1
|
Honda-Okubo Y, Sajkov D, Wauchope B, Turner JV, Vote B, Antipov A, André G, Lebedin Y, Petrovsky N. Immunogenicity and safety study of a single dose of SpikoGen® vaccine as a heterologous or homologous intramuscular booster following a primary course of mRNA, adenoviral vector or recombinant protein COVID-19 vaccine in ambulatory adults. Vaccine 2025; 49:126744. [PMID: 39914274 DOI: 10.1016/j.vaccine.2025.126744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND SpikoGen® is a subunit recombinant Wuhan spike protein produced in insect cells and formulated with Advax-CpG55.2™ adjuvant. It is approved for adult and pediatric use in the Middle East. This study tested the safety and immunogenicity of SpikoGen® as a 3rd, 4th or 5th dose booster following a primary immunisation course of mRNA, adenovirus or SpikoGen® vaccine. METHODS The trial recruited participants who had received a previous doses of COVID-19 vaccine more than 3 months prior. Each received a single intramuscular booster dose of SpikoGen® vaccine. Spike and nuclear protein antibody levels were measured at 1 and 3 months post-booster, together with collection of data on SARS-CoV-2 breakthrough infections and symptoms of long COVID. RESULTS One-month post-booster, anti-spike IgG, sVNT, and pVNT levels were increased in all groups and there was ∼4-fold neutralizing antibodies against the heterologous Omicron BA.2 and BA.4/5 strains. The SpikoGen®-prime group had the highest levels of anti-spike IgG3, consistent with the Advax-CpG adjuvant driving IgG3 induction. There was no effect of age on the vaccine response. The booster dose was well tolerated with no vaccine-associated serious adverse events. Nine participants (9/74, 12.2 %) had a breakthrough SARS-CoV-2 infection between 2 weeks and 3 months post-booster. No long COVID was observed after breakthrough infections. Breakthrough infection was negatively correlated with baseline anti-nuclear protein IgG seropositivity. CONCLUSION A single SpikoGen® booster was well tolerated and stimulated cross- antibody responses against Omicron variants, regardless of the primary vaccine course received. With SARS-CoV-2 variants continuing to evolve, ongoing research is needed into optimum booster strategies. CLINICALTRIALS gov registration. NCT05542862.
Collapse
MESH Headings
- Humans
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/adverse effects
- Immunization, Secondary/methods
- Male
- Adult
- Female
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Spike Glycoprotein, Coronavirus/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Middle Aged
- SARS-CoV-2/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Injections, Intramuscular
- Immunogenicity, Vaccine
- Adenoviridae/genetics
- Young Adult
- Immunoglobulin G/blood
- Genetic Vectors
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, Warradale, Adelaide, SA 5046, Australia; Australian Respiratory and Sleep Medicine Institute Ltd, Adelaide, SA 5042, Australia
| | - Dimitar Sajkov
- Australian Respiratory and Sleep Medicine Institute Ltd, Adelaide, SA 5042, Australia
| | - Bruce Wauchope
- Bedford Clinic, South Road, Adelaide, SA 5039, Australia
| | - Joseph V Turner
- School of Rural Medicine, University of New England, Armidale, NSW 2351, Australia
| | - Brendan Vote
- Tasmanian Eye Institute Ltd, Launceston, Tasmania 7250, Australia
| | - Anna Antipov
- Vaxine Pty Ltd, Warradale, Adelaide, SA 5046, Australia
| | - Greiciely André
- Vaxine Pty Ltd, Warradale, Adelaide, SA 5046, Australia; Australian Respiratory and Sleep Medicine Institute Ltd, Adelaide, SA 5042, Australia
| | | | - Nikolai Petrovsky
- Vaxine Pty Ltd, Warradale, Adelaide, SA 5046, Australia; Australian Respiratory and Sleep Medicine Institute Ltd, Adelaide, SA 5042, Australia.
| |
Collapse
|
2
|
Claireaux M, Elias G, Kerster G, Kuijper LH, Duurland MC, Paul AGA, Burger JA, Poniman M, Olijhoek W, de Jong N, de Jongh R, Wynberg E, van Willigen HDG, Prins M, De Bree GJ, de Jong MD, Kuijpers TW, Eftimov F, van der Schoot CE, Rispens T, Garcia-Vallejo JJ, ten Brinke A, van Gils MJ, van Ham SM. Deep profiling of B cells responding to various pathogens uncovers compartments in IgG memory B cell and antibody-secreting lineages. SCIENCE ADVANCES 2025; 11:eado1331. [PMID: 39970201 PMCID: PMC11837990 DOI: 10.1126/sciadv.ado1331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Improving our understanding of B cell transition to memory B cells (MBCs) and antibody-secreting cells (ASCs) is crucial for clinical monitoring and vaccine strategies. To explore these dynamics, we compared prepandemic antigen responses (influenza hemagglutinin, respiratory syncytial virus fusion glycoprotein, and tetanus toxoid) with recently encountered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen responses in convalescent COVID-19 patients using spectral flow cytometry. Our analysis revealed the CD43+CD71+IgG+ activated B cell subset, highly enriched for SARS-CoV-2 specificities, as a juncture for ASC and MBC differentiation, with CD86+ phenotypically similar to ASCs and CD86- to IgG+ MBCs. Moreover, subpopulations within IgG+ MBCs were further identified based on CD73 and CD24 expression. Activated MBCs (CD73-/CD24lo) were predominantly SARS-CoV-2-specific, while resting MBCs (CD73+/CD24hi) recognized prepandemic antigens. A CD95- subcluster within resting MBCs accounted for over 40% of prepandemic-specific cells, indicating long-lasting memory. These findings advance our understanding of IgG+ MBC and ASC development stages, shedding light on the decision-making process guiding their differentiation.
Collapse
Affiliation(s)
- Mathieu Claireaux
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - George Elias
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Gius Kerster
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Lisan H. Kuijper
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Mariël C. Duurland
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | | | - Judith A. Burger
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Meliawati Poniman
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Wouter Olijhoek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Nina de Jong
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Rivka de Jongh
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Elke Wynberg
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, Netherlands
| | - Hugo D. G. van Willigen
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Maria Prins
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Godelieve J. De Bree
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Menno D. de Jong
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Filip Eftimov
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - C. Ellen van der Schoot
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Juan J. Garcia-Vallejo
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Molecular Cell Biology & Immunology, Amsterdam University Medical Center (VUmc location), Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Anja ten Brinke
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - S. Marieke van Ham
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Naiditch H, Betts MR, Larman HB, Levi M, Rosenberg AZ. Immunologic and inflammatory consequences of SARS-CoV-2 infection and its implications in renal disease. Front Immunol 2025; 15:1376654. [PMID: 40012912 PMCID: PMC11861071 DOI: 10.3389/fimmu.2024.1376654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/23/2024] [Indexed: 02/28/2025] Open
Abstract
The emergence of the COVID-19 pandemic made it critical to understand the immune and inflammatory responses to the SARS-CoV-2 virus. It became increasingly recognized that the immune response was a key mediator of illness severity and that its mechanisms needed to be better understood. Early infection of both tissue and immune cells, such as macrophages, leading to pyroptosis-mediated inflammasome production in an organ system critical for systemic oxygenation likely plays a central role in the morbidity wrought by SARS-CoV-2. Delayed transcription of Type I and Type III interferons by SARS-CoV-2 may lead to early disinhibition of viral replication. Cytokines such as interleukin-1 (IL-1), IL-6, IL-12, and tumor necrosis factor α (TNFα), some of which may be produced through mechanisms involving nuclear factor kappa B (NF-κB), likely contribute to the hyperinflammatory state in patients with severe COVID-19. Lymphopenia, more apparent among natural killer (NK) cells, CD8+ T-cells, and B-cells, can contribute to disease severity and may reflect direct cytopathic effects of SARS-CoV-2 or end-organ sequestration. Direct infection and immune activation of endothelial cells by SARS-CoV-2 may be a critical mechanism through which end-organ systems are impacted. In this context, endovascular neutrophil extracellular trap (NET) formation and microthrombi development can be seen in the lungs and other critical organs throughout the body, such as the heart, gut, and brain. The kidney may be among the most impacted extrapulmonary organ by SARS-CoV-2 infection owing to a high concentration of ACE2 and exposure to systemic SARS-CoV-2. In the kidney, acute tubular injury, early myofibroblast activation, and collapsing glomerulopathy in select populations likely account for COVID-19-related AKI and CKD development. The development of COVID-19-associated nephropathy (COVAN), in particular, may be mediated through IL-6 and signal transducer and activator of transcription 3 (STAT3) signaling, suggesting a direct connection between the COVID-19-related immune response and the development of chronic disease. Chronic manifestations of COVID-19 also include systemic conditions like Multisystem Inflammatory Syndrome in Children (MIS-C) and Adults (MIS-A) and post-acute sequelae of COVID-19 (PASC), which may reflect a spectrum of clinical presentations of persistent immune dysregulation. The lessons learned and those undergoing continued study likely have broad implications for understanding viral infections' immunologic and inflammatory consequences beyond coronaviruses.
Collapse
Affiliation(s)
- Hiam Naiditch
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael R. Betts
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - H. Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
4
|
Familiar-Macedo D, de Azeredo EL, de Lemos ERS, Damasco PV, de-Oliveira-Pinto LM. Profile of Humoral Immunity and B Cell Pool in Infection with the SARS-CoV-2 Prototype Strain and AZD1222 (ChAdOx nCoV-19) Vaccination. Vaccines (Basel) 2025; 13:101. [PMID: 40006648 PMCID: PMC11860857 DOI: 10.3390/vaccines13020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Understanding the behavior of B cells during infection and vaccination is important for determining protective humoral immunity. We evaluated the profile of humoral immunity and B cell pool in individuals who were acutely infected with SARS-CoV-2, recovered from COVID-19, or received two doses of the AZD1222 vaccine. METHODS Peripheral blood mononuclear cells (PBMCs) from these individuals were subjected to in vitro stimulation to promote the differentiation of B cells into antibody-secreting cells (ASCs), and the ELISpot evaluated the abundance of pan and SARS-CoV-2 Spike S1-reactive IgG+ ASC. Stimulated PBMCs were characterized using flow cytometry. Culture supernatants were assessed for soluble B-cell-activating factors. The IgA and IgG for the S1 were evaluated through ELISA. RESULTS The recovered individuals displayed a robust S1 ASC compared to acute and vaccinated individuals. Although the frequency of total B cells or B cell subsets did not vary among the groups, plasmablast cells were increased in naïve and double-negative B cells in the acute, recovered, and vaccinated individuals. Similar IgA and IgG production appeared to be present in the acute and recovered individuals. During vaccination, more IgG is produced than IgA. In acute patients, BAFF levels were positively correlated with total B cells and IgG+ plasmablast cells but negatively correlated with IgA+ plasmablast cells. CONCLUSIONS Vaccination and natural infection with COVID-19 induce a differential profile and functionality of B cells. We suggest that new vaccines against COVID-19 incorporate molecular adjuvants that regulate B lymphocyte functionality and consider the beneficial aspects of the IgA response in addition to IgG.
Collapse
Affiliation(s)
- Débora Familiar-Macedo
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro 21040-360, Brazil; (D.F.-M.); (E.L.d.A.)
| | - Elzinandes Leal de Azeredo
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro 21040-360, Brazil; (D.F.-M.); (E.L.d.A.)
| | - Elba Regina Sampaio de Lemos
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro 21040-360, Brazil;
| | - Paulo Vieira Damasco
- Rede Casa Hospital Rio Laranjeira e Rio Botafogo, Rio de Janeiro 22240-000, Brazil;
- Disciplina de Doenças Infecciosas e Parasitárias, Departamento de Medicina Geral, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20270-004, Brazil
- Disciplina de Doenças Infecciosas, Departamento de Medicina Interna, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-900, Brazil
| | - Luzia Maria de-Oliveira-Pinto
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro 21040-360, Brazil; (D.F.-M.); (E.L.d.A.)
| |
Collapse
|
5
|
Song Y, Wang J, Yang Z, He Q, Bao C, Xie Y, Sun Y, Li S, Quan Y, Yang H, Li C. Heterologous booster vaccination enhances antibody responses to SARS-CoV-2 by improving Tfh function and increasing B-cell clonotype SHM frequency. Front Immunol 2024; 15:1406138. [PMID: 38975334 PMCID: PMC11224535 DOI: 10.3389/fimmu.2024.1406138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Heterologous prime-boost has broken the protective immune response bottleneck of the COVID-19 vaccines. however, the underlying mechanisms have not been fully elucidated. Here, we investigated antibody responses and explored the response of germinal center (GC) to priming with inactivated vaccines and boosting with heterologous adenoviral-vectored vaccines or homologous inactivated vaccines in mice. Antibody responses were dramatically enhanced by both boosting regimens. Heterologous immunization induced more robust GC activation, characterized by increased Tfh cell populations and enhanced helper function. Additionally, increased B-cell activation and antibody production were observed in a heterologous regimen. Libra-seq was used to compare the differences of S1-, S2- and NTD-specific B cells between homologous and heterologous vaccination, respectively. S2-specific CD19+ B cells presented increased somatic hypermutations (SHMs), which were mainly enriched in plasma cells. Moreover, a heterologous booster dose promoted the clonal expansion of B cells specific to S2 and NTD regions. In conclusion, the functional role of Tfh and B cells following SARS-CoV-2 heterologous vaccination may be important for modulating antibody responses. These findings provide new insights for the development of SARS-CoV-2 vaccines that induce more robust antibody response.
