1
|
Huse M. Mechanoregulation of lymphocyte cytotoxicity. Nat Rev Immunol 2025:10.1038/s41577-025-01173-2. [PMID: 40312550 DOI: 10.1038/s41577-025-01173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 05/03/2025]
Abstract
Cytotoxic lymphocytes counter intracellular pathogens and cancer by recognizing and destroying infected or transformed target cells. The basis for their function is the cytolytic immune synapse, a structurally stereotyped cell-cell interface through which lymphocytes deliver toxic proteins to target cells. The immune synapse is a highly dynamic contact capable of exerting nanonewton-scale forces against the target cell. In recent years, it has become clear that the interplay between these forces and the biophysical properties of the target influences the entirety of the cytotoxic response, from the initial activation of cytotoxic lymphocytes to the release of dying target cells. As a result, cellular cytotoxicity has become an exemplar of the ways in which biomechanics can regulate immune cell activation and effector function. This Review covers recent progress in this area, which has prompted a reconsideration of target cell killing from a more mechanobiological perspective.
Collapse
Affiliation(s)
- Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Niazi A, Kim JA, Kim DK, Lu D, Sterin I, Park J, Park S. Microvilli control the morphogenesis of the tectorial membrane extracellular matrix. Dev Cell 2025; 60:679-695.e8. [PMID: 39657673 PMCID: PMC11905117 DOI: 10.1016/j.devcel.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/17/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
The apical extracellular matrix (aECM), organized by polarized epithelial cells, exhibits complex structures. The tectorial membrane (TM), an aECM in the cochlea mediating auditory transduction, exhibits highly ordered domain-specific architecture. α-Tectorin (TECTA), a glycosylphosphatidylinositol (GPI)-anchored ECM protein, is essential for TM organization. Here, we identified that α-tectorin is released by distinct modes: proteolytic shedding by TMPRSS2 and GPI-anchor-dependent release from the microvillus tip in mice. In the medial/limbal domain, proteolytically shed α-tectorin forms dense fibers. In contrast, in the lateral/body domain, where supporting cells exhibit dense microvilli, shedding restricts α-tectorin to the microvillus tip, compartmentalizing collagen-binding sites. Tip-localized α-tectorin is released in a GPI-anchor-dependent manner to form collagen-crosslinking fibers, maintaining the spacing and parallel organization of collagen fibrils. Overall, these distinct release modes of α-tectorin determine domain-specific organization, with the microvillus coordinating release modes along its membrane to assemble the higher-order ECM architecture.
Collapse
Affiliation(s)
- Ava Niazi
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA; Neuroscience Program, University of Utah, Salt Lake City, UT, USA
| | - Ju Ang Kim
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Dong-Kyu Kim
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Di Lu
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Igal Sterin
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Joosang Park
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Sungjin Park
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Wu X, Ye Z. Mechanoimmunology of T-Cell Activation. Scand J Immunol 2025; 101:e70009. [PMID: 39973081 DOI: 10.1111/sji.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/21/2025]
Abstract
T-cell activation, a pivotal process in the adaptive immune response, is initiated when the T cell receptor (TCR) recognises and binds to antigenic peptide-major histocompatibility complex (pMHC) molecules on the cell membrane. Emerging evidence indicates that mechanical cues regulate T-cell activation by modulating TCR signalling and mechanotransduction pathways, although the precise underlying mechanisms remain elusive. This review highlights recent findings suggesting that the TCR functions as a mechanosensor, capable of sensing and transmitting mechanical forces through conformational changes. Key steps in T-cell mechanotransduction are discussed, including the roles of the cytoskeleton, mechanosensitive channels such as Piezo 1 and microvilli in facilitating activation. Additionally, we analyse the mechanical responses of chimeric antigen receptor T cells. Understanding the mechanobiological mechanisms underlying T-cell activation offers novel insights and potential strategies for advancing immunotherapies and treating immune-related disorders.
Collapse
Affiliation(s)
- Xuelan Wu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, China
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, China
| |
Collapse
|
4
|
Gudneppanavar R, Di Pietro C, H Öz H, Zhang PX, Cheng EC, Huang PH, Tebaldi T, Biancon G, Halene S, Hoppe AD, Kim C, Gonzalez AL, Krause DS, Egan ME, Gupta N, Murray TS, Bruscia EM. Ezrin drives adaptation of monocytes to the inflamed lung microenvironment. Cell Death Dis 2024; 15:864. [PMID: 39613751 PMCID: PMC11607083 DOI: 10.1038/s41419-024-07255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Ezrin, an actin-binding protein, orchestrates the organization of the cortical cytoskeleton and plasma membrane during cell migration, adhesion, and proliferation. Its role in monocytes/macrophages (MΦs) is less understood. Here, we used a monocyte/MΦ-specific ezrin knock-out mouse model to investigate the contribution of ezrin to monocyte recruitment and adaptation to the lung extracellular matrix (ECM) in response to lipopolysaccharide (LPS). Our study revealed that LPS induces ezrin expression in monocytes/MΦs and is essential for monocytes to adhere to lung ECM, proliferate, and differentiate into tissue-resident interstitial MΦs. Mechanistically, the loss of ezrin in monocytes disrupts activation of focal adhesion kinase and AKT serine-threonine protein kinase signaling, essential for lung-recruited monocytes and monocyte-derived MΦs to adhere to the ECM, proliferate, and survive. In summary, our data show that ezrin plays a role beyond structural cellular support, influencing diverse monocytes/MΦ processes and signaling pathways during inflammation, facilitating their differentiation into tissue-resident macrophages.
Collapse
Affiliation(s)
| | - Caterina Di Pietro
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Hasan H Öz
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Ping-Xia Zhang
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Laboratory Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Ee-Chun Cheng
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Pamela H Huang
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Toma Tebaldi
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Hematology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giulia Biancon
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Hematology, School of Medicine, Yale University, New Haven, CT, USA
| | - Stephanie Halene
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Hematology, School of Medicine, Yale University, New Haven, CT, USA
| | - Adam D Hoppe
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
| | - Catherine Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - Diane S Krause
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Laboratory Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, USA
| | - Marie E Egan
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Neetu Gupta
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Thomas S Murray
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Emanuela M Bruscia
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA.
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Ghosh S, Wagenknecht-Wiesner A, Desai S, Vyphuis J, Ramos MS, Grazul JL, Baird BA. The Synergy between Topography and Lipid Domains in the Plasma Membrane of Mast Cells Controls the Localization of Signaling Proteins and Facilitates their Coordinated Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624791. [PMID: 39605335 PMCID: PMC11601610 DOI: 10.1101/2024.11.22.624791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Similar to T cells and B cells, mast cell surfaces are dominated by microvilli, and like these other immune cells we showed with microvillar cartography (MC) that key signaling proteins for RBL mast cells localize to these topographical features. Although stabilization of ordered lipid nanodomains around antigen-crosslinked IgE-FcεRI is known to facilitate necessary coupling with Lyn tyrosine kinase to initiate transmembrane signaling in these mast cells, the relationship of ordered-lipid nanodomains to membrane topography had not been determined. With nanoscale resolution provided by MC, SEM and co-localization probability (CP) analysis, we found that FcεRI and Lyn kinase are positioned exclusively on the microvilli of resting mast cells in separate nano-assemblies, and upon antigen-activation they merge into overlapping populations together with the LAT scaffold protein, accompanied by elongation and merger of microvilli into ridge-like ruffles. With selective lipid probes, we further found that ordered-lipid nanodomains preferentially occupy microvillar membranes, contrasting with localization of disordered lipids to flatter regions. With this proximity of signaling proteins and ordered lipid nanodomains in microvilli, the mast cells are poised to respond sensitively and efficiently to antigen but only in the presence of this stimulus. Use of a short chain ceramide to disrupt ordered-lipid regions of the plasma membrane and evaluation with MC, CP, and flow cytometry provided strong evidence that the microvillar selective localization of signaling proteins and lipid environments is facilitated by the interplay between ordered-lipid nanodomains and actin attachment proteins, ERM (ezrin, radixin, moesin) and cofilin.
Collapse
Affiliation(s)
- Shirsendu Ghosh
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Chemistry, Gandhi Institute of Technology and Management, Hyderabad Campus, Rudraram, Telangana 502329, India
| | | | - Shriya Desai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Jada Vyphuis
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | | | - John L. Grazul
- Cornell Center for Materials Research, Cornell University, Ithaca, NY 14853
| | - Barbara A. Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
6
|
Ansel M, Ramachandran K, Dey G, Brunet T. Origin and evolution of microvilli. Biol Cell 2024; 116:e2400054. [PMID: 39233537 DOI: 10.1111/boc.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND INFORMATION Microvilli are finger-like, straight, and stable cellular protrusions that are filled with F-actin and present a stereotypical length. They are present in a broad range of cell types across the animal tree of life and mediate several fundamental functions, including nutrient absorption, photosensation, and mechanosensation. Therefore, understanding the origin and evolution of microvilli is key to reconstructing the evolution of animal cellular form and function. Here, we review the current state of knowledge on microvilli evolution and perform a bioinformatic survey of the conservation of genes encoding microvillar proteins in animals and their unicellular relatives. RESULTS We first present a detailed description of mammalian microvilli based on two well-studied examples, the brush border microvilli of enterocytes and the stereocilia of hair cells. We also survey the broader diversity of microvilli and discuss similarities and differences between microvilli and filopodia. Based on our bioinformatic survey coupled with carefully reconstructed molecular phylogenies, we reconstitute the order of evolutionary appearance of microvillar proteins. We document the stepwise evolutionary assembly of the "molecular microvillar toolkit" with notable bursts of innovation at two key nodes: the last common filozoan ancestor (correlated with the evolution of microvilli distinct from filopodia) and the last common choanozoan ancestor (correlated with the emergence of inter-microvillar adhesions). CONCLUSION AND SIGNIFICANCE We conclude with a scenario for the evolution of microvilli from filopodia-like ancestral structures in unicellular precursors of animals.
