1
|
Thompson JL, McCool S, Smith JC, Schaal V, Pendyala G, Yelamanchili S, Van Hook MJ. Microglia remodeling in the visual thalamus of the DBA/2J mouse model of glaucoma. PLoS One 2025; 20:e0323513. [PMID: 40373024 PMCID: PMC12080812 DOI: 10.1371/journal.pone.0323513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/10/2025] [Indexed: 05/17/2025] Open
Abstract
Microglia are the resident immune cells of the central nervous system and mediate a broad array of adaptations during disease, injury, and development. Typically, microglia morphology is understood to provide a window into their function and microglia have the capacity to adopt a broad spectrum of functional phenotypes characterized by numerous morphologies and gene expression profiles. Glaucoma, which leads to blindness from retinal ganglion cell (RGC) degeneration, is commonly associated with elevated intraocular pressure (IOP) and triggers microglia responses within the retinal layers, at the optic nerve head, and in retinal projection targets in the brain. The goal of this study was to determine the relationship of microglia morphology to intraocular pressure and the loss of RGC output synapses in the dorsolateral geniculate nucleus (dLGN), a RGC projection target in the thalamus that conveys information to the primary visual cortex. We accomplished this by analyzing microglia morphologies in dLGN sections from DBA/2J mice, which develop a form of inherited glaucoma, at 4, 9, and 12 months of age, representing distinct time points in disease progression. Microglia morphology was analyzed using skeletonized Iba1 fluorescence images and fractal analyses of individually reconstructed microglia cells. We found that microglia in older DBA/2J mice adopted simplified morphologies, characterized by fewer endpoints and less total process length per microglia cell. There was an age-dependent shift in microglia morphology in tissue from control mice (DBA/2JGpnmb+) that was accelerated in DBA/2J mice. Measurements of microglia morphology correlated with cumulative IOP, immunofluorescence labeling for complement component C1q, and vGluT2-labeled RGC axon terminal density. Additionally, fractal analysis revealed a clear distinction between control and glaucomatous dLGN, with microglia from ocular hypertensive DBA/2J dLGN tissue showing an elongated rod-like morphology. RNA-sequencing of dLGN showed an upregulation of immune system-related genes. These results suggest that microglia in the dLGN alter their physiology to respond to RGC degeneration in glaucoma, potentially contributing to CNS adaptations to neurodegenerative vision loss.
Collapse
Affiliation(s)
- Jennifer L. Thompson
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska United States of America
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska United States of America
| | - Shaylah McCool
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska United States of America
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska United States of America
| | - Jennie C. Smith
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska United States of America
| | - Victoria Schaal
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska United States of America
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska United States of America
| | - Sowmya Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska United States of America
| | - Matthew J. Van Hook
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska United States of America
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
2
|
Zhang X, Liu H, Lan Z, Gao G, Li G, Dai Z, Qin S, Shen W. Single-cell transcriptomic analyses provide insights into the tumor microenvironment heterogeneity and invasion phenotype in retinoblastoma. Pathol Res Pract 2025; 271:156009. [PMID: 40378583 DOI: 10.1016/j.prp.2025.156009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/03/2025] [Accepted: 05/11/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND As the most common intraocular malignant tumor, retinoblastoma (RB) is associated with high mortality during early childhood. The heterogeneous cellular composition of the tumor microenvironment (TME) plays a pivotal role in modulating immune responses, tumor growth and metastasis progression. However, the landscape of TME heterogeneity and cell-cell communication networks in RB remain poorly characterized. METHODS Different phenotypes of RB were characterized by integrated single-cell sequencing data. Cellular subclusters of three principal TME components were systematically identified. CellChat analyzed package was employed to depict intercellular communications across all types of cells in TME. Next, pseudotime trajectory analyses were performed with Monocle package. CIBERSORT algorithms (LM22 signature matrix) and CIBERSORTx platform were employed to characterize immune cell infiltration landscape from microarray data. Finally, functional enrichment profiling elucidated associations between TME subcluster signatures and extraocular invasion phenotypes of RB. RESULTS Characteristic subclusters of TME components, such as MG1 in tumor-associated macrophages (TAMs) and AC1 in astrocyte-like cells were probably associated with RB extraocular invasion in different ways. And RB invasive progression might be relevant with the cell-cell communications landscape change between TME-related cell populations. Trajectory analysis revealed the potential correlation of RB invasion with the increase of immature TAMs and the decrease of terminally differentiated astrocyte-like cells. Functional enrichment analysis further profiled the distinct molecular feature of characteristic subclusters. CONCLUSIONS This study systematically delineates TME heterogeneity landscapes across non-invasive versus invasive RB, providing mechanistic insights into intercellular communications within TME. Our findings might have the potential to develop microenvironment-targeted therapeutic strategies in RB management.
Collapse
Affiliation(s)
- Xiaoliang Zhang
- Department of Ophthalmology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Zhida Lan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Guangping Gao
- Department of Ophthalmology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Guanyu Li
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Ziwei Dai
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China.
| | - Wei Shen
- Department of Ophthalmology, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
3
|
Venanzi AW, McGee LD, Hackam AS. Evaluating the Evidence for Neuroprotective and Axonal Regenerative Activities of Different Inflammatory Cell Types After Optic Nerve Injury. Mol Neurobiol 2025; 62:6212-6227. [PMID: 39738875 PMCID: PMC11953096 DOI: 10.1007/s12035-024-04679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
The optic nerve contains retinal ganglion cell (RGC) axons and functions to transmit visual stimuli to the brain. Injury to the optic nerve from ischemia, trauma, or disease leads to retrograde axonal degeneration and subsequent RGC dysfunction and death, causing irreversible vision loss. Inflammatory responses to neurological damage and axonal injuries in the central nervous system (CNS) are typically harmful to neurons and prevent recovery. However, recent evidence indicates that certain inflammatory cell types and signaling pathways are protective after optic nerve injury and promote RGC survival and axonal regeneration. The objective of this review is to examine the evidence for diverse effects of inflammatory cell types on the retina and optic nerve after injury. Additionally, we highlight promising avenues for further research.
Collapse
Affiliation(s)
- Alexander W Venanzi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA
| | - Laura D McGee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA.
| |
Collapse
|
4
|
Xue T, Song Y, Zhao J, Fan G, Liu Z. Inhibition of S100A4 decreases neurotoxic astrocyte reactivity and attenuates neuropathic pain via the TLR4/NF-κB pathway in a rat model of spinal nerve ligation. J Headache Pain 2025; 26:97. [PMID: 40312684 PMCID: PMC12044810 DOI: 10.1186/s10194-025-02045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025] Open
Abstract
S100A4 participates in inflammation and immune reactions in the central nervous system and is involved in the pathogenesis of multiple neurological disorders. It can affect the functions of astrocytes, microglia, infiltrating cells and neurons and further modulates neuronal plasticity and survival in the central nervous system. However, its impact on astrocyte phenotypes and neuropathic pain and the intrinsic mechanisms involved remain poorly understood. Here, we showed that S100A4 was markedly upregulated after spinal nerve ligation and was mainly expressed in neurons in the spinal dorsal horn. Transcriptional inhibition of S100A4 with niclosamide attenuated neuropathic pain after surgery. We found that astrocytes differentiated into C3-positive reactive populations, so-called neurotoxic (A1) astrocytes and identified differentially expressed genes and specific molecular expression signatures after ligation. Neurotoxic astrocyte reactivity is regulated by exogenous S100A4 in vitro, and targeted inhibition of S100A4 suppresses neurotoxic astrocyte proliferation in rats. Finally, we reported that TLR4/NF-κB signaling pathway is a downstream of S100A4 activation, and that specific depletion this pathway suppresses deleterious A1 astrocyte activation and further attenuates the development and maintenance of neuropathic pain after spinal nerve ligation. Thus, S100A4 in neurons plays a key role in neurotoxic astrocyte reactivity and can be targeted for treatment to prevent and alleviate neuropathic pain.
Collapse
Affiliation(s)
- Tao Xue
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213003, China
| | - Yu Song
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jie Zhao
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213003, China
| | - Guiyong Fan
- Department of Orthopedics, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, 215028, China
| | - Zhiyuan Liu
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213003, China.
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, 213003, China.
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou, 213003, China.
| |
Collapse
|
5
|
Bhattacharya S, Deka J, Avallone T, Todd L. The neuroimmune interface in retinal regeneration. Prog Retin Eye Res 2025; 106:101361. [PMID: 40287050 DOI: 10.1016/j.preteyeres.2025.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Retinal neurodegeneration leads to irreversible blindness due to the mammalian nervous system's inability to regenerate lost neurons. Efforts to regenerate retina involve two main strategies: stimulating endogenous cells to reprogram into neurons or transplanting stem-cell derived neurons into the degenerated retina. However, both approaches must overcome a major barrier in getting new neurons to grow back down the optic nerve and connect to appropriate visual targets in environments that differ significantly from developmental conditions. While immune privilege has historically been associated with the central nervous system, an emerging literature highlights the active role of immune cells in shaping neurodegeneration and regeneration. This review explores the neuroimmune interface in retinal repair, dissecting how immune interactions influence glial reprogramming, transplantation outcomes, and axonal regeneration. By integrating insights from regenerative species with mammalian models, we highlight novel immunomodulatory strategies to optimize retinal regeneration.
Collapse
Affiliation(s)
- Sucheta Bhattacharya
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Jugasmita Deka
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Thomas Avallone
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Levi Todd
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
6
|
Dhapola R, Sharma P, Kumari S, Vellingiri B, Medhi B, HariKrishnaReddy D. Exploring Retinal Neurodegeneration in Alzheimer's Disease: A Molecular and Cellular Perspective. Neurotox Res 2025; 43:22. [PMID: 40216597 DOI: 10.1007/s12640-025-00744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/21/2025] [Accepted: 04/01/2025] [Indexed: 05/03/2025]
Abstract
Increasing evidence of ocular impairments in Alzheimer's disease (AD) has drawn the attention of researchers worldwide towards retinal neurodegeneration in AD. The AD-associated changes observed in the retina include visual discrepancies, pupil size modulations, retinal nerve layer changes, retinal blood flow alterations and histopathological changes. The brain cells that act as pathological triggers for the progression of retinal neurodegeneration associated with AD are microglia, astrocytes and neurons. Various molecular pathways lead to structural and functional abnormalities in the retina, significantly affecting the brain including Aβ accumulation, apoptosis, inflammation and oxidative stress. Therapeutic agents under development that ameliorate disease conditions by targeting retinal anomalies include mesenchymal stem cell-conditioned media, BDNF, glatiramer acetate, salvianolic acid B, Lycium barbarum extract and exosomes. Investigating real-time alterations in the retina in AD may not only affect diagnostic approaches but also help to clarify neuropathological pathways and offer helpful measurements for assessing novel therapeutic approaches for AD.
Collapse
Affiliation(s)
- Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
7
|
Zhou LY, Liu ZG, Sun YQ, Li YZ, Teng ZQ, Liu CM. Preserving blood-retinal barrier integrity: a path to retinal ganglion cell protection in glaucoma and traumatic optic neuropathy. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:13. [PMID: 40172766 PMCID: PMC11965071 DOI: 10.1186/s13619-025-00228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/25/2025] [Accepted: 03/09/2025] [Indexed: 04/04/2025]
Abstract
Retinal ganglion cells (RGCs) are the visual gateway of the brain, with their axons converging to form the optic nerve, making them the most vulnerable target in diseases such as glaucoma and traumatic optic neuropathy (TON). In both diseases, the disruption of the blood-retinal barrier(BRB) is considered an important mechanism that accelerates RGC degeneration and hinders axon regeneration. The BRB consists of the inner blood-retinal barrier (iBRB) and the outer blood-retinal barrier (oBRB), which are maintained by endothelial cells(ECs), pericytes(PCs), and retinal pigment epithelial (RPE), respectively. Their functions include regulating nutrient exchange, oxidative stress, and the immune microenvironment. However, in glaucoma and TON, the structural and functional integrity of the BRB is severely damaged due to mechanical stress, inflammatory reactions, and metabolic disorders. Emerging evidence highlights that BRB disruption leads to heightened vascular permeability, immune cell infiltration, and sustained chronic inflammation, creating a hostile microenvironment for RGC survival. Furthermore, the dynamic interplay and imbalance among ECs, PCs, and glial cells within the neurovascular unit (NVU) are pivotal drivers of BRB destruction, exacerbating RGC apoptosis and limiting optic nerve regeneration. The intricate molecular and cellular mechanisms underlying these processes underscore the BRB's critical role in glaucoma and TON pathophysiology while offering a compelling foundation for therapeutic strategies targeting BRB repair and stabilization. This review provides crucial insights and lays a robust groundwork for advancing research on neural regeneration and innovative optic nerve protective strategies.
