREB family of transcription factors integrates nutritional and growth signals to the regulation of metabolism and cell growth in the liver, and deregulated ATF/CREB family signaling is implicated in the progression of type 2 diabetes, nonalcoholic fatty liver disease, and cancer. This article focuses on the roles of the ATF/CREB family in the regulation of glucose and lipid metabolism and cell growth and its importance in liver physiology. We also highlight how the disrupted ATF/CREB network contributes to human diseases and discuss the perspectives of therapeutically targeting ATF/CREB members in the clinic.
Collapse
Affiliation(s)
- Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
20
|
Zheng Z, Nakamura K, Gershbaum S, Wang X, Thomas S, Bessler M, Schrope B, Krikhely A, Liu RM, Ozcan L, López JA, Tabas I. Interacting hepatic PAI-1/tPA gene regulatory pathways influence impaired fibrinolysis severity in obesity. J Clin Invest 2021; 130:4348-4359. [PMID: 32657780 PMCID: PMC7410057 DOI: 10.1172/jci135919] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
Fibrinolysis is initiated by tissue-type plasminogen activator (tPA) and inhibited by plasminogen activator inhibitor 1 (PAI-1). In obese humans, plasma PAI-1 and tPA proteins are increased, but PAI-1 dominates, leading to reduced fibrinolysis and thrombosis. To understand tPA–PAI-1 regulation in obesity, we focused on hepatocytes, a functionally important source of tPA and PAI-1 that sense obesity-induced metabolic stress. We showed that obese mice, like humans, had reduced fibrinolysis and increased plasma PAI-1 and tPA, due largely to their increased hepatocyte expression. A decrease in the PAI-1 (SERPINE1) gene corepressor Rev-Erbα increased PAI-1, which then increased the tPA gene PLAT via a PAI-1/LRP1/PKA/p-CREB1 pathway. This pathway was partially counterbalanced by increased DACH1, a PLAT-negative regulator. We focused on the PAI-1/PLAT pathway, which mitigates the reduction in fibrinolysis in obesity. Thus, silencing hepatocyte PAI-1, CREB1, or tPA in obese mice lowered plasma tPA and further impaired fibrinolysis. The PAI-1/PLAT pathway was present in primary human hepatocytes, and associations among PAI-1, tPA, and PLAT in livers from obese and lean humans were consistent with these findings. Knowledge of PAI-1 and tPA regulation in hepatocytes in obesity may suggest therapeutic strategies for improving fibrinolysis and lowering the risk of thrombosis in this setting.
Collapse
Affiliation(s)
- Ze Zheng
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Keiko Nakamura
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Graduate School of Medicine and.,Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Shana Gershbaum
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Neuroscience and Behavior Department, Barnard College, New York, New York, USA
| | - Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Sherry Thomas
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Marc Bessler
- Department of Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Beth Schrope
- Department of Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Abraham Krikhely
- Department of Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Rui-Ming Liu
- Division of Pulmonary Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lale Ozcan
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - José A López
- Department of Medicine, University of Washington, Seattle, Washington, USA.,Bloodworks Research Institute, Seattle, Washington, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Department of Physiology and.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
21
|
Chen J, Fleming T, Katz S, Dewenter M, Hofmann K, Saadatmand A, Kronlage M, Werner MP, Pokrandt B, Schreiter F, Lin J, Katz D, Morgenstern J, Elwakiel A, Sinn P, Gröne HJ, Hammes HP, Nawroth PP, Isermann B, Sticht C, Brügger B, Katus HA, Hagenmueller M, Backs J. CaM Kinase II-δ Is Required for Diabetic Hyperglycemia and Retinopathy but Not Nephropathy. Diabetes 2021; 70:616-626. [PMID: 33239449 DOI: 10.2337/db19-0659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/17/2020] [Indexed: 11/13/2022]
Abstract
Type 2 diabetes has become a pandemic and leads to late diabetic complications of organs, including kidney and eye. Lowering hyperglycemia is the typical therapeutic goal in clinical medicine. However, hyperglycemia may only be a symptom of diabetes but not the sole cause of late diabetic complications; instead, other diabetes-related alterations could be causative. Here, we studied the role of CaM kinase II-δ (CaMKIIδ), which is known to be activated through diabetic metabolism. CaMKIIδ is expressed ubiquitously and might therefore affect several different organ systems. We crossed diabetic leptin receptor-mutant mice to mice lacking CaMKIIδ globally. Remarkably, CaMKIIδ-deficient diabetic mice did not develop hyperglycemia. As potential underlying mechanisms, we provide evidence for improved insulin sensing with increased glucose transport into skeletal muscle and also reduced hepatic glucose production. Despite normoglycemia, CaMKIIδ-deficient diabetic mice developed the full picture of diabetic nephropathy, but diabetic retinopathy was prevented. We also unmasked a retina-specific gene expression signature that might contribute to CaMKII-dependent retinal diabetic complications. These data challenge the clinical concept of normalizing hyperglycemia in diabetes as a causative treatment strategy for late diabetic complications and call for a more detailed analysis of intracellular metabolic signals in different diabetic organs.