Collapse
Affiliation(s)
- Yanli Song
- Division of the Second Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, China
| | - Jiaolei Wang
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Zhihui Yang
- Division of the Second Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, China
| | - Qian He
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Chunting Bao
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Ying Xie
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yufang Sun
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Shuyan Li
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yaru Quan
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Huijie Yang
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Changgui Li
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
6
|
Zhou D, Zhao S, He K, Liu Q, Zhang F, Pu Z, Xiao L, Zhang L, Chen S, Qian X, Wu X, Shen Y, Yu L, Zhang H, Jin J, Xu M, Wang X, Zhu D, Xie Z, Xu X. Longitudinal dynamic single-cell mass cytometry analysis of peripheral blood mononuclear cells in COVID-19 patients within 6 months after viral RNA clearance. BMC Infect Dis 2024; 24:567. [PMID: 38844850 PMCID: PMC11157885 DOI: 10.1186/s12879-024-09464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
This study investigates the longitudinal dynamic changes in immune cells in COVID-19 patients over an extended period after recovery, as well as the interplay between immune cells and antibodies. Leveraging single-cell mass spectrometry, we selected six COVID-19 patients and four healthy controls, dissecting the evolving landscape within six months post-viral RNA clearance, alongside the levels of anti-spike protein antibodies. The T cell immunophenotype ascertained via single-cell mass spectrometry underwent validation through flow cytometry in 37 samples. Our findings illuminate that CD8 + T cells, gamma-delta (gd) T cells, and NK cells witnessed an increase, in contrast to the reduction observed in monocytes, B cells, and double-negative T (DNT) cells over time. The proportion of monocytes remained significantly elevated in COVID-19 patients compared to controls even after six-month. Subpopulation-wise, an upsurge manifested within various T effector memory subsets, CD45RA + T effector memory, gdT, and NK cells, whereas declines marked the populations of DNT, naive and memory B cells, and classical as well as non-classical monocytes. Noteworthy associations surfaced between DNT, gdT, CD4 + T, NK cells, and the anti-S antibody titer. This study reveals the changes in peripheral blood mononuclear cells of COVID-19 patients within 6 months after viral RNA clearance and sheds light on the interactions between immune cells and antibodies. The findings from this research contribute to a better understanding of immune transformations during the recovery from COVID-19 and offer guidance for protective measures against reinfection in the context of viral variants.
Collapse
Affiliation(s)
- Diwenxin Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Shuai Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Keting He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Qiuhong Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Fen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Zhangya Pu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Lanlan Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Lingjian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Shangci Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Xiaohan Qian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Yangfan Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Ling Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Huafen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Jiandi Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Min Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Xiaoyan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Zhongyang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.
| | - Xiaowei Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.
| |
Collapse
|
7
|
Ahmed N, Athavale A, Tripathi AH, Subramaniam A, Upadhyay SK, Pandey AK, Rai RC, Awasthi A. To be remembered: B cell memory response against SARS-CoV-2 and its variants in vaccinated and unvaccinated individuals. Scand J Immunol 2024; 99:e13345. [PMID: 38441373 DOI: 10.1111/sji.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 03/07/2024]
Abstract
COVID-19 disease has plagued the world economy and affected the overall well-being and life of most of the people. Natural infection as well as vaccination leads to the development of an immune response against the pathogen. This involves the production of antibodies, which can neutralize the virus during future challenges. In addition, the development of cellular immune memory with memory B and T cells provides long-lasting protection. The longevity of the immune response has been a subject of intensive research in this field. The extent of immunity conferred by different forms of vaccination or natural infections remained debatable for long. Hence, understanding the effectiveness of these responses among different groups of people can assist government organizations in making informed policy decisions. In this article, based on the publicly available data, we have reviewed the memory response generated by some of the vaccines against SARS-CoV-2 and its variants, particularly B cell memory in different groups of individuals.
Collapse
Affiliation(s)
- Nafees Ahmed
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Atharv Athavale
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Ankita H Tripathi
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Adarsh Subramaniam
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Santosh K Upadhyay
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | | | - Ramesh Chandra Rai
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Awasthi
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
8
|
Li P, Wang Q, He Y, Yang C, Zhang Z, Liu Z, Liu B, Yin L, Cui Y, Hu P, Liu Y, Zheng P, Wang W, Qu L, Sun C, Guan S, Feng L, Chen L. Booster vaccination is required to elicit and maintain COVID-19 vaccine-induced immunity in SIV-infected macaques. Emerg Microbes Infect 2023; 12:e2136538. [PMID: 36239345 PMCID: PMC9980405 DOI: 10.1080/22221751.2022.2136538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
ABSTRACTProlonged infection and possible evolution of SARS-CoV-2 in patients living with uncontrolled HIV-1 infection highlight the importance of an effective vaccination regimen, yet the immunogenicity of COVID-19 vaccines and predictive immune biomarkers have not been well investigated. Herein, we report that the magnitude and persistence of antibody and cell-mediated immunity (CMI) elicited by an Ad5-vectored COVID-19 vaccine are impaired in SIV-infected macaques with high viral loads (> 105 genome copies per ml plasma, SIVhi) but not in macaques with low viral loads (< 105, SIVlow). After a second vaccination, the immune responses are robustly enhanced in all uninfected and SIVlow macaques. These responses also show a moderate increase in 70% SIVhi macaques but decline sharply soon after. Further analysis reveals that decreased antibody and CMI responses are associated with reduced circulating follicular helper T cell (TFH) counts and aberrant CD4/CD8 ratios, respectively, indicating that dysregulation of CD4+ T cells by SIV infection impairs the COVID-19 vaccine-induced immunity. Ad5-vectored COVID-19 vaccine shows no impact on SIV loads or SIV-specific CMI responses. Our study underscores the necessity of frequent booster vaccinations in HIV-infected patients and provides indicative biomarkers for predicting vaccination effectiveness in these patients.
Collapse
Affiliation(s)
- Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, People’s Republic of China, Pingchao Li State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, People’s Republic of China; Liqiang Feng
| | - Qian Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yizi He
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, People’s Republic of China,University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Chenchen Yang
- Guangzhou nBiomed Ltd., Guangzhou, People’s Republic of China
| | - Zhengyuan Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, People’s Republic of China,University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zijian Liu
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, People’s Republic of China,University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Bo Liu
- Guangzhou nBiomed Ltd., Guangzhou, People’s Republic of China
| | - Li Yin
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, People’s Republic of China,University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yilan Cui
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, People’s Republic of China,University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Peiyu Hu
- Guangzhou Laboratory & Bioland Laboratory, Guangzhou, People’s Republic of China
| | - Yichu Liu
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Pingqian Zheng
- Guangzhou Laboratory & Bioland Laboratory, Guangzhou, People’s Republic of China
| | - Wei Wang
- Guangzhou Laboratory & Bioland Laboratory, Guangzhou, People’s Republic of China
| | - Linbing Qu
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Caijun Sun
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Suhua Guan
- Guangzhou nBiomed Ltd., Guangzhou, People’s Republic of China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, People’s Republic of China,Guangzhou Laboratory & Bioland Laboratory, Guangzhou, People’s Republic of China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, People’s Republic of China,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China,Guangzhou Laboratory & Bioland Laboratory, Guangzhou, People’s Republic of China,Ling Chen State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| |
Collapse
|
9
|
Huang CQ, Vishwanath S, Carnell GW, Chan ACY, Heeney JL. Immune imprinting and next-generation coronavirus vaccines. Nat Microbiol 2023; 8:1971-1985. [PMID: 37932355 DOI: 10.1038/s41564-023-01505-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/13/2023] [Indexed: 11/08/2023]
Abstract
Vaccines based on historical virus isolates provide limited protection from continuously evolving RNA viruses, such as influenza viruses or coronaviruses, which occasionally spill over between animals and humans. Despite repeated booster immunizations, population-wide declines in the neutralization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have occurred. This has been compared to seasonal influenza vaccinations in humans, where the breadth of immune responses induced by repeat exposures to antigenically distinct influenza viruses is confounded by pre-existing immunity-a mechanism known as imprinting. Since its emergence, SARS-CoV-2 has evolved in a population with partial immunity, acquired by infection, vaccination or both. Here we critically examine the evidence for and against immune imprinting in host humoral responses to SARS-CoV-2 and its implications for coronavirus disease 2019 (COVID-19) booster vaccine programmes.
Collapse
Affiliation(s)
- Chloe Qingzhou Huang
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sneha Vishwanath
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - George William Carnell
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Andrew Chun Yue Chan
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jonathan Luke Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Burke B, Rocha SM, Zhan S, Eckley M, Reasoner C, Addetia A, Lewis J, Fagre A, Charley PA, Richt JA, Weiss SR, Tjalkens RB, Veesler D, Aboellail T, Schountz T. Regulatory T cell-like response to SARS-CoV-2 in Jamaican fruit bats (Artibeus jamaicensis) transduced with human ACE2. PLoS Pathog 2023; 19:e1011728. [PMID: 37856551 PMCID: PMC10617724 DOI: 10.1371/journal.ppat.1011728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 10/31/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
Insectivorous Old World horseshoe bats (Rhinolophus spp.) are the likely source of the ancestral SARS-CoV-2 prior to its spillover into humans and causing the COVID-19 pandemic. Natural coronavirus infections of bats appear to be principally confined to the intestines, suggesting fecal-oral transmission; however, little is known about the biology of SARS-related coronaviruses in bats. Previous experimental challenges of Egyptian fruit bats (Rousettus aegyptiacus) resulted in limited infection restricted to the respiratory tract, whereas insectivorous North American big brown bats (Eptesicus fuscus) showed no evidence of infection. In the present study, we challenged Jamaican fruit bats (Artibeus jamaicensis) with SARS-CoV-2 to determine their susceptibility. Infection was confined to the intestine for only a few days with prominent viral nucleocapsid antigen in epithelial cells, and mononuclear cells of the lamina propria and Peyer's patches, but with no evidence of infection of other tissues; none of the bats showed visible signs of disease or seroconverted. Expression levels of ACE2 were low in the lungs, which may account for the lack of pulmonary infection. Bats were then intranasally inoculated with a replication-defective adenovirus encoding human ACE2 and 5 days later challenged with SARS-CoV-2. Viral antigen was prominent in lungs for up to 14 days, with loss of pulmonary cellularity during this time; however, the bats did not exhibit weight loss or visible signs of disease. From day 7, bats had low to moderate IgG antibody titers to spike protein by ELISA, and one bat on day 10 had low-titer neutralizing antibodies. CD4+ helper T cells became activated upon ex vivo recall stimulation with SARS-CoV-2 nucleocapsid peptide library and exhibited elevated mRNA expression of the regulatory T cell cytokines interleukin-10 and transforming growth factor-β, which may have limited inflammatory pathology. Collectively, these data show that Jamaican fruit bats are poorly susceptible to SARS-CoV-2 but that expression of human ACE2 in their lungs leads to robust infection and an adaptive immune response with low-titer antibodies and a regulatory T cell-like response that may explain the lack of prominent inflammation in the lungs. This model will allow for insight of how SARS-CoV-2 infects bats and how bat innate and adaptive immune responses engage the virus without overt clinical disease.