Collapse
Affiliation(s)
- Lai-Yang Zhou
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zhen-Gang Liu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yong-Quan Sun
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yan-Zhong Li
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zhao-Qian Teng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
8
|
Vanherle S, Loix M, Miron VE, Hendriks JJA, Bogie JFJ. Lipid metabolism, remodelling and intercellular transfer in the CNS. Nat Rev Neurosci 2025; 26:214-231. [PMID: 39972160 DOI: 10.1038/s41583-025-00908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 02/21/2025]
Abstract
Lipid metabolism encompasses the catabolism and anabolism of lipids, and is fundamental for the maintenance of cellular homeostasis, particularly within the lipid-rich CNS. Increasing evidence further underscores the importance of lipid remodelling and transfer within and between glial cells and neurons as key orchestrators of CNS lipid homeostasis. In this Review, we summarize and discuss the complex landscape of processes involved in lipid metabolism, remodelling and intercellular transfer in the CNS. Highlighted are key pathways, including those mediating lipid (and lipid droplet) biogenesis and breakdown, lipid oxidation and phospholipid metabolism, as well as cell-cell lipid transfer mediated via lipoproteins, extracellular vesicles and tunnelling nanotubes. We further explore how the dysregulation of these pathways contributes to the onset and progression of neurodegenerative diseases, and examine the homeostatic and pathogenic impacts of environment, diet and lifestyle on CNS lipid metabolism.
Collapse
Affiliation(s)
- Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Veronique E Miron
- Keenan Research Centre for Biomedical Science and Barlo Multiple Sclerosis Centre, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Immunology, The University of Toronto, Toronto, Ontario, Canada
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.
- University MS Centre, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
9
|
Pérez-Núñez R, González MF, Avalos AM, Leyton L. Impacts of PI3K/protein kinase B pathway activation in reactive astrocytes: from detrimental effects to protective functions. Neural Regen Res 2025; 20:1031-1041. [PMID: 38845231 PMCID: PMC11438337 DOI: 10.4103/nrr.nrr-d-23-01756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/07/2024] [Accepted: 05/06/2024] [Indexed: 07/12/2024] Open
Abstract
Astrocytes are the most abundant type of glial cell in the central nervous system. Upon injury and inflammation, astrocytes become reactive and undergo morphological and functional changes. Depending on their phenotypic classification as A1 or A2, reactive astrocytes contribute to both neurotoxic and neuroprotective responses, respectively. However, this binary classification does not fully capture the diversity of astrocyte responses observed across different diseases and injuries. Transcriptomic analysis has revealed that reactive astrocytes have a complex landscape of gene expression profiles, which emphasizes the heterogeneous nature of their reactivity. Astrocytes actively participate in regulating central nervous system inflammation by interacting with microglia and other cell types, releasing cytokines, and influencing the immune response. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway is a central player in astrocyte reactivity and impacts various aspects of astrocyte behavior, as evidenced by in silico , in vitro , and in vivo results. In astrocytes, inflammatory cues trigger a cascade of molecular events, where nuclear factor-κB serves as a central mediator of the pro-inflammatory responses. Here, we review the heterogeneity of reactive astrocytes and the molecular mechanisms underlying their activation. We highlight the involvement of various signaling pathways that regulate astrocyte reactivity, including the PI3K/AKT/mammalian target of rapamycin (mTOR), α v β 3 integrin/PI3K/AKT/connexin 43, and Notch/PI3K/AKT pathways. While targeting the inactivation of the PI3K/AKT cellular signaling pathway to control reactive astrocytes and prevent central nervous system damage, evidence suggests that activating this pathway could also yield beneficial outcomes. This dual function of the PI3K/AKT pathway underscores its complexity in astrocyte reactivity and brain function modulation. The review emphasizes the importance of employing astrocyte-exclusive models to understand their functions accurately and these models are essential for clarifying astrocyte behavior. The findings should then be validated using in vivo models to ensure real-life relevance. The review also highlights the significance of PI3K/AKT pathway modulation in preventing central nervous system damage, although further studies are required to fully comprehend its role due to varying factors such as different cell types, astrocyte responses to inflammation, and disease contexts. Specific strategies are clearly necessary to address these variables effectively.
Collapse
Affiliation(s)
- Ramón Pérez-Núñez
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Fernanda González
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Batsuuri K, Toychiev AH, Viswanathan S, Wohl SG, Srinivas M. Targeting Connexin 43 in Retinal Astrocytes Promotes Neuronal Survival in Glaucomatous Injury. Glia 2025. [PMID: 40156150 DOI: 10.1002/glia.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Astrocytes in the retina and optic nerve head play an important role in the pathogenesis of glaucoma. Astrocytes extensively express connexin 43 (Cx43), a protein that forms gap junction (GJ) channels and transmembrane unopposed hemichannels. While it is well documented that Cx43 expression is augmented in retinal injuries, the role of astrocytic Cx43 channels in glaucomatous injury is not fully understood. Here, we used a mouse model of ocular hypertension caused by intracameral microbead injections and a more severe model, optic nerve crush (ONC) injury, and assessed changes in Cx43 expression and GJ channel function. The effect of astrocyte-specific deletion of Cx43 (Cx43KO) on retinal ganglion cell (RGC) loss and visual function was also assessed. We show that the Cx43 expression is increased in retinal astrocytes at early time points and remained elevated even after sustained elevation of intraocular pressure (IOP) (~8 weeks), which paralleled an increase in astrocytic GJ coupling. Deletion of astrocytic Cx43 markedly improved the survival of RGCs by ~93% and preserved visual function as assessed by ERG and reduced numbers of activated microglial/macrophages in the glaucomatous retina. Cx43 expression was also substantially increased after ONC injury, and the absence of Cx43 in this model increased RGC survival by ~48%. These results reveal a deleterious role for Cx43 in glaucoma progression. Intravitreal injections of Gap19, a peptide that reportedly inhibits Cx43 hemichannels but not GJ channels, markedly increased RGC survival and visual function. Further studies are required to assess whether targeting Cx43 hemichannels might be useful for glaucoma treatment.
Collapse
Affiliation(s)
- Khulan Batsuuri
- Department of Biological and Vision Sciences, SUNY College of Optometry, New York, New York, USA
| | - Abduqodir H Toychiev
- Department of Biological and Vision Sciences, SUNY College of Optometry, New York, New York, USA
| | | | - Stefanie G Wohl
- Department of Biological and Vision Sciences, SUNY College of Optometry, New York, New York, USA
| | - Miduturu Srinivas
- Department of Biological and Vision Sciences, SUNY College of Optometry, New York, New York, USA
| |
Collapse
|
11
|
Deng J, Feng Z, Luodan A, Ma C, He J, Gong Y, Huang X, Xiao W, Fan X, Xu H. Immune-responsive gene 1/itaconate pathway inhibits microglia activation to alleviate traumatic optic neuropathy in mice. Int Immunopharmacol 2025; 149:114199. [PMID: 39904042 DOI: 10.1016/j.intimp.2025.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/15/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Retinal inflammatory microenvironment caused by microglia over-activation is deemed to be crucial pathological changes that lead to the massive death of retinal ganglion cells (RGCs) after traumatic optic neuropathy (TON), which then results in visual impairment and even blindness. Therefore, exploring effective targets to suppress microglia activation is a promising therapeutic strategy for TON. In the present work, we determined the roles of immune-responsive gene 1 (IRG1)/itaconate pathway on retinal microglia activation and neuroinflammation after TON, through endogenously manipulating Irg1 expression and exogenously supplementing itaconate derivatives, we evaluated its effects on RGCs survival, retinal structural damage and visual function after TON. Finally, we identified the downstream mechanism by which the Irg1/itaconate pathway regulates microglia through transcriptome analysis. We found that specifically overexpression of Irg1 in retinal microglia significantly inhibited microglia activation and alleviated neuroinflammation after TON, thereby promoting RGCs survival and improving visual function. While knockdown of Irg1 caused microglia over-activation and exacerbated neuroinflammation, thus aggravating RGCs damage and deteriorating visual function after TON. Further in vivo and in vitro experiments confirmed that itaconate derivatives significantly inhibited microglia activation and alleviated neuroinflammation, hence alleviated RGCs damage and visual impairment. Finally, transcriptome analysis indicated that complement and coagulation cascades pathway might be the crucial downstream mechanism of the Irg1/itaconate pathway. Our study identifies the Irg1/itaconate pathway as a prospective target for treating TON.
Collapse
Affiliation(s)
- Jiaxing Deng
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China
| | - Zhou Feng
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China; Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China
| | - A Luodan
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China
| | - Chao Ma
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China
| | - Juncai He
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China
| | - Yu Gong
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China
| | - Xiaona Huang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China
| | - Weizuo Xiao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 400038 China.
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China.
| |
Collapse
|
12
|
Waxman S, Schilpp H, Linton A, Jakobs TC, Sigal IA. Morphological Comparison of Astrocytes in the Lamina Cribrosa and Glial Lamina. Invest Ophthalmol Vis Sci 2025; 66:1. [PMID: 40029245 PMCID: PMC11887932 DOI: 10.1167/iovs.66.3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/15/2025] [Indexed: 03/05/2025] Open
Abstract
Purpose Although the mechanisms underlying glaucomatous neurodegeneration are not yet well understood, cellular and small animal models suggest that lamina cribrosa (LC) astrocytes undergo early morphologic and functional changes, indicating their role as early responders to glaucomatous stress. These models, however, lack the LC found in larger animals and humans, leaving the in situ morphology of LC astrocytes and their role in glaucoma initiation underexplored. In this work, we aimed to characterize the morphology of LC astrocytes in situ and determine differences and similarities with astrocytes in the mouse glial lamina (GL), the analogous structure in a prominent glaucoma model. Methods Astrocytes in the LCs of 22 eyes from goats, sheep, and pigs were stochastically labeled via Multicolor DiOlistics and imaged in situ using confocal microscopy. The 3D models of DiOlistically labeled LC astrocytes and hGFAPpr-GFP mouse GL astrocytes were constructed to quantify morphological features related to astrocyte functions. LC and GL astrocyte cross-pore contacts, branching complexity, branch tortuosity, and cell and branch span were compared. Results LC astrocytes displayed distinct spatial relationships with collagen, greater branching complexity, and higher branch tortuosity compared to GL astrocytes. Despite substantial differences in their anatomic environments, LC and GL astrocytes had similar cell and branch spans. Conclusions Astrocyte morphology in the LC was characterized through multicolor DiOlistic labeling. LC and GL astrocytes have both distinct and shared morphological features. Further research is needed to understand the potentially unique roles of LC astrocytes in glaucoma initiation and progression.
Collapse
Affiliation(s)
- Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hannah Schilpp
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ashley Linton
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Tatjana C. Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts,, United States
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
13
|
Zhang L, Xu Z, Jia Z, Cai S, Wu Q, Liu X, Hu X, Bai T, Chen Y, Li T, Liu Z, Wu B, Zhu J, Zhou H. Modulating mTOR-dependent astrocyte substate transitions to alleviate neurodegeneration. NATURE AGING 2025; 5:468-485. [PMID: 39779911 DOI: 10.1038/s43587-024-00792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
Traditional approaches to studying astrocyte heterogeneity have mostly focused on analyzing static properties, failing to identify whether subtypes represent intermediate or final states of reactive astrocytes. Here we show that previously proposed neuroprotective and neurotoxic astrocytes are transitional states rather than distinct subtypes, as revealed through time-series multiomic sequencing. Neuroprotective astrocytes are an intermediate state of the transition from a nonreactive to a neurotoxic state in response to neuroinflammation, a process regulated by the mTOR signaling pathway. In Alzheimer's disease (AD) and aging, we observed an imbalance in neurotoxic and neuroprotective astrocytes in animal models and human patients. Moreover, targeting mTOR in astrocytes with rapamycin or shRNA mitigated astrocyte neurotoxic effects in neurodegenerative mouse models. Overall, our study uncovers a mechanism through which astrocytes exhibit neuroprotective functions before becoming neurotoxic under neuroinflammatory conditions and highlights mTOR modulation specifically in astrocytes as a potential therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Liansheng Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Zhengzheng Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhiheng Jia
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shicheng Cai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingyu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xinde Hu
- Genemagic Biosciences Co., Ltd., Shanghai, China
| | - Tao Bai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yongyu Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianwen Li
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Library for Medical Neurobiology, Shanghai Key Library of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Bin Wu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianhong Zhu
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Library for Medical Neurobiology, Shanghai Key Library of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haibo Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
14
|
O'Dea MR, Hasel P. Are we there yet? Exploring astrocyte heterogeneity one cell at a time. Glia 2025; 73:619-631. [PMID: 39308429 PMCID: PMC11784854 DOI: 10.1002/glia.24621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/02/2024] [Accepted: 09/14/2024] [Indexed: 02/01/2025]
Abstract
Astrocytes are a highly abundant cell type in the brain and spinal cord. Like neurons, astrocytes can be molecularly and functionally distinct to fulfill specialized roles. Recent technical advances in sequencing-based single cell assays have driven an explosion of omics data characterizing astrocytes in the healthy, aged, injured, and diseased central nervous system. In this review, we will discuss recent studies which have furthered our understanding of astrocyte biology and heterogeneity, as well as discuss the limitations and challenges of sequencing-based single cell and spatial genomics methods and their potential future utility.
Collapse
Affiliation(s)
- Michael R. O'Dea
- Neuroscience InstituteNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Philip Hasel
- UK Dementia Research Institute at the University of EdinburghEdinburghScotlandUK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary MedicineThe University of EdinburghEdinburghScotlandUK
| |
Collapse
|
15
|
Gildea HK, Liddelow SA. Mechanisms of astrocyte aging in reactivity and disease. Mol Neurodegener 2025; 20:21. [PMID: 39979986 PMCID: PMC11844071 DOI: 10.1186/s13024-025-00810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
Normal aging alters brain functions and phenotypes. However, it is not well understood how astrocytes are impacted by aging, nor how they contribute to neuronal dysfunction and disease risk as organisms age. Here, we examine the transcriptional, cell biology, and functional differences in astrocytes across normal aging. Astrocytes at baseline are heterogenous, responsive to their environments, and critical regulators of brain microenvironments and neuronal function. With increasing age, astrocytes adopt different immune-related and senescence-associated states, which relate to organelle dysfunction and loss of homeostasis maintenance, both cell autonomously and non-cell autonomously. These perturbed states are increasingly associated with age-related dysfunction and the onset of neurodegeneration, suggesting that astrocyte aging is a compelling target for future manipulation in the prevention of disease.
