1
|
Wu CS, Liu FC, Lin SC, Chyuan IT. Regulation of T cell receptor (TCR) signaling by tyrosine phosphatases: Recent advances and implication for therapeutic approach in autoimmune diseases. J Formos Med Assoc 2025:S0929-6646(25)00192-5. [PMID: 40287371 DOI: 10.1016/j.jfma.2025.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
The effector function of T cells is critical for regulation of the initiation and progression of autoimmune diseases; whereas the T cell activation and homeostasis are tightly controlled by signals from T cell receptor (TCR). The early TCR signaling pathways are dependent on rapid phosphorylation and dephosphorylation of multiple signaling proteins in the TCR complex. These processes are tightly regulated by the interplay between protein kinases and phosphatases, leading to T cell activation. Genetic polymorphisms of these kinases or phosphatases have been linked to an increased susceptibility to autoimmune disorders in humans. Mice with deficiencies in these corresponding genes often exhibit T cell hyper-reactivity and autoimmune phenotypes in animal models. Tyrosine phosphatases have been demonstrated to alter T cell fate by negatively regulating early TCR signaling. Therefore, the tyrosine phosphatases that regulate TCR signaling are emerging as potential therapeutic targets to modulate T cell responses for the treatment of autoimmune diseases. In this review, we provide an overview of the current progress and perspectives of tyrosine phosphatases that regulate TCR signaling in T cell activation, and their potential as therapeutic targets for autoimmune diseases.
Collapse
Affiliation(s)
- Chien-Sheng Wu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, 22000, Taiwan
| | - Feng-Cheng Liu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Shih-Chang Lin
- Department of Internal Medicine, Cathay General Hospital, Taipei, 10630, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, 242062, Taiwan
| | - I-Tsu Chyuan
- Department of Internal Medicine, Cathay General Hospital, Taipei, 10630, Taiwan; School of Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Medical Research, Cathay General Hospital, Taipei, 10630, Taiwan.
| |
Collapse
|
2
|
Ben Saad E, Oroya A, Anto NP, Bachais M, Rudd CE. PD-1 endocytosis unleashes the cytolytic potential of checkpoint blockade in tumor immunity. Cell Rep 2024; 43:114907. [PMID: 39471174 DOI: 10.1016/j.celrep.2024.114907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 09/12/2024] [Accepted: 10/08/2024] [Indexed: 11/01/2024] Open
Abstract
PD-1 immune checkpoint blockade (ICB) is a key cancer treatment. While blocking PD-1 binding to ligand is known, the role of internalization in enhancing ICB efficacy is less explored. Our study reveals that PD-1 internalization helps unlock ICB's full potential in cancer immunotherapy. Anti-PD-1 induces 50%-60% surface PD-1 internalization from human and mouse cells, leaving low to intermediate levels of resistant receptors. Complexes then appear in early and late endosomes. Both CD4 and CD8 T cells, especially CD8+ effectors, are affected. Nivolumab outperforms pembrolizumab in human T cells, while PD-1 internalization requires crosslinking by bivalent antibody. While mono- and bivalent anti-PD-1 inhibit tumor growth with CD8 tumor-infiltrating cells expressing increased granzyme B, bivalent antibody is more effective where the combination of steric blockade and endocytosis induces greater CD8+ T cell tumor infiltration and the expression of the cytolytic pore protein, perforin. Our findings highlight an ICB mechanism that combines steric blockade and PD-1 endocytosis for optimal checkpoint immunotherapy.
Collapse
Affiliation(s)
- Elham Ben Saad
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Biochemistry and Molecular Medicine, Universite de Montréal, Montréal, QC H3T 1J4, Canada
| | - Andres Oroya
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada
| | - Nikhil Ponnoor Anto
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada
| | - Meriem Bachais
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada
| | - Christopher E Rudd
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Biochemistry and Molecular Medicine, Universite de Montréal, Montréal, QC H3T 1J4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada.
| |
Collapse
|
3
|
Zhao Y, Jiang L. Targeting SHP1 and SHP2 to suppress tumors and enhance immunosurveillance. Trends Cell Biol 2024:S0962-8924(24)00214-9. [PMID: 39578115 DOI: 10.1016/j.tcb.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024]
Abstract
The nonreceptor tyrosine phosphatases (PTPS) SHP1 and SHP2 have crucial roles in dephosphorylating an array of substrates involved in pathways comprising receptor tyrosine kinases (RTKs) and immune receptors. This regulation maintains a delicate balance between the activation and inhibition of signal transduction, ensuring appropriate biological outcomes. In this review, we summarize research focused on elucidating the functions of SHP1 and SHP2 in hematopoiesis, immune regulation, and tumor biology, emphasizing recent findings related to cancer-driven immune evasion. Furthermore, we highlight the significant effects of SHP1 and SHP2 inhibitors in enhancing cancer treatment, specifically through the facilitation of chemotherapy and augmentation of immune activation.
Collapse
Affiliation(s)
- Yijun Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Linjia Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
4
|
Zhang L, Ma W, Chen Y, Chen Z, Wang F, Xu Y. Design, synthesis, and biological evaluation of Pyrido[1,2-a]pyrimidin-4-one derivatives as novel allosteric SHP2 inhibitors. Bioorg Chem 2024; 151:107661. [PMID: 39067422 DOI: 10.1016/j.bioorg.2024.107661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
SHP2 (Src homology-2-containing protein tyrosine phosphatase 2) plays an important role in cell proliferation, survival, migration by affecting RAS-ERK, PI3K-AKT, JAK-STAT signaling pathways and so on. Overexpression or gene mutation of SHP2 is closely linked with a variety of cancers, making it a potential therapeutic target for cancer disease. In this paper, 30 target compounds bearing pyrido[1,2-a]pyrimidin-4-one core were synthesized via two-round design strategy by means of scaffold hopping protocol. It was evaluated the in vitro enzymatic inhibition and cell antiproliferation assay of these targets. 13a, designed in the first round, presented relatively good inhibitory activity, but its molecular rigidity might limit further improvement by hindering the formation of the desired "bidentate ligand", as revealed by molecular docking studies. In our second-round design, S atom as a linker was inserted into the core and the 7-aryl group to enhance the flexibility of the structure. The screening result revealed that 14i could exhibit high enzymatic activity against full-length SHP2 (IC50 = 0.104 μM), while showing low inhibitory effect on SHP2-PTP (IC50 > 50 μM). 14i also demonstrated high antiproliferative activity against the Kyse-520 cells (IC50 = 1.06 μM) with low toxicity against the human brain microvascular endothelial cells HBMEC (IC50 = 30.75 μM). 14i also displayed stronger inhibitory activities on NCI-H358 and MIA-PaCa2 cells compared to that of SHP099. Mechanistic studies revealed that 14i could induce cell apoptosis, arrest the cell cycle at the G0/G1 phase and downregulate the phosphorylation levels of Akt and Erk1/2 in Kyse-520 cells. Molecular docking and molecular dynamics studies displayed more detailed information on the binding mode and binding mechanism of 14i and SHP2. These data suggest that 14i has the potential to be a promising lead compound for our further investigation of SHP2 inhibitors.
Collapse
Affiliation(s)
- Le Zhang
- School of Pharmaceutical Engineering, and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Wenchao Ma
- School of Pharmaceutical Engineering, and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yu Chen
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhijia Chen
- School of Pharmaceutical Engineering, and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Fang Wang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Youjun Xu
- School of Pharmaceutical Engineering, and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
5
|
Anastasiou P, Moore C, Rana S, Tomaschko M, Pillsbury CE, de Castro A, Boumelha J, Mugarza E, de Carné Trécesson S, Mikolajczak A, Blaj C, Goldstone R, Smith JAM, Quintana E, Molina-Arcas M, Downward J. Combining RAS(ON) G12C-selective inhibitor with SHP2 inhibition sensitises lung tumours to immune checkpoint blockade. Nat Commun 2024; 15:8146. [PMID: 39322643 PMCID: PMC11424635 DOI: 10.1038/s41467-024-52324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
Mutant selective drugs targeting the inactive, GDP-bound form of KRASG12C have been approved for use in lung cancer, but resistance develops rapidly. Here we use an inhibitor, (RMC-4998) that targets RASG12C in its active, GTP-bound form, to treat KRAS mutant lung cancer in various immune competent mouse models. RAS pathway reactivation after RMC-4998 treatment could be delayed using combined treatment with a SHP2 inhibitor, which not only impacts tumour cell RAS signalling but also remodels the tumour microenvironment to be less immunosuppressive. In an immune inflamed model, RAS and SHP2 inhibitors in combination drive durable responses by suppressing tumour relapse and inducing development of immune memory. In an immune excluded model, combined RAS and SHP2 inhibition sensitises tumours to immune checkpoint blockade, leading to efficient tumour immune rejection. These preclinical results demonstrate the potential of the combination of RAS(ON) G12C-selective inhibitors with SHP2 inhibitors to sensitize tumours to immune checkpoint blockade.
Collapse
Affiliation(s)
| | | | - Sareena Rana
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Mona Tomaschko
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | | | - Andrea de Castro
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Jesse Boumelha
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Edurne Mugarza
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | | | - Ania Mikolajczak
- Experimental Histopathology, Francis Crick Institute, London, UK
| | | | - Robert Goldstone
- Bioinformatics & Biostatistics Science Technology Platform, Francis Crick Institute, London, UK
| | | | | | | | - Julian Downward
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
6
|
Wang Z, Zhang J, Zuo C, Chen H, Wang L, Xie Y, Ma H, Min S, Wang X, Lian C. Identification and validation of tryptophan-related gene signatures to predict prognosis and immunotherapy response in lung adenocarcinoma reveals a critical role for PTTG1. Front Immunol 2024; 15:1386427. [PMID: 39144144 PMCID: PMC11321965 DOI: 10.3389/fimmu.2024.1386427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Tryptophan metabolism is strongly associated with immunosuppression and may influence lung adenocarcinoma prognosis as well as tumor microenvironment alterations. Methods Sequencing datasets were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Two different clusters were identified by consensus clustering, and prognostic models were established based on differentially expressed genes (DEGs) in the two clusters. We investigated differences in mutational landscapes, enrichment pathways, immune cell infiltration, and immunotherapy between high- and low-risk scoring groups. Single-cell sequencing data from Bischoff et al. were used to identify and quantify tryptophan metabolism, and model genes were comprehensively analyzed. Finally, PTTG1 was analyzed at the pan-cancer level by the pan-TCGA cohort. Results Risk score was defined as an independent prognostic factor for lung adenocarcinoma and was effective in predicting immunotherapy response in patients with lung adenocarcinoma. PTTG1 is one of the key genes, and knockdown of PTTG1 in vitro decreases lung adenocarcinoma cell proliferation and migration and promotes apoptosis and down-regulation of tryptophan metabolism regulators in lung adenocarcinoma cells. Discussion Our study revealed the pattern and molecular features of tryptophan metabolism in lung adenocarcinoma patients, established a model of tryptophan metabolism-associated lung adenocarcinoma prognosis, and explored the roles of PTTG1 in lung adenocarcinoma progression, EMT process, and tryptophan metabolism.
