1
|
Juraska M, Early AM, Li L, Schaffner SF, Lievens M, Khorgade A, Simpkins B, Hejazi NS, Benkeser D, Wang Q, Mercer LD, Adjei S, Agbenyega T, Anderson S, Ansong D, Bii DK, Buabeng PBY, English S, Fitzgerald N, Grimsby J, Kariuki SK, Otieno K, Roman F, Samuels AM, Westercamp N, Ockenhouse CF, Ofori-Anyinam O, Lee CK, MacInnis BL, Wirth DF, Gilbert PB, Neafsey DE. Genotypic analysis of RTS,S/AS01 E malaria vaccine efficacy against parasite infection as a function of dosage regimen and baseline malaria infection status in children aged 5-17 months in Ghana and Kenya: a longitudinal phase 2b randomised controlled trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:1025-1036. [PMID: 38723650 PMCID: PMC11339203 DOI: 10.1016/s1473-3099(24)00179-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 08/25/2024]
Abstract
BACKGROUND The first licensed malaria vaccine, RTS,S/AS01E, confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy. METHODS Between Sept 28, 2017, and Sept 25, 2018, 1500 children aged 5-17 months were randomly assigned (1:1:1:1:1) to receive four different RTS,S/AS01E regimens or a rabies control vaccine in a phase 2b open-label clinical trial in Ghana and Kenya. Participants in the four RTS,S groups received two full doses at month 0 and month 1 and either full doses at month 2 and month 20 (group R012-20); full doses at month 2, month 14, month 26, and month 38 (group R012-14); fractional doses at month 2, month 14, month 26, and month 38 (group Fx012-14; early fourth dose); or fractional doses at month 7, month 20, and month 32 (group Fx017-20; delayed third dose). We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods (12 months and 20 months) in more than 36 000 dried blood spot specimens from 1500 participants. To study vaccine effects on time to the first new infection, we defined vaccine efficacy as one minus the hazard ratio (HR; RTS,S vs control) of the first new infection. We performed a post-hoc analysis of vaccine efficacy based on malaria infection status at first vaccination and force of infection by month 2. This trial (MAL-095) is registered with ClinicalTrials.gov, NCT03281291. FINDINGS We observed significant and similar vaccine efficacy (25-43%; 95% CI union 9-53) against first new infection for all four RTS,S/AS01E regimens across both follow-up periods (12 months and 20 months). Each RTS,S/AS01E regimen significantly reduced the mean number of new infections in the 20-month follow-up period by 1·1-1·6 infections (95% CI union 0·6-2·1). Vaccine efficacy against first new infection was significantly higher in participants who were infected with malaria (68%; 95% CI 50-80) than in those who were uninfected (37%; 23-48) at the first vaccination (p=0·0053). INTERPRETATION All tested dosing regimens blocked some infections to a similar degree. Improved vaccine efficacy in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. FUNDING GlaxoSmithKline Biologicals SA, PATH, Bill & Melinda Gates Foundation, and the German Federal Ministry of Education and Research.
Collapse
Affiliation(s)
- Michal Juraska
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, WA, USA.
| | - Angela M Early
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | - Li Li
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Stephen F Schaffner
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | | | - Akanksha Khorgade
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | - Brian Simpkins
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Nima S Hejazi
- Harvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, MA, USA
| | - David Benkeser
- Emory University Rollins School of Public Health, Department of Biostatistics and Bioinformatic, Atlanta, GA, USA
| | - Qi Wang
- Department of Statistics, University of Washington, Seattle, WA, USA
| | | | - Samuel Adjei
- Kwame Nkrumah University of Science and Technology/Agogo Presbyterian Hospital, Agogo, Asante Akyem, Ghana
| | - Tsiri Agbenyega
- Kwame Nkrumah University of Science and Technology/Agogo Presbyterian Hospital, Agogo, Asante Akyem, Ghana
| | - Scott Anderson
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | - Daniel Ansong
- Kwame Nkrumah University of Science and Technology/Agogo Presbyterian Hospital, Agogo, Asante Akyem, Ghana
| | - Dennis K Bii
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Patrick B Y Buabeng
- Kwame Nkrumah University of Science and Technology/Agogo Presbyterian Hospital, Agogo, Asante Akyem, Ghana
| | - Sean English
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | - Nicholas Fitzgerald
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | - Jonna Grimsby
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | - Simon K Kariuki
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Kephas Otieno
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Aaron M Samuels
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Kisumu, Kenya; Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nelli Westercamp
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | - Bronwyn L MacInnis
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | - Dyann F Wirth
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA; Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA
| | - Peter B Gilbert
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, WA, USA; Department of Biostatistics, University of Washington, Hans Rosling Center for Population Health, Seattle, WA, USA
| | - Daniel E Neafsey
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA; Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA.
| |
Collapse
|
2
|
Ferrer P, Berry AA, Bucsan AN, Prajapati SK, Krishnan K, Barbeau MC, Rickert DM, Guerrero SM, Usui M, Abebe Y, Patil A, Chakravarty S, Billingsley PF, Pa'ahana-Brown F, Strauss K, Shrestha B, Nomicos E, Deye GA, Sim BKL, Hoffman SL, Williamson KC, Lyke KE. Repeat controlled human Plasmodium falciparum infections delay bloodstream patency and reduce symptoms. Nat Commun 2024; 15:5194. [PMID: 38890271 PMCID: PMC11189388 DOI: 10.1038/s41467-024-49041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Resistance to clinical malaria takes years to develop even in hyperendemic regions and sterilizing immunity has rarely been observed. To evaluate the maturation of the host response against controlled repeat exposures to P. falciparum (Pf) NF54 strain-infected mosquitoes, we systematically monitored malaria-naïve participants through an initial exposure to uninfected mosquitoes and 4 subsequent homologous exposures to Pf-infected mosquitoes over 21 months (n = 8 males) (ClinicalTrials.gov# NCT03014258). The primary outcome was to determine whether protective immunity against parasite infection develops following repeat CHMI and the secondary outcomes were to track the clinical signs and symptoms of malaria and anti-Pf antibody development following repeat CHMI. After two exposures, time to blood stage patency increases significantly and the number of reported symptoms decreases indicating the development of clinical tolerance. The time to patency correlates positively with both anti-Pf circumsporozoite protein (CSP) IgG and CD8 + CD69+ effector memory T cell levels consistent with partial pre-erythrocytic immunity. IFNγ levels decrease significantly during the participants' second exposure to high blood stage parasitemia and could contribute to the decrease in symptoms. In contrast, CD4-CD8 + T cells expressing CXCR5 and the inhibitory receptor, PD-1, increase significantly after subsequent Pf exposures, possibly dampening the memory response and interfering with the generation of robust sterilizing immunity.
Collapse
Affiliation(s)
- Patricia Ferrer
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allison N Bucsan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Surendra K Prajapati
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Karthik Krishnan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Michelle C Barbeau
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - David M Rickert
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Sandra Mendoza Guerrero
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Miho Usui
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | | | | | | | | | - Faith Pa'ahana-Brown
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathy Strauss
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Biraj Shrestha
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Effie Nomicos
- Division of Microbiology and Infectious Diseases, Parasitology and International Programs Branch, NIAID, NIH, Bethesda, MD, USA
| | - Gregory A Deye
- Division of Microbiology and Infectious Diseases, Parasitology and International Programs Branch, NIAID, NIH, Bethesda, MD, USA
| | | | | | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Shehata L, Thouvenel CD, Hondowicz BD, Pew LA, Pritchard GH, Rawlings DJ, Choi J, Pepper M. Interleukin-4 downregulates transcription factor BCL6 to promote memory B cell selection in germinal centers. Immunity 2024; 57:843-858.e5. [PMID: 38513666 PMCID: PMC11104266 DOI: 10.1016/j.immuni.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/04/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
Germinal center (GC)-derived memory B cells (MBCs) are critical for humoral immunity as they differentiate into protective antibody-secreting cells during re-infection. GC formation and cellular interactions within the GC have been studied in detail, yet the exact signals that allow for the selection and exit of MBCs are not understood. Here, we showed that IL-4 cytokine signaling in GC B cells directly downregulated the transcription factor BCL6 via negative autoregulation to release cells from the GC program and to promote MBC formation. This selection event required additional survival cues and could therefore result in either GC exit or death. We demonstrate that both increasing IL-4 bioavailability or limiting IL-4 signaling disrupted MBC selection stringency. In this way, IL-4 control of BCL6 expression serves as a tunable switch within the GC to tightly regulate MBC selection and affinity maturation.
Collapse
Affiliation(s)
- Laila Shehata
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Christopher D Thouvenel
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Brian D Hondowicz
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Lucia A Pew
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | | | - David J Rawlings
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Jinyong Choi
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
4
|
Costa-Gouvea TBL, Françoso KS, Marques RF, Gimenez AM, Faria ACM, Cariste LM, Dominguez MR, Vasconcelos JRC, Nakaya HI, Silveira ELV, Soares IS. Poly I:C elicits broader and stronger humoral and cellular responses to a Plasmodium vivax circumsporozoite protein malaria vaccine than Alhydrogel in mice. Front Immunol 2024; 15:1331474. [PMID: 38650939 PMCID: PMC11033515 DOI: 10.3389/fimmu.2024.1331474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Malaria remains a global health challenge, necessitating the development of effective vaccines. The RTS,S vaccination prevents Plasmodium falciparum (Pf) malaria but is ineffective against Plasmodium vivax (Pv) disease. Herein, we evaluated the murine immunogenicity of a recombinant PvCSP incorporating prevalent polymorphisms, adjuvanted with Alhydrogel or Poly I:C. Both formulations induced prolonged IgG responses, with IgG1 dominance by the Alhydrogel group and high titers of all IgG isotypes by the Poly I:C counterpart. Poly I:C-adjuvanted vaccination increased splenic plasma cells, terminally-differentiated memory cells (MBCs), and precursors relative to the Alhydrogel-combined immunization. Splenic B-cells from Poly I:C-vaccinated mice revealed an antibody-secreting cell- and MBC-differentiating gene expression profile. Biological processes such as antibody folding and secretion were highlighted by the Poly I:C-adjuvanted vaccination. These findings underscore the potential of Poly I:C to strengthen immune responses against Pv malaria.