Collapse
Affiliation(s)
- Bradly Burke
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Savannah M. Rocha
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Shijun Zhan
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Miles Eckley
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Clara Reasoner
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Juliette Lewis
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Anna Fagre
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Phillida A. Charley
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Juergen A. Richt
- Diagnostic Medicine/Pathobiology, Center of Excellence for Emerging and Zoonotic Animal Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ronald B. Tjalkens
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Tawfik Aboellail
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Tony Schountz
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
11
|
Malahe SRK, Hartog YD, Rietdijk WJR, van Baarle D, de Kuiper R, Reijerkerk D, Ras AM, Geers D, Diavatopoulos DA, Messchendorp AL, van der Molen RG, Remmerswaal EBM, Bemelman FJ, Gansevoort RT, Hilbrands LB, Sanders JS, GeurtsvanKessel CH, Kho MML, de Vries RD, Reinders MEJ, Baan CC. The role of interleukin-21 in COVID-19 vaccine-induced B cell-mediated immune responses in patients with kidney disease and kidney transplant recipients. Am J Transplant 2023; 23:1411-1424. [PMID: 37270109 PMCID: PMC10234364 DOI: 10.1016/j.ajt.2023.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
T-cell-mediated help to B cells is required for the development of humoral responses, in which the cytokine interleukin (IL)-21 is key. Here, we studied the mRNA-1273 vaccine-induced SARS-CoV-2-specific memory T-cell IL-21 response, memory B cell response, and immunoglobulin (Ig)G antibody levels in peripheral blood at 28 days after the second vaccination by ELISpot and the fluorescent bead-based multiplex immunoassay, respectively. We included 40 patients with chronic kidney disease (CKD), 34 patients on dialysis, 63 kidney transplant recipients (KTR), and 47 controls. We found that KTR, but not patients with CKD and those receiving dialysis, showed a significantly lower number of SARS-CoV-2-specific IL-21 producing T cells than controls (P < .001). KTR and patients with CKD showed lower numbers of SARS-CoV-2-specific IgG-producing memory B cells when compared with controls (P < .001 and P = .01, respectively). The T-cell IL-21 response was positively associated with the SARS-CoV-2-specific B cell response and the SARS-CoV-2 spike S1-specific IgG antibody levels (both Pearson r = 0.5; P < .001). In addition, SARS-CoV-2-specific B cell responses were shown to be IL-21 dependent. Taken together, we show that IL-21 signaling is important in eliciting robust B cell-mediated immune responses in patients with kidney disease and KTR.
Collapse
Affiliation(s)
- S Reshwan K Malahe
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yvette den Hartog
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Wim J R Rietdijk
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Debbie van Baarle
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Ronella de Kuiper
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Derek Reijerkerk
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Alicia M Ras
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Daryl Geers
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dimitri A Diavatopoulos
- Radboud Institute for Molecular Life Sciences, Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| | - A Lianne Messchendorp
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Renate G van der Molen
- Radboud Institute for Molecular Life Sciences, Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| | - Ester B M Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Frederike J Bemelman
- Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ron T Gansevoort
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan-Stephan Sanders
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | | - Marcia M L Kho
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Rory D de Vries
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Marlies E J Reinders
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
12
|
Krause RGE, Moyo-Gwete T, Richardson SI, Makhado Z, Manamela NP, Hermanus T, Mkhize NN, Keeton R, Benede N, Mennen M, Skelem S, Karim F, Khan K, Riou C, Ntusi NAB, Goga A, Gray G, Hanekom W, Garrett N, Bekker LG, Groll A, Sigal A, Moore PL, Burgers WA, Leslie A. Infection pre-Ad26.COV2.S-vaccination primes greater class switching and reduced CXCR5 expression by SARS-CoV-2-specific memory B cells. NPJ Vaccines 2023; 8:119. [PMID: 37573434 PMCID: PMC10423246 DOI: 10.1038/s41541-023-00724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the memory B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. Participants were either naïve to SARS-CoV-2 or had been infected before vaccination. SARS-CoV-2-specific memory B-cells expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a significant reduction in expression of the germinal center chemokine receptor CXCR5, and increased class switching. These B cell features correlated with neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). Vaccination-induced effective neutralization of the D614G variant in both infected and naïve participants but boosted neutralizing antibodies against the Beta and Omicron variants only in participants with prior infection. In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell expression of the lung-homing receptor CXCR3, which was sustained in the previously infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the response to vaccination can provide insight into the impact of prior infection on memory B cell homing, CSM, cTfh, and neutralization activity. These data can provide early signals to inform studies of vaccine boosting, durability, and co-morbidities.
Collapse
Affiliation(s)
- Robert G E Krause
- Africa Health Research Institute, Durban, 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Thandeka Moyo-Gwete
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Simone I Richardson
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zanele Makhado
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nelia P Manamela
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tandile Hermanus
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nonhlanhla N Mkhize
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Roanne Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Ntombi Benede
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Mathilda Mennen
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Sango Skelem
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Farina Karim
- Africa Health Research Institute, Durban, 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Khadija Khan
- Africa Health Research Institute, Durban, 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Ntobeko A B Ntusi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
- Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Ameena Goga
- South African Medical Research Council, Cape Town, South Africa
| | - Glenda Gray
- South African Medical Research Council, Cape Town, South Africa
| | - Willem Hanekom
- Africa Health Research Institute, Durban, 4001, South Africa
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
| | - Nigel Garrett
- Centre for the AIDS Program of Research in South Africa, Durban, South Africa
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Linda-Gail Bekker
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Desmond Tutu HIV Centre, Cape Town, South Africa
| | - Andreas Groll
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Alex Sigal
- Africa Health Research Institute, Durban, 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
- Centre for the AIDS Program of Research in South Africa, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, 10117, Germany
| | - Penny L Moore
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Centre for the AIDS Program of Research in South Africa, Durban, South Africa
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Alasdair Leslie
- Africa Health Research Institute, Durban, 4001, South Africa.
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
13
|
Opsteen S, Files JK, Fram T, Erdmann N. The role of immune activation and antigen persistence in acute and long COVID. J Investig Med 2023; 71:545-562. [PMID: 36879504 PMCID: PMC9996119 DOI: 10.1177/10815589231158041] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 03/08/2023]
Abstract
In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered the global coronavirus disease 2019 (COVID-19) pandemic. Although most infections cause a self-limited syndrome comparable to other upper respiratory viral pathogens, a portion of individuals develop severe illness leading to substantial morbidity and mortality. Furthermore, an estimated 10%-20% of SARS-CoV-2 infections are followed by post-acute sequelae of COVID-19 (PASC), or long COVID. Long COVID is associated with a wide variety of clinical manifestations including cardiopulmonary complications, persistent fatigue, and neurocognitive dysfunction. Severe acute COVID-19 is associated with hyperactivation and increased inflammation, which may be an underlying cause of long COVID in a subset of individuals. However, the immunologic mechanisms driving long COVID development are still under investigation. Early in the pandemic, our group and others observed immune dysregulation persisted into convalescence after acute COVID-19. We subsequently observed persistent immune dysregulation in a cohort of individuals experiencing long COVID. We demonstrated increased SARS-CoV-2-specific CD4+ and CD8+ T-cell responses and antibody affinity in patients experiencing long COVID symptoms. These data suggest a portion of long COVID symptoms may be due to chronic immune activation and the presence of persistent SARS-CoV-2 antigen. This review summarizes the COVID-19 literature to date detailing acute COVID-19 and convalescence and how these observations relate to the development of long COVID. In addition, we discuss recent findings in support of persistent antigen and the evidence that this phenomenon contributes to local and systemic inflammation and the heterogeneous nature of clinical manifestations seen in long COVID.
Collapse
Affiliation(s)
- Skye Opsteen
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob K Files
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tim Fram
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathan Erdmann
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
14
|
Burke B, Rocha SM, Zhan S, Eckley M, Reasoner C, Addetia A, Lewis J, Fagre A, Charley P, Richt JA, Weiss SR, Tjalkens RB, Veesler D, Aboellail T, Schountz T. Regulatory T Cell-like Response to SARS-CoV-2 in Jamaican Fruit Bats ( Artibeus jamaicensis ) Transduced with Human ACE2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528205. [PMID: 36824814 PMCID: PMC9949052 DOI: 10.1101/2023.02.13.528205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Insectivorous Old World horseshoe bats ( Rhinolophus spp.) are the likely source of the ancestral SARS-CoV-2 prior to its spillover into humans and causing the COVID-19 pandemic. Natural coronavirus infections of bats appear to be principally confined to the intestines, suggesting fecal-oral transmission; however, little is known about the biology of SARS-related coronaviruses in bats. Previous experimental challenges of Egyptian fruit bats ( Rousettus aegyptiacus ) resulted in limited infection restricted to the respiratory tract, whereas insectivorous North American big brown bats ( Eptesicus fuscus ) showed no evidence of infection. In the present study, we challenged Jamaican fruit bats ( Artibeus jamaicensis ) with SARS-CoV-2 to determine their susceptibility. Infection was confined to the intestine for only a few days with prominent viral nucleocapsid antigen in epithelial cells, and mononuclear cells of the lamina propria and Peyer's patches, but with no evidence of infection of other tissues; none of the bats showed visible signs of disease or seroconverted. Expression levels of ACE2 were low in the lungs, which may account for the lack of pulmonary infection. Bats were then intranasally inoculated with a replication-defective adenovirus encoding human ACE2 and 5 days later challenged with SARS-CoV-2. Viral antigen was prominent in lungs for up to 14 days, with loss of pulmonary cellularity during this time; however, the bats did not exhibit weight loss or visible signs of disease. From day 7, bats had low to moderate IgG antibody titers to spike protein by ELISA, and one bat on day 10 had low-titer neutralizing antibodies. CD4 + helper T cells became activated upon ex vivo recall stimulation with SARS-CoV-2 nucleocapsid peptide library and exhibited elevated mRNA expression of the regulatory T cell cytokines interleukin-10 and transforming growth factor-β, which may have limited inflammatory pathology. Collectively, these data show that Jamaican fruit bats are poorly susceptibility to SARS-CoV-2 but that expression of human ACE2 in their lungs leads to robust infection and an adaptive immune response with low-titer antibodies and a regulatory T cell-like response that may explain the lack of prominent inflammation in the lungs. This model will allow for insight of how SARS-CoV-2 infects bats and how bat innate and adaptive immune responses engage the virus without overt clinical disease. Author Summary Bats are reservoir hosts of many viruses that infect humans, yet little is known about how they host these viruses, principally because of a lack of relevant and susceptible bat experimental infection models. Although SARS-CoV-2 originated in bats, no robust infection models of bats have been established. We determined that Jamaican fruit bats are poorly susceptible to SARS-CoV-2; however, their lungs can be transduced with human ACE2, which renders them susceptible to SARS-CoV-2. Despite robust infection of the lungs and diminishment of pulmonary cellularity, the bats showed no overt signs of disease and cleared the infection after two weeks. Despite clearance of infection, only low-titer antibody responses occurred and only a single bat made neutralizing antibody. Assessment of the CD4 + helper T cell response showed that activated cells expressed the regulatory T cell cytokines IL-10 and TGFβ that may have tempered pulmonary inflammation.
Collapse
|
15
|
SARS-CoV-2 humoral and cellular immunity following different combinations of vaccination and breakthrough infection. Nat Commun 2023; 14:572. [PMID: 36732523 PMCID: PMC9894521 DOI: 10.1038/s41467-023-36250-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
The elicited anti-SARS-CoV-2 immunity is becoming increasingly complex with individuals receiving a different number of vaccine doses paired with or without recovery from breakthrough infections with different variants. Here we analyze the immunity of individuals that initially received two doses of mRNA vaccine and either received a booster vaccination, recovered from a breakthrough infection, or both. Our data suggest that two vaccine doses and delta breakthrough infection or three vaccine doses and optionally omicron or delta infection provide better B cell immunity than the initial two doses of mRNA vaccine with or without alpha breakthrough infection. A particularly potent B cell response against the currently circulating omicron variant (B. 1.1.529) was observed for thrice vaccinated individuals with omicron breakthrough infection; a 46-fold increase in plasma neutralization compared to two vaccine doses (p < 0.0001). The T cell response after two vaccine doses is not significantly influenced by additional antigen exposures. Of note, individuals with hybrid immunity show better correlated adaptive immune responses compared to those only vaccinated. Taken together, our data provide a detailed insight into SARS-CoV-2 immunity following different antigen exposure scenarios.