Collapse
Affiliation(s)
- Holly K Gildea
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, USA.
| | - Shane A Liddelow
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, USA.
- Department of Neuroscience, NYU Grossman School of Medicine, New York, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, USA.
- Optimal Aging Institute, NYU Grossman School of Medicine, New York, USA.
| |
Collapse
|
16
|
Tse DT, Wang H, Tao W, O'Brien RC, Tse BC, Pelaez D. A Polytherapy Intervention in an Experimental Traumatic Optic Neuropathy Mouse Model. Ophthalmic Plast Reconstr Surg 2025:00002341-990000000-00582. [PMID: 39945348 DOI: 10.1097/iop.0000000000002917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
PURPOSE To test a novel early polytherapy treatment strategy targeting mitochondrial bioenergetics, glutamate excitotoxicity, and sterile inflammatory response molecular pathways associated with retinal ganglion cell survival following optic nerve trauma. METHODS Twenty C57BL/6J mice were subjected to sonication-induced traumatic optic neuropathy injury. The control group (n = 10) received intravitreal, retrobulbar, and subcutaneous phosphate buffered saline injections on days 0 and 3 (no repeat retrobulbar vehicle). On day 0, the treatment group (n = 10) received injections of intravitreal interleukin-1 receptor antagonist with ketamine, retrobulbar ropivacaine, and subcutaneous etanercept. Treatment group animals had 1% (wt/vol) N-acetylcysteine ad libitum supplemented in drinking water from day 1. On day 3, intravitreal pan-ephrin receptor antagonist peptide and subcutaneous elamipretide and etanercept injections were given. Pattern electroretinogram assessments continued at weeks 0, 1, 2, 4, 6, 8, 10, and 12. Optical coherence tomography retinal layer thickness was measured on naive, control, and treatment groups at week 12. The whole mount retinas were harvested for retinal ganglion cell quantitation. RESULTS At 12 weeks, the averaged retinal ganglion cell density count in the control group was lower (413.37 ± 41.77 cells/mm 2 ) compared with treatment (553.97 ± 18.00 cells/mm 2 ; p < 0.001) and naive (595.94 ± 30.67cells/mm 2 ; p < 0.001) groups. Ganglion cell complex layer thicknesses showed control group (49.29 ± 5.48 μm) thinner than the treated (61.00 ± 2.57 μm; p = 0.004) and naive (67.00 ± 6.12 μm; p = 0.004) groups. No significant difference was seen at 12 weeks between the treated and naive groups. Pattern electroretinogram recordings in the control group revealed a statistically significant decrease in amplitudes for all time points. Apart from week 8, the amplitudes in the treatment group did not significantly differ from the baseline at any time point. CONCLUSIONS Early combinatorial therapeutic intervention to address disparate molecular pathways following optic nerve trauma effectively halts retinal neurons' progressive structural and functional degeneration.
Collapse
Affiliation(s)
- David T Tse
- Department of Ophthalmology, Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Hua Wang
- Department of Ophthalmology, Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Wensi Tao
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Robert C O'Brien
- Department of Ophthalmology, Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Brian C Tse
- Department of Ophthalmology, Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Daniel Pelaez
- Department of Ophthalmology, Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| |
Collapse
|
17
|
Huang W, Matsushita K, Kawashima R, Hara S, Yasukura Y, Yamaguchi K, Usui S, Baba K, Quantock AJ, Nishida K. Transient ocular hypertension remodels astrocytes through S100B. PLoS One 2025; 20:e0313556. [PMID: 39908332 PMCID: PMC11798533 DOI: 10.1371/journal.pone.0313556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/25/2024] [Indexed: 02/07/2025] Open
Abstract
Glaucoma is a series of irreversible and progressive optic nerve degenerations, often accompanied by astrocyte remodeling as the disease progresses, a process that is insufficiently understood. Here, we investigated the morphology of retinal and optic nerve head (ONH) astrocytes under mechanical stress, and explored whether a specific phase is present that precedes astrocyte remodeling. A mouse model of transient ocular hypertension (OHT) and an in vitro cell stretch model were established to mimic the pathological conditions of increased intraocular pressure and mechanical stress on cultured cells. Glial fibrillary acidic protein (GFAP), S100B, and actin staining were used to characterize astrocyte morphology and cytoskeleton, with qPCR used to measure mRNA expression. We also silenced S100B expression and conduct RNA sequencing on ONH astrocytes. Astrocytes displayed weaker GFAP intensity (p < 0.0001) in the early-stage OHT mouse model, prior to the onset of hypertrophy, which was accompanied by an increase in GFAP mRNA expression (p < 0.0001) and a decrease in S100B mRNA expression (p < 0.001). In vitro-stretched astrocytes tended to contract and had fewer cellular processes and more elongated cell bodies. Downregulation of S100B expression occurred in in both the in vivo (p = 0.0001) and in vitro (p = 0.0023) models. S100B-silenced ONH astrocytes were similarly characterized by a slender morphology. In the RNA-seq analysis, genes downregulated by more than fivefold were predominantly enriched in terms related to nutrient metabolism, motor proteins and morphogenesis. Meanwhile, genes upregulated by more than fivefold were primarily associated with terms related to histone modification and visual perception. As an early response to mechanical stress, S100B expression is downregulated in astrocytes, which assume a slender morphology, reminiscent of cell "weakening." Silencing intracellular S100B expression induced similar morphology changes and altered the transcriptome. Stress-induced changes were reversible, with evidence of enhanced late-stage reactivation that is likely related to S100B.
Collapse
Affiliation(s)
- Weiran Huang
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kenji Matsushita
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Rumi Kawashima
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Susumu Hara
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Japan
| | - Yuichi Yasukura
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kaito Yamaguchi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinichi Usui
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Koichi Baba
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Japan
- Department of Visual Regenerative Medicine, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Andrew J. Quantock
- School of Optometry and Vision Sciences, Cardiff University, Wales, United Kingdom
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Japan
| |
Collapse
|
18
|
Breßer M, Siemens KD, Schneider L, Lunnebach JE, Leven P, Glowka TR, Oberländer K, De Domenico E, Schultze JL, Schmidt J, Kalff JC, Schneider A, Wehner S, Schneider R. Macrophage-induced enteric neurodegeneration leads to motility impairment during gut inflammation. EMBO Mol Med 2025; 17:301-335. [PMID: 39762650 PMCID: PMC11822118 DOI: 10.1038/s44321-024-00189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 02/14/2025] Open
Abstract
Current studies pictured the enteric nervous system and macrophages as modulators of neuroimmune processes in the inflamed gut. Expanding this view, we investigated the impact of enteric neuron-macrophage interactions on postoperative trauma and subsequent motility disturbances, i.e., postoperative ileus. In the early postsurgical phase, we detected strong neuronal activation, followed by transcriptional and translational signatures indicating neuronal death and synaptic damage. Simultaneously, our study revealed neurodegenerative profiles in macrophage-specific transcriptomes after postoperative trauma. Validating the role of resident and monocyte-derived macrophages, we depleted macrophages by CSF-1R-antibodies and used CCR2-/- mice, known for reduced monocyte infiltration, in POI studies. Only CSF-1R-antibody-treated animals showed decreased neuronal death and lessened synaptic decay, emphasizing the significance of resident macrophages. In human gut samples taken early and late during abdominal surgery, we substantiated the mouse model data and found reactive and apoptotic neurons and dysregulation in synaptic genes, indicating a species' overarching mechanism. Our study demonstrates that surgical trauma activates enteric neurons and induces neurodegeneration, mediated by resident macrophages, introducing neuroprotection as an option for faster recovery after surgery.
Collapse
Affiliation(s)
- Mona Breßer
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Kevin D Siemens
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Linda Schneider
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Patrick Leven
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Tim R Glowka
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Kristin Oberländer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University of Bonn Medical Center, Dept. of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, 53127, Bonn, Germany
| | - Elena De Domenico
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Joachim Schmidt
- Department of General, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Jörg C Kalff
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University of Bonn Medical Center, Dept. of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, 53127, Bonn, Germany
| | - Sven Wehner
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
19
|
Ma B, Ren J, Qian X. Study on the Polarization of Astrocytes in the Optic Nerve Head of Rats Under High Intraocular Pressure: In Vitro. Bioengineering (Basel) 2025; 12:104. [PMID: 40001624 PMCID: PMC11852053 DOI: 10.3390/bioengineering12020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Astrocytes, the most common glial cells in the optic nerve head (ONH), provide support and nutrition to retinal ganglion cells. This study aims to investigate the polarization types of astrocytes in the ONH of rats under high intraocular pressure (IOP) and explore signaling pathways potentially associated with different types of polarized astrocytes. The rat models with chronic high IOP were established. High IOP lasted for 2, 4, 6, and 8 weeks. Astrocytes were extracted from the ONH of rats using the tissue block cultivation method. Western blot was used to detect the expression of proteins associated with astrocyte polarization. Proteomics was employed to identify differential proteins associated with astrocyte polarization. Astrocytes polarized into A2 astrocytes after 2, 4, 6, and 8 weeks of high IOP, while polarization into A1 astrocytes began only after 8 weeks of high IOP. The differential proteins associated with A1 astrocyte polarization are primarily enriched in pathways of neurodegeneration with respect to multiple diseases, while the differential proteins associated with A2 astrocyte polarization are primarily enriched in pathways of spliceosome in amyotrophic lateral sclerosis. Our findings could provide a better understanding of the role of ONH astrocytes in the pathogenesis of glaucoma and offer new perspectives for glaucoma treatment.
Collapse
Affiliation(s)
| | | | - Xiuqing Qian
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China; (B.M.)
| |
Collapse
|
20
|
Hallaj S, Halfpenny W, Chuter BG, Weinreb RN, Baxter SL, Cui QN. Association Between Glucagon-Like Peptide-1 Receptor Agonists Exposure and Intraocular Pressure Change: GLP-1 Receptor Agonists and Intraocular Pressure Change. Am J Ophthalmol 2025; 269:255-265. [PMID: 39237049 PMCID: PMC11634659 DOI: 10.1016/j.ajo.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE This study evaluates the effects of glucagon-like peptide-1 receptor (GLP-1R) agonists on intraocular pressure (IOP). DESIGN Retrospective clinical cohort study. METHODS The University of California Health Data Warehouse was queried for patients exposed to GLP-1R agonists or other oral antidiabetics. A total of 1247 glaucoma surgery and treatment naïve eyes of 626 patientson GLP-1R agonists and 1083 glaucoma surgery and treatment naïve eyes of 547 patients on other oral antidiabetics were included. Index date was defined as the date of first exposure to the medication. Eyes with at least one pre-exposure and one post-exposure tonometry records within 365 days of the index date were included. Clinical and laboratory data were extracted. Eyes were excluded upon exposure to glaucoma hypotensive medication or glaucoma surgery. The primary outcome measure was ∆IOP after exposure, which was analyzed using a paired t test and generalized estimating equations (GEE) RESULTS: The median age was 66.2 years [IQR = 18.3]; 607 (51.7%) were female, and 667 (56.9%) were Caucasian. Median pre-exposure IOP, hemoglobin A1c, and body mass index were 15.2 mm Hg [IQR = 3.8], 7.5 [IQR = 2.4], and 29.8 [IQR = 9.4], respectively. A total of 776 individuals (66.1%) had diabetes, with the median number of active oral antidiabetics being 1.0 [IQR = 1.0], and 441 (37.5%) being insulin users. Several pre-exposure characteristics differed between the groups. The mean ∆IOP was -0.4 ± 2.8 mm Hg (paired t test P < .001) and -0.2 ± 3.3 mm Hg (paired t test P = .297) in the GLP-1R agonist and other antidiabetics groups, respectively. Pre-exposure IOP was the only independent predictor of ΔIOP in multivariable GEE. Sensitivity analyses yielded similar results. CONCLUSIONS Although GLP-1R agonists were significantly associated with a decrease in IOP in the paired analysis, they were not associated with ΔIOP in multivariable GEE. Moreover, the difference in ΔIOP between the two groups was small.