Collapse
Affiliation(s)
- Ziqiang Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Chao Zuo
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Huili Chen
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Luyao Wang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Yiluo Xie
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Hongyu Ma
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Shengping Min
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Chaoqun Lian
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| |
Collapse
|
7
|
Arifin MZ, Leitner J, Egan D, Waidhofer-Söllner P, Kolch W, Zhernovkov V, Steinberger P. BTLA and PD-1 signals attenuate TCR-mediated transcriptomic changes. iScience 2024; 27:110253. [PMID: 39021788 PMCID: PMC11253514 DOI: 10.1016/j.isci.2024.110253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/29/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
T cell co-inhibitory immune checkpoints, such as PD-1 or BTLA, are bona fide targets in cancer therapy. We used a human T cell reporter line to measure transcriptomic changes mediated by PD-1- and BTLA-induced signaling. T cell receptor (TCR)-complex stimulation resulted in the upregulation of a large number of genes but also in repression of a similar number of genes. PD-1 and BTLA signals attenuated transcriptomic changes mediated by TCR-complex signaling: upregulated genes tended to be suppressed and the expression of a significant number of downregulated genes was higher during PD-1 or BTLA signaling. BTLA was a significantly stronger attenuator of TCR-complex-induced transcriptome changes than PD-1. A strong overlap between genes that were regulated indicated quantitative rather than qualitative differences between these receptors. In line with their function as attenuators of TCR-complex-mediated changes, we found strongly regulated genes to be prime targets of PD-1 and BTLA signaling.
Collapse
Affiliation(s)
- Muhammad Zainul Arifin
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Judith Leitner
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Donagh Egan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Petra Waidhofer-Söllner
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Vadim Zhernovkov
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Peter Steinberger
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Chmiest D, Podavini S, Ioannidou K, Vallois D, Décaillet C, Gonzalez M, Quadroni M, Blackney K, Schairer R, de Leval L, Thome M. PD1 inhibits PKCθ-dependent phosphorylation of cytoskeleton-related proteins and immune synapse formation. Blood Adv 2024; 8:2908-2923. [PMID: 38513140 PMCID: PMC11176957 DOI: 10.1182/bloodadvances.2023011901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT The inhibitory surface receptor programmed cell death protein 1 (PD1) is a major target for antibody-based cancer immunotherapies. Nevertheless, a substantial number of patients fail to respond to the treatment or experience adverse effects. An improved understanding of intracellular pathways targeted by PD1 is thus needed to develop better predictive and prognostic biomarkers. Here, via unbiased phosphoproteome analysis of primary human T cells, we demonstrate that PD1 triggering inhibited the phosphorylation and physical association with protein kinase Cθ (PKCθ) of a variety of cytoskeleton-related proteins. PD1 blocked activation and recruitment of PKCθ to the forming immune synapse (IS) in a Src homology-2 domain-containing phosphatase-1/2 (SHP1/SHP2)-dependent manner. Consequently, PD1 engagement led to impaired synaptic phosphorylation of cytoskeleton-related proteins and formation of smaller IS. T-cell receptor induced phosphorylation of the PKCθ substrate and binding partner vimentin was long-lasting and it could be durably inhibited by PD1 triggering. Vimentin phosphorylation in intratumoral T cells also inversely correlated with the levels of the PD1 ligand, PDL1, in human lung carcinoma. Thus, PKCθ and its substrate vimentin represent important targets of PD1-mediated T-cell inhibition, and low levels of vimentin phosphorylation may serve as a biomarker for the activation of the PD1 pathway.
Collapse
Affiliation(s)
- Daniela Chmiest
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Silvia Podavini
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Kalliopi Ioannidou
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - David Vallois
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Chantal Décaillet
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | | | - Manfredo Quadroni
- Protein Analysis Facility, University of Lausanne, Lausanne, Switzerland
| | - Kevin Blackney
- Flow Cytometry Facility, Department of Formation and Research, University of Lausanne, Epalinges, Switzerland
| | - Rebekka Schairer
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Laurence de Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Margot Thome
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
9
|
Yang DJ, Chen KL, Lv ZY, Zhou B, Zhou ZG, Li Y. PD-L1 blockade in mitigating severe acute pancreatitis induced pancreatic damage through modulation of immune cell apoptosis. Int Immunopharmacol 2024; 133:112081. [PMID: 38652963 DOI: 10.1016/j.intimp.2024.112081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Acute pancreatitis (AP) is a prevalent gastrointestinal disorder. The immune response plays a crucial role in AP progression. However, the impact of immune regulatory checkpoint PD-L1 on severe acute pancreatitis (SAP) remains uncertain. Hence, this study aimed to examine the influence of PD-L1 on SAP. We assessed PD-L1 expression in neutrophils and monocytes obtained from SAP patients. We induced SAP in C57BL/6J mice, PD-L1 gene-deficient mice, and PD-L1 humanized mice using intraperitoneal injections of cerulein plus lipopolysaccharide. Prior to the initial cerulein injection, a PD-L1 inhibitor was administered. Pancreatic tissues were collected for morphological and immunohistochemical evaluation, and serum levels of amylase, lipase, and cytokines were measured. Flow cytometry analysis was performed using peripheral blood cells. The expression of PD-L1 in neutrophils and monocytes was significantly higher in SAP patients compared to healthy individuals. Likewise, the expression of PD-L1 in inflammatory cells in the peripheral blood of SAP-induced C57BL/6J mice was notably higher than in the control group. In mice with PD-L1 deficiency, SAP model exhibited lower pancreatic pathology scores, amylase, lipase, and cytokine levels compared to wild-type mice. PD-L1 deletion resulted in reduced neutrophil apoptosis, leading to an earlier peak in neutrophil apoptosis. Furthermore, it decreased early monocyte apoptosis and diminished the peak of T lymphocyte apoptosis. Within the SAP model, administration of a PD-L1 inhibitor reduced pancreatic pathology scores, amylase, lipase, and cytokine levels in both C57BL/6J mice and PD-L1 humanized mice. These findings suggest that inhibiting PD-L1 expression can alleviate the severity of SAP.
Collapse
Affiliation(s)
- Du-Jiang Yang
- Institute of Digestive Surgery, West China Hospital, Sichuan University, No. 1 Ke-yuan-si-lu, Chengdu 610093, Sichuan Province, China; Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Ke-Ling Chen
- Institute of Digestive Surgery, West China Hospital, Sichuan University, No. 1 Ke-yuan-si-lu, Chengdu 610093, Sichuan Province, China
| | - Zhao-Ying Lv
- Institute of Digestive Surgery, West China Hospital, Sichuan University, No. 1 Ke-yuan-si-lu, Chengdu 610093, Sichuan Province, China
| | - Bin Zhou
- Institute of Digestive Surgery, West China Hospital, Sichuan University, No. 1 Ke-yuan-si-lu, Chengdu 610093, Sichuan Province, China
| | - Zong-Guang Zhou
- Institute of Digestive Surgery, West China Hospital, Sichuan University, No. 1 Ke-yuan-si-lu, Chengdu 610093, Sichuan Province, China
| | - Yuan Li
- Institute of Digestive Surgery, West China Hospital, Sichuan University, No. 1 Ke-yuan-si-lu, Chengdu 610093, Sichuan Province, China.
| |
Collapse
|
10
|
Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, Yi M, Xiang B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer 2024; 23:108. [PMID: 38762484 PMCID: PMC11102195 DOI: 10.1186/s12943-024-02023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Immune evasion contributes to cancer growth and progression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. The programmed death protein 1 (PD-1) and programmed cell death ligands (PD-Ls) are considered to be the major immune checkpoint molecules. The interaction of PD-1 and PD-L1 negatively regulates adaptive immune response mainly by inhibiting the activity of effector T cells while enhancing the function of immunosuppressive regulatory T cells (Tregs), largely contributing to the maintenance of immune homeostasis that prevents dysregulated immunity and harmful immune responses. However, cancer cells exploit the PD-1/PD-L1 axis to cause immune escape in cancer development and progression. Blockade of PD-1/PD-L1 by neutralizing antibodies restores T cells activity and enhances anti-tumor immunity, achieving remarkable success in cancer therapy. Therefore, the regulatory mechanisms of PD-1/PD-L1 in cancers have attracted an increasing attention. This article aims to provide a comprehensive review of the roles of the PD-1/PD-L1 signaling in human autoimmune diseases and cancers. We summarize all aspects of regulatory mechanisms underlying the expression and activity of PD-1 and PD-L1 in cancers, including genetic, epigenetic, post-transcriptional and post-translational regulatory mechanisms. In addition, we further summarize the progress in clinical research on the antitumor effects of targeting PD-1/PD-L1 antibodies alone and in combination with other therapeutic approaches, providing new strategies for finding new tumor markers and developing combined therapeutic approaches.
Collapse
Affiliation(s)
- Xin Lin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Kuan Kang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Mei Yi
- Department of Dermotology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China.
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
11
|
Tang K, Wang J, Zhong H, Wang Q, Li Z, Wu C, An R, Lin Y, Tan H, Chen L, Wang M, Chen M. Impact of PD-L1 Gene Polymorphisms and Interactions with Cooking with Solid Fuel Exposure on Tuberculosis. Public Health Genomics 2024; 27:74-82. [PMID: 38735285 DOI: 10.1159/000538904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/25/2024] [Indexed: 05/14/2024] Open
Abstract
INTRODUCTION Given that PD-L1 is a crucial immune checkpoint in regulating T-cell responses, the aim of this study was to explore the impact of PD-L1 gene polymorphisms and the interaction with cooking with solid fuel on susceptibility to tuberculosis (TB) in Chinese Han populations. METHODS A total of 503 TB patients and 494 healthy controls were enrolled in this case-control study. Mass spectrometry technology was applied to genotype rs2297136 and rs4143815 of PD-L1 genes. The associations between single nucleotide polymorphism (SNPs) and TB were assessed using unconditional logistic regression analysis. Marginal structural linear odds models were used to estimate the gene-environment interactions. RESULTS Compared with genotype CC, genotypes GG and CG+GG at rs4143815 locus were significantly associated with susceptibility to TB (OR: 3.074 and 1.506, respectively, p < 0.05). However, no statistical association was found between rs2297136 SNP and TB risk. Moreover, the relative excess risk of interaction between rs4143815 of the PD-L1 gene and cooking with solid fuel was 2.365 (95% CI: 1.922-2.809), suggesting positive interactions with TB susceptibility. CONCLUSION The rs4143815 polymorphism of the PD-L1 gene was associated with susceptibility to TB in Chinese Han populations. There were significantly positive interactions between rs4143815 and cooking with solid fuel.
Collapse
Affiliation(s)
- Kun Tang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
- Discipline Construction Office, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Wang
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Hua Zhong
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiaozhi Wang
- Hunan Institute of Tuberculosis Prevention and Treatment, Changsha, China
| | - Zihao Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Chunli Wu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Rongjing An
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Ying Lin
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Hongzhuan Tan
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lizhang Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Mian Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Mengshi Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
12
|
Knutson KL. Regulation of Tumor Dendritic Cells by Programmed Cell Death 1 Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1397-1405. [PMID: 38621195 PMCID: PMC11027937 DOI: 10.4049/jimmunol.2300674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/18/2024] [Indexed: 04/17/2024]
Abstract
The advent of immune checkpoint blockade therapy has revolutionized cancer treatments and is partly responsible for the significant decline in cancer-related mortality observed during the last decade. Immune checkpoint inhibitors, such as anti-programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1), have demonstrated remarkable clinical successes in a subset of cancer patients. However, a considerable proportion of patients remain refractory to immune checkpoint blockade, prompting the exploration of mechanisms of treatment resistance. Whereas much emphasis has been placed on the role of PD-L1 and PD-1 in regulating the activity of tumor-infiltrating T cells, recent studies have now shown that this immunoregulatory axis also directly regulates myeloid cell activity in the tumor microenvironment including tumor-infiltrating dendritic cells. In this review, I discuss the most recent advances in the understanding of how PD-1, PD-L1, and programmed cell death ligand 2 regulate the function of tumor-infiltrating dendritic cells, emphasizing the need for further mechanistic studies that could facilitate the development of novel combination immunotherapies for improved cancer patient benefit.
