1
|
Dougherty K, Prashar T, Hudak KA. Improved pokeweed genome assembly and early gene expression changes in response to jasmonic acid. BMC PLANT BIOLOGY 2024; 24:801. [PMID: 39179987 PMCID: PMC11344361 DOI: 10.1186/s12870-024-05446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 07/22/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Jasmonic acid (JA) is a phytohormone involved in regulating responses to biotic and abiotic stress. Although the JA pathway is well characterized in model plants such as Arabidopsis thaliana, less is known about many non-model plants. Phytolacca americana (pokeweed) is native to eastern North Americana and is resilient to environmental stress. The goal of this study was to produce a publicly available pokeweed genome assembly and annotations and use this resource to determine how early response to JA changes gene expression, with particular focus on genes involved in defense. RESULTS We assembled the pokeweed genome de novo from approximately 30 Gb of PacBio Hifi long reads and achieved an NG50 of ~ 13.2 Mb and a minimum 93.9% complete BUSCO score for gene annotations. With this reference, we investigated the early changes in pokeweed gene expression following JA treatment. Approximately 5,100 genes were differentially expressed during the 0-6 h time course with almost equal number of genes with increased and decreased transcript levels. Cluster and gene ontology analyses indicated the downregulation of genes associated with photosynthesis and upregulation of genes involved in hormone signaling and defense. We identified orthologues of key transcription factors and constructed the first JA gene response network integrated with our transcriptomic data from orthologues of Arabidopsis genes. We discovered that pokeweed did not use leaf senescence as a means of reallocating resources during stress; rather, most secondary metabolite synthesis genes were constitutively expressed, suggesting that pokeweed directs its resources for survival over the long term. In addition, pokeweed synthesizes several RNA N-glycosylases hypothesized to function in defense, each with unique expression profiles in response to JA. CONCLUSIONS Our investigation of the early response of pokeweed to JA illustrates patterns of gene expression involved in defence and stress tolerance. Pokeweed provides insight into the defense mechanisms of plants beyond those observed in research models and crops, and further study may yield novel approaches to improving the resilience of plants to environmental changes. Our assembled pokeweed genome is the first within the taxonomic family Phytolaccaceae to be publicly available for continued research.
Collapse
Affiliation(s)
- Kyra Dougherty
- Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Tanya Prashar
- Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Katalin A Hudak
- Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
2
|
Wu M, Xu Q, Tang T, Li X, Pan Y. Integrative physiological, transcriptomic, and metabolomic analysis of Abelmoschus manihot in response to Cd toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1389207. [PMID: 38916029 PMCID: PMC11194374 DOI: 10.3389/fpls.2024.1389207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024]
Abstract
Rapid industrialization and urbanization have caused severe soil contamination with cadmium (Cd) necessitating effective remediation strategies. Phytoremediation is a widely adopted technology for remediating Cd-contaminated soil. Previous studies have shown that Abelmoschus manihot has a high Cd accumulation capacity and tolerance indicating its potential for Cd soil remediation. However, the mechanisms underlying its response to Cd stress remain unclear. In this study, physiological, transcriptomic, and metabolomic analyses were conducted to explore the response of A. manihot roots to Cd stress at different time points. The results revealed that Cd stress significantly increased malondialdehyde (MDA) levels in A. manihot, which simultaneously activated its antioxidant defense system, enhancing the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) by 19.73%-50%, 22.87%-38.89%, and 32.31%-45.40% at 12 h, 36 h, 72 h, and 7 days, respectively, compared with those in the control (CK). Moreover, transcriptomic and metabolomic analyses revealed 245, 5,708, 9,834, and 2,323 differentially expressed genes (DEGs), along with 66, 62, 156, and 90 differentially expressed metabolites (DEMs) at 12 h, 36 h, 72 h, and 7 days, respectively. Through weighted gene coexpression network analysis (WGCNA) of physiological indicators and transcript expression, eight hub genes involved in phenylpropanoid biosynthesis, signal transduction, and metal transport were identified. In addition, integrative analyses of metabolomic and transcriptomic data highlighted the activation of lipid metabolism and phenylpropanoid biosynthesis pathways under Cd stress suggesting that these pathways play crucial roles in the detoxification process and in enhancing Cd tolerance in A. manihot. This comprehensive study provides detailed insights into the response mechanisms of A. manihot to Cd toxicity.
Collapse
Affiliation(s)
- Mengxi Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Qian Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Tingting Tang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xia Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yuanzhi Pan
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Rajput P, Singh A, Agrawal S, Ghazaryan K, Rajput VD, Movsesyan H, Mandzhieva S, Minkina T, Alexiou A. Effects of environmental metal and metalloid pollutants on plants and human health: exploring nano-remediation approach. STRESS BIOLOGY 2024; 4:27. [PMID: 38777953 PMCID: PMC11111642 DOI: 10.1007/s44154-024-00156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/26/2024] [Indexed: 05/25/2024]
Abstract
Metal and metalloid pollutants severely threatens environmental ecosystems and human health, necessitating effective remediation strategies. Nanoparticle (NPs)-based approaches have gained significant attention as promising solutions for efficient removing heavy metals from various environmental matrices. The present review is focused on green synthesized NPs-mediated remediation such as the implementation of iron, carbon-based nanomaterials, metal oxides, and bio-based NPs. The review also explores the mechanisms of NPs interactions with heavy metals, including adsorption, precipitation, and redox reactions. Critical factors influencing the remediation efficiency, such as NPs size, surface charge, and composition, are systematically examined. Furthermore, the environmental fate, transport, and potential risks associated with the application of NPs are critically evaluated. The review also highlights various sources of metal and metalloid pollutants and their impact on human health and translocation in plant tissues. Prospects and challenges in translating NPs-based remediation from laboratory research to real-world applications are proposed. The current work will be helpful to direct future research endeavors and promote the sustainable implementation of metal and metalloid elimination.
Collapse
Affiliation(s)
- Priyadarshani Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Abhishek Singh
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia.
| | - Shreni Agrawal
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Karen Ghazaryan
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Hasmik Movsesyan
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| |
Collapse
|
4
|
Zheng X, Li Y, Xu J, Lu Y. Response of Propsilocerus akamusi (Diptera: Chironomidae) to the leachates from AMD-contaminated sediments: Implications for metal bioremediation of AMD-polluted areas. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106795. [PMID: 38070394 DOI: 10.1016/j.aquatox.2023.106795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 01/02/2024]
Abstract
Acid mine water (AMD) is a global environmental problem caused by coal mining with the characteristics of low pH and high concentrations of metals and sulfates. It is a pertinent topic to seek both economical and environmentally friendly approaches to minimize the harmful effects of AMD on the environment. Insect larvae are considered a promising solution for pollution treatment. Chironomidae is the most tolerant family to contaminants in pools and its larvae have a strong capacity for metal accumulation from sediment. This paper aimed to evaluate the larvae of Propsilocerus akamusi, a dominant species in the chironomid community, as a new species for entomoremediation in AMD-polluted areas. We detected the toxic effects of AMD on P. akamusi larvae based on their survival and the trace metals bioaccumulation capabilities of P. akamusi larvae. Moreover, we analyzed the expression patterns of four stress-response genes, HSP70, Eno1, HbV, and Hb VII in P. akamusi larvae. Our results revealed that AMD exposure did not significantly affect the survival of the P. akamusi larvae and individuals exposed to some AMD gradients even exhibited higher survival. We also observed the significantly accumulated concentrations of Fe, Ni, and Zn as well as higher bioaccumulation factors (BAFs) for Ni and Zn in the P. akamusi larvae exposure to AMD. Induced expression of Eno1 and Hb VII may play important roles in the AMD tolerance of P. akamusi larvae. This study indicated the potential application of P. akamusi larvae in the metal bioremediation of AMD-polluted areas. STATEMENT OF ENVIRONMENTAL IMPLICATION: Acid mine drainage (AMD) is a global environmental problem related to coal mining activities. AMD pollution has become a long-term, worldwide issue for its interactive and complex stress factors. Bioremediation is an effective method to remove the metals of AMD from wastewater to prevent downstream pollution. However, the disadvantages of the slow growth rate, susceptibility to seasonal changes, difficult post-harvest management, and small biomass of hyperaccumulating plants greatly limit the usefulness of phytoremediation. Insect larvae may be useful candidate organisms to overcome these shortcomings and have been considered a promising pollution solution. Propsilocerus akamusi is a dominant species in the chironomid community and is distributed widely in many lakes of eastern Asia. This species has extraordinary abilities to resist various stresses. This research is the first time to our knowledge to evaluate the application of P. akamusi as a new species in entomoremediation in AMD-contaminated areas.
