1
|
Seo C, Song J, Choi Y, Kim T, Lee D, Jon S. A Cross-Linked Cyclosiloxane Polymer Matrix as a Platform Enabling Long-Term Culture of Human Induced Pluripotent Stem Cells with Naïve-Like Features. Biomater Res 2025; 29:0197. [PMID: 40296880 PMCID: PMC12034926 DOI: 10.34133/bmr.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
Culture platforms for human induced pluripotent stem cells (hiPSCs) that rely on feeder cells or extracellular matrices (ECMs) face substantial limitations for practical regenerative medicine applications, including undefined components, high costs, and a tendency to maintain hiPSCs in the primed pluripotent state, which has lower differentiation potential than the naïve state. To overcome these challenges, we developed a long-term hiPSC culture platform based on a cross-linked cyclosiloxane polymer matrix that preserves pluripotency with naïve-like characteristics. Through optimization, we identified an ideal cyclosiloxane polymer matrix, designated as poly-Z, which supported the growth of hiPSCs as spheroids. Even after 60 d of continuous culture, hiPSC spheroids maintained on poly-Z retained pluripotency markers and normal karyotypes at levels comparable to those of hiPSC colonies cultured on conventional vitronectin (VN)-coated plates. Furthermore, mRNA sequencing revealed that hiPSC spheroids cultured on poly-Z not only exhibited up-regulation of typical pluripotency-related genes but also showed increased expression of genes associated with the naïve pluripotent state, in contrast to the primed state observed in hiPSCs cultured on VN-coated plates or in suspension culture. Gene ontology (GO) analysis and gene set enrichment analysis (GSEA) further suggested that the down-regulation of genes involved in cell-ECM interactions contributed to the induction of naïve-like features in poly-Z-cultured hiPSC spheroids. These findings highlight the potential of cross-linked cyclosiloxane-based polymer matrices as an innovative platform for human pluripotent stem cell research and regenerative medicine.
Collapse
Affiliation(s)
- Changjin Seo
- Department of Biological Sciences,
KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine,
Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junhyuk Song
- Department of Biological Sciences,
KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine,
Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | | | - Taemook Kim
- Deargen Inc., Daejeon 35220, Republic of Korea
| | - Daeyoup Lee
- Department of Biological Sciences,
KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences,
KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine,
Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Zhu L, Zheng R, Wen S, Jiang W. High-resolution single-cell RNA-seq data and heterogeneity analysis of human ESCs and ffEPSCs. Sci Data 2025; 12:669. [PMID: 40263373 PMCID: PMC12015255 DOI: 10.1038/s41597-025-05024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/16/2025] [Indexed: 04/24/2025] Open
Abstract
This study presents a comprehensive transcriptomic analysis of feeder-free extended pluripotent stem cells (ffEPSCs) and their parental human embryonic stem cells (ESCs), providing new insights into understanding human early development and cellular heterogeneity of pluripotency. Leveraging Smart-seq2-based single-cell RNA sequencing (scRNA-seq), we have compared gene expression profiles between ESCs and ffEPSCs and uncovered distinct subpopulations within both groups. Through pseudotime analysis, we have mapped the transition process from ESCs to ffEPSCs, revealing critical molecular pathways involved in the shift from a primed pluripotency to an extended pluripotent state. Additionally, we have employed repeat sequence analysis based on the latest T2T database and identified the stage-specific repeat elements contributing to regulating pluripotency and developmental transitions. This dataset deepens our understanding on early pluripotency and highlights the role of repeat sequences in early embryonic development. Our findings thus offer valuable resources for researchers in stem cell biology, pluripotency, early embryonic development, and potential cell therapy and regenerative medical applications.
Collapse
Affiliation(s)
- Lihang Zhu
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Ran Zheng
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Shanshan Wen
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
3
|
Zhang W, Fu H, Huang Y, Zeng M, Ouyang X, Wang X, Ruan D, Ma L, Hu X, Guo J, Galardi JW, Dougan G, Yeung WSB, Li L, Liu J, Feschotte C, Liu P. METTL3-dependent m6A RNA methylation regulates transposable elements and represses human naïve pluripotency through transposable element-derived enhancers. Nucleic Acids Res 2025; 53:gkaf349. [PMID: 40298111 PMCID: PMC12038396 DOI: 10.1093/nar/gkaf349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/06/2025] [Accepted: 04/26/2025] [Indexed: 04/30/2025] Open
Abstract
N 6-methyladenosine (m6A) is the most prevalent messenger RNA modification with diverse regulatory roles in mammalian cells. While its functions are well-documented in mouse embryonic stem cells (mESCs), its role in human pluripotent stem cells (hPSCs) remains to be fully explored. METTL3 is the main enzyme responsible for m6A deposition. Here, using a METTL3 inducible knockout (iKO) system, we uncovered that, unlike in mESCs, METTL3 was indispensable for hPSC maintenance. Importantly, loss of METTL3 caused significant upregulation of pluripotency factors including naïve pluripotency genes and failure to exit pluripotency, thus impairing stem cell differentiation towards both embryonic and extraembryonic cell lineages. Mechanistically, METTL3 iKO in hPSCs promoted expression and enhancer activities of two primate-specific transposable elements (TEs), SVA_D and HERVK/LTR5_Hs. At SVA_D elements, loss of METTL3 leads to reduced H3K9me3 deposition. On the other hand, the activation of LTR5_Hs in the METTL3 iKO cells is accompanied by increased chromatin accessibility and binding pluripotency factors. The activated SVA_D and LTR5_Hs elements can act as enhancers and promote nearby naïve gene expression by directly interacting with their promoters. Together these findings reveal that METTL3-dependent m6A RNA methylation plays critical roles in suppressing TE expression and in regulating the human pluripotency network.
Collapse
Affiliation(s)
- Weiyu Zhang
- Centre for Translational Stem Cell Biology, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Haifeng Fu
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yunying Huang
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ming Zeng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Key laboratory for reproductive Medicine of Guangdong Province, The Third affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xiangyu Ouyang
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiao Wang
- Centre for Translational Stem Cell Biology, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Degong Ruan
- Centre for Translational Stem Cell Biology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Liyang Ma
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xinning Hu
- Centre for Translational Stem Cell Biology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jilong Guo
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Justin W Galardi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Gordon Dougan
- Centre for Translational Stem Cell Biology, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Medicine, Jeffrey Cheah Biomedical Centre, Cambridge University, Puddicombe Way, Cambridge Biomedical Campus, Cambridge CB2 0AW, United Kingdom
| | - William S B Yeung
- Centre for Translational Stem Cell Biology, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong ‐ Shenzhen Hospital, Shenzhen 518000, China
| | - Lei Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Key laboratory for reproductive Medicine of Guangdong Province, The Third affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Key laboratory for reproductive Medicine of Guangdong Province, The Third affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Pentao Liu
- Centre for Translational Stem Cell Biology, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
4
|
Okubo C, Nakamura M, Sato M, Shichino Y, Mito M, Takashima Y, Iwasaki S, Takahashi K. EIF3D safeguards the homeostasis of key signaling pathways in human primed pluripotency. SCIENCE ADVANCES 2025; 11:eadq5484. [PMID: 40203091 PMCID: PMC11980838 DOI: 10.1126/sciadv.adq5484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Although pluripotent stem cell (PSC) properties, such as differentiation and infinite proliferation, have been well documented within the frameworks of transcription factor networks, epigenomes, and signal transduction, they remain unclear and fragmented. Directing attention toward translational regulation as a bridge between these events can yield additional insights into previously unexplained mechanisms. Our functional CRISPR interference screen-based approach revealed that EIF3D, a translation initiation factor, is crucial for maintaining primed pluripotency. Loss of EIF3D disrupted the balance of pluripotency-associated signaling pathways, thereby compromising primed pluripotency. Moreover, EIF3D ensured robust proliferation by controlling the translation of various p53 regulators, which maintain low p53 activity in the undifferentiated state. In this way, EIF3D-mediated translation contributes to tuning the homeostasis of the primed pluripotency networks, ensuring the maintenance of an undifferentiated state with high proliferative potential. This study provides further insights into the translation network in maintaining pluripotency.
Collapse
Affiliation(s)
- Chikako Okubo
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Michiko Nakamura
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Masae Sato
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Yasuhiro Takashima
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Kazutoshi Takahashi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
5
|
Colomer-Boronat A, Knol L, Peris G, Sanchez L, Peluso S, Tristan-Ramos P, Gazquez-Gutierrez A, Chin P, Gordon K, Barturen G, Hill R, Sanchez-Luque F, Garcia-Perez J, Ivens A, Macias S, Heras S. DGCR8 haploinsufficiency leads to primate-specific RNA dysregulation and pluripotency defects. Nucleic Acids Res 2025; 53:gkaf197. [PMID: 40138719 PMCID: PMC11941479 DOI: 10.1093/nar/gkaf197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
The 22q11.2 deletion syndrome (22qDS) is a human disorder where the majority of clinical manifestations originate during embryonic development. 22qDS is caused by a microdeletion in one chromosome 22, including DGCR8, an essential gene for microRNA (miRNA) production. However, the impact of DGCR8 hemizygosity on human development is still unclear. In this study, we generated two human pluripotent cell models containing a single functional DGCR8 allele to elucidate its role in early development. DGCR8+/- human embryonic stem cells (hESCs) showed increased apoptosis as well as self-renewal and differentiation defects in both the naïve and primed states. The expression of primate-specific miRNAs was largely affected, due to impaired miRNA processing and chromatin accessibility. DGCR8+/- hESCs also displayed a pronounced reduction in human endogenous retrovirus class H (HERVH) expression, a primate-specific retroelement essential for pluripotency maintenance. The reintroduction of miRNAs belonging to the primate-specific C19MC cluster as well as the miR-371-3 cluster rescued the defects of DGCR8+/- cells. Mechanistically, downregulation of HERVH by depletion of primate-specific miRNAs was mediated by KLF4. Altogether, we show that DGCR8 is haploinsufficient in humans and that miRNAs and transposable elements may have co-evolved in primates as part of an essential regulatory network to maintain stem cell identity.
Collapse
Affiliation(s)
- Ana Colomer-Boronat
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- GENYO – Centre for Genomics and Oncological Research – Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
| | - Lisanne I Knol
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Guillermo Peris
- GENYO – Centre for Genomics and Oncological Research – Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellon de la Plana, Spain
| | - Laura Sanchez
- GENYO – Centre for Genomics and Oncological Research – Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
| | - Silvia Peluso
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Pablo Tristan-Ramos
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- GENYO – Centre for Genomics and Oncological Research – Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
| | - Ana Gazquez-Gutierrez
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- GENYO – Centre for Genomics and Oncological Research – Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
| | - Priscilla Chin
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Katrina Gordon
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Guillermo Barturen
- GENYO – Centre for Genomics and Oncological Research – Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
- Department of Genetics, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Robert E Hill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Francisco J Sanchez-Luque
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), Spanish National Research Council (CSIC), PTS Granada, 18016 Granada, Spain
| | - Jose Luis Garcia-Perez
- GENYO – Centre for Genomics and Oncological Research – Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Sara R Heras
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- GENYO – Centre for Genomics and Oncological Research – Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
| |
Collapse
|
6
|
Li Z, Li W, Zhang C, Wang J, Geng X, Qu B, Yue Y, Li X. Fatty acid desaturase 2 (FADS2) affects the pluripotency of hESCs by regulating energy metabolism. Int J Biol Macromol 2025; 295:139449. [PMID: 39756764 DOI: 10.1016/j.ijbiomac.2024.139449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
Human embryonic stem cells (hESCs) possess the ability to differentiate into various cell types, which is intricately linked to fatty acid synthesis and metabolism. Fatty acid desaturase 2 (FADS2) plays important role in fatty acid metabolism. In this study, we elucidate that the inhibition of FADS2 by SC-26196 enhances hESC pluripotency by upregulating key pluripotency genes such as POU5F1, NANOG, and KLF5. Moreover, SC-26196 treatment alters the fatty acid metabolic profile of hESCs, decreasing the synthesis of saturated fatty acids (SFAs) while increasing the content of monounsaturated fatty acids (MUFAs). Meanwhile, transcriptomic and proteomic analyses revealed that under FADS2 inhibition, hESCs maintain pluripotency primarily through enhanced oxidative phosphorylation and modified fatty acid metabolism. Knockdown and overexpression experiments confirm that FADS2 is a crucial regulator of these metabolic processes, and is essential for sustaining hESCs pluripotency. Collectively, this study unveils the pivotal role of FADS2 in the metabolic regulation of hESCs and provide new insights into the mechanisms governing pluripotency.