Collapse
Affiliation(s)
- Shahin Hallaj
- From the Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science (S.H., W.H., B.G.C., R.N.W., S.L.B.), Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, California, USA; Department of Medicine, Division of Biomedical Informatics (S.H., W.H., B.G.C., S.L.B.), University of California, San Diego, California, USA
| | - William Halfpenny
- From the Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science (S.H., W.H., B.G.C., R.N.W., S.L.B.), Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, California, USA; Department of Medicine, Division of Biomedical Informatics (S.H., W.H., B.G.C., S.L.B.), University of California, San Diego, California, USA
| | - Benton G Chuter
- From the Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science (S.H., W.H., B.G.C., R.N.W., S.L.B.), Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, California, USA; Department of Medicine, Division of Biomedical Informatics (S.H., W.H., B.G.C., S.L.B.), University of California, San Diego, California, USA
| | - Robert N Weinreb
- From the Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science (S.H., W.H., B.G.C., R.N.W., S.L.B.), Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, California, USA
| | - Sally L Baxter
- From the Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science (S.H., W.H., B.G.C., R.N.W., S.L.B.), Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, California, USA; Department of Medicine, Division of Biomedical Informatics (S.H., W.H., B.G.C., S.L.B.), University of California, San Diego, California, USA.
| | - Qi N Cui
- F.M. Kirby Center for Molecular Ophthalmology (Q.N.C.), Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
21
|
Yin Z, Kang J, Xu H, Huo S, Xu H. Recent progress of principal techniques used in the study of Müller glia reprogramming in mice. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:30. [PMID: 39663301 PMCID: PMC11635068 DOI: 10.1186/s13619-024-00211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
In zebrafish, Müller glia (MG) cells retain the ability to proliferate and de-differentiate into retinal progenitor-like cells, subsequently differentiating into retinal neurons that can replace those damaged or lost due to retinal injury. In contrast, the reprogramming potential of MG in mammals has been lost, with these cells typically responding to retinal damage through gliosis. Considerable efforts have been dedicated to achieving the reprogramming of MG cells in mammals. Notably, significant advancements have been achieved in reprogramming MG cells in mice employing various methodologies. At the same time, some inevitable challenges have hindered identifying accurate MG cell reprogramming rather than the illusion, let alone improving the reprogramming efficiency and maturity of daughter cells. Recently, several strategies, including lineage tracking, multi-omics techniques, and functional analysis, have been developed to investigate the MG reprogramming process in mice. This review summarizes both the advantages and limitations of these novel strategies for analyzing MG reprogramming in mice, offering insights into enhancing the reliability and efficiency of MG reprogramming.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Jiahui Kang
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Haoan Xu
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shujia Huo
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
| | - Haiwei Xu
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
| |
Collapse
|
22
|
Cuevas-Rios G, Assale TA, Wissfeld J, Bungartz A, Hofmann J, Langmann T, Neumann H. Decreased sialylation elicits complement-related microglia response and bipolar cell loss in the mouse retina. Glia 2024; 72:2295-2312. [PMID: 39228105 DOI: 10.1002/glia.24613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
Sialylation plays an important role in self-recognition, as well as keeping the complement and innate immune systems in check. It is unclear whether the reduced sialylation seen during aging and in mice heterozygous for the null mutant of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (Gne+/-), an essential enzyme for sialic acid biosynthesis, contributes to retinal inflammation and degeneration. We found a reduction of polysialic acid and trisialic acid expression in several retinal layers in Gne+/- mice at 9 months of age compared to Gne+/+ wildtype (WT) mice, which was associated with a higher microglial expression of the lysosomal marker CD68. Furthermore, the total number of rod bipolar cells was reduced in 12 months old Gne+/- mice in comparison to WT mice, demonstrating loss of these retinal interneurons. Transcriptome analysis showed up-regulation of complement, inflammation, and apoptosis-related pathways in the retinas of Gne+/- mice. Particularly, increased gene transcript levels of the complement factors C3 and C4 and the pro-inflammatory cytokine Il-1β were observed by semi-quantitative real-time polymerase chain reaction (sqRT-PCR) in 9 months old Gne+/- mice compared to WT mice. The increased expression of CD68, loss of rod bipolar cells, and increased gene transcription of complement factor C4, were all prevented after crossing Gne+/- mice with complement factor C3-deficient animals. In conclusion, our data show that retinal hyposialylation in 9 and 12 months old Gne+/- mice was associated with complement-related inflammation and lysosomal microglia response, as well as rod bipolar cells loss, which was absent after genetic deletion of complement factor C3.
Collapse
Affiliation(s)
- German Cuevas-Rios
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Tawfik Abou Assale
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jannis Wissfeld
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Annemarie Bungartz
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Julia Hofmann
- Experimental Immunology of the Eye, Department of Ophthalmology, University Hospital Cologne, Cologne, Germany
| | - Thomas Langmann
- Experimental Immunology of the Eye, Department of Ophthalmology, University Hospital Cologne, Cologne, Germany
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
23
|
Obeng E, Shen B, Wang W, Xie Z, Zhang W, Li Z, Yao Q, Wu W. Engineered bio-functional material-based nerve guide conduits for optic nerve regeneration: a view from the cellular perspective, challenges and the future outlook. Regen Biomater 2024; 12:rbae133. [PMID: 39776856 PMCID: PMC11703557 DOI: 10.1093/rb/rbae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming. Currently, the use of nerve guide conduits (NGC) to some extent has proven reliable especially in rodents and among the peripheral nervous system, a promising ground for regeneration and functional recovery, however in the optic nerve, this NGC function seems quite unfamous. The insufficient NGC application and the unabridged regeneration of the optic nerve could be a result of the limited information on cellular and molecular activities. This review seeks to tackle two major factors (i) the cellular and molecular activity involved in traumatic optic neuropathy and (ii) the NGC application for the optic nerve regeneration. The understanding of cellular and molecular concepts encompassed, ocular inflammation, extrinsic signaling and intrinsic signaling for axon growth, mobile zinc role, Ca2+ factor associated with the optic nerve, alternative therapies from nanotechnology based on the molecular information and finally the nanotechnological outlook encompassing applicable biomaterials and the use of NGC for regeneration. The challenges and future outlook regarding optic nerve regenerations are also discussed. Upon the many approaches used, the comprehensive role of the cellular and molecular mechanism may set grounds for the efficient application of the NGC for optic nerve regeneration.
Collapse
Affiliation(s)
- Enoch Obeng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Baoguo Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhenyuan Xie
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenyi Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhixing Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Qinqin Yao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
24
|
McCord JL, Han JYS, Staudt RE, Philp NJ, Snyder CM. Immune responses drive chorioretinitis and retinal pathology after neonatal CMV infection. SCIENCE ADVANCES 2024; 10:eadn6379. [PMID: 39565860 PMCID: PMC11578184 DOI: 10.1126/sciadv.adn6379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
Human cytomegalovirus (CMV) causes a common congenital infection leading to long-term neurological impairments including brain, cochlear, and ocular pathology. Infection of newborn mice with murine (M)CMV is an established model of neuropathology caused by congenital CMV infection, with recent work suggesting that brain pathology may be driven by immune responses. In the eye, however, CMV retinitis is thought to result from virus-driven necrosis in the absence of T cell responses. We found that MCMV infection of newborn mice recapitulates human eye disease after congenital CMV infection, including focal chorioretinitis, inflamed vasculature, and disrupted blood-retinal barriers. Moreover, infection drove extensive T cell infiltration of the retina and marked gliosis. Blocking immune responses generally, or via targeting the chemokine receptor CXCR3, did not exacerbate retinal disease but instead prevented pathology despite retinal MCMV infection. Thus, our data establish this model for studies of congenital retinal disease and show that the immune system drives pathology in the neonatal eye after MCMV infection.
Collapse
Affiliation(s)
- Jessica L. McCord
- Department of Microbiology and Immunology, Jefferson Center for Vaccines and Pandemic Preparedness, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - John Y. S. Han
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ross E. Staudt
- Department of Microbiology and Immunology, Jefferson Center for Vaccines and Pandemic Preparedness, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nancy J. Philp
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher M. Snyder
- Department of Microbiology and Immunology, Jefferson Center for Vaccines and Pandemic Preparedness, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
25
|
Blasdel N, Bhattacharya S, Donaldson PC, Reh TA, Todd L. Monocyte Invasion into the Retina Restricts the Regeneration of Neurons from Müller Glia. J Neurosci 2024; 44:e0938242024. [PMID: 39353729 PMCID: PMC11561870 DOI: 10.1523/jneurosci.0938-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Endogenous reprogramming of glia into neurogenic progenitors holds great promise for neuron restoration therapies. Using lessons from regenerative species, we have developed strategies to stimulate mammalian Müller glia to regenerate neurons in vivo in the adult retina. We have demonstrated that the transcription factor Ascl1 can stimulate Müller glia neurogenesis. However, Ascl1 is only able to reprogram a subset of Müller glia into neurons. We have reported that neuroinflammation from microglia inhibits neurogenesis from Müller glia. Here we found that the peripheral immune response is a barrier to CNS regeneration. We show that monocytes from the peripheral immune system infiltrate the injured retina and negatively influence neurogenesis from Müller glia. Using CCR2 knock-out mice of both sexes, we found that preventing monocyte infiltration improves the neurogenic and proliferative capacity of Müller glia stimulated by Ascl1. Using scRNA-seq analysis, we identified a signaling axis wherein Osteopontin, a cytokine highly expressed by infiltrating immune cells is sufficient to suppress mammalian neurogenesis. This work implicates the response of the peripheral immune system as a barrier to regenerative strategies of the retina.
Collapse
Affiliation(s)
- Nicolai Blasdel
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Sucheta Bhattacharya
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Phoebe C Donaldson
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Levi Todd
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
26
|
Zhou H, Yang RK, Li Q, Li Z, Wang YC, Li SY, Miao Y, Sun XH, Wang Z. MicroRNA-146a-5p protects retinal ganglion cells through reducing neuroinflammation in experimental glaucoma. Glia 2024; 72:2115-2141. [PMID: 39041109 DOI: 10.1002/glia.24600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/27/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Neuroinflammation plays important roles in retinal ganglion cell (RGC) degeneration in glaucoma. MicroRNA-146 (miR-146) has been shown to regulate inflammatory response in neurodegenerative diseases. In this study, whether and how miR-146 could affect RGC injury in chronic ocular hypertension (COH) experimental glaucoma were investigated. We showed that in the members of miR-146 family only miR-146a-5p expression was upregulated in COH retinas. The upregulation of miR-146a-5p was observed in the activated microglia and Müller cells both in primary cultured conditions and in COH retinas, but mainly occurred in microglia. Overexpression of miR-146a-5p in COH retinas reduced the levels pro-inflammatory cytokines and upregulated the levels of anti-inflammatory cytokines, which were further confirmed in the activated primary cultured microglia. Transfection of miR-146a-5p mimic increased the percentage of anti-inflammatory phenotype in the activated BV2 microglia, while transfection of miR-146a-5p inhibitor resulted in the opposite effects. Transfection of miR-146a-5p mimic/agomir inhibited the levels of interleukin-1 receptor associated kinase (IRAK1) and TNF receptor associated factor 6 (TRAF6) and phosphorylated NF-κB subunit p65. Dual luciferase reporter gene assay confirmed that miR-146a-5p could directly target IRAK1 and TRAF6. Moreover, downregulation of IRAK1 and TRAF6 by siRNA techniques or blocking NF-κB by SN50 in cultured microglia reversed the miR-146a-5p inhibitor-induced changes of inflammatory cytokines. In COH retinas, overexpression of miR-146a-5p reduced RGC apoptosis, increased RGC survival, and partially rescued the amplitudes of photopic negative response. Our results demonstrate that overexpression of miR-146a-5p attenuates RGC injury in glaucoma by reducing neuroinflammation through downregulating IRAK1/TRAF6/NF-κB signaling pathway in microglia.
Collapse
Affiliation(s)
- Han Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Rui-Kang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qian Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Zhen Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yong-Chen Wang
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Shu-Ying Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xing-Huai Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Salkar A, Wall RV, Basavarajappa D, Chitranshi N, Parilla GE, Mirzaei M, Yan P, Graham S, You Y. Glial Cell Activation and Immune Responses in Glaucoma: A Systematic Review of Human Postmortem Studies of the Retina and Optic Nerve. Aging Dis 2024; 15:2069-2083. [PMID: 38502591 PMCID: PMC11346413 DOI: 10.14336/ad.2024.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 03/21/2024] Open
Abstract
Although researched extensively the understanding regarding mechanisms underlying glaucoma pathogenesis remains limited. Further, the exact mechanism behind neuronal death remains elusive. The role of neuroinflammation in retinal ganglion cell (RGC) death has been prominently theorised. This review provides a comprehensive summary of neuroinflammatory responses in glaucoma. A systematic search of Medline and Embase for articles published up to 8th March 2023 yielded 32 studies using post-mortem tissues from glaucoma patients. The raw data were extracted from tables and text to calculate the standardized mean differences (SMDs). These studies utilized post-mortem tissues from glaucoma patients, totalling 490 samples, compared with 380 control samples. Among the included studies, 27 reported glial cell activation based on changes to cellular morphology and molecular staining. Molecular changes were predominantly attributed to astrocytes (62.5%) and microglia (15.6%), with some involvement of Muller cells. These glial cell changes included amoeboid microglial cells with increased CD45 or HLA-DR intensity and hypertrophied astrocytes with increased glial fibrillary acidic protein labelling. Further, changes to extracellular matrix proteins like collagen, galectin, and tenascin-C suggested glial cells' influence on structural changes in the optic nerve head. The activation of DAMPs-driven immune response and the classical complement cascade was reported and found to be associated with activated glial cells in glaucomatous tissue. Increased pro-inflammatory markers such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were also linked to glial cells. Glial cell activation was also associated with mitochondrial, vascular, metabolic and antioxidant component disruptions. Association of the activated glial cells with pro-inflammatory responses, dysregulation of homeostatic components and antigen presentation indicates that glial cell responses influence glaucoma progression. However, the exact mechanism triggering these responses and underlying interactions remains unexplored. This necessitates further research using human samples for an increased understanding of the precise role of neuroinflammation in glaucoma progression.