Collapse
Affiliation(s)
- Mylan Ansel
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Paris, France
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
- Master BioSciences, Département de Biologie, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Kaustubh Ramachandran
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thibaut Brunet
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Paris, France
| |
Collapse
|
7
|
Mastrogiovanni M, Donnadieu E, Pathak R, Di Bartolo V. Subverting Attachment to Prevent Attacking: Alteration of Effector Immune Cell Migration and Adhesion as a Key Mechanism of Tumor Immune Evasion. BIOLOGY 2024; 13:860. [PMID: 39596815 PMCID: PMC11591779 DOI: 10.3390/biology13110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Cell adhesion regulates specific migratory patterns, location, communication with other cells, physical interactions with the extracellular matrix, and the establishment of effector programs. Proper immune control of cancer strongly depends on all these events occurring in a highly accurate spatiotemporal sequence. In response to cancer-associated inflammatory signals, effector immune cells navigating the bloodstream shift from their patrolling exploratory migration mode to establish adhesive interactions with vascular endothelial cells. This interaction enables them to extravasate through the blood vessel walls and access the cancer site. Further adhesive interactions within the tumor microenvironment (TME) are crucial for coordinating their distribution in situ and for mounting an effective anti-tumor immune response. In this review, we examine how alterations of adhesion cues in the tumor context favor tumor escape by affecting effector immune cell infiltration and trafficking within the TME. We discuss the mechanisms by which tumors directly modulate immune cell adhesion and migration patterns to affect anti-tumor immunity and favor tumor evasion. We also explore indirect immune escape mechanisms that involve modifications of TME characteristics, such as vascularization, immunogenicity, and structural topography. Finally, we highlight the significance of these aspects in designing more effective drug treatments and cellular immunotherapies.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Emmanuel Donnadieu
- Equipe Labellisée Ligue Contre le Cancer, CNRS, INSERM, Institut Cochin, Université Paris Cité, F-75014 Paris, France;
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Vincenzo Di Bartolo
- Immunoregulation Unit, Institut Pasteur, Université Paris Cité, F-75015 Paris, France;
| |
Collapse
|
8
|
Xiong Y, Libby KA, Su X. The physical landscape of CAR-T synapse. Biophys J 2024; 123:2199-2210. [PMID: 37715447 PMCID: PMC11331049 DOI: 10.1016/j.bpj.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells form dynamic immunological synapses with their cancer cell targets. After a CAR-antigen engagement, the CAR-T synapse forms, matures, and finally disassembles, accompanied by substantial remodeling of cell surface proteins, lipids, and glycans. In this review, we provide perspectives for understanding protein distribution, membrane topology, and force transmission across the CAR-T synapse. We highlight the features of CAR-T synapses that differ from T cell receptor synapses, including the disorganized protein pattern, adjustable synapse width, diverse mechano-responding properties, and resulting signaling consequences. Through a range of examples, we illustrate how revealing the biophysical nature of the CAR-T synapse could guide the design of CAR-Ts with improved anti-tumor function.
Collapse
Affiliation(s)
- Yiwei Xiong
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Kendra A Libby
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Yale Cancer Center, Yale University, New Haven, Connecticut; Yale Stem Cell Center, Yale University, New Haven, Connecticut.
| |
Collapse
|
9
|
Chen H, Yan G, Wen MH, Brooks KN, Zhang Y, Huang PS, Chen TY. Advancements and Practical Considerations for Biophysical Research: Navigating the Challenges and Future of Super-resolution Microscopy. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:331-344. [PMID: 38817319 PMCID: PMC11134610 DOI: 10.1021/cbmi.4c00019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 06/01/2024]
Abstract
The introduction of super-resolution microscopy (SRM) has significantly advanced our understanding of cellular and molecular dynamics, offering a detailed view previously beyond our reach. Implementing SRM in biophysical research, however, presents numerous challenges. This review addresses the crucial aspects of utilizing SRM effectively, from selecting appropriate fluorophores and preparing samples to analyzing complex data sets. We explore recent technological advancements and methodological improvements that enhance the capabilities of SRM. Emphasizing the integration of SRM with other analytical methods, we aim to overcome inherent limitations and expand the scope of biological insights achievable. By providing a comprehensive guide for choosing the most suitable SRM methods based on specific research objectives, we aim to empower researchers to explore complex biological processes with enhanced precision and clarity, thereby advancing the frontiers of biophysical research.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Guangjie Yan
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Meng-Hsuan Wen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Kameron N. Brooks
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Yuteng Zhang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Pei-San Huang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
10
|
Kvalvaag A, Dustin ML. Clathrin controls bidirectional communication between T cells and antigen presenting cells. Bioessays 2024; 46:e2300230. [PMID: 38412391 DOI: 10.1002/bies.202300230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
In circulation, T cells are spherical with selectin enriched dynamic microvilli protruding from the surface. Following extravasation, these microvilli serve another role, continuously surveying their environment for antigen in the form of peptide-MHC (pMHC) expressed on the surface of antigen presenting cells (APCs). Upon recognition of their cognate pMHC, the microvilli are initially stabilized and then flatten into F-actin dependent microclusters as the T cell spreads over the APC. Within 1-5 min, clathrin is recruited by the ESCRT-0 component Hrs to mediate release of T cell receptor (TCR) loaded vesicles directly from the plasma membrane by clathrin and ESCRT-mediated ectocytosis (CEME). After 5-10 min, Hrs is displaced by the endocytic clathrin adaptor epsin-1 to induce clathrin-mediated trans-endocytosis (CMTE) of TCR-pMHC conjugates. Here we discuss some of the functional properties of the clathrin machinery which enables it to control these topologically opposite modes of membrane transfer at the immunological synapse, and how this might be regulated during T cell activation.
Collapse
Affiliation(s)
- Audun Kvalvaag
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Guerra-Espinosa C, Jiménez-Fernández M, Sánchez-Madrid F, Serrador JM. ICAMs in Immunity, Intercellular Adhesion and Communication. Cells 2024; 13:339. [PMID: 38391953 PMCID: PMC10886500 DOI: 10.3390/cells13040339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Interactions among leukocytes and leukocytes with immune-associated auxiliary cells represent an essential feature of the immune response that requires the involvement of cell adhesion molecules (CAMs). In the immune system, CAMs include a wide range of members pertaining to different structural and functional families involved in cell development, activation, differentiation and migration. Among them, β2 integrins (LFA-1, Mac-1, p150,95 and αDβ2) are predominantly involved in homotypic and heterotypic leukocyte adhesion. β2 integrins bind to intercellular (I)CAMs, actin cytoskeleton-linked receptors belonging to immunoglobulin superfamily (IgSF)-CAMs expressed by leukocytes and vascular endothelial cells, enabling leukocyte activation and transendothelial migration. β2 integrins have long been viewed as the most important ICAMs partners, propagating intracellular signalling from β2 integrin-ICAM adhesion receptor interaction. In this review, we present previous evidence from pioneering studies and more recent findings supporting an important role for ICAMs in signal transduction. We also discuss the contribution of immune ICAMs (ICAM-1, -2, and -3) to reciprocal cell signalling and function in processes in which β2 integrins supposedly take the lead, paying particular attention to T cell activation, differentiation and migration.
Collapse
Affiliation(s)
- Claudia Guerra-Espinosa
- Immune System Development and Function Unit, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - María Jiménez-Fernández
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; (M.J.-F.); (F.S.-M.)
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; (M.J.-F.); (F.S.-M.)
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan M. Serrador
- Immune System Development and Function Unit, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
12
|
Niazi A, Kim JA, Kim DK, Lu D, Sterin I, Park J, Park S. Microvilli regulate the release modes of alpha-tectorin to organize the domain-specific matrix architecture of the tectorial membrane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574255. [PMID: 38260557 PMCID: PMC10802356 DOI: 10.1101/2024.01.04.574255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The tectorial membrane (TM) is an apical extracellular matrix (ECM) in the cochlea essential for auditory transduction. The TM exhibits highly ordered domain-specific architecture. Alpha-tectorin/TECTA is a glycosylphosphatidylinositol (GPI)-anchored ECM protein essential for TM organization. Here, we identified that TECTA is released by distinct modes: proteolytic shedding by TMPRSS2 and GPI-anchor-dependent release from the microvillus tip. In the medial/limbal domain, proteolytically shed TECTA forms dense fibers. In the lateral/body domain produced by the supporting cells displaying dense microvilli, the proteolytic shedding restricts TECTA to the microvillus tip and compartmentalizes the collagen-binding site. The tip-localized TECTA, in turn, is released in a GPI-anchor-dependent manner to form collagen-crosslinking fibers, required for maintaining the spacing and parallel organization of collagen fibrils. Overall, we showed that distinct release modes of TECTA determine the domain-specific organization pattern, and the microvillus coordinates the release modes along its membrane to organize the higher-order ECM architecture.
Collapse
Affiliation(s)
- Ava Niazi
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
- Neuroscience Program, University of Utah, Salt Lake City, Utah, USA
| | - Ju Ang Kim
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
- Current affiliation: Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dong-Kyu Kim
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
- Current affiliation: Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Di Lu
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
| | - Igal Sterin
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
| | - Joosang Park
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
| | - Sungjin Park
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
13
|
Ruiz-Navarro J, Calvo V, Izquierdo M. Extracellular vesicles and microvilli in the immune synapse. Front Immunol 2024; 14:1324557. [PMID: 38268920 PMCID: PMC10806406 DOI: 10.3389/fimmu.2023.1324557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
T cell receptor (TCR) binding to cognate antigen on the plasma membrane of an antigen-presenting cell (APC) triggers the immune synapse (IS) formation. The IS constitutes a dedicated contact region between different cells that comprises a signaling platform where several cues evoked by TCR and accessory molecules are integrated, ultimately leading to an effective TCR signal transmission that guarantees intercellular message communication. This eventually leads to T lymphocyte activation and the efficient execution of different T lymphocyte effector tasks, including cytotoxicity and subsequent target cell death. Recent evidence demonstrates that the transmission of information between immune cells forming synapses is produced, to a significant extent, by the generation and secretion of distinct extracellular vesicles (EV) from both the effector T lymphocyte and the APC. These EV carry biologically active molecules that transfer cues among immune cells leading to a broad range of biological responses in the recipient cells. Included among these bioactive molecules are regulatory miRNAs, pro-apoptotic molecules implicated in target cell apoptosis, or molecules triggering cell activation. In this study we deal with the different EV classes detected at the IS, placing emphasis on the most recent findings on microvilli/lamellipodium-produced EV. The signals leading to polarized secretion of EV at the synaptic cleft will be discussed, showing that the IS architecture fulfills a fundamental task during this route.