Collapse
Affiliation(s)
- Zihong Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Wei Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Chenchen Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Jing Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Xiaoxiong Geng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Burong Qu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Yongli Yue
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Xueling Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
7
|
Zou X, He Y, Zhao Z, Li J, Qu H, Liu Z, Chen P, Ji J, Zhao H, Shu D, Luo C. Single-cell RNA-seq offer new insights into the cell fate decision of the primordial germ cells. Int J Biol Macromol 2025; 293:139136. [PMID: 39740725 DOI: 10.1016/j.ijbiomac.2024.139136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/19/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
The faithful production of primordial germ cells (PGCs) in vitro opens a wide range of novel applications in reproductive biology and medicine. However, the reproducibility of PGCs culture conditions across different laboratories or breeds remains a challenge. Therefore, it is necessary to research the molecular dynamics that lead to the gradual establishment of cultured PGCs lines network. Here, the results of single-cell RNA-seq indicated that the cell cycle drove cellular heterogeneity. The active populations engaged in PGC self-renewal and the characteristics of the aging cell fate have been identified. The active self-renewal populations presented a rising expression of DNA repair genes, couple with a high proportion of cells in G1/S phase and a low frequency of cells in G2 phase. Notably, Hippo, FoxO, AMPK and MAPK pathways are active within these populations. The combination of six activator or inhibitors, targeting these active pathways, resulted in a significantly higher proliferation rate of PGCs and an increased number of cells entering the G1 and S phases. Importantly, they greatly reduced the establishment time to a minimum of 26 days and increased the efficiency of male PGC line establishment to 59 % in FS medium. Our results provided several new insights into the PGCs.
Collapse
Affiliation(s)
- Xian Zou
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yanhua He
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhifeng Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianbo Li
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hao Qu
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zijing Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Peng Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jian Ji
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haoyi Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Dingming Shu
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Chenglong Luo
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
8
|
Lea G, Doria-Borrell P, Ferrero-Micó A, Varma A, Simon C, Anderson H, Biggins L, De Clercq K, Andrews S, Niakan KK, Gahurova L, McGovern N, Pérez-García V, Hanna CW. Ectopic expression of DNMT3L in human trophoblast stem cells restores features of the placental methylome. Cell Stem Cell 2025; 32:276-292.e9. [PMID: 39788122 DOI: 10.1016/j.stem.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/07/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
The placental DNA methylation landscape is unique, with widespread partially methylated domains (PMDs). The placental "methylome" is conserved across mammals, a shared feature of many cancers, and extensively studied for links with pregnancy complications. Human trophoblast stem cells (hTSCs) offer exciting potential for functional studies to better understand this epigenetic feature; however, whether the hTSC epigenome recapitulates primary trophoblast remains unclear. We find that hTSCs exhibit an atypical methylome compared with trophectoderm and 1st trimester cytotrophoblast. Regardless of cell origin, oxygen levels, or culture conditions, hTSCs show localized DNA methylation within transcribed gene bodies and a complete loss of PMDs. Unlike early human trophoblasts, hTSCs display a notable absence of DNMT3L expression, which is necessary for PMD establishment in mouse trophoblasts. Remarkably, we demonstrate that ectopic expression of DNMT3L in hTSCs restores placental PMDs, supporting a conserved role for DNMT3L in de novo methylation in trophoblast development in human embryogenesis.
Collapse
Affiliation(s)
- Georgia Lea
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | - Anakha Varma
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Claire Simon
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Holly Anderson
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Laura Biggins
- Babraham Bioinformatics, Babraham Institute, Cambridge, UK
| | | | - Simon Andrews
- Babraham Bioinformatics, Babraham Institute, Cambridge, UK
| | - Kathy K Niakan
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Lenka Gahurova
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Naomi McGovern
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Vicente Pérez-García
- Centro de Investigación Príncipe Felipe, Valencia, Spain; Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| | - Courtney W Hanna
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Lu Y, Qin M, Qi X, Yang M, Zhai F, Zhang J, Yan Z, Yan L, Qiao J, Yuan P. Sex differences in human pre-gastrulation embryos. SCIENCE CHINA. LIFE SCIENCES 2025; 68:397-415. [PMID: 39327393 DOI: 10.1007/s11427-024-2721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024]
Abstract
Human fetuses exhibit notable sex differences in growth rate and response to the intrauterine environment, yet their origins and underlying mechanisms remain uncertain. Here, we conduct a detailed investigation of sex differences in human pre-gastrulation embryos. The lower methylation and incomplete inactivation of the X chromosome in females, as well as the sex-specific cell-cell communication patterns, contribute to sex-differential transcription. Male trophectoderm is more inclined toward syncytiotrophoblast differentiation and exhibits a stronger hormone secretion capacity, while female trophectoderm tends to retain cytotrophoblast program with stronger mitochondrial function as well as higher vasculogenesis and immunotolerance signals. Male primitive endoderm initiates the anterior visceral endoderm transcriptional program earlier than females. The cell cycle activities of the epiblast and primitive endoderm are higher in males compared to females, while the situation is opposite in the trophectoderm. In conclusion, our study provides in-depth insights into the sex differences in human pre-gastrulation embryos and contributes to unraveling the origins of the sex differences in human fetal development.
Collapse
Affiliation(s)
- Yongjie Lu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Meng Qin
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xintong Qi
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ming Yang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Fan Zhai
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jiaqi Zhang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Zhiqiang Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
| | - Liying Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Peng Yuan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
10
|
Katznelson A, Hernandez B, Fahning H, Tapia K, Burton A, Zhang J, Torres-Padilla ME, Plachta N, Zaret KS, McCarthy RL. ERH Enables Early Embryonic Differentiation and Overlays H3K9me3 Heterochromatin on a Cryptic Pluripotency H3K9me3 Landscape in Somatic Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.06.597604. [PMID: 38895478 PMCID: PMC11185749 DOI: 10.1101/2024.06.06.597604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Enhancer of Rudimentary Homolog (ERH) is an evolutionarily conserved protein originally characterized in fission yeast 1 and recently shown to maintain H3K9me3 in human fibroblasts 2 . Here, we find that ERH depletion in fibroblasts reverts the H3K9me3 landscape to an embryonic stem cell (ESC) state and enables activation of naïve and pluripotency genes and transposable elements during induced pluripotent stem cell (iPSC) reprogramming. We find that ERH similarly represses totipotent and alternative lineage programs during mouse preimplantation development and is required for proper segregation of the inner cell mass and trophectoderm cell lineages. During human ESC differentiation into germ layer lineages, ERH silences naïve and pluripotency genes, transposable elements, and alternative lineage somatic genes. As in fission yeast, we find that mammalian ERH interacts with RNA-binding proteins to engage and repress its chromatin targets. Our findings reveal a fundamental role for ERH in cell fate specification via the initiation and maintenance of early developmental gene repression.
Collapse
|
11
|
Levin-Ferreyra F, Kodali S, Cui Y, Pashos ARS, Pessina P, Brumbaugh J, Di Stefano B. Transposable element activity captures human pluripotent cell states. EMBO Rep 2025; 26:329-352. [PMID: 39668246 PMCID: PMC11772670 DOI: 10.1038/s44319-024-00343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024] Open
Abstract
Human pluripotent stem cells (hPSCs) exist in multiple, transcriptionally distinct states and serve as powerful models for studying human development. Despite their significance, the molecular determinants and pathways governing these pluripotent states remain incompletely understood. Here, we demonstrate that transposable elements act as sensitive indicators of distinct pluripotent cell states. We engineered hPSCs with fluorescent reporters to capture the temporal expression dynamics of two state-specific transposable elements, LTR5_Hs, and MER51B. This dual reporter system enables real-time monitoring and isolation of stem cells transitioning from naïve to primed pluripotency and further towards differentiation, serving as a more accurate readout of pluripotency states compared to conventional systems. Unexpectedly, we identified a rare, metastable cell population within primed hPSCs, marked by transcripts related to preimplantation embryo development and which is associated with a DNA damage response. Moreover, our system establishes the chromatin factor NSD1 and the RNA-binding protein FUS as potent molecular safeguards of primed pluripotency. Our study introduces a novel system for investigating cellular potency and provides key insights into the regulation of embryonic development.
Collapse
Affiliation(s)
- Florencia Levin-Ferreyra
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Srikanth Kodali
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Yingzhi Cui
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Alison R S Pashos
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Patrizia Pessina
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bruno Di Stefano
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
12
|
Bian Z, Chen B, Shi G, Yuan H, Zhou Y, Jiang B, Li L, Su H, Zhang Y. Single-cell landscape identified SERPINB9 as a key player contributing to stemness and metastasis in non-seminomas. Cell Death Dis 2024; 15:812. [PMID: 39528470 PMCID: PMC11555415 DOI: 10.1038/s41419-024-07220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Embryonal carcinoma (EC), characterized by a high degree of stemness similar to that of embryonic stem cells, is the most malignant subtype within non-seminomatous testicular germ cell tumors (TGCTs). However, the mechanisms underlying its malignancy remain unknown. In this study, we employed single-cell RNA sequencing to analyze four non-seminoma samples. Our differential expression analysis revealed high expression of SERPINB9 in metastatic EC cells. We conducted in vitro experiments to further investigate SERPINB9's role in the progression of EC. Functionally, the knockdown of SERPINB9 in NCCIT and NTERA-2 leads to a diminished migratory capability and decreased cis-platin resistance, as demonstrated by Transwell migration assay and drug sensitivity assay. Moreover, embryoid bodies showed reduced size and lower OCT4 expression, alongside heightened expression of differentiation markers AFP, ACTA2, and CD57 in shSERPINB9 cells. In vivo, the role of SERPINB9 in maintaining cancer stemness was validated by the limiting dilution assay. Mechanistically, Bulk RNA-seq further showed downregulation of ERK1/2 signaling and WNT signaling pathways with concomitant upregulation of differentiation pathways subsequent to SERPINB9 knockdown. Additionally, the analysis indicated increased levels of cytokines linked to tertiary lymphoid structures (TLS), such as IL6, IL11, IL15, CCL2, CCL5, and CXCL13 in shSERPINB9 cells, which were further validated by ELISA. Our research indicates that SERPINB9 plays a key role in driving tumor progression by enhancing tumor stemness and suppressing TLS. This study stands as the first to elucidate the molecular signature of non-seminomas at a single-cell level, presenting a wealth of promising targets with substantial potential for informing the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Zhouliang Bian
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, PR China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, PR China
| | - Biying Chen
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, PR China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, PR China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Haihua Yuan
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, PR China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, PR China
| | - Yue Zhou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Bin Jiang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, PR China.
| | - Long Li
- Department of Urology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.
| | - Hengchuan Su
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, PR China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, PR China.
| |
Collapse
|
13
|
Peirone S, Tirtei E, Campello A, Parlato C, Guarrera S, Mareschi K, Marini E, Asaftei SD, Bertero L, Papotti M, Priante F, Perrone S, Cereda M, Fagioli F. Impaired neutrophil-mediated cell death drives Ewing's Sarcoma in the background of Down syndrome. Front Oncol 2024; 14:1429833. [PMID: 39421445 PMCID: PMC11484044 DOI: 10.3389/fonc.2024.1429833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Ewing Sarcoma (EWS) has been reported in seven children with Down syndrome (DS). To date, a detailed assessment of this solid tumour in DS patients is yet to be made. Methods Here, we characterise a chemo-resistant mediastinal EWS in a 2-year-old DS child, the youngest ever reported case, by exploiting sequencing approaches. Results The tumour showed a neuroectodermal development driven by the EWSR1-FLI1 fusion. The inherited myeloperoxidase deficiency of the patient caused failure of neutrophil-mediated cell death and promoted genomic instability. Discussion In this context, the tumour underwent genome-wide near haploidisation resulting in a massive overexpression of pro-inflammatory cytokines. Recruitment of defective neutrophils fostered rapid evolution of this EWS.