Collapse
Affiliation(s)
- Tiffany B. L. Costa-Gouvea
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Katia S. Françoso
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodolfo F. Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alba Marina Gimenez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana C. M. Faria
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leonardo M. Cariste
- Laboratório de Vacinas Recombinantes, Departamento de Biociências, Universidade Federal de São Paulo, Santos, Brazil
| | - Mariana R. Dominguez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Ronnie C. Vasconcelos
- Laboratório de Vacinas Recombinantes, Departamento de Biociências, Universidade Federal de São Paulo, Santos, Brazil
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Institut Pasteur São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Eduardo L. V. Silveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Irene S. Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Immink LE, Guthmiller JJ. Isolation of Rare Antigen-Specific Memory B Cells via Antigen Tetramers. Methods Mol Biol 2024; 2826:95-115. [PMID: 39017888 DOI: 10.1007/978-1-0716-3950-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Immunological memory, which sets the foundation for the adaptive immune response, plays a key role in disease protection and prevention. Obtaining a deeper understanding of the mechanisms underlying this phenomenon can aide in research aimed to improve vaccines and therapies. Memory B cells (MBCs) are a fundamental component of immunological memory but can exist in rare populations that prove challenging to study. By combining fluorescent antigen tetramers with multiple enrichment processes, a highly streamlined method for identifying and sorting antigen-specific MBCs from human blood and lymphoid tissues can be achieved. With the output of this process being viable cells, there is a multitude of downstream operations that can be used in conjunction with the antigen-specific cell sorting outlined in this chapter. Single-cell RNA-sequencing paired with B cell repertoire sequencing, which can be linked to distinct antigens in a high-throughput fashion, is a downstream application widely used in disease and vaccination research. Incorporation of this protocol can lead to a variety of applications and a diversity of outcomes aiding in a deeper understanding of how immunological memory not only forms but is recalled and impacted by infection and vaccination.
Collapse
Affiliation(s)
- Lauren E Immink
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jenna J Guthmiller
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
6
|
Dutta S, Thera MA. Seasonal RTS,S/AS01 E vaccination with or without seasonal malaria chemoprevention. THE LANCET. INFECTIOUS DISEASES 2024; 24:9-11. [PMID: 37625433 DOI: 10.1016/s1473-3099(23)00392-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 08/27/2023]
Affiliation(s)
- Sheetij Dutta
- Structural Vaccinology Laboratory, Biologics Research & Development Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | - Mahamadou A Thera
- Malaria Research and Training Center, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| |
Collapse
|
7
|
Mura M, Misganaw B, Gautam A, Robinson T, Chaudhury S, Bansal N, Martins AJ, Tsang J, Hammamieh R, Bergmann-Leitner E. Human transcriptional signature of protection after Plasmodium falciparum immunization and infectious challenge via mosquito bites. Hum Vaccin Immunother 2023; 19:2282693. [PMID: 38010150 PMCID: PMC10760396 DOI: 10.1080/21645515.2023.2282693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
The identification of immune correlates of protection against infectious pathogens will accelerate the design and optimization of recombinant and subunit vaccines. Systematic analyses such as immunoprofiling including serological, cellular, and molecular assessments supported by computational tools are key to not only identify correlates of protection but also biomarkers of disease susceptibility. The current study expands our previous cellular and serological profiling of vaccine-induced responses to a whole parasite malaria vaccine. The irradiated sporozoite model was chosen as it is considered the most effective vaccine against malaria. In contrast to whole blood transcriptomics analysis, we stimulated peripheral blood mononuclear cells (PBMC) with sporozoites and enriched for antigen-specific cells prior to conducting transcriptomics analysis. By focusing on transcriptional events triggered by antigen-specific stimulation, we were able to uncover quantitative and qualitative differences between protected and non-protected individuals to controlled human malaria infections and identified differentially expressed genes associated with sporozoite-specific responses. Further analyses including pathway and gene set enrichment analysis revealed that vaccination with irradiated sporozoites induced a transcriptomic profile associated with Th1-responses, Interferon-signaling, antigen-presentation, and inflammation. Analyzing longitudinal time points not only post-vaccination but also post-controlled human malaria infection further revealed that the transcriptomic profile of protected vs non-protected individuals was not static but continued to diverge over time. The results lay the foundation for comparing protective immune signatures induced by various vaccine platforms to uncover immune correlates of protection that are common across platforms.
Collapse
Affiliation(s)
- Marie Mura
- Immunology Core, Biologics Research & Development, WRAIR-Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Host-Pathogen Interactions, Microbiology and Infectious Diseases, IRBA-Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Burook Misganaw
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Vysnova Inc, Landover, MD, USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Tanisha Robinson
- Immunology Core, Biologics Research & Development, WRAIR-Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sidhartha Chaudhury
- Center of Enabling Capabilties, WRAIR-Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Neha Bansal
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Andrew J. Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - John Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Elke Bergmann-Leitner
- Immunology Core, Biologics Research & Development, WRAIR-Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
8
|
Juraska M, Early AM, Li L, Schaffner SF, Lievens M, Khorgade A, Simpkins B, Hejazi NS, Benkeser DA, Wang Q, Mercer LD, Adjei S, Agbenyega T, Anderson S, Ansong D, Bii DK, Buabeng PBY, English S, Fitzgerald N, Grimsby J, Kariuki SK, Otieno K, Roman F, Samuels AM, Westercamp N, Ockenhouse CF, Ofori-Anyinam O, Lee CK, MacInnis BL, Wirth DF, Gilbert PB, Neafsey DE. Baseline malaria infection status and RTS,S/AS01E malaria vaccine efficacy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.22.23298907. [PMID: 38045387 PMCID: PMC10690350 DOI: 10.1101/2023.11.22.23298907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background The only licensed malaria vaccine, RTS,S/AS01 E , confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy (VE). Methods 1,500 children aged 5-17 months were randomized to receive four different RTS,S/AS01 E regimens or a rabies control vaccine in a phase 2b clinical trial in Ghana and Kenya. We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods in over 36K participant specimens. We performed a post hoc analysis of VE based on malaria infection status at first vaccination and force of infection. Results We observed significant and comparable VE (25-43%, 95% CI union 9-53%) against first new infection for all four RTS,S/AS01 E regimens across both follow-up periods (12 and 20 months). Each RTS,S/AS01 E regimen significantly reduced the number of new infections in the 20-month follow-up period (control mean 4.1 vs. RTS,S/AS01 E mean 2.6-3.0). VE against first new infection was significantly higher in participants who were malaria-infected (68%; 95% CI, 50 to 80%) versus uninfected (37%; 95% CI, 23 to 48%) at the first vaccination (P=0.0053) and in participants experiencing greater force of infection between dose 1 and 3 (P=0.059). Conclusions All tested dosing regimens blocked some infections to a similar degree. Improved VE in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. ( ClinicalTrials.gov number, NCT03276962 ).
Collapse
|
9
|
Shehata L, Thouvenel CD, Hondowicz BD, Pew LA, Rawlings DJ, Choi J, Pepper M. IL-4 downregulates BCL6 to promote memory B cell selection in germinal centers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525749. [PMID: 36747852 PMCID: PMC9900890 DOI: 10.1101/2023.01.26.525749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Germinal center (GC)-derived memory B cells (MBCs) are critical for humoral immunity as they differentiate into protective antibody-secreting cells during re-infection. GC formation and cellular interactions within the GC have been studied in detail, yet the exact signals that allow for the selection and exit of MBCs are not understood. Here, we show that IL-4 signaling in GC B cells directly downregulates BCL6 via negative autoregulation to release cells from the GC program and promote MBC formation. This selection event requires additional survival cues and can therefore result in either GC exit or death. We demonstrate that both increasing IL-4 bioavailability or limiting IL-4 signaling disrupt MBC selection stringency. In this way, IL-4 control of BCL6 expression serves as a tunable switch within the GC to tightly regulate MBC selection and affinity maturation.
Collapse
|
10
|
Markwalter CF, Petersen JEV, Zeno EE, Sumner KM, Freedman E, Mangeni JN, Abel L, Obala AA, Prudhomme-O’Meara W, Taylor SM. Symptomatic malaria enhances protection from reinfection with homologous Plasmodium falciparum parasites. PLoS Pathog 2023; 19:e1011442. [PMID: 37307293 PMCID: PMC10289385 DOI: 10.1371/journal.ppat.1011442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/23/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
A signature remains elusive of naturally-acquired immunity against Plasmodium falciparum. We identified P. falciparum in a 14-month cohort of 239 people in Kenya, genotyped at immunogenic parasite targets expressed in the pre-erythrocytic (circumsporozoite protein, CSP) and blood (apical membrane antigen 1, AMA-1) stages, and classified into epitope type based on variants in the DV10, Th2R, and Th3R epitopes in CSP and the c1L region of AMA-1. Compared to asymptomatic index infections, symptomatic malaria was associated with reduced reinfection by parasites bearing homologous CSP-Th2R (adjusted hazard ratio [aHR]:0.63; 95% CI:0.45-0.89; p = 0.008) CSP-Th3R (aHR:0.71; 95% CI:0.52-0.97; p = 0.033), and AMA-1 c1L (aHR:0.63; 95% CI:0.43-0.94; p = 0.022) epitope types. The association of symptomatic malaria with reduced hazard of homologous reinfection was strongest for rare epitope types. Symptomatic malaria provides more durable protection against reinfection with parasites bearing homologous epitope types. The phenotype represents a legible molecular epidemiologic signature of naturally-acquired immunity by which to identify new antigen targets.
Collapse
Affiliation(s)
- Christine F. Markwalter
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
| | - Jens E. V. Petersen
- Division of Infectious Diseases, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Erica E. Zeno
- Division of Infectious Diseases, School of Medicine, Duke University, Durham, North Carolina, United States of America
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kelsey M. Sumner
- Division of Infectious Diseases, School of Medicine, Duke University, Durham, North Carolina, United States of America
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Elizabeth Freedman
- Division of Infectious Diseases, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Judith N. Mangeni
- School of Public Health, College of Health Sciences, Moi University, Eldoret, Kenya
| | - Lucy Abel
- Academic Model Providing Access to Healthcare, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Andrew A. Obala
- School of Medicine, College of Health Sciences, Moi University, Eldoret, Kenya
| | - Wendy Prudhomme-O’Meara
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
- Division of Infectious Diseases, School of Medicine, Duke University, Durham, North Carolina, United States of America
- School of Public Health, College of Health Sciences, Moi University, Eldoret, Kenya
| | - Steve M. Taylor
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
- Division of Infectious Diseases, School of Medicine, Duke University, Durham, North Carolina, United States of America
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
11
|
Fontana MF, Ollmann Saphire E, Pepper M. Plasmodium infection disrupts the T follicular helper cell response to heterologous immunization. eLife 2023; 12:83330. [PMID: 36715223 PMCID: PMC9886276 DOI: 10.7554/elife.83330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Naturally acquired immunity to malaria develops only after many years and repeated exposures, raising the question of whether Plasmodium parasites, the etiological agents of malaria, suppress the ability of dendritic cells (DCs) to activate optimal T cell responses. We demonstrated recently that B cells, rather than DCs, are the principal activators of CD4+ T cells in murine malaria. In the present study, we further investigated factors that might prevent DCs from priming Plasmodium-specific T helper cell responses. We found that DCs were significantly less efficient at taking up infected red blood cells (iRBCs) compared to soluble antigen, whereas B cells more readily bound iRBCs. To assess whether DCs retained the capacity to present soluble antigen during malaria, we measured responses to a heterologous protein immunization administered to naïve mice or mice infected with P. chabaudi. Antigen uptake, DC activation, and expansion of immunogen-specific T cells were intact in infected mice, indicating DCs remained functional. However, polarization of the immunogen-specific response was dramatically altered, with a near-complete loss of germinal center T follicular helper cells specific for the immunogen, accompanied by significant reductions in antigen-specific B cells and antibody. Our results indicate that DCs remain competent to activate T cells during Plasmodium infection, but that T cell polarization and humoral responses are severely disrupted. This study provides mechanistic insight into the development of both Plasmodium-specific and heterologous adaptive responses in hosts with malaria.