Collapse
Affiliation(s)
- Xianyun Zheng
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
| | - Yuyu Li
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Jingchao Xu
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Yanchao Lu
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| |
Collapse
|
5
|
Niu L, Li C, Wang W, Zhang J, Scali M, Li W, Liu H, Tai F, Hu X, Wu X. Cadmium tolerance and hyperaccumulation in plants - A proteomic perspective of phytoremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114882. [PMID: 37037105 DOI: 10.1016/j.ecoenv.2023.114882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/27/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Cadmium (Cd) is a major environmental pollutant and poses a risk of transfer into the food chain through contaminated plants. Mechanisms underlying Cd tolerance and hyperaccumulation in plants are not fully understood. Proteomics-based approaches facilitate an in-depth understanding of plant responses to Cd stress at the systemic level by identifying Cd-inducible differentially abundant proteins (DAPs). In this review, we summarize studies related to proteomic changes associated with Cd-tolerance mechanisms in Cd-tolerant crops and Cd-hyperaccumulating plants, especially the similarities and differences across plant species. The enhanced DAPs identified through proteomic studies can be potential targets for developing Cd-hyperaccumulators to remediate Cd-contaminated environments and Cd-tolerant crops with low Cd content in the edible organs. This is of great significance for ensuring the food security of an exponentially growing global population. Finally, we discuss the methodological drawbacks in current proteomic studies and propose that better protocols and advanced techniques should be utilized to further strengthen the reliability and applicability of future Cd-stress-related studies in plants. This review provides insights into the improvement of phytoremediation efficiency and an in-depth study of the molecular mechanisms of Cd enrichment in plants.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Chunyang Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Monica Scali
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Weiqiang Li
- Jilin Da'an Agro-ecosystem National Observation Research Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hui Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
6
|
Song LY, Liu X, Zhang LD, Hu WJ, Xu CQ, Li J, Song SW, Guo ZJ, Sun CY, Tang HC, Wang JC, Zhu XY, Zheng HL. Proteomic analysis reveals differential responsive mechanisms in Solanum nigrum exposed to low and high dose of cadmium. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130880. [PMID: 36736216 DOI: 10.1016/j.jhazmat.2023.130880] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/08/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) contamination is becoming a widespread environmental problem. However, the differential responsive mechanisms of Cd hyperaccumulator Solanum nigrum to low or high dose of Cd are not well documented. In this study, phenotypic and physiological analysis firstly suggested that the seedlings of S. nigrum showed slight leaf chlorosis symptoms under 25 μM Cd and severe inhibition on growth and photosynthesis under 100 μM Cd. Further proteomic analysis identified 105 differentially expressed proteins (DEPs) in the Cd-treated leaves. Under low dose of Cd stress, 47 DEPs are mainly involved in primary metabolic processes, while under high dose of Cd stress, 92 DEPs are mainly involved in photosynthesis, energy metabolism, production of phytochelatin and reactive oxygen species (ROS). Protein-protein interaction (PPI) network analysis of DEPs support above differential responses in the leaves of S. nigrum to low and high dose of Cd treatments. This work provides the differential responsive mechanisms in S. nigrum to low and high dose of Cd, and the theoretical foundation for the application of hyperaccumulating plants in the phytoremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Ling-Yu Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Xiang Liu
- Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
| | - Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Wen-Jun Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Chao-Qun Xu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Shi-Wei Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ze-Jun Guo
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Chen-Yang Sun
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Han-Chen Tang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ji-Cheng Wang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Xue-Yi Zhu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
7
|
Wang X, Luo S, Chen Y, Zhang R, Lei L, Lin K, Qiu C, Xu H. Potential of Miscanthus floridulus associated with endophytic bacterium Bacillus cereus BL4 to remediate cadmium contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159384. [PMID: 36240921 DOI: 10.1016/j.scitotenv.2022.159384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Phytoremediation assisted by endophytic bacteria is promising to efficiently remediate cadmium (Cd) contaminated soil. Bacillus cereus BL4, isolated from Miscanthus floridulus growing around a pyrite mine, exhibited high Cd tolerance and plant growth-promoting traits and could improve Cd bioavailability in soil. As a result of the pot experiment, after inoculation with strain BL4, the fresh weight, height, and Cd accumulation of Miscanthus floridulus shoots increased by 19.08-32.26 %, 6.02-16.60 %, and 23.67 %-24.88 %, respectively, and roots increased by 49.38-56.41 %, 22.87-33.93 %, and 28.51 %-42.37 %, respectively. Under Cd stress, the chlorophyll content, photosynthetic rate, and root activity of Miscanthus floridulus increased, while the membrane permeability and malonaldehyde (MDA) content significantly decreased after the inoculation of BL4, which indicated the alleviation of the cytotoxicity of Cd. Accordingly, the glutathione (GSH) content increased, and the activities of antioxidant enzymes presented downward trends after BL4 inoculation. Cd bioavailability in soil increased after BL4 inoculation, accompanied by increases in the activities of soil enzymes (invertase, urease, alkaline phosphatase, dehydrogenase, FDA hydrolase, and catalase) as well as the richness and diversity of soil bacteria. Our findings revealed that strain BL4 might strengthen the phytoremediation of Cd by Miscanthus floridulus through its effects on plant physio-biochemistry and soil microecology, which provided a basis for the relative application to Cd-contaminated soil.
Collapse
Affiliation(s)
- Xitong Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Shihua Luo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yahui Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Renfeng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Ling Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Kangkai Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Chengshu Qiu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University, Department of Ecology and Environmental of Sichuan, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
8
|
Proteomic Changes in Paspalum fasciculatum Leaves Exposed to Cd Stress. PLANTS 2022; 11:plants11192455. [PMID: 36235321 PMCID: PMC9573290 DOI: 10.3390/plants11192455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
(1) Background: Cadmium is a toxic heavy metal that is widely distributed in water, soil, and air. It is present in agrochemicals, wastewater, battery waste, and volcanic eruptions. Thus, it can be absorbed by plants and enter the trophic chain. P. fasciculatum is a plant with phytoremediation capacity that can tolerate Cd stress, but changes in its proteome related to this tolerance have not yet been identified. (2) Methods: We conducted a quantitative analysis of the proteins present in P. fasciculatum leaves cultivated under greenhouse conditions in mining soils doped with 0 mg kg−1 (control), 30 mg kg−1, or 50 mg kg−1. This was carried out using the label-free shotgun proteomics technique. In this way, we determined the changes in the proteomes of the leaves of these plants, which allowed us to propose some tolerance mechanisms involved in the response to Cd stress. (3) Results: In total, 329 variable proteins were identified between treatments, which were classified into those associated with carbohydrate and energy metabolism; photosynthesis; structure, transport, and metabolism of proteins; antioxidant stress and defense; RNA and DNA processing; and signal transduction. (4) Conclusions: Based on changes in the differences in the leaf protein profiles between treatments, we hypothesize that some proteins associated with signal transduction (Ras-related protein RABA1e), HSPs (heat shock cognate 70 kDa protein 2), growth (actin-7), and cellular development (actin-1) are part of the tolerance response to Cd stress.