Collapse
Affiliation(s)
- Javier Ruiz-Navarro
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Víctor Calvo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Manuel Izquierdo
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
14
|
Van Ryk D, Vimonpatranon S, Hiatt J, Ganesan S, Chen N, McMurry J, Garba S, Min S, Goes LR, Girard A, Yolitz J, Licavoli I, Wei D, Huang D, Soares MA, Martinelli E, Cicala C, Arthos J. The V2 domain of HIV gp120 mimics an interaction between CD4 and integrin ⍺4β7. PLoS Pathog 2023; 19:e1011860. [PMID: 38064524 PMCID: PMC10732398 DOI: 10.1371/journal.ppat.1011860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/20/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023] Open
Abstract
The CD4 receptor, by stabilizing TCR-MHC II interactions, plays a central role in adaptive immunity. It also serves as the HIV docking receptor. The HIV gp120 envelope protein binds directly to CD4. This interaction is a prerequisite for viral entry. gp120 also binds to ⍺4β7, an integrin that is expressed on a subset of memory CD4+ T cells. HIV tropisms for CD4+ T cells and gut tissues are central features of HIV pathogenesis. We report that CD4 binds directly to ⍺4β7 in a dynamic way, consistent with a cis regulatory interaction. The molecular details of this interaction are related to the way in which gp120 interacts with both receptors. Like MAdCAM-1 and VCAM-1, two recognized ligands of ⍺4β7, the binding interface on CD4 includes 2 sites (1° and accessory), distributed across its two N-terminal IgSF domains (D1 and D2). The 1° site includes a sequence in the G β-strand of CD4 D2, KIDIV, that binds directly to ⍺4β7. This pentapeptide sequence occurs infrequently in eukaryotic proteins. However, a closely related and conserved sequence, KLDIV, appears in the V2 domain of gp120. KLDIV mediates gp120-⍺4β7 binding. The accessory ⍺4β7 binding site on CD4 includes Phe43. The Phe43 aromatic ring protrudes outward from one edge of a loop connecting the C'C" strands of CD4 D1. Phe43 is a principal contact for HIV gp120. It interacts with conserved residues in the recessed CD4 binding pocket. Substitution of Phe43 abrogates CD4 binding to both gp120 and ⍺4β7. As such, the interactions of gp120 with both CD4 and ⍺4β7 reflect elements of their interactions with each other. These findings indicate that gp120 specificities for CD4 and ⍺4β7 are interrelated and suggest that selective pressures which produced a CD4 tropic virus that replicates in gut tissues are linked to a dynamic interaction between these two receptors.
Collapse
Affiliation(s)
- Donald Van Ryk
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Sinmanus Vimonpatranon
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences–United States Component, Bangkok, Thailand
| | - Joe Hiatt
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Sundar Ganesan
- Biological Imaging Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Nathalie Chen
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Jordan McMurry
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Saadiq Garba
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Susie Min
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Livia R. Goes
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
- Oncovirology Program, Instituto Nacional de Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Girard
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Jason Yolitz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Isabella Licavoli
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Danlan Wei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Dawei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Marcelo A. Soares
- Oncovirology Program, Instituto Nacional de Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elena Martinelli
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| |
Collapse
|
15
|
Hui E. Cis Interactions of Membrane Receptors and Ligands. Annu Rev Cell Dev Biol 2023; 39:391-408. [PMID: 37339682 PMCID: PMC11734567 DOI: 10.1146/annurev-cellbio-120420-103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Cell-cell communication is critical for the development and function of multicellular organisms. A crucial means by which cells communicate with one another is physical interactions between receptors on one cell and their ligands on a neighboring cell. Trans ligand:receptor interactions activate the receptor, ultimately leading to changes in the fate of the receptor-expressing cells. Such trans signaling is known to be critical for the functions of cells in the nervous and immune systems, among others. Historically, trans interactions are the primary conceptual framework for understanding cell-cell communication. However, cells often coexpress many receptors and ligands, and a subset of these has been reported to interact in cis and profoundly impact cell functions. Cis interactions likely constitute a fundamental, understudied regulatory mechanism in cell biology. Here, I discuss how cis interactions between membrane receptors and ligands regulate immune cell functions, and I also highlight outstanding questions in the field.
Collapse
Affiliation(s)
- Enfu Hui
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
16
|
Barr VA, Piao J, Balagopalan L, McIntire KM, Schoenberg FP, Samelson LE. Heterogeneity of Signaling Complex Nanostructure in T Cells Activated Via the T Cell Antigen Receptor. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1503-1522. [PMID: 37488826 PMCID: PMC11230849 DOI: 10.1093/micmic/ozad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 07/26/2023]
Abstract
Activation of the T cell antigen receptor (TCR) is a key step in initiating the adaptive immune response. Single-molecule localization techniques have been used to investigate the arrangement of proteins within the signaling complexes formed around activated TCRs, but a clear picture of nanoscale organization in stimulated T cells has not emerged. Here, we have improved the examination of T cell nanostructure by visualizing individual molecules of six different proteins in a single sample of activated Jurkat T cells using the multiplexed antibody-size limited direct stochastic optical reconstruction microscopy (madSTORM) technique. We formally define irregularly shaped regions of interest, compare areas where signaling complexes are concentrated with other areas, and improve the statistical analyses of the locations of molecules. We show that nanoscale organization of proteins is mainly confined to the areas with dense concentrations of TCR-based signaling complexes. However, randomly distributed molecules are also found in some areas containing concentrated signaling complexes. These results are consistent with the view that the proteins within signaling complexes are connected by numerous weak interactions, leading to flexible, dynamic, and mutable structures which produce large variations in the nanostructure found in activated T cells.
Collapse
Affiliation(s)
- Valarie A Barr
- Laboratory of Cellular & Molecular Biology, Building 37 Room 2066, 37 Convent Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4256, USA
| | - Juan Piao
- Department of Statistics, University of California at Los Angeles, 8965 Math Sciences Building, Los Angeles, CA 90095-1554, USA
| | - Lakshmi Balagopalan
- Laboratory of Cellular & Molecular Biology, Building 37 Room 2066, 37 Convent Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4256, USA
| | - Katherine M McIntire
- Laboratory of Cellular & Molecular Biology, Building 37 Room 2066, 37 Convent Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4256, USA
| | - Frederic P Schoenberg
- Department of Statistics, University of California at Los Angeles, 8965 Math Sciences Building, Los Angeles, CA 90095-1554, USA
| | - Lawrence E Samelson
- Laboratory of Cellular & Molecular Biology, Building 37 Room 2066, 37 Convent Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4256, USA
| |
Collapse
|
17
|
Park JS, Kim JH, Soh WC, Kim NY, Lee KS, Kim CH, Chung IJ, Lee S, Kim HR, Jun CD. Trogocytic molting of T cell microvilli upregulates T cell receptor surface expression and promotes clonal expansion. Nat Commun 2023; 14:2980. [PMID: 37221214 DOI: 10.1038/s41467-023-38707-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Although T cell activation is known to involve the internalization of the T cell antigen receptor (TCR), much less is known regarding the release of TCRs following T cell interaction with cognate antigen-presenting cells. In this study, we examine the physiological mechanisms underlying TCR release following T cell activation. We show that T cell activation results in the shedding of TCRs in T cell microvilli, which involves a combined process of trogocytosis and enzymatic vesiculation, leading to the loss of membrane TCRs and microvilli-associated proteins and lipids. Surprisingly, unlike TCR internalization, this event results in the rapid upregulation of surface TCR expression and metabolic reprogramming of cholesterol and fatty acid synthesis to support cell division and survival. These results demonstrate that TCRs are lost through trogocytic 'molting' following T cell activation and highlight this mechanism as an important regulator of clonal expansion.
Collapse
Affiliation(s)
- Jeong-Su Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jun-Hyeong Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Won-Chang Soh
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Na-Young Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Kyung-Sik Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Chang-Hyun Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Ik-Joo Chung
- Department of Hematology-Oncology, Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
- Division of Rare and Refractory Cancer, Tumor Immunology, Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea.
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
18
|
Jenkins E, Körbel M, O'Brien-Ball C, McColl J, Chen KY, Kotowski M, Humphrey J, Lippert AH, Brouwer H, Santos AM, Lee SF, Davis SJ, Klenerman D. Antigen discrimination by T cells relies on size-constrained microvillar contact. Nat Commun 2023; 14:1611. [PMID: 36959206 PMCID: PMC10036606 DOI: 10.1038/s41467-023-36855-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 02/21/2023] [Indexed: 03/25/2023] Open
Abstract
T cells use finger-like protrusions called 'microvilli' to interrogate their targets, but why they do so is unknown. To form contacts, T cells must overcome the highly charged, barrier-like layer of large molecules forming a target cell's glycocalyx. Here, T cells are observed to use microvilli to breach a model glycocalyx barrier, forming numerous small (<0.5 μm diameter) contacts each of which is stabilized by the small adhesive protein CD2 expressed by the T cell, and excludes large proteins including CD45, allowing sensitive, antigen dependent TCR signaling. In the absence of the glycocalyx or when microvillar contact-size is increased by enhancing CD2 expression, strong signaling occurs that is no longer antigen dependent. Our observations suggest that, modulated by the opposing effects of the target cell glycocalyx and small adhesive proteins, the use of microvilli equips T cells with the ability to effect discriminatory receptor signaling.
Collapse
Affiliation(s)
- Edward Jenkins
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Markus Körbel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Caitlin O'Brien-Ball
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - James McColl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Kevin Y Chen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Mateusz Kotowski
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Jane Humphrey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Anna H Lippert
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Heather Brouwer
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana Mafalda Santos
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Steven F Lee
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Simon J Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
19
|
Kim HR, Park JS, Soh WC, Kim NY, Moon HY, Lee JS, Jun CD. T Cell Microvilli: Finger-Shaped External Structures Linked to the Fate of T Cells. Immune Netw 2023; 23:e3. [PMID: 36911802 PMCID: PMC9995986 DOI: 10.4110/in.2023.23.e3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/11/2023] [Accepted: 02/11/2023] [Indexed: 03/07/2023] Open
Abstract
Microvilli are outer membrane organelles that contain cross-linked filamentous actin. Unlike well-characterized epithelial microvilli, T-cell microvilli are dynamic similar to those of filopodia, which grow and shrink intermittently via the alternate actin-assembly and -disassembly. T-cell microvilli are specialized for sensing Ags on the surface of Ag-presenting cells (APCs). Thus, these finger-shaped microprotrusions contain many signaling-related proteins and can serve as a signaling platforms that induce intracellular signals. However, they are not limited to sensing external information but can provide sites for parts of the cell-body to tear away from the cell. Cells are known to produce many types of extracellular vesicles (EVs), such as exosomes, microvesicles, and membrane particles. T cells also produce EVs, but little is known about under what conditions T cells generate EVs and which types of EVs are released. We discovered that T cells produce few exosomes but release large amounsts of microvilli-derived particles during physical interaction with APCs. Although much is unanswered as to why T cells use the same organelles to sense Ags or to produce EVs, these events can significantly affect T cell fate, including clonal expansion and death. Since TCRs are localized at microvilli tips, this membrane event also raises a new question regarding long-standing paradigm in T cell biology; i.e., surface TCR downmodulation following T cell activation. Since T-cell microvilli particles carry T-cell message to their cognate partner, these particles are termed T-cell immunological synaptosomes (TISs). We discuss the potential physiological role of TISs and their application to immunotherapies.