Collapse
|
16
|
Rouers A, Wong N, Goh YS, Torres‐Ruesta A, Tay MZ, Chang ZW, Fong S, Neo V, Kam IKJ, Yeo NK, Huang Y, Loh CY, Hor PX, Wong JXE, Tan YJ, COVID‐19 Study Group, Macary PA, Qian X, Bei W, Ngoh EZX, Salleh SNM, Wang CI, Poh XY, Rao S, Chia PY, Ong SWX, Lee TH, Lin RJH, Lim C, Teo J, Ren EC, Lye DC, Young BE, Ng LFP, Renia L. Efficient recall of SARS-CoV-2 variant-reactive B cells and T responses in the elderly upon heterologous mRNA vaccines as boosters. J Med Virol 2023; 95:e28258. [PMID: 36305052 PMCID: PMC9874655 DOI: 10.1002/jmv.28258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 10/25/2022] [Indexed: 01/27/2023]
Abstract
Waning antibody levels against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the emergence of variants of concern highlight the need for booster vaccinations. This is particularly important for the elderly population, who are at a higher risk of developing severe coronavirus disease 2019 (COVID-19) disease. While studies have shown increased antibody responses following booster vaccination, understanding the changes in T and B cell compartments induced by a third vaccine dose remains limited. We analyzed the humoral and cellular responses in subjects who received either a homologous messenger RNA(mRNA) booster vaccine (BNT162b2 + BNT162b2 + BNT162b2; ''BBB") or a heterologous mRNA booster vaccine (BNT162b2 + BNT162b2 + mRNA-1273; ''BBM") at Day 0 (prebooster), Day 7, and Day 28 (postbooster). Compared with BBB, elderly individuals (≥60 years old) who received the BBM vaccination regimen display higher levels of neutralizing antibodies against the Wuhan and Delta strains along with a higher boost in immunoglobulin G memory B cells, particularly against the Omicron variant. Circulating T helper type 1(Th1), Th2, Th17, and T follicular helper responses were also increased in elderly individuals given the BBM regimen. While mRNA vaccines increase antibody, T cell, and B cell responses against SARS-CoV-2 1 month after receiving the third dose booster, the efficacy of the booster vaccine strategies may vary depending on age group and regimen combination.
Collapse
Affiliation(s)
- Angeline Rouers
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Nathan Wong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Yun Shan Goh
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Anthony Torres‐Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Matthew Zirui Tay
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Zi Wei Chang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Siew‐Wai Fong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Vanessa Neo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Isaac Kai Jie Kam
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Nicholas Kim‐Wah Yeo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Yuling Huang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Chiew Yee Loh
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Pei Xiang Hor
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Joel Xu En Wong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Yong Jie Tan
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - COVID‐19 Study Group
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Paul A. Macary
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of Singapore and National University Health SystemSingaporeSingapore
| | - Xinlei Qian
- Life Sciences InstituteNational University of SingaporeSingaporeSingapore
| | - Wang Bei
- A*STAR Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Eve Zi Xian Ngoh
- A*STAR Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Siti Nazihah Mohd Salleh
- A*STAR Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Cheng-I Wang
- A*STAR Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | | | - Suma Rao
- National Centre for Infectious DiseasesSingapore,Department of Infectious DiseasesTan Tock Seng HospitalSingapore
| | - Po Ying Chia
- National Centre for Infectious DiseasesSingapore,Department of Infectious DiseasesTan Tock Seng HospitalSingapore,Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore
| | - Sean W. X. Ong
- National Centre for Infectious DiseasesSingapore,Department of Infectious DiseasesTan Tock Seng HospitalSingapore
| | - Tau Hong Lee
- National Centre for Infectious DiseasesSingapore,Department of Infectious DiseasesTan Tock Seng HospitalSingapore
| | - Ray J. H. Lin
- National Centre for Infectious DiseasesSingapore,Department of Infectious DiseasesTan Tock Seng HospitalSingapore
| | - Clarissa Lim
- National Centre for Infectious DiseasesSingapore
| | - Jefanie Teo
- National Centre for Infectious DiseasesSingapore
| | - Ee Chee Ren
- A*STAR Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - David Chien Lye
- National Centre for Infectious DiseasesSingapore,Department of Infectious DiseasesTan Tock Seng HospitalSingapore,Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore,School of Biological SciencesNanyang Technological UniversitySingapore
| | - Barnaby E. Young
- National Centre for Infectious DiseasesSingapore,Department of Infectious DiseasesTan Tock Seng HospitalSingapore,Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore
| | - Lisa F. P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore,National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic InfectionsUniversity of LiverpoolLiverpoolUK,Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore,Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore,School of Biological SciencesNanyang Technological UniversitySingapore
| |
Collapse
|
17
|
Mise-Omata S, Ikeda M, Takeshita M, Uwamino Y, Wakui M, Arai T, Yoshifuji A, Murano K, Siomi H, Nakagawara K, Ohyagi M, Ando M, Hasegawa N, Saya H, Murata M, Fukunaga K, Namkoong H, Lu X, Yamasaki S, Yoshimura A. Memory B Cells and Memory T Cells Induced by SARS-CoV-2 Booster Vaccination or Infection Show Different Dynamics and Responsiveness to the Omicron Variant. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2104-2113. [PMID: 36426984 DOI: 10.4049/jimmunol.2200525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/21/2022] [Indexed: 01/04/2023]
Abstract
Although the immunological memory produced by BNT162b2 vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been well studied and established, further information using different racial cohorts is necessary to understand the overall immunological response to vaccination. We evaluated memory B and T cell responses to the severe acute respiratory syndrome coronavirus 2 spike protein before and after the third booster using a Japanese cohort. Although the Ab titer against the spike receptor-binding domain (RBD) decreased significantly 8 mo after the second vaccination, the number of memory B cells continued to increase, whereas the number of memory T cells decreased slowly. Memory B and T cells from unvaccinated infected patients showed similar kinetics. After the third vaccination, the Ab titer increased to the level of the second vaccination, and memory B cells increased at significantly higher levels before the booster, whereas memory T cells recovered close to the second vaccination levels. In memory T cells, the frequency of CXCR5+CXCR3+CCR6- circulating follicular Th1 was positively correlated with RBD-specific Ab-secreting B cells. For the response to variant RBDs, although 60-80% of memory B cells could bind to the omicron RBD, their avidity was low, whereas memory T cells show an equal response to the omicron spike. Thus, the persistent presence of memory B and T cells will quickly upregulate Ab production and T cell responses after omicron strain infection, which prevents severe illness and death due to coronavirus disease 2019.
Collapse
Affiliation(s)
- Setsuko Mise-Omata
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Mari Ikeda
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Takeshita
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshifumi Uwamino
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Arai
- Clinical Laboratory, Keio University Hospital, Tokyo, Japan
| | - Ayumi Yoshifuji
- Division of Nephrology, Department of Internal Medicine, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| | - Kensaku Murano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Kensuke Nakagawara
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.,Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masaki Ohyagi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Ando
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Mitsuru Murata
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Xiuyuan Lu
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; and
| | - Sho Yamasaki
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; and.,Department of Molecular Immunology, Research Institute Microbial Disease, Osaka University, Osaka, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Noto A, Joo V, Mancarella A, Suffiotti M, Pellaton C, Fenwick C, Perreau M, Pantaleo G. CXCL12 and CXCL13 Cytokine Serum Levels Are Associated with the Magnitude and the Quality of SARS-CoV-2 Humoral Responses. Viruses 2022; 14:2665. [PMID: 36560669 PMCID: PMC9785906 DOI: 10.3390/v14122665] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
A better understanding of the immunological markers associated with long-lasting immune responses to SARS-CoV-2 infection is of paramount importance. In the present study, we characterized SARS-CoV-2-specific humoral responses in hospitalized (ICU and non-ICU) and non-hospitalized individuals at six months post-onset of symptoms (POS) (N = 95). We showed that the proportion of individuals with detectable anti-SARS-CoV-2 IgG or neutralizing (NAb) responses and the titers of antibodies were significantly reduced in non-hospitalized individuals, compared to ICU- or non-ICU-hospitalized individuals at 6 months POS. Interestingly, SARS-CoV-2-specific memory B cells persist at 6 months POS in both ICU and non-ICU patients and were enriched in cells harboring an activated and/or exhausted phenotype. The frequency/phenotype of SARS-CoV-2-specific memory B cells and the magnitude of IgG or NAb responses at 6 months POS correlated with the serum immune signature detected at patient admission. In particular, the serum levels of CXCL13, IL-1RA, and G-CSF directly correlated with the frequency of Spike-specific B cells and the magnitude of Spike-specific IgG or NAb, while the serum levels of CXCL12 showed an antagonizing effect. Our results indicate that the balance between CXCL12 and CXCL13 is an early marker associated with the magnitude and the quality of the SARS-CoV-2 humoral memory.
Collapse
Affiliation(s)
- Alessandra Noto
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Victor Joo
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Antonio Mancarella
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Madeleine Suffiotti
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Celine Pellaton
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Craig Fenwick
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
19
|
Silva MJA, Ribeiro LR, Lima KVB, Lima LNGC. Adaptive immunity to SARS-CoV-2 infection: A systematic review. Front Immunol 2022; 13:1001198. [PMID: 36300105 PMCID: PMC9589156 DOI: 10.3389/fimmu.2022.1001198] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/26/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND There is evidence that the adaptive or acquired immune system is one of the crucial variables in differentiating the course of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This work aimed to analyze the immunopathological aspects of adaptive immunity that are involved in the progression of this disease. METHODS This is a systematic review based on articles that included experimental evidence from in vitro assays, cohort studies, reviews, cross-sectional and case-control studies from PubMed, SciELO, MEDLINE, and Lilacs databases in English, Portuguese, or Spanish between January 2020 and July 2022. RESULTS Fifty-six articles were finalized for this review. CD4+ T cells were the most resolutive in the health-disease process compared with B cells and CD8+ T lymphocytes. The predominant subpopulations of T helper lymphocytes (Th) in critically ill patients are Th1, Th2, Th17 (without their main characteristics) and regulatory T cells (Treg), while in mild cases there is an influx of Th1, Th2, Th17 and follicular T helper cells (Tfh). These cells are responsible for the secretion of cytokines, including interleukin (IL) - 6, IL-4, IL-10, IL-7, IL-22, IL-21, IL-15, IL-1α, IL-23, IL-5, IL-13, IL-2, IL-17, tumor necrosis factor alpha (TNF-α), CXC motivating ligand (CXCL) 8, CXCL9 and tumor growth factor beta (TGF-β), with the abovementioned first 8 inflammatory mediators related to clinical benefits, while the others to a poor prognosis. Some CD8+ T lymphocyte markers are associated with the severity of the disease, such as human leukocyte antigen (HLA-DR) and programmed cell death protein 1 (PD-1). Among the antibodies produced by SARS-CoV-2, Immunoglobulin (Ig) A stood out due to its potent release associated with a more severe clinical form. CONCLUSIONS It is concluded that through this study it is possible to have a brief overview of the main immunological biomarkers and their function during SARS-CoV-2 infection in particular cell types. In critically ill individuals, adaptive immunity is varied, aberrantly compromised, and late. In particular, the T-cell response is also an essential and necessary component in immunological memory and therefore should be addressed in vaccine formulation strategies.
Collapse
Affiliation(s)
- Marcos Jessé Abrahão Silva
- Graduate Program in Epidemiology and Health Surveillance (PPGEVS), Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | - Layana Rufino Ribeiro
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | | | - Luana Nepomuceno Gondim Costa Lima
- Graduate Program in Epidemiology and Health Surveillance (PPGEVS), Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| |
Collapse
|
20
|
Comparison of Homologous and Heterologous Booster SARS-CoV-2 Vaccination in Autoimmune Rheumatic and Musculoskeletal Patients. Int J Mol Sci 2022; 23:ijms231911411. [PMID: 36232710 PMCID: PMC9569441 DOI: 10.3390/ijms231911411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccination against SARS-CoV-2 to prevent COVID-19 is highly recommended for immunocompromised patients with autoimmune rheumatic and musculoskeletal diseases (aiRMDs). Little is known about the effect of booster vaccination or infection followed by previously completed two-dose vaccination in aiRMDs. We determined neutralizing anti-SARS-CoV-2 antibody levels and applied flow cytometric immunophenotyping to quantify the SARS-CoV-2 reactive B- and T-cell mediated immunity in aiRMDs receiving homologous or heterologous boosters or acquired infection following vaccination. Patients receiving a heterologous booster had a higher proportion of IgM+ SARS-CoV-2 S+ CD19+CD27+ peripheral memory B-cells in comparison to those who acquired infection. Biologic therapy decreased the number of S+CD19+; S+CD19+CD27+IgG+; and S+CD19+CD27+IgM+ B-cells. The response rate to a booster event in cellular immunity was the highest in the S-, M-, and N-reactive CD4+CD40L+ T-cell subset. Patients with a disease duration of more than 10 years had higher proportions of CD8+TNF-α+ and CD8+IFN-γ+ T-cells in comparison to patients who were diagnosed less than 10 years ago. We detected neutralizing antibodies, S+ reactive peripheral memory B-cells, and five S-, M-, and N-reactive T-cells subsets in our patient cohort showing the importance of booster events. Biologic therapy and <10 years disease duration may confound anti-SARS-CoV-2 specific immunity in aiRMDs.