Collapse
|
9
|
Zhao L, Zhu Y, Wang M, Han Y, Xu J, Feng W, Zheng X. Enolase, a cadmium resistance related protein from hyperaccumulator plant Phytolacca americana, increase the tolerance of Escherichia coli to cadmium stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:562-571. [PMID: 35802034 DOI: 10.1080/15226514.2022.2092064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phytolacca americana is a Cd hyperaccumulator plant that accumulates significant amounts of Cd in leaves, making it a valuable phytoremediation plant species. Our previous research found enolase (ENO) may play an important part in P. americana to cope with Cd stress. As a multifunctional enzyme, ENO was involved not only in glycolysis but also in the response of plants to various environmental stresses. However, there are few studies on the function of PaENO (P. americana enolase) in coping with Cd stress. In this study, the PaENO gene was isolated from P. americana, and the expression level of PaENO gene significantly increased after Cd treatment. The enzymatic activity analysis showed PaENO had typical ENO activity, and the 42-position serine was essential to the enzymatic activity of PaENO. The Cd resistance assay indicated the expression of PaENO remarkably enhanced the resistance of E. coli to Cd, which was achieved by reducing the Cd content in E. coli. Moreover, both the expression of inactive PaENO and PaMBP-1 (alternative translation product of PaENO) can improve the tolerance of E. coli to Cd. The results indicated PaENO may be alternatively translated into the transcription factor PaMBP-1 to participate in the response of P. americana to Cd stress.
Collapse
Affiliation(s)
- Le Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Zhengzhou, China
| | - Yunhao Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Zhengzhou, China
| | - Min Wang
- Beijing Key Laboratory of Plant Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Yongguang Han
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiao Xu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Zhengzhou, China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Zhengzhou, China
| |
Collapse
|
10
|
Adil MF, Sehar S, Chen S, Lwalaba JLW, Jilani G, Chen ZH, Shamsi IH. Stress signaling convergence and nutrient crosstalk determine zinc-mediated amelioration against cadmium toxicity in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113128. [PMID: 34979311 DOI: 10.1016/j.ecoenv.2021.113128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Consumption of rice (Oryza sativa L.) is one of the major pathways for heavy metal bioaccumulation in humans over time. Understanding the molecular responses of rice to heavy metal contamination in agriculture is useful for eco-toxicological assessment of cadmium (Cd) and its interaction with zinc (Zn). In certain crops, the impacts of Cd stress or Zn nutrition on the biophysical chemistry and gene expression have been widely investigated, but their molecular interactions at transcriptomic level, particularly in rice roots, are still elusive. Here, hydroponic investigations were carried out with two rice genotypes (Yinni-801 and Heizhan-43), varying in Cd contents in plant tissues to determine their transcriptomic responses upon Cd15 (15 µM) and Cd15+Zn50 (50 µM) treatments. High throughput RNA-sequencing analysis confirmed that 496 and 2407 DEGs were significantly affected by Cd15 and Cd15+Zn50, respectively, among which 1016 DEGs were commonly induced in both genotypes. Multitude of DEGs fell under the category of protein kinases, such as calmodulin (CaM) and calcineurin B-like protein-interacting protein kinases (CBL), indicating a dynamic shift in hormonal signal transduction and Ca2+ involvement with the onset of treatments. Both genotypes expressed a mutual regulation of transcription factors (TFs) such as WRKY, MYB, NAM, AP2, bHLH and ZFP families under both treatments, whereas genes econding ABC transporters (ABCs), high affinity K+ transporters (HAKs) and Glutathione-S-transferases (GSTs), were highly up-regulated under Cd15+Zn50 in both genotypes. Zinc addition triggered more signaling cascades and detoxification related genes in regulation of immunity along with the suppression of Cd-induced DEGs and restriction of Cd uptake. Conclusively, the effective integration of breeding techniques with candidate genes identified in this study as well as economically and technologically viable methods, such as Zn nutrient management, could pave the way for selecting cultivars with promising agronomic qualities and reduced Cd for sustainable rice production.
Collapse
Affiliation(s)
- Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Si Chen
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Jonas Lwalaba Wa Lwalaba
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Ghulam Jilani
- Institute of Soil Science, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
11
|
Chen Y, Li G, Yang J, Zhao X, Sun Z, Hou H. Role of Nramp transporter genes of Spirodela polyrhiza in cadmium accumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112907. [PMID: 34673410 DOI: 10.1016/j.ecoenv.2021.112907] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
As a pollutant, Cd causes severe impact to the environment and damages living organisms. It can be uptaken from the environment by the natural resistance-associated macrophage protein (Nramp) in plants. However, the ion absorption function of Nramp transporter genes in Spirodela polyrhiza has not been reported. In this study, SpNramp1, SpNramp2, and SpNramp3 from S. polyrhiza were cloned and their functions were analyzed in S. polyrhiza and yeast. Growth parameters and physicochemical indices of wild-type and transgenic lines were measured under Cd stress. Results revealed that SpNramp1, SpNramp2, and SpNramp3 were identified as plasma membrane-localized transporters, and their roles in transporting Cd were verified in yeast. In S. polyrhiza, SpNramp1 overexpression significantly increased the content of Cd, Fe, Mn, and fresh weight. SpNramp2 overexpression increased Mn and Cd. SpNramp3 overexpression increased Fe and Mn concentrations. These results indicate that SpNramp1, SpNramp2, and SpNramp3 had a different preference for ion absorption. Two S. polyrhiza transgenic lines (OE1 and OE3) were obtained. One of them (OE1) showed a stronger accumulation ability, and the other one (OE3) exhibited tolerance capacity to Cd. This study provides new insight into the functions of SpNramp1, SpNramp2, and SpNramp3 and obtains important enrichment lines (OE1) for manipulating Cd accumulation, phytoremediation, and ecological safety.
Collapse
Affiliation(s)
- Yan Chen
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Environment and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, Henan, China
| | - Zuoliang Sun
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Feki K, Tounsi S, Mrabet M, Mhadhbi H, Brini F. Recent advances in physiological and molecular mechanisms of heavy metal accumulation in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64967-64986. [PMID: 34599711 DOI: 10.1007/s11356-021-16805-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/24/2021] [Indexed: 05/27/2023]
Abstract
Among abiotic stress, the toxicity of metals impacts negatively on plants' growth and productivity. This toxicity promotes various perturbations in plants at different levels. To withstand stress, plants involve efficient mechanisms through the implication of various signaling pathways. These pathways enhance the expression of many target genes among them gene coding for metal transporters. Various metal transporters which are localized at the plasma membrane and/or at the tonoplast are crucial in metal stress response. Furthermore, metal detoxification is provided by metal-binding proteins like phytochelatins and metallothioneins. The understanding of the molecular basis of metal toxicities signaling pathways and tolerance mechanisms is crucial for genetic engineering to produce transgenic plants that enhance phytoremediation. This review presents an overview of the recent advances in our understanding of metal stress response. Firstly, we described the effect of metal stress on plants. Then, we highlight the mechanisms involved in metal detoxification and the importance of the regulation in the response to heavy metal stress. Finally, we mentioned the importance of genetic engineering for enhancing the phytoremediation technique. In the end, the response to heavy metal stress is complex and implicates various components. Thus, further studies are needed to better understand the mechanisms involved in response to this abiotic stress.
