1
|
Twomey JD, George S, Zhang B. Fc gamma receptor polymorphisms in antibody therapy: implications for bioassay development to enhance product quality. Antib Ther 2025; 8:87-98. [PMID: 40177643 PMCID: PMC11959696 DOI: 10.1093/abt/tbaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 04/05/2025] Open
Abstract
The effectiveness of therapeutic antibodies is often associated with their Fc-mediated effector functions, such as antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis. These functions rely on interactions between Fc gamma receptors (FcγRs) on immune cells and the Fc region of antibodies. Genetic variations in these receptors, known as FcγR polymorphisms, can influence therapeutic outcomes by altering receptor expression levels, affinity, and function. This review examines the impact of FcγR polymorphisms on antibody therapy, emphasizing their role in developing and optimizing functional bioassays to assess product quality. Understanding these polymorphisms is essential for refining bioassays, which are crucial for accurately characterizing antibody products and ensuring consistency in manufacturing processes.
Collapse
Affiliation(s)
- Julianne D Twomey
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Sasha George
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Baolin Zhang
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| |
Collapse
|
2
|
Deb A, Lott K, Miceli A, Kaplan BLF. Optimization of IgG1 immune complexes to stimulate cytokine production in innate cells. J Immunol Methods 2025; 539:113851. [PMID: 40081523 DOI: 10.1016/j.jim.2025.113851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/29/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Fcγ receptors are key immunoreceptors, that when bound by IgG immune complexes, trigger activation of downstream signaling pathways. However, there are limited in vitro assays that stimulate innate cells via Fcγ receptors that allow for evaluation of drugs or chemicals on antibody-triggered signaling. Our study investigated the activation of Fcγ receptors in innate cells using immune complexes. Our findings revealed that immobilized IgG antibodies did not elicit a significant immune response, so we designed two IgG1 immune complexes: trinitrophenyl-bovine serum albumin (TNP-BSA)/TNP-IgG1 and streptavidin-biotinylated IgG1 (Strept-Biotin IgG1). Strept-Biotin IgG1 immune complex was particularly effective, significantly enhancing IL-6, TNFα, and C3a levels, whereas TNP-BSA/TNP-IgG1 immune complex showed a modest IL-6 increase. Both TNP-BSA/TNP-IgG1 and Strept-Biotin IgG1 stimulated CD86 marker expression on F4/80+ macrophages. We also confirmed the binding of Strept-Biotin IgG1 to innate cells with fluorochrome-conjugated streptavidin. To further understand the Fcγ receptor-mediated activation of innate cells, we blocked the downstream phosphatidylinositol 3-kinase (PI3K) pathway. We found out that the PI3K inhibitor successfully suppressed IL-6 cytokine release and C3a production. However, specific Fcγ receptor-blocking antibodies failed to block IL-6 cytokine production and only modestly suppressed TNFα cytokine release, suggesting either that the antibodies were not effective blockers or that these immune complexes use other receptors. Regardless, the use of the Strept-Biotin IgG1 immune complex to stimulate cytokine production and other immune signaling was consistent with Fcγ receptor activation on innate cells which might be useful in assessing the effects of drugs or chemicals in innate cells.
Collapse
Affiliation(s)
- Arpita Deb
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Kailyn Lott
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Audrey Miceli
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America.