Collapse
Affiliation(s)
- Akanksha Salkar
- Department of Clinical Medicine, Faculty of Human, Health, and Medical Science, Macquarie University. Sydney, NSW, Australia.
| | - Roshana Vander Wall
- Department of Clinical Medicine, Faculty of Human, Health, and Medical Science, Macquarie University. Sydney, NSW, Australia.
| | - Devaraj Basavarajappa
- Department of Clinical Medicine, Faculty of Human, Health, and Medical Science, Macquarie University. Sydney, NSW, Australia.
| | - Nitin Chitranshi
- Department of Clinical Medicine, Faculty of Human, Health, and Medical Science, Macquarie University. Sydney, NSW, Australia.
| | - Gabriella E. Parilla
- Department of Clinical Medicine, Faculty of Human, Health, and Medical Science, Macquarie University. Sydney, NSW, Australia.
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Human, Health, and Medical Science, Macquarie University. Sydney, NSW, Australia.
| | - Peng Yan
- Department of Ophthalmology & Vision Sciences, University of Toronto, Kensington Eye Institute/UHN, Canada.
| | - Stuart Graham
- Department of Clinical Medicine, Faculty of Human, Health, and Medical Science, Macquarie University. Sydney, NSW, Australia.
| | - Yuyi You
- Department of Clinical Medicine, Faculty of Human, Health, and Medical Science, Macquarie University. Sydney, NSW, Australia.
- Save Sight Institute, University of Sydney. Sydney, NSW, Australia.
| |
Collapse
|
28
|
Liu J, Koutalos Y, Fan J. Lack of ceramide synthase 5 protects retinal ganglion cells from ocular hypertensive injury. Exp Eye Res 2024; 247:110061. [PMID: 39182597 PMCID: PMC11392625 DOI: 10.1016/j.exer.2024.110061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Ceramides with varying acyl-chain lengths can have unique biological actions and hence, cellular responses to ceramides may depend not on their overall concentration but on that of individual ceramide species. The purpose of this study was to determine individual ceramide species impacting retinal ganglion cell (RGC) loss under the ocular hypertensive condition. Induced pluripotent stem cell (iPSC)-derived RGCs and primary cultures of human astrocytes were used to determine the effect of individual ceramide species on both RGC viability and astrocyte secretion of inflammatory cytokines in vitro. In in vivo experiments with wild-type (WT) and ceramide synthase 5 (CerS5) knockout mice, intraocular pressure was unilaterally elevated with microbead injection. Retinal function and morphology were evaluated using pattern electroretinography (pERG) and immunofluorescence, respectively. Ceramide levels were determined by LC-MS/MS analysis. Exposure to C16:0-, C18:0-, C18:1-, C20:0- and C24:0-ceramides significantly reduces RGC viability in vitro, with the very long chain C24:0-ceramide being the most neurotoxic; treatment with C18:0-, C18:1- and C24:0-ceramides stimulates an increase of TNF-α secretion by astrocytes. The retinas of CerS5 KO mice have significantly reduced levels of C16:0- and C18:1-ceramides compared to WT; ocular hypertensive eyes of these mice maintain higher pERG amplitudes and RGC numbers compared to WT. Individual ceramides with different chain lengths have different effects on RGCs and astrocytes. Our results demonstrate that suppressing C16:0- and C18:1-ceramide species effectively protects RGCs against ocular hypertensive injury. These results provide a basis for targeting specific ceramide species in the treatment of glaucoma.
Collapse
Affiliation(s)
- Jian Liu
- Storm Eye Institute, Medical University of South Carolina, Department of Ophthalmology, 167 Ashley Ave, Charleston, SC, 29425, USA
| | - Yiannis Koutalos
- Storm Eye Institute, Medical University of South Carolina, Department of Ophthalmology, 167 Ashley Ave, Charleston, SC, 29425, USA
| | - Jie Fan
- Storm Eye Institute, Medical University of South Carolina, Department of Ophthalmology, 167 Ashley Ave, Charleston, SC, 29425, USA.
| |
Collapse
|
29
|
Waxman S, Schilpp H, Linton A, Jakobs TC, Sigal IA. Morphological comparison of astrocytes in the lamina cribrosa and glial lamina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.610493. [PMID: 39314351 PMCID: PMC11418941 DOI: 10.1101/2024.09.07.610493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Purpose Although the mechanisms underlying glaucomatous neurodegeneration are not yet well understood, cellular and small animal models suggest that LC astrocytes undergo early morphologic and functional changes, indicating their role as early responders to glaucomatous stress. These models, however, lack the LC found in larger animals and humans, leaving the in situ morphology of LC astrocytes and their role in glaucoma initiation underexplored. In this work, we aimed to characterize the morphology of LC astrocytes in situ and determine differences and similarities with astrocytes in the mouse glial lamina (GL), the analogous structure in a prominent glaucoma model. Methods Astrocytes in the LCs of twenty-two eyes from goats, sheep, and pigs were stochastically labeled via Multicolor DiOlistics and imaged in situ using confocal microscopy. 3D models of DiOlistically-labeled LC astrocytes and hGFAPpr-GFP mouse GL astrocytes were constructed to quantify morphological features related to astrocyte functions. LC and GL astrocyte cross-pore contacts, branching complexity, branch tortuosity, and cell and branch span were compared. Results LC astrocytes displayed distinct spatial relationships with collagen, greater branching complexity, and higher branch tortuosity compared to GL astrocytes. Despite substantial differences in their anatomical environments, LC and GL astrocytes had similar cell and branch spans. Conclusions Astrocyte morphology in the LC was characterized through Multicolor DiOlistic labeling. LC and GL astrocytes have both distinct and shared morphological features. Further research is needed to understand the potentially unique roles of LC astrocytes in glaucoma initiation and progression.
Collapse
Affiliation(s)
- Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA
| | - Hannah Schilpp
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA
| | - Ashley Linton
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA
| | - Tatjana C. Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, MA, USA
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|
30
|
Liu Y, Wang A, Chen C, Zhang Q, Shen Q, Zhang D, Xiao X, Chen S, Lian L, Le Z, Liu S, Liang T, Zheng Q, Xu P, Zou J. Microglial cGAS-STING signaling underlies glaucoma pathogenesis. Proc Natl Acad Sci U S A 2024; 121:e2409493121. [PMID: 39190350 PMCID: PMC11388346 DOI: 10.1073/pnas.2409493121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Characterized by progressive degeneration of retinal ganglion cells (RGCs) and vision loss, glaucoma is the primary cause of irreversible blindness, incurable and affecting over 78 million patients. However, pathogenic mechanisms leading to glaucoma-induced RGC loss are incompletely understood. Unexpectedly, we found that cGAS-STING (2'3'-cyclic GMP-AMP-stimulator of interferon genes) signaling, which surveils displaced double-stranded DNA (dsDNA) in the cytosol and initiates innate immune responses, was robustly activated during glaucoma in retinal microglia in distinct murine models. Global or microglial deletion of STING markedly relieved glaucoma symptoms and protected RGC degeneration and vision loss, while mice bearing genetic cGAS-STING supersensitivity aggravated retinal neuroinflammation and RGC loss. Mechanistically, dsDNA from tissue injury activated microglial cGAS-STING signaling, causing deleterious macroglia reactivity in retinas by cytokine-mediated microglia-macroglia interactions, progressively driving apoptotic death of RGCs. Remarkably, preclinical investigations of targeting cGAS-STING signaling by intraocular injection of TBK1i or anti-IFNAR1 antibody prevented glaucoma-induced losses of RGCs and vision. Therefore, we unravel an essential role of cGAS-STING signaling underlying glaucoma pathogenesis and suggest promising therapeutic strategies for treating this devastating disease.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Ailian Wang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Chen Chen
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Qian Zhang
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Qin Shen
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
| | - Dan Zhang
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
| | - Xueqi Xiao
- Eye Center of the Second Affiliated Hospital School of Medicine, Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Hangzhou310029, China
| | - Shasha Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou325035, China
| | - Lili Lian
- National Clinical Research Center for Ocular Diseases, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou325027, China
| | - Zhenmin Le
- National Clinical Research Center for Ocular Diseases, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou325027, China
| | - Shengduo Liu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
| | - Qinxiang Zheng
- National Clinical Research Center for Ocular Diseases, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou325027, China
| | - Pinglong Xu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Jian Zou
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Eye Center of the Second Affiliated Hospital School of Medicine, Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Hangzhou310029, China
| |
Collapse
|
31
|
Renz P, Steinfort M, Haesler V, Tscherrig V, Huang EJ, Chavali M, Liddelow S, Rowitch DH, Surbek D, Schoeberlein A, Brosius Lutz A. Neuroinflammatory reactive astrocyte formation correlates with adverse outcomes in perinatal white matter injury. Glia 2024; 72:1663-1673. [PMID: 38924630 DOI: 10.1002/glia.24575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Perinatal white matter injury (WMI) is the leading cause of long-term neurological morbidity in infants born preterm. Neuroinflammation during a critical window of early brain development plays a key role in WMI disease pathogenesis. The mechanisms linking inflammation with the long-term myelination failure that characterizes WMI, however, remain unknown. Here, we investigate the role of astrocyte reactivity in WMI. In an experimental mouse model of WMI, we demonstrate that WMI disease outcomes are improved in mutant mice lacking secretion of inflammatory molecules TNF-α, IL-1α, and C1q known, in addition to other roles, to induce the formation of a neuroinflammatory reactive astrocyte substate. We show that astrocytes express molecular signatures of the neuroinflammatory reactive astrocyte substate in both our WMI mouse model and human tissue affected by WMI, and that this gene expression pattern is dampened in injured mutant mice. Our data provide evidence that a neuroinflammatory reactive astrocyte substate correlates with adverse WMI disease outcomes, thus highlighting the need for further investigation of these cells as potential causal players in WMI pathology.
Collapse
Affiliation(s)
- Patricia Renz
- Department of Obstetrics and Gynecology, Division of Feto-Maternal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Marel Steinfort
- Department of Obstetrics and Gynecology, Division of Feto-Maternal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Valérie Haesler
- Department of Obstetrics and Gynecology, Division of Feto-Maternal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Vera Tscherrig
- Department of Obstetrics and Gynecology, Division of Feto-Maternal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Eric J Huang
- Department of Pathology, UCSF, San Francisco, California, USA
| | - Manideep Chavali
- Department of Pediatrics and Papé Family Pediatric Research Institute, Oregon Health and Science University, Oregon, USA
| | - Shane Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York, USA
| | - David H Rowitch
- Department of Pediatrics, UCSF, San Francisco, California, USA
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, UCSF, San Francisco, California, USA
- Newborn Brain Research Institute, UCSF, San Francisco, California, USA
- Department of Paediatrics and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Daniel Surbek
- Department of Obstetrics and Gynecology, Division of Feto-Maternal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Andreina Schoeberlein
- Department of Obstetrics and Gynecology, Division of Feto-Maternal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Amanda Brosius Lutz
- Department of Obstetrics and Gynecology, Division of Feto-Maternal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Megagiannis P, Mei Y, Yan RE, Yuan L, Wilde JJ, Eckersberg H, Suresh R, Tan X, Chen H, Farmer WT, Cha K, Le PU, Catoire H, Rochefort D, Kwan T, Yee BA, Dion P, Krishnaswamy A, Cloutier JF, Stifani S, Petrecca K, Yeo GW, Murai KK, Feng G, Rouleau GA, Ideker T, Sanjana NE, Zhou Y. Autism-associated CHD8 controls reactive gliosis and neuroinflammation via remodeling chromatin in astrocytes. Cell Rep 2024; 43:114637. [PMID: 39154337 DOI: 10.1016/j.celrep.2024.114637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Reactive changes of glial cells during neuroinflammation impact brain disorders and disease progression. Elucidating the mechanisms that control reactive gliosis may help us to understand brain pathophysiology and improve outcomes. Here, we report that adult ablation of autism spectrum disorder (ASD)-associated CHD8 in astrocytes attenuates reactive gliosis via remodeling chromatin accessibility, changing gene expression. Conditional Chd8 deletion in astrocytes, but not microglia, suppresses reactive gliosis by impeding astrocyte proliferation and morphological elaboration. Astrocyte Chd8 ablation alleviates lipopolysaccharide-induced neuroinflammation and septic-associated hypothermia in mice. Astrocytic CHD8 plays an important role in neuroinflammation by altering the chromatin landscape, regulating metabolic and lipid-associated pathways, and astrocyte-microglia crosstalk. Moreover, we show that reactive gliosis can be directly mitigated in vivo using an adeno-associated virus (AAV)-mediated Chd8 gene editing strategy. These findings uncover a role of ASD-associated CHD8 in the adult brain, which may warrant future exploration of targeting chromatin remodelers in reactive gliosis and neuroinflammation in injury and neurological diseases.