Collapse
|
13
|
Chyuan IT, Liao HJ, Tan TH, Chuang HC, Chu YC, Pan MH, Wu CS, Chu CL, Sheu BC, Hsu PN. Association of TRAIL receptor with phosphatase SHP-1 enables repressing T cell receptor signaling and T cell activation through inactivating Lck. J Biomed Sci 2024; 31:33. [PMID: 38532423 DOI: 10.1186/s12929-024-01023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND T cell receptor (TCR) signaling and T cell activation are tightly regulated by gatekeepers to maintain immune tolerance and avoid autoimmunity. The TRAIL receptor (TRAIL-R) is a TNF-family death receptor that transduces apoptotic signals to induce cell death. Recent studies have indicated that TRAIL-R regulates T cell-mediated immune responses by directly inhibiting T cell activation without inducing apoptosis; however, the distinct signaling pathway that regulates T cell activation remains unclear. In this study, we screened for intracellular TRAIL-R-binding proteins within T cells to explore the novel signaling pathway transduced by TRAIL-R that directly inhibits T cell activation. METHODS Whole-transcriptome RNA sequencing was used to identify gene expression signatures associated with TRAIL-R signaling during T cell activation. High-throughput screening with mass spectrometry was used to identify the novel TRAIL-R binding proteins within T cells. Co-immunoprecipitation, lipid raft isolation, and confocal microscopic analyses were conducted to verify the association between TRAIL-R and the identified binding proteins within T cells. RESULTS TRAIL engagement downregulated gene signatures in TCR signaling pathways and profoundly suppressed phosphorylation of TCR proximal tyrosine kinases without inducing cell death. The tyrosine phosphatase SHP-1 was identified as the major TRAIL-R binding protein within T cells, using high throughput mass spectrometry-based proteomics analysis. Furthermore, Lck was co-immunoprecipitated with the TRAIL-R/SHP-1 complex in the activated T cells. TRAIL engagement profoundly inhibited phosphorylation of Lck (Y394) and suppressed the recruitment of Lck into lipid rafts in the activated T cells, leading to the interruption of proximal TCR signaling and subsequent T cell activation. CONCLUSIONS TRAIL-R associates with phosphatase SHP-1 and transduces a unique and distinct immune gatekeeper signal to repress TCR signaling and T cell activation via inactivating Lck. Thus, our results define TRAIL-R as a new class of immune checkpoint receptors for restraining T cell activation, and TRAIL-R/SHP-1 axis can serve as a potential therapeutic target for immune-mediated diseases.
Collapse
Affiliation(s)
- I-Tsu Chyuan
- School of Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Medical Research, Cathay General Hospital, Taipei, 10630, Taiwan
- Department of Internal Medicine, Cathay General Hospital, Taipei, 10630, Taiwan
| | - Hsiu-Jung Liao
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taipei, 22000, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, 35053, Taiwan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Yu-Chuan Chu
- Department of Medical Research, Cathay General Hospital, Taipei, 10630, Taiwan
| | - Meng-Hsun Pan
- Department of Medical Research, Cathay General Hospital, Taipei, 10630, Taiwan
| | - Chien-Sheng Wu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taipei, 22000, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Bor-Ching Sheu
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, 10002, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Ping-Ning Hsu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Department of Internal Medicine and Graduate Institute of Immunology, College of Medicine, National Taiwan University, 1 Jen-Ai Rd., Sec. 1, Taipei, 10051, Taiwan.
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 10002, Taiwan.
| |
Collapse
|
14
|
Chen X, Keller SJ, Hafner P, Alrawashdeh AY, Avery TY, Norona J, Zhou J, Ruess DA. Tyrosine phosphatase PTPN11/SHP2 in solid tumors - bull's eye for targeted therapy? Front Immunol 2024; 15:1340726. [PMID: 38504984 PMCID: PMC10948527 DOI: 10.3389/fimmu.2024.1340726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Encoded by PTPN11, the Src-homology 2 domain-containing phosphatase 2 (SHP2) integrates signals from various membrane-bound receptors such as receptor tyrosine kinases (RTKs), cytokine and integrin receptors and thereby promotes cell survival and proliferation. Activating mutations in the PTPN11 gene may trigger signaling pathways leading to the development of hematological malignancies, but are rarely found in solid tumors. Yet, aberrant SHP2 expression or activation has implications in the development, progression and metastasis of many solid tumor entities. SHP2 is involved in multiple signaling cascades, including the RAS-RAF-MEK-ERK-, PI3K-AKT-, JAK-STAT- and PD-L1/PD-1- pathways. Although not mutated, activation or functional requirement of SHP2 appears to play a relevant and context-dependent dichotomous role. This mostly tumor-promoting and infrequently tumor-suppressive role exists in many cancers such as gastrointestinal tumors, pancreatic, liver and lung cancer, gynecological entities, head and neck cancers, prostate cancer, glioblastoma and melanoma. Recent studies have identified SHP2 as a potential biomarker for the prognosis of some solid tumors. Based on promising preclinical work and the advent of orally available allosteric SHP2-inhibitors early clinical trials are currently investigating SHP2-directed approaches in various solid tumors, either as a single agent or in combination regimes. We here provide a brief overview of the molecular functions of SHP2 and collate current knowledge with regard to the significance of SHP2 expression and function in different solid tumor entities, including cells in their microenvironment, immune escape and therapy resistance. In the context of the present landscape of clinical trials with allosteric SHP2-inhibitors we discuss the multitude of opportunities but also limitations of a strategy targeting this non-receptor protein tyrosine phosphatase for treatment of solid tumors.
Collapse
Affiliation(s)
- Xun Chen
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Steffen Johannes Keller
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Philipp Hafner
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Asma Y. Alrawashdeh
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Thomas Yul Avery
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Johana Norona
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Dietrich Alexander Ruess
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Sahu P, Mitra A, Ganguly A. Targeting KRAS and SHP2 signaling pathways for immunomodulation and improving treatment outcomes in solid tumors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:167-222. [PMID: 38782499 DOI: 10.1016/bs.ircmb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Historically, KRAS has been considered 'undruggable' inspite of being one of the most frequently altered oncogenic proteins in solid tumors, primarily due to the paucity of pharmacologically 'druggable' pockets within the mutant isoforms. However, pioneering developments in drug design capable of targeting the mutant KRAS isoforms especially KRASG12C-mutant cancers, have opened the doors for emergence of combination therapies comprising of a plethora of inhibitors targeting different signaling pathways. SHP2 signaling pathway, primarily known for activation of intracellular signaling pathways such as KRAS has come up as a potential target for such combination therapies as it emerged to be the signaling protein connecting KRAS and the immune signaling pathways and providing the link for understanding the overlapping regions of RAS/ERK/MAPK signaling cascade. Thus, SHP2 inhibitors having potent tumoricidal activity as well as role in immunomodulation have generated keen interest in researchers to explore its potential as combination therapy in KRAS mutant solid tumors. However, the excitement with these combination therapies need to overcome challenges thrown up by drug resistance and enhanced toxicity. In this review, we will discuss KRAS and SHP2 signaling pathways and their roles in immunomodulation and regulation of tumor microenvironment and also analyze the positive effects and drawbacks of the different combination therapies targeted at these signaling pathways along with their present and future potential to treat solid tumors.
Collapse
Affiliation(s)
- Priyanka Sahu
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, United States
| | - Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, United States
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar, Jharkhand, India.
| |
Collapse
|
16
|
Burke KP, Chaudhri A, Freeman GJ, Sharpe AH. The B7:CD28 family and friends: Unraveling coinhibitory interactions. Immunity 2024; 57:223-244. [PMID: 38354702 PMCID: PMC10889489 DOI: 10.1016/j.immuni.2024.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Immune responses must be tightly regulated to ensure both optimal protective immunity and tolerance. Costimulatory pathways within the B7:CD28 family provide essential signals for optimal T cell activation and clonal expansion. They provide crucial inhibitory signals that maintain immune homeostasis, control resolution of inflammation, regulate host defense, and promote tolerance to prevent autoimmunity. Tumors and chronic pathogens can exploit these pathways to evade eradication by the immune system. Advances in understanding B7:CD28 pathways have ushered in a new era of immunotherapy with effective drugs to treat cancer, autoimmune diseases, infectious diseases, and transplant rejection. Here, we discuss current understanding of the mechanisms underlying the coinhibitory functions of CTLA-4, PD-1, PD-L1:B7-1 and PD-L2:RGMb interactions and less studied B7 family members, including HHLA2, VISTA, BTNL2, and BTN3A1, as well as their overlapping and unique roles in regulating immune responses, and the therapeutic potential of these insights.
Collapse
Affiliation(s)
- Kelly P Burke
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Hou B, Hu Y, Zhu Y, Wang X, Li W, Tang J, Jia X, Wang J, Cong Y, Quan M, Yang H, Zheng H, Bao Y, Chen XL, Wang HR, Xu B, Gascoigne NRJ, Fu G. SHP-1 Regulates CD8+ T Cell Effector Function but Plays a Subtle Role with SHP-2 in T Cell Exhaustion Due to a Stage-Specific Nonredundant Functional Relay. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:397-409. [PMID: 38088801 DOI: 10.4049/jimmunol.2300462] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/14/2023] [Indexed: 01/18/2024]
Abstract
SHP-1 (Src homology region 2 domain-containing phosphatase 1) is a well-known negative regulator of T cells, whereas its close homolog SHP-2 is the long-recognized main signaling mediator of the PD-1 inhibitory pathway. However, recent studies have challenged the requirement of SHP-2 in PD-1 signaling, and follow-up studies further questioned the alternative idea that SHP-1 may replace SHP-2 in its absence. In this study, we systematically investigate the role of SHP-1 alone or jointly with SHP-2 in CD8+ T cells in a series of gene knockout mice. We show that although SHP-1 negatively regulates CD8+ T cell effector function during acute lymphocytic choriomeningitis virus (LCMV) infection, it is dispensable for CD8+ T cell exhaustion during chronic LCMV infection. Moreover, in contrast to the mortality of PD-1 knockout mice upon chronic LCMV infection, mice double deficient for SHP-1 and SHP-2 in CD8+ T cells survived without immunopathology. Importantly, CD8+ T cells lacking both phosphatases still differentiate into exhausted cells and respond to PD-1 blockade. Finally, we found that SHP-1 and SHP-2 suppressed effector CD8+ T cell expansion at the early and late stages, respectively, during chronic LCMV infection.
Collapse
Affiliation(s)
- Bowen Hou
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Yanyan Hu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuzhen Zhu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaocui Wang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Wanyun Li
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Jian Tang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Xian Jia
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiayu Wang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yu Cong
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Minxue Quan
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hongying Yang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Haiping Zheng
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yuzhou Bao
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiao Lei Chen
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hong-Rui Wang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Nicholas R J Gascoigne
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Department of Hematology, The First Affiliated Hospital and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Cancer Research Center of Xiamen University, Xiamen, China
- Laboratory Animal Center, Xiamen University; Xiamen, China
| |
Collapse
|
18
|
Salmond RJ. Targeting Protein Tyrosine Phosphatases to Improve Cancer Immunotherapies. Cells 2024; 13:231. [PMID: 38334623 PMCID: PMC10854786 DOI: 10.3390/cells13030231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Advances in immunotherapy have brought significant therapeutic benefits to many cancer patients. Nonetheless, many cancer types are refractory to current immunotherapeutic approaches, meaning that further targets are required to increase the number of patients who benefit from these technologies. Protein tyrosine phosphatases (PTPs) have long been recognised to play a vital role in the regulation of cancer cell biology and the immune response. In this review, we summarize the evidence for both the pro-tumorigenic and tumour-suppressor function of non-receptor PTPs in cancer cells and discuss recent data showing that several of these enzymes act as intracellular immune checkpoints that suppress effective tumour immunity. We highlight new data showing that the deletion of inhibitory PTPs is a rational approach to improve the outcomes of adoptive T cell-based cancer immunotherapies and describe recent progress in the development of PTP inhibitors as anti-cancer drugs.