| |
Collapse
|
3
|
Gomez Toledo A, Chowdhury S, Hjortswang E, Sorrentino JT, Lewis NE, Bläckberg A, Ekström S, Kjellström S, Izadi A, Olofsson B, Nordenfelt P, Malmström L, Rasmussen M, Malmström J. Dissecting the properties of circulating IgG against streptococcal pathogens through a combined systems antigenomics-serology workflow. Nat Commun 2025; 16:1942. [PMID: 39994218 PMCID: PMC11850916 DOI: 10.1038/s41467-025-57170-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
This study showcases an integrative mass spectrometry-based strategy combining systems antigenomics and systems serology to characterize human antibodies in clinical samples. This strategy involves using antibodies circulating in plasma to affinity-enrich antigenic proteins in biochemically fractionated pools of bacterial proteins, followed by their identification and quantification using mass spectrometry. A selected subset of the identified antigens is then expressed recombinantly to isolate antigen-specific IgG, followed by characterization of the structural and functional properties of these antibodies. We focused on Group A streptococcus (GAS), a major human pathogen lacking an approved vaccine. The data shows that both healthy and GAS-infected individuals have circulating IgG against conserved streptococcal proteins, including toxins and virulence factors. The antigenic breadth of these antibodies remains relatively constant across healthy individuals but changes considerably in GAS bacteremia. Moreover, antigen-specific IgG analysis reveals individual variation in titers, subclass distributions, and Fc-signaling capacity, despite similar epitope and Fc-glycosylation patterns. Finally, we show that GAS antibodies may cross-react with Streptococcus dysgalactiae (SD), a bacterial pathogen that occupies similar niches and causes comparable infections. Collectively, our results highlight the complexity of GAS-specific antibody responses and the versatility of our methodology to characterize immune responses to bacterial pathogens.
Collapse
Affiliation(s)
- Alejandro Gomez Toledo
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sounak Chowdhury
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Elisabeth Hjortswang
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - James T Sorrentino
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, CA, USA
| | - Nathan E Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, CA, USA
| | - Anna Bläckberg
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | | | | | - Arman Izadi
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Berit Olofsson
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Pontus Nordenfelt
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Lars Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Magnus Rasmussen
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden.
- BioMS, Lund, Sweden.
| |
Collapse
|
4
|
Hou L, Malyar RM, Ding W, Shoura HE, Yuan Y, Chen J, Shi F, Wei Q. Dietary supplementation of distiller's grains yeast cultures improves performance and immunity by altering the intestinal flora of broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:937-953. [PMID: 39314076 DOI: 10.1002/jsfa.13885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/11/2024] [Accepted: 08/25/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Distiller's grains are a by-product of liquor production with a higher yield than liquor. Developing and utilizing distiller's grains well could alleviate the problem of scarce feed resources. Our present experiment was conducted with 6000 yellow-feathered broilers to study the effects of adding distiller's grains yeast cultures (DGYC) to the diet on growth performance and immunity of broilers. The broilers were divided into five groups, receiving different DGYC concentrations during two stages. Growth performance, intestinal microorganisms and immune organ development were measured. RESULTS The results showed that groups B and D, supplemented with medium and high concentrations of DGYC, respectively, had significantly improved growth performance compared to the control group (P < 0.05). Group D also showed higher immune organ index (P < 0.01), increased serum total protein, high-density lipoprotein and immunoglobulin levels (P < 0.05) and lower levels of low-density lipoprotein, triglycerides, interleukin 1β and tumor necrosis factor α (P < 0.05). Hematoxylin and eosin staining confirmed improved immune organ development in group D (P < 0.05). Furthermore, in high-concentration group D, levels of short-chain fatty acids (SCFA; acetic, propionic and butyric acids) in cecal chyme were significantly increased (P < 0.05). The richness (Chao1) and diversity (Faith-pd) index of cecal microbiota were significantly higher in group D compared to the control group (P < 0.05). The microbial composition in group D differed from the control and medium-concentration group B. Seven bacteria (Clostridia-UCG-014, UCG-009, DTU089, UCG-010, Campylobacter, Harryflintia, Shuttleworthia) showed significant differences (P < 0.05). After DGYC feeding, DTU089 decreased, while other SCFA-producing bacteria increased (P < 0.05). Subsequently, KEGG function and corresponding signal pathway predictions were performed on bacteria with significant differences. Group D exhibited a higher enrichment of immune function pathways (P < 0.01) and showed significant changes in four immune signaling pathways according to the signal pathway heatmap. CONCLUSION Our data suggest that high concentrations of DGYC can be applied as a feed additive for broilers that promotes growth, improves intestinal health and enhances certain immunity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linsong Hou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | - Wei Ding