Collapse
Affiliation(s)
- Serena Peirone
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
| | - Elisa Tirtei
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Anna Campello
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
| | - Caterina Parlato
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Simonetta Guarrera
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Katia Mareschi
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Elena Marini
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | | | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Mauro Papotti
- Pathology Unit, Department of Oncology, University of Turin, Turin, Italy
| | - Francesca Priante
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Sarah Perrone
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Matteo Cereda
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
| | - Franca Fagioli
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| |
Collapse
|
14
|
Glass MR, Waxman EA, Yamashita S, Lafferty M, Beltran AA, Farah T, Patel NK, Singla R, Matoba N, Ahmed S, Srivastava M, Drake E, Davis LT, Yeturi M, Sun K, Love MI, Hashimoto-Torii K, French DL, Stein JL. Cross-site reproducibility of human cortical organoids reveals consistent cell type composition and architecture. Stem Cell Reports 2024; 19:1351-1367. [PMID: 39178845 PMCID: PMC11411306 DOI: 10.1016/j.stemcr.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024] Open
Abstract
While guided human cortical organoid (hCO) protocols reproducibly generate cortical cell types at one site, variability in hCO phenotypes across sites using a harmonized protocol has not yet been evaluated. To determine the cross-site reproducibility of hCO differentiation, three independent research groups assayed hCOs in multiple differentiation replicates from one induced pluripotent stem cell (iPSC) line using a harmonized miniaturized spinning bioreactor protocol across 3 months. hCOs were mostly cortical progenitor and neuronal cell types in reproducible proportions that were consistently organized in cortical wall-like buds. Cross-site differences were detected in hCO size and expression of metabolism and cellular stress genes. Variability in hCO phenotypes correlated with stem cell gene expression prior to differentiation and technical factors associated with seeding, suggesting iPSC quality and treatment are important for differentiation outcomes. Cross-site reproducibility of hCO cell type proportions and organization encourages future prospective meta-analytic studies modeling neurodevelopmental disorders in hCOs.
Collapse
Affiliation(s)
- Madison R Glass
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elisa A Waxman
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Satoshi Yamashita
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Michael Lafferty
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alvaro A Beltran
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tala Farah
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Niyanta K Patel
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rubal Singla
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nana Matoba
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sara Ahmed
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mary Srivastava
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emma Drake
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Liam T Davis
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meghana Yeturi
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kexin Sun
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA; Departments of Pediatrics, and Pharmacology & Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason L Stein
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Edenhofer FC, Térmeg A, Ohnuki M, Jocher J, Kliesmete Z, Briem E, Hellmann I, Enard W. Generation and characterization of inducible KRAB-dCas9 iPSCs from primates for cross-species CRISPRi. iScience 2024; 27:110090. [PMID: 38947524 PMCID: PMC11214527 DOI: 10.1016/j.isci.2024.110090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/28/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Comparisons of molecular phenotypes across primates provide unique information to understand human biology and evolution, and single-cell RNA-seq CRISPR interference (CRISPRi) screens are a powerful approach to analyze them. Here, we generate and validate three human, three gorilla, and two cynomolgus iPS cell lines that carry a dox-inducible KRAB-dCas9 construct at the AAVS1 locus. We show that despite variable expression levels of KRAB-dCas9 among lines, comparable downregulation of target genes and comparable phenotypic effects are observed in a single-cell RNA-seq CRISPRi screen. Hence, we provide valuable resources for performing and further extending CRISPRi in human and non-human primates.
Collapse
Affiliation(s)
- Fiona C. Edenhofer
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Anita Térmeg
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Mari Ohnuki
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto 606-8501, Japan
- Hakubi Center, Kyoto University, Kyoto 606-8501, Japan
| | - Jessica Jocher
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Zane Kliesmete
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Eva Briem
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Ines Hellmann
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| |
Collapse
|
16
|
Li S, Yang M, Shen H, Ding L, Lyu X, Lin K, Ong J, Du P. Capturing totipotency in human cells through spliceosomal repression. Cell 2024; 187:3284-3302.e23. [PMID: 38843832 DOI: 10.1016/j.cell.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/01/2023] [Accepted: 05/03/2024] [Indexed: 06/23/2024]
Abstract
The cleavage of zygotes generates totipotent blastomeres. In human 8-cell blastomeres, zygotic genome activation (ZGA) occurs to initiate the ontogenesis program. However, capturing and maintaining totipotency in human cells pose significant challenges. Here, we realize culturing human totipotent blastomere-like cells (hTBLCs). We find that splicing inhibition can transiently reprogram human pluripotent stem cells into ZGA-like cells (ZLCs), which subsequently transition into stable hTBLCs after long-term passaging. Distinct from reported 8-cell-like cells (8CLCs), both ZLCs and hTBLCs widely silence pluripotent genes. Interestingly, ZLCs activate a particular group of ZGA-specific genes, and hTBLCs are enriched with pre-ZGA-specific genes. During spontaneous differentiation, hTBLCs re-enter the intermediate ZLC stage and further generate epiblast (EPI)-, primitive endoderm (PrE)-, and trophectoderm (TE)-like lineages, effectively recapitulating human pre-implantation development. Possessing both embryonic and extraembryonic developmental potency, hTBLCs can autonomously generate blastocyst-like structures in vitro without external cell signaling. In summary, our study provides key criteria and insights into human cell totipotency.
Collapse
Affiliation(s)
- Shiyu Li
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Min Yang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shen
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Li Ding
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xuehui Lyu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Kexin Lin
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jennie Ong
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China.
| |
Collapse
|
17
|
Radley A, Boeing S, Smith A. Branching topology of the human embryo transcriptome revealed by Entropy Sort Feature Weighting. Development 2024; 151:dev202832. [PMID: 38691188 PMCID: PMC11213519 DOI: 10.1242/dev.202832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Analysis of single cell transcriptomics (scRNA-seq) data is typically performed after subsetting to highly variable genes (HVGs). Here, we show that Entropy Sorting provides an alternative mathematical framework for feature selection. On synthetic datasets, continuous Entropy Sort Feature Weighting (cESFW) outperforms HVG selection in distinguishing cell-state-specific genes. We apply cESFW to six merged scRNA-seq datasets spanning human early embryo development. Without smoothing or augmenting the raw counts matrices, cESFW generates a high-resolution embedding displaying coherent developmental progression from eight-cell to post-implantation stages and delineating 15 distinct cell states. The embedding highlights sequential lineage decisions during blastocyst development, while unsupervised clustering identifies branch point populations obscured in previous analyses. The first branching region, where morula cells become specified for inner cell mass or trophectoderm, includes cells previously asserted to lack a developmental trajectory. We quantify the relatedness of different pluripotent stem cell cultures to distinct embryo cell types and identify marker genes of naïve and primed pluripotency. Finally, by revealing genes with dynamic lineage-specific expression, we provide markers for staging progression from morula to blastocyst.
Collapse
Affiliation(s)
- Arthur Radley
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Stefan Boeing
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Austin Smith
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
18
|
Dupont C. A comprehensive review: synergizing stem cell and embryonic development knowledge in mouse and human integrated stem cell-based embryo models. Front Cell Dev Biol 2024; 12:1386739. [PMID: 38715920 PMCID: PMC11074781 DOI: 10.3389/fcell.2024.1386739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mammalian stem cell-based embryo models have emerged as innovative tools for investigating early embryogenesis in both mice and primates. They not only reduce the need for sacrificing mice but also overcome ethical limitations associated with human embryo research. Furthermore, they provide a platform to address scientific questions that are otherwise challenging to explore in vivo. The usefulness of a stem cell-based embryo model depends on its fidelity in replicating development, efficiency and reproducibility; all essential for addressing biological queries in a quantitative manner, enabling statistical analysis. Achieving such fidelity and efficiency requires robust systems that demand extensive optimization efforts. A profound understanding of pre- and post-implantation development, cellular plasticity, lineage specification, and existing models is imperative for making informed decisions in constructing these models. This review aims to highlight essential differences in embryo development and stem cell biology between mice and humans, assess how these variances influence the formation of partially and fully integrated stem cell models, and identify critical challenges in the field.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
19
|
Carvalho S, Zea-Redondo L, Tang TCC, Stachel-Braum P, Miller D, Caldas P, Kukalev A, Diecke S, Grosswendt S, Grosso AR, Pombo A. SRRM2 splicing factor modulates cell fate in early development. Biol Open 2024; 13:bio060415. [PMID: 38656788 PMCID: PMC11070786 DOI: 10.1242/bio.060415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
Embryo development is an orchestrated process that relies on tight regulation of gene expression to guide cell differentiation and fate decisions. The Srrm2 splicing factor has recently been implicated in developmental disorders and diseases, but its role in early mammalian development remains unexplored. Here, we show that Srrm2 dosage is critical for maintaining embryonic stem cell pluripotency and cell identity. Srrm2 heterozygosity promotes loss of stemness, characterised by the coexistence of cells expressing naive and formative pluripotency markers, together with extensive changes in gene expression, including genes regulated by serum-response transcription factor (SRF) and differentiation-related genes. Depletion of Srrm2 by RNA interference in embryonic stem cells shows that the earliest effects of Srrm2 heterozygosity are specific alternative splicing events on a small number of genes, followed by expression changes in metabolism and differentiation-related genes. Our findings unveil molecular and cellular roles of Srrm2 in stemness and lineage commitment, shedding light on the roles of splicing regulators in early embryogenesis, developmental diseases and tumorigenesis.
Collapse
Affiliation(s)
- Silvia Carvalho
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Structure Group, 10115 Berlin, Germany
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
- Graduate Program in Areas of Basic and Applied Biology (GABBA), ICBAS, University of Porto, 4050-313 Porto, Portugal
| | - Luna Zea-Redondo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Structure Group, 10115 Berlin, Germany
- Humboldt-Universität zu Berlin, Institute of Biology, 10115 Berlin, Germany
| | - Tsz Ching Chloe Tang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Structure Group, 10115 Berlin, Germany
| | - Philipp Stachel-Braum
- Humboldt-Universität zu Berlin, Institute of Biology, 10115 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, Exploratory Diagnostic Sciences (EDS) 10178 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), From Cell State to Function Group, 10115 Berlin, Germany
| | - Duncan Miller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Pluripotent Stem Cells Platform, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10785 Berlin, Germany
| | - Paulo Caldas
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Alexander Kukalev
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Structure Group, 10115 Berlin, Germany
| | - Sebastian Diecke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Pluripotent Stem Cells Platform, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10785 Berlin, Germany
| | - Stefanie Grosswendt
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, Exploratory Diagnostic Sciences (EDS) 10178 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), From Cell State to Function Group, 10115 Berlin, Germany
| | - Ana Rita Grosso
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Structure Group, 10115 Berlin, Germany
- Humboldt-Universität zu Berlin, Institute of Biology, 10115 Berlin, Germany
| |
Collapse
|
20
|
Álvarez-Campos P, García-Castro H, Emili E, Pérez-Posada A, Del Olmo I, Peron S, Salamanca-Díaz DA, Mason V, Metzger B, Bely AE, Kenny NJ, Özpolat BD, Solana J. Annelid adult cell type diversity and their pluripotent cellular origins. Nat Commun 2024; 15:3194. [PMID: 38609365 PMCID: PMC11014941 DOI: 10.1038/s41467-024-47401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Many annelids can regenerate missing body parts or reproduce asexually, generating all cell types in adult stages. However, the putative adult stem cell populations involved in these processes, and the diversity of cell types generated by them, are still unknown. To address this, we recover 75,218 single cell transcriptomes of the highly regenerative and asexually-reproducing annelid Pristina leidyi. Our results uncover a rich cell type diversity including annelid specific types as well as novel types. Moreover, we characterise transcription factors and gene networks that are expressed specifically in these populations. Finally, we uncover a broadly abundant cluster of putative stem cells with a pluripotent signature. This population expresses well-known stem cell markers such as vasa, piwi and nanos homologues, but also shows heterogeneous expression of differentiated cell markers and their transcription factors. We find conserved expression of pluripotency regulators, including multiple chromatin remodelling and epigenetic factors, in piwi+ cells. Finally, lineage reconstruction analyses reveal computational differentiation trajectories from piwi+ cells to diverse adult types. Our data reveal the cell type diversity of adult annelids by single cell transcriptomics and suggest that a piwi+ cell population with a pluripotent stem cell signature is associated with adult cell type differentiation.
Collapse
Affiliation(s)
- Patricia Álvarez-Campos
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM) & Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Helena García-Castro
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Elena Emili
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Alberto Pérez-Posada
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Irene Del Olmo
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM) & Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sophie Peron
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
| | - David A Salamanca-Díaz
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Vincent Mason
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Bria Metzger
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 05432, USA
- Department of Biology, Washington University in St. Louis. 1 Brookings Dr. Saint Louis, Saint Louis, MO, 63130, USA
| | - Alexandra E Bely
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Nathan J Kenny
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, Aotearoa, New Zealand
| | - B Duygu Özpolat
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 05432, USA.