Collapse
Affiliation(s)
- Platon Megagiannis
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Yuan Mei
- Division of Genetics, Department of Medicine, University of California, San Diego, San Diego, CA, USA; Department of Cellular and Molecular Medicine, Stem Cell Program, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Rachel E Yan
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Lin Yuan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Jonathan J Wilde
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hailey Eckersberg
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Rahul Suresh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Xinzhu Tan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Hong Chen
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - W Todd Farmer
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Kuwook Cha
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Phuong Uyen Le
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Helene Catoire
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Daniel Rochefort
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Tony Kwan
- McGill Genome Center and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, Stem Cell Program, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Patrick Dion
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Arjun Krishnaswamy
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Jean-Francois Cloutier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Stem Cell Program, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California, San Diego, San Diego, CA, USA.
| | - Neville E Sanjana
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Yang Zhou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
33
|
Campagno KE, Sripinun P, See LP, Li J, Lu W, Jassim AH, Más Gómez N, Mitchell CH. Increased Pan-Type, A1-Type, and A2-Type Astrocyte Activation and Upstream Inflammatory Markers Are Induced by the P2X7 Receptor. Int J Mol Sci 2024; 25:8784. [PMID: 39201471 PMCID: PMC11354399 DOI: 10.3390/ijms25168784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
This study asked whether the P2X7 receptor was necessary and sufficient to trigger astrocyte polarization into neuroinflammatory activation states. Intravitreal injection of agonist BzATP increased gene expression of pan-astrocyte activation markers Gfap, Steap4, and Vim and A1-type astrocyte activation markers C3, Serping1, and H2T23, but also the Cd14 and Ptx3 genes usually associated with the A2-type astrocyte activation state and Tnfa, IL1a, and C1qa, assumed to be upstream of astrocyte activation in microglia. Correlation analysis of gene expression suggested the P2X7 receptor induced a mixed A1/A2-astrocyte activation state, although A1-state genes like C3 increased the most. A similar pattern of mixed glial activation genes occurred one day after intraocular pressure (IOP) was elevated in wild-type mice, but not in P2X7-/- mice, suggesting the P2X7 receptor is necessary for the glial activation that accompanies IOP elevation. In summary, this study suggests stimulation of the P2X7R is necessary and sufficient to trigger the astrocyte activation in the retina following IOP elevation, with a rise in markers for pan-, A1-, and A2-type astrocyte activation. The P2X7 receptor is expressed on microglia, optic nerve head astrocytes, and retinal ganglion cells (RGCs) in the retina, and can be stimulated by the mechanosensitive release of ATP that accompanies IOP elevation. Whether the P2X7 receptor connects this mechanosensitive ATP release to microglial and astrocyte polarization in glaucoma remains to be determined.
Collapse
Affiliation(s)
- Keith E. Campagno
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Puttipong Sripinun
- Department of Orthodontics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lily P. See
- Department of Endodontics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiaqi Li
- Department of Chemistry, Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wennan Lu
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Assraa Hassan Jassim
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Néstor Más Gómez
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claire H. Mitchell
- Department of Basic and Translational Science, Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Gomes C, Huang KC, Harkin J, Baker A, Hughes JM, Pan Y, Tutrow K, VanderWall KB, Lavekar SS, Hernandez M, Cummins TR, Canfield SG, Meyer JS. Induction of astrocyte reactivity promotes neurodegeneration in human pluripotent stem cell models. Stem Cell Reports 2024; 19:1122-1136. [PMID: 39094561 PMCID: PMC11368677 DOI: 10.1016/j.stemcr.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Reactive astrocytes are known to exert detrimental effects upon neurons in several neurodegenerative diseases, yet our understanding of how astrocytes promote neurotoxicity remains incomplete, especially in human systems. In this study, we leveraged human pluripotent stem cell (hPSC) models to examine how reactivity alters astrocyte function and mediates neurodegeneration. hPSC-derived astrocytes were induced to a reactive phenotype, at which point they exhibited a hypertrophic profile and increased complement C3 expression. Functionally, reactive astrocytes displayed decreased intracellular calcium, elevated phagocytic capacity, and decreased contribution to the blood-brain barrier. Subsequently, co-culture of reactive astrocytes with a variety of neuronal cell types promoted morphological and functional alterations. Furthermore, when reactivity was induced in astrocytes from patient-specific hPSCs (glaucoma, Alzheimer's disease, and amyotrophic lateral sclerosis), the reactive state exacerbated astrocytic disease-associated phenotypes. These results demonstrate how reactive astrocytes modulate neurodegeneration, significantly contributing to our understanding of a role for reactive astrocytes in neurodegenerative diseases.
Collapse
Affiliation(s)
- Cátia Gomes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kang-Chieh Huang
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Jade Harkin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Aaron Baker
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jason M Hughes
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yanling Pan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Kaylee Tutrow
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kirstin B VanderWall
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Sailee S Lavekar
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Melody Hernandez
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Theodore R Cummins
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Scott G Canfield
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jason S Meyer
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
35
|
Liddelow SA, Olsen ML, Sofroniew MV. Reactive Astrocytes and Emerging Roles in Central Nervous System (CNS) Disorders. Cold Spring Harb Perspect Biol 2024; 16:a041356. [PMID: 38316554 PMCID: PMC11216178 DOI: 10.1101/cshperspect.a041356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In addition to their many functions in the healthy central nervous system (CNS), astrocytes respond to CNS damage and disease through a process called "reactivity." Recent evidence reveals that astrocyte reactivity is a heterogeneous spectrum of potential changes that occur in a context-specific manner. These changes are determined by diverse signaling events and vary not only with the nature and severity of different CNS insults but also with location in the CNS, genetic predispositions, age, and potentially also with "molecular memory" of previous reactivity events. Astrocyte reactivity can be associated with both essential beneficial functions as well as with harmful effects. The available information is rapidly expanding and much has been learned about molecular diversity of astrocyte reactivity. Emerging functional associations point toward central roles for astrocyte reactivity in determining the outcome in CNS disorders.
Collapse
Affiliation(s)
- Shane A Liddelow
- Neuroscience Institute, NYU School of Medicine, New York, New York 10016, USA
- Department of Neuroscience and Physiology, NYU School of Medicine, New York, New York 10016, USA
- Department of Ophthalmology, NYU School of Medicine, New York, New York 10016, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
36
|
Guo Y, Verma B, Shrestha M, Marshak-Rothstein A, Gregory-Ksander M. Caspase-8-mediated inflammation but not apoptosis drives death of retinal ganglion cells and loss of visual function in glaucomaa. RESEARCH SQUARE 2024:rs.3.rs-4409426. [PMID: 38947028 PMCID: PMC11213175 DOI: 10.21203/rs.3.rs-4409426/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background- Glaucoma is a complex multifactorial disease where apoptosis and inflammation represent two key pathogenic mechanisms. However, the relative contribution of apoptosis versus inflammation in axon degeneration and death of retinal ganglion cells (RGCs) is not well understood. In glaucoma, caspase-8 is linked to RGC apoptosis, as well as glial activation and neuroinflammation. To uncouple these two pathways and determine the extent to which caspase-8-mediated inflammation and/or apoptosis contributes to the death of RGCs, we used the caspase-8 D387A mutant mouse (Casp8 DA/DA ) in which a point mutation in the auto-cleavage site blocks caspase-8-mediated apoptosis but does not block caspase-8-mediated inflammation. Methods- Intracameral injection of magnetic microbeads was used to elevate the intraocular pressure (IOP) in wild-type, Fas deficient Faslpr, and Casp8 DA/DA mice. IOP was monitored by rebound tonometry. Two weeks post microbead injection, retinas were collected for microglia activation analysis. Five weeks post microbead injection, visual acuity and RGC function were assessed by optometer reflex (OMR) and pattern electroretinogram (pERG), respectively. Retina and optic nerves were processed for RGC and axon quantification. Two- and five-weeks post microbead injection, expression of the necrosis marker, RIPK3, was assessed by qPCR. Results- Wild-type, Faslpr, and Casp8 DA/DA mice showed similar IOP elevation as compared to saline controls. A significant reduction in both visual acuity and pERG that correlated with a significant loss of RGCs and axons was observed in wild-type but not in Faslpr mice. The Casp8 DA/DA mice displayed a significant reduction in visual acuity and pERG amplitude and loss of RGCs and axons similar to that in wild-type mice. Immunostaining revealed equal numbers of activated microglia, double positive for P2ry12 and IB4, in the retinas from microbead-injected wild-type and Casp8 DA/DA mutant mice. qPCR analysis revealed no induction of RIPK3 in wild-type or Casp8 DA/DA mice at two- or five-weeks post microbead injection. Conclusions- Our results demonstrate that caspase-8-mediated extrinsic apoptosis is not involved in the death of RGCs in the microbead-induced mouse model of glaucoma implicating caspase-8-mediated inflammation, but not apoptosis, as the driving force in glaucoma progression. Taken together, these results identify the caspase-8-mediated inflammatory pathway as a potential target for neuroprotection in glaucoma.
Collapse
Affiliation(s)
- Yinjie Guo
- Xiangya Hospital Central South University
| | - Bhupender Verma
- Schepens Eye Research Institute of Massachusetts Eye and Ear
| | - Maleeka Shrestha
- Harvard University HSPH: Harvard University T H Chan School of Public Health
| | | | | |
Collapse
|
37
|
Feng B, Zheng J, Cai Y, Han Y, Han Y, Wu J, Feng J, Zheng K. An Epigenetic Manifestation of Alzheimer's Disease: DNA Methylation. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:365-374. [PMID: 38863055 PMCID: PMC11190457 DOI: 10.62641/aep.v52i3.1595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Alzheimer's disease (AD), the most common form of dementia, has a complex pathogenesis. The number of AD patients has increased in recent years due to population aging, while a trend toward a younger age of onset has arisen, imposing a substantial burden on society and families, and garnering extensive attention. DNA methylation has recently been revealed to play an important role in AD onset and progression. DNA methylation is a critical mechanism regulating gene expression, and alterations in this mechanism dysregulate gene expression and disrupt important pathways, including oxidative stress responses, inflammatory reactions, and protein degradation processes, eventually resulting in disease. Studies have revealed widespread changes in AD patients' DNA methylation in the peripheral blood and brain tissues, affecting multiple signaling pathways and severely impacting neuronal cell and synaptic functions. This review summarizes the role of DNA methylation in the pathogenesis of AD, aiming to provide a theoretical basis for its early prevention and treatment.
Collapse
Affiliation(s)
- Boyi Feng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
- Shenzhen Guangming District People's Hospital, 518107 Shenzhen, Guangdong, China
| | - Junli Zheng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| | - Ying Cai
- Public Health Service Center, Bao'an District, 518100 Shenzhen, Guangdong, China
| | - Yaguang Han
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150000 Harbin, Heilongjiang, China
| | - Yanhua Han
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150000 Harbin, Heilongjiang, China
| | - Jiaqi Wu
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| | - Jun Feng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| | - Kai Zheng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| |
Collapse
|
38
|
Zhang H, Zheng Q, Guo T, Zhang S, Zheng S, Wang R, Deng Q, Yang G, Zhang S, Tang L, Qi Q, Zhu L, Zhang XF, Luo H, Zhang X, Sun H, Gao Y, Zhang H, Zhou Y, Han A, Zhang CS, Xu H, Wang X. Metabolic reprogramming in astrocytes results in neuronal dysfunction in intellectual disability. Mol Psychiatry 2024; 29:1569-1582. [PMID: 35338313 DOI: 10.1038/s41380-022-01521-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
Astrocyte aerobic glycolysis provides vital trophic support for central nervous system neurons. However, whether and how astrocytic metabolic dysregulation contributes to neuronal dysfunction in intellectual disability (ID) remain unclear. Here, we demonstrate a causal role for an ID-associated SNX27 mutation (R198W) in cognitive deficits involving reshaping astrocytic metabolism. We generated SNX27R196W (equivalent to human R198W) knock-in mice and found that they displayed deficits in synaptic function and learning behaviors. SNX27R196W resulted in attenuated astrocytic glucose uptake via GLUT1, leading to reduced lactate production and a switch from homeostatic to reactive astrocytes. Importantly, lactate supplementation or a ketogenic diet restored neuronal oxidative phosphorylation and reversed cognitive deficits in SNX27R196W mice. In summary, we illustrate a key role for astrocytic SNX27 in maintaining glucose supply and glycolysis and reveal that altered astrocytic metabolism disrupts the astrocyte-neuron interaction, which contributes to ID. Our work also suggests a feasible strategy for treating ID by restoring astrocytic metabolic function.
Collapse
Affiliation(s)
- Haibin Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, 518057, China
| | - Qiuyang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, 518057, China
| | - Tiantian Guo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shijun Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shuang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ruimin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qingfang Deng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Guowei Yang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shuo Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Linxin Tang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qiuping Qi
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lin Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiu-Fang Zhang
- Department of Pediatrics, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361102, China
| | - Hong Luo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xian Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hao Sun
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yue Gao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ying Zhou
- Department of Translational Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Aidong Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Huaxi Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, 518057, China.
| |
Collapse
|
39
|
Andersh KM, MacLean M, Howell GR, Libby RT. IL1A enhances TNF-induced retinal ganglion cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596328. [PMID: 38854045 PMCID: PMC11160597 DOI: 10.1101/2024.05.28.596328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Glaucoma is a neurodegenerative disease that leads to the death of retinal ganglion cells (RGCs). A growing body of literature suggests a role for neuroinflammation in RGC death after glaucoma-relevant insults. For instance, it was shown that deficiency of three proinflammatory cytokines, complement component 1, subcomponent q ( C1q ), interleukin 1 alpha ( Il1a ), and tumor necrosis factor ( Tnf ), resulted in near complete protection of RGCs after two glaucoma-relevant insults, optic nerve injury and ocular hypertension. While TNF and C1Q have been extensively investigated in glaucoma-relevant model systems, the role of IL1A in RGC is not as well defined. Thus, we investigated the direct neurotoxicity of IL1A on RGCs in vivo. Intravitreal injection of IL1A did not result in RGC death at either 14 days or 12 weeks after insult. Consistent with previous studies, TNF injection did not result in significant RGC loss at 14 days but did after 12 weeks. Interestingly, IL1A+TNF resulted in a relatively rapid RGC death, driving significant RGC loss two weeks after injection. JUN activation and SARM1 have been implicated in RGC death in glaucoma and after cytokine insult. Using mice deficient in JUN or SARM1, we show RGC loss after IL1A+TNF insult is JUN-independent and SARM1-dependent. Furthermore, RNA-seq analysis showed that RGC death by SARM1 deficiency does not stop the neuroinflammatory response to IL1A+TNF. These findings indicate that IL1A can potentiate TNF-induced RGC death after combined insult is likely driven by a SARM1-dependent RGC intrinsic signaling pathway.