Collapse
Affiliation(s)
- Mary F Fontana
- Department of Immunology, University of Washington School of MedicineSeattleUnited States
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for ImmunologyLa JollaUnited States
| | - Marion Pepper
- Department of Immunology, University of Washington School of MedicineSeattleUnited States
| |
Collapse
|
12
|
Duffy FJ, Hertoghs N, Du Y, Neal ML, Oyong D, McDermott S, Minkah N, Carnes J, Schwedhelm KV, McElrath MJ, De Rosa SC, Newell E, Aitchison JD, Stuart K. Longitudinal immune profiling after radiation-attenuated sporozoite vaccination reveals coordinated immune processes correlated with malaria protection. Front Immunol 2022; 13:1042741. [PMID: 36591224 PMCID: PMC9798120 DOI: 10.3389/fimmu.2022.1042741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Background Identifying immune processes required for liver-stage sterilizing immunity to malaria remains an open problem. The IMRAS trial comprised 5x immunizations with radiation-attenuated sporozoites resulting in 55% protection from subsequent challenge. Methods To identify correlates of vaccination and protection, we performed detailed systems immunology longitudinal profiling of the entire trial time course including whole blood transcriptomics, detailed PBMC cell phenotyping and serum antigen array profiling of 11 IMRAS radiation-attenuated sporozoite (RAS) vaccinees at up to 21 timepoints each. Results RAS vaccination induced serum antibody responses to CSP, TRAP, and AMA1 in all vaccinees. We observed large numbers of differentially expressed genes associated with vaccination response and protection, with distinctly differing transcriptome responses elicited after each immunization. These included inflammatory and proliferative responses, as well as increased abundance of monocyte and DC subsets after each immunization. Increases in Vδ2 γδ; T cells and MAIT cells were observed in response to immunization over the course of study, and CD1c+ CD40+ DC abundance was significantly associated with protection. Interferon responses strongly differed between protected and non-protected individuals with high interferon responses after the 1st immunization, but not the 2nd-5th. Blood transcriptional interferon responses were correlated with abundances of different circulating classical and non-classical monocyte populations. Conclusions This study has revealed multiple coordinated immunological processes induced by vaccination and associated with protection. Our work represents the most detailed immunological profiling of a RAS vaccine trial performed to date and will guide the design and interpretation of future malaria vaccine trials.
Collapse
Affiliation(s)
- Fergal J. Duffy
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States,*Correspondence: Fergal J. Duffy, ; Ken Stuart,
| | - Nina Hertoghs
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Ying Du
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Damian Oyong
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Suzanne McDermott
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Nana Minkah
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Jason Carnes
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Katharine V. Schwedhelm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Evan Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Ken Stuart
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States,*Correspondence: Fergal J. Duffy, ; Ken Stuart,
| |
Collapse
|
13
|
Kim MJ, Chu KB, Lee SH, Kang HJ, Yoon KW, Ahmed MA, Quan FS. Recombinant Vaccinia Virus Expressing Plasmodium berghei Apical Membrane Antigen 1 or Microneme Protein Enhances Protection against P. berghei Infection in Mice. Trop Med Infect Dis 2022; 7:350. [PMID: 36355892 PMCID: PMC9698705 DOI: 10.3390/tropicalmed7110350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 07/27/2023] Open
Abstract
Recombinant vaccinia viruses (rVV) are effective antigen delivery vectors and are researched widely as vaccine platforms against numerous diseases. Apical membrane antigen 1 (AMA1) is one of the candidate antigens for malaria vaccines but rising concerns regarding its genetic diversity and polymorphism have necessitated the need to search for an alternative antigen. Here, we compare the efficacies of the rVV vaccines expressing either AMA1 or microneme protein (MIC) of Plasmodium berghei in mice. Mice (BALB/c) were immunized with either rVV-AMA1 or rVV-MIC and subsequently challenge-infected with P. berghei. Compared to the control group, both antigens elicited elevated levels of parasite-specific antibody responses. Immunization with either one of the two vaccines induced high levels of T cells and germinal center B cell responses. Interestingly, rVV-MIC immunization elicited higher levels of cellular immune response compared to rVV-AMA1 immunization, and significantly reduced pro-inflammatory cytokine productions were observed from the former vaccine. While differences in parasitemia and bodyweight changes were negligible between rVV-AMA1 and rVV-MIC immunization groups, prolonged survival was observed for the latter of the two. Based on these results, our findings suggest that the rVV expressing the P. berghei MIC could be a vaccine-candidate antigen.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Ki-Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Su-Hwa Lee
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Md Atique Ahmed
- ICMR-Regional Medical Research Centre, NE Region, Dibrugarh 786010, Assam, India
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
14
|
Bhattacharya D. Instructing durable humoral immunity for COVID-19 and other vaccinable diseases. Immunity 2022; 55:945-964. [PMID: 35637104 PMCID: PMC9085459 DOI: 10.1016/j.immuni.2022.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Many aspects of SARS-CoV-2 have fully conformed with the principles established by decades of viral immunology research, ultimately leading to the crowning achievement of highly effective COVID-19 vaccines. Nonetheless, the pandemic has also exposed areas where our fundamental knowledge is thinner. Some key unknowns are the duration of humoral immunity post-primary infection or vaccination and how long booster shots confer protection. As a corollary, if protection does not last as long as desired, what are some ways it can be improved? Here, I discuss lessons from other infections and vaccines that point to several key features that influence durable antibody production and the perseverance of immunity. These include (1) the specific innate sensors that are initially triggered, (2) the kinetics of antigen delivery and persistence, (3) the starting B cell receptor (BCR) avidity and antigen valency, and (4) the memory B cell subsets that are recalled by boosters. I further highlight the fundamental B cell-intrinsic and B cell-extrinsic pathways that, if understood better, would provide a rational framework for vaccines to reliably provide durable immunity.
Collapse
Affiliation(s)
- Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| |
Collapse
|
15
|
Zhang H, Shen F, Yu J, Ge J, Sun Y, Fu H, Cheng Y. Plasmodium vivax Protein PvTRAg23 Triggers Spleen Fibroblasts for Inflammatory Profile and Reduces Type I Collagen Secretion via NF-κBp65 Pathway. Front Immunol 2022; 13:877122. [PMID: 35769479 PMCID: PMC9235351 DOI: 10.3389/fimmu.2022.877122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/16/2022] [Indexed: 01/04/2023] Open
Abstract
Plasmodium vivax is the most widespread human malaria parasite. The spleen is one of the most significant immune organs in the course of Plasmodium infection, and it contains splenic fibroblasts (SFs), which supports immunologic function by secreting type I collagen (collagen I). Plasmodium proteins have rarely been found to be involved in collagen alterations in the spleen during infection. Here, we selected the protein P. vivax tryptophan-rich antigen 23 (PvTRAg23), which is expressed by the spleen-dependent gene Pv-fam-a and is a member of the PvTRAgs family of export proteins, suggesting that it might have an effect on SFs. The protein specifically reduced the level of collagen I in human splenic fibroblasts (HSFs) and bound to cells with vimentin as receptors. However, such collagen changes were not mediated by binding to vimentin, but rather activating the NF-κBp65 pathway to produce inflammatory cytokines. Collagen impaired synthesis accompanied by extracellular matrix-related changes occurred in the spleen of mice infected with P. yoelii 17XNL. Overall, this study is the first one to report and verify the role of Plasmodium proteins on collagen in HSF in vitro. Results will contribute to further understanding of host spleen structural changes and immune responses after Plasmodium infection.
Collapse
Affiliation(s)
- Hangye Zhang
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Feihu Shen
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Lianyungan Center for Disease Control and Prevention, Wuxi, China
| | - Jiali Yu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jieyun Ge
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yifan Sun
- Department of Clinical Laboratory, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Haitian Fu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Yang Cheng,
| |
Collapse
|
16
|
Teixeira AR, Pérez-Cabezas B, Costa DM, Sá M, Golba S, Sefiane-Djemaoune H, Ribeiro J, Kaneko I, Iwanaga S, Yuda M, Tsuji M, Boscardin SB, Amino R, Cordeiro-da-Silva A, Tavares J. Immunization with CSP and a RIG-I Agonist is Effective in Inducing a Functional and Protective Humoral Response Against Plasmodium. Front Immunol 2022; 13:868305. [PMID: 35669785 PMCID: PMC9163323 DOI: 10.3389/fimmu.2022.868305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria is a major public health concern, as a highly effective human vaccine remains elusive. The efficacy of a subunit vaccine targeting the most abundant protein of the sporozoite surface, the circumsporozoite protein (CSP) has been hindered by difficulties in generating an effective humoral response in both quantity and quality. Using the rodent Plasmodium yoelii model we report here that immunization with CSP adjuvanted with 5’ppp-dsRNA, a RIG-I agonist, confers early and long-lasting sterile protection in mice against stringent sporozoite and mosquito bite challenges. The immunization induced high levels of antibodies, which were functional in targeting and killing the sporozoites and were sustained over time through the accumulation of long-lived plasma cells in the bone marrow. Moreover, 5’ppp-dsRNA-adjuvanted immunization with the CSP of P. falciparum was also significantly protective against challenges using a transgenic PfCSP-expressing P. yoelii parasite. Conversely, using the TLR3 agonist poly(A:U) as adjuvant resulted in a formulation that despite inducing high antibody levels was unable to generate equally functional antibodies and was, consequently, less protective. In conclusion, we demonstrate that using 5’ppp-dsRNA as an adjuvant to vaccines targeting CSP induces effective anti-Plasmodium humoral immunity.