Collapse
|
21
|
Murphy RL, Paramithiotis E, Sugden S, Chermak T, Lambert B, Montamat-Sicotte D, Mattison J, Steinhubl S. The need for more holistic immune profiling in next-generation SARS-CoV-2 vaccine trials. Front Immunol 2022; 13:923106. [PMID: 36211354 PMCID: PMC9533322 DOI: 10.3389/fimmu.2022.923106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/26/2022] [Indexed: 11/14/2022] Open
Abstract
First-generation anit-SARS-CoV-2 vaccines were highly successful. They rapidly met an unforeseen emergency need, saved millions of lives, and simultaneously eased the burden on healthcare systems worldwide. The first-generation vaccines, however, focused too narrowly on antibody-based immunity as the sole marker of vaccine trial success, resulting in large knowledge gaps about waning vaccine protection, lack of vaccine robustness to viral mutation, and lack of efficacy in immunocompromised populations. Detailed reviews of first-generation vaccines, including their mode of action and geographical distribution, have been published elsewhere. Second-generation clinical trials must address these gaps by evaluating a broader range of immune markers, including those representing cell-mediated immunity, to ensure the most protective and long-lasting vaccines are brought to market.
Collapse
Affiliation(s)
- Robert L. Murphy
- Northwestern University, Evanston, IL, United States
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- *Correspondence: Robert L. Murphy,
| | | | | | | | - Bruce Lambert
- Northwestern University, Evanston, IL, United States
| | | | | | | |
Collapse
|
22
|
Qi F, Cao Y, Zhang S, Zhang Z. Single-cell analysis of the adaptive immune response to SARS-CoV-2 infection and vaccination. Front Immunol 2022; 13:964976. [PMID: 36119105 PMCID: PMC9478577 DOI: 10.3389/fimmu.2022.964976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/10/2022] [Indexed: 12/04/2022] Open
Abstract
Amid the ongoing Coronavirus Disease 2019 (COVID-19) pandemic, vaccination and early therapeutic interventions are the most effective means to combat and control the severity of the disease. Host immune responses to SARS-CoV-2 and its variants, particularly adaptive immune responses, should be fully understood to develop improved strategies to implement these measures. Single-cell multi-omic technologies, including flow cytometry, single-cell transcriptomics, and single-cell T-cell receptor (TCR) and B-cell receptor (BCR) profiling, offer a better solution to examine the protective or pathological immune responses and molecular mechanisms associated with SARS-CoV-2 infection, thus providing crucial support for the development of vaccines and therapeutics for COVID-19. Recent reviews have revealed the overall immune landscape of natural SARS-CoV-2 infection, and this review will focus on adaptive immune responses (including T cells and B cells) to SARS-CoV-2 revealed by single-cell multi-omics technologies. In addition, we explore how the single-cell analyses disclose the critical components of immune protection and pathogenesis during SARS-CoV-2 infection through the comparison between the adaptive immune responses induced by natural infection and by vaccination.
Collapse
Affiliation(s)
- Furong Qi
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Single-Cell Omics Reasearch and Application, Shenzhen, China
| | - Yingyin Cao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shuye Zhang
- Clinical Center for BioTherapy and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Single-Cell Omics Reasearch and Application, Shenzhen, China
- Shenzhen Research Center for Communicable Disease Diagnosis and Treatment of Chinese Academy of Medical Science, Shenzhen, China
| |
Collapse
|
23
|
Recovering or Persisting: The Immunopathological Features of SARS-CoV-2 Infection in Children. J Clin Med 2022; 11:jcm11154363. [PMID: 35955979 PMCID: PMC9369242 DOI: 10.3390/jcm11154363] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 12/18/2022] Open
Abstract
Background. The profile of cellular immunological responses of children across the spectrum of COVID-19, ranging from acute SARS-CoV-2 infection to full recovery or Long COVID, has not yet been fully investigated. Methods. We examined and compared cytokines in sera and cell subsets in peripheral blood mononuclear cells (B and regulatory T lymphocytes) collected from four distinct groups of children, distributed as follows: younger than 18 years of age with either acute SARS-CoV-2 infection (n = 49); fully recovered from COVID-19 (n = 32); with persistent symptoms (Long COVID, n = 51); and healthy controls (n = 9). Results. In the later stages after SARS-CoV-2 infection, the cohorts of children, both with recovered and persistent symptoms, showed skewed T and B subsets, with remarkable differences when compared with children at the onset of the infection and with controls. The frequencies of IgD+CD27− naïve B cells, IgD+IgM+ and CD27−IgM+CD38dim B cells were higher in children with recent infection than in those with an older history of disease (p < 0.0001 for all); similarly, the total and natural Tregs compartments were more represented in children at onset when compared with Long COVID (p < 0.0001 and p = 0.0005, respectively). Despite the heterogeneity, partially due to age, sex and infection incidence, the susceptibility of certain children to develop persistent symptoms after infection appeared to be associated with the imbalance of the adaptive immune response. Following up and comparing recovered versus Long COVID patients, we analyzed the role of circulating naïve and switched B and regulatory T lymphocytes in counteracting the evolution of the symptomatology emerged, finding an interesting correlation between the amount and ability to reconstitute the natural Tregs component with the persistence of symptoms (linear regression, p = 0.0026). Conclusions. In this study, we suggest that children affected by Long COVID may have a compromised ability to switch from the innate to the adaptive immune response, as supported by our data showing a contraction of naïve and switched B cell compartment and an unstable balance of regulatory T lymphocytes occurring in these children. However, further prospective immunological studies are needed to better clarify which factors (epigenetic, diet, environment, etc.) are involved in the impairment of the immunological mechanisms in the Long COVID patients.
Collapse
|
24
|
Torresi J, Edeling MA, Nolan T, Godfrey DI. A Complementary Union of SARS-CoV2 Natural and Vaccine Induced Immune Responses. Front Immunol 2022; 13:914167. [PMID: 35911696 PMCID: PMC9326230 DOI: 10.3389/fimmu.2022.914167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/13/2022] [Indexed: 12/27/2022] Open
Abstract
Our understanding of the immune responses that follow SARS-CoV-2 infection and vaccination has progressed considerably since the COVID-19 pandemic was first declared on the 11th of March in 2020. Recovery from infection is associated with the development of protective immune responses, although over time these become less effective against new emerging SARS-CoV-2 variants. Consequently, reinfection with SARS-CoV-2 variants is not infrequent and has contributed to the ongoing pandemic. COVID-19 vaccines have had a tremendous impact on reducing infection and particularly the number of deaths associated with SARS-CoV-2 infection. However, waning of vaccine induced immunity plus the emergence of new variants has necessitated the use of boosters to maintain the benefits of vaccination in reducing COVID-19 associated deaths. Boosting is also beneficial for individuals who have recovered from COVID-19 and developed natural immunity, also enhancing responses immune responses to SARS-CoV-2 variants. This review summarizes our understanding of the immune responses that follow SARS-CoV-2 infection and vaccination, the risks of reinfection with emerging variants and the very important protective role vaccine boosting plays in both vaccinated and previously infected individuals.
Collapse
Affiliation(s)
- Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Melissa A. Edeling
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Terry Nolan
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
- Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
25
|
Persistent Maintenance of Intermediate Memory B Cells Following SARS-CoV-2 Infection and Vaccination Recall Response. J Virol 2022; 96:e0076022. [PMID: 35862718 PMCID: PMC9364791 DOI: 10.1128/jvi.00760-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Robust population-wide immunity will help to curb the SARS-CoV-2 pandemics. To maintain the immunity at protective levels, the quality and persistence of the immune response elicited by infection or vaccination must be determined. We analyzed the dynamics of B cell response during 12 months following SARS-CoV-2 infection on an individual level. In contrast to antibodies, memory B cells specific for the spike (S) protein persisted at high levels throughout the period. These cells efficiently secreted neutralizing antibodies and correlated with IFN-γ-secreting CD4+ T cells. Interestingly, the CD27−CD21+ intermediate memory B cell phenotype was associated with high B cell receptor avidity and the production of neutralizing antibodies. Vaccination of previously infected individuals triggered a recall response enhancing neutralizing antibody and memory B cell levels. Collectively, our findings provide a detailed insight into the longevity of SARS-CoV-2-infection-induced B cell immunity and highlight the importance of vaccination among previously infected. IMPORTANCE To efficiently maintain immunity against SARS-CoV-2 infection, we must first determine the durability of the immune response following infection or vaccination. Here, we demonstrated that, unlike antibodies, virus-specific memory B cells persist at high levels for at least 12 months postinfection and successfully respond to a secondary antigen challenge. Furthermore, we demonstrated that vaccination of previously infected individuals significantly boosters B cell immunity.
Collapse
|
26
|
Human coronaviruses: origin, host and receptor. J Clin Virol 2022; 155:105246. [PMID: 35930858 PMCID: PMC9301904 DOI: 10.1016/j.jcv.2022.105246] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/10/2022] [Accepted: 07/20/2022] [Indexed: 01/02/2023]
|
27
|
Adjobimey T, Meyer J, Terkeš V, Parcina M, Hoerauf A. Helminth antigens differentially modulate the activation of CD4 + and CD8 + T lymphocytes of convalescent COVID-19 patients in vitro. BMC Med 2022; 20:241. [PMID: 35764965 PMCID: PMC9241220 DOI: 10.1186/s12916-022-02441-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 06/15/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) is a respiratory disease caused by SARS-CoV-2, a recently discovered strain of coronavirus. The virus has spread rapidly, causing millions of death worldwide. Contrary to the predictions, prevalence and mortality due to COVID-19 have remained moderate on the African continent. Several factors, including age, genetics, vaccines, and co-infections, might impact the course of the pandemic in Africa. Helminths are highly endemic in Sub-Saharan Africa and are renowned for their ability to evade, skew, and suppress human immune responses through various immune-modulatory mechanisms. Such effects will likely impact SARS-CoV-2 transmission and disease progression. METHODS Here, we analyzed in vitro the impact of antigen extracts from three major helminth parasites, including Onchocerca volvulus, Brugia malayi, and Ascaris lumbricoides, on the immune reactivity to SARS-CoV-2 peptides in COVID-19 patients. Activation of CD4+ and CD8+ T cells was investigated using flow cytometry to monitor the expression of CD137 (4-1BB) and CD69. Cytokine expression, including IL-6, IL-10, IFN-γ, and TNFα, was measured by Luminex in cell culture supernatants. RESULTS We observed that helminth antigens significantly reduced the frequency of SARS-CoV-2-reactive CD4+ T helper cells. In contrast, the expression of SARS-CoV-2-reactive CD8+ T cells was not affected and even significantly increased when PBMCs from COVID-19 patients living in Benin, an endemic helminth country, were used. In addition, stimulation with helminth antigens was associated with increased IL-10 and a reduction of IFNγ and TNFα. CONCLUSIONS Our data offer a plausible explanation for the moderate incidence of COVID-19 in Africa and support the hypothesis that helper T cell-mediated immune responses to SARS-CoV-2 are mitigated in the presence of helminth antigens, while virus-specific cytotoxic T cell responses are maintained.