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Department of Animal Husbandry and Veterinary Medicine, Jiangsu Polytechnic College of Agriculture and Forestry, Jurong, China
| | - Hytham Elsaid Shoura
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yunwei Yuan
- Yancheng Qiling Agricultural Science and Technology Co., Yancheng, China
| | - Jian Chen
- Yancheng Qiling Agricultural Science and Technology Co., Yancheng, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Gonzàlez Gutierrez C, Aimard A, Biarnes-Pélicot M, Kerfelec B, Puech PH, Robert P, Piazza F, Chames P, Limozin L. Decoupling Individual Host Response and Immune Cell Engager Cytotoxic Potency. ACS NANO 2025; 19:2089-2098. [PMID: 39791371 DOI: 10.1021/acsnano.4c08541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Immune cell engagers are molecular agents, usually antibody-based constructs, engineered to recruit immune cells against cancer cells and kill them. They are versatile and powerful tools for cancer immunotherapy. Despite the multiplication of engagers tested and accepted in the clinic, how molecular and cellular parameters influence their actions is poorly understood. In particular, disentangling the respective roles of host immune cells and engager biophysical characteristics is needed to improve their design and efficiency. Focusing here on harnessing antibody-dependent Natural Killer cell cytotoxicity, we measure the efficiency of 6 original bispecific antibodies (bsAb), associating an anti-HER2 nanobody and an anti-CD16 nanobody. In vitro cytotoxicity data using primary human NK cells on different target cell lines exposing different antigen densities were collected, exhibiting a wide range of bsAb dose response. In order to rationalize our observations, we introduce a simple multiscale model, postulating that the density of bsAb bridging the two cells is the main parameter triggering the cytotoxic response. We introduce two microscopic parameters: the surface cooperativity describing bsAb affinity at the bridging step and the threshold of bridge density determining the donor-dependent response. Both parameters permit ranking Abs and donors and predicting bsAb potency as a function of antibodies bulk affinities and receptor surface densities on cells. Our approach thus provides a general way to decouple donor response from immune engager characteristics, rationalizing the landscape of molecule design.
Collapse
Affiliation(s)
| | - Adrien Aimard
- Aix-Marseille Univ., CNRS, INSERM, Institut Paoli Calmettes, CRCM, 13009 Marseille, France
| | | | - Brigitte Kerfelec
- Aix-Marseille Univ., CNRS, INSERM, Institut Paoli Calmettes, CRCM, 13009 Marseille, France
| | - Pierre-Henri Puech
- Aix-Marseille Univ., CNRS, INSERM, LAI, Centuri Living Systems, 13009 Marseille, France
| | - Philippe Robert
- Aix-Marseille Univ., CNRS, INSERM, LAI, Centuri Living Systems, 13009 Marseille, France
- Assistance Publique Hôpitaux de Marseille, 13005 Marseille, France
| | - Francesco Piazza
- CNRS, Univ. Orleans, CBM, 45000 Orleans, France
- Dipartimento di Fisica e Astronomia, Università di Firenze and INFN sezione di Firenze, 50019 Sesto Fiorentino, Italy
| | - Patrick Chames
- Aix-Marseille Univ., CNRS, INSERM, Institut Paoli Calmettes, CRCM, 13009 Marseille, France
| | - Laurent Limozin
- Aix-Marseille Univ., CNRS, INSERM, LAI, Centuri Living Systems, 13009 Marseille, France
| |
Collapse
|
6
|
Douglas TR, Alexander S, Chou LYT. Patterned Antigens on DNA Origami Controls the Structure and Cellular Uptake of Immune Complexes. ACS NANO 2025; 19:621-637. [PMID: 39757925 DOI: 10.1021/acsnano.4c11183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Immune complexes (ICs), formed via antibody (Ab)-antigen (Ag) binding, trigger diverse immune responses, which are critical for natural immunity and have uses for vaccines and immunotherapies. While IC-elicited immune responses depend on its structure, existing methods for IC synthesis produce heterogeneous assemblies, which limits control over their cellular interactions and pharmacokinetics. In this study, we demonstrate the use of DNA origami to create synthetic ICs with defined shape, size, and solubility by displaying Ags in prescribed spatial patterns. We find that Ag arrangement relative to the spatial tolerance of IgG Fab arms (∼13-18 nm) determines IC formation into "monomeric" versus "multimeric" regimes. When Ag spacing matches Fab arm tolerance, ICs are exclusively monomeric, while spacing mismatches favor the formation of multimeric ICs. Within each IC regime, parameters such as the number of Ags and Ab-Ag ratios, as well as DNA origami shape, further fine-tune IC size, shape, and Fc valency. These parameters influenced IC interactions with FcγR-expressing immune cells, with uptake by macrophages showing greater sensitivity to IC cross-linking while dendritic cells were more responsive to Ab valency. Our findings thus provide design principles for controlling the structure and cellular interactions of synthetic ICs and highlight DNA origami-scaffolded ICs as a programmable platform for investigating IC immunology and developing FcγR-targeted therapeutics and vaccines.