- Department of Biology, Washington University in St. Louis. 1 Brookings Dr. Saint Louis, Saint Louis, MO, 63130, USA.
| | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
- Living Systems Institute, University of Exeter, Exeter, UK.
| |
Collapse
|
21
|
Tietze E, Barbosa AR, Araujo B, Euclydes V, Spiegelberg B, Cho HJ, Lee YK, Wang Y, McCord A, Lorenzetti A, Feltrin A, van de Leemput J, Di Carlo P, Ursini G, Benjamin KJ, Brentani H, Kleinman JE, Hyde TM, Weinberger DR, McKay R, Shin JH, Sawada T, Paquola ACM, Erwin JA. Human archetypal pluripotent stem cells differentiate into trophoblast stem cells via endogenous BMP5/7 induction without transitioning through naive state. Sci Rep 2024; 14:3291. [PMID: 38332235 PMCID: PMC10853519 DOI: 10.1038/s41598-024-53381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Primary human trophoblast stem cells (TSCs) and TSCs derived from human pluripotent stem cells (hPSCs) can potentially model placental processes in vitro. Yet, the pluripotent states and factors involved in the differentiation of hPSCs to TSCs remain poorly understood. In this study, we demonstrate that the primed pluripotent state can generate TSCs by activating pathways such as Epidermal Growth Factor (EGF) and Wingless-related integration site (WNT), and by suppressing tumor growth factor beta (TGFβ), histone deacetylases (HDAC), and Rho-associated protein kinase (ROCK) signaling pathways, all without the addition of exogenous Bone morphogenetic protein 4 (BMP4)-a condition we refer to as the TS condition. We characterized this process using temporal single-cell RNA sequencing to compare TS conditions with differentiation protocols involving BMP4 activation alone or BMP4 activation in conjunction with WNT inhibition. The TS condition consistently produced a stable, proliferative cell type that closely mimics first-trimester placental cytotrophoblasts, marked by the activation of endogenous retroviral genes and the absence of amnion expression. This was observed across multiple cell lines, including various primed induced pluripotent stem cell (iPSC) and embryonic stem cell (ESC) lines. Primed-derived TSCs can proliferate for over 30 passages and further specify into multinucleated syncytiotrophoblasts and extravillous trophoblast cells. Our research establishes that the differentiation of primed hPSCs to TSC under TS conditions triggers the induction of TMSB4X, BMP5/7, GATA3, and TFAP2A without progressing through a naive state. These findings propose that the primed hPSC state is part of a continuum of potency with the capacity to differentiate into TSCs through multiple routes.
Collapse
Affiliation(s)
- Ethan Tietze
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Andre Rocha Barbosa
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Inter-Institutional Graduate Program on Bioinformatics, University of São Paulo, São Paulo, SP, Brazil
| | - Bruno Araujo
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Veronica Euclydes
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Sao Paulo, Medical School, São Paulo, Brazil
| | - Bailey Spiegelberg
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hyeon Jin Cho
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Yong Kyu Lee
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Yanhong Wang
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | | | - Arthur Feltrin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Center for Mathematics, Computation and Cognition, Federal University of ABC, Santo André, SP, Brazil
| | - Joyce van de Leemput
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Center for Precision Disease Modeling and Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Pasquale Di Carlo
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Gianluca Ursini
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kynon J Benjamin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Helena Brentani
- Inter-Institutional Graduate Program on Bioinformatics, University of São Paulo, São Paulo, SP, Brazil
- Department of Psychiatry, University of Sao Paulo, Medical School, São Paulo, Brazil
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ronald McKay
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tomoyo Sawada
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Apua C M Paquola
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jennifer A Erwin
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
22
|
Sinenko SA, Tomilin AN. Metabolic control of induced pluripotency. Front Cell Dev Biol 2024; 11:1328522. [PMID: 38274274 PMCID: PMC10808704 DOI: 10.3389/fcell.2023.1328522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Pluripotent stem cells of the mammalian epiblast and their cultured counterparts-embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs)-have the capacity to differentiate in all cell types of adult organisms. An artificial process of reactivation of the pluripotency program in terminally differentiated cells was established in 2006, which allowed for the generation of induced pluripotent stem cells (iPSCs). This iPSC technology has become an invaluable tool in investigating the molecular mechanisms of human diseases and therapeutic drug development, and it also holds tremendous promise for iPSC applications in regenerative medicine. Since the process of induced reprogramming of differentiated cells to a pluripotent state was discovered, many questions about the molecular mechanisms involved in this process have been clarified. Studies conducted over the past 2 decades have established that metabolic pathways and retrograde mitochondrial signals are involved in the regulation of various aspects of stem cell biology, including differentiation, pluripotency acquisition, and maintenance. During the reprogramming process, cells undergo major transformations, progressing through three distinct stages that are regulated by different signaling pathways, transcription factor networks, and inputs from metabolic pathways. Among the main metabolic features of this process, representing a switch from the dominance of oxidative phosphorylation to aerobic glycolysis and anabolic processes, are many critical stage-specific metabolic signals that control the path of differentiated cells toward a pluripotent state. In this review, we discuss the achievements in the current understanding of the molecular mechanisms of processes controlled by metabolic pathways, and vice versa, during the reprogramming process.
Collapse
Affiliation(s)
- Sergey A. Sinenko
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | | |
Collapse
|
23
|
Dror I, Chitiashvili T, Tan SYX, Cano CT, Sahakyan A, Markaki Y, Chronis C, Collier AJ, Deng W, Liang G, Sun Y, Afasizheva A, Miller J, Xiao W, Black DL, Ding F, Plath K. XIST directly regulates X-linked and autosomal genes in naive human pluripotent cells. Cell 2024; 187:110-129.e31. [PMID: 38181737 PMCID: PMC10783549 DOI: 10.1016/j.cell.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/01/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024]
Abstract
X chromosome inactivation (XCI) serves as a paradigm for RNA-mediated regulation of gene expression, wherein the long non-coding RNA XIST spreads across the X chromosome in cis to mediate gene silencing chromosome-wide. In female naive human pluripotent stem cells (hPSCs), XIST is in a dispersed configuration, and XCI does not occur, raising questions about XIST's function. We found that XIST spreads across the X chromosome and induces dampening of X-linked gene expression in naive hPSCs. Surprisingly, XIST also targets specific autosomal regions, where it induces repressive chromatin changes and gene expression dampening. Thereby, XIST equalizes X-linked gene dosage between male and female cells while inducing differences in autosomes. The dispersed Xist configuration and autosomal localization also occur transiently during XCI initiation in mouse PSCs. Together, our study identifies XIST as the regulator of X chromosome dampening, uncovers an evolutionarily conserved trans-acting role of XIST/Xist, and reveals a correlation between XIST/Xist dispersal and autosomal targeting.
Collapse
Affiliation(s)
- Iris Dror
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tsotne Chitiashvili
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shawn Y X Tan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Clara T Cano
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anna Sahakyan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yolanda Markaki
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Constantinos Chronis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Amanda J Collier
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Weixian Deng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Guohao Liang
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - Yu Sun
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anna Afasizheva
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jarrett Miller
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wen Xiao
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas L Black
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fangyuan Ding
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Biondic S, Petropoulos S. Evidence for Functional Roles of MicroRNAs in Lineage Specification During Mouse and Human Preimplantation Development. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2023; 96:481-494. [PMID: 38161584 PMCID: PMC10751869 DOI: 10.59249/fosi4358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proper formation of the blastocyst, including the specification of the first embryonic cellular lineages, is required to ensure healthy embryo development and can significantly impact the success of assisted reproductive technologies (ARTs). However, the regulatory role of microRNAs in early development, particularly in the context of preimplantation lineage specification, remains largely unknown. Taking a cross-species approach, this review aims to summarize the expression dynamics and functional significance of microRNAs in the differentiation and maintenance of lineage identity in both the mouse and the human. Findings are consolidated from studies conducted using in vitro embryonic stem cell models representing the epiblast, trophectoderm, and primitive endoderm lineages (modeled by naïve embryonic stem cells, trophoblast stem cells, and extraembryonic endoderm stem cells, respectively) to provide insight on what may be occurring in the embryo. Additionally, studies directly conducted in both mouse and human embryos are discussed, emphasizing similarities to the stem cell models and the gaps in our understanding, which will hopefully lead to further investigation of these areas. By unraveling the intricate mechanisms by which microRNAs regulate the specification and maintenance of cellular lineages in the blastocyst, we can leverage this knowledge to further optimize stem cell-based models such as the blastoids, enhance embryo competence, and develop methods of non-invasive embryo selection, which can potentially increase the success rates of assisted reproductive technologies and improve the experiences of those receiving fertility treatments.
Collapse
Affiliation(s)
- Savana Biondic
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, Axe Immunopathologie, Montréal, Canada
- Faculty of Medicine, Molecular Biology Program,
Université de Montréal, Montréal, Canada
| | - Sophie Petropoulos
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, Axe Immunopathologie, Montréal, Canada
- Faculty of Medicine, Molecular Biology Program,
Université de Montréal, Montréal, Canada
- Division of Obstetrics and Gynecology, Department of
Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm,
Sweden
| |
Collapse
|
25
|
Yoshihara M, Kere J. Transcriptomic differences between human 8-cell-like cells reprogrammed with different methods. Stem Cell Reports 2023; 18:1621-1628. [PMID: 37478859 PMCID: PMC10444576 DOI: 10.1016/j.stemcr.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023] Open
Abstract
Embryonic genome activation (EGA) is a critical step in embryonic development. However, while EGA has been studied in mice using mouse 2-cell-like cells, human EGA remains incompletely elucidated due to the lack of an in vitro cell model recapitulating the early blastomere stage in humans. Recently, five groups independently reported human 8-cell-like cells (8CLCs, also called induced blastomere-like cells) developed from pluripotent stem cells and used single-cell RNA sequencing (scRNA-seq) to specify their cellular identities. Here we summarize the methods developed to produce the 8CLCs and compare their transcriptomic profiles by integrating them with the scRNA-seq datasets of human embryos. These observations will allow comparison and validation of the models, stimulate further in-depth research to characterize the genes involved in human EGA and pre-implantation development, and facilitate studies on human embryogenesis.
Collapse
Affiliation(s)
- Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Institute for Advanced Academic Research, Chiba University, Chiba, Japan; Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Folkhälsan Research Center, Helsinki, Finland; Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
26
|
Glass MR, Waxman EA, Yamashita S, Lafferty M, Beltran A, Farah T, Patel NK, Matoba N, Ahmed S, Srivastava M, Drake E, Davis LT, Yeturi M, Sun K, Love MI, Hashimoto-Torii K, French DL, Stein JL. Cross-site reproducibility of human cortical organoids reveals consistent cell type composition and architecture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550873. [PMID: 37546772 PMCID: PMC10402155 DOI: 10.1101/2023.07.28.550873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Background Reproducibility of human cortical organoid (hCO) phenotypes remains a concern for modeling neurodevelopmental disorders. While guided hCO protocols reproducibly generate cortical cell types in multiple cell lines at one site, variability across sites using a harmonized protocol has not yet been evaluated. We present an hCO cross-site reproducibility study examining multiple phenotypes. Methods Three independent research groups generated hCOs from one induced pluripotent stem cell (iPSC) line using a harmonized miniaturized spinning bioreactor protocol. scRNA-seq, 3D fluorescent imaging, phase contrast imaging, qPCR, and flow cytometry were used to characterize the 3 month differentiations across sites. Results In all sites, hCOs were mostly cortical progenitor and neuronal cell types in reproducible proportions with moderate to high fidelity to the in vivo brain that were consistently organized in cortical wall-like buds. Cross-site differences were detected in hCO size and morphology. Differential gene expression showed differences in metabolism and cellular stress across sites. Although iPSC culture conditions were consistent and iPSCs remained undifferentiated, primed stem cell marker expression prior to differentiation correlated with cell type proportions in hCOs. Conclusions We identified hCO phenotypes that are reproducible across sites using a harmonized differentiation protocol. Previously described limitations of hCO models were also reproduced including off-target differentiations, necrotic cores, and cellular stress. Improving our understanding of how stem cell states influence early hCO cell types may increase reliability of hCO differentiations. Cross-site reproducibility of hCO cell type proportions and organization lays the foundation for future collaborative prospective meta-analytic studies modeling neurodevelopmental disorders in hCOs.