Collapse
Affiliation(s)
- Ana Rafaela Teixeira
- Host-Parasite Interactions Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Begoña Pérez-Cabezas
- Host-Parasite Interactions Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - David M. Costa
- Host-Parasite Interactions Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Mónica Sá
- Host-Parasite Interactions Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sylvain Golba
- Center for Production and Infection of Anopheles, Institut Pasteur, Paris, France
| | | | - Joana Ribeiro
- Host-Parasite Interactions Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Izumi Kaneko
- Department of Medical Zoology, Mie University Graduate School of Medicine, Mie, Japan
| | - Shiroh Iwanaga
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masao Yuda
- Department of Medical Zoology, Mie University Graduate School of Medicine, Mie, Japan
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Silvia Beatriz Boscardin
- Institute for Investigation in Immunology (iii)-INCT, São Paulo, Brazil
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rogerio Amino
- Unit of Malaria Infection and Immunity, Institut Pasteur, Paris, France
| | - Anabela Cordeiro-da-Silva
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Parasite Disease Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Joana Tavares
- Host-Parasite Interactions Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- *Correspondence: Joana Tavares,
| |
Collapse
|
17
|
Arias CF, Acosta FJ, Fernandez-Arias C. Killing the competition: a theoretical framework for liver-stage malaria. Open Biol 2022; 12:210341. [PMID: 35350863 PMCID: PMC8965401 DOI: 10.1098/rsob.210341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The first stage of malaria infections takes place inside the host's hepatocytes. Remarkably, Plasmodium parasites do not infect hepatocytes immediately after reaching the liver. Instead, they migrate through several hepatocytes before infecting their definitive host cells, thus increasing their chances of immune destruction. Considering that malaria can proceed normally without cell traversal, this is indeed a puzzling behaviour. In fact, the role of hepatocyte traversal remains unknown to date, implying that the current understanding of malaria is incomplete. In this work, we hypothesize that the parasites traverse hepatocytes to actively trigger an immune response in the host. This behaviour would be part of a strategy of superinfection exclusion aimed to reduce intraspecific competition during the blood stage of the infection. Based on this hypothesis, we formulate a comprehensive theory of liver-stage malaria that integrates all the available knowledge about the infection. The interest of this new paradigm is not merely theoretical. It highlights major issues in the current empirical approach to the study of Plasmodium and suggests new strategies to fight malaria.
Collapse
Affiliation(s)
- Clemente F. Arias
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain,Grupo Interdisciplinar de Sistemas Complejos de Madrid, Spain
| | | | - Cristina Fernandez-Arias
- Departamento de Inmunología, Universidad Complutense de Madrid, Spain,Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| |
Collapse
|
18
|
Spatial cluster analysis of Plasmodium vivax and P. malariae exposure using serological data among Haitian school children sampled between 2014 and 2016. PLoS Negl Trop Dis 2022; 16:e0010049. [PMID: 34986142 PMCID: PMC8765618 DOI: 10.1371/journal.pntd.0010049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/18/2022] [Accepted: 12/03/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Estimation of malaria prevalence in very low transmission settings is difficult by even the most advanced diagnostic tests. Antibodies against malaria antigens provide an indicator of active or past exposure to these parasites. The prominent malaria species within Haiti is Plasmodium falciparum, but P. vivax and P. malariae infections are also known to be endemic. METHODOLOGY/PRINCIPAL FINDINGS From 2014-2016, 28,681 Haitian children were enrolled in school-based serosurveys and were asked to provide a blood sample for detection of antibodies against multiple infectious diseases. IgG against the P. falciparum, P. vivax, and P. malariae merozoite surface protein 19kD subunit (MSP119) antigens was detected by a multiplex bead assay (MBA). A subset of samples was also tested for Plasmodium DNA by PCR assays, and for Plasmodium antigens by a multiplex antigen detection assay. Geospatial clustering of high seroprevalence areas for P. vivax and P. malariae antigens was assessed by both Ripley's K-function and Kulldorff's spatial scan statistic. Of 21,719 children enrolled in 680 schools in Haiti who provided samples to assay for IgG against PmMSP119, 278 (1.27%) were seropositive. Of 24,559 children enrolled in 788 schools providing samples for PvMSP119 serology, 113 (0.46%) were seropositive. Two significant clusters of seropositivity were identified throughout the country for P. malariae exposure, and two identified for P. vivax. No samples were found to be positive for Plasmodium DNA or antigens. CONCLUSIONS/SIGNIFICANCE From school-based surveys conducted from 2014 to 2016, very few Haitian children had evidence of exposure to P. vivax or P. malariae, with no children testing positive for active infection. Spatial scan statistics identified non-overlapping areas of the country with higher seroprevalence for these two malarias. Serological data provides useful information of exposure to very low endemic malaria species in a population that is unlikely to present to clinics with symptomatic infections.
Collapse
|
19
|
Immunoprofiles associated with controlled human malaria infection and naturally acquired immunity identify a shared IgA pre-erythrocytic immunoproteome. NPJ Vaccines 2021; 6:115. [PMID: 34518543 PMCID: PMC8438027 DOI: 10.1038/s41541-021-00363-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Knowledge of the Plasmodium falciparum antigens that comprise the human liver stage immunoproteome is important for pre-erythrocytic vaccine development, but, compared with the erythrocytic stage immunoproteome, more challenging to classify. Previous studies of P. falciparum antibody responses report IgG and rarely IgA responses. We assessed IgG and IgA antibody responses in adult sera collected during two controlled human malaria infection (CHMI) studies in malaria-naïve volunteers and in 1- to 6-year-old malaria-exposed Malian children on a 251 P. falciparum antigen protein microarray. IgG profiles in the two CHMI groups were equivalent and differed from Malian children. IgA profiles were robust in the CHMI groups and a subset of Malian children. We describe immunoproteome differences in naïve vs. exposed individuals and report pre-erythrocytic proteins recognized by the immune system. IgA responses detected in this study expand the list of pre-erythrocytic antigens for further characterization as potential vaccine candidates.
Collapse
|
20
|
Duffy FJ, Du Y, Carnes J, Epstein JE, Hoffman SL, Abdulla S, Jongo S, Mpina M, Daubenberger C, Aitchison JD, Stuart K. Early whole blood transcriptional responses to radiation-attenuated Plasmodium falciparum sporozoite vaccination in malaria naïve and malaria pre-exposed adult volunteers. Malar J 2021; 20:308. [PMID: 34243763 PMCID: PMC8267772 DOI: 10.1186/s12936-021-03839-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
Background Vaccination with radiation-attenuated Plasmodium falciparum sporozoites is known to induce protective immunity. However, the mechanisms underlying this protection remain unclear. In this work, two recent radiation-attenuated sporozoite vaccination studies were used to identify potential transcriptional correlates of vaccination-induced protection. Methods Longitudinal whole blood RNAseq transcriptome responses to immunization with radiation-attenuated P. falciparum sporozoites were analysed and compared across malaria-naïve adult participants (IMRAS) and malaria-experienced adult participants (BSPZV1). Parasite dose and method of delivery differed between trials, and immunization regimens were designed to achieve incomplete protective efficacy. Observed protective efficacy was 55% in IMRAS and 20% in BSPZV1. Study vaccine dosings were chosen to elicit both protected and non-protected subjects, so that protection-associated responses could be identified. Results Analysis of comparable time points up to 1 week after the first vaccination revealed a shared cross-study transcriptional response programme, despite large differences in number and magnitude of differentially expressed genes between trials. A time-dependent regulatory programme of coherent blood transcriptional modular responses was observed, involving induction of inflammatory responses 1–3 days post-vaccination, with cell cycle responses apparent by day 7 in protected individuals from both trials. Additionally, strongly increased induction of inflammation and interferon-associated responses was seen in non-protected IMRAS participants. All individuals, except for non-protected BSPZV1 participants, showed robust upregulation of cell-cycle associated transcriptional responses post vaccination. Conclusions In summary, despite stark differences between the two studies, including route of vaccination and status of malaria exposure, responses were identified that were associated with protection after PfRAS vaccination. These comprised a moderate early interferon response peaking 2 days post vaccination, followed by a later proliferative cell cycle response steadily increasing over the first 7 days post vaccination. Non-protection is associated with deviations from this model, observed in this study with over-induction of early interferon responses in IMRAS and failure to mount a cell cycle response in BSPZV1. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03839-3.
Collapse
Affiliation(s)
- Fergal J Duffy
- Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, WA, USA.
| | - Ying Du
- Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, WA, USA
| | - Jason Carnes
- Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, WA, USA
| | - Judith E Epstein
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA
| | | | | | - Said Jongo
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Maxmillian Mpina
- Department of Medical Parasitology and Infection Biology, Clinical Immunology Unit, Swiss Tropical and Public Health Institute, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4001, Basel, Switzerland.,Ifakara Health Institute, Bagamoyo, Tanzania
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Clinical Immunology Unit, Swiss Tropical and Public Health Institute, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, WA, USA
| | - Ken Stuart
- Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, WA, USA.
| |
Collapse
|
21
|
Murphy SC, Deye GA, Sim BKL, Galbiati S, Kennedy JK, Cohen KW, Chakravarty S, KC N, Abebe Y, James ER, Kublin JG, Hoffman SL, Richie TL, Jackson LA. PfSPZ-CVac efficacy against malaria increases from 0% to 75% when administered in the absence of erythrocyte stage parasitemia: A randomized, placebo-controlled trial with controlled human malaria infection. PLoS Pathog 2021; 17:e1009594. [PMID: 34048504 PMCID: PMC8191919 DOI: 10.1371/journal.ppat.1009594] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/10/2021] [Accepted: 04/29/2021] [Indexed: 11/18/2022] Open
Abstract
PfSPZ-CVac combines 'PfSPZ Challenge', which consists of infectious Plasmodium falciparum sporozoites (PfSPZ), with concurrent antimalarial chemoprophylaxis. In a previously-published PfSPZ-CVac study, three doses of 5.12x104 PfSPZ-CVac given 28 days apart had 100% vaccine efficacy (VE) against controlled human malaria infection (CHMI) 10 weeks after the last immunization, while the same dose given as three injections five days apart had 63% VE. Here, we conducted a dose escalation trial of similarly condensed schedules. Of the groups proceeding to CHMI, the first study group received three direct venous inoculations (DVIs) of a dose of 5.12x104 PfSPZ-CVac seven days apart and the next full dose group received three DVIs of a higher dose of 1.024x105 PfSPZ-CVac five days apart. CHMI (3.2x103 PfSPZ Challenge) was performed by DVI 10 weeks after the last vaccination. In both CHMI groups, transient parasitemia occurred starting seven days after each vaccination. For the seven-day interval group, the second and third vaccinations were therefore administered coincident with parasitemia from the prior vaccination. Parasitemia was associated with systemic symptoms which were severe in 25% of subjects. VE in the seven-day group was 0% (7/7 infected) and in the higher-dose, five-day group was 75% (2/8 infected). Thus, the same dose of PfSPZ-CVac previously associated with 63% VE when given on a five-day schedule in the prior study had zero VE here when given on a seven-day schedule, while a double dose given on a five-day schedule here achieved 75% VE. The relative contributions of the five-day schedule and/or the higher dose to improved VE warrant further investigation. It is notable that administration of PfSPZ-CVac on a schedule where vaccine administration coincided with blood-stage parasitemia was associated with an absence of sterile protective immunity. Clinical trials registration: NCT02773979.