Collapse
Affiliation(s)
- Robert J Salmond
- Leeds Institute of Medical Research at St. James's, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
| |
Collapse
|
19
|
Qu Z, Dong J, Zhang ZY. Protein tyrosine phosphatases as emerging targets for cancer immunotherapy. Br J Pharmacol 2023:10.1111/bph.16304. [PMID: 38116815 PMCID: PMC11186978 DOI: 10.1111/bph.16304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
Contemporary strategies in cancer immunotherapy, despite remarkable success, remain constrained by inherent limitations such as suboptimal patient responses, the emergence of drug resistance, and the manifestation of pronounced adverse effects. Consequently, the need for alternative strategies for immunotherapy becomes clear. Protein tyrosine phosphatases (PTPs) wield a pivotal regulatory influence over an array of essential cellular processes. Substantial research has underscored the potential in targeting PTPs to modulate the immune responses and/or regulate antigen presentation, thereby presenting a novel paradigm for cancer immunotherapy. In this review, we focus on recent advances in genetic and biological validation of several PTPs as emerging targets for immunotherapy. We also highlight recent development of small molecule inhibitors and degraders targeting these PTPs as novel cancer immunotherapeutic agents.
Collapse
Affiliation(s)
- Zihan Qu
- Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Jiajun Dong
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
- Institute for Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
- Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
20
|
Luo Y, Li J, Zong Y, Sun M, Zheng W, Zhu J, Liu L, Liu B. Discovery of the SHP2 allosteric inhibitor 2-((3R,4R)-4-amino-3-methyl-2-oxa-8-azaspiro[4.5]decan-8-yl)-5-(2,3-dichlorophenyl)-3-methylpyrrolo[2,1-f][1,2,4] triazin-4(3H)-one. J Enzyme Inhib Med Chem 2023; 38:398-404. [PMID: 36476046 PMCID: PMC9744210 DOI: 10.1080/14756366.2022.2151594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The non-receptor protein tyrosine phosphatase (PTP) SHP2 encoded by the PTPN11 gene is a critical regulator in a number of cellular signalling processes and pathways, including the MAPK and the immune-inhibitory programmed cell death PD-L1/PD-1 pathway. Hyperactivation and inactivation of SHP2 is of great therapeutic interest for its association with multiple developmental disorders and cancer-related diseases. In this work, we characterised a potent SHP2 allosteric inhibitor 2-((3 R,4R)-4-amino-3-methyl-2-oxa-8-azaspiro[4.5]decan-8-yl)-5-(2,3-dichlorophenyl)-3-methylpyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (PB17-026-01) by using structure-based design. To study the structure-activity relationship, we compared co-crystal structures of SHP2 bound with PB17-026-01 and its analogue compound PB17-036-01, which is ∼20-fold less active than PB17-026-01, revealing that both of the compounds are bound to SHP2 in the allosteric binding pocket and PB17-026-01 forms more polar contacts with its terminal group. Overall, our results provide new insights into the modes of action of allosteric SHP2 inhibitor and a guide for the design of SHP2 allosteric inhibitor.
Collapse
Affiliation(s)
- Yanmei Luo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Li
- Division of Medicinal Chemistry, PharmaBlock Sciences (Nanjing), Inc., Nanjing, China
| | - Yuliang Zong
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengxin Sun
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wan Zheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiapeng Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liu Liu
- Division of Medicinal Chemistry, PharmaBlock Sciences (Nanjing), Inc., Nanjing, China,Liu Liu Division of Medicinal Chemistry, PharmaBlock Sciences (Nanjing), Inc., Nanjing, China
| | - Bing Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China,CONTACT Bing Liu School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
21
|
Acharya S, Kumari S. Actin' off: PD-1 suppresses F-actin rearrangement and degranulation at the immunological synapse. Sci Signal 2023; 16:eadl3956. [PMID: 38015912 DOI: 10.1126/scisignal.adl3956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Programmed cell death molecule 1 (PD-1) is a negative regulator of T cell activation; however, the mechanisms by which it acts are unclear. In this issue of Science Signaling, Paillon et al. show that PD-1 inhibits actin cytoskeletal rearrangements and associated effector responses in cytotoxic T cells.
Collapse
Affiliation(s)
- Sayanti Acharya
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Sudha Kumari
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
22
|
Sodir NM, Pathria G, Adamkewicz JI, Kelley EH, Sudhamsu J, Merchant M, Chiarle R, Maddalo D. SHP2: A Pleiotropic Target at the Interface of Cancer and Its Microenvironment. Cancer Discov 2023; 13:2339-2355. [PMID: 37682219 PMCID: PMC10618746 DOI: 10.1158/2159-8290.cd-23-0383] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 09/09/2023]
Abstract
The protein phosphatase SHP2/PTPN11 has been reported to be a key modulator of proliferative pathways in a wide range of malignancies. Intriguingly, SHP2 has also been described as a critical regulator of the tumor microenvironment. Based on this evidence SHP2 is considered a multifaceted target in cancer, spurring the notion that the development of direct inhibitors of SHP2 would provide the twofold benefit of tumor intrinsic and extrinsic inhibition. In this review, we will discuss the role of SHP2 in cancer and the tumor microenvironment, and the clinical strategies in which SHP2 inhibitors are leveraged as combination agents to improve therapeutic response. SIGNIFICANCE The SHP2 phosphatase functions as a pleiotropic factor, and its inhibition not only hinders tumor growth but also reshapes the tumor microenvironment. Although their single-agent activity may be limited, SHP2 inhibitors hold the potential of being key combination agents to enhance the depth and the durability of tumor response to therapy.
Collapse
Affiliation(s)
- Nicole M. Sodir
- Department of Translational Oncology, Genentech, South San Francisco, California
| | - Gaurav Pathria
- Department of Oncology Biomarker Development, Genentech, South San Francisco, California
| | | | - Elizabeth H. Kelley
- Department of Discovery Chemistry, Genentech, South San Francisco, California
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, South San Francisco, California
| | - Mark Merchant
- Department of Translational Oncology, Genentech, South San Francisco, California
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Danilo Maddalo
- Department of Translational Oncology, Genentech, South San Francisco, California
| |
Collapse
|
23
|
Taylor J, Bulek A, Gannon I, Robson M, Kokalaki E, Grothier T, McKenzie C, El-Kholy M, Stavrou M, Traynor-White C, Lim WC, Panagiotou P, Srivastava S, Baldan V, Sillibourne J, Ferrari M, Pule M, Thomas S. Exploration of T cell immune responses by expression of a dominant-negative SHP1 and SHP2. Front Immunol 2023; 14:1119350. [PMID: 37334382 PMCID: PMC10272835 DOI: 10.3389/fimmu.2023.1119350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
SHP1 and SHP2 are SH2 domain-containing proteins which have inhibitory phosphatase activity when recruited to phosphorylated ITIMs and ITSMs on inhibitory immune receptors. Consequently, SHP1 and SHP2 are key proteins in the transmission of inhibitory signals within T cells, constituting an important point of convergence for diverse inhibitory receptors. Therefore, SHP1 and SHP2 inhibition may represent a strategy for preventing immunosuppression of T cells mediated by cancers hence improving immunotherapies directed against these malignancies. Both SHP1 and SHP2 contain dual SH2 domains responsible for localization to the endodomain of inhibitory receptors and a protein tyrosine phosphatase domain which dephosphorylates and thus inhibits key mediators of T cell activation. We explored the interaction of the isolated SH2 domains of SHP1 and SHP2 to inhibitory motifs from PD1 and identified strong binding of both SH2 domains from SHP2 and more moderate binding in the case of SHP1. We next explored whether a truncated form of SHP1/2 comprising only of SH2 domains (dSHP1/2) could act in a dominant negative fashion by preventing docking of the wild type proteins. When co-expressed with CARs we found that dSHP2 but not dSHP1 could alleviate immunosuppression mediated by PD1. We next explored the capacity of dSHP2 to bind with other inhibitory receptors and observed several potential interactions. In vivo we observed that the expression of PDL1 on tumor cells impaired the ability of CAR T cells to mediate tumor rejection and this effect was partially reversed by the co-expression of dSHP2 albeit at the cost of reduced CAR T cell proliferation. Modulation of SHP1 and SHP2 activity in engineered T cells through the expression of these truncated variants may enhance T cell activity and hence efficacy in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Julia Taylor
- Research and Development, Autolus Ltd, London, United Kingdom
| | - Anna Bulek
- Research and Development, Autolus Ltd, London, United Kingdom
| | - Isaac Gannon
- Research and Development, Autolus Ltd, London, United Kingdom
| | - Mathew Robson
- Research and Development, Autolus Ltd, London, United Kingdom
| | | | - Thomas Grothier
- Research and Development, Autolus Ltd, London, United Kingdom
| | - Callum McKenzie
- Research and Development, Autolus Ltd, London, United Kingdom
| | | | - Maria Stavrou
- Research and Development, Autolus Ltd, London, United Kingdom
| | | | - Wen Chean Lim
- Research and Development, Autolus Ltd, London, United Kingdom
| | | | | | - Vania Baldan
- Research and Development, Autolus Ltd, London, United Kingdom
| | | | - Mathieu Ferrari
- Research and Development, Autolus Ltd, London, United Kingdom
| | - Martin Pule
- Research and Development, Autolus Ltd, London, United Kingdom
- Department of Haematology, University College London, London, United Kingdom
| | - Simon Thomas
- Research and Development, Autolus Ltd, London, United Kingdom
| |
Collapse
|
24
|
Yin L, Chen GL, Xiang Z, Liu YL, Li XY, Bi JW, Wang Q. Current progress in chimeric antigen receptor-modified T cells for the treatment of metastatic breast cancer. Biomed Pharmacother 2023; 162:114648. [PMID: 37023621 DOI: 10.1016/j.biopha.2023.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Breast cancer is the leading cancer in women. Around 20-30% breast cancer patients undergo invasion or metastasis after radical surgical resection and eventually die. Number of breast cancer patients show poor sensitivity toward treatments despite the advances in chemotherapy, endocrine therapy, and molecular targeted treatments. Therapeutic resistance and tumor recurrence or metastasis develop with the ongoing treatments. Conducive treatment strategies are thus required. Chimeric antigen receptor (CAR)-modified T-cell therapy has progressed as a part of tumor immunotherapy. However, CAR-T treatment has not been effective in solid tumors because of tumor microenvironment complexity, inhibitory effects of extracellular matrix, and lacking ideal tumor antigens. Herein, the prospects of CAR-T cell therapy for metastatic breast cancer are discussed, and the targets for CAR-T therapy in breast cancer (HER-2, C-MET, MSLN, CEA, MUC1, ROR1, EGFR) at clinical level are reviewed. Moreover, solutions are proposed for the challenges of breast cancer CAR-T therapy regarding off-target effects, heterogeneous antigen expression by tumor cells and immunosuppressive tumor microenvironment. Ideas for improving the therapeutics of CAR-T cell therapy in metastatic breast cancer are suggested.