Collapse
Affiliation(s)
- Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Division of Rare and Refractory Cancer, Tumor Immunology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Jeong-Su Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Won-Chang Soh
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Na-Young Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Hyun-Yoong Moon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Ji-Su Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
20
|
Understanding How Cells Probe the World: A Preliminary Step towards Modeling Cell Behavior? Int J Mol Sci 2023; 24:ijms24032266. [PMID: 36768586 PMCID: PMC9916635 DOI: 10.3390/ijms24032266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Cell biologists have long aimed at quantitatively modeling cell function. Recently, the outstanding progress of high-throughput measurement methods and data processing tools has made this a realistic goal. The aim of this paper is twofold: First, to suggest that, while much progress has been done in modeling cell states and transitions, current accounts of environmental cues driving these transitions remain insufficient. There is a need to provide an integrated view of the biochemical, topographical and mechanical information processed by cells to take decisions. It might be rewarding in the near future to try to connect cell environmental cues to physiologically relevant outcomes rather than modeling relationships between these cues and internal signaling networks. The second aim of this paper is to review exogenous signals that are sensed by living cells and significantly influence fate decisions. Indeed, in addition to the composition of the surrounding medium, cells are highly sensitive to the properties of neighboring surfaces, including the spatial organization of anchored molecules and substrate mechanical and topographical properties. These properties should thus be included in models of cell behavior. It is also suggested that attempts at cell modeling could strongly benefit from two research lines: (i) trying to decipher the way cells encode the information they retrieve from environment analysis, and (ii) developing more standardized means of assessing the quality of proposed models, as was done in other research domains such as protein structure prediction.
Collapse
|
21
|
Alghamdi A, Tamra A, Rakhmatulina A, Nozue S, Al-Amoodi AS, Aldehaiman MM, Isaioglou I, Merzaban JS, Habuchi S. Nanoscopic Characterization of Cell Migration under Flow Using Optical and Electron Microscopy. Anal Chem 2023; 95:1958-1966. [PMID: 36627105 PMCID: PMC9878504 DOI: 10.1021/acs.analchem.2c04222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023]
Abstract
Hematopoietic stem/progenitor cell (HSPC) and leukemic cell homing is an important biological phenomenon that takes place through essential interactions with adhesion molecules on an endothelial cell layer. The homing process of HSPCs begins with the tethering and rolling of the cells on the endothelial layer, which is achieved by the interaction between selectins on the endothelium to the ligands on HSPC/leukemic cells under shear stress of the blood flow. Although many studies have been based on in vitro conditions of the cells rolling over recombinant proteins, significant challenges remain when imaging HSPC/leukemic cells on the endothelium, a necessity when considering characterizing cell-to-cell interaction and rolling dynamics during cell migration. Here, we report a new methodology that enables imaging of stem-cell-intrinsic spatiotemporal details during its migration on an endothelium-like cell monolayer. We developed optimized protocols that preserve transiently appearing structures on HSPCs/leukemic cells during its rolling under shear stress for fluorescence and scanning electron microscopy characterization. Our new experimental platform is closer to in vivo conditions and will contribute to indepth understanding of stem-cell behavior during its migration and cell-to-cell interaction during the process of homing.
Collapse
Affiliation(s)
| | | | | | - Shuho Nozue
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Asma S. Al-Amoodi
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mansour M. Aldehaiman
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ioannis Isaioglou
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jasmeen S. Merzaban
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Satoshi Habuchi
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
22
|
Kim HR, Park JS, Kim NY, Jun CD. T Cell Immunological Synaptosomes: Definition and Isolation. Methods Mol Biol 2023; 2654:201-215. [PMID: 37106184 DOI: 10.1007/978-1-0716-3135-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
In addition to microvilli's role as structural scaffold for TCR clustering, we recently discovered a novel function as message senders. We found that microvilli are separated from the T cell body shortly upon TCR stimulation and vesiculated to form T cell microvilli particles (TMPs), a new type of membrane vesicles. TMPs and synaptic ectosomes, which bud from the synaptic cleft, constitute "T cell immunological synaptosomes (TISs)" and act as conveyors of T cell messages or traits to cognate antigen-presenting cells. In practice, it is almost impossible to distinguish between TMPs and synaptic ectosomes. Here, we describe a newly developed protocol to isolate TISs from activated T cells using antibody-immobilized agarose beads and density gradient ultracentrifugation. We further describe the methods for TIS quantification with flow cytometry and to evaluate TIS efficacy on dendritic cells.
Collapse
Affiliation(s)
- Hye-Ran Kim
- School of Life Sciences, Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
- Division of Rare and Refractory Cancer, Immuno-oncology, Research Institute, National Cancer Center, Goyang, South Korea
| | - Jeong-Su Park
- School of Life Sciences, Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Na-Young Kim
- School of Life Sciences, Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Chang-Duk Jun
- School of Life Sciences, Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.
| |
Collapse
|
23
|
Cai E. Dynamics of Immune Cell Microvilli. Methods Mol Biol 2023; 2654:217-229. [PMID: 37106185 DOI: 10.1007/978-1-0716-3135-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Microvilli are actin-based microscopic membrane protrusions that are present in a wide variety of immune cells. Scanning electron microscopy (SEM) revealed that the T cell surface is covered by microvilli. Growing evidence shows that microvilli play important roles in T cell antigen detection and signal transduction. T cell microvilli are highly dynamic and constantly scan and palpate the opposing antigen-presenting cell (APC) surface in search of antigens. Visualizing the rapid movement of microvilli that are only hundreds of nanometers in size requires imaging technologies with high spatial and temporal resolution. Lattice light-sheet microscopy can achieve diffraction-limited resolution in all three dimensions with a temporal resolution of seconds, making it the perfect tool for studying dynamic events of microvilli during T cell antigen detection and activation. In this chapter, we describe a protocol for imaging localization and movement of T cell microvilli and surface receptors using lattice light-sheet microscopy.
Collapse
Affiliation(s)
- En Cai
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
Ghosh S, Alcover A, Haran G. Microvillar Cartography: A Super-Resolution Single-Molecule Imaging Method to Map the Positions of Membrane Proteins with Respect to Cellular Surface Topography. Methods Mol Biol 2023; 2654:169-199. [PMID: 37106183 DOI: 10.1007/978-1-0716-3135-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
We describe microvillar cartography (MC), a method to map proteins on cellular surfaces with respect to the membrane topography. The surfaces of many cells are not smooth, but are rather covered with various protrusions such as microvilli. These protrusions may play key roles in multiple cellular functions, due to their ability to control the distribution of specific protein assemblies on the cell surface. Thus, for example, we have shown that the T-cell receptor and several of its proximal signaling proteins reside on microvilli, while others are excluded from these projections. These results have indicated that microvilli can function as key signaling hubs for the initiation of the immune response. MC has facilitated our observations of particular surface proteins and their specialized distribution on microvillar and non-microvillar compartments. MC combines membrane topography imaging, using variable-angle total internal microscopy, with stochastic localization nanoscopy, which generates deep sub-diffraction maps of protein distribution. Since the method is based on light microscopy, it avoids some of the pitfalls inherent to electron-microscopy-based techniques, such as dehydration, the need for carbon coating, and immunogold clustering, and is amenable to future developments involving, for example, live-cell imaging. This protocol details the procedures we developed for MC, which can be readily adopted to study a broad range of cell-surface molecules and dissect their distribution within distinct surface assemblies under multiple cell activation states.
Collapse
Affiliation(s)
- Shirsendu Ghosh
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Andres Alcover
- Institut Pasteur, Université Paris Cité, INSERM U1224, Unité Biologie Cellulaire des Lymphocytes, Paris, France
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
25
|
Alatoom A, ElGindi M, Sapudom J, Teo JCM. The T Cell Journey: A Tour de Force. Adv Biol (Weinh) 2023; 7:e2200173. [PMID: 36190140 DOI: 10.1002/adbi.202200173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/30/2022] [Indexed: 11/07/2022]
Abstract
T cells act as the puppeteers in the adaptive immune response, and their dysfunction leads to the initiation and progression of pathological conditions. During their lifetime, T cells experience myriad forces that modulate their effector functions. These forces are imposed by interacting cells, surrounding tissues, and shear forces from fluid movement. In this review, a journey with T cells is made, from their development to their unique characteristics, including the early studies that uncovered their mechanosensitivity. Then the studies pertaining to the responses of T cell activation to changes in antigen-presenting cells' physical properties, to their immediate surrounding extracellular matrix microenvironment, and flow conditions are highlighted. In addition, it is explored how pathological conditions like the tumor microenvironment can hinder T cells and allow cancer cells to escape elimination.