Collapse
Affiliation(s)
- Madison R Glass
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Elisa A Waxman
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Satoshi Yamashita
- Center for Neuroscience Research, Children's National Hospital, Washington, DC
| | - Michael Lafferty
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Alvaro Beltran
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Tala Farah
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Niyanta K Patel
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Nana Matoba
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sara Ahmed
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mary Srivastava
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Emma Drake
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Liam T Davis
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Meghana Yeturi
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kexin Sun
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Departments of Pediatrics, and Pharmacology & Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC
| | - Kazue Hashimoto-Torii
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jason L Stein
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
27
|
Lyra-Leite DM, Copley RR, Freeman PP, Pongpamorn P, Shah D, McKenna DE, Lenny B, Pinheiro EA, Weddle CJ, Gharib M, Javed H, Fonoudi H, Sapkota Y, Burridge PW. Nutritional requirements of human induced pluripotent stem cells. Stem Cell Reports 2023; 18:1371-1387. [PMID: 37315525 PMCID: PMC10277817 DOI: 10.1016/j.stemcr.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
The nutritional requirements for human induced pluripotent stem cell (hiPSC) growth have not been extensively studied. Here, building on our prior work that established the suitable non-basal medium components for hiPSC growth, we develop a simplified basal medium consisting of just 39 components, demonstrating that many ingredients of DMEM/F12 are either not essential or are at suboptimal concentrations. This new basal medium along with the supplement, which we call BMEM, enhances the growth rate of hiPSCs over DMEM/F12-based media, supports derivation of multiple hiPSC lines, and allows differentiation to multiple lineages. hiPSCs cultured in BMEM consistently have enhanced expression of undifferentiated cell markers such as POU5F1 and NANOG, along with increased expression of markers of the primed state and reduced expression of markers of the naive state. This work describes titration of the nutritional requirements of human pluripotent cell culture and identifies that suitable nutrition enhances the pluripotent state.
Collapse
Affiliation(s)
- Davi M Lyra-Leite
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | - Praeploy Pongpamorn
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Disheet Shah
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Brian Lenny
- Department of Epidemiology and Cancer Control, St. Jude Children's Hospital, Memphis, TN 38105, USA
| | - Emily A Pinheiro
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Carly J Weddle
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mennat Gharib
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hoor Javed
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hananeh Fonoudi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yadav Sapkota
- Department of Epidemiology and Cancer Control, St. Jude Children's Hospital, Memphis, TN 38105, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
28
|
Cuesta-Gomez N, Verhoeff K, Dadheech N, Dang T, Jasra IT, de Leon MB, Pawlick R, Marfil-Garza B, Anwar P, Razavy H, Zapata-Morin PA, Jickling G, Thiesen A, O'Gorman D, Kallos MS, Shapiro AMJ. Suspension culture improves iPSC expansion and pluripotency phenotype. Stem Cell Res Ther 2023; 14:154. [PMID: 37280707 DOI: 10.1186/s13287-023-03382-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Induced pluripotent stem cells (iPSCs) offer potential to revolutionize regenerative medicine as a renewable source for islets, dopaminergic neurons, retinal cells, and cardiomyocytes. However, translation of these regenerative cell therapies requires cost-efficient mass manufacturing of high-quality human iPSCs. This study presents an improved three-dimensional Vertical-Wheel® bioreactor (3D suspension) cell expansion protocol with comparison to a two-dimensional (2D planar) protocol. METHODS Sendai virus transfection of human peripheral blood mononuclear cells was used to establish mycoplasma and virus free iPSC lines without common genetic duplications or deletions. iPSCs were then expanded under 2D planar and 3D suspension culture conditions. We comparatively evaluated cell expansion capacity, genetic integrity, pluripotency phenotype, and in vitro and in vivo pluripotency potential of iPSCs. RESULTS Expansion of iPSCs using Vertical-Wheel® bioreactors achieved 93.8-fold (IQR 30.2) growth compared to 19.1 (IQR 4.0) in 2D (p < 0.0022), the largest expansion potential reported to date over 5 days. 0.5 L Vertical-Wheel® bioreactors achieved similar expansion and further reduced iPSC production cost. 3D suspension expanded cells had increased proliferation, measured as Ki67+ expression using flow cytometry (3D: 69.4% [IQR 5.5%] vs. 2D: 57.4% [IQR 10.9%], p = 0.0022), and had a higher frequency of pluripotency marker (Oct4+Nanog+Sox2+) expression (3D: 94.3 [IQR 1.4] vs. 2D: 52.5% [IQR 5.6], p = 0.0079). q-PCR genetic analysis demonstrated a lack of duplications or deletions at the 8 most commonly mutated regions within iPSC lines after long-term passaging (> 25). 2D-cultured cells displayed a primed pluripotency phenotype, which transitioned to naïve after 3D-culture. Both 2D and 3D cells were capable of trilineage differentiation and following teratoma, 2D-expanded cells generated predominantly solid teratomas, while 3D-expanded cells produced more mature and predominantly cystic teratomas with lower Ki67+ expression within teratomas (3D: 16.7% [IQR 3.2%] vs.. 2D: 45.3% [IQR 3.0%], p = 0.002) in keeping with a naïve phenotype. CONCLUSION This study demonstrates nearly 100-fold iPSC expansion over 5-days using our 3D suspension culture protocol in Vertical-Wheel® bioreactors, the largest cell growth reported to date. 3D expanded cells showed enhanced in vitro and in vivo pluripotency phenotype that may support more efficient scale-up strategies and safer clinical implementation.
Collapse
Affiliation(s)
- Nerea Cuesta-Gomez
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Kevin Verhoeff
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Nidheesh Dadheech
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada.
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada.
| | - Tiffany Dang
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, AB, T2N1N4, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N1N4, Canada
| | - Ila Tewari Jasra
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Mario Bermudez de Leon
- Department of Molecular Biology, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo Leon, Mexico
| | - Rena Pawlick
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Braulio Marfil-Garza
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- National Institute of Medical Sciences and Nutrition Salvador Zubiran, 14080, Mexico City, Mexico
- CHRISTUS-LatAm Hub - Excellence and Innovation Center, 66260, Monterrey, Mexico
| | - Perveen Anwar
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Haide Razavy
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Patricio Adrián Zapata-Morin
- Laboratory of Mycology and Phytopathology, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451, San Nicolás de los Garza, Nuevo León, Mexico
| | - Glen Jickling
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Aducio Thiesen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Doug O'Gorman
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, T6G 2J3, Canada
| | - Michael S Kallos
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, AB, T2N1N4, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N1N4, Canada
| | - A M James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada.
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada.
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, T6G 2J3, Canada.
| |
Collapse
|
29
|
Álvarez-Campos P, García-Castro H, Emili E, Pérez-Posada A, Salamanca-Díaz DA, Mason V, Metzger B, Bely AE, Kenny N, Özpolat BD, Solana J. Annelid adult cell type diversity and their pluripotent cellular origins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.537979. [PMID: 37163014 PMCID: PMC10168269 DOI: 10.1101/2023.04.25.537979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Annelids are a broadly distributed, highly diverse, economically and environmentally important group of animals. Most species can regenerate missing body parts, and many are able to reproduce asexually. Therefore, many annelids can generate all adult cell types in adult stages. However, the putative adult stem cell populations involved in these processes, as well as the diversity of adult cell types generated by them, are still unknown. Here, we recover 75,218 single cell transcriptomes of Pristina leidyi, a highly regenerative and asexually-reproducing freshwater annelid. We characterise all major annelid adult cell types, and validate many of our observations by HCR in situ hybridisation. Our results uncover complex patterns of regionally expressed genes in the annelid gut, as well as neuronal, muscle and epidermal specific genes. We also characterise annelid-specific cell types such as the chaetal sacs and globin+ cells, and novel cell types of enigmatic affinity, including a vigilin+ cell type, a lumbrokinase+ cell type, and a diverse set of metabolic cells. Moreover, we characterise transcription factors and gene networks that are expressed specifically in these populations. Finally, we uncover a broadly abundant cluster of putative stem cells with a pluripotent signature. This population expresses well-known stem cell markers such as vasa, piwi and nanos homologues, but also shows heterogeneous expression of differentiated cell markers and their transcription factors. In these piwi+ cells, we also find conserved expression of pluripotency regulators, including multiple chromatin remodelling and epigenetic factors. Finally, lineage reconstruction analyses reveal the existence of differentiation trajectories from piwi+ cells to diverse adult types. Our data reveal the cell type diversity of adult annelids for the first time and serve as a resource for studying annelid cell types and their evolution. On the other hand, our characterisation of a piwi+ cell population with a pluripotent stem cell signature will serve as a platform for the study of annelid stem cells and their role in regeneration.
Collapse
Affiliation(s)
- Patricia Álvarez-Campos
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM) & Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Helena García-Castro
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Elena Emili
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Alberto Pérez-Posada
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | | | - Vincent Mason
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Bria Metzger
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, USA, 05432
- Department of Biology, Washington University in St. Louis. 1 Brookings Dr. Saint Louis, MO, USA, 63130
| | | | - Nathan Kenny
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, Aotearoa New Zealand
| | - B Duygu Özpolat
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, USA, 05432
- Department of Biology, Washington University in St. Louis. 1 Brookings Dr. Saint Louis, MO, USA, 63130
| | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
30
|
Wang H, Langlais D, Nijnik A. Histone H2A deubiquitinases in the transcriptional programs of development and hematopoiesis: a consolidated analysis. Int J Biochem Cell Biol 2023; 157:106384. [PMID: 36738766 DOI: 10.1016/j.biocel.2023.106384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Monoubiquitinated lysine 119 of histone H2A (H2AK119ub) is a highly abundant epigenetic mark, associated with gene repression and deposited on chromatin by the polycomb repressor complex 1 (PRC1), which is an essential regulator of diverse transcriptional programs in mammalian development and tissue homeostasis. While multiple deubiquitinases (DUBs) with catalytic activity for H2AK119ub (H2A-DUBs) have been identified, we lack systematic analyses of their roles and cross-talk in transcriptional regulation. Here, we address H2A-DUB functions in epigenetic regulation of mammalian development and tissue maintenance by conducting a meta-analysis of 248 genomics datasets from 32 independent studies, focusing on the mouse model and covering embryonic stem cells (ESCs), hematopoietic, and immune cell lineages. This covers all the publicly available datasets that map genomic H2A-DUB binding and H2AK119ub distributions (ChIP-Seq), and all datasets assessing dysregulation in gene expression in the relevant H2A-DUB knockout models (RNA-Seq). Many accessory datasets for PRC1-2 and DUB-interacting proteins are also analyzed and interpreted, as well as further data assessing chromatin accessibility (ATAC-Seq) and transcriptional activity (RNA-seq). We report co-localization in the binding of H2A-DUBs BAP1, USP16, and to a lesser extent others that is conserved across different cell-types, and also the enrichment of antagonistic PRC1-2 protein complexes at the same genomic locations. Such conserved sites enriched for the H2A-DUBs and PRC1-2 are proximal to transcriptionally active genes that engage in housekeeping cellular functions. Nevertheless, they exhibit H2AK119ub levels significantly above the genomic average that can undergo further increase with H2A-DUB knockout. This indicates a cooperation between H2A-DUBs and PRC1-2 in the modulation of housekeeping transcriptional programs, conserved across many cell types, likely operating through their antagonistic effects on H2AK119ub and the regulation of local H2AK119ub turnover. Our study further highlights existing knowledge gaps and discusses important directions for future work.
Collapse
Affiliation(s)
- HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada; McGill Genome Centre, Montreal, QC, Canada.
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada.
| |
Collapse
|
31
|
Chen ACH, Lee YL, Ruan H, Huang W, Fong SW, Tian S, Lee KC, Wu GM, Tan Y, Wong TCH, Wu J, Zhang W, Cao D, Chow JFC, Liu P, Yeung WSB. Expanded Potential Stem Cells from Human Embryos Have an Open Chromatin Configuration with Enhanced Trophoblast Differentiation Ability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204797. [PMID: 36775869 PMCID: PMC10104645 DOI: 10.1002/advs.202204797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Human expanded potential stem cells (hEPSC) have been derived from human embryonic stem cells and induced pluripotent stem cells. Here direct derivation of hEPSC from human pre-implantation embryos is reported. Like the reported hEPSC, the embryo-derived hEPSC (hEPSC-em) exhibit a transcriptome similar to morula, comparable differentiation potency, and high genome editing efficiency. Interestingly, the hEPSC-em show a unique H3 lysine-4 trimethylation (H3K4me3) open chromatin conformation; they possess a higher proportion of H3K4me3 bound broad domain (>5 kb) than the reported hEPSC, naive, and primed embryonic stem cells. The open conformation is associated with enhanced trophoblast differentiation potency with increased trophoblast gene expression upon induction of differentiation and success in derivation of trophoblast stem cells with bona fide characteristics. Hippo signaling is specifically enriched in the H3K4me3 broad domains of the hEPSC-. Knockout of the Hippo signaling gene, YAP1 abolishes the ability of the embryo-derived EPSC to form trophoblast stem cells.