Collapse
Affiliation(s)
- Sean C. Murphy
- Seattle Malaria Clinical Trials Center, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Center for Emerging and Re-emerging Infectious Diseases, Seattle, Washington, United States of America
| | - Gregory A. Deye
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - B. Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, United States of America
| | - Shirley Galbiati
- The Emmes Company, Rockville, Maryland, United States of America
| | | | - Kristen W. Cohen
- Seattle Malaria Clinical Trials Center, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | | - Natasha KC
- Sanaria Inc., Rockville, Maryland, United States of America
| | - Yonas Abebe
- Sanaria Inc., Rockville, Maryland, United States of America
| | - Eric R. James
- Sanaria Inc., Rockville, Maryland, United States of America
| | - James G. Kublin
- Seattle Malaria Clinical Trials Center, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | | | | | - Lisa A. Jackson
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
22
|
Cai J, Chen S, Zhu F, Lu X, Liu T, Xu W. Whole-Killed Blood-Stage Vaccine: Is It Worthwhile to Further Develop It to Control Malaria? Front Microbiol 2021; 12:670775. [PMID: 33995336 PMCID: PMC8119638 DOI: 10.3389/fmicb.2021.670775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023] Open
Abstract
Major challenges have been encountered regarding the development of highly efficient subunit malaria vaccines, and so whole-parasite vaccines have regained attention in recent years. The whole-killed blood-stage vaccine (WKV) is advantageous as it can be easily manufactured and efficiently induced protective immunity against a blood-stage challenge, as well as inducing cross-stage protection against both the liver and sexual-stages. However, it necessitates a high dose of parasitized red blood cell (pRBC) lysate for immunization, and this raises concerns regarding its safety and low immunogenicity. Knowledge of the major components of WKV that can induce or evade the host immune response, and the development of appropriate human-compatible adjuvants will greatly help to optimize the WKV. Therefore, we argue that the further development of the WKV is worthwhile to control and potentially eradicate malaria worldwide.
Collapse
Affiliation(s)
- Jingjing Cai
- College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Suilin Chen
- College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Feng Zhu
- College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Taiping Liu
- College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Wenyue Xu
- College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| |
Collapse
|
23
|
Hahn WO, Pepper M, Liles WC. B cell intrinsic expression of IFNλ receptor suppresses the acute humoral immune response to experimental blood-stage malaria. Virulence 2021; 11:594-606. [PMID: 32407154 PMCID: PMC7549950 DOI: 10.1080/21505594.2020.1768329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antibodies play a critical protective role in the host response to blood-stage malaria infection. The role of cytokines in shaping the antibody response to blood-stage malaria is unclear. Interferon lambda (IFNλ), a type III interferon, is a cytokine produced early during blood-stage malaria infection that has an unknown physiological role during malaria infection. We demonstrate that B cell-intrinsic IFNλ signals suppress the acute antibody response, acute plasmablast response, and impede acute parasite clearance during a primary blood-stage malaria infection. Our findings demonstrate a previously unappreciated role for B cell intrinsic IFNλ-signaling in the initiation of the humoral immune response in the host response to experimental malaria.
Collapse
Affiliation(s)
- William O Hahn
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington , Seattle, USA
| | - Marion Pepper
- Department of Immunology, University of Washington , Seattle, USA
| | - W Conrad Liles
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington , Seattle, USA
| |
Collapse
|
24
|
Lamsfus Calle C, Fendel R, Singh A, Richie TL, Hoffman SL, Kremsner PG, Mordmüller B. Expansion of Functional Myeloid-Derived Suppressor Cells in Controlled Human Malaria Infection. Front Immunol 2021; 12:625712. [PMID: 33815377 PMCID: PMC8017236 DOI: 10.3389/fimmu.2021.625712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Malaria can cause life-threatening complications which are often associated with inflammatory reactions. More subtle, but also contributing to the burden of disease are chronic, often subclinical infections, which result in conditions like anemia and immunologic hyporesponsiveness. Although very frequent, such infections are difficult to study in endemic regions because of interaction with concurrent infections and immune responses. In particular, knowledge about mechanisms of malaria-induced immunosuppression is scarce. We measured circulating immune cells by cytometry in healthy, malaria-naïve, adult volunteers undergoing controlled human malaria infection (CHMI) with a focus on potentially immunosuppressive cells. Infectious Plasmodium falciparum (Pf) sporozoites (SPZ) (PfSPZ Challenge) were inoculated during two independent studies to assess malaria vaccine efficacy. Volunteers were followed daily until parasites were detected in the circulation by RT-qPCR. This allowed us to analyze immune responses during pre-patency and at very low parasite densities in malaria-naïve healthy adults. We observed a consistent increase in circulating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) in volunteers who developed P. falciparum blood stage parasitemia. The increase was independent of preceding vaccination with a pre-erythrocytic malaria vaccine. PMN-MDSC were functional, they suppressed CD4+ and CD8+ T cell proliferation as shown by ex-vivo co-cultivation with stimulated T cells. PMN-MDSC reduced T cell proliferation upon stimulation by about 50%. Interestingly, high circulating PMN-MDSC numbers were associated with lymphocytopenia. The number of circulating regulatory T cells (Treg) and monocytic MDSC (M-MDSC) showed no significant parasitemia-dependent variation. These results highlight PMN-MDSC in the peripheral circulation as an early indicator of infection during malaria. They suppress CD4+ and CD8+ T cell proliferation in vitro. Their contribution to immunosuppression in vivo in subclinical and uncomplicated malaria will be the subject of further research. Pre-emptive antimalarial pre-treatment of vaccinees to reverse malaria-associated PMN-MDSC immunosuppression could improve vaccine response in exposed individuals.
Collapse
Affiliation(s)
| | - Rolf Fendel
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Anurag Singh
- Department of Pediatrics 1, University Children's Hospital Tübingen, Tübingen, Germany.,Institute for Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | | | | | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| |
Collapse
|
25
|
Ghosh D, Stumhofer JS. The spleen: "epicenter" in malaria infection and immunity. J Leukoc Biol 2021; 110:753-769. [PMID: 33464668 PMCID: PMC8518401 DOI: 10.1002/jlb.4ri1020-713r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
The spleen is a complex secondary lymphoid organ that plays a crucial role in controlling blood‐stage infection with Plasmodium parasites. It is tasked with sensing and removing parasitized RBCs, erythropoiesis, the activation and differentiation of adaptive immune cells, and the development of protective immunity, all in the face of an intense inflammatory environment. This paper describes how these processes are regulated following infection and recognizes the gaps in our current knowledge, highlighting recent insights from human infections and mouse models.
Collapse
Affiliation(s)
- Debopam Ghosh
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
26
|
Rodda LB, Netland J, Shehata L, Pruner KB, Morawski PA, Thouvenel CD, Takehara KK, Eggenberger J, Hemann EA, Waterman HR, Fahning ML, Chen Y, Hale M, Rathe J, Stokes C, Wrenn S, Fiala B, Carter L, Hamerman JA, King NP, Gale M, Campbell DJ, Rawlings DJ, Pepper M. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell 2021; 184:169-183.e17. [PMID: 33296701 PMCID: PMC7682481 DOI: 10.1016/j.cell.2020.11.029] [Citation(s) in RCA: 509] [Impact Index Per Article: 127.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 01/14/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is causing a global pandemic, and cases continue to rise. Most infected individuals experience mildly symptomatic coronavirus disease 2019 (COVID-19), but it is unknown whether this can induce persistent immune memory that could contribute to immunity. We performed a longitudinal assessment of individuals recovered from mild COVID-19 to determine whether they develop and sustain multifaceted SARS-CoV-2-specific immunological memory. Recovered individuals developed SARS-CoV-2-specific immunoglobulin (IgG) antibodies, neutralizing plasma, and memory B and memory T cells that persisted for at least 3 months. Our data further reveal that SARS-CoV-2-specific IgG memory B cells increased over time. Additionally, SARS-CoV-2-specific memory lymphocytes exhibited characteristics associated with potent antiviral function: memory T cells secreted cytokines and expanded upon antigen re-encounter, whereas memory B cells expressed receptors capable of neutralizing virus when expressed as monoclonal antibodies. Therefore, mild COVID-19 elicits memory lymphocytes that persist and display functional hallmarks of antiviral immunity.
Collapse
Affiliation(s)
- Lauren B Rodda
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Jason Netland
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Laila Shehata
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Kurt B Pruner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Peter A Morawski
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Christopher D Thouvenel
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Kennidy K Takehara
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Julie Eggenberger
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Emily A Hemann
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Hayley R Waterman
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Mitchell L Fahning
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Yu Chen
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Malika Hale
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jennifer Rathe
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Caleb Stokes
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Samuel Wrenn
- Department of Biochemistry, University of Washington, Seattle, WA, USA, 98195 and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA, USA, 98195 and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA, USA, 98195 and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jessica A Hamerman
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, USA, 98195 and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Daniel J Campbell
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - David J Rawlings
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
27
|
Shah HB, Smith K, Scott EJ, Larabee JL, James JA, Ballard JD, Lang ML. Human C. difficile toxin-specific memory B cell repertoires encode poorly neutralizing antibodies. JCI Insight 2020; 5:138137. [PMID: 32663199 PMCID: PMC7455132 DOI: 10.1172/jci.insight.138137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is a leading cause of nosocomial infection responsible for significant morbidity and mortality with limited options for therapy. Secreted C. difficile toxin B (TcdB) is a major contributor to disease pathology, and select TcdB-specific Abs may protect against disease recurrence. However, the high frequency of recurrence suggests that the memory B cell response, essential for new Ab production following C. difficile reexposure, is insufficient. We therefore isolated TcdB-specific memory B cells from individuals with a history of C. difficile infection and performed single-cell deep sequencing of their Ab genes. Herein, we report that TcdB-specific memory B cell-encoded antibodies showed somatic hypermutation but displayed limited isotype class switch. Memory B cell-encoded mAb generated from the gene sequences revealed low to moderate affinity for TcdB and a limited ability to neutralize TcdB. These findings indicate that memory B cells are an important factor in C. difficile disease recurrence.
Collapse
Affiliation(s)
- Hemangi B. Shah
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC)
| | - Kenneth Smith
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, and
| | - Edgar J. Scott
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC)
| | - Jason L. Larabee
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC)
| | - Judith A. James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, and
- Departments of Medicine and Pathology, OUHSC, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Jimmy D. Ballard
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC)
| | - Mark L. Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC)
| |
Collapse
|
28
|
Affiliation(s)
- Lauren B Rodda
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
29
|
Choi R, Michaels SA, Onu EC, Hulverson MA, Saha A, Coker ME, Weeks JC, Van Voorhis WC, Ojo KK. Taming the Boys for Global Good: Contraceptive Strategy to Stop Malaria Transmission. Molecules 2020; 25:molecules25122773. [PMID: 32560085 PMCID: PMC7356879 DOI: 10.3390/molecules25122773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 12/21/2022] Open
Abstract
Transmission of human malaria parasites (Plasmodium spp.) by Anopheles mosquitoes is a continuous process that presents a formidable challenge for effective control of the disease. Infectious gametocytes continue to circulate in humans for up to four weeks after antimalarial drug treatment, permitting prolonged transmission to mosquitoes even after clinical cure. Almost all reported malaria cases are transmitted to humans by mosquitoes, and therefore decreasing the rate of Plasmodium transmission from humans to mosquitoes with novel transmission-blocking remedies would be an important complement to other interventions in reducing malaria incidence.