Collapse
Affiliation(s)
- Jessy Chen
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Sylvia Katz
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Matthias Dewenter
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Kai Hofmann
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Alireza Saadatmand
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Mariya Kronlage
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Moritz P Werner
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Bianca Pokrandt
- Heidelberg University Biochemistry Center, INF 328, Heidelberg, Germany
| | - Friederike Schreiter
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Jihong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Daniel Katz
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics (ILM), University of Leipzig, Leipzig, Germany
| | - Peter Sinn
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
- Institute of Pathology, University of Marburg, Marburg, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peter P Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Cancer (IDC) Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Program, Neuherberg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics (ILM), University of Leipzig, Leipzig, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center, INF 328, Heidelberg, Germany
| | - Hugo A Katus
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Marco Hagenmueller
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| |
Collapse
|
22
|
Kumar V, Maity S. ER Stress-Sensor Proteins and ER-Mitochondrial Crosstalk-Signaling Beyond (ER) Stress Response. Biomolecules 2021; 11:173. [PMID: 33525374 PMCID: PMC7911976 DOI: 10.3390/biom11020173] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Recent studies undoubtedly show the importance of inter organellar connections to maintain cellular homeostasis. In normal physiological conditions or in the presence of cellular and environmental stress, each organelle responds alone or in coordination to maintain cellular function. The Endoplasmic reticulum (ER) and mitochondria are two important organelles with very specialized structural and functional properties. These two organelles are physically connected through very specialized proteins in the region called the mitochondria-associated ER membrane (MAM). The molecular foundation of this relationship is complex and involves not only ion homeostasis through the shuttling of calcium but also many structural and apoptotic proteins. IRE1alpha and PERK are known for their canonical function as an ER stress sensor controlling unfolded protein response during ER stress. The presence of these transmembrane proteins at the MAM indicates its potential involvement in other biological functions beyond ER stress signaling. Many recent studies have now focused on the non-canonical function of these sensors. In this review, we will focus on ER mitochondrial interdependence with special emphasis on the non-canonical role of ER stress sensors beyond ER stress.
Collapse
|
23
|
Maude H, Sanchez-Cabanillas C, Cebola I. Epigenetics of Hepatic Insulin Resistance. Front Endocrinol (Lausanne) 2021; 12:681356. [PMID: 34046015 PMCID: PMC8147868 DOI: 10.3389/fendo.2021.681356] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/20/2021] [Indexed: 01/14/2023] Open
Abstract
Insulin resistance (IR) is largely recognized as a unifying feature that underlies metabolic dysfunction. Both lifestyle and genetic factors contribute to IR. Work from recent years has demonstrated that the epigenome may constitute an interface where different signals may converge to promote IR gene expression programs. Here, we review the current knowledge of the role of epigenetics in hepatic IR, focusing on the roles of DNA methylation and histone post-translational modifications. We discuss the broad epigenetic changes observed in the insulin resistant liver and its associated pathophysiological states and leverage on the wealth of 'omics' studies performed to discuss efforts in pinpointing specific loci that are disrupted by these changes. We envision that future studies, with increased genomic resolution and larger cohorts, will further the identification of biomarkers of early onset hepatic IR and assist the development of targeted interventions. Furthermore, there is growing evidence to suggest that persistent epigenetic marks may be acquired over prolonged exposure to disease or deleterious exposures, highlighting the need for preventative medicine and long-term lifestyle adjustments to avoid irreversible or long-term alterations in gene expression.
Collapse
Affiliation(s)
| | | | - Inês Cebola
- *Correspondence: Hannah Maude, ; Inês Cebola,
| |
Collapse
|
24
|
Grandjean JMD, Wiseman RL. Small molecule strategies to harness the unfolded protein response: where do we go from here? J Biol Chem 2020; 295:15692-15711. [PMID: 32887796 PMCID: PMC7667976 DOI: 10.1074/jbc.rev120.010218] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Indexed: 12/31/2022] Open
Abstract
The unfolded protein response (UPR) plays a central role in regulating endoplasmic reticulum (ER) and global cellular physiology in response to pathologic ER stress. The UPR is comprised of three signaling pathways activated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Once activated, these proteins initiate transcriptional and translational signaling that functions to alleviate ER stress, adapt cellular physiology, and dictate cell fate. Imbalances in UPR signaling are implicated in the pathogenesis of numerous, etiologically-diverse diseases, including many neurodegenerative diseases, protein misfolding diseases, diabetes, ischemic disorders, and cancer. This has led to significant interest in establishing pharmacologic strategies to selectively modulate IRE1, ATF6, or PERK signaling to both ameliorate pathologic imbalances in UPR signaling implicated in these different diseases and define the importance of the UPR in diverse cellular and organismal contexts. Recently, there has been significant progress in the identification and characterization of UPR modulating compounds, providing new opportunities to probe the pathologic and potentially therapeutic implications of UPR signaling in human disease. Here, we describe currently available UPR modulating compounds, specifically highlighting the strategies used for their discovery and specific advantages and disadvantages in their application for probing UPR function. Furthermore, we discuss lessons learned from the application of these compounds in cellular and in vivo models to identify favorable compound properties that can help drive the further translational development of selective UPR modulators for human disease.