Collapse
Affiliation(s)
- Kaouthar Feki
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cédria, BP901, 2050, Hammam-Lif, Tunisia
| | - Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Moncef Mrabet
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cédria, BP901, 2050, Hammam-Lif, Tunisia
| | - Haythem Mhadhbi
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cédria, BP901, 2050, Hammam-Lif, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177", 3018, Sfax, Tunisia.
| |
Collapse
|
13
|
Ranjan A, Sinha R, Sharma TR, Pattanayak A, Singh AK. Alleviating aluminum toxicity in plants: Implications of reactive oxygen species signaling and crosstalk with other signaling pathways. PHYSIOLOGIA PLANTARUM 2021; 173:1765-1784. [PMID: 33665830 DOI: 10.1111/ppl.13382] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Aluminum (Al) toxicity is a major limiting factor for plant growth and productivity in acidic soil. At pH lower than 5.0 (pH < 5.0), the soluble and toxic form of Al (Al3+ ions) enters root cells and inhibits root growth and uptake of water and nutrients. The organic acids malate, citrate, and oxalate are secreted by the roots and chelate Al3+ to form a non-toxic Al-OA complex, which decreases the entry of Al3+ into the root cells. When Al3+ enters, it leads to the production of reactive oxygen species (ROS) in cells, which are toxic and cause damage to biomolecules like lipids, carbohydrates, proteins, and nucleic acids. When ROS levels rise beyond the threshold, plants activate an antioxidant defense system that comprises of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione S-transferase (GST), ascorbic acid (ASA), phenolics and alkaloids etc., which protect plant cells from oxidative damage by scavenging and neutralizing ROS. Besides, ROS also play an important role in signal transduction and influence many molecular and cellular process like hormone signaling, gene expression, cell wall modification, cell cycle, programed cell death (PCD), and development. In the present review, the mechanisms of Al-induced ROS generation, ROS signaling, and crosstalk with other signaling pathways helping to combat Al toxicity have been summarized, which will help researchers to understand the intricacies of Al-induced plant response at cellular level and plan research for developing Al-toxicity tolerant crops for sustainable agriculture in acid soil-affected regions of the world.
Collapse
Affiliation(s)
- Alok Ranjan
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Ragini Sinha
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Tilak Raj Sharma
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | | | - Anil Kumar Singh
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| |
Collapse
|
14
|
Kiiskila JD, Sarkar D, Datta R. Differential protein abundance of vetiver grass in response to acid mine drainage. PHYSIOLOGIA PLANTARUM 2021; 173:829-842. [PMID: 34109636 DOI: 10.1111/ppl.13477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Acid mine drainage (AMD) is an acidic and metalliferous discharge that imposes oxidative stress on living things through bioaccumulation and physical exposure. The abandoned Tab-Simco mining site of Southern Illinois generates highly acidic AMD with elevated sulfate (SO4 2- ) and various metals. Vetiver grass (Chrysopogon zizanioides) is effective for the remediation of Tab-Simco AMD at both mesocosm and microcosm levels over extended periods. In this study, we conducted a proteomic investigation of vetiver shoots under short and long-term exposure to AMD. Our objective was to decipher the physiological responses of vetiver to the combined abiotic stresses of AMD (metal and low pH). Differential regulation was observed for longer-term (56 days) exposure to AMD, which resulted in 17 upregulated and nine downregulated proteins, whereas shorter-term (7 days) exposure led to 14 upregulated and 14 downregulated proteins. There were significant changes to photosynthesis, including upregulation of electron transport chain proteins for light-dependent reactions after 56 days, whereas differential regulation of enzymes relating to C4 carbon fixation was observed after 7 days. Significant changes in amino acid and nitrogen metabolism, including upregulation of ethylene and flavonoid biosynthesis, along with plant response to nitrogen starvation, were observed. Short-term changes also included upregulation of glutathione reductase and methionine sulfoxide reductase, whereas longer-term changes included changes in protein misfolding and ER-associated protein degradation for stress management and acclimation.
Collapse
Affiliation(s)
- Jeffrey D Kiiskila
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
- Department of Natural Sciences, Chadron State College, Chadron, Nebraska, USA
| | - Dibyendu Sarkar
- Department of Civil, Environmental, and Ocean Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
| |
Collapse
|
15
|
Özenoğlu-Aydınoğlu S, Yıldızhan H, Cansaran-Duman D. A proteomic analysis of Pseudevernia furfuracea after exposure to Cr +6 by MALDI-TOF mass spectrometry. 3 Biotech 2021; 11:444. [PMID: 34631345 DOI: 10.1007/s13205-021-02986-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/04/2021] [Indexed: 10/20/2022] Open
Abstract
The problem of heavy metal pollution in nature has increased rapidly in recent years. Hexavalent chromium (Cr+6) is one of the most toxic heavy metals that cause environmental pollution. Although many studies in the literature that illuminate the stress response mechanisms of biological organisms such as bacteria, algae, and plants against heavy metals, there is limited information about revealing the protein level changes of lichen species in response to heavy metal stress. Here, we used a MALDI-TOF-based proteomic assay to determine protein level changes in Pseudevernia furfuracea after exposure to Cr+6 heavy metal stress at 6, 18 and 24 h. It was determined that expression levels of 26, 149 and 66 proteins changed in P. furfuracea. 6, 18 and 24 h after Cr+6 application compared to the control sample, respectively. We identified 9 common proteins expressed at three different time levels (6, 18, 24 h) and evaluated their protein-protein interaction profiles with the STRING tool. According to the results of the study, it was determined that the expression level of six proteins was up-regulated (OP4, KIP3, BNI5, VSP64, HSP 60, BCK1) and three proteins were down-regulated (MNS1, ABZ2, ATG4) from the expression level of nine proteins in total with Cr+6 exposure. It was determined that nine proteins were also found to be effective in biological processes such as stress signaling, transcription regulation and cellular detoxification metabolisms. To confirm the protein expression level, we analyzed the HSP60 protein by western blot assay. It has been shown that exposure to Cr+6 exposure in P. furfuracea caused an increase in HSP60 protein level compared to the control sample (non-exposed Cr+6). In this study, new knowledge are presented for the use of P. furfuracea as a biosorption agent in the removal of industrial wastes in biotechnological applications.
Collapse
|
16
|
Zhang J, Chen H, Luo L, Zhou Z, Wang Y, Gao T, Yang L, Peng T, Wu M. Structures of fructan and galactan from Polygonatum cyrtonema and their utilization by probiotic bacteria. Carbohydr Polym 2021; 267:118219. [PMID: 34119173 DOI: 10.1016/j.carbpol.2021.118219] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 02/02/2023]
Abstract
Polygonatum cyrtonema is a known tonic herb in Chinese Materia Medica, extensively consumed in China, but the structure and activity of its polysaccharide components remain to be clarified. Herein, two new polysaccharides (a fructan and a galactan) were purified from the dried and the processed P. cyrtonema rhizome, respectively. Structural analysis suggested that the fructan consisted of a (2 → 6) linked β-d-Fruf residues backbone with an internal α-d-Glcp residue and two (2 → 1) linked β-d-Fruf residues branches, and that the galactan was a (1 → 4)-β-d-galactan branched with a single β-d-galactose at C-6 at about every nine residues in its main chain. The bioactive assay showed that the fructan and the galactan remarkably promoted growth of Bifidobacterium and Lactobacillus strains, indicating that they possess prebiotic activity. These findings may help expand the application of the polysaccharides from the tonic herb P. cyrtonema as functional ingredients in food products.
Collapse
Affiliation(s)
- Junyin Zhang
- College of Pharmacy, Chengdu University of TCM, Chengdu 611137, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hulan Chen
- College of Pharmacy, Chengdu University of TCM, Chengdu 611137, China
| | - Lan Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhipeng Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yingxiang Wang
- College of Pharmacy, Chengdu University of TCM, Chengdu 611137, China
| | - Tianyu Gao
- College of Pharmacy, Chengdu University of TCM, Chengdu 611137, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Teng Peng
- College of Pharmacy, Chengdu University of TCM, Chengdu 611137, China.