Collapse
Affiliation(s)
- Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications Division of Engineering, New York University Abu Dhabi, Saadiyat Campus, P.O. Box 127788, Abu Dhabi, UAE.,Department of Mechanical Engineering Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications Division of Engineering, New York University Abu Dhabi, Saadiyat Campus, P.O. Box 127788, Abu Dhabi, UAE
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications Division of Engineering, New York University Abu Dhabi, Saadiyat Campus, P.O. Box 127788, Abu Dhabi, UAE
| | - Jeremy C M Teo
- Laboratory for Immuno Bioengineering Research and Applications Division of Engineering, New York University Abu Dhabi, Saadiyat Campus, P.O. Box 127788, Abu Dhabi, UAE.,Department of Mechanical Engineering Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA.,Department of Biomedical Engineering Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| |
Collapse
|
26
|
Colgren J, Burkhardt P. The premetazoan ancestry of the synaptic toolkit and appearance of first neurons. Essays Biochem 2022; 66:781-795. [PMID: 36205407 PMCID: PMC9750855 DOI: 10.1042/ebc20220042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Neurons, especially when coupled with muscles, allow animals to interact with and navigate through their environment in ways unique to life on earth. Found in all major animal lineages except sponges and placozoans, nervous systems range widely in organization and complexity, with neurons possibly representing the most diverse cell-type. This diversity has led to much debate over the evolutionary origin of neurons as well as synapses, which allow for the directed transmission of information. The broad phylogenetic distribution of neurons and presence of many of the defining components outside of animals suggests an early origin of this cell type, potentially in the time between the first animal and the last common ancestor of extant animals. Here, we highlight the occurrence and function of key aspects of neurons outside of animals as well as recent findings from non-bilaterian animals in order to make predictions about when and how the first neuron(s) arose during animal evolution and their relationship to those found in extant lineages. With advancing technologies in single cell transcriptomics and proteomics as well as expanding functional techniques in non-bilaterian animals and the close relatives of animals, it is an exciting time to begin unraveling the complex evolutionary history of this fascinating animal cell type.
Collapse
Affiliation(s)
- Jeffrey Colgren
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| | - Pawel Burkhardt
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| |
Collapse
|
27
|
Morgan J, Pettmann J, Dushek O, Lindsay AE. T cell microvilli simulations show operation near packing limit and impact on antigen recognition. Biophys J 2022; 121:4128-4136. [PMID: 36181267 PMCID: PMC9675027 DOI: 10.1016/j.bpj.2022.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/11/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022] Open
Abstract
T cells are immune cells that continuously scan for foreign-derived antigens on the surfaces of nearly all cells, termed antigen-presenting cells (APCs). They do this by dynamically extending numerous protrusions called microvilli (MVs) that contain T cell receptors toward the APC surface in order to scan for antigens. The number, size, and dynamics of these MVs, and the complex multiscale topography that results, play a yet unknown role in antigen recognition. We develop an anatomically informed model that confines antigen recognition to small areas representing MVs that can dynamically form and dissolve and use the model to study how MV dynamics impact antigen sensitivity and discrimination. We find that MV surveillance reduces antigen sensitivity compared with a completely flat interface, unless MV are stabilized in an antigen-dependent manner, and observe that MVs have only a modest impact on antigen discrimination. The model highlights that MV contacts optimize the competing demands of fast scanning speeds of the APC surface with antigen sensitivity. Our model predicts an interface packing fraction that corresponds closely to those observed experimentally, indicating that T cells operate their MVs near the limits imposed by anatomical and geometric constraints. Finally, we find that observed MV contact lifetimes can be largely influenced by conditions in the T cell/APC interface, with these lifetimes often being longer than the simulation or experimental observation period. This work highlights the role of MVs in antigen recognition.
Collapse
Affiliation(s)
- Jonathan Morgan
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana; Biophysics Graduate Program, University of Notre Dame, Notre Dame, Indiana
| | - Johannes Pettmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Alan E Lindsay
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana.
| |
Collapse
|
28
|
A bead-based method for high-throughput mapping of the sequence- and force-dependence of T cell activation. Nat Methods 2022; 19:1295-1305. [PMID: 36064771 DOI: 10.1038/s41592-022-01592-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Adaptive immunity relies on T lymphocytes that use αβ T cell receptors (TCRs) to discriminate among peptides presented by major histocompatibility complex molecules (pMHCs). Identifying pMHCs capable of inducing robust T cell responses will not only enable a deeper understanding of the mechanisms governing immune responses but could also have broad applications in diagnosis and treatment. T cell recognition of sparse antigenic pMHCs in vivo relies on biomechanical forces. However, in vitro screening methods test potential pMHCs without force and often at high (nonphysiological) pMHC densities and thus fail to predict potent agonists in vivo. Here, we present a technology termed BATTLES (biomechanically assisted T cell triggering for large-scale exogenous-pMHC screening) that uses biomechanical force to initiate T cell triggering for peptides and cells in parallel. BATTLES displays candidate pMHCs on spectrally encoded beads composed of a thermo-responsive polymer capable of applying shear loads to T cells, facilitating exploration of the force- and sequence-dependent landscape of T cell responses. BATTLES can be used to explore basic T cell mechanobiology and T cell-based immunotherapies.
Collapse
|
29
|
Inaba M, Ridwan SM, Antel M. Removal of cellular protrusions. Semin Cell Dev Biol 2022; 129:126-134. [PMID: 35260295 PMCID: PMC9378436 DOI: 10.1016/j.semcdb.2022.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/08/2023]
Abstract
Cell-cell communications are central to a variety of physiological and pathological processes in multicellular organisms. Cells often rely on cellular protrusions to communicate with one another, which enable highly selective and efficient signaling within complex tissues. Owing to significant improvements in imaging techniques, identification of signaling protrusions has increased in recent years. These protrusions are structurally specialized for signaling and facilitate interactions between cells. Therefore, physical regulation of these structures must be key for the appropriate strength and pattern of signaling outcomes. However, the typical approaches for understanding signaling regulation tend to focus solely on changes in signaling molecules, such as gene expression, protein-protein interaction, and degradation. In this short review, we summarize the studies proposing the removal of different types of signaling protrusions-including cilia, neurites, MT (microtubule based)-nanotubes and microvilli-and discuss their mechanisms and significance in signaling regulation.
Collapse
Affiliation(s)
- Mayu Inaba
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Sharif M Ridwan
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Matthew Antel
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
30
|
Cai E, Beppler C, Eichorst J, Marchuk K, Eastman SW, Krummel MF. T cells use distinct topographical and membrane receptor scanning strategies that individually coalesce during receptor recognition. Proc Natl Acad Sci U S A 2022; 119:e2203247119. [PMID: 35914144 PMCID: PMC9372542 DOI: 10.1073/pnas.2203247119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/22/2022] [Indexed: 02/03/2023] Open
Abstract
During immune surveillance, CD8 T cells scan the surface of antigen-presenting cells using dynamic microvillar palpation and movements as well as by having their receptors preconcentrated into patches. Here, we use real-time lattice light-sheet microscopy to demonstrate the independence of microvillar and membrane receptor patch scanning. While T cell receptor (TCR) patches can distribute to microvilli, they do so stochastically and not preferentially as for other receptors such as CD62L. The distinctness of TCR patch movement from microvillar movement extends to many other receptors that form patches that also scan independent of the TCR. An exception to this is the CD8 coreceptor which largely comigrates in patches that overlap with or are closely adjacent to those containing TCRs. Microvilli that assemble into a synapse contain various arrays of the engaged patches, notably of TCRs and the inhibitory receptor PD-1, creating a pastiche of occupancies that vary from microvillar contact to contact. In summary, this work demonstrates that localization of receptor patches within the membrane and on microvillar projections is random prior to antigen detection and that such random variation may play into the generation of many individually composed receptor patch compositions at a single synapse.
Collapse
Affiliation(s)
- En Cai
- Department of Pathology, University of California, San Francisco, CA 94143-0511
| | - Casey Beppler
- Department of Pathology, University of California, San Francisco, CA 94143-0511
| | - John Eichorst
- Department of Pathology, University of California, San Francisco, CA 94143-0511
- Biological Imaging Development CoLab, University of California, San Francisco, CA 94143-0511
| | - Kyle Marchuk
- Department of Pathology, University of California, San Francisco, CA 94143-0511
- Biological Imaging Development CoLab, University of California, San Francisco, CA 94143-0511
- ImmunoX Initiative, University of California, San Francisco, CA 94143-0511
| | - Scott W. Eastman
- Lilly Research Laboratories, Eli Lilly and Company, New York, NY 10016
| | - Matthew F. Krummel
- Department of Pathology, University of California, San Francisco, CA 94143-0511
- ImmunoX Initiative, University of California, San Francisco, CA 94143-0511
| |
Collapse
|
31
|
Céspedes PF, Jainarayanan A, Fernández-Messina L, Valvo S, Saliba DG, Kurz E, Kvalvaag A, Chen L, Ganskow C, Colin-York H, Fritzsche M, Peng Y, Dong T, Johnson E, Siller-Farfán JA, Dushek O, Sezgin E, Peacock B, Law A, Aubert D, Engledow S, Attar M, Hester S, Fischer R, Sánchez-Madrid F, Dustin ML. T-cell trans-synaptic vesicles are distinct and carry greater effector content than constitutive extracellular vesicles. Nat Commun 2022; 13:3460. [PMID: 35710644 PMCID: PMC9203538 DOI: 10.1038/s41467-022-31160-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/07/2022] [Indexed: 12/19/2022] Open
Abstract
The immunological synapse is a molecular hub that facilitates the delivery of three activation signals, namely antigen, costimulation/corepression and cytokines, from antigen-presenting cells (APC) to T cells. T cells release a fourth class of signaling entities, trans-synaptic vesicles (tSV), to mediate bidirectional communication. Here we present bead-supported lipid bilayers (BSLB) as versatile synthetic APCs to capture, characterize and advance the understanding of tSV biogenesis. Specifically, the integration of juxtacrine signals, such as CD40 and antigen, results in the adaptive tailoring and release of tSV, which differ in size, yields and immune receptor cargo compared with steadily released extracellular vesicles (EVs). Focusing on CD40L+ tSV as model effectors, we show that PD-L1 trans-presentation together with TSG101, ADAM10 and CD81 are key in determining CD40L vesicular release. Lastly, we find greater RNA-binding protein and microRNA content in tSV compared with EVs, supporting the specialized role of tSV as intercellular messengers.