Collapse
Affiliation(s)
- Julia M D Grandjean
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
25
|
Palmer JE, Brietske BM, Bate TC, Blackwood EA, Garg M, Glembotski CC, Cooley CB. Reactive Oxygen Species (ROS)-Activatable Prodrug for Selective Activation of ATF6 after Ischemia/Reperfusion Injury. ACS Med Chem Lett 2020; 11:292-297. [PMID: 32184959 DOI: 10.1021/acsmedchemlett.9b00299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022] Open
Abstract
We describe here the design, synthesis, and biological evaluation of a reactive oxygen species (ROS)-activatable prodrug for the selective delivery of 147, a small molecule ATF6 activator, for ischemia/reperfusion injury. ROS-activatable prodrug 1 and a negative control unable to release free drug were synthesized and examined for peroxide-mediated activation. Prodrug 1 blocks activity of 147 by its inability to undergo metabolic oxidation by ER-resident cytochrome P450 enzymes such as Cyp1A2, probed directly here for the first time. Biological evaluation of ROS-activatable prodrug 1 in primary cardiomyocytes demonstrates protection against peroxide-mediated toxicity and enhances viability following simulated I/R injury. The ability to selectively target ATF6 activation under diseased conditions establishes the potential for localized stress-responsive signaling pathway activation as a therapeutic approach for I/R injury and related protein misfolding maladies.
Collapse
Affiliation(s)
- Jonathan E. Palmer
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, United States
| | - Breanna M. Brietske
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, United States
| | - Tyler C. Bate
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, United States
| | - Erik A. Blackwood
- San Diego State University Heart Institute and Department of Biology, San Diego State University, San Diego, California 92182, United States
| | - Manasa Garg
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, United States
| | - Christopher C. Glembotski
- San Diego State University Heart Institute and Department of Biology, San Diego State University, San Diego, California 92182, United States
| | - Christina B. Cooley
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, United States
| |
Collapse
|
26
|
Clark J, Martin E, Bulka CM, Smeester L, Santos HP, O'Shea TM, Fry RC. Associations between placental CpG methylation of metastable epialleles and childhood body mass index across ages one, two and ten in the Extremely Low Gestational Age Newborns (ELGAN) cohort. Epigenetics 2019; 14:1102-1111. [PMID: 31216936 DOI: 10.1080/15592294.2019.1633865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Developmental Origins of Health and Disease (DOHaD) hypothesis posits that in utero and early life conditions can disrupt normal fetal development and program susceptibility to later-life disease. Metastable epialleles are genomic loci in which CpG methylation patterning is responsive to maternal diet and conserved across time and tissues. Thus, these sites could serve as 'signatures' of gestational environment conditions. Here, we sought to determine if methylation of metastable epialleles was associated with changes in childhood body mass index (BMI) z-scores across ages one, two and ten in the Extremely Low Gestational Age Newborns (ELGAN) cohort. CpG methylation of 250 probes (corresponding to 111 genes) within metastable epiallele regions was measured in placental tissue. Linear mixed effects models were fit to evaluate the overall and sex-stratified associations between methylation and changes in BMI z-score over time. In total, 26 probes were associated (p < 0.05) with changes in BMI z-score overall, including probes within Mesoderm Specific Transcript (MEST) and Histone Deacetylase 4 (HDAC4), which have previously been associated with childhood obesity and adipogenesis. Sex-stratified analyses revealed a significant association, after adjusting for multiple comparisons (q < 0.05), within female placentas for one probe annotated to the imprinted gene PLAG1 Like Zinc Finger 1 (PLAGL1). These findings suggest epigenetic marks may be involved in programming susceptibility to obesity in utero and highlight the potential to use placental tissues in predicting growth rate trajectories among premature infants.
Collapse
Affiliation(s)
- Jeliyah Clark
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina , Chapel Hill , NC , USA
| | - Elizabeth Martin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park , NC , USA
| | - Catherine M Bulka
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina , Chapel Hill , NC , USA
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina , Chapel Hill , NC , USA.,Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina , Chapel Hill , NC , USA
| | - Hudson P Santos
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina , Chapel Hill , NC , USA.,School of Nursing, University of North Carolina , Chapel Hill , NC , USA
| | - T Michael O'Shea
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of North Carolina , Chapel Hill , NC , USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina , Chapel Hill , NC , USA.,Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
27
|