Collapse
Affiliation(s)
- Tomabu Adjobimey
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Sigmund-Freud-Straße 25, 53105, Bonn, Germany. .,Unité de Biochimie et de Biologie Moléculaire, Faculté des Sciences et Techniques (FAST), Université d'Abomey-Calavi, Abomey-Calavi, Bénin.
| | - Julia Meyer
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Sigmund-Freud-Straße 25, 53105, Bonn, Germany
| | - Vedrana Terkeš
- Department of Infectiology, General Hospital Zadar, Zadar, Croatia
| | - Marijo Parcina
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Sigmund-Freud-Straße 25, 53105, Bonn, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Sigmund-Freud-Straße 25, 53105, Bonn, Germany.,Bonn-Cologne Site, German Center for Infectious Disease Research (DZIF), Bonn, Germany
| |
Collapse
|
28
|
Anti-Spike Antibody Response to Natural Infection with SARS-CoV-2 and Its Activity against Emerging Variants. Microbiol Spectr 2022; 10:e0074322. [PMID: 35703556 PMCID: PMC9430469 DOI: 10.1128/spectrum.00743-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has substantially affected human health globally. Spike-specific antibody response plays a major role in protection against SARS-CoV-2 infection. Here, we examined serological anti-spike antibody and memory B cell responses in adults with acute SARS-CoV-2 infection. Twenty-five adult patients were enrolled between January and September 2020, and 21 (84%) had a detectable spike-binding antibody response in serum on day 21 ± 8 (6 to 33) after the onset of illness. Among those with positive spike-binding antibody response, 19 (90%) had a positive hemagglutination titer and 15 (71%) had angiotensin-converting enzyme 2 (ACE2)-blocking serological activities. Follow-up serum samples collected 11 ± 1 (7 to 15) months after infection exhibited an average of 2.6 ± 1.0 (1.0 to 3.5)-fold reduction in the spike-binding antibody response. Moreover, convalescent and follow-up serum samples showed 83 ± 82 (15 to 306)- and 165 ± 167 (12 to 456)-fold reductions in the neutralization activity against the Omicron variant, respectively. Upon acute infection, spike-specific memory B cell responses were elicited, with an average frequency of 1.3% ± 1.2% of peripheral B cells on day 19 ± 7 (6 to 33) after the onset of illness. IgM memory B cells were predominantly induced. Patients with fever and pneumonia showed significantly stronger spike-binding, ACE2-blocking antibody, and memory B cell responses. In conclusion, spike-specific antibody response elicited upon acute SARS-CoV-2 infection may wane over time and be compromised by the emergence of viral variants. IMPORTANCE As spike protein-specific antibody responses play a major role in protection against SARS-CoV-2, we examined spike-binding and ACE2-blocking antibody responses in SARS-CoV-2 infection at different time points. We found robust responses following acute infection, which waned approximately 11 months after infection. Patients with fever and pneumonia showed significantly stronger spike-binding, ACE2-blocking antibody, and memory B cell responses. In particular, spike-specific antibody response in the convalescent and follow-up serum samples was substantially affected by emerging variants, especially Beta and Omicron variants. These results warrant continued surveillance of spike-specific antibody responses to natural infections and highlight the importance of maintaining functional anti-spike antibodies through immunization.
Collapse
|
29
|
Sapkota B, Saud B, Shrestha R, Al-Fahad D, Sah R, Shrestha S, Rodriguez-Morales AJ. Heterologous prime-boost strategies for COVID-19 vaccines. J Travel Med 2022; 29:taab191. [PMID: 34918097 PMCID: PMC8754745 DOI: 10.1093/jtm/taab191] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/10/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND/OBJECTIVE Heterologous prime-boost doses of COVID-19 vaccines ('mix-and-match' approach) are being studied to test for the effectiveness of Oxford (AZD1222), Pfizer (BNT162b2), Moderna (mRNA-1273) and Novavax (NVX-CoV2373) vaccines for COVID in 'Com-Cov2 trial' in UK, and that of Oxford and Pfizer vaccines in 'CombivacS trial' in Spain. Later, other heterologous combinations of CoronaVac (DB15806), Janssen (JNJ-78436735), CanSino (AD5-nCOV) and other were also being trialled to explore their effectiveness. Previously, such a strategy was deployed for HIV, Ebola virus, malaria, tuberculosis, influenza and hepatitis B to develop the artificial acquired active immunity. The present review explores the science behind such an approach for candidate COVID-19 vaccines developed using 11 different platforms approved by the World Health Organization. METHODS The candidate vaccines' pharmaceutical parameters (e.g. platforms, number needed to vaccinate and intervals, adjuvanted status, excipients and preservatives added, efficacy and effectiveness, vaccine adverse events, and boosters), and clinical aspects must be analysed for the mix-and-match approach. Results prime-boost trials showed safety, effectiveness, higher systemic reactogenicity, well tolerability with improved immunogenicity, and flexibility profiles for future vaccinations, especially during acute and global shortages, compared to the homologous counterparts. CONCLUSION Still, large controlled trials are warranted to address challenging variants of concerns including Omicron and other, and to generalize the effectiveness of the approach in regular as well as emergency use during vaccine scarcity.
Collapse
Affiliation(s)
- Binaya Sapkota
- Nobel College Faculty of Health Sciences, Department of Pharmaceutical Sciences, Kathmandu, Nepal
| | - Bhuvan Saud
- Department of Medical Laboratory Technology, Janamaitri Foundation Institute of Health Sciences, Lalitpur, Nepal
- Central Department of Biotechnology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Nepal
| | - Ranish Shrestha
- Infection Control Unit, Outbreak Investigation and Response Sub-committee, Nepal Cancer Hospital and Research Center, Lalitpur, Nepal
- Nepal Health Research and Innovation Foundation, Lalitpur, Nepal
| | - Dhurgham Al-Fahad
- Department of Pathological Analysis, College of Science, University of Thi-Qar, Thi-Qar, Iraq
| | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
| | - Sunil Shrestha
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Alfonso J Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de las Americas, Pereira, Colombia
- Master of Clinical Epidemiology and Biostatistics, Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, Peru
| |
Collapse
|
30
|
Bwire G, Ario AR, Eyu P, Ocom F, Wamala JF, Kusi KA, Ndeketa L, Jambo KC, Wanyenze RK, Talisuna AO. The COVID-19 pandemic in the African continent. BMC Med 2022; 20:167. [PMID: 35501853 PMCID: PMC9059455 DOI: 10.1186/s12916-022-02367-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 01/13/2023] Open
Abstract
In December 2019, a new coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and associated disease, coronavirus disease 2019 (COVID-19), was identified in China. This virus spread quickly and in March, 2020, it was declared a pandemic. Scientists predicted the worst scenario to occur in Africa since it was the least developed of the continents in terms of human development index, lagged behind others in achievement of the United Nations sustainable development goals (SDGs), has inadequate resources for provision of social services, and has many fragile states. In addition, there were relatively few research reporting findings on COVID-19 in Africa. On the contrary, the more developed countries reported higher disease incidences and mortality rates. However, for Africa, the earlier predictions and modelling into COVID-19 incidence and mortality did not fit into the reality. Therefore, the main objective of this forum is to bring together infectious diseases and public health experts to give an overview of COVID-19 in Africa and share their thoughts and opinions on why Africa behaved the way it did. Furthermore, the experts highlight what needs to be done to support Africa to consolidate the status quo and overcome the negative effects of COVID-19 so as to accelerate attainment of the SDGs.
Collapse
Affiliation(s)
- Godfrey Bwire
- Department of Integrated Epidemiology Surveillance and Public Health Emergencies, Ministry of Health, P.O Box 7272, Kampala, Uganda
- School of Public Health, Makerere University, P.O. Box 7072, Kampala, Uganda
| | | | - Patricia Eyu
- Uganda National Institute of Public Health, Kampala, Uganda
| | - Felix Ocom
- Uganda National Institute of Public Health, Kampala, Uganda
| | | | - Kwadwo A. Kusi
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Latif Ndeketa
- Malawi-Liverpool-Wellcome Programme (MLW), Blantyre, Malawi
| | - Kondwani C. Jambo
- Malawi-Liverpool-Wellcome Programme (MLW), Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Rhoda K. Wanyenze
- School of Public Health, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Ambrose O. Talisuna
- Epidemic Preparedness and Response Cluster, World Health Organization, Regional Office for Africa, Brazzaville, Congo
| |
Collapse
|
31
|
Prietl B, Odler B, Kirsch AH, Artinger K, Eigner M, Schmaldienst S, Pfeifer V, Stanzer S, Eberl A, Raml R, Pieber T, Rosenkranz AR, Brodmann M, Eller P, Eller K. Chronic Inflammation Might Protect Hemodialysis Patients From Severe COVID-19. Front Immunol 2022; 13:821818. [PMID: 35265078 PMCID: PMC8901184 DOI: 10.3389/fimmu.2022.821818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Hemodialysis patients (HD) are expected to have excess mortality in coronavirus disease 2019 (COVID-19). This was challenged by a recent study reporting HD patients to have comparable mortality and less ICU admissions when hospitalized with COVID-19. An altered immune system due to chronic inflammation might protect HD-patients from severe COVID-19. Therefore, we aimed to describe the peripheral blood immune phenotype in HD-patients and respective controls with COVID-19.
Collapse
Affiliation(s)
- Barbara Prietl
- Center for Biomarker Research in Medicine, Graz, Austria.,Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Balazs Odler
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander H Kirsch
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Katharina Artinger
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Manfred Eigner
- Klinikum Favoriten, Wiener Krankenanstaltenverbund, Vienna, Austria
| | | | - Verena Pfeifer
- Center for Biomarker Research in Medicine, Graz, Austria.,Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Anita Eberl
- Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria
| | - Reingard Raml
- Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria
| | - Thomas Pieber
- Center for Biomarker Research in Medicine, Graz, Austria.,Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander R Rosenkranz
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Marianne Brodmann
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp Eller
- Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Kathrin Eller
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
32
|
Vo HTM, Maestri A, Auerswald H, Sorn S, Lay S, Seng H, Sann S, Ya N, Pean P, Dussart P, Schwartz O, Ly S, Bruel T, Ly S, Duong V, Karlsson EA, Cantaert T. Robust and Functional Immune Memory Up to 9 Months After SARS-CoV-2 Infection: A Southeast Asian Longitudinal Cohort. Front Immunol 2022; 13:817905. [PMID: 35185909 PMCID: PMC8853741 DOI: 10.3389/fimmu.2022.817905] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/10/2022] [Indexed: 01/14/2023] Open
Abstract
The duration of humoral and cellular immune memory following SARS-CoV-2 infection in populations in least developed countries remains understudied but is key to overcome the current SARS-CoV-2 pandemic. Sixty-four Cambodian individuals with laboratory-confirmed infection with asymptomatic or mild/moderate clinical presentation were evaluated for Spike (S)-binding and neutralizing antibodies and antibody effector functions during acute phase of infection and at 6-9 months follow-up. Antigen-specific B cells, CD4+ and CD8+ T cells were characterized, and T cells were interrogated for functionality at late convalescence. Anti-S antibody titers decreased over time, but effector functions mediated by S-specific antibodies remained stable. S- and nucleocapsid (N)-specific B cells could be detected in late convalescence in the activated memory B cell compartment and are mostly IgG+. CD4+ and CD8+ T cell immune memory was maintained to S and membrane (M) protein. Asymptomatic infection resulted in decreased antibody-dependent cellular cytotoxicity (ADCC) and frequency of SARS-CoV-2-specific CD4+ T cells at late convalescence. Whereas anti-S antibodies correlated with S-specific B cells, there was no correlation between T cell response and humoral immune memory. Hence, all aspects of a protective immune response are maintained up to nine months after SARS-CoV-2 infection and in the absence of re-infection.
Collapse
Affiliation(s)
- Hoa Thi My Vo
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Alvino Maestri
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Heidi Auerswald
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sopheak Sorn
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sokchea Lay
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Heng Seng
- Department of Communicable Disease Control, Ministry of Health (CDC-MoH), Phnom Penh, Cambodia
| | - Sotheary Sann
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Nisa Ya
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Polidy Pean
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Olivier Schwartz
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Sovann Ly
- Department of Communicable Disease Control, Ministry of Health (CDC-MoH), Phnom Penh, Cambodia
| | - Timothée Bruel
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Sowath Ly
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Erik A Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| |
Collapse
|
33
|
Immune response to the third COVID-19 vaccine dose is related to lymphocyte count in multiple sclerosis patients treated with fingolimod. J Neurol 2022; 269:2286-2292. [PMID: 35235002 PMCID: PMC8889521 DOI: 10.1007/s00415-022-11030-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
Background The majority of multiple sclerosis [MS] patients treated with fingolimod fail to develop a protective level of IgG humoral and adaptive cellular immune responses following full BNT162b2 SARS-CoV-2 vaccination. Objective To compare the efficacy of the third COVID-19 vaccine dose in vaccine non-responders fingolimod-treated MS patients. Study design This is a prospective 3-month, single-center, randomized clinical trial. Methods Twenty relapsing MS patients who had been on fingolimod therapy ≥ 12 months and failed to develop humoral IgG immune response to 2-dose Pfizer BNT162b2 COVID-19 vaccination were randomized into two groups: fingolimod-continuation group and fingolimod-discontinuation group. Humoral and memory cellular immune responses were assessed within 1 and 3 months following the third Pfizer BNT162b2 vaccine dose and compared between the groups. Results A higher rate of patients in the fingolimod-discontinuation group [n = 8/10] compared to fingolimod-continuation group [n = 2/10] developed positive SARS-COV-2 IgG. Median IgG titer 1 month following the third dose was 202.3 BAU/ml vs. 26.4 BAU/ml, respectively, p = 0.022. The development of IgG humoral response correlated with absolute lymphocyte count. Specific SARS-COV-2 memory B cell and T cell immune responses were not detected in both groups, either at 1 month or 3 months following the third COVID-19 vaccine dose. Conclusions Short period of fingolimod treatment discontinuation was associated with the development of humoral protection but not with adaptive cellular immunity. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-022-11030-0.