Collapse
Affiliation(s)
- Li Yin
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China; Shandong University of Traditional Chinese Medicine, 250355 Jinan, China
| | - Gui-Lai Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Zhuo Xiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Yu-Lin Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Xing-Yu Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Jing-Wang Bi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China.
| | - Qiang Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China.
| |
Collapse
|
25
|
Goenka A, Khan F, Verma B, Sinha P, Dmello CC, Jogalekar MP, Gangadaran P, Ahn B. Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun (Lond) 2023; 43:525-561. [PMID: 37005490 PMCID: PMC10174093 DOI: 10.1002/cac2.12416] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
Tumor development and metastasis are facilitated by the complex interactions between cancer cells and their microenvironment, which comprises stromal cells and extracellular matrix (ECM) components, among other factors. Stromal cells can adopt new phenotypes to promote tumor cell invasion. A deep understanding of the signaling pathways involved in cell-to-cell and cell-to-ECM interactions is needed to design effective intervention strategies that might interrupt these interactions. In this review, we describe the tumor microenvironment (TME) components and associated therapeutics. We discuss the clinical advances in the prevalent and newly discovered signaling pathways in the TME, the immune checkpoints and immunosuppressive chemokines, and currently used inhibitors targeting these pathways. These include both intrinsic and non-autonomous tumor cell signaling pathways in the TME: protein kinase C (PKC) signaling, Notch, and transforming growth factor (TGF-β) signaling, Endoplasmic Reticulum (ER) stress response, lactate signaling, Metabolic reprogramming, cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and Siglec signaling pathways. We also discuss the recent advances in Programmed Cell Death Protein 1 (PD-1), Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4), T-cell immunoglobulin mucin-3 (TIM-3) and Lymphocyte Activating Gene 3 (LAG3) immune checkpoint inhibitors along with the C-C chemokine receptor 4 (CCR4)- C-C class chemokines 22 (CCL22)/ and 17 (CCL17), C-C chemokine receptor type 2 (CCR2)- chemokine (C-C motif) ligand 2 (CCL2), C-C chemokine receptor type 5 (CCR5)- chemokine (C-C motif) ligand 3 (CCL3) chemokine signaling axis in the TME. In addition, this review provides a holistic understanding of the TME as we discuss the three-dimensional and microfluidic models of the TME, which are believed to recapitulate the original characteristics of the patient tumor and hence may be used as a platform to study new mechanisms and screen for various anti-cancer therapies. We further discuss the systemic influences of gut microbiota in TME reprogramming and treatment response. Overall, this review provides a comprehensive analysis of the diverse and most critical signaling pathways in the TME, highlighting the associated newest and critical preclinical and clinical studies along with their underlying biology. We highlight the importance of the most recent technologies of microfluidics and lab-on-chip models for TME research and also present an overview of extrinsic factors, such as the inhabitant human microbiome, which have the potential to modulate TME biology and drug responses.
Collapse
Affiliation(s)
- Anshika Goenka
- The Ken & Ruth Davee Department of NeurologyThe Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicago, 60611ILUSA
| | - Fatima Khan
- Department of Neurological SurgeryFeinberg School of MedicineNorthwestern UniversityChicago, 60611ILUSA
| | - Bhupender Verma
- Department of OphthalmologySchepens Eye Research InstituteMassachusetts Eye and Ear InfirmaryHarvard Medical SchoolBoston, 02114MAUSA
| | - Priyanka Sinha
- Department of NeurologyMassGeneral Institute for Neurodegenerative DiseaseMassachusetts General Hospital, Harvard Medical SchoolCharlestown, 02129MAUSA
| | - Crismita C. Dmello
- Department of Neurological SurgeryFeinberg School of MedicineNorthwestern UniversityChicago, 60611ILUSA
| | - Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer CenterUniversity of California San FranciscoSan Francisco, 94143CAUSA
| | - Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future TalentsDepartment of Biomedical Science, School of MedicineKyungpook National UniversityDaegu, 41944South Korea
- Department of Nuclear MedicineSchool of Medicine, Kyungpook National University, Kyungpook National University HospitalDaegu, 41944South Korea
| | - Byeong‐Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future TalentsDepartment of Biomedical Science, School of MedicineKyungpook National UniversityDaegu, 41944South Korea
- Department of Nuclear MedicineSchool of Medicine, Kyungpook National University, Kyungpook National University HospitalDaegu, 41944South Korea
| |
Collapse
|
26
|
Laletin V, Bernard PL, Costa da Silva C, Guittard G, Nunes JA. Negative intracellular regulators of T-cell receptor (TCR) signaling as potential antitumor immunotherapy targets. J Immunother Cancer 2023; 11:e005845. [PMID: 37217244 PMCID: PMC10231026 DOI: 10.1136/jitc-2022-005845] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Immunotherapy strategies aim to mobilize immune defenses against tumor cells by targeting mainly T cells. Co-inhibitory receptors or immune checkpoints (ICPs) (such as PD-1 and CTLA4) can limit T cell receptor (TCR) signal propagation in T cells. Antibody-based blocking of immune checkpoints (immune checkpoint inhibitors, ICIs) enable escape from ICP inhibition of TCR signaling. ICI therapies have significantly impacted the prognosis and survival of patients with cancer. However, many patients remain refractory to these treatments. Thus, alternative approaches for cancer immunotherapy are needed. In addition to membrane-associated inhibitory molecules, a growing number of intracellular molecules may also serve to downregulate signaling cascades triggered by TCR engagement. These molecules are known as intracellular immune checkpoints (iICPs). Blocking the expression or the activity of these intracellular negative signaling molecules is a novel field of action to boost T cell-mediated antitumor responses. This area is rapidly expanding. Indeed, more than 30 different potential iICPs have been identified. Over the past 5 years, several phase I/II clinical trials targeting iICPs in T cells have been registered. In this study, we summarize recent preclinical and clinical data demonstrating that immunotherapies targeting T cell iICPs can mediate regression of solid tumors including (membrane associated) immune-checkpoint inhibitor refractory cancers. Finally, we discuss how these iICPs are targeted and controlled. Thereby, iICP inhibition is a promising strategy opening new avenues for future cancer immunotherapy treatments.
Collapse
Affiliation(s)
- Vladimir Laletin
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Pierre-Louis Bernard
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Cathy Costa da Silva
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Geoffrey Guittard
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Jacques A Nunes
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| |
Collapse
|
27
|
Mohanty SK, Mishra SK, Amin MB, Agaimy A, Fuchs F. Role of Surgical Pathologist for the Detection of Immuno-oncologic Predictive Factors in Non-small Cell Lung Cancers. Adv Anat Pathol 2023; 30:174-194. [PMID: 37037418 DOI: 10.1097/pap.0000000000000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Until very recently, surgery, chemotherapy, and radiation therapy have been the mainstay of treatment in non-small cell carcinomas (NSCLCs). However, recent advances in molecular immunology have unveiled some of the complexity of the mechanisms regulating cellular immune responses and led to the successful targeting of immune checkpoints in attempts to enhance antitumor T-cell responses. Immune checkpoint molecules such as cytotoxic T-lymphocyte associated protein-4, programmed cell death protein-1, and programmed death ligand (PD-L) 1 have been shown to play central roles in evading cancer immunity. Thus, these molecules have been targeted by inhibitors for the management of cancers forming the basis of immunotherapy. Advanced NSCLC has been the paradigm for the benefits of immunotherapy in any cancer. Treatment decisions are made based on the expression of PD-L1 on the tumor cells and the presence or absence of driver mutations. Patients with high PD-L1 expression (≥50%) and no driver mutations are treated with single-agent immunotherapy whereas, for all other patients with a lower level of PD-L1 expression, a combination of chemotherapy and immunotherapy is preferred. Thus, PD-L1 blockers are the only immunotherapeutic agents approved in advanced NSCLC without any oncogenic driver mutations. PD-L1 immunohistochemistry, however, may not be the best biomarker in view of its dynamic nature in time and space, and the benefits may be seen regardless of PD -L1 expression. Each immunotherapy molecule is prescribed based on the levels of PD-L1 expression as assessed by a Food and Drug Administration-approved companion diagnostic assay. Other biomarkers that have been studied include tumor mutational burden, the T-effector signature, tumor-infiltrating lymphocytes, radiomic assays, inflammation index, presence or absence of immune-related adverse events and specific driver mutations, and gut as well as local microbiome. At the current time, none of these biomarkers are routinely used in the clinical decision-making process for immunotherapy in NSCLC. However, in individual cases, they can be useful adjuncts to conventional therapy. This review describes our current understanding of the role of biomarkers as predictors of response to immune checkpoint molecules. To begin with a brief on cancer immunology in general and in NSCLC, in particular, is discussed. In the end, recent advancements in laboratory techniques for refining biomarker assays are described.
Collapse
Affiliation(s)
- Sambit K Mohanty
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute, Bhubaneswar, India and CORE Diagnostics, Gurgaon, HR
| | - Sourav K Mishra
- Department of Medical Oncology, All India Institute of Medical Sciences, DL, India
| | - Mahul B Amin
- Departments of Pathology and Laboratory Medicine and Urology, University of Tennessee Health Science Center, Memphis, TN
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Florian Fuchs
- Department of Internal Medicine-1, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen University Hospital and Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
28
|
Welsh CL, Allen S, Madan LK. Setting sail: Maneuvering SHP2 activity and its effects in cancer. Adv Cancer Res 2023; 160:17-60. [PMID: 37704288 PMCID: PMC10500121 DOI: 10.1016/bs.acr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Since the discovery of tyrosine phosphorylation being a critical modulator of cancer signaling, proteins regulating phosphotyrosine levels in cells have fast become targets of therapeutic intervention. The nonreceptor protein tyrosine phosphatase (PTP) coded by the PTPN11 gene "SHP2" integrates phosphotyrosine signaling from growth factor receptors into the RAS/RAF/ERK pathway and is centrally positioned in processes regulating cell development and oncogenic transformation. Dysregulation of SHP2 expression or activity is linked to tumorigenesis and developmental defects. Even as a compelling anti-cancer target, SHP2 was considered "undruggable" for a long time owing to its conserved catalytic PTP domain that evaded drug development. Recently, SHP2 has risen from the "undruggable curse" with the discovery of small molecules that manipulate its intrinsic allostery for effective inhibition. SHP2's unique domain arrangement and conformation(s) allow for a truly novel paradigm of inhibitor development relying on skillful targeting of noncatalytic sites on proteins. In this review we summarize the biological functions, signaling properties, structural attributes, allostery and inhibitors of SHP2.
Collapse
Affiliation(s)
- Colin L Welsh
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sarah Allen
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, United States
| | - Lalima K Madan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
29
|
Zhang C, Zhang C, Wang H. Immune-checkpoint inhibitor resistance in cancer treatment: Current progress and future directions. Cancer Lett 2023; 562:216182. [PMID: 37076040 DOI: 10.1016/j.canlet.2023.216182] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Cancer treatment has been advanced with the advent of immune checkpoint inhibitors (ICIs) exemplified by anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), anti-programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) drugs. Patients have reaped substantial benefit from ICIs in many cancer types. However, few patients benefit from ICIs whereas the vast majority undergoing these treatments do not obtain survival benefit. Even for patients with initial responses, they may encounter drug resistance in their subsequent treatments, which limits the efficacy of ICIs. Therefore, a deepening understanding of drug resistance is critically important for the explorations of approaches to reverse drug resistance and to boost ICI efficacy. In the present review, different mechanisms of ICI resistance have been summarized according to the tumor intrinsic, tumor microenvironment (TME) and host classifications. We further elaborated corresponding strategies to battle against such resistance accordingly, which include targeting defects in antigen presentation, dysregulated interferon-γ (IFN-γ) signaling, neoantigen depletion, upregulation of other T cell checkpoints as well as immunosuppression and exclusion mediated by TME. Moreover, regarding the host, several additional approaches that interfere with diet and gut microbiome have also been described in reversing ICI resistance. Additionally, we provide an overall glimpse into the ongoing clinical trials that utilize these mechanisms to overcome ICI resistance. Finally, we summarize the challenges and opportunities that needs to be addressed in the investigation of ICI resistance mechanisms, with the aim to benefit more patients with cancer.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Chenxing Zhang
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
30
|
Stanford SM, Bottini N. Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders. Nat Rev Drug Discov 2023; 22:273-294. [PMID: 36693907 PMCID: PMC9872771 DOI: 10.1038/s41573-022-00618-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/25/2023]
Abstract
Protein phosphatases act as key regulators of multiple important cellular processes and are attractive therapeutic targets for various diseases. Although extensive effort has been dedicated to phosphatase-targeted drug discovery, early expeditions for competitive phosphatase inhibitors were plagued by druggability issues, leading to the stigmatization of phosphatases as difficult targets. Despite challenges, persistent efforts have led to the identification of several drug-like, non-competitive modulators of some of these enzymes - including SH2 domain-containing protein tyrosine phosphatase 2, protein tyrosine phosphatase 1B, vascular endothelial protein tyrosine phosphatase and protein phosphatase 1 - reigniting interest in therapeutic targeting of phosphatases. Here, we discuss recent progress in phosphatase drug discovery, with emphasis on the development of selective modulators that exhibit biological activity. The roles and regulation of protein phosphatases in immune cells and their potential as powerful targets for immuno-oncology and autoimmunity indications are assessed.