Kronlage M, Dewenter M, Grosso J, Fleming T, Oehl U, Lehmann LH, Falcão-Pires I, Leite-Moreira AF, Volk N, Gröne HJ, Müller OJ, Sickmann A, Katus HA, Backs J. O-GlcNAcylation of Histone Deacetylase 4 Protects the Diabetic Heart From Failure. Circulation 2019; 140:580-594. [PMID: 31195810 DOI: 10.1161/circulationaha.117.031942] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Worldwide, diabetes mellitus and heart failure represent frequent comorbidities with high socioeconomic impact and steadily growing incidence, calling for a better understanding of how diabetic metabolism promotes cardiac dysfunction. Paradoxically, some glucose-lowering drugs have been shown to worsen heart failure, raising the question of how glucose mediates protective versus detrimental cardiac signaling. Here, we identified a histone deacetylase 4 (HDAC4) subdomain as a molecular checkpoint of adaptive and maladaptive signaling in the diabetic heart. METHODS A conditional HDAC4 allele was used to delete HDAC4 specifically in cardiomyocytes (HDAC4-knockout). Mice were subjected to diabetes mellitus either by streptozotocin injections (type 1 diabetes mellitus model) or by crossing into mice carrying a leptin receptor mutation (db/db; type 2 diabetes mellitus model) and monitored for remodeling and cardiac function. Effects of glucose and the posttranslational modification by β-linked N-acetylglucosamine (O-GlcNAc) on HDAC4 were investigated in vivo and in vitro by biochemical and cellular assays. RESULTS We show that the cardio-protective N-terminal proteolytic fragment of HDAC4 is enhanced in vivo in patients with diabetes mellitus and mouse models, as well as in vitro under high-glucose and high-O-GlcNAc conditions. HDAC4-knockout mice develop heart failure in models of type 1 and type 2 diabetes mellitus, whereas wild-type mice do not develop clear signs of heart failure, indicating that HDAC4 protects the diabetic heart. Reexpression of the N-terminal fragment of HDAC4 prevents HDAC4-dependent diabetic cardiomyopathy. Mechanistically, the posttranslational modification of HDAC4 at serine (Ser)-642 by O-GlcNAcylation is an essential step for production of the N-terminal fragment of HDAC4, which was attenuated by Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation at Ser-632. Preventing O-GlcNAcylation at Ser-642 not only entirely precluded production of the N-terminal fragment of HDAC4 but also promoted Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation at Ser-632, pointing to a mutual posttranslational modification cross talk of (cardio-detrimental) phosphorylation at Ser-632 and (cardio-protective) O-GlcNAcylation at Ser-642. CONCLUSIONS In this study, we found that O-GlcNAcylation of HDAC4 at Ser-642 is cardio-protective in diabetes mellitus and counteracts pathological Ca2+/calmodulin-dependent protein kinase II signaling. We introduce a molecular model explaining how diabetic metabolism possesses important cardio-protective features besides its known detrimental effects. A deeper understanding of the here-described posttranslational modification cross talk may lay the groundwork for the development of specific therapeutic concepts to treat heart failure in the context of diabetes mellitus.
Collapse
Affiliation(s)
- Mariya Kronlage
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,Department of Cardiology (M.K., L.H.L., O.J.M., H.A.K.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Matthias Dewenter
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Johannes Grosso
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Thomas Fleming
- Department of Internal Medicine I (T.F.), Heidelberg University, Germany
| | - Ulrike Oehl
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Lorenz H Lehmann
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,Department of Cardiology (M.K., L.H.L., O.J.M., H.A.K.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Inês Falcão-Pires
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Portugal (I.F.-P., A.F.L.-M.)
| | - Adelino F Leite-Moreira
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Portugal (I.F.-P., A.F.L.-M.)
| | - Nadine Volk
- Tissue Bank of the National Center for Tumor Diseases, Heidelberg, Germany (N.V.)
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg (H.-J.G.).,Institute of Pathology, University of Marburg, Germany (H.-J.G.)
| | - Oliver J Müller
- Department of Cardiology (M.K., L.H.L., O.J.M., H.A.K.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Albert Sickmann
- Leibniz Institute for Analysical Sciences (ISAS), Dortmund, Germany (A.S.).,Medical Faculty, Medical Proteomics Center, Ruhr-University Bochum, Germany (A.S.).,Department of Chemistry, College of Physical Sciences, University of Aberdeen, United Kingdom (A.S.). Dr Müller is currently at the Department of Internal Medicine III, University of Kiel, Germany
| | - Hugo A Katus
- Department of Cardiology (M.K., L.H.L., O.J.M., H.A.K.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Johannes Backs
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| |
Collapse
|
28
|
Glembotski CC, Rosarda JD, Wiseman RL. Proteostasis and Beyond: ATF6 in Ischemic Disease. Trends Mol Med 2019; 25:538-550. [PMID: 31078432 DOI: 10.1016/j.molmed.2019.03.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022]
Abstract
Endoplasmic reticulum (ER) stress is a pathological hallmark of numerous ischemic diseases, including stroke and myocardial infarction (MI). In these diseases, ER stress leads to activation of the unfolded protein response (UPR) and subsequent adaptation of cellular physiology in ways that dictate cellular fate following ischemia. Recent evidence highlights a protective role for the activating transcription factor 6 (ATF6) arm of the UPR in mitigating adverse outcomes associated with ischemia/reperfusion (I/R) injury in multiple disease models. This suggests ATF6 as a potential therapeutic target for intervening in diverse ischemia-related disorders. Here, we discuss the evidence demonstrating the importance of ATF6 signaling in protecting different tissues against ischemic damage and discuss preclinical results focused on defining the potential for pharmacologically targeting ATF6 to intervene in such diseases.