Collapse
Affiliation(s)
- Ryan Choi
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
| | - Samantha A. Michaels
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
| | - Emmanuel C. Onu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria; (E.C.O.); (M.E.C.)
| | - Matthew A. Hulverson
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
| | - Aparajita Saha
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
| | - Morenike E. Coker
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria; (E.C.O.); (M.E.C.)
| | - Janis C. Weeks
- Department of Biology, University of Oregon, Eugene, OR 97403, USA;
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
| | - Kayode K. Ojo
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
- Correspondence: ; Tel.: +1-206-543-0821
| |
Collapse
|
30
|
Infection-induced plasmablasts are a nutrient sink that impairs humoral immunity to malaria. Nat Immunol 2020; 21:790-801. [PMID: 32424361 PMCID: PMC7316608 DOI: 10.1038/s41590-020-0678-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 04/01/2020] [Indexed: 01/07/2023]
Abstract
Plasmodium parasite-specific antibodies are critical for
protection against malaria, yet the development of long-lived and effective
humoral immunity against Plasmodium takes many years and
multiple rounds of infection and cure. Here we report that the rapid development
of short-lived plasmablasts during experimental malaria unexpectedly hindered
parasite control by impeding germinal center (GC) responses. Metabolic
hyperactivity of plasmablasts resulted in nutrient deprivation of the GC
reaction limiting the generation of memory B cell and long-lived plasma cell
responses. Therapeutic administration of a single amino acid to experimentally
infected mice was sufficient to overcome the metabolic constraints imposed by
plasmablasts and enhanced parasite clearance and the formation of protective
humoral immune memory responses. Thus, our studies not only challenge the
current paradigm describing the role and function of blood-stage
Plasmodium-induced plasmablasts, but also reveal new
targets and strategies to improve anti-Plasmodium humoral
immunity.
Collapse
|
31
|
Heide J, Wildner NH, Ackermann C, Wittner M, Marget M, Sette A, Sidney J, Jacobs T, Schulze Zur Wiesch J. Detection of EXP1-Specific CD4+ T Cell Responses Directed Against a Broad Range of Epitopes Including Two Promiscuous MHC Class II Binders During Acute Plasmodium falciparum Malaria. Front Immunol 2020; 10:3037. [PMID: 32038611 PMCID: PMC6993587 DOI: 10.3389/fimmu.2019.03037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/11/2019] [Indexed: 01/02/2023] Open
Abstract
Background: T cells are thought to play a major role in conferring immunity against malaria. This study aimed to comprehensively define the breadth and specificity of the Plasmodium falciparum (P. falciparum)-specific CD4+ T cell response directed against the exported protein 1 (EXP1) in a cohort of patients diagnosed with acute malaria. Methods: Peripheral blood mononuclear cells of 44 patients acutely infected with P. falciparum, and of one patient infected with P. vivax, were stimulated and cultured in vitro with an overlapping set of 31 P. falciparum-specific 13-17-mer peptides covering the entire EXP1 sequence. EXP1-specific T cell responses were analyzed by ELISPOT and intracellular cytokine staining for interferon-γ production after re-stimulation with individual peptides. For further characterization of the epitopes, in silico and in vitro human leukocyte antigen (HLA) binding studies and fine mapping assays were performed. Results: We detected one or more EXP1-specific CD4+ T cell responses (mean: 1.09, range 0–5) in 47% (21/45) of our patients. Responses were directed against 15 of the 31 EXP1 peptides. Peptides EXP1-P13 (aa60-74) and P15 (aa70-85) were detected by 18% (n = 8) and 27% (n = 12) of the 45 patients screened. The optimal length, as well as the corresponding most likely HLA-restriction, of each of these two peptides was assessed. Interestingly, we also identified one CD4+ T cell response against peptide EXP1-P15 in a patient who was infected with P. vivax but not falciparum. Conclusions: This first detailed characterization of novel EXP1-specific T cell epitopes provides important information for future analysis with major histocompatibility complex-multimer technology as well as for immunomonitoring and vaccine design.
Collapse
Affiliation(s)
- Janna Heide
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Nils H Wildner
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christin Ackermann
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Wittner
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Matthias Marget
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
32
|
Goswami D, Minkah NK, Kappe SHI. Designer Parasites: Genetically Engineered Plasmodium as Vaccines To Prevent Malaria Infection. THE JOURNAL OF IMMUNOLOGY 2019; 202:20-28. [PMID: 30587570 DOI: 10.4049/jimmunol.1800727] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022]
Abstract
A highly efficacious malaria vaccine that prevents disease and breaks the cycle of infection remains an aspirational goal of medicine. Whole parasite vaccines based on the sporozoite forms of the parasite that target the clinically silent pre-erythrocytic stages of infection have emerged as one of the leading candidates. In animal models of malaria, these vaccines elicit potent neutralizing Ab responses against the sporozoite stage and cytotoxic T cells that eliminate parasite-infected hepatocytes. Among whole-sporozoite vaccines, immunization with live, replication-competent whole parasites engenders superior immunity and protection when compared with live replication-deficient sporozoites. As such, the genetic design of replication-competent vaccine strains holds the promise for a potent, broadly protective malaria vaccine. In this report, we will review the advances in whole-sporozoite vaccine development with a particular focus on genetically attenuated parasites both as malaria vaccine candidates and also as valuable tools to interrogate protective immunity against Plasmodium infection.
Collapse
Affiliation(s)
- Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109; and
| | - Nana K Minkah
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109; and
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109; and .,Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
33
|
Zenklusen I, Jongo S, Abdulla S, Ramadhani K, Lee Sim BK, Cardamone H, Flannery EL, Nguyen T, Fishbaugher M, Steel RWJ, Betz W, Carmago N, Mikolajczak S, Kappe SHI, Hoffman SL, Sack BK, Daubenberger C. Immunization of Malaria-Preexposed Volunteers With PfSPZ Vaccine Elicits Long-Lived IgM Invasion-Inhibitory and Complement-Fixing Antibodies. J Infect Dis 2019; 217:1569-1578. [PMID: 29438525 DOI: 10.1093/infdis/jiy080] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/06/2018] [Indexed: 01/17/2023] Open
Abstract
Background The assessment of antibody responses after immunization with radiation-attenuated, aseptic, purified, cryopreserved Plasmodium falciparum sporozoites (Sanaria PfSPZ Vaccine) has focused on IgG isotype antibodies. Here, we aimed to investigate if P. falciparum sporozoite binding and invasion-inhibitory IgM antibodies are induced following immunization of malaria-preexposed volunteers with PfSPZ Vaccine. Methods Using serum from volunteers immunized with PfSPZ, we measured vaccine-induced IgG and IgM antibodies to P. falciparum circumsporozoite protein (PfCSP) via ELISA. Function of this serum as well as IgM antibody fractions was measured via in vitro in an inhibition of sporozoite invasion assay. These IgM antibody fractions were also measured for binding to sporozoites by immunofluorescence assay and complement fixation on whole sporozoites. Results We found that in addition to anti-PfCSP IgG, malaria-preexposed volunteers developed anti-PfCSP IgM antibodies after immunization with PfSPZ Vaccine and that these IgM antibodies inhibited P. falciparum sporozoite invasion of hepatocytes in vitro. These IgM plasma fractions also fixed complement to whole P. falciparum sporozoites. Conclusions This is the first finding that PfCSP and P. falciparum sporozoite-binding IgM antibodies are induced following immunization of PfSPZ Vaccine in malaria-preexposed individuals and that IgM antibodies can inhibit P. falciparum sporozoite invasion into hepatocytes in vitro and fix complement on sporozoites. These findings indicate that the immunological assessment of PfSPZ Vaccine-induced antibody responses could be more sensitive if they include parasite-specific IgM in addition to IgG antibodies. Clinical Trials Registration NCT02132299.
Collapse
Affiliation(s)
- Isabelle Zenklusen
- Clinical Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Said Jongo
- Ifakara Health Institute, Clinical Trial Unit, Bagamoyo, Tanzania
| | - Salim Abdulla
- Ifakara Health Institute, Clinical Trial Unit, Bagamoyo, Tanzania
| | - Kamaka Ramadhani
- Ifakara Health Institute, Clinical Trial Unit, Bagamoyo, Tanzania
| | | | | | | | - Thao Nguyen
- Center for Infectious Disease Research, Seattle, Washington
| | | | - Ryan W J Steel
- Center for Infectious Disease Research, Seattle, Washington
| | - Will Betz
- Center for Infectious Disease Research, Seattle, Washington
| | - Nelly Carmago
- Center for Infectious Disease Research, Seattle, Washington
| | | | - Stefan H I Kappe
- Center for Infectious Disease Research, Seattle, Washington.,Department of Global Health, University of Washington, Seattle
| | | | - Brandon K Sack
- Center for Infectious Disease Research, Seattle, Washington
| | - Claudia Daubenberger
- Clinical Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| |
Collapse
|
34
|
Julien JP, Wardemann H. Antibodies against Plasmodium falciparum malaria at the molecular level. Nat Rev Immunol 2019; 19:761-775. [DOI: 10.1038/s41577-019-0209-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
|
35
|
Joseph H, Tan QY, Mazhari R, Eriksson EM, Schofield L. Vaccine-Induced Carbohydrate-Specific Memory B Cells Reactivate During Rodent Malaria Infection. Front Immunol 2019; 10:1840. [PMID: 31447848 PMCID: PMC6696980 DOI: 10.3389/fimmu.2019.01840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
A long-standing challenge in malaria is the limited understanding of B cell immunity, previously hampered by lack of tools to phenotype rare antigen-specific cells. Our aim was to develop a method for identifying carbohydrate-specific B cells within lymphocyte populations and to determine whether a candidate vaccine generated functional memory B cells (MBCs) that reactivated upon challenge with Plasmodium (pRBCs). To this end, a new flow cytometric probe was validated and used to determine the kinetics of B cell activation against the candidate vaccine glycosylphosphatidylinositol conjugated to Keyhole Limpet Haemocyanin (GPI-KLH). Additionally, immunized C57BL/6 mice were rested (10 weeks) and challenged with pRBCs or GPI-KLH to assess memory B cell recall against foreign antigen. We found that GPI-specific B cells were detectable in GPI-KLH vaccinated mice, but not in Plasmodium-infected mice. Additionally, in previously vaccinated mice GPI-specific IgG1 MBCs were reactivated against both pRBCs and synthetic GPI-KLH, which resulted in increased serum levels of anti-GPI IgG in both challenge approaches. Collectively our findings contribute to the understanding of B cell immunity in malaria and have important clinical implications for inclusion of carbohydrate conjugates in malaria vaccines.