Collapse
|
34
|
Kurahashi Y, Sutandhio S, Furukawa K, Tjan LH, Iwata S, Sano S, Tohma Y, Ohkita H, Nakamura S, Nishimura M, Arii J, Kiriu T, Yamamoto M, Nagano T, Nishimura Y, Mori Y. Cross-Neutralizing Breadth and Longevity Against SARS-CoV-2 Variants After Infections. Front Immunol 2022; 13:773652. [PMID: 35281007 PMCID: PMC8907139 DOI: 10.3389/fimmu.2022.773652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/04/2022] [Indexed: 01/05/2023] Open
Abstract
Background Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic. The emergence of variants of concern (VOCs) has become one of the most pressing issues in public health. To control VOCs, it is important to know which COVID-19 convalescent sera have cross-neutralizing activity against VOCs and how long the sera maintain this protective activity. Methods Sera of patients infected with SARS-CoV-2 from March 2020 to January 2021 and admitted to Hyogo Prefectural Kakogawa Medical Center were selected. Blood was drawn from patients at 1-3, 3-6, and 6-8 months post onset. Then, a virus neutralization assay against SARS-CoV-2 variants (D614G mutation as conventional strain; B.1.1.7, P.1, and B.1.351 as VOCs) was performed using authentic viruses. Results We assessed 97 sera from 42 patients. Sera from 28 patients showed neutralizing activity that was sustained for 3-8 months post onset. The neutralizing antibody titer against D614G significantly decreased in sera of 6-8 months post onset compared to those of 1-3 months post onset. However, the neutralizing antibody titers against the three VOCs were not significantly different among 1-3, 3-6, and 6-8 months post onset. Discussion Our results indicate that neutralizing antibodies that recognize the common epitope for several variants may be maintained for a long time, while neutralizing antibodies having specific epitopes for a variant, produced in large quantities immediately after infection, may decrease quite rapidly.
Collapse
Affiliation(s)
- Yukiya Kurahashi
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Silvia Sutandhio
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koichi Furukawa
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Lidya Handayani Tjan
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sachiyo Iwata
- Division of Cardiovascular Medicine, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, Japan
| | - Shigeru Sano
- Acute Care Medical Center, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, Japan
| | - Yoshiki Tohma
- Acute Care Medical Center, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, Japan
| | - Hiroyuki Ohkita
- Division of General Internal Medicine, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, Japan
| | - Sachiko Nakamura
- Division of General Internal Medicine, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, Japan
| | - Mitsuhiro Nishimura
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jun Arii
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsunori Kiriu
- Division of Respiratory Medicine, Hyogo Prefectural Awaji Medical Center, Sumoto, Japan
| | - Masatsugu Yamamoto
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
35
|
Zhuo SH, Wu JJ, Zhao L, Li WH, Zhao YF, Li YM. A chitosan-mediated inhalable nanovaccine against SARS-CoV-2. NANO RESEARCH 2022; 15:4191-4200. [PMID: 35126879 PMCID: PMC8809230 DOI: 10.1007/s12274-021-4012-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with several antigenic variants, has grown into a global challenge, and the rapid establishment of an immune barrier is crucial to achieving long-term control of the virus. This has led to a great demand for easy preparation and scalable vaccines, especially in low-income countries. Here, we present an inhalable nanovaccine comprising chitosan and SARS-CoV-2 spike protein. The chitosan-mediated nanovaccine enabled a strong spike-specific antibody immune response and augmented local mucosal immunity in bronchoalveolar lavage and lungs, which might be capable of protecting the host from infection without systemic toxicity. In addition, the enhanced adaptive immunity stimulated by chitosan showed potential protection against SARS-CoV-2. Furthermore, inhalation of the nanovaccine induced a comparable antibody response compared to intramuscular injection. This inhalable nanovaccine against SARS-CoV-2 offers a convenient and compliant strategy to reduce the use of needles and the need for medical staff. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (the immune activation of CS-mediated nanovacccine on BMDCs, cell viability, immune responses in lungs and BALF, serum chemistry and H&E histopathological analysis.) is available in the online version of this article at 10.1007/s12274-021-4012-9.
Collapse
Affiliation(s)
- Shao-Hua Zhuo
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Jun-Jun Wu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Lang Zhao
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Wen-Hao Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Yu-Fen Zhao
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084 China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315221 China
| | - Yan-Mei Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084 China
- Beijing Institute for Brain Disorders, Beijing, 100069 China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
36
|
Ryan FJ, Hope CM, Masavuli MG, Lynn MA, Mekonnen ZA, Yeow AEL, Garcia-Valtanen P, Al-Delfi Z, Gummow J, Ferguson C, O'Connor S, Reddi BAJ, Hissaria P, Shaw D, Kok-Lim C, Gleadle JM, Beard MR, Barry SC, Grubor-Bauk B, Lynn DJ. Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection. BMC Med 2022; 20:26. [PMID: 35027067 PMCID: PMC8758383 DOI: 10.1186/s12916-021-02228-6] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious respiratory virus which is responsible for the coronavirus disease 2019 (COVID-19) pandemic. It is increasingly clear that recovered individuals, even those who had mild COVID-19, can suffer from persistent symptoms for many months after infection, a condition referred to as "long COVID", post-acute sequelae of COVID-19 (PASC), post-acute COVID-19 syndrome, or post COVID-19 condition. However, despite the plethora of research on COVID-19, relatively little is known about the molecular underpinnings of these long-term effects. METHODS We have undertaken an integrated analysis of immune responses in blood at a transcriptional, cellular, and serological level at 12, 16, and 24 weeks post-infection (wpi) in 69 patients recovering from mild, moderate, severe, or critical COVID-19 in comparison to healthy uninfected controls. Twenty-one of these patients were referred to a long COVID clinic and > 50% reported ongoing symptoms more than 6 months post-infection. RESULTS Anti-Spike and anti-RBD IgG responses were largely stable up to 24 wpi and correlated with disease severity. Deep immunophenotyping revealed significant differences in multiple innate (NK cells, LD neutrophils, CXCR3+ monocytes) and adaptive immune populations (T helper, T follicular helper, and regulatory T cells) in convalescent individuals compared to healthy controls, which were most strongly evident at 12 and 16 wpi. RNA sequencing revealed significant perturbations to gene expression in COVID-19 convalescents until at least 6 months post-infection. We also uncovered significant differences in the transcriptome at 24 wpi of convalescents who were referred to a long COVID clinic compared to those who were not. CONCLUSIONS Variation in the rate of recovery from infection at a cellular and transcriptional level may explain the persistence of symptoms associated with long COVID in some individuals.
Collapse
Affiliation(s)
- Feargal J Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
| | - Christopher M Hope
- Women's and Children's Health Network, North Adelaide, SA, Australia.,Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Makutiro G Masavuli
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Miriam A Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
| | - Zelalem A Mekonnen
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Arthur Eng Lip Yeow
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Pablo Garcia-Valtanen
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Zahraa Al-Delfi
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Jason Gummow
- Gene Silencing and Expression Core Facility, Adelaide Health and Medical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Catherine Ferguson
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Stephanie O'Connor
- Intensive Care Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Benjamin A J Reddi
- Intensive Care Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Pravin Hissaria
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - David Shaw
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Chuan Kok-Lim
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia.,Microbiology and Infectious Diseases Department, SA Pathology, Adelaide, SA, Australia
| | - Jonathan M Gleadle
- Department of Renal Medicine, Flinders Medical Centre, Flinders University, Bedford Park, SA, 5042, Australia.,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, 5042, Australia
| | - Michael R Beard
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Simon C Barry
- Women's and Children's Health Network, North Adelaide, SA, Australia. .,Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia.
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia. .,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
37
|
Balachandran H, Phetsouphanh C, Agapiou D, Adhikari A, Rodrigo C, Hammoud M, Shrestha LB, Keoshkerian E, Gupta M, Turville S, Christ D, King C, Sasson SC, Bartlett A, Grubor-Bauk B, Rawlinson W, Aggarwal A, Stella AO, Klemm V, Mina MM, Post JJ, Hudson B, Gilroy N, Konecny P, Ahlenstiel G, Dwyer DE, Sorrell TC, Kelleher A, Tedla N, Lloyd AR, Martinello M, Bull RA. Maintenance of broad neutralising antibodies and memory B cells 12 months post-infection is predicted by SARS-CoV-2 specific CD4+ T cell responses. Cell Rep 2022; 38:110345. [PMID: 35090598 PMCID: PMC8768427 DOI: 10.1016/j.celrep.2022.110345] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/01/2021] [Accepted: 01/13/2022] [Indexed: 12/02/2022] Open
Abstract
Understanding the long-term maintenance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity is critical for predicting protection against reinfection. In an age- and gender-matched cohort of 24 participants, the association of disease severity and early immune responses on the maintenance of humoral immunity 12 months post-infection is examined. All severely affected participants maintain a stable subset of SARS-CoV-2 receptor-binding domain (RBD)-specific memory B cells (MBCs) and good neutralizing antibody breadth against the majority of the variants of concern, including the Delta variant. Modeling these immune responses against vaccine efficacy data indicate a 45%–76% protection against symptomatic infection (variant dependent). Overall, these findings indicate durable humoral responses in most participants after infection, reasonable protection against reinfection, and implicate baseline antigen-specific CD4+ T cell responses as a predictor of maintenance of antibody neutralization breadth and RBD-specific MBC levels at 12 months post-infection.
Collapse
|
38
|
Martin BR, Richardson J. An exploratory review of Potential Adjunct Therapies for the Treatment of Coronavirus Infections. J Chiropr Med 2021; 20:199-217. [PMID: 34924893 PMCID: PMC8664662 DOI: 10.1016/j.jcm.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 10/31/2022] Open
Abstract
Objective The purpose of this exploratory review c, including vitamin D, zinc, vitamin A, elderberry (S nigra), garlic (A sativum), licorice (G glabra), stinging nettle (U dioica), N-acetylcysteine, quercetin and selenium as potential adjunct therapies for the treatment of coronavirus infections. Methods A search of PubMed was performed for articles published from 2005 to 2021. Key words searched were zinc, vitamin A, vitamin D, Sambucus nigra, Allium sativum, Glycyrrhiza glabra, Urtica dioica, N-Acetylcysteine, quercetin, selenium and coronavirus. Results There were 47 articles selected for this review. Findings included that vitamin D, zinc, vitamin A, S nigra, A sativum, G glabra, U dioica, N-acetylcysteine, quercetin and selenium have been shown to produce anti-inflammatory, immunostimulatory or antiviral effects that may enhance the actions of standard therapeutics for the treatment of CoV infections. We found only research articles related to the effects of vitamin D, zinc, G glabra, quercetin and selenium against COVID-19. Conclusion We identified non-pharmaceutical supplements (Vitamin D, zinc, vitamin A, S nigra, A sativum, G glabra and U dioica) which may have potential to provide support for those with coronavirus infections. However, rigorous clinical studies need to be performed before any clinical recommendations can be made at this time.
Collapse
Affiliation(s)
- Brett R Martin
- National University of Health Sciences Basic Science Department, Pinellas Park, Fl, USA
| | | |
Collapse
|
39
|
Role of multiple factors likely contributing to severity-mortality of COVID-19. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105101. [PMID: 34624542 PMCID: PMC8491954 DOI: 10.1016/j.meegid.2021.105101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023]
Abstract
COVID-19 stalled the world in 2020 and continues to be the greatest health crisis of this generation. While the apparent case fatality rates across fluctuates around ~2% globally, associated mortality/death rate (deaths per million population) varies distinctly across regions from the global average of ~600 per million population. Heterogeneous factors have been linked with COVID-19 associated mortalities and these include age, share of geriatric population, comorbidities, trained immunity and climatic conditions. Apart from direct or indirect role of endemic diseases, dietary factors and host immunity in regulating COVID-19 severity, human behaviour will inevitably control outcome of this pandemic. Comprehensive understanding of these factors will have a bearing on management of future health crises.