Collapse
Affiliation(s)
- Christopher C Glembotski
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Jessica D Rosarda
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
29
|
Zhao H, Zhang Y, Shu L, Song G, Ma H. Resveratrol reduces liver endoplasmic reticulum stress and improves insulin sensitivity in vivo and in vitro. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1473-1485. [PMID: 31118581 PMCID: PMC6505469 DOI: 10.2147/dddt.s203833] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/04/2019] [Indexed: 01/07/2023]
Abstract
Purpose: The aim of the study was to examine the effects of resveratrol upon hepatic endoplasmic reticulum stress (ERS) and insulin sensitivity in vivo and in vitro. Material and methods: C57BL/6J mice were fed a high-fat diet (HFD) for 8 weeks, and insulin resistance was evaluated by the intraperitoneal glucose tolerance test (IPGTT). Mice were then treated with resveratrol for 12 weeks and blood and liver samples collected. Blood biochemical indicators were determined by kits, liver protein expression was determined by western blot, and morphological changes were observed by histological staining. Palmitic acid (PA)-induced insulin-resistant HepG2 cells were established. Cells were exposed to 100, 50 or 20 μM resveratrol for 24 hrs, and proliferation/cytotoxicity was determined. Cells were divided into five groups: control, PA, PA + Rev (100 μM), PA + Rev (50 μM) and PA + Rev (20 μM) groups. After 24 hrs of treatment, cellular proteins were analyzed the same way as animal tissues. Results: The IPGTT confirmed that the insulin resistance model was established successfully. After resveratrol treatment, fasting blood glucose and cholesterol levels declined and the quantitative insulin sensitivity check index increased. Western-blot results showed that resveratrol-treated HFD mice had reduced hepatic levels of p-PERK, ATF-4 and TRIB3, and increased the levels of ATF-6, p-AKT and p-GSK3β. In the cell model, resveratrol with 100 and 50 μM enhanced ERS and insulin resistance, whereas 20 μM had beneficial effects, similar to the animal model. Conclusion: Resveratrol reduced hepatic ERS, thereby improving insulin sensitivity and glucose levels. However, high doses of resveratrol had harmful effects on cells, elevating ERS and insulin resistance. The safe dose of resveratrol needs further investigation.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, People's Republic of China.,Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Yunjia Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, People's Republic of China
| | - Linyi Shu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, People's Republic of China.,Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, People's Republic of China.,Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Huijuan Ma
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, People's Republic of China.,Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050051, People's Republic of China.,Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, People's Republic of China
| |
Collapse
|
30
|
An ATF6-tPA pathway in hepatocytes contributes to systemic fibrinolysis and is repressed by DACH1. Blood 2018; 133:743-753. [PMID: 30504459 DOI: 10.1182/blood-2018-07-864843] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/13/2018] [Indexed: 01/18/2023] Open
Abstract
Tissue-type plasminogen activator (tPA) is a major mediator of fibrinolysis and, thereby, prevents excessive coagulation without compromising hemostasis. Studies on tPA regulation have focused on its acute local release by vascular cells in response to injury or other stimuli. However, very little is known about sources, regulation, and fibrinolytic function of noninjury-induced systemic plasma tPA. We explore the role and regulation of hepatocyte-derived tPA as a source of basal plasma tPA activity and as a contributor to fibrinolysis after vascular injury. We show that hepatocyte tPA is downregulated by a pathway in which the corepressor DACH1 represses ATF6, which is an inducer of the tPA gene Plat Hepatocyte-DACH1-knockout mice show increases in liver Plat, circulating tPA, fibrinolytic activity, bleeding time, and time to thrombosis, which are reversed by silencing hepatocyte Plat Conversely, hepatocyte-ATF6-knockout mice show decreases in these parameters. The inverse correlation between DACH1 and ATF6/PLAT is conserved in human liver. These findings reveal a regulated pathway in hepatocytes that contributes to basal circulating levels of tPA and to fibrinolysis after vascular injury.
Collapse
|
31
|
Villalobos-Labra R, Subiabre M, Toledo F, Pardo F, Sobrevia L. Endoplasmic reticulum stress and development of insulin resistance in adipose, skeletal, liver, and foetoplacental tissue in diabesity. Mol Aspects Med 2018; 66:49-61. [PMID: 30472165 DOI: 10.1016/j.mam.2018.11.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/27/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Diabesity is an abnormal metabolic condition shown by patients with obesity that develop type 2 diabetes mellitus. Patients with diabesity present with insulin resistance, reduced vascular response to insulin, and vascular endothelial dysfunction. Along with the several well-described mechanisms of insulin resistance, a state of endoplasmic reticulum (ER) stress, where the primary human targets are the adipose tissue, liver, skeletal muscle, and the foetoplacental vasculature, is apparent. ER stress characterises by the activation of the unfolded protein response via three canonical ER stress sensors, i.e., the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6. Slightly different cell signalling mechanisms preferentially enable in diabesity in the ER stress-associated insulin resistance for adipose tissue (IRE1α/X-box binding protein 1 mRNA splicing/c-jun N-terminal kinase 1 activation), skeletal muscle (tribbles-like protein 3 (TRB3)/proinflammatory cytokines activation), and liver (PERK/activating transcription factor 4/TRB3 activation). There is no information in human subjects with diabesity in the foetoplacental vasculature. However, the available literature shows that pregnant women with pre-pregnancy obesity or overweight that develop gestational diabetes mellitus (GDM) and their newborn show insulin resistance. ER stress is recently reported to be triggered in endothelial cells from the human umbilical vein from mothers with pre-pregnancy obesity. However, whether a different metabolic alteration to obesity in pregnancy or GDM is present in women with pre-pregnancy obesity that develop GDM, is unknown. In this review, we summarised the findings on diabesity-associated mechanisms of insulin resistance with emphasis in the primary targets adipose, skeletal muscle, liver, and foetoplacental tissues. We also give evidence on the possibility of a new GDM-associated metabolic condition triggered in pregnancy by maternal obesity, i.e. gestational diabesity, leading to ER stress-associated insulin resistance in the human foetoplacental vasculature.