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
17
|
Comparative transcriptome analysis of the hyperaccumulator plant Phytolacca americana in response to cadmium stress. 3 Biotech 2021; 11:327. [PMID: 34194911 DOI: 10.1007/s13205-021-02865-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
To study the molecular mechanism of the hyperaccumulator plant Phytolacca americana against cadmium (Cd) stress, the leaves of P. americana treated with 400 μM Cd for 0, 2, 12, and 24 h were harvested for comparative transcriptome analysis. In total, 110.07 Gb of clean data were obtained, and 63,957 unigenes were acquired after being assembled. Due to the lack of P. americana genome information, only 24,517 unigenes were annotated by public databases. After Cd treatment, 5054 differentially expressed genes (DEGs) were identified. KEGG pathway enrichment analysis of DEGs showed that genes involved in the flavonoid biosynthesis and antenna proteins of photosynthesis were significantly down-regulated, while genes related to the lignin biosynthesis pathway were remarkably up-regulated, indicating that P. americana could synthesize more lignin to cope with Cd stress. Moreover, genes related to heavy metal accumulation, sulfur metabolism and glutathione metabolism were also significantly up-regulated. The gene expression pattern of several key genes related to distinct metabolic pathways was verified by qRT-PCR. The results indicated that the immobilization of lignin in cell wall, chelation, vacuolar compartmentalization, as well as the increase of thiol compounds content may be the important mechanisms of Cd detoxification in hyperaccumulator plant P. americana. Accession numbers: the raw data of P. americana transcriptome presented in this study are openly available in NCBI SRA database, under the BioProject of PRJNA649785. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02865-x.
Collapse
|
18
|
Rai KK, Pandey N, Meena RP, Rai SP. Biotechnological strategies for enhancing heavy metal tolerance in neglected and underutilized legume crops: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111750. [PMID: 33396075 DOI: 10.1016/j.ecoenv.2020.111750] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 05/15/2023]
Abstract
Contamination of agricultural land and water by heavy metals due to rapid industrialization and urbanization including various natural processes have become one of the major constraints to crop growth and productivity. Several studies have reported that to counteract heavy metal stress, plants should be able to maneuver various physiological, biochemical and molecular processes to improve their growth and development under heavy metal stress. With the advent of modern biotechnological tools and techniques it is now possible to tailor legume and other plants overexpressing stress-induced genes, transcription factors, proteins, and metabolites that are directly involved in heavy metal stress tolerance. This review provides an in-depth overview of various biotechnological approaches and/or strategies that can be used for enhancing detoxification of the heavy metals by stimulating phytoremediation processes. Synthetic biology tools involved in the engineering of legume and other crop plants against heavy metal stress tolerance are also discussed herewith some pioneering examples where synthetic biology tools that have been used to modify plants for specific traits. Also, CRISPR based genetic engineering of plants, including their role in modulating the expression of several genes/ transcription factors in the improvement of abiotic stress tolerance and phytoremediation ability using knockdown and knockout strategies has also been critically discussed.
Collapse
Affiliation(s)
- Krishna Kumar Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Neha Pandey
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India; Department of Botany, CMP PG College, University of Allahabad, Prayagraj, India
| | - Ram Prasad Meena
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India; Department of Computer Science, IIT, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Shashi Pandey Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
19
|
Zheng X, Li W, Gao Y. Knockdown of α-enolase (Eno1) genes by RNAi does not increase the sensitivity of Propsilocerus akamusi to cadmium stress. Int J Biol Macromol 2020; 164:3388-3393. [PMID: 32841668 DOI: 10.1016/j.ijbiomac.2020.08.164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/20/2020] [Indexed: 11/28/2022]
Abstract
α-enolase (Eno1) is a multifunctional enzyme which can as a stress protein under various environmental stresses. Recent researches also reported that Eno1 appears to have Cd2+ stress-related functions in cadmium tolerant plants. Our previous study inferred that the Eno1 gene might play an important role in the response of Propsilocerus akamusi to exogenous Cd2+. However, reports on the role of the Eno1 gene in coping with cadmium stress are still limited. In this study, we evaluated the roles of PaEno1 in the tolerance of P. akamusi to Cd2+ using RNAi technology and the response of recombinant proteins of PaEno1 in an E. coli expression system under Cd2+ stress. Our results showed that knockdown of PaEno1 did not increase but reduce the sensitivity of P. akamusi larvae to Cd2+ stress. However, bioassays showed the expression of recombinant PaEno1 protein in Rosetta cells enhanced the growth ability of E. coli under Cd2+ stress. These results suggested that overexpression of PaEno1 can significantly enhance the tolerance to heavy metal cadmium stresses in E. coli cells. However, knockdown of PaEno1 genes by RNAi does not increase the sensitivity of P. akamusi to cadmium stress.
Collapse
Affiliation(s)
- Xianyun Zheng
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
| | - Wanghong Li
- School of Physical Exercise and Education, Shanxi University, Taiyuan 030006, PR China
| | - Ye Gao
- School of Physical Exercise and Education, Shanxi University, Taiyuan 030006, PR China
| |
Collapse
|
20
|
Wang J, Zhao J, Feng S, Zhang J, Gong S, Qiao K, Zhou A. Comparison of cadmium uptake and transcriptional responses in roots reveal key transcripts from high and low-cadmium tolerance ryegrass cultivars. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110961. [PMID: 32888621 DOI: 10.1016/j.ecoenv.2020.110961] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd), which seriously affects plant growth and crop production, is harmful to humans. Previous studies revealed ryegrass (Lolium multiflorum Lam.) exhibits Cd tolerance, and may be useful as a potential hyperaccumulator because of its wide distribution. In this study, the physiological and transcriptional responses of two ryegrass cultivars [i.e., high (LmHC) and low (LmLC) Cd tolerance] to Cd stress were investigated and compared. The Cd tolerance of LmHC was greater than that of LmLC at various Cd concentrations. The uptake of Evans blue dye revealed that Cd-induced root cell mortality was higher in LmLC than in LmHC after a 12-h Cd treatment. Furthermore, the content and influx rate of Cd in LmLC roots were greater than in LmHC roots under Cd stress conditions. The RNA sequencing and quantitative real-time PCR data indicated that the Cd transport regulatory genes (ABCG37, ABCB4, NRAMP4, and HMA5) were differentially expressed between the LmLC and LmHC roots. This expression-level diversity may contribute to the differences in the Cd accumulation and translocation between LmLC and LmHC. These findings may help clarify the physiological and molecular mechanisms underlying ryegrass responses to Cd toxicity. Additionally, ryegrass may be able to hyperaccumulate toxic heavy metals during the phytoremediation of contaminated soil.