Collapse
Affiliation(s)
- Andy Chun Hang Chen
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Shenzhen Key Laboratory of Fertility RegulationReproductive Medicine CenterThe University of Hong Kong ‐ Shenzhen HospitalShenzhen518000China
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Shenzhen Key Laboratory of Fertility RegulationReproductive Medicine CenterThe University of Hong Kong ‐ Shenzhen HospitalShenzhen518000China
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Hanzhang Ruan
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Wen Huang
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Sze Wan Fong
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Siyu Tian
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Kai Chuen Lee
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Genie Minju Wu
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Yongqi Tan
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Timothy Chun Hin Wong
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Jian Wu
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Weiyu Zhang
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| | - Dandan Cao
- Shenzhen Key Laboratory of Fertility RegulationReproductive Medicine CenterThe University of Hong Kong ‐ Shenzhen HospitalShenzhen518000China
| | - Judy Fung Cheung Chow
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Pengtao Liu
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongStem Cell and Regenerative Medicine ConsortiumHong KongHong Kong
| | - William Shu Biu Yeung
- Department of Obstetrics and Gynaecology, School of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Shenzhen Key Laboratory of Fertility RegulationReproductive Medicine CenterThe University of Hong Kong ‐ Shenzhen HospitalShenzhen518000China
- Centre for Translational Stem Cell BiologyBuilding 17 WThe Hong Kong Science and Technology ParkHong KongHong Kong
| |
Collapse
|
32
|
Gawriyski L, Jouhilahti EM, Yoshihara M, Fei L, Weltner J, Airenne TT, Trokovic R, Bhagat S, Tervaniemi MH, Murakawa Y, Salokas K, Liu X, Miettinen S, Bürglin TR, Sahu B, Otonkoski T, Johnson MS, Katayama S, Varjosalo M, Kere J. Comprehensive characterization of the embryonic factor LEUTX. iScience 2023; 26:106172. [PMID: 36876139 PMCID: PMC9978639 DOI: 10.1016/j.isci.2023.106172] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/01/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The paired-like homeobox transcription factor LEUTX is expressed in human preimplantation embryos between the 4- and 8-cell stages, and then silenced in somatic tissues. To characterize the function of LEUTX, we performed a multiomic characterization of LEUTX using two proteomics methods and three genome-wide sequencing approaches. Our results show that LEUTX stably interacts with the EP300 and CBP histone acetyltransferases through its 9 amino acid transactivation domain (9aaTAD), as mutation of this domain abolishes the interactions. LEUTX targets genomic cis-regulatory sequences that overlap with repetitive elements, and through these elements it is suggested to regulate the expression of its downstream genes. We find LEUTX to be a transcriptional activator, upregulating several genes linked to preimplantation development as well as 8-cell-like markers, such as DPPA3 and ZNF280A. Our results support a role for LEUTX in preimplantation development as an enhancer binding protein and as a potent transcriptional activator.
Collapse
Affiliation(s)
- Lisa Gawriyski
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Eeva-Mari Jouhilahti
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Liangru Fei
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Jere Weltner
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14186 Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, 14186 Stockholm, Sweden
| | - Tomi T. Airenne
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Ras Trokovic
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
| | - Shruti Bhagat
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mari H. Tervaniemi
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- IFOM-ETS, Milan, Italy
| | - Kari Salokas
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Sini Miettinen
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | | | - Biswajyoti Sahu
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, 0349 Oslo, Norway
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Shintaro Katayama
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Juha Kere
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| |
Collapse
|
33
|
Han D, Liu G, Oh Y, Oh S, Yang S, Mandjikian L, Rani N, Almeida MC, Kosik KS, Jang J. ZBTB12 is a molecular barrier to dedifferentiation in human pluripotent stem cells. Nat Commun 2023; 14:632. [PMID: 36759523 PMCID: PMC9911396 DOI: 10.1038/s41467-023-36178-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Development is generally viewed as one-way traffic of cell state transition from primitive to developmentally advanced states. However, molecular mechanisms that ensure the unidirectional transition of cell fates remain largely unknown. Through exact transcription start site mapping, we report an evolutionarily conserved BTB domain-containing zinc finger protein, ZBTB12, as a molecular barrier for dedifferentiation of human pluripotent stem cells (hPSCs). Single-cell RNA sequencing reveals that ZBTB12 is essential for three germ layer differentiation by blocking hPSC dedifferentiation. Mechanistically, ZBTB12 fine-tunes the expression of human endogenous retrovirus H (HERVH), a primate-specific retrotransposon, and targets specific transcripts that utilize HERVH as a regulatory element. In particular, the downregulation of HERVH-overlapping long non-coding RNAs (lncRNAs) by ZBTB12 is necessary for a successful exit from a pluripotent state and lineage derivation. Overall, we identify ZBTB12 as a molecular barrier that safeguards the unidirectional transition of metastable stem cell fates toward developmentally advanced states.
Collapse
Affiliation(s)
- Dasol Han
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Guojing Liu
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Novogene Co., Ltd, Beijing, China
| | - Yujeong Oh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Seyoun Oh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Seungbok Yang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Lori Mandjikian
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Neha Rani
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Maria C Almeida
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Federal University of ABC, Center for Natural and Human Sciences São Bernardo do Campo, Santo André, Brazil
| | - Kenneth S Kosik
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
| | - Jiwon Jang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.
| |
Collapse
|
34
|
Koo KM, Go YH, Kim SM, Kim CD, Do JT, Kim TH, Cha HJ. Label-free and non-destructive identification of naïve and primed embryonic stem cells based on differences in cellular metabolism. Biomaterials 2023; 293:121939. [PMID: 36521427 DOI: 10.1016/j.biomaterials.2022.121939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/25/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022]
Abstract
Pluripotent stem cells (PSCs) exist in naïve or primed states based on their origin. For in vitro culture, these PSCs require different supplements and growth factors. However, owing to their similar phenotypic features, identifying both cell types without harming cellular functions is challenging. This study reports an electrochemical method that enables simple, label-free, and non-destructive detection of naïve embryonic stem cells (ESCs) derived from mouse ESCs, based on the differences in cellular metabolism. Two major metabolic pathways to generate adenosine triphosphate (ATP)-glycolysis and oxidative phosphorylation (OXPHOS)-were blocked, and it was found that mitochondrial energy generation is the origin of the strong electrochemical signals of naïve ESCs. The number of ESCs is quantified when mixed with primed ESCs or converted from naïve-primed switchable metastable ESCs. The mouse PSCs derived from doxycycline-inducible mouse embryonic fibroblasts (MEFs) are also sensitively identified among other cell types such as unconverted MEFs and primed PSCs. The developed sensing platform operates in a non-invasive and label-free manner. Thus, it can be useful in the development of stem cell-derived therapeutics.
Collapse
Affiliation(s)
- Kyeong-Mo Koo
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young-Hyun Go
- Research Institute of Pharmaceutical Science, Seoul National University, Seoul, 08826, Republic of Korea; College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seong-Min Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang-Dae Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
35
|
Dai X, Shao H, Sun N, Ci B, Wu J, Liu C, Wu L, Yuan Y, Wei X, Yang H, Liu L, Ji W, Bai B, Shang Z, Tan T. Developmental dynamics of chromatin accessibility during post-implantation development of monkey embryos. Gigascience 2022; 12:giad038. [PMID: 37226912 PMCID: PMC10209733 DOI: 10.1093/gigascience/giad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/26/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Early post-implantation development, especially gastrulation in primates, is accompanied by extensive drastic chromatin reorganization, which remains largely elusive. RESULTS To delineate the global chromatin landscape and understand the molecular dynamics during this period, a single-cell assay for transposase accessible chromatin sequencing (scATAC-seq) was applied to in vitro cultured cynomolgus monkey (Macaca fascicularis, hereafter referred to as monkey) embryos to investigate the chromatin status. First, we delineated the cis-regulatory interactions and identified the regulatory networks and critical transcription factors involved in the epiblast (EPI), hypoblast, and trophectoderm/trophoblast (TE) lineage specification. Second, we observed that the chromatin opening of some genome regions preceded the gene expression during EPI and trophoblast specification. Third, we identified the opposing roles of FGF and BMP signaling in pluripotency regulation during EPI specification. Finally, we revealed the similarity between EPI and TE in gene expression profiles and demonstrated that PATZ1 and NR2F2 were involved in EPI and trophoblast specification during monkey post-implantation development. CONCLUSIONS Our findings provide a useful resource and insights into dissecting the transcriptional regulatory machinery during primate post-implantation development.
Collapse
Affiliation(s)
- Xi Dai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Honglian Shao
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Nianqin Sun
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Baiquan Ci
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Liang Wu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Yuan
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310013, China
| | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Bing Bai
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zhouchun Shang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310013, China
| | - Tao Tan
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| |
Collapse
|
36
|
Moya-Jódar M, Ullate-Agote A, Barlabé P, Rodríguez-Madoz JR, Abizanda G, Barreda C, Carvajal-Vergara X, Vilas-Zornoza A, Romero JP, Garate L, Agirre X, Coppiello G, Prósper F, Aranguren XL. Revealing cell populations catching the early stages of human embryo development in naive pluripotent stem cell cultures. Stem Cell Reports 2022; 18:64-80. [PMID: 36563688 PMCID: PMC9860119 DOI: 10.1016/j.stemcr.2022.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
Naive human pluripotent stem cells (hPSCs) are defined as the in vitro counterpart of the human preimplantation embryo's epiblast and are used as a model system to study developmental processes. In this study, we report the discovery and characterization of distinct cell populations coexisting with epiblast-like cells in 5iLAF naive human induced PSC (hiPSC) cultures. It is noteworthy that these populations closely resemble different cell types of the human embryo at early developmental stages. While epiblast-like cells represent the main cell population, interestingly we detect a cell population with gene and transposable element expression profile closely resembling the totipotent eight-cell (8C)-stage human embryo, and three cell populations analogous to trophectoderm cells at different stages of their maturation process: transition, early, and mature stages. Moreover, we reveal the presence of cells resembling primitive endoderm. Thus, 5iLAF naive hiPSC cultures provide an excellent opportunity to model the earliest events of human embryogenesis, from the 8C stage to the peri-implantation period.
Collapse
Affiliation(s)
- Marta Moya-Jódar
- Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Asier Ullate-Agote
- Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain,Advanced Genomics Laboratory, Program of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Paula Barlabé
- Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Juan Roberto Rodríguez-Madoz
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), IDISNA, University of Navarra, Pamplona, Spain,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Gloria Abizanda
- Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Carolina Barreda
- Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Xonia Carvajal-Vergara
- Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Amaia Vilas-Zornoza
- Advanced Genomics Laboratory, Program of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Juan Pablo Romero
- Advanced Genomics Laboratory, Program of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain,10x Genomics, 6230 Stoneridge Mall Road, Pleasanton, CA 94588, USA
| | - Leire Garate
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), IDISNA, University of Navarra, Pamplona, Spain,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Xabier Agirre
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), IDISNA, University of Navarra, Pamplona, Spain,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Giulia Coppiello
- Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Felipe Prósper
- Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), IDISNA, University of Navarra, Pamplona, Spain; Hematology Department, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain.
| | - Xabier L. Aranguren
- Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain,Corresponding author
| |
Collapse
|
37
|
Waldhorn I, Turetsky T, Steiner D, Gil Y, Benyamini H, Gropp M, Reubinoff BE. Modeling sex differences in humans using isogenic induced pluripotent stem cells. Stem Cell Reports 2022; 17:2732-2744. [PMID: 36427492 PMCID: PMC9768579 DOI: 10.1016/j.stemcr.2022.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/27/2022] Open
Abstract
Biological sex is a fundamental trait influencing development, reproduction, pathogenesis, and medical treatment outcomes. Modeling sex differences is challenging because of the masking effect of genetic variability and the hurdle of differentiating chromosomal versus hormonal effects. In this work we developed a cellular model to study sex differences in humans. Somatic cells from a mosaic Klinefelter syndrome patient were reprogrammed to generate isogenic induced pluripotent stem cell (iPSC) lines with different sex chromosome complements: 47,XXY/46,XX/46,XY/45,X0. Transcriptional analysis of the hiPSCs revealed novel and known genes and pathways that are sexually dimorphic in the pluripotent state and during early neural development. Female hiPSCs more closely resembled the naive pluripotent state than their male counterparts. Moreover, the system enabled differentiation between the contributions of X versus Y chromosome to these differences. Taken together, isogenic hiPSCs present a novel platform for studying sex differences in humans and bear potential to promote gender-specific medicine in the future.