Collapse
Affiliation(s)
- Pablo F Céspedes
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK.
| | - Ashwin Jainarayanan
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Lola Fernández-Messina
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
- Intercellular communication in the inflammatory response. Vascular Physiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Salvatore Valvo
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - David G Saliba
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Elke Kurz
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Audun Kvalvaag
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Lina Chen
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Charity Ganskow
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Huw Colin-York
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
| | - Marco Fritzsche
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
| | - Yanchun Peng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Errin Johnson
- Sir William Dunn School of Pathology, The University of Oxford, Oxford, UK
| | | | - Omer Dushek
- Sir William Dunn School of Pathology, The University of Oxford, Oxford, UK
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Simon Engledow
- Oxford Genomics Centre, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK
| | - Moustafa Attar
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
- Oxford Genomics Centre, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK
| | - Svenja Hester
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, The University of Oxford, Oxford, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, The University of Oxford, Oxford, UK
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
- Intercellular communication in the inflammatory response. Vascular Physiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK.
| |
Collapse
|
32
|
Göhring J, Schrangl L, Schütz GJ, Huppa JB. Mechanosurveillance: Tiptoeing T Cells. Front Immunol 2022; 13:886328. [PMID: 35693808 PMCID: PMC9178122 DOI: 10.3389/fimmu.2022.886328] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022] Open
Abstract
Efficient scanning of tissue that T cells encounter during their migratory life is pivotal to protective adaptive immunity. In fact, T cells can detect even a single antigenic peptide/MHC complex (pMHC) among thousands of structurally similar yet non-stimulatory endogenous pMHCs on the surface of antigen-presenting cells (APCs) or target cells. Of note, the glycocalyx of target cells, being composed of proteoglycans and bulky proteins, is bound to affect and even modulate antigen recognition by posing as a physical barrier. T cell-resident microvilli are actin-rich membrane protrusions that puncture through such barriers and thereby actively place the considerably smaller T-cell antigen receptors (TCRs) in close enough proximity to APC-presented pMHCs so that productive interactions may occur efficiently yet under force. We here review our current understanding of how the plasticity of T-cell microvilli and physicochemical properties of the glycocalyx may affect early events in T-cell activation. We assess insights gained from studies on T-cell plasma membrane ultrastructure and provide an update on current efforts to integrate biophysical aspects such as the amplitude and directionality of TCR-imposed mechanical forces and the distribution and lateral mobility of plasma membrane-resident signaling molecules into a more comprehensive view on sensitized T-cell antigen recognition.
Collapse
Affiliation(s)
- Janett Göhring
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Institute of Applied Physics, TU Wien, Vienna, Austria
- *Correspondence: Janett Göhring,
| | | | | | - Johannes B. Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Approach to map nanotopography of cell surface receptors. Commun Biol 2022; 5:218. [PMID: 35264712 PMCID: PMC8907216 DOI: 10.1038/s42003-022-03152-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/09/2022] [Indexed: 12/18/2022] Open
Abstract
Cells communicate with their environment via surface receptors, but nanoscopic receptor organization with respect to complex cell surface morphology remains unclear. This is mainly due to a lack of accessible, robust and high-resolution methods. Here, we present an approach for mapping the topography of receptors at the cell surface with nanometer precision. The method involves coating glass coverslips with glycine, which preserves the fine membrane morphology while allowing immobilized cells to be positioned close to the optical surface. We developed an advanced and simplified algorithm for the analysis of single-molecule localization data acquired in a biplane detection scheme. These advancements enable direct and quantitative mapping of protein distribution on ruffled plasma membranes with near isotropic 3D nanometer resolution. As demonstrated successfully for CD4 and CD45 receptors, the described workflow is a straightforward quantitative technique to study molecules and their interactions at the complex surface nanomorphology of differentiated metazoan cells. A super-resolution localisation-based method is shown to map receptor topography in immune cells, which allows quantitative study of molecules and their interactions at the complex surface nanomorphology of cells.
Collapse
|
34
|
Al-Aghbar MA, Jainarayanan AK, Dustin ML, Roffler SR. The interplay between membrane topology and mechanical forces in regulating T cell receptor activity. Commun Biol 2022; 5:40. [PMID: 35017678 PMCID: PMC8752658 DOI: 10.1038/s42003-021-02995-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
T cells are critically important for host defense against infections. T cell activation is specific because signal initiation requires T cell receptor (TCR) recognition of foreign antigen peptides presented by major histocompatibility complexes (pMHC) on antigen presenting cells (APCs). Recent advances reveal that the TCR acts as a mechanoreceptor, but it remains unclear how pMHC/TCR engagement generates mechanical forces that are converted to intracellular signals. Here we propose a TCR Bending Mechanosignal (TBM) model, in which local bending of the T cell membrane on the nanometer scale allows sustained contact of relatively small pMHC/TCR complexes interspersed among large surface receptors and adhesion molecules on the opposing surfaces of T cells and APCs. Localized T cell membrane bending is suggested to increase accessibility of TCR signaling domains to phosphorylation, facilitate selective recognition of agonists that form catch bonds, and reduce noise signals associated with slip bonds.
Collapse
Affiliation(s)
- Mohammad Ameen Al-Aghbar
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Ashwin K Jainarayanan
- Interdisciplinary Bioscience Doctoral Training Program and Exeter College, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
35
|
Duckworth BC, Qin RZ, Groom JR. Spatial determinates of effector and memory CD8 + T cell fates. Immunol Rev 2021; 306:76-92. [PMID: 34882817 DOI: 10.1111/imr.13044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022]
Abstract
The lymph node plays a critical role in mounting an adaptive immune response to infection, clearance of foreign pathogens, and cancer immunosurveillance. Within this complex structure, intranodal migration is vital for CD8+ T cell activation and differentiation. Combining tissue clearing and volumetric light sheet fluorescent microscopy of intact lymph nodes has allowed us to explore the spatial regulation of T cell fates. This has determined that short-lived effector (TSLEC ) are imprinted in peripheral lymph node interfollicular regions, due to CXCR3 migration. In contrast, stem-like memory cell (TSCM ) differentiation is determined in the T cell paracortex. Here, we detail the inflammatory and chemokine regulators of spatially restricted T cell differentiation, with a focus on how to promote TSCM . We propose a default pathway for TSCM differentiation due to CCR7-directed segregation of precursors away from the inflammatory effector niche. Although volumetric imaging has revealed the consequences of intranodal migration, we still lack knowledge of how this is orchestrated within a complex chemokine environment. Toward this goal, we highlight the potential of combining microfluidic chambers with pre-determined complexity and subcellular resolution microscopy.
Collapse
Affiliation(s)
- Brigette C Duckworth
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| | - Raymond Z Qin
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
36
|
Kamnev A, Lacouture C, Fusaro M, Dupré L. Molecular Tuning of Actin Dynamics in Leukocyte Migration as Revealed by Immune-Related Actinopathies. Front Immunol 2021; 12:750537. [PMID: 34867982 PMCID: PMC8634686 DOI: 10.3389/fimmu.2021.750537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Motility is a crucial activity of immune cells allowing them to patrol tissues as they differentiate, sample or exchange information, and execute their effector functions. Although all immune cells are highly migratory, each subset is endowed with very distinct motility patterns in accordance with functional specification. Furthermore individual immune cell subsets adapt their motility behaviour to the surrounding tissue environment. This review focuses on how the generation and adaptation of diversified motility patterns in immune cells is sustained by actin cytoskeleton dynamics. In particular, we review the knowledge gained through the study of inborn errors of immunity (IEI) related to actin defects. Such pathologies are unique models that help us to uncover the contribution of individual actin regulators to the migration of immune cells in the context of their development and function.
Collapse
Affiliation(s)
- Anton Kamnev
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Claire Lacouture
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,Laboratoire De Physique Théorique, IRSAMC, Université De Toulouse (UPS), CNRS, Toulouse, France
| | - Mathieu Fusaro
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| |
Collapse
|
37
|
Contribution of Ezrin on the Cell Surface Plasma Membrane Localization of Programmed Cell Death Ligand-1 in Human Choriocarcinoma JEG-3 Cells. Pharmaceuticals (Basel) 2021; 14:ph14100963. [PMID: 34681187 PMCID: PMC8540387 DOI: 10.3390/ph14100963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint blockade (ICB) antibodies targeting programmed cell death ligand-1 (PD-L1) and programmed cell death-1 (PD-1) have improved survival in patients with conventional single agent chemotherapy-resistant gestational trophoblastic neoplasia (GTN). However, many patients are resistant to ICB therapy, the mechanisms of which are poorly understood. Unraveling the regulatory mechanism for PD-L1 expression may provide a new strategy to improve ICB therapy in patients with GTN. Here, we investigated whether the ezrin/radixin/moesin (ERM) family, i.e., a group of scaffold proteins that crosslink actin cytoskeletons with several plasma membrane proteins, plays a role in the regulation of PD-L1 expression using JEG-3 cells, a representative human choriocarcinoma cell line. Our results demonstrate mRNA and protein expressions of ezrin, radixin, and PD-L1, as well as their colocalization in the plasma membrane. Intriguingly, immunoprecipitation experiments revealed that PD-L1 interacted with both ezrin and radixin and the actin cytoskeleton. Moreover, gene silencing of ezrin but not radixin strongly diminished the cell surface expression of PD-L1 without altering the mRNA level. These results indicate that ezrin may contribute to the cell surface localization of PD-L1 as a scaffold protein in JEG-3 cells, highlighting a potential therapeutic target to improve the current ICB therapy in GTN.
Collapse
|
38
|
Ghosh S, Feigelson SW, Montresor A, Shimoni E, Roncato F, Legler DF, Laudanna C, Haran G, Alon R. CCR7 signalosomes are preassembled on tips of lymphocyte microvilli in proximity to LFA-1. Biophys J 2021; 120:4002-4012. [PMID: 34411577 DOI: 10.1016/j.bpj.2021.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/27/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022] Open
Abstract
Leukocyte microvilli are elastic actin-rich projections implicated in rapid sensing and penetration across glycocalyx barriers. Microvilli are critical for the capture and arrest of flowing lymphocytes by high endothelial venules, the main lymph node portal vessels. T lymphocyte arrest involves subsecond activation of the integrin LFA-1 by the G-protein-coupled receptor CCR7 and its endothelial-displayed ligands, the chemokines CCL21 and CCL19. The topographical distribution of CCR7 and of LFA-1 in relation to lymphocyte microvilli has never been elucidated. We applied the recently developed microvillar cartography imaging technique to determine the topographical distribution of CCR7 and LFA-1 with respect to microvilli on peripheral blood T lymphocytes. We found that CCR7 is clustered on the tips of T cell microvilli. The vast majority of LFA-1 molecules were found on the cell body, likely assembled in macroclusters, but a subset of LFA-1, 5% of the total, were found scattered within 20 nm from the CCR7 clusters, implicating these LFA-1 molecules as targets for inside-out activation signals transmitted within a fraction of a second by chemokine-bound CCR7. Indeed, RhoA, the key GTPase involved in rapid LFA-1 affinity triggering by CCR7, was also found to be clustered near CCR7. In addition, we observed that the tyrosine kinase JAK2 controls CCR7-mediated LFA-1 affinity triggering and is also highly enriched on tips of microvilli. We propose that tips of lymphocyte microvilli are novel signalosomes for subsecond CCR7-mediated inside-out signaling to neighboring LFA-1 molecules, a critical checkpoint in LFA-1-mediated lymphocyte arrest on high endothelial venules.