Collapse
Affiliation(s)
- Hayley Joseph
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Qiao Ye Tan
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Ramin Mazhari
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Emily M Eriksson
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Louis Schofield
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
36
|
Barry A, Behet MC, Nébié I, Lanke K, Grignard L, Ouedraogo A, Soulama I, Drakeley C, Sauerwein R, Bolscher JM, Dechering KJ, Bousema T, Tiono AB, Gonçalves BP. Functional antibodies against Plasmodium falciparum sporozoites are associated with a longer time to qPCR-detected infection among schoolchildren in Burkina Faso. Wellcome Open Res 2019; 3:159. [PMID: 30828645 PMCID: PMC6381444 DOI: 10.12688/wellcomeopenres.14932.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Individuals living in malaria-endemic regions develop immunity against severe malaria, but it is unclear whether immunity against pre-erythrocytic stages that blocks initiation of blood-stage infection after parasite inoculation develops following continuous natural exposure. Methods: We cleared schoolchildren living in an area (health district of Saponé, Burkina Faso) with highly endemic seasonal malaria of possible sub-patent infections and examined them weekly for incident infections by nested PCR. Plasma samples collected at enrolment were used to quantify antibodies to the pre-eryhrocytic-stage antigens circumsporozoite protein (CSP) and Liver stage antigen 1 (LSA-1).
In vitro sporozoite gliding inhibition and hepatocyte invasion inhibition by naturally acquired antibodies were assessed using
Plasmodium falciparum NF54 sporozoites. Associations between antibody responses, functional pre-erythrocytic immunity phenotypes and time to infection detected by
18S quantitative PCR were studied. Results: A total of 51 children were monitored. Anti-CSP antibody titres showed a positive association with sporozoite gliding motility inhibition (P<0.0001, Spearman’s ρ=0.76).
In vitro hepatocyte invasion was inhibited by naturally acquired antibodies (median inhibition, 19.4% [IQR 15.2-40.9%]), and there were positive correlations between invasion inhibition and gliding inhibition (P=0.005, Spearman’s ρ=0.67) and between invasion inhibition and CSP-specific antibodies (P=0.002, Spearman’s ρ=0.76). Survival analysis indicated longer time to infection in individuals displaying higher-than-median sporozoite gliding inhibition activity (P=0.01), although this association became non-significant after adjustment for blood-stage immunity (P = 0.06). Conclusions: In summary, functional antibodies against the pre-erythrocytic stages of malaria infection are acquired in children who are repeatedly exposed to
Plasmodium parasites. This immune response does not prevent them from becoming infected during a malaria transmission season, but might delay the appearance of blood stage parasitaemia. Our approach could not fully separate the effects of pre-erythrocytic-specific and blood-stage-specific antibody-mediated immune responses
in vivo; epidemiological studies powered and designed to address this important question should become a research priority.
Collapse
Affiliation(s)
- Aissata Barry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.,Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marije C Behet
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Issa Nébié
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Kjerstin Lanke
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lynn Grignard
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Alphonse Ouedraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Robert Sauerwein
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Alfred B Tiono
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Bronner P Gonçalves
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
37
|
Barry A, Behet MC, Nébié I, Lanke K, Grignard L, Ouedraogo A, Soulama I, Drakeley C, Sauerwein R, Bolscher JM, Dechering KJ, Bousema T, Tiono AB, Gonçalves BP. Functional antibodies against Plasmodium falciparum sporozoites are associated with a longer time to qPCR-detected infection among schoolchildren in Burkina Faso. Wellcome Open Res 2019; 3:159. [PMID: 30828645 DOI: 10.12688/wellcomeopenres.14932.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2018] [Indexed: 01/29/2023] Open
Abstract
Background: Individuals living in malaria-endemic regions develop immunity against severe malaria, but it is unclear whether immunity against pre-erythrocytic stages that blocks initiation of blood-stage infection after parasite inoculation develops following continuous natural exposure. Methods: We cleared schoolchildren living in an area (health district of Saponé, Burkina Faso) with highly endemic seasonal malaria of possible sub-patent infections and examined them weekly for incident infections by nested PCR. Plasma samples collected at enrolment were used to quantify antibodies to the pre-eryhrocytic-stage antigens circumsporozoite protein (CSP) and Liver stage antigen 1 (LSA-1). In vitro sporozoite gliding inhibition and hepatocyte invasion inhibition by naturally acquired antibodies were assessed using Plasmodium falciparum NF54 sporozoites. Associations between antibody responses, functional pre-erythrocytic immunity phenotypes and time to infection detected by 18S quantitative PCR were studied. Results: A total of 51 children were monitored. Anti-CSP antibody titres showed a positive association with sporozoite gliding motility inhibition (P<0.0001, Spearman's ρ=0.76). In vitro hepatocyte invasion was inhibited by naturally acquired antibodies (median inhibition, 19.4% [IQR 15.2-40.9%]), and there were positive correlations between invasion inhibition and gliding inhibition (P=0.005, Spearman's ρ=0.67) and between invasion inhibition and CSP-specific antibodies (P=0.002, Spearman's ρ=0.76). Survival analysis indicated longer time to infection in individuals displaying higher-than-median sporozoite gliding inhibition activity (P=0.01), although this association became non-significant after adjustment for blood-stage immunity (P = 0.06). Conclusions: In summary, functional antibodies against the pre-erythrocytic stages of malaria infection are acquired in children who are repeatedly exposed to Plasmodium parasites. This immune response does not prevent them from becoming infected during a malaria transmission season, but might delay the appearance of blood stage parasitaemia. Our approach could not fully separate the effects of pre-erythrocytic-specific and blood-stage-specific antibody-mediated immune responses in vivo; epidemiological studies powered and designed to address this important question should become a research priority.
Collapse
Affiliation(s)
- Aissata Barry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.,Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marije C Behet
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Issa Nébié
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Kjerstin Lanke
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lynn Grignard
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Alphonse Ouedraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Robert Sauerwein
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Alfred B Tiono
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Bronner P Gonçalves
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
38
|
Abstract
A single exposure to many viral and bacterial pathogens typically induces life-long immunity, however, the development of the protective immunity to Plasmodium parasites is strikingly less efficient and achieves only partial protection, with adults residing in endemic areas often experiencing asymptomatic infections. Although naturally acquired immunity to malaria requires both cell-mediated and humoral immune responses, antibodies govern the control of malarial disease caused by the blood-stage form of the parasites. A large body of epidemiological evidence described that antibodies to Plasmodium antigens are inefficiently generated and rapidly lost without continued parasite exposure, suggesting that malaria is accompanied by defects in the development of immunological B cell memory. This topic has been of focus of recent studies of malaria infection in humans and mice. This review examines the main findings to date on the processes that modulate the acquisition of memory B cell responses to malaria, and highlights the importance of closing outstanding gaps of knowledge in the field for the rational design of next generation therapeutics against malaria.
Collapse
Affiliation(s)
- Ann Ly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Diana S Hansen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
39
|
Heide J, Vaughan KC, Sette A, Jacobs T, Schulze Zur Wiesch J. Comprehensive Review of Human Plasmodium falciparum-Specific CD8+ T Cell Epitopes. Front Immunol 2019; 10:397. [PMID: 30949162 PMCID: PMC6438266 DOI: 10.3389/fimmu.2019.00397] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Control of malaria is an important global health issue and there is still an urgent need for the development of an effective prophylactic vaccine. Multiple studies have provided strong evidence that Plasmodium falciparum-specific MHC class I-restricted CD8+ T cells are important for sterile protection against Plasmodium falciparum infection. Here, we present an interactive epitope map of all P. falciparum-specific CD8+ T cell epitopes published to date, based on a comprehensive data base (IEDB), and literature search. The majority of the described P. falciparum-specific CD8+ T cells were directed against the antigens CSP, TRAP, AMA1, and LSA1. Notably, most of the epitopes were discovered in vaccine trials conducted with malaria-naïve volunteers. Only few immunological studies of P. falciparum-specific CD8+ T cell epitopes detected in patients suffering from acute malaria or in people living in malaria endemic areas have been published. Further detailed immunological mappings of P. falciparum-specific epitopes of a broader range of P. falciparum proteins in different settings and with different disease status are needed to gain a more comprehensive understanding of the role of CD8+ T cell responses for protection, and to better guide vaccine design and to study their efficacy.
Collapse
Affiliation(s)
- Janna Heide
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Kerrie C Vaughan
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, Division of Infectious Diseases, University of California, San Diego (UCSD), La Jolla, CA, United States
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard-Nocht-Institute of Tropical Medicine, Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
40
|
Wong R, Bhattacharya D. Basics of memory B-cell responses: lessons from and for the real world. Immunology 2019; 156:120-129. [PMID: 30488482 PMCID: PMC6328991 DOI: 10.1111/imm.13019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
The production of pathogen-specific B cells and antibodies underlies protective immunity elicited by most vaccines and many infections. Humoral immunity follows a regulated process by which high-affinity antibody-secreting plasma cells and memory B cells are generated. Yet for certain pathogens, protective immunity is inefficiently generated and/or maintained. For example, Dengue virus infections lead to lasting immunity against re-infection by the same serotype. However, if infected with a different Dengue serotype, the individual is predisposed to more severe disease than if he/she was completely naive. As another example, both natural infections with or vaccination against malaria do not necessarily lead to lasting immunity, as the same individual can be re-infected many times over the course of a lifetime. In this review, we discuss how these real-world problems can both instruct and be informed by recent basic studies using model organisms and antigens. An emphasis is placed on protective epitopes and functional distinctions between memory B-cell subsets in both mice and humans. Using flavivirus and Plasmodium infections as examples, we also speculate on the differences between ineffective B-cell responses that actually occur in the real world, and perfect-world responses that would generate lasting immunity.
Collapse
Affiliation(s)
- Rachel Wong
- Division of Biological and Biomedical SciencesWashington UniversitySt LouisMOUSA
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonAZUSA
| | - Deepta Bhattacharya
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonAZUSA
| |
Collapse
|
41
|
Beeson JG, Kurtovic L, Dobaño C, Opi DH, Chan JA, Feng G, Good MF, Reiling L, Boyle MJ. Challenges and strategies for developing efficacious and long-lasting malaria vaccines. Sci Transl Med 2019; 11:11/474/eaau1458. [DOI: 10.1126/scitranslmed.aau1458] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/05/2018] [Accepted: 11/02/2018] [Indexed: 12/24/2022]
Abstract
Although there has been major recent progress in malaria vaccine development, substantial challenges remain for achieving highly efficacious and durable vaccines against Plasmodium falciparum and Plasmodium vivax malaria. Greater knowledge of mechanisms and key targets of immunity are needed to accomplish this goal, together with new strategies for generating potent, long-lasting, functional immunity against multiple antigens. Implementation considerations in endemic areas will ultimately affect vaccine effectiveness, so innovations to simplify and enhance delivery are also needed. Whereas challenges remain, recent exciting progress and emerging knowledge promise hope for the future of malaria vaccines.