Collapse
|
40
|
Zhu W, Feng J, Li C, Wang H, Zhong Y, Zhou L, Zhang X, Zhang T. COVID-19 Risk Assessment for the Tokyo Olympic Games. Front Public Health 2021; 9:730611. [PMID: 34760863 PMCID: PMC8572808 DOI: 10.3389/fpubh.2021.730611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction: As of June 7, 2021, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread to more than 200 countries. The global number of reported cases is more than 172.9 million, with more than 3.7 million deaths, and the number of infected individuals is still growing rapidly. Consequently, events and activities around the world were canceled or postponed, and the preparation for sporting events were greatly challenged. Under such circumstances, about 11,000 athletes from ~206 countries are arriving in Tokyo for the 32nd Summer Olympic Games. Therefore, it is urgently necessary to assess the occurrence and spread risk of COVID-19 for the Games. Objectives: To explore effective prevention and control measures for COVID-19 in large international events through simulations of different interventions according to risk assessment. Methods: We used a random model to calculate the number of initial infected patients and used Poisson distribution to determine the number of initial infected patients based on the number of countries involved. Furthermore, to simulate the COVID-19 transmission, the susceptible-exposed-symptomatic-asymptomatic-recovered-hospitalized (SEIARH) model was established based on the susceptible-exposed-infectious-recovered (SEIR) mathematical model of epidemic diseases. According to risk assessment indicators produced by different scenarios of the simulated interventions, the risk of COVID-19 transmission in Tokyo Olympic Games was assessed. Results: The current COVID-19 prevention measures proposed by the Japan Olympic Committee need to be enhanced. And large-scale vaccination will effectively control the spread of COVID-19. When the protective efficacy of vaccines is 78.1% or 89.8%, and if the vaccination rate of athletes reaches 80%, an epidemic prevention barrier can be established.
Collapse
Affiliation(s)
- Wenhui Zhu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jie Feng
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Cheng Li
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huimin Wang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yang Zhong
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lijun Zhou
- Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Xingyu Zhang
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Tao Zhang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Balzanelli MG, Distratis P, Dipalma G, Vimercati L, Catucci O, Amatulli F, Cefalo A, Lazzaro R, Palazzo D, Aityan SK, Pricolo G, Prudenzano A, D’Errico P, Laforgia R, Pezzolla A, Tomassone D, Inchingolo AD, Pham VH, Iacobone D, Materi GM, Scarano A, Lorusso F, Inchingolo F, Nguyen KCD, Isacco CG. Immunity Profiling of COVID-19 Infection, Dynamic Variations of Lymphocyte Subsets, a Comparative Analysis on Four Different Groups. Microorganisms 2021; 9:microorganisms9102036. [PMID: 34683357 PMCID: PMC8540733 DOI: 10.3390/microorganisms9102036] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Background: A novel coronavirus (SARS-CoV-2)-induced pneumonia (COVID-19) emerged in December 2019 in China, spreading worldwide. The aim of the present investigation was to evaluate the immunological response and the clinical subset of peripheral lymphocyte subset alteration in COVID-19 infection. Methods: the study was conducted on four different clinical groups (n = 4; total n = 138). Each individual was assigned to different groups based on specific criteria evaluated at the admission such as fever, dyspnea, arterial blood gas analysis (ABG), oral-nasopharyngeal swab/RT-PCR, and thoracic CT-scan. Treatment was performed only after blood samples were collected from each patient (PP and PP) at day 1. The blood samples were analyzed and tested the same day (CBC and Flowcytometry). The positive–positive group (PP n = 45; F = 18/ M = 27; median age = 62.33), comprised individuals affected by COVID-19 who showed fever, dyspnea (ABG = pO2 < 60), confirmed positive by oral-nasopharyngeal swab/RT-PCR and with CT-scan showing ground-glass opacities. The negative–positive (NP; n = 37; F = 11/M = 26; median age = 75.94) or “COVID-like” group comprised individuals with fever and dyspnea (ABG = pO2 < 60), who tested negative to nasopharyngeal swab/RT-PCR, with CT-scans showing ground-glass opacities in the lungs. The negative–affected group (NA; n = 40; F = 14/M = 26; median age = 58.5) included individuals negative to COVID-19 (RT-PCR) but affected by different chronic respiratory diseases (the CT-scans didn’t show ground-glass opacities). Finally, the negative–negative group (NN; n = 16; F = 14/M = 2) included healthy patients (NN; n = 16; median age = 42.62). Data and findings were collected and compared. Results: Lymphocytes (%) cells showed a decline in COVID-19 patients. The subsets showed a significant association with the inflammatory status in COVID-19, especially with regard to increased neutrophils, T-killer, T-active, T-suppressor, and T-CD8+CD38+ in individuals belong to the either COVID-19 and Covid-like NP group. Conclusions: Peripheral lymphocyte subset alteration was associated with the clinical characteristics and progression of COVID-19. The level of sub-set cells T-lymphocytes (either high or low) and B-lymphocytes could be used as an independent predictor for COVID-19 severity and treatment efficacy.
Collapse
Affiliation(s)
- Mario Giosuè Balzanelli
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74100 Taranto, Italy; (M.G.B.); (P.D.); (O.C.); (F.A.); (A.C.); (R.L.); (D.P.)
| | - Pietro Distratis
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74100 Taranto, Italy; (M.G.B.); (P.D.); (O.C.); (F.A.); (A.C.); (R.L.); (D.P.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (L.V.); (F.I.); (K.C.D.N.)
| | - Luigi Vimercati
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (L.V.); (F.I.); (K.C.D.N.)
| | - Orazio Catucci
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74100 Taranto, Italy; (M.G.B.); (P.D.); (O.C.); (F.A.); (A.C.); (R.L.); (D.P.)
| | - Felice Amatulli
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74100 Taranto, Italy; (M.G.B.); (P.D.); (O.C.); (F.A.); (A.C.); (R.L.); (D.P.)
| | - Angelo Cefalo
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74100 Taranto, Italy; (M.G.B.); (P.D.); (O.C.); (F.A.); (A.C.); (R.L.); (D.P.)
| | - Rita Lazzaro
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74100 Taranto, Italy; (M.G.B.); (P.D.); (O.C.); (F.A.); (A.C.); (R.L.); (D.P.)
| | - Davide Palazzo
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74100 Taranto, Italy; (M.G.B.); (P.D.); (O.C.); (F.A.); (A.C.); (R.L.); (D.P.)
| | | | - Giancarla Pricolo
- Department of Hematology, SS. Annunziata, 74100 Taranto, Italy; (G.P.); (A.P.); (P.D.)
| | - Antonella Prudenzano
- Department of Hematology, SS. Annunziata, 74100 Taranto, Italy; (G.P.); (A.P.); (P.D.)
| | - Patrizia D’Errico
- Department of Hematology, SS. Annunziata, 74100 Taranto, Italy; (G.P.); (A.P.); (P.D.)
| | - Rita Laforgia
- Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.L.); (A.P.)
| | - Angela Pezzolla
- Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.L.); (A.P.)
| | | | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (L.V.); (F.I.); (K.C.D.N.)
- Correspondence: (A.D.I.); (F.L.); (C.G.I.)
| | - Van Hung Pham
- Department of Microbiology, “Phan Chau Trinh” University of Medicine and Nam-Khoa Biotek, Ho Chi Minh 50000, Vietnam;
| | - Donatello Iacobone
- SET-118, Department of Pre-Hospital and Emergency, BAT, 76121 Barletta, Italy;
| | - Giuseppe Mancusi Materi
- Anesthesia and Intensive Care Unit, Department of Emergency, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
- Correspondence: (A.D.I.); (F.L.); (C.G.I.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (L.V.); (F.I.); (K.C.D.N.)
| | - Kieu Cao Diem Nguyen
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (L.V.); (F.I.); (K.C.D.N.)
- American Stem Cells Hospital, Ho Chi Minh 70000, Vietnam
| | - Ciro Gargiulo Isacco
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74100 Taranto, Italy; (M.G.B.); (P.D.); (O.C.); (F.A.); (A.C.); (R.L.); (D.P.)
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (L.V.); (F.I.); (K.C.D.N.)
- Department of Microbiology, “Phan Chau Trinh” University of Medicine and Nam-Khoa Biotek, Ho Chi Minh 50000, Vietnam;
- American Stem Cells Hospital, Ho Chi Minh 70000, Vietnam
- Correspondence: (A.D.I.); (F.L.); (C.G.I.)
| |
Collapse
|
42
|
Zieneldien T, Kim J, Cao J, Cao C. COVID-19 Vaccines: Current Conditions and Future Prospects. BIOLOGY 2021; 10:biology10100960. [PMID: 34681059 PMCID: PMC8533517 DOI: 10.3390/biology10100960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first encountered in December of 2019 in Wuhan, China. As of now, there have been over 200 million infections and 4 million deaths attributed to the virus. Due to this, it has been a priority to find an effective preventative measure, and numerous vaccines have been developed. Although the developed vaccines share the target of blocking viral entry by the spike protein, their pharmacology and efficacy differs. As such, the mechanism of action and the elicited immune response of the most common COVID-19 vaccines have been compared to help determine which vaccine is most efficacious and is best suited to prevent reinfection and address viral mutations. Abstract It has been over a year since SARS-CoV-2 was first reported in December of 2019 in Wuhan, China. To curb the spread of the virus, many therapies and cures have been tested and developed, most notably mRNA and DNA vaccines. Federal health agencies (CDC, FDA) have approved emergency usage of these S gene-based vaccines with the intention of minimizing any further loss of lives and infections. It is crucial to assess which vaccines are the most efficacious by examining their effects on the immune system, and by providing considerations for new technological vaccine strategies in the future. This paper provides an overview of the current SARS-CoV-2 vaccines with their mechanisms of action, current technologies utilized in manufacturing of the vaccines, and limitations in this new field with emerging data. Although the most popular COVID-19 vaccines have been proven effective, time will be the main factor in dictating which vaccine will be able to best address mutations and future infection.
Collapse
Affiliation(s)
- Tarek Zieneldien
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (T.Z.); (J.K.)
| | - Janice Kim
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (T.Z.); (J.K.)
| | - Jessica Cao
- Department of Natural Sciences, Wiess School of Natural Sciences, Rice University, Houston, TX 77005, USA;
| | - Chuanhai Cao
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (T.Z.); (J.K.)
- Correspondence:
| |
Collapse
|
43
|
Kealy L, Good-Jacobson KL. Advances in understanding the formation and fate of B-cell memory in response to immunization or infection. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab018. [PMID: 36845573 PMCID: PMC8499879 DOI: 10.1093/oxfimm/iqab018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/06/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Immunological memory has the potential to provide lifelong protection against recurrent infections. As such, it has been crucial to the success of vaccines. Yet, the recent pandemic has illuminated key gaps in our knowledge related to the factors influencing effective memory formation and the inability to predict the longevity of immune protection. In recent decades, researchers have acquired a number of novel and powerful tools with which to study the factors underpinning humoral memory. These tools have been used to study the B-cell fate decisions that occur within the germinal centre (GC), a site where responding B cells undergo affinity maturation and are one of the major routes for memory B cell and high-affinity long-lived plasma cell formation. The advent of single-cell sequencing technology has provided an enhanced resolution for studying fate decisions within the GC and cutting-edge techniques have enabled researchers to model this reaction with more accuracy both in vitro and in silico. Moreover, modern approaches to studying memory B cells have allowed us to gain a better appreciation for the heterogeneity and adaptability of this vital class of B cells. Together, these studies have facilitated important breakthroughs in our understanding of how these systems operate to ensure a successful immune response. In this review, we describe recent advances in the field of GC and memory B-cell biology in order to provide insight into how humoral memory is formed, as well as the potential for generating lasting immunity to novel pathogens such as severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Liam Kealy
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia,Correspondence address. Department of Biochemistry and Molecular Biology, Monash University, Ground floor reception, 23 Innovation Walk (Bldg 77), Clayton, Victoria 3800 Australia. Tel: (+613) 990-29510; E-mail: ; Twitter: @KimLJacobson
| |
Collapse
|
44
|
Asao H. Interleukin-21 in Viral Infections. Int J Mol Sci 2021; 22:ijms22179521. [PMID: 34502427 PMCID: PMC8430989 DOI: 10.3390/ijms22179521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-21 is a cytokine that affects the differentiation and function of lymphoid and myeloid cells and regulates both innate and adaptive immune responses. In addition to regulating the immune response to tumor and viral infections, IL-21 also has a profound effect on the development of autoimmune and inflammatory diseases. IL-21 is produced mainly from CD4+ T cells-in particular, follicular helper T (Tfh) cells-which have a great influence on the regulation of antibody production. It is also an important cytokine for the activation of CD8+ T cells, and its role in recovering the function of CD8+ T cells exhausted by chronic microbial infections and cancer has been clarified. Thus, IL-21 plays an extremely important role in viral infections, especially chronic viral infections. In this review, I will introduce the findings to date on how IL-21 is involved in some typical viral infections and the potential of treating viral diseases with IL-21.
Collapse
Affiliation(s)
- Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata City 990-9585, Japan
| |
Collapse
|