Collapse
Affiliation(s)
- Travis R Douglas
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 2E3, Canada
| | - Shana Alexander
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 2E3, Canada
| | - Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 2E3, Canada
| |
Collapse
|
7
|
Yan M, Wang Z, Qiu Z, Cui Y, Xiang Q. Platelet signaling in immune landscape: comprehensive mechanism and clinical therapy. Biomark Res 2024; 12:164. [PMID: 39736771 DOI: 10.1186/s40364-024-00700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Platelets are essential for blood clotting and maintaining normal hemostasis. In pathological conditions, platelets are increasingly recognized as crucial regulatory factors in various immune-mediated inflammatory diseases. Resting platelets are induced by various factors such as immune complexes through Fc receptors, platelet-targeting autoantibodies and other platelet-activating stimuli. Platelet activation in immunological processes involves the release of immune activation stimuli, antigen presentation and interaction with immune cells. Platelets participate in both the innate immune system (neutrophils, monocytes/macrophages, dendritic cells (DCs) and Natural Killer (NK) cells and the adaptive immune system (T and B cells). Clinical therapeutic strategies include targeting platelet activation, platelet-immune cell interaction and platelet-endothelial cell interaction, which display positive development prospects. Understanding the mechanisms of platelets in immunity is important, and developing targeted modulations of these mechanisms will pave the way for promising therapeutic strategies.
Collapse
Affiliation(s)
- Mengyao Yan
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Zhe Wang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Zhiwei Qiu
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China.
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China.
| | - Qian Xiang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China.
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
8
|
Abraham AA, Tan ZC, Shrestha P, Bozich ER, Meyer AS. A multivalent binding model infers antibody Fc species from systems serology. PLoS Comput Biol 2024; 20:e1012663. [PMID: 39715286 PMCID: PMC11706497 DOI: 10.1371/journal.pcbi.1012663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/07/2025] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
Systems serology aims to broadly profile the antigen binding, Fc biophysical features, immune receptor engagement, and effector functions of antibodies. This experimental approach excels at identifying antibody functional features that are relevant to a particular disease. However, a crucial limitation of this approach is its incomplete description of what structural features of the antibodies are responsible for the observed immune receptor engagement and effector functions. Knowing these antibody features is important for both understanding how effector responses are naturally controlled through antibody Fc structure and designing antibody therapies with specific effector profiles. Here, we address this limitation by modeling the molecular interactions occurring in these assays and using this model to infer quantities of specific antibody Fc species among the antibodies being profiled. We used several validation strategies to show that the model accurately infers antibody properties and then applied the model to infer previously unavailable antibody fucosylation information from existing systems serology data. Using this capability, we find that COVID-19 vaccine efficacy is associated with the induction of afucosylated spike protein-targeting IgG. Our results also question an existing assumption that controllers of HIV exhibit gp120-targeting IgG that are less fucosylated than those of progressors. Additionally, we confirm that afucosylated IgG is associated with membrane-associated antigens for COVID-19 and HIV, and present new evidence indicating that this relationship is specific to the host cell membrane. Finally, we use the model to identify redundant assay measurements and subsets of information-rich measurements from which Fc properties can be inferred. In total, our modeling approach provides a quantitative framework for the reasoning typically applied in these studies, improving the ability to draw mechanistic conclusions from these data.