Collapse
Affiliation(s)
- Jingang Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Junchao Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shuang Feng
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, PR China; College of Life Science, Northeast Forestry University, Harbin, 150040, PR China
| | - Jinzhu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shufang Gong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
21
|
Zhang H, Xu Z, Guo K, Huo Y, He G, Sun H, Guan Y, Xu N, Yang W, Sun G. Toxic effects of heavy metal Cd and Zn on chlorophyll, carotenoid metabolism and photosynthetic function in tobacco leaves revealed by physiological and proteomics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110856. [PMID: 32629202 DOI: 10.1016/j.ecoenv.2020.110856] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 05/18/2023]
Abstract
To explore the mechanisms underlying the action of the heavy metals Cd and Zn on the photosynthetic function of plant leaves, the effects of 100 μmol L-1 Cd and 200 μmol L-1 Zn stress (the exposure concentrations of Cd and Zn in the culture medium were 2.24 mg kg-1 and 5.36 mg kg-1) on the chlorophyll and carotenoid contents as well as the photosynthetic function of tobacco leaves (Long Jiang 911) were studied. The key proteins in these physiological processes were quantitatively analyzed using a TMT-based proteomics approach. Cd stress was found to inhibit the expression of key enzymes during chlorophyll synthesis in leaves, resulting in a decrease of the Chl content. However, Zn stress did not significantly influence the chlorophyll content. Leaves adapted to Zn stress by upregulating CAO expression and increase the Chl b content. Although the Car content in leaves did not significantly change under either Cd or Zn stress, the expressions of ZE and VDE during Car metabolism decreased significantly under Cd stress. This was accompanied by damages to the xanthophyll cycle and the NPQ-dependent energy dissipation mechanism. In contrast, under Zn stress, leaves adapted to Zn stress by increasing the expression of VDE, thus improving NPQ. Under Cd stress, the expressions of three sets of proteins were significantly down-regulated, including PSII donor-side proteins (PPD3, PPD6, OEE1, OEE2-1, OEE2-2, OEE2-3, and OEE3-2), receptor-side proteins (D1, D2, CP43, CP47, Cyt b559α, Cyt b559β, PsbL, PsbQ, PsbR, Psb27-H1, and Psb28), and core proteins of the PSI reaction center (psaA, psaB, psaC, psaD, psaE-A, PsaE-B, psaF, psaG, psaH-1, psaK, psaL, psaN, and psaOL). In comparison, only eight of the above proteins (PPD6, OEE3-2, PsbL, PsbQ, Psb27-H1, psaL, and psaOL) were significantly down-regulated by Zn stress. Under Cd stress, both the donor side and the receptor side of PSII were damaged, and PSII and PSI experienced severe photoinhibition. However, Zn stress did not decrease either PSII or PSI activities in tobacco leaves. In addition, the expression of electron transport-related proteins (cytb6/f complex, PC, Fd, and FNR), ATPase subunits, Rubisco subunits, and RCA decreased significantly in leaves under Cd stress. However, no significant changes were observed in any of these proteins under Zn stress. Although Cd stress was found to up-regulate the expressions of PGRL1A and PGRL1B and induce an increase of PGR5/PGRL1-CEF in tobacco leaves, NDH-CEF was significantly inhibited. Under Zn stress, the expressions of ndhH and PGRL1A in leaves were significantly up-regulated, but there were no significant changes in either NDH-CEF or PGR5/PGRL-CEF. Under Cd stress, the expressions of proteins related to Fd-dependent nitrogen metabolism and reactive oxygen species (ROS) scavenging processes (e.g., FTR, Fd-NiR, and Fd-GOGAT) were significantly down-regulated in leaves. However, no significant changes of any of the above proteins were identified under Zn stress. In summary, Cd stress could inhibit the synthesis of chlorophyll in tobacco leaves, significantly down-regulate the expressions of photosynthesis-related proteins or subunits, and suppress both the xanthophyll cycle and NDH-CEF process. The expressions of proteins related to the Fd-dependent nitrogen metabolism and ROS scavenging were also significantly down-regulated, which blocked the photosynthetic electron transport, thus resulting in severe photoinhibition of both PSII and PSI. However, Zn stress had little effect on the photosynthetic function of tobacco leaves.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Zisong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Kaiwen Guo
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuze Huo
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Guoqiang He
- Mudanjiang Tobacco Science Research Institute, Mudanjiang, Heilongjiang, China
| | - Hongwei Sun
- Mudanjiang Tobacco Science Research Institute, Mudanjiang, Heilongjiang, China
| | - Yupeng Guan
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Nan Xu
- Natural Resources and Ecology Institute, Heilongjiang Sciences Academy, Harbin, Heilongjiang, China
| | - Wei Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Guangyu Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China.
| |
Collapse
|
22
|
Dai H, Wei S, Noori A. The mechanism of chelator improved the tolerance and accumulation of poplar to Cd explored through differential expression protein based on iTRAQ. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122370. [PMID: 32120214 DOI: 10.1016/j.jhazmat.2020.122370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/03/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Appropriate chelator may increase plant tolerance and accumulation for Cd in soil, but its molecular mechanism is unclear. In this experiment, the technology of isobaric tags for relative and absolute quantitation (iTRAQ) was used to compare the differential expression proteins (DEPs) and differential expression genes (DEGs) characteristics of poplar accumulating Cd combined with EDTA and/or EGTA. The results showed that the Cd concentrations, biomasses and activities of antioxidant enzymes of poplar were significantly increased in the treatments of chelator addition compared to the TCd. The number of co-intersecting specific proteins of TCd/CK, TCd+EDTA/TCd, TCd+EGTA/TCd and TCd+EDTA+EGTA/TCd was 49. Using the GO function and KEGG analysis, it was found that EDTA and EGTA might improve some main metabolic pathways of poplar leaves, which were involved in the enhancement of the expression of carbohydrate and energy metabolism-related proteins, regulation of cell energy metabolism, complementing and cooperating with each other in various ways, and dynamic regulation of energy metabolism. Particularly, chelator might induce the regulation of protein synthesis, folding and transport, and degradation of abnormal proteins in response to Cd toxicity. These results provided a theoretical basis for further elucidation of molecular mechanisms of poplar response to Cd stress.
Collapse
Affiliation(s)
- Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Azam Noori
- Department of Biology, Merrimack College, North Andover, MA, 01845, USA
| |
Collapse
|
23
|
Xue WJ, Zhang CB, Wang PP, Wang CR, Huang YC, Zhang X, Liu ZQ. Rice vegetative organs alleviate cadmium toxicity by altering the chemical forms of cadmium and increasing the ratio of calcium to manganese. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109640. [PMID: 31499448 DOI: 10.1016/j.ecoenv.2019.109640] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Altering Cd chemical form is one of the mechanisms to alleviate Cd toxicity in rice plant. Field experiments were carried out in this study to investigate the potential of rice vegetative organs in altering Cd into insoluble chemical forms in the natural environment. Experimental results showed that more than 80% of Cd in rice roots existed in the insoluble forms. Uppermost nodes altered Cd into insoluble form preferentially and generally had higher content of insoluble Cd than other organs. Rachises displayed a slow increasing trend in soluble Cd when total Cd in roots was less than 1.8 mg kg-1. However, when Cd content in roots exceeded 2.8 mg kg-1, the ratio of insoluble to soluble Cd remained stable at 85:15 in rachises and roots, and at 75:25 in uppermost nodes and flag leaves. Cd concentration in grains was greatly lower than that in vegetative organs, and closely correlated with the content of soluble Cd in rachises (r = 0.991**) as well as in uppermost nodes. Soluble Cd in the uppermost nodes displayed a much lower mobility than that in other organs. Accumulation of soluble Cd was always companied by decrease of Ca and increase of Mn in roots, uppermost nodes and rachises. A small increase of soluble Cd from 0.05 to 0.1 mg kg-1 caused a sharp decline of Ca:Mn ratio in roots and rachises. Roots and nodes had much higher Ca:Mn ratio than rachises when soluble Cd was less than 0.5 mg kg-1 in them. These results indicate that vegetative organs have a great potential to alter more than 75% Cd into insoluble forms and increasing Ca:Mn ratio may be another way to alleviate Cd toxicity by establishing new ionic homeostasis in rice plants.
Collapse
Affiliation(s)
- Wei-Jie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Chang-Bo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Pei-Pei Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Chang-Rong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yong-Chun Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xin Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Zhong-Qi Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
24
|
Borges KLR, Salvato F, Loziuk PL, Muddiman DC, Azevedo RA. Quantitative proteomic analysis of tomato genotypes with differential cadmium tolerance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26039-26051. [PMID: 31278641 DOI: 10.1007/s11356-019-05766-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/17/2019] [Indexed: 05/06/2023]
Abstract
This is a report on comprehensive characterization of cadmium (Cd)-exposed root proteomes in tomato using label-free quantitative proteomic approach. Two genotypes differing in Cd tolerance, Pusa Ruby (Cd-tolerant) and Calabash Rouge (Cd-sensitive), were exposed during 4 days to assess the Cd-induced effects on root proteome. The overall changes in both genotypes in terms of differentially accumulated proteins (DAPs) were mainly associated to cell wall, redox, and stress responses. The proteome of the sensitive genotype was more responsive to Cd excess, once it presented higher number of DAPs. Contrasting protein accumulation in cellular component was observed: Cd-sensitive enhanced intracellular components, while the Cd-tolerant increased proteins of extracellular and envelope regions. Protective and regulatory mechanisms were different between genotypes, once the tolerant showed alterations of various protein groups that lead to a more efficient system to cope with Cd challenge. These findings could shed some light on the molecular basis underlying the Cd stress response in tomato, providing fundamental insights for the development of Cd-safe cultivars. Graphical abstract.