Collapse
Affiliation(s)
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
31
|
Pereira JA, Lanzar Z, Clark JT, Hart AP, Douglas BB, Shallberg L, O’Dea K, Christian DA, Hunter CA. PD-1 and CTLA-4 exert additive control of effector regulatory T cells at homeostasis. Front Immunol 2023; 14:997376. [PMID: 36960049 PMCID: PMC10028286 DOI: 10.3389/fimmu.2023.997376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
At homeostasis, a substantial proportion of Foxp3+ T regulatory cells (Tregs) have an activated phenotype associated with enhanced TCR signals and these effector Treg cells (eTregs) co-express elevated levels of PD-1 and CTLA-4. Short term in vivo blockade of the PD-1 or CTLA-4 pathways results in increased eTreg populations, while combination blockade of both pathways had an additive effect. Mechanistically, combination blockade resulted in a reduction of suppressive phospho-SHP2 Y580 in eTreg cells which was associated with increased proliferation, enhanced production of IL-10, and reduced dendritic cell and macrophage expression of CD80 and MHC-II. Thus, at homeostasis, PD-1 and CTLA-4 function additively to regulate eTreg function and the ability to target these pathways in Treg cells may be useful to modulate inflammation.
Collapse
Affiliation(s)
- Joseph A. Pereira
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Zachary Lanzar
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph T. Clark
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew P. Hart
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bonnie B. Douglas
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Lindsey Shallberg
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Keenan O’Dea
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - David A. Christian
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher A. Hunter
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
32
|
Zhou X, Li C, Chen T, Li W, Wang X, Yang Q. Targeting RNA N6-methyladenosine to synergize with immune checkpoint therapy. Mol Cancer 2023; 22:36. [PMID: 36810108 PMCID: PMC9942356 DOI: 10.1186/s12943-023-01746-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
Cancer immunotherapy, especially immune checkpoint therapy, has revolutionized therapeutic options by reactivating the host immune system. However, the efficacy varies, and only a small portion of patients develop sustained antitumor responses. Hence, illustrating novel strategies that improve the clinical outcome of immune checkpoint therapy is urgently needed. N6-methyladenosine (m6A) has been proved to be an efficient and dynamic posttranscriptional modification process. It is involved in numerous RNA processing, such as splicing, trafficking, translation and degradation. Compelling evidence emphasizes the paramount role of m6A modification in the regulation of immune response. These findings may provide a foundation for the rational combination of targeting m6A modification and immune checkpoints in cancer treatment. In the present review, we summarize the current landscape of m6A modification in RNA biology, and highlight the latest findings on the complex mechanisms by which m6A modification governs immune checkpoint molecules. Furthermore, given the critical role of m6A modification in antitumor immunity, we discuss the clinical significance of targeting m6A modification to improve the efficacy of immune checkpoint therapy for cancer control.
Collapse
Affiliation(s)
- Xianyong Zhou
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong China ,grid.476866.dDepartment of Breast Surgery, Binzhou People’s Hospital, Binzhou, Shandong China
| | - Chen Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong China
| | - Tong Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong China
| | - Wenhao Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong China
| | - Xiaolong Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, China.
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, China. .,Department of Pathology Tissue Bank, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Xi Road No. 107, Shandong, Jinan, China. .,Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
33
|
Li K, Li J, Wei X, Wang J, Geng M, Ai K, Liang W, Zhang J, Li K, Gao H, Yang J. IL-10 Negatively Controls the Primary T Cell Response of Tilapia by Triggering the JAK1/STAT3/SOCS3 Axis That Suppresses NF-κB and MAPK/ERK Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:229-244. [PMID: 36548476 DOI: 10.4049/jimmunol.2200335] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022]
Abstract
The braking mechanisms to protect the host from tissue damage and inflammatory disease caused by an overexuberant immune response are common in many T cell subsets. However, the negative regulation of T cell responses and detailed mechanisms are not well understood in early vertebrates. In the current study, using a Nile tilapia (Oreochromis niloticus) model, we investigated the suppression of T cell immunity by IL-10. Tilapia encodes an evolutionarily conserved IL-10, whose expression in lymphocytes is markedly induced during the primary adaptive immune response against Aeromonas hydrophila infection. Activated T cells of tilapia produce IL-10, which in turn inhibits proinflammatory cytokine expression and suppresses PHA-induced T cell activation. Moreover, administration of IL-10 impairs the proliferation of tilapia T cells, reduces their potential to differentiate into Th subsets, and cripples the cytotoxic function, rendering the animals more vulnerable to pathogen attack. After binding to its receptor IL-10Ra, IL-10 activates the JAK1/STAT3 axis by phosphorylation and enhances the expression of the suppressor of cytokine signaling 3 (SOCS3), which in turn attenuates the activation of the NF-κB and MAPK/ERK signaling pathways, thus suppressing the T cell response of tilapia. Our findings elucidate a negative regulatory mechanism of T cell immunity in a fish species and support the notion that the braking mechanism of T cells executed through IL-10 existed prior to the divergence of the tetrapod lineage from teleosts. Therefore, this study, to our knowledge, provides a novel perspective on the evolution of the adaptive immune system.
Collapse
Affiliation(s)
- Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiaqi Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; and
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wei Liang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kunming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Haiyou Gao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
34
|
Christofides A, Katopodi XL, Cao C, Karagkouni D, Aliazis K, Yenyuwadee S, Aksoylar HI, Pal R, Mahmoud MAA, Strauss L, Tijaro-Ovalle NM, Boon L, Asara J, Vlachos IS, Patsoukis N, Boussiotis VA. SHP-2 and PD-1-SHP-2 signaling regulate myeloid cell differentiation and antitumor responses. Nat Immunol 2023; 24:55-68. [PMID: 36581713 PMCID: PMC9810534 DOI: 10.1038/s41590-022-01385-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 11/03/2022] [Indexed: 12/31/2022]
Abstract
The inhibitory receptor PD-1 suppresses T cell activation by recruiting the phosphatase SHP-2. However, mice with a T-cell-specific deletion of SHP-2 do not have improved antitumor immunity. Here we showed that mice with conditional targeting of SHP-2 in myeloid cells, but not in T cells, had diminished tumor growth. RNA sequencing (RNA-seq) followed by gene set enrichment analysis indicated the presence of polymorphonuclear myeloid-derived suppressor cells and tumor-associated macrophages (TAMs) with enriched gene expression profiles of enhanced differentiation, activation and expression of immunostimulatory molecules. In mice with conditional targeting of PD-1 in myeloid cells, which also displayed diminished tumor growth, TAMs had gene expression profiles enriched for myeloid differentiation, activation and leukocyte-mediated immunity displaying >50% overlap with enriched profiles of SHP-2-deficient TAMs. In bone marrow, GM-CSF induced the phosphorylation of PD-1 and recruitment of PD-1-SHP-2 to the GM-CSF receptor. Deletion of SHP-2 or PD-1 enhanced GM-CSF-mediated phosphorylation of the transcription factors HOXA10 and IRF8, which regulate myeloid differentiation and monocytic-moDC lineage commitment, respectively. Thus, SHP-2 and PD-1-SHP-2 signaling restrained myelocyte differentiation resulting in a myeloid landscape that suppressed antitumor immunity.
Collapse
Affiliation(s)
- Anthos Christofides
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Yale University, New Haven, CT, USA
| | - Xanthi-Lida Katopodi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Medical School Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carol Cao
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard College, Cambridge, MA, USA
| | - Dimitra Karagkouni
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Medical School Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Konstantinos Aliazis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sasitorn Yenyuwadee
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Halil-Ibrahim Aksoylar
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rinku Pal
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mohamed A A Mahmoud
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Heidelberg University, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura Strauss
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Sanofi /Tidal, Cambridge, MA, USA
| | - Natalia M Tijaro-Ovalle
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Yale University, New Haven, CT, USA
| | | | - John Asara
- Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ioannis S Vlachos
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Medical School Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nikolaos Patsoukis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
35
|
Awadasseid A, Zhou Y, Zhang K, Tian K, Wu Y, Zhang W. Current studies and future promises of PD-1 signal inhibitors in cervical cancer therapy. Biomed Pharmacother 2023; 157:114057. [PMID: 36463828 DOI: 10.1016/j.biopha.2022.114057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/19/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
PD-1 (Programmed cell death-1) is a receptor that inhibits the activation of T cells and is an important target for cancer immunotherapy. PD-1 expression stays high on antigen-specific T cells that have been stimulated for a long time, making them less responsive to stimuli. Consequently, there has been a recent surge in the number of researchers focusing on how the PD-1 axis delivers inhibitory signals to uncover new therapeutic targets. As an inhibitory signaling mechanism, the PD-1 axis controls immunological responses. Blocking the PD-1 axis has been shown to have long-lasting effects on various cancers, demonstrating the crucial role of PD-1 in blocking anti-tumor immunity. Despite this role, most patients do not respond to PD-1 monotherapy, and some have experienced adverse events. Many challenges remain regarding the PD-1 signaling axis to be addressed. In this review, we outline the most recent research and prospects of PD-1 signal inhibitors to enhance cervical cancer therapy.
Collapse
Affiliation(s)
- Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Moganshan Institute ZJUT, Deqing 313202, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China; Department of Biochemistry & Food Sciences, University of Kordofan, El-Obeid 51111, Sudan
| | - Yongnan Zhou
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Koutian Zhang
- Zhejiang Jianing Pharmaceutical Technology Co., Ltd, Hangzhou 310051, China
| | - Kaiming Tian
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
36
|
Huang Y, Jia A, Wang Y, Liu G. CD8 + T cell exhaustion in anti-tumour immunity: The new insights for cancer immunotherapy. Immunology 2023; 168:30-48. [PMID: 36190809 DOI: 10.1111/imm.13588] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/29/2022] [Indexed: 12/27/2022] Open
Abstract
CD8+ T cells play a crucial role in anti-tumour immunity, but they often undergo exhaustion, which affects the anti-tumour activity of CD8+ T cells. The effect and mechanism of exhausted CD8+ T cells have become the focus of anti-tumour immunity research. Recently, a large number of studies have confirmed that long-term antigen exposure can induce exhaustion. Cytokines previously have identified their effects (such as IL-2 and IL-10) may play a dual role in the exhaustion process of CD8+ T cells, suggesting a new mechanism of inducing exhaustion. This review just focuses our current understanding of the biology of exhausted CD8+ T cells, including differentiation pathways, cellular characteristics and signalling pathways involved in inducing exhaustion, and summarizes how these can be applied to tumour immunotherapy.