Collapse
Affiliation(s)
- Shirsendu Ghosh
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Sara W Feigelson
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Eyal Shimoni
- Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Francesco Roncato
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel F Legler
- Biotechnology Institute Thurgau, University of Konstanz, Kreuzlingen, Switzerland
| | - Carlo Laudanna
- Department of Medicine, University of Verona, Verona, Italy
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
39
|
Tanaka C, Kobori T, Tameishi M, Urashima Y, Ito T, Obata T. Ezrin Modulates the Cell Surface Expression of Programmed Cell Death Ligand-1 in Human Cervical Adenocarcinoma Cells. Molecules 2021; 26:5648. [PMID: 34577118 PMCID: PMC8469114 DOI: 10.3390/molecules26185648] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023] Open
Abstract
Cancer cells employ programmed cell death ligand-1 (PD-L1), an immune checkpoint protein that binds to programmed cell death-1 (PD-1) and is highly expressed in various cancers, including cervical carcinoma, to abolish T-cell-mediated immunosurveillance. Despite a key role of PD-L1 in various cancer cell types, the regulatory mechanism for PD-L1 expression is largely unknown. Understanding this mechanism could provide a novel strategy for cervical cancer therapy. Here, we investigated the influence of ezrin/radixin/moesin (ERM) family scaffold proteins, crosslinking the actin cytoskeleton and certain plasma membrane proteins, on the expression of PD-L1 in HeLa cells. Our results showed that all proteins were expressed at mRNA and protein levels and that all ERM proteins were highly colocalized with PD-L1 in the plasma membrane. Interestingly, immunoprecipitation assay results demonstrated that PD-L1 interacted with ERM as well as actin cytoskeleton proteins. Furthermore, gene silencing of ezrin, but not radixin and moesin, remarkably decreased the protein expression of PD-L1 without affecting its mRNA expression. In conclusion, ezrin may function as a scaffold protein for PD-L1; regulate PD-L1 protein expression, possibly via post-translational modification in HeLa cells; and serve as a potential therapeutic target for cervical cancer, improving the current immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Chihiro Tanaka
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan; (C.T.); (M.T.); (Y.U.)
| | - Takuro Kobori
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan; (C.T.); (M.T.); (Y.U.)
| | - Mayuka Tameishi
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan; (C.T.); (M.T.); (Y.U.)
| | - Yoko Urashima
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan; (C.T.); (M.T.); (Y.U.)
| | - Takuya Ito
- Laboratory of Natural Medicines, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan;
| | - Tokio Obata
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan; (C.T.); (M.T.); (Y.U.)
| |
Collapse
|
40
|
Kobori T, Tanaka C, Tameishi M, Urashima Y, Ito T, Obata T. Role of Ezrin/Radixin/Moesin in the Surface Localization of Programmed Cell Death Ligand-1 in Human Colon Adenocarcinoma LS180 Cells. Pharmaceuticals (Basel) 2021; 14:ph14090864. [PMID: 34577564 PMCID: PMC8467328 DOI: 10.3390/ph14090864] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/30/2022] Open
Abstract
Programmed cell death ligand-1 (PD-L1), an immune checkpoint protein highly expressed on the cell surface in various cancer cell types, binds to programmed cell death-1 (PD-1), leading to T-cell dysfunction and tumor survival. Despite clinical successes of PD-1/PD-L1 blockade therapies, patients with colorectal cancer (CRC) receive little benefit because most cases respond poorly. Because high PD-L1 expression is associated with immune evasion and poor prognosis in CRC patients, identifying potential modulators for the plasma membrane localization of PD-L1 may represent a novel therapeutic strategy for enhancing the efficacy of PD-1/PD-L1 blockade therapies. Here, we investigated whether PD-L1 expression in human colorectal adenocarcinoma cells (LS180) is affected by ezrin/radixin/moesin (ERM), functioning as scaffold proteins that crosslink plasma membrane proteins with the actin cytoskeleton. We observed colocalization of PD-L1 with all three ERM proteins in the plasma membrane and detected interactions involving PD-L1, the three ERM proteins, and the actin cytoskeleton. Furthermore, gene silencing of ezrin and radixin, but not of moesin, substantially decreased the expression of PD-L1 on the cell surface without affecting its mRNA level. Thus, in LS180 cells, ezrin and radixin may function as scaffold proteins mediating the plasma membrane localization of PD-L1, possibly by post-translational modification.
Collapse
Affiliation(s)
- Takuro Kobori
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan; (T.K.); (C.T.); (M.T.); (Y.U.)
| | - Chihiro Tanaka
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan; (T.K.); (C.T.); (M.T.); (Y.U.)
| | - Mayuka Tameishi
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan; (T.K.); (C.T.); (M.T.); (Y.U.)
| | - Yoko Urashima
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan; (T.K.); (C.T.); (M.T.); (Y.U.)
| | - Takuya Ito
- Laboratory of Natural Medicines, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan;
| | - Tokio Obata
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan; (T.K.); (C.T.); (M.T.); (Y.U.)
- Correspondence: ; Tel.: +81-721-24-9371
| |
Collapse
|
41
|
Dupré L, Boztug K, Pfajfer L. Actin Dynamics at the T Cell Synapse as Revealed by Immune-Related Actinopathies. Front Cell Dev Biol 2021; 9:665519. [PMID: 34249918 PMCID: PMC8266300 DOI: 10.3389/fcell.2021.665519] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The actin cytoskeleton is composed of dynamic filament networks that build adaptable local architectures to sustain nearly all cellular activities in response to a myriad of stimuli. Although the function of numerous players that tune actin remodeling is known, the coordinated molecular orchestration of the actin cytoskeleton to guide cellular decisions is still ill defined. T lymphocytes provide a prototypical example of how a complex program of actin cytoskeleton remodeling sustains the spatio-temporal control of key cellular activities, namely antigen scanning and sensing, as well as polarized delivery of effector molecules, via the immunological synapse. We here review the unique knowledge on actin dynamics at the T lymphocyte synapse gained through the study of primary immunodeficiences caused by mutations in genes encoding actin regulatory proteins. Beyond the specific roles of individual actin remodelers, we further develop the view that these operate in a coordinated manner and are an integral part of multiple signaling pathways in T lymphocytes.
Collapse
Affiliation(s)
- Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Laurène Pfajfer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| |
Collapse
|
42
|
Jung Y, Wen L, Altman A, Ley K. CD45 pre-exclusion from the tips of T cell microvilli prior to antigen recognition. Nat Commun 2021; 12:3872. [PMID: 34162836 PMCID: PMC8222282 DOI: 10.1038/s41467-021-23792-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
The tyrosine phosphatase CD45 is a major gatekeeper for restraining T cell activation. Its exclusion from the immunological synapse (IS) is crucial for T cell receptor (TCR) signal transduction. Here, we use expansion super-resolution microscopy to reveal that CD45 is mostly pre-excluded from the tips of microvilli (MV) on primary T cells prior to antigen encounter. This pre-exclusion is diminished by depleting cholesterol or by engineering the transmembrane domain of CD45 to increase its membrane integration length, but is independent of the CD45 extracellular domain. We further show that brief MV-mediated contacts can induce Ca2+ influx in mouse antigen-specific T cells engaged by antigen-pulsed antigen presenting cells (APC). We propose that the scarcity of CD45 phosphatase activity at the tips of MV enables or facilitates TCR triggering from brief T cell-APC contacts before formation of a stable IS, and that these MV-mediated contacts represent the earliest step in the initiation of a T cell adaptive immune response.
Collapse
Affiliation(s)
- Yunmin Jung
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Lai Wen
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Amnon Altman
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
43
|
Cebecauer M. Role of Lipids in Morphogenesis of T-Cell Microvilli. Front Immunol 2021; 12:613591. [PMID: 33790891 PMCID: PMC8006438 DOI: 10.3389/fimmu.2021.613591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
T cells communicate with the environment via surface receptors. Cooperation of surface receptors regulates T-cell responses to diverse stimuli. Recently, finger-like membrane protrusions, microvilli, have been demonstrated to play a role in the organization of receptors and, hence, T-cell activation. However, little is known about the morphogenesis of dynamic microvilli, especially in the cells of immune system. In this review, I focus on the potential role of lipids and lipid domains in morphogenesis of microvilli. Discussed is the option that clustering of sphingolipids with phosphoinositides at the plasma membrane results in dimpling (curved) domains. Such domains can attract phosphoinositide-binding proteins and stimulate actin cytoskeleton reorganization. This process triggers cortical actin opening and bundling of actin fibres to support the growing of microvilli. Critical regulators of microvilli morphogenesis in T cells are unknown. At the end, I suggest several candidates with a potential to organize proteins and lipids in these structures.
Collapse
Affiliation(s)
- Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences (CAS), Prague, Czechia
| |
Collapse
|
44
|
Gunasinghe SD, Peres NG, Goyette J, Gaus K. Biomechanics of T Cell Dysfunctions in Chronic Diseases. Front Immunol 2021; 12:600829. [PMID: 33717081 PMCID: PMC7948521 DOI: 10.3389/fimmu.2021.600829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms behind T cell dysfunctions during chronic diseases is critical in developing effective immunotherapies. As demonstrated by several animal models and human studies, T cell dysfunctions are induced during chronic diseases, spanning from infections to cancer. Although factors governing the onset and the extent of the functional impairment of T cells can differ during infections and cancer, most dysfunctional phenotypes share common phenotypic traits in their immune receptor and biophysical landscape. Through the latest developments in biophysical techniques applied to explore cell membrane and receptor-ligand dynamics, we are able to dissect and gain further insights into the driving mechanisms behind T cell dysfunctions. These insights may prove useful in developing immunotherapies aimed at reinvigorating our immune system to fight off infections and malignancies more effectively. The recent success with checkpoint inhibitors in treating cancer opens new avenues to develop more effective, targeted immunotherapies. Here, we highlight the studies focused on the transformation of the biophysical landscape during infections and cancer, and how T cell biomechanics shaped the immunopathology associated with chronic diseases.