Collapse
|
42
|
Controlled Infection Immunization Using Delayed Death Drug Treatment Elicits Protective Immune Responses to Blood-Stage Malaria Parasites. Infect Immun 2018; 87:IAI.00587-18. [PMID: 30323025 PMCID: PMC6300636 DOI: 10.1128/iai.00587-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/23/2018] [Indexed: 01/27/2023] Open
Abstract
Naturally acquired immunity to malaria is robust and protective against all strains of the same species of Plasmodium. This develops as a result of repeated natural infection, taking several years to develop. Naturally acquired immunity to malaria is robust and protective against all strains of the same species of Plasmodium. This develops as a result of repeated natural infection, taking several years to develop. Evidence suggests that apoptosis of immune lymphocytes due to uncontrolled parasite growth contributes to the slow acquisition of immunity. To hasten and augment the development of natural immunity, we studied controlled infection immunization (CII) using low-dose exposure to different parasite species (Plasmodium chabaudi, P. yoelii, or P. falciparum) in two rodent systems (BALB/c and C57BL/6 mice) and in human volunteers, with drug therapy commencing at the time of initiation of infection. CIIs with infected erythrocytes and in conjunction with doxycycline or azithromycin, which are delayed death drugs targeting the parasite’s apicoplast, allowed extended exposure to parasites at low levels. In turn, this induced strong protection against homologous challenge in all immunized mice. We show that P. chabaudi/P. yoelii infection initiated at the commencement of doxycycline therapy leads to cellular or antibody-mediated protective immune responses in mice, with a broad Th1 cytokine response providing the best correlate of protection against homologous and heterologous species of Plasmodium. P. falciparum CII with doxycycline was additionally tested in a pilot clinical study (n = 4) and was found to be well tolerated and immunogenic, with immunological studies primarily detecting increased cell-associated immune responses. Furthermore, we report that a single dose of the longer-acting drug, azithromycin, given to mice (n = 5) as a single subcutaneous treatment at the initiation of infection controlled P. yoelii infection and protected all mice against subsequent challenge.
Collapse
|
43
|
Tan J, Piccoli L, Lanzavecchia A. The Antibody Response to Plasmodium falciparum: Cues for Vaccine Design and the Discovery of Receptor-Based Antibodies. Annu Rev Immunol 2018; 37:225-246. [PMID: 30566366 DOI: 10.1146/annurev-immunol-042617-053301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasmodium falciparum remains a serious public health problem and a continuous challenge for the immune system due to the complexity and diversity of the pathogen. Recent advances from several laboratories in the characterization of the antibody response to the parasite have led to the identification of critical targets for protection and revealed a new mechanism of diversification based on the insertion of host receptors into immunoglobulin genes, leading to the production of receptor-based antibodies. These advances have opened new possibilities for vaccine design and passive antibody therapies to provide sterilizing immunity and control blood-stage parasites.
Collapse
Affiliation(s)
- Joshua Tan
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland; .,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom.,Current affiliation: National Institute of Allergy and Infectious Diseases, Rockville, Maryland 20852, USA
| | - Luca Piccoli
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland;
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland; .,VIR Biotechnology, San Francisco, California 94158, USA
| |
Collapse
|
44
|
Silveira ELV, Dominguez MR, Soares IS. To B or Not to B: Understanding B Cell Responses in the Development of Malaria Infection. Front Immunol 2018; 9:2961. [PMID: 30619319 PMCID: PMC6302011 DOI: 10.3389/fimmu.2018.02961] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
Malaria is a widespread disease caused mainly by the Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) protozoan parasites. Depending on the parasite responsible for the infection, high morbidity and mortality can be triggered. To escape the host immune responses, Plasmodium parasites disturb the functionality of B cell subsets among other cell types. However, some antibodies elicited during a malaria infection have the potential to block pathogen invasion and dissemination into the host. Thus, the question remains, why is protection not developed and maintained after the primary parasite exposure? In this review, we discuss different aspects of B cell responses against Plasmodium antigens during malaria infection. Since most studies have focused on the quantification of serum antibody titers, those B cell responses have not been fully characterized. However, to secrete antibodies, a complex cellular response is set up, including not only the activation and differentiation of B cells into antibody-secreting cells, but also the participation of other cell subsets in the germinal center reactions. Therefore, a better understanding of how B cell subsets are stimulated during malaria infection will provide essential insights toward the design of potent interventions.
Collapse
Affiliation(s)
- Eduardo L V Silveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mariana R Dominguez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Irene S Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
45
|
Dantzler KW, Jagannathan P. γδ T Cells in Antimalarial Immunity: New Insights Into Their Diverse Functions in Protection and Tolerance. Front Immunol 2018; 9:2445. [PMID: 30405634 PMCID: PMC6206268 DOI: 10.3389/fimmu.2018.02445] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
Uniquely expressing diverse innate-like and adaptive-like functions, γδ T cells exist as specialized subsets, but are also able to adapt in response to environmental cues. These cells have long been known to rapidly proliferate following primary malaria infection in humans and mice, but exciting new work is shedding light into their diverse functions in protection and following repeated malaria infection. In this review, we examine the current knowledge of functional specialization of γδ T cells in malaria, and the mechanisms dictating recognition of malaria parasites and resulting proliferation. We discuss γδ T cell plasticity, including changing interactions with other immune cells during recurrent infection and potential for immunological memory in response to repeated stimulation. Building on recent insights from human and murine experimental studies and vaccine trials, we propose areas for future research, as well as applications for therapeutic development.
Collapse
|
46
|
Cockburn IA, Seder RA. Malaria prevention: from immunological concepts to effective vaccines and protective antibodies. Nat Immunol 2018; 19:1199-1211. [PMID: 30333613 DOI: 10.1038/s41590-018-0228-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/31/2018] [Indexed: 02/08/2023]
Abstract
Development of a malaria vaccine remains a critical priority to decrease clinical disease and mortality and facilitate eradication. Accordingly, RTS,S, a protein-subunit vaccine, has completed phase III clinical trials and confers ~30% protection against clinical infection over 4 years. Whole-attenuated-sporozoite and viral-subunit vaccines induce between 20% and 100% protection against controlled human malaria infection, but there is limited published evidence to date for durable, high-level efficacy (>50%) against natural exposure. Importantly, fundamental scientific advances related to the potency, durability, breadth and location of immune responses will be required for improving vaccine efficacy with these and other vaccine approaches. In this Review, we focus on the current understanding of immunological mechanisms of protection from animal models and human vaccine studies, and on how these data should inform the development of next-generation vaccines. Furthermore, we introduce the concept of using passive immunization with monoclonal antibodies as a new approach to prevent and eliminate malaria.
Collapse
Affiliation(s)
- Ian A Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
47
|
Bowyer G, Grobbelaar A, Rampling T, Venkatraman N, Morelle D, Ballou RW, Hill AVS, Ewer KJ. CXCR3 + T Follicular Helper Cells Induced by Co-Administration of RTS,S/AS01B and Viral-Vectored Vaccines Are Associated With Reduced Immunogenicity and Efficacy Against Malaria. Front Immunol 2018; 9:1660. [PMID: 30090099 PMCID: PMC6068239 DOI: 10.3389/fimmu.2018.01660] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/04/2018] [Indexed: 12/11/2022] Open
Abstract
A malaria vaccine strategy targeting multiple lifecycle stages may be required to achieve a high level of efficacy. In two Phase IIa clinical trials, we tested immunogenicity and efficacy of RTS,S/AS01B administered alone, in a staggered regimen with viral-vectored vaccines or co-administered with viral-vectored vaccines. RTS,S/AS01B induces high titers of antibody against sporozoites and viral-vectored vaccines ChAd63 ME-TRAP and MVA ME-TRAP induce potent T cell responses against infected hepatocytes. By combining these two strategies, we aimed to improve efficacy by inducing immune responses targeting multiple parasite antigens. Vaccination with RTS,S/AS01B alone or in a staggered regimen with viral vectors produced strong immune responses and demonstrated high levels of protection against controlled human malaria infection. However, concomitant administration of these vaccines significantly reduced humoral immunogenicity and protective efficacy. Strong Th1-biased cytokine responses induced by MVA ME-TRAP were associated with a skew in circulating T follicular helper cells toward a CXCR3+ phenotype and a reduction in antibody quantity and quality. This study illustrates that while a multistage-targeting vaccine strategy could provide high-level efficacy, the regimen design will require careful optimization.
Collapse
Affiliation(s)
- Georgina Bowyer
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Amy Grobbelaar
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Tommy Rampling
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Katie J Ewer
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
48
|
Wardemann H, Murugan R. From human antibody structure and function towards the design of a novel Plasmodium falciparum circumsporozoite protein malaria vaccine. Curr Opin Immunol 2018; 53:119-123. [PMID: 29751213 DOI: 10.1016/j.coi.2018.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 11/19/2022]
Abstract
Malaria is a life-threatening vector-borne disease caused by Plasmodium parasites that infect millions of people in endemic areas every year. The most advanced malaria vaccine candidate RTS,S targets the immune response against circumsporozoite protein of Plasmodium falciparum (PfCSP), the most deadly Plasmodium species in humans. PfCSP plays a fundamental role in parasite development as well as the establishment of the infection and is a molecular target of protective antibodies. However, RTS,S shows overall low efficacy and insufficient long-term protection. Therefore, a major goal in the development of an improved PfCSP-based vaccine remains the reliable and stable induction of protective and ideally sterilizing antibody titers. The molecular and functional characterization of human anti-PfCSP antibody responses paves the way for the rational design of novel immunogens for the development of an improved next-generation PfCSP malaria vaccine.
Collapse
Affiliation(s)
- Hedda Wardemann
- German Cancer Research Center, Im Neuenheimer Feld 280, 69121 Heidelberg, Germany.
| | - Rajagopal Murugan
- German Cancer Research Center, Im Neuenheimer Feld 280, 69121 Heidelberg, Germany
| |
Collapse
|
49
|
Sebina I, Pepper M. Humoral immune responses to infection: common mechanisms and unique strategies to combat pathogen immune evasion tactics. Curr Opin Immunol 2018; 51:46-54. [PMID: 29477969 DOI: 10.1016/j.coi.2018.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 01/08/2023]
Abstract
Humoral immune responses are crucial for protection against invading pathogens and are the underlying mechanism of protection for most successful vaccines. Our understanding of how humoral immunity develops is largely based on animal models utilizing experimental immunization systems. While these studies have made enormous progress for the field and have defined many of the fundamental principles of B cell differentiation and function, we are only now beginning to appreciate the complexities of humoral immune responses induced by infection. Co-evolution of the adaptive immune system and the pathogenic world has created a diverse array of B cell responses to infections, with both shared and unique strategies. In this review, we consider the common mechanisms that regulate the development of humoral immune responses during infection and highlight recent findings demonstrating the evolution of unique strategies used by either host or pathogen for survival.
Collapse
Affiliation(s)
- Ismail Sebina
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
50
|
Murugan R, Buchauer L, Triller G, Kreschel C, Costa G, Pidelaserra Martí G, Imkeller K, Busse CE, Chakravarty S, Sim BKL, Hoffman SL, Levashina EA, Kremsner PG, Mordmüller B, Höfer T, Wardemann H. Clonal selection drives protective memory B cell responses in controlled human malaria infection. Sci Immunol 2018; 3:3/20/eaap8029. [DOI: 10.1126/sciimmunol.aap8029] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/30/2017] [Indexed: 01/20/2023]
|