Collapse
|
40
|
Wang X, Wen X, Yuan S, Zhang J. Gut-brain axis in the pathogenesis of sepsis-associated encephalopathy. Neurobiol Dis 2024; 195:106499. [PMID: 38588753 DOI: 10.1016/j.nbd.2024.106499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
The gut-brain axis is a bidirectional communication network linking the gut and the brain, overseeing digestive functions, emotional responses, body immunity, brain development, and overall health. Substantial research highlights a connection between disruptions of the gut-brain axis and various psychiatric and neurological conditions, including depression and Alzheimer's disease. Given the impact of the gut-brain axis on behavior, cognition, and brain diseases, some studies have started to pay attention to the role of the axis in sepsis-associated encephalopathy (SAE), where cognitive impairment is the primary manifestation. SAE emerges as the primary and earliest form of organ dysfunction following sepsis, potentially leading to acute cognitive impairment and long-term cognitive decline in patients. Notably, the neuronal damage in SAE does not stem directly from the central nervous system (CNS) infection but rather from an infection occurring outside the brain. The gut-brain axis is posited as a pivotal factor in this process. This review will delve into the gut-brain axis, exploring four crucial pathways through which inflammatory signals are transmitted and elevate the incidence of SAE. These pathways encompass the vagus nerve pathway, the neuroendocrine pathway involving the hypothalamic-pituitary-adrenal (HPA) axis and serotonin (5-HT) regulation, the neuroimmune pathway, and the microbial regulation. These pathways can operate independently or collaboratively on the CNS to modulate brain activity. Understanding how the gut affects and regulates the CNS could offer the potential to identify novel targets for preventing and treating this condition, ultimately enhancing the prognosis for individuals with SAE.
Collapse
Affiliation(s)
- Xin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xiaoyue Wen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
41
|
Hallaj S, Halfpenny W, Chuter BG, Weinreb RN, Baxter SL, Cui QN. Association between Glucagon-Like Peptide 1 (GLP-1) Receptor Agonists Exposure and Intraocular Pressure Change. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.06.24306943. [PMID: 38765972 PMCID: PMC11100841 DOI: 10.1101/2024.05.06.24306943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Objective This study aims to provide data on the effects of glucagon-like peptide 1 receptor (GLP-1R) agonists on intraocular pressure (IOP). Design Retrospective cohort study. Subjects Participants and/or Controls 1247 glaucoma surgery and treatment naïve eyes of 626 patients who were initiated on GLP-1R agonists compared to 1083 glaucoma surgery and treatment naïve eyes of 547 patients who were initiated on other oral antidiabetics. Methods Intervention or Testing The University of California Health Data Warehouse was queried for patients exposed to GLP-1R agonists or other oral antidiabetics. Index date was defined as the date of first exposure to the medication. Eyes with at least one pre-exposure and one post-exposure tonometry record within 365 days of the index date were included in the analysis. Clinical and laboratory data elements were extracted from the database. Eyes were censored from the analysis upon exposure to glaucoma hypotensive medication or glaucoma surgery. ΔIOP was analyzed using a paired t-test. Regression analysis was conducted using generalized estimating equations (GEE) accounting for inter-eye correlation. Sensitivity analyses were performed to assess the robustness of the findings. Main Outcome Measures Primary outcome measure was ΔIOP after exposure to the medication. Results The median age of all included subjects was 66.2 years [IQR=18.3]; 607 (51.7%) were female, and 667 (56.9%) were Caucasian. Median pre-exposure IOP, HbA1c, and BMI were 15.2 mmHg [IQR=3.8], 7.5 [IQR=2.4], and 29.8 [IQR=9.4], respectively. 776 individuals (66.1%) had diabetes, with the median number of active oral antidiabetics being 1.0 [IQR=1.0], and 441 (37.5%) being insulin users. Several pre-exposure characteristics significantly differed between the GLP-1R agonist and the control group. The mean ΔIOP was -0.4±2.8 mmHg (paired t-test p<0.001) and -0.2±3.3 mmHg (paired t-test p = 0.297) in the GLP-1R agonist and other antidiabetics groups, respectively. Pre-exposure IOP was the only independent predictor of ΔIOP in multivariable GEE. Sensitivity analyses yielded similar results. Conclusions Although GLP-1R agonists were significantly associated with a decrease in IOP in the paired analysis, they were not associated with ΔIOP in multivariable GEE. Moreover, the difference between the ΔIOP in the two groups was small. Future prospective studies following a standardized dose and delivery method may provide further insights.
Collapse
|
42
|
Becker S, L'Ecuyer Z, Jones BW, Zouache MA, McDonnell FS, Vinberg F. Modeling complex age-related eye disease. Prog Retin Eye Res 2024; 100:101247. [PMID: 38365085 PMCID: PMC11268458 DOI: 10.1016/j.preteyeres.2024.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Modeling complex eye diseases like age-related macular degeneration (AMD) and glaucoma poses significant challenges, since these conditions depend highly on age-related changes that occur over several decades, with many contributing factors remaining unknown. Although both diseases exhibit a relatively high heritability of >50%, a large proportion of individuals carrying AMD- or glaucoma-associated genetic risk variants will never develop these diseases. Furthermore, several environmental and lifestyle factors contribute to and modulate the pathogenesis and progression of AMD and glaucoma. Several strategies replicate the impact of genetic risk variants, pathobiological pathways and environmental and lifestyle factors in AMD and glaucoma in mice and other species. In this review we will primarily discuss the most commonly available mouse models, which have and will likely continue to improve our understanding of the pathobiology of age-related eye diseases. Uncertainties persist whether small animal models can truly recapitulate disease progression and vision loss in patients, raising doubts regarding their usefulness when testing novel gene or drug therapies. We will elaborate on concerns that relate to shorter lifespan, body size and allometries, lack of macula and a true lamina cribrosa, as well as absence and sequence disparities of certain genes and differences in their chromosomal location in mice. Since biological, rather than chronological, age likely predisposes an organism for both glaucoma and AMD, more rapidly aging organisms like small rodents may open up possibilities that will make research of these diseases more timely and financially feasible. On the other hand, due to the above-mentioned anatomical and physiological features, as well as pharmacokinetic and -dynamic differences small animal models are not ideal to study the natural progression of vision loss or the efficacy and safety of novel therapies. In this context, we will also discuss the advantages and pitfalls of alternative models that include larger species, such as non-human primates and rabbits, patient-derived retinal organoids, and human organ donor eyes.
Collapse
Affiliation(s)
- Silke Becker
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Zia L'Ecuyer
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Bryan W Jones
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Moussa A Zouache
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Fiona S McDonnell
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
43
|
Pang Y, Hu H, Xu K, Cao T, Wang Z, Nie J, Zheng H, Luo H, Wang F, Xiong C, Deng KY, Xin HB, Zhang X. CD38 Deficiency Protects Mouse Retinal Ganglion Cells Through Activating the NAD+/Sirt1 Pathway in Ischemia-Reperfusion and Optic Nerve Crush Models. Invest Ophthalmol Vis Sci 2024; 65:36. [PMID: 38776115 PMCID: PMC11127494 DOI: 10.1167/iovs.65.5.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/05/2024] [Indexed: 05/27/2024] Open
Abstract
Purpose The purpose of this study was to investigate the protective effect of CD38 deletion on retinal ganglion cells (RGCs) in a mouse retinal ischemia/reperfusion (I/R) model and an optic nerve crush (ONC) model, and to elucidate the underlying molecular mechanisms. Methods Retinal I/R and ONC models were constructed in mice. PCR was used to identify the deletion of CD38 gene in mice, hematoxylin and eosin (H&E) staining was used to evaluate the changes in retinal morphology, and electroretinogram (ERG) was used to evaluate the changes in retinal function. The survival of RGCs and activation of retinal macroglia were evaluated by immunofluorescence staining. The expression of Sirt1, CD38, Ac-p65, Ac-p53, TNF-α, IL-1β, and Caspase3 proteins in the retina was further evaluated by protein imprinting. Results In retinal I/R and ONC models, CD38 deficiency reduced the loss of RGCs and activation of macroglia and protected the retinal function. CD38 deficiency increased the concentration of NAD+, reduced the degree of acetylation of NF-κB p65 and p53, and reduced expression of the downstream inflammatory cytokines TNFα, IL-1β, and apoptotic protein Caspase3 in the retina in the ONC model. Intraperitoneal injection of the Sirt1 inhibitor EX-527 partially counteracted the effects of CD38 deficiency, suggesting that CD38 deficiency acts at least in part through the NAD+/Sirt1 pathway. Conclusions CD38 plays an important role in the pathogenesis of retinal I/R and ONC injury. CD38 deletion protects RGCs by attenuating inflammatory responses and apoptosis through the NAD+/Sirt1 pathway.
Collapse
Affiliation(s)
- Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Haijian Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Ke Xu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Ting Cao
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
- Department of Orthopaedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Zhiruo Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiahe Nie
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Haina Zheng
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Hongdou Luo
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Feifei Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Chan Xiong
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Ke-Yu Deng
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hong-Bo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| |
Collapse
|
44
|
Young AP, Denovan-Wright EM. JAK1/2 Regulates Synergy Between Interferon Gamma and Lipopolysaccharides in Microglia. J Neuroimmune Pharmacol 2024; 19:14. [PMID: 38642237 DOI: 10.1007/s11481-024-10115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
Microglia, the resident immune cells of the brain, regulate neuroinflammation which can lead to secondary neuronal damage and cognitive impairment under pathological conditions. Two of the many molecules that can elicit an inflammatory response from microglia are lipopolysaccharide (LPS), a component of gram-negative bacteria, and interferon gamma (IFNγ), an endogenous pro-inflammatory cytokine. We thoroughly examined the concentration-dependent relationship between LPS from multiple bacterial species and IFNγ in cultured microglia and macrophages. We measured the effects that these immunostimulatory molecules have on pro-inflammatory activity of microglia and used a battery of signaling inhibitors to identify the pathways that contribute to the microglial response. We found that LPS and IFNγ interacted synergistically to induce a pro-inflammatory phenotype in microglia, and that inhibition of JAK1/2 completely blunted the response. We determined that this synergistic action of LPS and IFNγ was likely dependent on JNK and Akt signaling rather than typical pro-inflammatory mediators such as NF-κB. Finally, we demonstrated that LPS derived from Escherichia coli, Klebsiella pneumoniae, and Akkermansia muciniphila can elicit different inflammatory responses from microglia and macrophages, but these responses could be consistently prevented using ruxolitinib, a JAK1/2 inhibitor. Collectively, this work reveals a mechanism by which microglia may become hyperactivated in response to the combination of LPS and IFNγ. Given that elevations in circulating LPS and IFNγ occur in a wide variety of pathological conditions, it is critical to understand the pharmacological interactions between these molecules to develop safe and effective treatments to suppress this process.