Collapse
Affiliation(s)
- Ithai Waldhorn
- Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Tikva Turetsky
- Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Debora Steiner
- Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Yaniv Gil
- Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Hadar Benyamini
- Bioinformatics Unit of the I-CORE at Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Michal Gropp
- Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Benjamin E. Reubinoff
- Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel,Department of Obstetrics and Gynecology, Ein Kerem, Hadassah Hebrew University Medical Center, Jerusalem, Israel,Corresponding author
| |
Collapse
|
38
|
Zhang Y, An C, Yu Y, Lin J, Jin L, Li C, Tan T, Yu Y, Fan Y. Epidermal growth factor induces a trophectoderm lineage transcriptome resembling that of human embryos during reconstruction of blastoids from extended pluripotent stem cells. Cell Prolif 2022; 55:e13317. [PMID: 35880490 PMCID: PMC9628219 DOI: 10.1111/cpr.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES This study aims to optimize the human extended pluripotent stem cell (EPSC) to trophectoderm (TE)-like cell induction with addition of EGF and improve the quality of the reconstructing blastoids. MATERIALS AND METHODS TE-like cells were differentiated from human EPSCs. RNA-seq data analysis was performed to compare with TE-like cells from multiple human pluripotent stem cells (hPSCs) and embryos. A small-scale compound selection was performed for optimizing the TE-like cell induction and the efficiency was characterized using TE-lineage markers expression by immunofluorescence stanning. Blastoids were generated by using the optimized TE-like cells and the undifferentiated human EPSCs through three-dimensional culture system. Single-cell RNA sequencing was performed to investigate the lineage segregation of the optimized blastoids to human blastocysts. RESULTS TE-like cells derived from human EPSCs exhibited similar transcriptome with TE cells from embryos. Additionally, TE-like cells from multiple naive hPSCs exhibited heterogeneous gene expression patterns and signalling pathways because of the incomplete silencing of naive-specific genes and loss of imprinting. Furthermore, with the addition of EGF, TE-like cells derived from human EPSCs enhanced the TE lineage-related signalling pathways and exhibited more similar transcriptome to human embryos. Through resembling with undifferentiated human EPSCs, we elevated the quality and efficiency of reconstructing blastoids and separated more lineage cells with precise temporal and spatial expression, especially the PE lineage. CONCLUSION Addition of EGF enhanced TE lineage differentiation and human blastoids reconstruction. The optimized blastoids could be used as a blastocyst model for simulating early embryonic development.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Chenrui An
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Yanhong Yu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jiajing Lin
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Long Jin
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Chaohui Li
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Tao Tan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| | - Yong Fan
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
39
|
Paloviita P, Vuoristo S. The non-coding genome in early human development - Recent advancements. Semin Cell Dev Biol 2022; 131:4-13. [PMID: 35177347 DOI: 10.1016/j.semcdb.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
Abstract
Not that long ago, the human genome was discovered to be mainly non-coding, that is comprised of DNA sequences that do not code for proteins. The initial paradigm that non-coding is also non-functional was soon overturned and today the work to uncover the functions of non-coding DNA and RNA in human early embryogenesis has commenced. Early human development is characterized by large-scale changes in genomic activity and the transcriptome that are partly driven by the coordinated activation and repression of repetitive DNA elements scattered across the genome. Here we provide examples of recent novel discoveries of non-coding DNA and RNA interactions and mechanisms that ensure accurate non-coding activity during human maternal-to-zygotic transition and lineage segregation. These include studies on small and long non-coding RNAs, transposable element regulation, and RNA tailing in human oocytes and early embryos. High-throughput approaches to dissect the non-coding regulatory networks governing early human development are a foundation for functional studies of specific genomic elements and molecules that has only begun and will provide a wider understanding of early human embryogenesis and causes of infertility.
Collapse
Affiliation(s)
- Pauliina Paloviita
- Department of Obstetrics and Gynaecology, University of Helsinki, 00014 Helsinki, Finland
| | - Sanna Vuoristo
- Department of Obstetrics and Gynaecology, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
40
|
New insights into the epitranscriptomic control of pluripotent stem cell fate. Exp Mol Med 2022; 54:1643-1651. [PMID: 36266446 PMCID: PMC9636187 DOI: 10.1038/s12276-022-00824-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 12/29/2022] Open
Abstract
Each cell in the human body has a distinguishable fate. Pluripotent stem cells are challenged with a myriad of lineage differentiation options. Defects are more likely to be fatal to stem cells than to somatic cells due to the broad impact of the former on early development. Hence, a detailed understanding of the mechanisms that determine the fate of stem cells is needed. The mechanisms by which human pluripotent stem cells, although not fully equipped with complex chromatin structures or epigenetic regulatory mechanisms, accurately control gene expression and are important to the stem cell field. In this review, we examine the events driving pluripotent stem cell fate and the underlying changes in gene expression during early development. In addition, we highlight the role played by the epitranscriptome in the regulation of gene expression that is necessary for each fate-related event.
Collapse
|
41
|
Bouchereau W, Jouneau L, Archilla C, Aksoy I, Moulin A, Daniel N, Peynot N, Calderari S, Joly T, Godet M, Jaszczyszyn Y, Pratlong M, Severac D, Savatier P, Duranthon V, Afanassieff M, Beaujean N. Major transcriptomic, epigenetic and metabolic changes underlie the pluripotency continuum in rabbit preimplantation embryos. Development 2022; 149:276385. [DOI: 10.1242/dev.200538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Despite the growing interest in the rabbit model for developmental and stem cell biology, the characterization of embryos at the molecular level is still poorly documented. We conducted a transcriptome analysis of rabbit preimplantation embryos from E2.7 (morula stage) to E6.6 (early primitive streak stage) using bulk and single-cell RNA-sequencing. In parallel, we studied oxidative phosphorylation and glycolysis, and analysed active and repressive epigenetic modifications during blastocyst formation and expansion. We generated a transcriptomic, epigenetic and metabolic map of the pluripotency continuum in rabbit preimplantation embryos, and identified novel markers of naive pluripotency that might be instrumental for deriving naive pluripotent stem cell lines. Although the rabbit is evolutionarily closer to mice than to primates, we found that the transcriptome of rabbit epiblast cells shares common features with those of humans and non-human primates.
Collapse
Affiliation(s)
- Wilhelm Bouchereau
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Catherine Archilla
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Irène Aksoy
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Anais Moulin
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Nathalie Daniel
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Nathalie Peynot
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Sophie Calderari
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Thierry Joly
- ISARA-Lyon 4 , F-69007 Lyon , France
- VetAgroSup, UPSP ICE 5 , F-69280 Marcy l'Etoile , France
| | - Murielle Godet
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 6 , 91198 Gif-sur-Yvette , France
| | - Marine Pratlong
- MGX, Université Montpellier, CNRS, INSERM 7 , 34094 Montpellier , France
| | - Dany Severac
- MGX, Université Montpellier, CNRS, INSERM 7 , 34094 Montpellier , France
| | - Pierre Savatier
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Véronique Duranthon
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Marielle Afanassieff
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Nathalie Beaujean
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| |
Collapse
|
42
|
Bergmann S, Penfold CA, Slatery E, Siriwardena D, Drummer C, Clark S, Strawbridge SE, Kishimoto K, Vickers A, Tewary M, Kohler TN, Hollfelder F, Reik W, Sasaki E, Behr R, Boroviak TE. Spatial profiling of early primate gastrulation in utero. Nature 2022; 609:136-143. [PMID: 35709828 PMCID: PMC7614364 DOI: 10.1038/s41586-022-04953-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 06/08/2022] [Indexed: 11/09/2022]
Abstract
Gastrulation controls the emergence of cellular diversity and axis patterning in the early embryo. In mammals, this transformation is orchestrated by dynamic signalling centres at the interface of embryonic and extraembryonic tissues1-3. Elucidating the molecular framework of axis formation in vivo is fundamental for our understanding of human development4-6 and to advance stem-cell-based regenerative approaches7. Here we illuminate early gastrulation of marmoset embryos in utero using spatial transcriptomics and stem-cell-based embryo models. Gaussian process regression-based 3D transcriptomes delineate the emergence of the anterior visceral endoderm, which is hallmarked by conserved (HHEX, LEFTY2, LHX1) and primate-specific (POSTN, SDC4, FZD5) factors. WNT signalling spatially coordinates the formation of the primitive streak in the embryonic disc and is counteracted by SFRP1 and SFRP2 to sustain pluripotency in the anterior domain. Amnion specification occurs at the boundaries of the embryonic disc through ID1, ID2 and ID3 in response to BMP signalling, providing a developmental rationale for amnion differentiation of primate pluripotent stem cells (PSCs). Spatial identity mapping demonstrates that primed marmoset PSCs exhibit the highest similarity to the anterior embryonic disc, whereas naive PSCs resemble the preimplantation epiblast. Our 3D transcriptome models reveal the molecular code of lineage specification in the primate embryo and provide an in vivo reference to decipher human development.
Collapse
Affiliation(s)
- Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Jeffrey Cheah Biomedical Centre, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Christopher A Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Jeffrey Cheah Biomedical Centre, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Erin Slatery
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Jeffrey Cheah Biomedical Centre, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Dylan Siriwardena
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Jeffrey Cheah Biomedical Centre, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Charis Drummer
- Research Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Stephen Clark
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Stanley E Strawbridge
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Jeffrey Cheah Biomedical Centre, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Keiko Kishimoto
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Alice Vickers
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, UK
| | - Mukul Tewary
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, UK
| | - Timo N Kohler
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Wolf Reik
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Rüdiger Behr
- Research Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
- Jeffrey Cheah Biomedical Centre, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
43
|
Pham TXA, Panda A, Kagawa H, To SK, Ertekin C, Georgolopoulos G, van Knippenberg SSFA, Allsop RN, Bruneau A, Chui JSH, Vanheer L, Janiszewski A, Chappell J, Oberhuemer M, Tchinda RS, Talon I, Khodeer S, Rossant J, Lluis F, David L, Rivron N, Balaton BP, Pasque V. Modeling human extraembryonic mesoderm cells using naive pluripotent stem cells. Cell Stem Cell 2022; 29:1346-1365.e10. [PMID: 36055191 PMCID: PMC9438972 DOI: 10.1016/j.stem.2022.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/08/2022] [Accepted: 08/05/2022] [Indexed: 12/31/2022]
Abstract
A hallmark of primate postimplantation embryogenesis is the specification of extraembryonic mesoderm (EXM) before gastrulation, in contrast to rodents where this tissue is formed only after gastrulation. Here, we discover that naive human pluripotent stem cells (hPSCs) are competent to differentiate into EXM cells (EXMCs). EXMCs are specified by inhibition of Nodal signaling and GSK3B, are maintained by mTOR and BMP4 signaling activity, and their transcriptome and epigenome closely resemble that of human and monkey embryo EXM. EXMCs are mesenchymal, can arise from an epiblast intermediate, and are capable of self-renewal. Thus, EXMCs arising via primate-specific specification between implantation and gastrulation can be modeled in vitro. We also find that most of the rare off-target cells within human blastoids formed by triple inhibition (Kagawa et al., 2021) correspond to EXMCs. Our study impacts our ability to model and study the molecular mechanisms of early human embryogenesis and related defects.
Collapse
Affiliation(s)
- Thi Xuan Ai Pham
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Amitesh Panda
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Harunobu Kagawa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - San Kit To
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Cankat Ertekin
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Grigorios Georgolopoulos
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Sam S F A van Knippenberg
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Ryan Nicolaas Allsop
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Alexandre Bruneau
- Nantes Université, CHU Nantes, Inserm, CR2TI, UMR 1064, F-44000, Nantes, France
| | - Jonathan Sai-Hong Chui
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Lotte Vanheer
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Adrian Janiszewski
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Joel Chappell
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Michael Oberhuemer
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Raissa Songwa Tchinda
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Irene Talon
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Sherif Khodeer
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5V 0B1, Canada
| | - Frederic Lluis
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Laurent David
- Nantes Université, CHU Nantes, Inserm, CR2TI, UMR 1064, F-44000, Nantes, France; Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, F-44000 Nantes, France
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Bradley Philip Balaton
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium.