Collapse
Affiliation(s)
- Yijin Huang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
37
|
Zhang Q, Geng M, Li K, Gao H, Jiao X, Ai K, Wei X, Yang J. TGF-β1 suppresses the T-cell response in teleost fish by initiating Smad3- and Foxp3-mediated transcriptional networks. J Biol Chem 2022; 299:102843. [PMID: 36581209 PMCID: PMC9860442 DOI: 10.1016/j.jbc.2022.102843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) can suppress the activation, proliferation, and function of many T-cell subsets, protecting organisms from inflammatory and autoimmune disease caused by an overexuberant immune response. However, whether and how TGF-β1 regulates T-cell immunity in early vertebrates remain unknown. Here, using a Nile tilapia (Oreochromis niloticus) model, we investigated suppression of the T-cell response by TGF-β1 in teleost species. Tilapia encodes an evolutionarily conserved TGF-β1, the expression of which in lymphocytes is significantly induced during the immune response following Edwardsiella piscicida infection. Once activated, tilapia T cells increase TGF-β1 production, which in turn suppresses proinflammatory cytokine expression and inhibits T-cell activation. Notably, we found administration of TGF-β1 cripples the proliferation of tilapia T cells, reduces the potential capacity of Th1/2 differentiation, and impairs the cytotoxic function, rendering the fish more vulnerable to bacterial infection. Mechanistically, TGF-β1 initiates the TGF-βR/Smad signaling pathway and triggers the phosphorylation and nuclear translocation of Smad2/3. Smad3 subsequently interacts with several transcriptional partners to repress transcription of cytokines IL-2 and IFN-γ but promote transcription of immune checkpoint regulator CTLA4 and transcription factor Foxp3. Furthermore, TGF-β1/Smad signaling further utilizes Foxp3 to achieve the cascade regulation of these T-cell genes. Taken together, our findings reveal a detailed mechanism by which TGF-β1 suppresses the T cell-based immunity in Nile tilapia and support the notion that TGF-β1 had already been employed to inhibit the T-cell response early in vertebrate evolution, thus providing novel insights into the evolution of the adaptive immune system.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Haiyou Gao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinying Jiao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
38
|
Ventura PMO, Gakovic M, Fischer BA, Spinelli L, Rota G, Pathak S, Khameneh HJ, Zenobi A, Thomson S, Birchmeier W, Cantrell DA, Guarda G. Concomitant deletion of Ptpn6 and Ptpn11 in T cells fails to improve anticancer responses. EMBO Rep 2022; 23:e55399. [PMID: 36194675 PMCID: PMC9638855 DOI: 10.15252/embr.202255399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 03/10/2024] Open
Abstract
Anticancer T cells acquire a dysfunctional state characterized by poor effector function and expression of inhibitory receptors, such as PD-1. Blockade of PD-1 leads to T cell reinvigoration and is increasingly applied as an effective anticancer treatment. Recent work challenged the commonly held view that the phosphatase PTPN11 (known as SHP-2) is essential for PD-1 signaling in T cells, suggesting functional redundancy with the homologous phosphatase PTPN6 (SHP-1). Therefore, we investigated the effect of concomitant Ptpn6 and Ptpn11 deletion in T cells on their ability to mount antitumour responses. In vivo data show that neither sustained nor acute Ptpn6/11 deletion improves T cell-mediated tumor control. Sustained loss of Ptpn6/11 also impairs the therapeutic effects of anti-PD1 treatment. In vitro results show that Ptpn6/11-deleted CD8+ T cells exhibit impaired expansion due to a survival defect and proteomics analyses reveal substantial alterations, including in apoptosis-related pathways. These data indicate that concomitant ablation of Ptpn6/11 in polyclonal T cells fails to improve their anticancer properties, implying that caution shall be taken when considering their inhibition for immunotherapeutic approaches.
Collapse
Affiliation(s)
- Pedro M O Ventura
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Milica Gakovic
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, UK
| | - Berenice A Fischer
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Laura Spinelli
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, UK
| | - Giorgia Rota
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Shalini Pathak
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, UK
| | - Hanif J Khameneh
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Alessandro Zenobi
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Sarah Thomson
- Biological Services, University of Dundee, Dundee, UK
| | - Walter Birchmeier
- Max-Delbrueck-Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Doreen A Cantrell
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, UK
| | - Greta Guarda
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|
39
|
Li X, Gulati M, Larson AC, Solheim JC, Jain M, Kumar S, Batra SK. Immune checkpoint blockade in pancreatic cancer: Trudging through the immune desert. Semin Cancer Biol 2022; 86:14-27. [PMID: 36041672 PMCID: PMC9713834 DOI: 10.1016/j.semcancer.2022.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
Pancreatic cancer (PC) has exceptionally high mortality due to ineffective treatment strategies. Immunotherapy, which mobilizes the immune system to fight against cancer, has been proven successful in multiple cancers; however, its application in PC has met with limited success. In this review, we articulated that the pancreatic tumor microenvironment is immuno-suppressive with extensive infiltration by M2-macrophages and myeloid-derived suppressive cells but low numbers of cytotoxic T-cells. In addition, low mutational load and poor antigen processing, presentation, and recognition contribute to the limited response to immunotherapy in PC. Immune checkpoints, the critical targets for immunotherapy, have high expression in PC and stromal cells, regulated by tumor microenvironmental milieu (cytokine and metabolites) and cell-intrinsic mechanisms (epigenetic regulation, oncogenic signaling, and post-translational modifications). Combining immunotherapy with modulators of the tumor microenvironment may facilitate the development of novel therapeutic regimens to manage PC.
Collapse
Affiliation(s)
- Xiaoqi Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alaina C Larson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joyce C Solheim
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
40
|
Laba S, Mallett G, Amarnath S. The depths of PD-1 function within the tumor microenvironment beyond CD8 + T cells. Semin Cancer Biol 2022; 86:1045-1055. [PMID: 34048897 DOI: 10.1016/j.semcancer.2021.05.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Programmed cell death-1 (PD-1; CD279) is a cell surface receptor that is expressed in both innate and adaptive immune cells. The role of PD-1 in adaptive immune cells, specifically in CD8+ T cells, has been thoroughly investigated but its significance in other immune cells is yet to be well established. This review will address the role of PD-1 based therapies in enhancing non-CD8+ T cell immune responses within cancer. Specifically, the expression and function of PD-1 in non-CD8+ immune cell compartments such as CD4+ T helper cell subsets, myeloid cells and innate lymphoid cells (ILCs) will be discussed. By understanding the immune cell specific function of PD-1 within tissue resident innate and adaptive immune cells, it will be possible to stratify patients for PD-1 based therapies for both immunogeneic and non-immunogeneic neoplastic disorders. With this knowledge from fundamental and translational studies, PD-1 based therapies can be utilized to enhance T cell independent immune responses in cancers.
Collapse
Affiliation(s)
- Stephanie Laba
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom.
| | - Grace Mallett
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | - Shoba Amarnath
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom.
| |
Collapse
|
41
|
Cammann C, Israel N, Frentzel S, Jeron A, Topfstedt E, Schüler T, Simeoni L, Zenker M, Fehling HJ, Schraven B, Bruder D, Seifert U. T cell-specific constitutive active SHP2 enhances T cell memory formation and reduces T cell activation. Front Immunol 2022; 13:958616. [PMID: 35983034 PMCID: PMC9379337 DOI: 10.3389/fimmu.2022.958616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Upon antigen recognition by the T cell receptor (TCR), a complex signaling network orchestrated by protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPs) regulates the transmission of the extracellular signal to the nucleus. The role of the PTPs Src-homology 2 (SH2) domain-containing phosphatase 1 (SHP1, Ptpn6) and Src-homology 2 (SH2) domain-containing phosphatase 2 (SHP2, Ptpn11) have been studied in various cell types including T cells. Whereas SHP1 acts as an essential negative regulator of the proximal steps in T cell signalling, the role of SHP2 in T cell activation is still a matter of debate. Here, we analyzed the role of the constitutively active SHP2-D61Y-mutant in T cell activation using knock-in mice expressing the mutant form Ptpn11D61Y in T cells. We observed reduced numbers of CD8+ and increased numbers of CD4+ T cells in the bone marrow and spleen of young and aged SHP2-D61Y-mutant mice as well as in Influenza A Virus (IAV)-infected mice compared to controls. In addition, we found elevated frequencies of effector memory CD8+ T cells and an upregulation of the programmed cell death protein 1 (PD-1)-receptor on both CD4+ and CD8+ T cells. Functional analysis of SHP2-D61Y-mutated T cells revealed an induction of late apoptosis/necrosis, a reduced proliferation and altered signaling upon TCR stimulation. However, the ability of D61Y-mutant mice to clear viral infection was not affected. In conclusion, our data indicate an important regulatory role of SHP2 in T cell function, where the effect is determined by the kinetics of SHP2 phosphatase activity and differs in the presence of the permanently active and the temporally regulated phosphatase. Due to interaction of SHP2 with the PD-1-receptor targeting the protein-tyrosine phosphatase might be a valuable tool to enhance T cell activities in immunotherapy.
Collapse
Affiliation(s)
- Clemens Cammann
- Friedrich Loeffler-Institute for Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Nicole Israel
- Friedrich Loeffler-Institute for Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sarah Frentzel
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Ottovon-Guericke-University Magdeburg, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Andreas Jeron
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Ottovon-Guericke-University Magdeburg, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Eylin Topfstedt
- Friedrich Loeffler-Institute for Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Luca Simeoni
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Dunja Bruder
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Ottovon-Guericke-University Magdeburg, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institute for Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- *Correspondence: Ulrike Seifert,
| |
Collapse
|
42
|
Gupta P, Makkar TK, Goel L, Pahuja M. Role of inflammation and oxidative stress in chemotherapy-induced neurotoxicity. Immunol Res 2022; 70:725-741. [PMID: 35859244 DOI: 10.1007/s12026-022-09307-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
Chemotherapeutic agents may adversely affect the nervous system, including the neural precursor cells as well as the white matter. Although the mechanisms are not completely understood, several hypotheses connecting inflammation and oxidative stress with neurotoxicity are now emerging. The proposed mechanisms differ depending on the class of drug. For example, toxicity due to cisplatin occurs due to activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which alters hippocampal long-term potentiation. Free radical injury is also involved in the cisplatin-mediated neurotoxicity as dysregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) has been seen which protects against the free radical injury by regulating glutathione S-transferases and hemeoxygenase-1 (HO-1). Thus, correcting the imbalance between NF-κB and Nrf2/HO-1 pathways may alleviate cisplatin-induced neurotoxicity. With newer agents like bortezomib, peripheral neuropathy occurs due to up-regulation of TNF-α and IL-6 in the sensory neurons. Superoxide dismutase dysregulation is also involved in bortezomib-induced neuropathy. This article reviews the available literature on inflammation and oxidative stress in neurotoxicity caused by various classes of chemotherapeutic agents. It covers the conventional medicines like platinum compounds, vinca alkaloids, and methotrexate, as well as the newer therapeutic agents like immunomodulators and immune checkpoint inhibitors. A better understanding of the pathophysiology will lead to further advancement in strategies for management of chemotherapy-induced neurotoxicity.