Collapse
Affiliation(s)
- Armaan A. Abraham
- Department of Bioengineering, University of California, Los Angeles, California, United States of America
| | - Zhixin Cyrillus Tan
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California, United States of America
| | | | - Emily R. Bozich
- Department of Bioengineering, University of California, Los Angeles, California, United States of America
| | - Aaron S. Meyer
- Department of Bioengineering, University of California, Los Angeles, California, United States of America
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California, United States of America
| |
Collapse
|
9
|
Whitehead CA, Wines BD, Davies AM, McDonnell JM, Trist HM, Esparon SE, Hogarth PM. Stellabody: A novel hexamer-promoting mutation for improved IgG potency. Immunol Rev 2024; 328:438-455. [PMID: 39364646 PMCID: PMC11659935 DOI: 10.1111/imr.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Advances in antibody engineering are being directed at the development of next generation immunotherapeutics with improved potency. Hexamerisation of IgG is a normal physiological aspect of IgG biology and recently described mutations that facilitate this process have a substantial impact upon monoclonal antibody behavior resulting in the elicitation of dramatically enhanced complement-dependent cytotoxicity, Fc receptor function, and enhanced antigen binding effects, such as targeted receptor agonism or microbe neutralization. Whereas the discovery of IgG hexamerisation enhancing mutations has largely focused on residues with exposure at the surface of the Fc-Fc and CH2-CH3 interfaces, our unique approach is the engineering of the mostly buried residue H429 in the CH3 domain. Selective substitution at position 429 forms the basis of Stellabody technology, where the choice of amino acid results in distinct hexamerisation outcomes. H429F results in monomeric IgG that hexamerises after target binding, so called "on-target" hexamerisation, while the H429Y mutant forms pH-sensitive hexamers in-solution prior to antigen binding. Moreover, Stellabody technologies are broadly applicable across the family of antibody-based biologic therapeutics, including conventional mAbs, bispecific mAbs, and Ig-like biologics such as Fc-fusions, with applications in diverse diseases.
Collapse
Affiliation(s)
- Clarissa A. Whitehead
- Immune Therapies GroupBurnet InstituteMelbourneVictoriaAustralia
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Bruce D. Wines
- Immune Therapies GroupBurnet InstituteMelbourneVictoriaAustralia
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Anna M. Davies
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's HouseLondonUK
| | - James M. McDonnell
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's HouseLondonUK
| | - Halina M. Trist
- Immune Therapies GroupBurnet InstituteMelbourneVictoriaAustralia
| | | | - P. Mark Hogarth
- Immune Therapies GroupBurnet InstituteMelbourneVictoriaAustralia
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
- Department of Clinical PathologyThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
10
|
Kallolimath S, Sun L, Palt R, Föderl-Höbenreich E, Hermle A, Voss L, Kleim M, Nimmerjahn F, Gach JS, Hitchcock L, Chen Q, Melnik S, Eminger F, Lux A, Steinkellner H. IgG1 versus IgG3: influence of antibody-specificity and allotypic variance on virus neutralization efficacy. Front Immunol 2024; 15:1490515. [PMID: 39512357 PMCID: PMC11540624 DOI: 10.3389/fimmu.2024.1490515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Despite the unique advantages of IgG3 over other IgG subclasses, such as mediating enhanced effector functions and increased flexibility in antigen binding due to a long hinge region, the therapeutic potential of IgG3 remains largely unexplored. This may be attributed to difficulties in recombinant expression and the reduced plasma half-life of most IgG3 allotypes. Here, we report plant expression of two SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) that exhibit high (P5C3) and low (H4) antigen binding. P5C3 and H4-IgG1 mAbs were subclass-switched to IgG3 formats, designed for efficient production and increased PK values, carrying three allotypic variations, referred to as -WT, -H, and -KVH. A total of eight mAbs were produced in glycoengineered plants that synthesize fucose-free complex N-glycans with great homogeneity. Antigen, IgG-FcγR immune complex and complement binding studies demonstrated similar activities of all mAbs. In accordance, P5C3 Abs showed minor alterations in SARS-CoV-2 neutralization (NT) and antibody-dependent cell-mediated virus inhibition (ADCVI). Clear functional differences were observed between H4 variants with superior ADCVI and NT potencies of H4 IgG3 H. Our comparative study demonstrates the production of an IgG3 variant carrying an Fc domain with equivalent or enhanced functions compared to IgG3-WT, but with the stability and PK values of IgG1. Our data also demonstrate that both allotypic variability and antibody specificity are important for fine-tuning of activities, an important information for the development of future therapeutics.