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
44
|
Roberts RM, Ezashi T, Temple J, Owen JR, Soncin F, Parast MM. The role of BMP4 signaling in trophoblast emergence from pluripotency. Cell Mol Life Sci 2022; 79:447. [PMID: 35877048 PMCID: PMC10243463 DOI: 10.1007/s00018-022-04478-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
The Bone Morphogenetic Protein (BMP) signaling pathway has established roles in early embryonic morphogenesis, particularly in the epiblast. More recently, however, it has also been implicated in development of extraembryonic lineages, including trophectoderm (TE), in both mouse and human. In this review, we will provide an overview of this signaling pathway, with a focus on BMP4, and its role in emergence and development of TE in both early mouse and human embryogenesis. Subsequently, we will build on these in vivo data and discuss the utility of BMP4-based protocols for in vitro conversion of primed vs. naïve pluripotent stem cells (PSC) into trophoblast, and specifically into trophoblast stem cells (TSC). PSC-derived TSC could provide an abundant, reproducible, and ethically acceptable source of cells for modeling placental development.
Collapse
Affiliation(s)
- R Michael Roberts
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Toshihiko Ezashi
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Colorado Center for Reproductive Medicine, 10290 Ridgegate Circle, Lone Tree, CO, 80124, USA
| | - Jasmine Temple
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Joseph R Owen
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Francesca Soncin
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA.
| |
Collapse
|
45
|
Zhang P, Xue S, Guo R, Liu J, Bai B, Li D, Hyraht A, Sun N, Shao H, Fan Y, Ji W, Yang S, Yu Y, Tan T. Mapping developmental paths of monkey primordial germ-like cells differentiation from pluripotent stem cells by single cell ribonucleic acid sequencing analysis†. Biol Reprod 2022; 107:237-249. [PMID: 35766401 PMCID: PMC9310512 DOI: 10.1093/biolre/ioac133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 01/06/2023] Open
Abstract
The induction of primordial germ-like cells (PGCLCs) from pluripotent stem cells (PSCs) provides a powerful system to study the cellular and molecular mechanisms underlying germline specification, which are difficult to study in vivo. The studies reveal the existence of a species-specific mechanism underlying PGCLCs between humans and mice, highlighting the necessity to study regulatory networks in more species, especially in primates. Harnessing the power of single-cell RNA sequencing (scRNA-seq) analysis, the detailed trajectory of human PGCLCs specification in vitro has been achieved. However, the study of nonhuman primates is still needed. Here, we applied an embryoid body (EB) differentiation system to induce PGCLCs specification from cynomolgus monkey male and female PSCs, and then performed high throughput scRNA-seq analysis of approximately 40 000 PSCs and cells within EBs. We found that EBs provided a niche for PGCLCs differentiation by secreting growth factors critical for PGCLC specification, such as bone morphogenetic protein 2 (BMP2), BMP4, and Wnt Family Member 3. Moreover, the developmental trajectory of PGCLCs was reconstituted, and gene expression dynamics were revealed. Our study outlines the roadmap of PGCLC specification from PSCs and provides insights that will improve the differentiation efficiency of PGCLCs from PSCs.
Collapse
Affiliation(s)
- Puyao Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Sengren Xue
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Rongrong Guo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Jian Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Bing Bai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Dexuan Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Ahjol Hyraht
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Nianqin Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Honglian Shao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yong Fan
- Department of Gynecology and Obstetrics, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Shihua Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yang Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Tao Tan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
46
|
Epigenetics as "conductor" in "orchestra" of pluripotent states. Cell Tissue Res 2022; 390:141-172. [PMID: 35838826 DOI: 10.1007/s00441-022-03667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/01/2022] [Indexed: 11/02/2022]
Abstract
Pluripotent character is described as the potency of cells to differentiate into all three germ layers. The best example to reinstate the term lies in the context of embryonic stem cells (ESCs). Pluripotent ESC describes the in vitro status of those cells that originate during the complex process of embryogenesis. Pre-implantation to post-implantation development of embryo embrace cells with different levels of stemness. Currently, four states of pluripotency have been recognized, in the progressing order of "naïve," "poised," "formative," and "primed." Epigenetics act as the "conductor" in this "orchestra" of transition in pluripotent states. With a distinguishable gene expression profile, these four states associate with different epigenetic signatures, sometimes distinct while otherwise overlapping. The present review focuses on how epigenetic factors, including DNA methylation, bivalent chromatin, chromatin remodelers, chromatin/nuclear architecture, and microRNA, could dictate pluripotent states and their transition among themselves.
Collapse
|
47
|
Qu J, Yang F, Zhu T, Wang Y, Fang W, Ding Y, Zhao X, Qi X, Xie Q, Chen M, Xu Q, Xie Y, Sun Y, Chen D. A reference single-cell regulomic and transcriptomic map of cynomolgus monkeys. Nat Commun 2022; 13:4069. [PMID: 35831300 PMCID: PMC9279386 DOI: 10.1038/s41467-022-31770-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022] Open
Abstract
Non-human primates are attractive laboratory animal models that accurately reflect both developmental and pathological features of humans. Here we present a compendium of cell types across multiple organs in cynomolgus monkeys (Macaca fascicularis) using both single-cell chromatin accessibility and RNA sequencing data. The integrated cell map enables in-depth dissection and comparison of molecular dynamics, cell-type compositions and cellular heterogeneity across multiple tissues and organs. Using single-cell transcriptomic data, we infer pseudotime cell trajectories and cell-cell communications to uncover key molecular signatures underlying their cellular processes. Furthermore, we identify various cell-specific cis-regulatory elements and construct organ-specific gene regulatory networks at the single-cell level. Finally, we perform comparative analyses of single-cell landscapes among mouse, monkey and human. We show that cynomolgus monkey has strikingly higher degree of similarities in terms of immune-associated gene expression patterns and cellular communications to human than mouse. Taken together, our study provides a valuable resource for non-human primate cell biology. Non-human primates are attractive laboratory animal models that can accurately reflect some developmental and pathological features of humans. Here the authors chart a reference cell map of cynomolgus monkeys using both scATAC-seq and scRNA-seq data across multiple organs, providing insights into the molecular dynamics and cellular heterogeneity of this organism.
Collapse
Affiliation(s)
- Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Fa Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Tao Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Yingshuo Wang
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 310052, Hangzhou, China
| | - Wen Fang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Yan Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Xue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Xianjia Qi
- Shanghai XuRan Biotechnology Co., Ltd., 1088 Zhongchun Road, 201109, Shanghai, China
| | - Qiangmin Xie
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 310052, Hangzhou, China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Yicheng Xie
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 310052, Hangzhou, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China. .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China.
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China.
| |
Collapse
|
48
|
Yoshihara M, Kirjanov I, Nykänen S, Sokka J, Weltner J, Lundin K, Gawriyski L, Jouhilahti EM, Varjosalo M, Tervaniemi MH, Otonkoski T, Trokovic R, Katayama S, Vuoristo S, Kere J. Transient DUX4 expression in human embryonic stem cells induces blastomere-like expression program that is marked by SLC34A2. Stem Cell Reports 2022; 17:1743-1756. [PMID: 35777358 PMCID: PMC9287684 DOI: 10.1016/j.stemcr.2022.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 10/25/2022] Open
Abstract
Embryonic genome activation (EGA) is critical for embryonic development. However, our understanding of the regulatory mechanisms of human EGA is still incomplete. Human embryonic stem cells (hESCs) are an established model for studying developmental processes, but they resemble epiblast and are sub-optimal for modeling EGA. DUX4 regulates human EGA by inducing cleavage-stage-specific genes, while it also induces cell death. We report here that a short-pulsed expression of DUX4 in primed hESCs activates an EGA-like gene expression program in up to 17% of the cells, retaining cell viability. These DUX4-induced cells resembled eight-cell stage blastomeres and were named induced blastomere-like (iBM) cells. The iBM cells showed marked reduction of POU5F1 protein, as previously observed in mouse two-cell-like cells. Finally, the iBM cells were successfully enriched using an antibody against NaPi2b (SLC34A2), which is expressed in human blastomeres. The iBM cells provide an improved model system to study human EGA transcriptome.
Collapse
Affiliation(s)
- Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Institute for Advanced Academic Research, Chiba University, Chiba, Japan; Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Ida Kirjanov
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki, Finland
| | - Sonja Nykänen
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki, Finland
| | - Joonas Sokka
- Research Programs Unit, Stem Cells and Metabolism and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jere Weltner
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Division of Obstetrics and Gynecology, Karolinska University Hospital, Stockholm, Sweden
| | - Karolina Lundin
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki, Finland
| | - Lisa Gawriyski
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eeva-Mari Jouhilahti
- Research Programs Unit, Stem Cells and Metabolism and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mari H Tervaniemi
- Research Programs Unit, Stem Cells and Metabolism and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland
| | - Timo Otonkoski
- Research Programs Unit, Stem Cells and Metabolism and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Children's Hospital, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Ras Trokovic
- Research Programs Unit, Stem Cells and Metabolism and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Research Programs Unit, Stem Cells and Metabolism and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland
| | - Sanna Vuoristo
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki, Finland.
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Research Programs Unit, Stem Cells and Metabolism and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland.
| |
Collapse
|
49
|
Ávila-González D, Portillo W, Barragán-Álvarez CP, Hernandez-Montes G, Flores-Garza E, Molina-Hernández A, Diaz-Martinez NE, Diaz NF. The human amniotic epithelium confers a bias to differentiate toward the neuroectoderm lineage in human embryonic stem cells. eLife 2022; 11:68035. [PMID: 35815953 PMCID: PMC9313526 DOI: 10.7554/elife.68035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Human embryonic stem cells (hESCs) derive from the epiblast and have pluripotent potential. To maintain the conventional conditions of the pluripotent potential in an undifferentiated state, inactivated mouse embryonic fibroblast (iMEF) is used as a feeder layer. However, it has been suggested that hESC under this conventional condition (hESC-iMEF) is an artifact that does not correspond to the in vitro counterpart of the human epiblast. Our previous studies demonstrated the use of an alternative feeder layer of human amniotic epithelial cells (hAECs) to derive and maintain hESC. We wondered if the hESC-hAEC culture could represent a different pluripotent stage than that of naïve or primed conventional conditions, simulating the stage in which the amniotic epithelium derives from the epiblast during peri-implantation. Like the conventional primed hESC-iMEF, hESC-hAEC has the same levels of expression as the ‘pluripotency core’ and does not express markers of naïve pluripotency. However, it presents a downregulation of HOX genes and genes associated with the endoderm and mesoderm, and it exhibits an increase in the expression of ectoderm lineage genes, specifically in the anterior neuroectoderm. Transcriptome analysis showed in hESC-hAEC an upregulated signature of genes coding for transcription factors involved in neural induction and forebrain development, and the ability to differentiate into a neural lineage was superior in comparison with conventional hESC-iMEF. We propose that the interaction of hESC with hAEC confers hESC a biased potential that resembles the anteriorized epiblast, which is predisposed to form the neural ectoderm.
Collapse
Affiliation(s)
- Daniela Ávila-González
- Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Wendy Portillo
- Behavioral and Cognitive Neurobiology, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Carla P Barragán-Álvarez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | | | - Eliezer Flores-Garza
- Departamento de Biología Molecular y Biotecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anayansi Molina-Hernández
- Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | | | - Nestor F Diaz
- Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| |
Collapse
|
50
|
Yu X, Liang S, Chen M, Yu H, Li R, Qu Y, Kong X, Guo R, Zheng R, Izsvák Z, Sun C, Yang M, Wang J. Recapitulating early human development with 8C-like cells. Cell Rep 2022; 39:110994. [PMID: 35732112 DOI: 10.1016/j.celrep.2022.110994] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
In human embryos, major zygotic genome activation (ZGA) initiates at the eight-cell (8C) stage. Abnormal ZGA leads to developmental defects and even contributes to the failure of human blastocyst formation or implantation. An in vitro cell model mimicking human 8C blastomeres would be invaluable to understanding the mechanisms regulating key biological events during early human development. Using the non-canonical promoter of LEUTX that putatively regulates human ZGA, we developed an 8C::mCherry reporter, which specifically marks the 8C state, to isolate rare 8C-like cells (8CLCs) from human preimplantation epiblast-like stem cells. The 8CLCs express a panel of human ZGA genes and have a unique transcriptome resembling that of the human 8C embryo. Using the 8C::mCherry reporter, we further optimize the chemical-based culture condition to increase and maintain the 8CLC population. Functionally, 8CLCs can self-organize to form blastocyst-like structures. The discovery and maintenance of 8CLCs provide an opportunity to recapitulate early human development.
Collapse
Affiliation(s)
- Xiu Yu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Shiqi Liang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Manqi Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Hanwen Yu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Ruiqi Li
- Department of Obstetrics and Gynaecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yuliang Qu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xuhui Kong
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Ruirui Guo
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Rongyan Zheng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Zsuzsanna Izsvák
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Chuanbo Sun
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| | - Mingzhu Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Jichang Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|