Collapse
Affiliation(s)
- Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| | | |
Collapse
|
45
|
Clayton BLL, Kristell JD, Allan KC, Cohn EF, Karl M, Jerome AD, Garrison E, Maeno-Hikichi Y, Sturno AM, Kerr A, Shick HE, Sepeda JA, Freundt EC, Sas AR, Segal BM, Miller RH, Tesar PJ. A phenotypic screening platform for identifying chemical modulators of astrocyte reactivity. Nat Neurosci 2024; 27:656-665. [PMID: 38378993 PMCID: PMC11034956 DOI: 10.1038/s41593-024-01580-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
Disease, injury and aging induce pathological reactive astrocyte states that contribute to neurodegeneration. Modulating reactive astrocytes therefore represent an attractive therapeutic strategy. Here we describe the development of an astrocyte phenotypic screening platform for identifying chemical modulators of astrocyte reactivity. Leveraging this platform for chemical screening, we identify histone deacetylase 3 (HDAC3) inhibitors as effective suppressors of pathological astrocyte reactivity. We demonstrate that HDAC3 inhibition reduces molecular and functional characteristics of reactive astrocytes in vitro. Transcriptional and chromatin mapping studies show that HDAC3 inhibition disarms pathological astrocyte gene expression and function while promoting the expression of genes associated with beneficial astrocytes. Administration of RGFP966, a small molecule HDAC3 inhibitor, blocks reactive astrocyte formation and promotes neuroprotection in vivo in mice. Collectively, these results establish a platform for discovering modulators of reactive astrocyte states, inform the mechanisms that control astrocyte reactivity and demonstrate the therapeutic benefits of modulating astrocyte reactivity for neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin L L Clayton
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - James D Kristell
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kevin C Allan
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Erin F Cohn
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Molly Karl
- Department of Anatomy and Cell Biology, George Washington University School of Medicine, Washington, DC, USA
| | - Andrew D Jerome
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| | - Eric Garrison
- Department of Anatomy and Cell Biology, George Washington University School of Medicine, Washington, DC, USA
| | - Yuka Maeno-Hikichi
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Annalise M Sturno
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alexis Kerr
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - H Elizabeth Shick
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jesse A Sepeda
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| | - Eric C Freundt
- Department of Biology, The University of Tampa, Tampa, FL, USA
| | - Andrew R Sas
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| | - Benjamin M Segal
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| | - Robert H Miller
- Department of Anatomy and Cell Biology, George Washington University School of Medicine, Washington, DC, USA
| | - Paul J Tesar
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
46
|
Teng M, Wang J, Su X, Tian Y, Wang J, Zhang Y. Causal associations between rheumatoid arthritis, cataract and glaucoma in European and East Asian populations: A bidirectional two-sample mendelian randomization study. PLoS One 2024; 19:e0299192. [PMID: 38437213 PMCID: PMC10911615 DOI: 10.1371/journal.pone.0299192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Previous studies have indicated a heightened susceptibility to cataract and glaucoma among rheumatoid arthritis (RA) patients, while it remains uncertain whether RA is causally associated with cataract and glaucoma. A two-sample mendelian randomization (MR) analysis was used to investigate the causal associations between RA, cataract and glaucoma in European and East Asian populations. METHODS In the European population, genome-wide association study (GWAS) summary statistics for cataract (372,386 individuals) and glaucoma (377,277 individuals) were obtained from the FinnGen consortium (R9), while RA summary data were derived from a meta-analysis of GWAS encompassing 97173 samples. In the East Asian population, summary data for cataract (212453 individuals), glaucoma (212453 individuals), and RA (22515 individuals) were sourced from the IEU Open GWAS project. Inverse-variance weighted (IVW, random-effects) method served as the primary analysis, complemented by MR‒Egger regression, weighted median, weighted mode and simple mode methods. Additionally, various sensitivity tests, including Cochran's Q test, MR‒Egger intercept, MR pleiotropy Residual Sum and Outlier test and leave-one-out test were performed to detect the heterogeneity, horizontal pleiotropy and stability of the analysis results. RESULTS Following stringent screening, the number of selected instrumental variables ranged from 8 to 56. The IVW results revealed that RA had an increased risk of cataract (OR = 1.041, 95% CI = 1.019-1.064; P = 2.08×10-4) and glaucoma (OR = 1.029, 95% CI = 1.003-1.057; P = 2.94×10-2) in European populations, and RA displayed a positive association with cataract (OR = 1.021, 95% CI = 1.004-1.039; P = 1.64×10-2) in East Asian populations. Other methods also supported those results by IVW, and sensitivity tests showed that our analysis results were credible and stable. CONCLUSIONS This study revealed a positive causality between RA and the increased risk of cataract and glaucoma, which provides guidance for the early prevention of cataracts and glaucoma in patients with RA and furnishes evidence for the impact of RA-induced inflammation on ophthalmic diseases.
Collapse
Affiliation(s)
- Menghao Teng
- Department of Orthopedics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiachen Wang
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaochen Su
- Department of Orthopedics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ye Tian
- Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiqing Wang
- Department of Orthopedics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yingang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
47
|
Duncan JL, Wang JJ, Glusauskas G, Weagraff GR, Gao Y, Hoeferlin GF, Hunter AH, Hess-Dunning A, Ereifej ES, Capadona JR. In Vivo Characterization of Intracortical Probes with Focused Ion Beam-Etched Nanopatterned Topographies. MICROMACHINES 2024; 15:286. [PMID: 38399014 PMCID: PMC10893395 DOI: 10.3390/mi15020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
(1) Background: Intracortical microelectrodes (IMEs) are an important part of interfacing with the central nervous system (CNS) and recording neural signals. However, recording electrodes have shown a characteristic steady decline in recording performance owing to chronic neuroinflammation. The topography of implanted devices has been explored to mimic the nanoscale three-dimensional architecture of the extracellular matrix. Our previous work used histology to study the implant sites of non-recording probes and showed that a nanoscale topography at the probe surface mitigated the neuroinflammatory response compared to probes with smooth surfaces. Here, we hypothesized that the improvement in the neuroinflammatory response for probes with nanoscale surface topography would extend to improved recording performance. (2) Methods: A novel design modification was implemented on planar silicon-based neural probes by etching nanopatterned grooves (with a 500 nm pitch) into the probe shank. To assess the hypothesis, two groups of rats were implanted with either nanopatterned (n = 6) or smooth control (n = 6) probes, and their recording performance was evaluated over 4 weeks. Postmortem gene expression analysis was performed to compare the neuroinflammatory response from the two groups. (3) Results: Nanopatterned probes demonstrated an increased impedance and noise floor compared to controls. However, the recording performances of the nanopatterned and smooth probes were similar, with active electrode yields for control probes and nanopatterned probes being approximately 50% and 45%, respectively, by 4 weeks post-implantation. Gene expression analysis showed one gene, Sirt1, differentially expressed out of 152 in the panel. (4) Conclusions: this study provides a foundation for investigating novel nanoscale topographies on neural probes.
Collapse
Affiliation(s)
- Jonathan L. Duncan
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Jaime J. Wang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Gabriele Glusauskas
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Gwendolyn R. Weagraff
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Yue Gao
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - George F. Hoeferlin
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Allen H. Hunter
- Michigan Center for Materials Characterization, University of Michigan, 500 S. State St, Ann Arbor, MI 48109, USA
| | - Allison Hess-Dunning
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Evon S. Ereifej
- Department of Biomedical Engineering, University of Michigan, 500 S. State St, Ann Arbor, MI 48109, USA
- Veterans Affairs Hospital, 2215 Fuller Rd, Ann Arbor, MI 48105, USA
| | - Jeffrey R. Capadona
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| |
Collapse
|
48
|
Thumu SCR, Jain M, Soman S, Das S, Verma V, Nandi A, Gutmann DH, Jayaprakash B, Nair D, Clement JP, Marathe S, Ramanan N. SRF-deficient astrocytes provide neuroprotection in mouse models of excitotoxicity and neurodegeneration. eLife 2024; 13:e95577. [PMID: 38289036 PMCID: PMC10857791 DOI: 10.7554/elife.95577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Reactive astrogliosis is a common pathological hallmark of CNS injury, infection, and neurodegeneration, where reactive astrocytes can be protective or detrimental to normal brain functions. Currently, the mechanisms regulating neuroprotective astrocytes and the extent of neuroprotection are poorly understood. Here, we report that conditional deletion of serum response factor (SRF) in adult astrocytes causes reactive-like hypertrophic astrocytes throughout the mouse brain. These SrfGFAP-ERCKO astrocytes do not affect neuron survival, synapse numbers, synaptic plasticity or learning and memory. However, the brains of Srf knockout mice exhibited neuroprotection against kainic-acid induced excitotoxic cell death. Relevant to human neurodegenerative diseases, SrfGFAP-ERCKO astrocytes abrogate nigral dopaminergic neuron death and reduce β-amyloid plaques in mouse models of Parkinson's and Alzheimer's disease, respectively. Taken together, these findings establish SRF as a key molecular switch for the generation of reactive astrocytes with neuroprotective functions that attenuate neuronal injury in the setting of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Monika Jain
- Centre for Neuroscience, Indian Institute of ScienceBangaloreIndia
| | - Sumitha Soman
- Centre for Neuroscience, Indian Institute of ScienceBangaloreIndia
| | - Soumen Das
- Centre for Neuroscience, Indian Institute of ScienceBangaloreIndia
| | - Vijaya Verma
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Arnab Nandi
- Centre for Neuroscience, Indian Institute of ScienceBangaloreIndia
| | - David H Gutmann
- Department of Neurology, Washington University School of MedicineSt. LouisUnited States
| | | | - Deepak Nair
- Centre for Neuroscience, Indian Institute of ScienceBangaloreIndia
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Swananda Marathe
- Centre for Neuroscience, Indian Institute of ScienceBangaloreIndia
| | | |
Collapse
|
49
|
Cameron EG, Nahmou M, Toth AB, Heo L, Tanasa B, Dalal R, Yan W, Nallagatla P, Xia X, Hay S, Knasel C, Stiles TL, Douglas C, Atkins M, Sun C, Ashouri M, Bian M, Chang KC, Russano K, Shah S, Woodworth MB, Galvao J, Nair RV, Kapiloff MS, Goldberg JL. A molecular switch for neuroprotective astrocyte reactivity. Nature 2024; 626:574-582. [PMID: 38086421 PMCID: PMC11384621 DOI: 10.1038/s41586-023-06935-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
The intrinsic mechanisms that regulate neurotoxic versus neuroprotective astrocyte phenotypes and their effects on central nervous system degeneration and repair remain poorly understood. Here we show that injured white matter astrocytes differentiate into two distinct C3-positive and C3-negative reactive populations, previously simplified as neurotoxic (A1) and neuroprotective (A2)1,2, which can be further subdivided into unique subpopulations defined by proliferation and differential gene expression signatures. We find the balance of neurotoxic versus neuroprotective astrocytes is regulated by discrete pools of compartmented cyclic adenosine monophosphate derived from soluble adenylyl cyclase and show that proliferating neuroprotective astrocytes inhibit microglial activation and downstream neurotoxic astrocyte differentiation to promote retinal ganglion cell survival. Finally, we report a new, therapeutically tractable viral vector to specifically target optic nerve head astrocytes and show that raising nuclear or depleting cytoplasmic cyclic AMP in reactive astrocytes inhibits deleterious microglial or macrophage cell activation and promotes retinal ganglion cell survival after optic nerve injury. Thus, soluble adenylyl cyclase and compartmented, nuclear- and cytoplasmic-localized cyclic adenosine monophosphate in reactive astrocytes act as a molecular switch for neuroprotective astrocyte reactivity that can be targeted to inhibit microglial activation and neurotoxic astrocyte differentiation to therapeutic effect. These data expand on and define new reactive astrocyte subtypes and represent a step towards the development of gliotherapeutics for the treatment of glaucoma and other optic neuropathies.
Collapse
Affiliation(s)
- Evan G Cameron
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Michael Nahmou
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Anna B Toth
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Lyong Heo
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Palo Alto, CA, USA
| | - Bogdan Tanasa
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Roopa Dalal
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wenjun Yan
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Pratima Nallagatla
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Palo Alto, CA, USA
| | - Xin Xia
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sarah Hay
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Cara Knasel
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | - Melissa Atkins
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Catalina Sun
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Masoumeh Ashouri
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Minjuan Bian
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kun-Che Chang
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kristina Russano
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sahil Shah
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
- University of California, San Diego, La Jolla, CA, USA
| | - Mollie B Woodworth
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Joana Galvao
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ramesh V Nair
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Palo Alto, CA, USA
| | - Michael S Kapiloff
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
- Department of Medicine and Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jeffrey L Goldberg
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
50
|
Lucchesi M, Marracci S, Amato R, Lapi D, Santana-Garrido Á, Espinosa-Martín P, Vázquez CM, Mate A, Dal Monte M. The Anti-Inflammatory and Antioxidant Properties of Acebuche Oil Exert a Retinoprotective Effect in a Murine Model of High-Tension Glaucoma. Nutrients 2024; 16:409. [PMID: 38337691 PMCID: PMC10857689 DOI: 10.3390/nu16030409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Glaucoma is characterized by cupping of the optic disc, apoptotic degeneration of retinal ganglion cells (RGCs) and their axons, and thinning of the retinal nerve fiber layer, with patchy loss of vision. Elevated intraocular pressure (IOP) is a major risk factor for hypertensive glaucoma and the only modifiable one. There is a need to find novel compounds that counteract other risk factors contributing to RGC degeneration. The oil derived from the wild olive tree (Olea europaea var. sylvestris), also called Acebuche (ACE), shows powerful anti-inflammatory, antioxidant and retinoprotective effects. We evaluated whether ACE oil could counteract glaucoma-related detrimental effects. To this aim, we fed mice either a regular or an ACE oil-enriched diet and then induced IOP elevation through intraocular injection of methylcellulose. An ACE oil-enriched diet suppressed glaucoma-dependent retinal glia reactivity and inflammation. The redox status of the glaucomatous retinas was restored to a control-like situation, and ischemia was alleviated by an ACE oil-enriched diet. Notably, retinal apoptosis was suppressed in the glaucomatous animals fed ACE oil. Furthermore, as shown by electroretinogram analyses, RGC electrophysiological functions were almost completely preserved by the ACE oil-enriched diet. These ameliorative effects were IOP-independent and might depend on ACE oil's peculiar composition. Although additional studies are needed, nutritional supplementation with ACE oil might represent an adjuvant in the management of glaucoma.
Collapse
Affiliation(s)
- Martina Lucchesi
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.L.); (S.M.); (R.A.); (D.L.)
| | - Silvia Marracci
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.L.); (S.M.); (R.A.); (D.L.)
| | - Rosario Amato
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.L.); (S.M.); (R.A.); (D.L.)
| | - Dominga Lapi
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.L.); (S.M.); (R.A.); (D.L.)
| | - Álvaro Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.S.-G.); (P.E.-M.); (C.M.V.)
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Pablo Espinosa-Martín
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.S.-G.); (P.E.-M.); (C.M.V.)
| | - Carmen María Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.S.-G.); (P.E.-M.); (C.M.V.)
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.S.-G.); (P.E.-M.); (C.M.V.)
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.L.); (S.M.); (R.A.); (D.L.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|