Collapse
Affiliation(s)
- Karina Lima Reis Borges
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo, 13418-900, Brasil
| | - Fernanda Salvato
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo, 13418-900, Brasil
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brasil
| | - Philip L Loziuk
- W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - David C Muddiman
- W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo, 13418-900, Brasil.
| |
Collapse
|
25
|
Neller KCM, Diaz CA, Platts AE, Hudak KA. De novo Assembly of the Pokeweed Genome Provides Insight Into Pokeweed Antiviral Protein (PAP) Gene Expression. FRONTIERS IN PLANT SCIENCE 2019; 10:1002. [PMID: 31447869 PMCID: PMC6691146 DOI: 10.3389/fpls.2019.01002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/17/2019] [Indexed: 05/21/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are RNA glycosidases thought to function in defense against pathogens. These enzymes remove purine bases from RNAs, including rRNA; the latter activity decreases protein synthesis in vitro, which is hypothesized to limit pathogen proliferation by causing host cell death. Pokeweed antiviral protein (PAP) is a RIP synthesized by the American pokeweed plant (Phytolacca americana). PAP inhibits virus infection when expressed in crop plants, yet little is known about the function of PAP in pokeweed due to a lack of genomic tools for this non-model species. In this work, we de novo assembled the pokeweed genome and annotated protein-coding genes. Sequencing comprised paired-end reads from a short-insert library of 83X coverage, and our draft assembly (N50 = 42.5 Kb) accounted for 74% of the measured pokeweed genome size of 1.3 Gb. We obtained 29,773 genes, 73% of which contained known protein domains, and identified several PAP isoforms. Within the gene models of each PAP isoform, a long 5' UTR intron was discovered, which was validated by RT-PCR and sequencing. Presence of the intron stimulated reporter gene expression in tobacco. To gain further understanding of PAP regulation, we complemented this genomic resource with expression profiles of pokeweed plants subjected to stress treatments [jasmonic acid (JA), salicylic acid, polyethylene glycol, and wounding]. Cluster analysis of the top differentially expressed genes indicated that some PAP isoforms shared expression patterns with genes involved in terpenoid biosynthesis, JA-mediated signaling, and metabolism of amino acids and carbohydrates. The newly sequenced promoters of all PAP isoforms contained cis-regulatory elements associated with diverse biotic and abiotic stresses. These elements mediated response to JA in tobacco, based on reporter constructs containing promoter truncations of PAP-I, the most abundant isoform. Taken together, this first genomic resource for the Phytolaccaceae plant family provides new insight into the regulation and function of PAP in pokeweed.
Collapse
Affiliation(s)
| | | | - Adrian E. Platts
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
| | | |
Collapse
|
26
|
Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M. Heavy metal stress and responses in plants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2019; 16:1807-1828. [PMID: 0 DOI: 10.1007/s13762-019-02215-8] [Citation(s) in RCA: 320] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/29/2018] [Accepted: 01/05/2019] [Indexed: 05/24/2023]
|
27
|
Rafique S. Differential expression of leaf proteome of tolerant and susceptible maize ( Zea mays L.) genotypes in response to multiple abiotic stresses. Biochem Cell Biol 2019; 97:581-588. [PMID: 30807207 DOI: 10.1139/bcb-2018-0338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In the present work, tropical maize genotypes were evaluated for multiple stresses (drought × low-N and waterlogging × low-N) applied simultaneously to 30-day-old maize seedlings. Two-dimensional gel electrophoresis was used to examine the protein changes induced by combined stress, in leaves, of tolerant and susceptible genotypes. Moreover, physiological and biochemical parameters were assessed to understand the physiological status of tolerant and susceptible genotypes under combined stress. The results show that up-regulated proteins of the tolerant genotype have a significant role in activating defense response, restoration of plant growth, and to maintain metabolic homeostasis under stressful conditions. Therefore, they contribute to improve and maintain the state of acclimation of the genotype under stress. Alternatively in the susceptible genotype, the up-regulated proteins are representative biomarkers of stress or are involved in the defense against pathogens and efforts to maintain energy metabolism. Thus, protecting the survival of the genotype under multiple stress conditions. We conclude that depending on the given stress treatment, tolerant and susceptible genotypes differed in stress-enduring approaches. Therefore, the study provides insight to comprehend the response of tolerant and susceptible genotypes under combined stress conditions, which could be valuable for further research and will demonstrate that it is advantageous to select combined stress-tolerant genotypes.
Collapse
Affiliation(s)
- Suphia Rafique
- Department of Biotechnology, Faculty of Chemicals and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.,Department of Biotechnology, Faculty of Chemicals and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
28
|
Zheng X, Gao Y, Li W, Wang S. iTRAQ-based quantitative proteomic analysis identified Eno1 as a cadmium stress response gene in Propsilocerus akamusi (Tokunaga) hemolymph. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:126-135. [PMID: 30195204 DOI: 10.1016/j.ecoenv.2018.08.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
Propsilocerus akamusi (Tokunaga) is a common species of midge in Siberia, Japan, and China and an important prey species for fish and aquatic birds. Furthermore, this species has been shown to have an extraordinary capacity to resist cadmium (Cd) toxicity. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) coupled liquid chromatography tandem mass spectrometry (LC-MS/MS) was used to analyze relative changes in the P. akamusi hemolymph proteome following exposure to a sublethal concentration of Cd2+. The results showed that Cd2+ stress affects energy metabolism in P. akamusi. After examining the differentially expressed proteins (DEPs), only one up-regulated protein associated with metabolism, α-enolase (Eno1) was identified and further isolated and characterized. Sequence alignments showed that the deduced P. akamusi Eno1 amino acid sequence is highly conserved, with similarities of 77-95% noted when compared to other Dipteran Eno1 sequences. Furthermore, prolonged Cd2+ exposure impacted Eno1 transcription, protein expression and enzyme activity levels. These results suggest that Eno1 may play a role in the response to Cd2+ stress in P. akamusi.
Collapse
Affiliation(s)
- Xianyun Zheng
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
| | - Ye Gao
- School of Physical Exercise and Education, Shanxi University, Taiyuan 030006, PR China
| | - Wanghong Li
- School of Physical Exercise and Education, Shanxi University, Taiyuan 030006, PR China
| | - Shu Wang
- School of Physical Exercise and Education, Shanxi University, Taiyuan 030006, PR China
| |
Collapse
|
29
|
Identification of differentially accumulated proteins involved in regulating independent and combined osmosis and cadmium stress response in Brachypodium seedling roots. Sci Rep 2018; 8:7790. [PMID: 29773844 PMCID: PMC5958118 DOI: 10.1038/s41598-018-25959-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/01/2018] [Indexed: 12/24/2022] Open
Abstract
In this study, we aimed to identify differentially accumulated proteins (DAPs) involved in PEG mock osmotic stress, cadmium (Cd2+) stress, and their combined stress responses in Brachypodium distachyon seedling roots. The results showed that combined PEG and Cd2+ stresses had more significant effects on Brachypodium seedling root growth, physiological traits, and ultrastructures when compared with each individual stress. Totally, 106 DAPs were identified that are responsive to individual and combined stresses in roots. These DAPs were mainly involved in energy metabolism, detoxification and stress defense and protein metabolism. Principal component analysis revealed that DAPs from Cd2+ and combined stress treatments were grouped closer than those from osmotic stress treatment, indicating that Cd2+ and combined stresses had more severe influences on the root proteome than osmotic stress alone. Protein-protein interaction analyses highlighted a 14-3-3 centered sub-network that synergistically responded to osmotic and Cd2+ stresses and their combined stresses. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 14 key DAP genes revealed that most genes showed consistency between transcriptional and translational expression patterns. A putative pathway of proteome metabolic changes in Brachypodium seedling roots under different stresses was proposed, which revealed a complicated synergetic responsive network of plant roots to adverse environments.