Collapse
Affiliation(s)
- Sachith D Gunasinghe
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Newton G Peres
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
45
|
Balagopalan L, Raychaudhuri K, Samelson LE. Microclusters as T Cell Signaling Hubs: Structure, Kinetics, and Regulation. Front Cell Dev Biol 2021; 8:608530. [PMID: 33575254 PMCID: PMC7870797 DOI: 10.3389/fcell.2020.608530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022] Open
Abstract
When T cell receptors (TCRs) engage with stimulatory ligands, one of the first microscopically visible events is the formation of microclusters at the site of T cell activation. Since the discovery of these structures almost 20 years ago, they have been studied extensively in live cells using confocal and total internal reflection fluorescence (TIRF) microscopy. However, due to limits in image resolution and acquisition speed, the spatial relationships of signaling components within microclusters, the kinetics of their assembly and disassembly, and the role of vesicular trafficking in microcluster formation and maintenance were not finely characterized. In this review, we will summarize how new microscopy techniques have revealed novel insights into the assembly of these structures. The sub-diffraction organization of microclusters as well as the finely dissected kinetics of recruitment and disassociation of molecules from microclusters will be discussed. The role of cell surface molecules in microcluster formation and the kinetics of molecular recruitment via intracellular vesicular trafficking to microclusters is described. Finally, the role of post-translational modifications such as ubiquitination in the downregulation of cell surface signaling molecules is also discussed. These results will be related to the role of these structures and processes in T cell activation.
Collapse
Affiliation(s)
- Lakshmi Balagopalan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kumarkrishna Raychaudhuri
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
46
|
Yuan Y, Jacobs CA, Llorente Garcia I, Pereira PM, Lawrence SP, Laine RF, Marsh M, Henriques R. Single-Molecule Super-Resolution Imaging of T-Cell Plasma Membrane CD4 Redistribution upon HIV-1 Binding. Viruses 2021; 13:142. [PMID: 33478139 PMCID: PMC7835772 DOI: 10.3390/v13010142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
The first step of cellular entry for the human immunodeficiency virus type-1 (HIV-1) occurs through the binding of its envelope protein (Env) with the plasma membrane receptor CD4 and co-receptor CCR5 or CXCR4 on susceptible cells, primarily CD4+ T cells and macrophages. Although there is considerable knowledge of the molecular interactions between Env and host cell receptors that lead to successful fusion, the precise way in which HIV-1 receptors redistribute to sites of virus binding at the nanoscale remains unknown. Here, we quantitatively examine changes in the nanoscale organisation of CD4 on the surface of CD4+ T cells following HIV-1 binding. Using single-molecule super-resolution imaging, we show that CD4 molecules are distributed mostly as either individual molecules or small clusters of up to 4 molecules. Following virus binding, we observe a local 3-to-10-fold increase in cluster diameter and molecule number for virus-associated CD4 clusters. Moreover, a similar but smaller magnitude reorganisation of CD4 was also observed with recombinant gp120. For one of the first times, our results quantify the nanoscale CD4 reorganisation triggered by HIV-1 on host CD4+ T cells. Our quantitative approach provides a robust methodology for characterising the nanoscale organisation of plasma membrane receptors in general with the potential to link spatial organisation to function.
Collapse
Affiliation(s)
- Yue Yuan
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (Y.Y.); (C.A.J.); (P.M.P.); (S.P.L.)
| | - Caron A. Jacobs
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (Y.Y.); (C.A.J.); (P.M.P.); (S.P.L.)
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town 7925, South Africa
| | | | - Pedro M. Pereira
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (Y.Y.); (C.A.J.); (P.M.P.); (S.P.L.)
- Bacterial Cell Biology, MOSTMICRO, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Scott P. Lawrence
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (Y.Y.); (C.A.J.); (P.M.P.); (S.P.L.)
| | - Romain F. Laine
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (Y.Y.); (C.A.J.); (P.M.P.); (S.P.L.)
- The Francis Crick Institute, London NW1 1AT, UK
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (Y.Y.); (C.A.J.); (P.M.P.); (S.P.L.)
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (Y.Y.); (C.A.J.); (P.M.P.); (S.P.L.)
- The Francis Crick Institute, London NW1 1AT, UK
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
47
|
Schneider F, Colin-York H, Fritzsche M. Quantitative Bio-Imaging Tools to Dissect the Interplay of Membrane and Cytoskeletal Actin Dynamics in Immune Cells. Front Immunol 2021; 11:612542. [PMID: 33505401 PMCID: PMC7829180 DOI: 10.3389/fimmu.2020.612542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular function is reliant on the dynamic interplay between the plasma membrane and the actin cytoskeleton. This critical relationship is of particular importance in immune cells, where both the cytoskeleton and the plasma membrane work in concert to organize and potentiate immune signaling events. Despite their importance, there remains a critical gap in understanding how these respective dynamics are coupled, and how this coupling in turn may influence immune cell function from the bottom up. In this review, we highlight recent optical technologies that could provide strategies to investigate the simultaneous dynamics of both the cytoskeleton and membrane as well as their interplay, focusing on current and future applications in immune cells. We provide a guide of the spatio-temporal scale of each technique as well as highlighting novel probes and labels that have the potential to provide insights into membrane and cytoskeletal dynamics. The quantitative biophysical tools presented here provide a new and exciting route to uncover the relationship between plasma membrane and cytoskeletal dynamics that underlies immune cell function.
Collapse
Affiliation(s)
- Falk Schneider
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Huw Colin-York
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Marco Fritzsche
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, United Kingdom
- Rosalind Franklin Institute, Harwell Campus, Didcot, United Kingdom
| |
Collapse
|
48
|
Regulations of T Cell Activation by Membrane and Cytoskeleton. MEMBRANES 2020; 10:membranes10120443. [PMID: 33352750 PMCID: PMC7765812 DOI: 10.3390/membranes10120443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
Among various types of membrane proteins that are regulated by cytoskeleton, the T cell receptor (TCR) greatly benefits from these cellular machineries for its function. The T cell is activated by the ligation of TCR to its target agonist peptide. However, the binding affinity of the two is not very strong, while the T cell needs to discriminate agonist from many nonagonist peptides. Moreover, the strength and duration of the activation signaling need to be tuned for immunological functions. Many years of investigations revealed that dynamic acto-myosin cytoskeletons and plasma membranes in T cells facilitate such regulations by modulating the spatiotemporal distributions of proteins in plasma membranes and by applying mechanical loads on proteins. In these processes, protein dynamics in multiple scales are involved, ranging from collective molecular motions and macroscopic molecular organizations at the cell–cell interface to microscopic changes in distances between receptor and ligand molecules. In this review, details of how cytoskeletons and membranes regulate these processes are discussed, with the emphasis on how all these processes are coordinated to occur within a single cell system.
Collapse
|
49
|
Mastrogiovanni M, Juzans M, Alcover A, Di Bartolo V. Coordinating Cytoskeleton and Molecular Traffic in T Cell Migration, Activation, and Effector Functions. Front Cell Dev Biol 2020; 8:591348. [PMID: 33195256 PMCID: PMC7609836 DOI: 10.3389/fcell.2020.591348] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 12/28/2022] Open
Abstract
Dynamic localization of receptors and signaling molecules at the plasma membrane and within intracellular vesicular compartments is crucial for T lymphocyte sensing environmental cues, triggering membrane receptors, recruiting signaling molecules, and fine-tuning of intracellular signals. The orchestrated action of actin and microtubule cytoskeleton and intracellular vesicle traffic plays a key role in all these events that together ensure important steps in T cell physiology. These include extravasation and migration through lymphoid and peripheral tissues, T cell interactions with antigen-presenting cells, T cell receptor (TCR) triggering by cognate antigen-major histocompatibility complex (MHC) complexes, immunological synapse formation, cell activation, and effector functions. Cytoskeletal and vesicle traffic dynamics and their interplay are coordinated by a variety of regulatory molecules. Among them, polarity regulators and membrane-cytoskeleton linkers are master controllers of this interplay. Here, we review the various ways the T cell plasma membrane, receptors, and their signaling machinery interplay with the actin and microtubule cytoskeleton and with intracellular vesicular compartments. We highlight the importance of this fine-tuned crosstalk in three key stages of T cell biology involving cell polarization: T cell migration in response to chemokines, immunological synapse formation in response to antigen cues, and effector functions. Finally, we discuss two examples of perturbation of this interplay in pathological settings, such as HIV-1 infection and mutation of the polarity regulator and tumor suppressor adenomatous polyposis coli (Apc) that leads to familial polyposis and colorectal cancer.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Marie Juzans
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Andrés Alcover
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Vincenzo Di Bartolo
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| |
Collapse
|
50
|
Mørch AM, Bálint Š, Santos AM, Davis SJ, Dustin ML. Coreceptors and TCR Signaling - the Strong and the Weak of It. Front Cell Dev Biol 2020; 8:597627. [PMID: 33178706 PMCID: PMC7596257 DOI: 10.3389/fcell.2020.597627] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/28/2020] [Indexed: 12/02/2022] Open
Abstract
The T-cell coreceptors CD4 and CD8 have well-characterized and essential roles in thymic development, but how they contribute to immune responses in the periphery is unclear. Coreceptors strengthen T-cell responses by many orders of magnitude - beyond a million-fold according to some estimates - but the mechanisms underlying these effects are still debated. T-cell receptor (TCR) triggering is initiated by the binding of the TCR to peptide-loaded major histocompatibility complex (pMHC) molecules on the surfaces of other cells. CD4 and CD8 are the only T-cell proteins that bind to the same pMHC ligand as the TCR, and can directly associate with the TCR-phosphorylating kinase Lck. At least three mechanisms have been proposed to explain how coreceptors so profoundly amplify TCR signaling: (1) the Lck recruitment model and (2) the pseudodimer model, both invoked to explain receptor triggering per se, and (3) two-step coreceptor recruitment to partially triggered TCRs leading to signal amplification. More recently it has been suggested that, in addition to initiating or augmenting TCR signaling, coreceptors effect antigen discrimination. But how can any of this be reconciled with TCR signaling occurring in the absence of CD4 or CD8, and with their interactions with pMHC being among the weakest specific protein-protein interactions ever described? Here, we review each theory of coreceptor function in light of the latest structural, biochemical, and functional data. We conclude that the oldest ideas are probably still the best, i.e., that their weak binding to MHC proteins and efficient association with Lck allow coreceptors to amplify weak incipient triggering of the TCR, without comprising TCR specificity.
Collapse
Affiliation(s)
- Alexander M. Mørch
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Štefan Bálint
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Ana Mafalda Santos
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon J. Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Michael L. Dustin
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|