Collapse
Affiliation(s)
- Somanath Kallolimath
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| | - Lin Sun
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| | - Roman Palt
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| | | | - Antonia Hermle
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Leonie Voss
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marina Kleim
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- FAU Profile Centre Immunomedicine, Erlangen, Germany
| | - Johannes S. Gach
- Division of Infectious Diseases, University of California, Irvine, Irvine, CA, United States
| | - Lauren Hitchcock
- Division of Infectious Diseases, University of California, Irvine, Irvine, CA, United States
| | - Qiang Chen
- The Bio design Institute and School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Stanislav Melnik
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| | - Florian Eminger
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| | - Anja Lux
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- FAU Profile Centre Immunomedicine, Erlangen, Germany
| | - Herta Steinkellner
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, BOKU University, Vienna, Austria
| |
Collapse
|
11
|
Tong M, Liu P, Li C, Zhang Z, Sun W, Dong P, Fan N, Wang X, Liu J, Lv C, Cao Z, Wang Y. Interaction of Asn297-Linked Glycan Ligands with the Fc Fragment of the Immunoglobulin Class G1: A Molecular Dynamics Simulation Study. J Chem Inf Model 2024; 64:785-798. [PMID: 38262973 DOI: 10.1021/acs.jcim.3c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The allosteric modulation of the homodimeric H10-03-6 protein to glycan ligands L1 and L2, and the STAB19 protein to glycan ligands L3 and L4, respectively, has been studied by molecular dynamics simulations and free energy calculations. The results revealed that the STAB19 protein has a significantly higher affinity for L3 (-11.38 ± 2.32 kcal/mol) than that for L4 (-5.51 ± 1.92 kcal/mol). However, the combination of the H10-03-6 protein with glycan L2 (1.23 ± 6.19 kcal/mol) is energetically unfavorable compared with that of L1 (-13.96 ± 0.35 kcal/mol). Further, the binding of glycan ligands L3 and L4 to STAB19 would result in the significant closure of the two CH2 domains of the STAB19 conformation with the decrease of the centroid distances between the two CH2 domains compared with the H10-03-6/L1/L2 complex. The CH2 domain closure of STAB19 relates directly to the formation of new hydrogen bonds and hydrophobic interactions between the residues Ser239, Val240, Asp265, Glu293, Asn297, Thr299, Ser337, Asp376, Thr393, Pro395, and Pro396 in STAB19 and glycan ligands L3 and L4, which suggests that these key residues would contribute to the specific regulation of STAB19 to L3 and L4. In addition, the distance analysis revealed that the EF loop in the H10-03-6/L1/L2 model presents a high flexibility and partial disorder compared with the stabilized STAB19/L3/L4 complex. These results will be helpful in understanding the specific regulation through the asymmetric structural characteristics in the CH2 and CH3 domains of the H10-03-6 and STAB19 proteins.
Collapse
Affiliation(s)
- Mingqiong Tong
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Peng Liu
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, UTM, Johor Bahru, Johor Darul Takzim 81310, Malaysia
- The Office of Academic Affairs, Dezhou University, Dezhou 253023, China
| | - Chaoqun Li
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemistry, Chemical Engineering and Materials, Handan University, Handan, Hebei 056005, China
| | - Zhongyu Zhang
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Wan Sun
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Pingxuan Dong
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Na Fan
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Xiaoyue Wang
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Jing Liu
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Chao Lv
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Yan Wang
- College of Chemistry, Beijing Normal University, 19# Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|