Collapse
Affiliation(s)
- Roberto Villalobos-Labra
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile.
| | - Mario Subiabre
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, 3780000, Chile
| | - Fabián Pardo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Metabolic Diseases Research Laboratory, Interdisciplinary Center of Territorial Health Research (CIISTe), San Felipe Campus, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, 2172972, San Felipe, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia.
| |
Collapse
|
32
|
Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 2018; 69:927-947. [PMID: 29940269 DOI: 10.1016/j.jhep.2018.06.008] [Citation(s) in RCA: 634] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
The global epidemic of obesity has been accompanied by a rising burden of non-alcoholic fatty liver disease (NAFLD), with manifestations ranging from simple steatosis to non-alcoholic steatohepatitis, potentially developing into hepatocellular carcinoma. Although much attention has focused on NAFLD, its pathogenesis remains largely obscure. The hallmark of NAFLD is the hepatic accumulation of lipids, which subsequently leads to cellular stress and hepatic injury, eventually resulting in chronic liver disease. Abnormal lipid accumulation often coincides with insulin resistance in steatotic livers and is associated with perturbed endoplasmic reticulum (ER) proteostasis in hepatocytes. In response to chronic ER stress, an adaptive signalling pathway known as the unfolded protein response is triggered to restore ER proteostasis. However, the unfolded protein response can cause inflammation, inflammasome activation and, in the case of non-resolvable ER stress, the death of hepatocytes. Experimental data suggest that the unfolded protein response influences hepatic tumour development, aggressiveness and response to treatment, offering novel therapeutic avenues. Herein, we provide an overview of the evidence linking ER stress to NAFLD and discuss possible points of intervention.
Collapse
Affiliation(s)
| | - Deborah Vallée
- Université Côte d'Azur, INSERM, U1065, C3M, 06200 Nice, France
| | - Younis Hazari
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, 02115 Boston, MA, USA
| | - Eric Chevet
- "Chemistry, Oncogenesis, Stress, Signaling", Inserm U1242, Université de Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | | |
Collapse
|
33
|
Paxman R, Plate L, Blackwood EA, Glembotski C, Powers ET, Wiseman RL, Kelly JW. Pharmacologic ATF6 activating compounds are metabolically activated to selectively modify endoplasmic reticulum proteins. eLife 2018; 7:37168. [PMID: 30084354 PMCID: PMC6080950 DOI: 10.7554/elife.37168] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022] Open
Abstract
Pharmacologic arm-selective unfolded protein response (UPR) signaling pathway activation is emerging as a promising strategy to ameliorate imbalances in endoplasmic reticulum (ER) proteostasis implicated in diverse diseases. The small molecule N-(2-hydroxy-5-methylphenyl)-3-phenylpropanamide (147) was previously identified (Plate et al., 2016) to preferentially activate the ATF6 arm of the UPR, promoting protective remodeling of the ER proteostasis network. Here we show that 147-dependent ATF6 activation requires metabolic oxidation to form an electrophile that preferentially reacts with ER proteins. Proteins covalently modified by 147 include protein disulfide isomerases (PDIs), known to regulate ATF6 activation. Genetic depletion of PDIs perturbs 147-dependent induction of the ATF6-target gene, BiP, implicating covalent modifications of PDIs in the preferential activation of ATF6 afforded by treatment with 147. Thus, 147 is a pro-drug that preferentially activates ATF6 signaling through a mechanism involving localized metabolic activation and selective covalent modification of ER resident proteins that regulate ATF6 activity.
Collapse
Affiliation(s)
- Ryan Paxman
- Department of Chemistry, The Scripps Research Institute, La Jolla, United States
| | - Lars Plate
- Department of Chemistry, The Scripps Research Institute, La Jolla, United States.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
| | - Erik A Blackwood
- Department of Biology, San Diego State University, San Diego, United States.,San Diego State University Heart Institute, San Diego State University, San Diego, United States
| | - Chris Glembotski
- Department of Biology, San Diego State University, San Diego, United States.,San Diego State University Heart Institute, San Diego State University, San Diego, United States
| | - Evan T Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, United States
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, United States.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
34
|
Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature 2018; 555:673-677. [PMID: 29562231 DOI: 10.1038/nature26138] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 02/14/2018] [Indexed: 12/22/2022]
Abstract
Obesity-induced metabolic disease involves functional integration among several organs via circulating factors, but little is known about crosstalk between liver and visceral adipose tissue (VAT). In obesity, VAT becomes populated with inflammatory adipose tissue macrophages (ATMs). In obese humans, there is a close correlation between adipose tissue inflammation and insulin resistance, and in obese mice, blocking systemic or ATM inflammation improves insulin sensitivity. However, processes that promote pathological adipose tissue inflammation in obesity are incompletely understood. Here we show that obesity in mice stimulates hepatocytes to synthesize and secrete dipeptidyl peptidase 4 (DPP4), which acts with plasma factor Xa to inflame ATMs. Silencing expression of DPP4 in hepatocytes suppresses inflammation of VAT and insulin resistance; however, a similar effect is not seen with the orally administered DPP4 inhibitor sitagliptin. Inflammation and insulin resistance are also suppressed by silencing expression of caveolin-1 or PAR2 in ATMs; these proteins mediate the actions of DPP4 and factor Xa, respectively. Thus, hepatocyte DPP4 promotes VAT inflammation and insulin resistance in obesity, and targeting this pathway may have metabolic benefits that are distinct from those observed with oral DPP4 inhibitors.