Collapse
Affiliation(s)
- Pooja Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India. .,Coordinator, AIIMS Adverse Drug Reaction Monitoring Centre, Pharmacovigilance Program of India, New Delhi, India.
| | - Tavneet Kaur Makkar
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Lavisha Goel
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Monika Pahuja
- Division of Basic Medical Sciences, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
43
|
Moore EK, Strazza M, Mor A. Combination Approaches to Target PD-1 Signaling in Cancer. Front Immunol 2022; 13:927265. [PMID: 35911672 PMCID: PMC9330480 DOI: 10.3389/fimmu.2022.927265] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer remains the second leading cause of death in the US, accounting for 25% of all deaths nationwide. Immunotherapy techniques bolster the immune cells' ability to target malignant cancer cells and have brought immense improvements in the field of cancer treatments. One important inhibitory protein in T cells, programmed cell death protein 1 (PD-1), has become an invaluable target for cancer immunotherapy. While anti-PD-1 antibody therapy is extremely successful in some patients, in others it fails or even causes further complications, including cancer hyper-progression and immune-related adverse events. Along with countless translational studies of the PD-1 signaling pathway, there are currently close to 5,000 clinical trials for antibodies against PD-1 and its ligand, PD-L1, around 80% of which investigate combinations with other therapies. Nevertheless, more work is needed to better understand the PD-1 signaling pathway and to facilitate new and improved evidence-based combination strategies. In this work, we consolidate recent discoveries of PD-1 signaling mediators and their therapeutic potential in combination with anti-PD-1/PD-L1 agents. We focus on the phosphatases SHP2 and PTPN2; the kinases ITK, VRK2, GSK-3, and CDK4/6; and the signaling adaptor protein PAG. We discuss their biology both in cancer cells and T cells, with a focus on their role in relation to PD-1 to determine their potential in therapeutic combinations. The literature discussed here was obtained from a search of the published literature and ClinicalTrials.gov with the following key terms: checkpoint inhibition, cancer immunotherapy, PD-1, PD-L1, SHP2, PTPN2, ITK, VRK2, CDK4/6, GSK-3, and PAG. Together, we find that all of these proteins are logical and promising targets for combination therapy, and that with a deeper mechanistic understanding they have potential to improve the response rate and decrease adverse events when thoughtfully used in combination with checkpoint inhibitors.
Collapse
Affiliation(s)
- Emily K. Moore
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Marianne Strazza
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Adam Mor
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
44
|
Chen W, Huang Y, Pan W, Xu M, Chen L. Strategies for developing PD-1 inhibitors and future directions. Biochem Pharmacol 2022; 202:115113. [DOI: 10.1016/j.bcp.2022.115113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023]
|
45
|
Immune Checkpoint Receptors Signaling in T Cells. Int J Mol Sci 2022; 23:ijms23073529. [PMID: 35408889 PMCID: PMC8999077 DOI: 10.3390/ijms23073529] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
The characterization of the receptors negatively modulating lymphocyte function is rapidly advancing, driven by success in tumor immunotherapy. As a result, the number of immune checkpoint receptors characterized from a functional perspective and targeted by innovative drugs continues to expand. This review focuses on the less explored area of the signaling mechanisms of these receptors, of those expressed in T cells. Studies conducted mainly on PD-1, CTLA-4, and BTLA have evidenced that the extracellular parts of some of the receptors act as decoy receptors for activating ligands, but in all instances, the tyrosine phosphorylation of their cytoplasmatic tail drives a crucial inhibitory signal. This negative signal is mediated by a few key signal transducers, such as tyrosine phosphatase, inositol phosphatase, and diacylglycerol kinase, which allows them to counteract TCR-mediated activation. The characterization of these signaling pathways is of great interest in the development of therapies for counteracting tumor-infiltrating lymphocyte exhaustion/anergy independently from the receptors involved.
Collapse
|
46
|
Lee YH, Lee HJ, Kim HC, Lee Y, Nam SK, Hupperetz C, Ma JS, Wang X, Singer O, Kim WS, Kim SJ, Koh Y, Jung I, Kim CH. PD-1 and TIGIT downregulation distinctly affect the effector and early memory phenotypes of CD19-targeting CAR T cells. Mol Ther 2022; 30:579-592. [PMID: 34628052 PMCID: PMC8821960 DOI: 10.1016/j.ymthe.2021.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/11/2021] [Accepted: 09/30/2021] [Indexed: 02/04/2023] Open
Abstract
CD19-targeting chimeric antigen receptor (CAR) T cells have become an important therapeutic option for patients with relapsed and refractory B cell malignancies. However, a significant portion of patients still do not benefit from the therapy owing to various resistance mechanisms, including high expression of multiple inhibitory immune checkpoint receptors. Here, we report a lentiviral two-in-one CAR T approach in which two checkpoint receptors are downregulated simultaneously by a dual short hairpin RNA cassette integrated into a CAR vector. Using this system, we evaluated CD19-targeting CAR T cells in the context of four different checkpoint combinations-PD-1/TIM-3, PD-1/LAG-3, PD-1/CTLA-4, and PD-1/TIGIT-and found that CAR T cells with PD-1/TIGIT downregulation uniquely exerted synergistic antitumor effects. Importantly, functional and phenotypic analyses suggested that downregulation of PD-1 enhances short-term effector function, whereas downregulation of TIGIT is primarily responsible for maintaining a less differentiated/exhausted state, providing a potential mechanism for the observed synergy. The PD-1/TIGIT-downregulated CAR T cells generated from diffuse large B cell lymphoma patient-derived T cells also showed robust antitumor activity and significantly improved persistence in vivo. The efficacy and safety of PD-1/TIGIT-downregulated CD19-targeting CAR T cells are currently being evaluated in adult patients with relapsed or refractory large B cell lymphoma (ClinicalTrials.gov: NCT04836507).
Collapse
Affiliation(s)
- Young-Ho Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea,Curocell Inc., Daejeon 34109, Republic of Korea,Corresponding author: Young-Ho Lee, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| | - Hyeong Ji Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea,Curocell Inc., Daejeon 34109, Republic of Korea
| | | | - Yujean Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Su Kyung Nam
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Cedric Hupperetz
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jennifer S.Y. Ma
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Xinxin Wang
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Oded Singer
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Won Seog Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Seok Jin Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Chan Hyuk Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea,Corresponding author: Chan Hyuk Kim, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
47
|
Mi Y, Han J, Zhu J, Jin T. Role of the PD-1/PD-L1 Signaling in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Recent Insights and Future Directions. Mol Neurobiol 2021; 58:6249-6271. [PMID: 34480337 PMCID: PMC8639577 DOI: 10.1007/s12035-021-02495-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is an autoimmunity-related chronic demyelination disease of the central nervous system (CNS), causing young disability. Currently, highly specific immunotherapies for MS are still lacking. Programmed cell death 1 (PD-1) is an immunosuppressive co-stimulatory molecule, which is expressed on activated T lymphocytes, B lymphocytes, natural killer cells, and other immune cells. PD-L1, the ligand of PD-1, is expressed on T lymphocytes, B lymphocytes, dendritic cells, and macrophages. PD-1/PD-L1 delivers negative regulatory signals to immune cells, maintaining immune tolerance and inhibiting autoimmunity. This review comprehensively summarizes current insights into the role of PD-1/PD-L1 signaling in MS and its animal model experimental autoimmune encephalomyelitis (EAE). The potentiality of PD-1/PD-L1 as biomarkers or therapeutic targets for MS will also be discussed.
Collapse
Affiliation(s)
- Yan Mi
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| | - Jinming Han
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
- Present Address: Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| |
Collapse
|
48
|
Zhang J, Dai Z, Yan C, Zhang W, Wang D, Tang D. A new biological triangle in cancer: intestinal microbiota, immune checkpoint inhibitors and antibiotics. Clin Transl Oncol 2021; 23:2415-2430. [PMID: 34125407 PMCID: PMC8557192 DOI: 10.1007/s12094-021-02659-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy has revolutionized the treatment of many malignant tumors. Although immune checkpoint inhibitors (ICIs) can reactivate the anti-tumor activity of immune cells, sensitivity to immune checkpoint inhibitor therapy depends on the complex tumor immune processes. In recent years, numerous researches have demonstrated the role of intestinal microbiota in immunity and metabolism of the tumor microenvironment, as well as the efficacy of immunotherapy. Epidemiological studies have further demonstrated the efficacy of antibiotic therapy on the probability of patients' response to ICIs and predictability of the short-term survival of cancer patients. Disturbance to the intestinal microbiota significantly affects ICIs-mediated immune reconstitution and is considered a possible mechanism underlying the development of adverse effects during antibiotic-based ICIs treatment. Intestinal microbiota, antibiotics, and ICIs have gradually become important considerations for the titer of immunotherapy. In the case of immunotherapy, the rational use of antibiotics and intestinal microbiota is expected to yield a better prognosis for patients with malignant tumors.
Collapse
Affiliation(s)
- Jie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhujiang Dai
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Cheng Yan
- Dalian Medical University, Dalian, China
| | - Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
49
|
Xu Z, Guo C, Ye Q, Shi Y, Sun Y, Zhang J, Huang J, Huang Y, Zeng C, Zhang X, Ke Y, Cheng H. Endothelial deletion of SHP2 suppresses tumor angiogenesis and promotes vascular normalization. Nat Commun 2021; 12:6310. [PMID: 34728626 PMCID: PMC8564544 DOI: 10.1038/s41467-021-26697-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
SHP2 mediates the activities of multiple receptor tyrosine kinase signaling and its function in endothelial processes has been explored extensively. However, genetic studies on the role of SHP2 in tumor angiogenesis have not been conducted. Here, we show that SHP2 is activated in tumor endothelia. Shp2 deletion and pharmacological inhibition reduce tumor growth and microvascular density in multiple mouse tumor models. Shp2 deletion also leads to tumor vascular normalization, indicated by increased pericyte coverage and vessel perfusion. SHP2 inefficiency impairs endothelial cell proliferation, migration, and tubulogenesis through downregulating the expression of proangiogenic SRY-Box transcription factor 7 (SOX7), whose re-expression restores endothelial function in SHP2-knockdown cells and tumor growth, angiogenesis, and vascular abnormalization in Shp2-deleted mice. SHP2 stabilizes apoptosis signal-regulating kinase 1 (ASK1), which regulates SOX7 expression mediated by c-Jun. Our studies suggest SHP2 in tumor associated endothelial cells is a promising anti-angiogenic target for cancer therapy.
Collapse
Affiliation(s)
- Zhiyong Xu
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XThe Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Chunyi Guo
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaoli Ye
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueli Shi
- grid.13402.340000 0004 1759 700XThe Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yihui Sun
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhang
- grid.13402.340000 0004 1759 700XDepartment of Urology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Huang
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yizhou Huang
- grid.13402.340000 0004 1759 700XDepartment of Gynecology of Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunlai Zeng
- grid.469539.40000 0004 1758 2449Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Xue Zhang
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, China
| | - Hongqiang Cheng
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XDepartment of Cardiology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
50
|
Pisibon C, Ouertani A, Bertolotto C, Ballotti R, Cheli Y. Immune Checkpoints in Cancers: From Signaling to the Clinic. Cancers (Basel) 2021; 13:cancers13184573. [PMID: 34572799 PMCID: PMC8468441 DOI: 10.3390/cancers13184573] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
The immune system is known to help fight cancers. Ten years ago, the first immune checkpoint inhibitor targeting CTLA4 was approved by the FDA to treat patients with metastatic melanoma. Since then, immune checkpoint therapies have revolutionized the field of oncology and the treatment of cancer patients. Numerous immune checkpoint inhibitors have been developed and tested, alone or in combination with other treatments, in melanoma and other cancers, with overall clear benefits to patient outcomes. However, many patients fail to respond or develop resistance to these treatments. It is therefore essential to decipher the mechanisms of action of immune checkpoints and to understand how immune cells are affected by signaling to be able to understand and overcome resistance. In this review, we discuss the signaling and effects of each immune checkpoint on different immune cells and their biological and clinical relevance. Restoring the functionality of T cells and their coordination with other immune cells is necessary to overcome resistance and help design new clinical immunotherapy strategies. In this respect, NK cells have recently been implicated in the resistance to anti-PD1 evoked by a protein secreted by melanoma, ITGBL1. The complexity of this network will have to be considered to improve the efficiency of future immunotherapies and may lead to the discovery of new immune checkpoints.
Collapse
Affiliation(s)
- Céline Pisibon
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
| | - Amira Ouertani
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
| | - Corine Bertolotto
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
| | - Robert Ballotti
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
| | - Yann Cheli
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
- Correspondence:
| |
Collapse
|