Collapse
|
35
|
Kang T, Jensen P, Huang H, Lund Christensen G, Billestrup N, Larsen MR. Characterization of the Molecular Mechanisms Underlying Glucose Stimulated Insulin Secretion from Isolated Pancreatic β-cells Using Post-translational Modification Specific Proteomics (PTMomics). Mol Cell Proteomics 2017; 17:95-110. [PMID: 29113996 DOI: 10.1074/mcp.ra117.000217] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/20/2017] [Indexed: 01/01/2023] Open
Abstract
Normal pancreatic islet β-cells (PBCs) abundantly secrete insulin in response to elevated blood glucose levels, in order to maintain an adequate control of energy balance and glucose homeostasis. However, the molecular mechanisms underlying the insulin secretion are unclear. Improving our understanding of glucose-stimulated insulin secretion (GSIS) mechanisms under normal conditions is a prerequisite for developing better interventions against diabetes. Here, we aimed at identifying novel signaling pathways involved in the initial release of insulin from PBCs after glucose stimulation using quantitative strategies for the assessment of phosphorylated proteins and sialylated N-linked (SA) glycoproteins.Islets of Langerhans derived from newborn rats with a subsequent 9-10 days of maturation in vitro were stimulated with 20 mm glucose for 0 min (control), 5 min, 10 min, and 15 min. The isolated islets were subjected to time-resolved quantitative phosphoproteomics and sialiomics using iTRAQ-labeling combined with enrichment of phosphorylated peptides and formerly SA glycopeptides and high-accuracy LC-MS/MS. Using bioinformatics we analyzed the functional signaling pathways during GSIS, including well-known insulin secretion pathways. Furthermore, we identified six novel activated signaling pathways (e.g. agrin interactions and prolactin signaling) at 15 min GSIS, which may increase our understanding of the molecular mechanism underlying GSIS. Moreover, we validated some of the regulated phosphosites by parallel reaction monitoring, which resulted in the validation of eleven new phosphosites significantly regulated on GSIS. Besides protein phosphorylation, alteration in SA glycosylation was observed on several surface proteins on brief GSIS. Interestingly, proteins important for cell-cell interaction, cell movement, cell-ECM interaction and Focal Adhesion (e.g. integrins, semaphorins, and plexins) were found regulated at the level of sialylation, but not in protein expression. Collectively, we believe that this comprehensive Proteomics and PTMomics survey of signaling pathways taking place during brief GSIS of primary PBCs is contributing to understanding the complex signaling underlying GSIS.
Collapse
Affiliation(s)
- Taewook Kang
- From the ‡Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark
| | - Pia Jensen
- From the ‡Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark
| | - Honggang Huang
- From the ‡Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark
| | - Gitte Lund Christensen
- §Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Nils Billestrup
- §Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Martin R Larsen
- From the ‡Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark;
| |
Collapse
|
36
|
Stimulation of liver IGF-1 expression promotes peak bone mass achievement in growing rats: a study with pomegranate seed oil. J Nutr Biochem 2017; 52:18-26. [PMID: 29121593 DOI: 10.1016/j.jnutbio.2017.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/14/2017] [Accepted: 09/28/2017] [Indexed: 01/08/2023]
Abstract
Peak bone mass (PBM) achieved at adulthood is a strong determinant of future onset of osteoporosis, and maximizing it is one of the strategies to combat the disease. Recently, pomegranate seed oil (PSO) has been shown to have bone-sparing effect in ovariectomized mice. However, its effect on growing skeleton and its molecular mechanism remain unclear. In the present study, we evaluated the effect of PSO on PBM in growing rats and associated mechanism of action. PSO was given at various doses to 21-day-old growing rats for 90 days by oral gavage. The changes in bone parameters were assessed by micro-computed tomography and histology. Enzyme-linked immunosorbent assay was performed to analyze the levels of serum insulin-like growth factor type 1 (IGF-1). Western blotting from bone and liver tissues was done. Chromatin immunoprecipitation assay was performed to study the histone acetylation levels at IGF-1 gene. The results of the study show that PSO treatment significantly increases bone length, bone formation rate, biomechanical parameters, bone mineral density and bone microarchitecture along with enhancing muscle and brown fat mass. This effect was due to the increased serum levels of IGF-1 and stimulation of its signaling in the bones. Studies focusing on acetylation of histones in the liver, the major site of IGF-1 synthesis, showed enrichment of acetylated H3K9 and H3K14 at IGF-1 gene promoter and body. Further, the increased acetylation at H3K9 and H3K14 was associated with a reduced HDAC1 protein level. Together, our data suggest that PSO promotes the PBM achievement via increased IGF-1 expression in liver and IGF-1 signaling in bone.
Collapse
|
37
|
Doran AC, Ozcan L, Cai B, Zheng Z, Fredman G, Rymond CC, Dorweiler B, Sluimer JC, Hsieh J, Kuriakose G, Tall AR, Tabas I. CAMKIIγ suppresses an efferocytosis pathway in macrophages and promotes atherosclerotic plaque necrosis. J Clin Invest 2017; 127:4075-4089. [PMID: 28972541 DOI: 10.1172/jci94735] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/10/2017] [Indexed: 01/29/2023] Open
Abstract
Atherosclerosis is the underlying etiology of cardiovascular disease, the leading cause of death worldwide. Atherosclerosis is a heterogeneous disease in which only a small fraction of lesions lead to heart attack, stroke, or sudden cardiac death. A distinct type of plaque containing large necrotic cores with thin fibrous caps often precipitates these acute events. Here, we show that Ca2+/calmodulin-dependent protein kinase γ (CaMKIIγ) in macrophages plays a major role in the development of necrotic, thin-capped plaques. Macrophages in necrotic and symptomatic atherosclerotic plaques in humans as well as advanced atherosclerotic lesions in mice demonstrated activation of CaMKII. Western diet-fed LDL receptor-deficient (Ldlr-/-) mice with myeloid-specific deletion of CaMKII had smaller necrotic cores with concomitantly thicker collagen caps. These lesions demonstrated evidence of enhanced efferocytosis, which was associated with increased expression of the macrophage efferocytosis receptor MerTK. Mechanistic studies revealed that CaMKIIγ-deficient macrophages and atherosclerotic lesions lacking myeloid CaMKIIγ had increased expression of the transcription factor ATF6. We determined that ATF6 induces liver X receptor-α (LXRα), an Mertk-inducing transcription factor, and that increased MerTK expression and efferocytosis in CaMKIIγ-deficient macrophages is dependent on LXRα. These findings identify a macrophage CaMKIIγ/ATF6/LXRα/MerTK pathway as a key factor in the development of necrotic atherosclerotic plaques.
Collapse
Affiliation(s)
- Amanda C Doran
- Department of Medicine, Columbia University, New York, New York, USA
| | - Lale Ozcan
- Department of Medicine, Columbia University, New York, New York, USA
| | - Bishuang Cai
- Department of Medicine, Columbia University, New York, New York, USA
| | - Ze Zheng
- Department of Medicine, Columbia University, New York, New York, USA
| | - Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Center for Cardiovascular Sciences, Albany Medical Center, Albany, New York, USA
| | | | - Bernhard Dorweiler
- Department of Cardiothoracic and Vascular Surgery, Universitätsmedizin Mainz, Johannes-Gutenberg University, Mainz, Germany
| | - Judith C Sluimer
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joanne Hsieh
- Department of Medicine, Columbia University, New York, New York, USA
| | | | - Alan R Tall
- Department of Medicine, Columbia University, New York, New York, USA
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, New York, USA.,Department of Physiology and Cellular Biophysics and.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
38
|
Adeghate J, Nurulain S, Tekes K, Fehér E, Kalász H, Adeghate E. Novel biological therapies for the treatment of diabetic foot ulcers. Expert Opin Biol Ther 2017; 17:979-987. [PMID: 28532226 DOI: 10.1080/14712598.2017.1333596] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The number of people with diabetes mellitus (DM) is estimated to exceed 640 million by the year 2040. Diabetic foot ulcer (DFU) is a debilitating illness that affects more than 2% of DM patients. DFU is caused by DM-induced neural and vascular lesions leading to a reduced sensation and microcirculation. The increase in the prevalence of DFU has prompted researchers to find new therapies for the management of DFU. Areas covered: This review presents the current status of novel biological therapies used in the treatment of DFU. Literature information and data analysis were collected from PubMed, the website of the American Diabetes Association, and ClinicalTrials.gov. The keywords used in the search were: DM, DFU, complications of DM. Expert opinion: Many biological agents have been investigated in a bid to find an effective therapy for DFU. These include growth factors (platelet-derived growth factor, vascular endothelial growth factor etc), stem cells (epithelial progenitor-, adipose-derived stem cells etc), anti-diabetic drugs (insulin, exendin-4), herbs, urokinase, dalteparin, statins and bio-agents such as acid peptide matrix. Biological agents that can reduce hyperglycaemia, increase sensation, microcirculation and oxygenation and repair lost tissue are the most ideal for the treatment of DFU.
Collapse
Affiliation(s)
- Jennifer Adeghate
- a Department of Anatomy , Semmelweis University , Budapest , Hungary
| | - Syed Nurulain
- b COMSATS Institute of Information Technology , Islamabad , Pakistan
| | - Kornélia Tekes
- c Department of Pharmacodynamics , Semmelweis University , Budapest , Hungary
| | - Erzsébet Fehér
- a Department of Anatomy , Semmelweis University , Budapest , Hungary
| | - Huba Kalász
- d Department of Pharmacology and Pharmacotherapy , Semmelweis University , Budapest , Hungary
| | - Ernest Adeghate
- e Department of Anatomy, College of Medicine & Health Sciences , United Arab Emirates University , Al Ain , United Arab Emirates
| |
Collapse
|
39
|
Abstract
The burden of type 2 diabetes and its major complication cardiovascular disease is rapidly increasing worldwide. Understanding the underlying pathogenic mechanisms of these diseases is crucial to develop novel therapeutics. Recent work using genetic and biochemical methods in mouse models and human samples have identified disturbed calcium signalling and endoplasmic reticulum stress as emerging factors involved in the pathogenesis of many metabolic diseases. In this review, we will highlight the specific roles of calcium signalling and endoplasmic reticulum stress response in the development of insulin resistance and atherosclerosis.
Collapse
Affiliation(s)
- L Ozcan
- Department of Medicine, Columbia University, New York, NY, USA.
| | - I Tabas
- Department of Medicine, Columbia University, New York, NY, USA.,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
40
|
The unfolded protein response is a negative regulator of scavenger receptor class B, type I (SR-BI) expression. Biochem Biophys Res Commun 2016; 479:557-562. [DOI: 10.1016/j.bbrc.2016.09.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/21/2016] [Indexed: 11/23/2022]
|