Collapse
|
30
|
Neller KCM, Klenov A, Guzman JC, Hudak KA. Integration of the Pokeweed miRNA and mRNA Transcriptomes Reveals Targeting of Jasmonic Acid-Responsive Genes. FRONTIERS IN PLANT SCIENCE 2018; 9:589. [PMID: 29774043 PMCID: PMC5944317 DOI: 10.3389/fpls.2018.00589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
The American pokeweed plant, Phytolacca americana, displays broad-spectrum resistance to plant viruses and is a heavy metal hyperaccumulator. However, little is known about the regulation of biotic and abiotic stress responses in this non-model plant. To investigate the control of miRNAs in gene expression, we sequenced the small RNA transcriptome of pokeweed treated with jasmonic acid (JA), a hormone that mediates pathogen defense and stress tolerance. We predicted 145 miRNAs responsive to JA, most of which were unique to pokeweed. These miRNAs were low in abundance and condition-specific, with discrete expression change. Integration of paired mRNA-Seq expression data enabled us to identify correlated, novel JA-responsive targets that mediate hormone biosynthesis, signal transduction, and pathogen defense. The expression of approximately half the pairs was positively correlated, an uncommon finding that we functionally validated by mRNA cleavage. Importantly, we report that a pokeweed-specific miRNA targets the transcript of OPR3, novel evidence that a miRNA regulates a JA biosynthesis enzyme. This first large-scale small RNA study of a Phytolaccaceae family member shows that miRNA-mediated control is a significant component of the JA response, associated with widespread changes in expression of genes required for stress adaptation.
Collapse
Affiliation(s)
| | | | - Juan C. Guzman
- Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada
| | | |
Collapse
|
31
|
Basu S, Rabara RC, Negi S, Shukla P. Engineering PGPMOs through Gene Editing and Systems Biology: A Solution for Phytoremediation? Trends Biotechnol 2018; 36:499-510. [DOI: 10.1016/j.tibtech.2018.01.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 01/17/2023]
|
32
|
Kaszycki P, Dubicka-Lisowska A, Augustynowicz J, Piwowarczyk B, Wesołowski W. Callitriche cophocarpa (water starwort) proteome under chromate stress: evidence for induction of a quinone reductase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8928-8942. [PMID: 29332274 PMCID: PMC5854755 DOI: 10.1007/s11356-017-1067-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/18/2017] [Indexed: 05/19/2023]
Abstract
Chromate-induced physiological stress in a water-submerged macrophyte Callitriche cophocarpa Sendtn. (water starwort) was tested at the proteomic level. The oxidative stress status of the plant treated with 1 mM Cr(VI) for 3 days revealed stimulation of peroxidases whereas catalase and superoxide dismutase activities were similar to the control levels. Employing two-dimensional electrophoresis, comparative proteomics enabled to detect five differentiating proteins subjected to identification with mass spectrometry followed by an NCBI database search. Cr(VI) incubation led to induction of light harvesting chlorophyll a/b binding protein with a concomitant decrease of accumulation of ribulose bisphosphate carboxylase (RuBisCO). The main finding was, however, the identification of an NAD(P)H-dependent dehydrogenase FQR1, detectable only in Cr(VI)-treated plants. The FQR1 flavoenzyme is known to be responsive to oxidative stress and to act as a detoxification protein by protecting the cells against oxidative damage. It exhibits the in vitro quinone reductase activity and is capable of catalyzing two-electron transfer from NAD(P)H to several substrates, presumably including Cr(VI). The enhanced accumulation of FQR1 was chromate-specific since other stressful conditions, such as salt, temperature, and oxidative stresses, all failed to induce the protein. Zymographic analysis of chromate-treated Callitriche shoots showed a novel enzymatic protein band whose activity was attributed to the newly identified enzyme. We suggest that Cr(VI) phytoremediation with C. cophocarpa can be promoted by chromate reductase activity produced by the induced quinone oxidoreductase which might take part in Cr(VI) → Cr(III) bioreduction process and thus enable the plant to cope with the chromate-generated oxidative stress.
Collapse
Affiliation(s)
- Paweł Kaszycki
- Unit of Biochemistry, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425, Kraków, Poland.
| | - Aleksandra Dubicka-Lisowska
- Unit of Biochemistry, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Joanna Augustynowicz
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Barbara Piwowarczyk
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Wojciech Wesołowski
- Unit of Genetics, Plant Breeding and Seed Science, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425, Kraków, Poland
| |
Collapse
|
33
|
He CT, Zhou YH, Huang YY, Fu HL, Wang XS, Gong FY, Tan X, Yang ZY. Different Proteomic Processes Related to the Cultivar-Dependent Cadmium Accumulation of Amaranthus gangeticus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1085-1095. [PMID: 29323896 DOI: 10.1021/acs.jafc.7b05042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To deal with the Cd contaminant of agricultural soil, pollution-safe cultivar (PSC) is developed to minimize the Cd accumulation risk in crops. The present study aimed to investigate the different proteomic responses related to Cd accumulation in different tissues between two Amaranthus gangeticus cultivars, Pen and Nan. A significantly higher Cd accumulation in Pen than in Nan was unraveled, especially in shoot. The proportions of soluble Cd in root and stem of Nan were significantly lower than those of Pen, implying lower Cd transportation from root to shoot in Nan. Higher contents of NaCl-extracted Cd in Pen than in Nan were probably attributed to the enhancement of GSH related metabolism in Pen, which activated the transportation of Cd from root to shoot. Alteration of other proteins involved in Cd detoxification and energy production also demonstrated that Pen had exhibited a stronger tolerance than Nan in dealing with Cd stress. Thus, differences in the proteomic processes associated with biochemical differences between the two typical cultivars suggested a cultivar-dependent capacity of Cd tolerance and accumulation in amaranth for the first time.
Collapse
Affiliation(s)
- Chun-Tao He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University , Xingang Xi Road 135, Guangzhou, 510275, China
| | - Yi-Hui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai, 200092, China
| | - Ying-Ying Huang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University , Xingang Xi Road 135, Guangzhou, 510275, China
| | - Hui-Ling Fu
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University , Xingang Xi Road 135, Guangzhou, 510275, China
| | - Xue-Song Wang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University , Xingang Xi Road 135, Guangzhou, 510275, China
| | - Fei-Yue Gong
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University , Xingang Xi Road 135, Guangzhou, 510275, China
| | - Xiao Tan
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University , Xingang Xi Road 135, Guangzhou, 510275, China
| | - Zhong-Yi Yang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University , Xingang Xi Road 135, Guangzhou, 510275, China
| |
Collapse
|
34
|
Lu Q, Zhang T, Zhang W, Su C, Yang Y, Hu D, Xu Q. Alleviation of cadmium toxicity in Lemna minor by exogenous salicylic acid. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:500-508. [PMID: 28915397 DOI: 10.1016/j.ecoenv.2017.09.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 05/07/2023]
Abstract
Cadmium (Cd) is a significant environmental pollutant in the aquatic environment. Salicylic acid (SA) is a ubiquitous phenolic compound. The goal of this study was to assess the morphological, physiological and biochemical changes in duckweed (L. minor) upon exposure to 10μM CdCl2, 10μM CdCl2 plus 50μM SA, or 50μM SA for 7 days. Reversing the effects of Cd, SA decreased Cd accumulation in plants, improved accumulation of minerals (Ca, Mg, Fe, B, Mo) absorption, increased endogenous SA concentration, and phenylalanine ammonialyase (PAL) activity. Chlorosis-associated symptoms, the reduction in chlorophyll content, and the overproduction of reactive oxygen species induced by Cd exposure were largely reversed by SA. SA significantly decreased the toxic effects of Cd on the activities of the superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and glutathione reductase in the fronds of L. minor. Furthermore, SA reversed the detrimental effects of Cd on total ascorbate, glutathione, the ascorbic acid/oxidized dehydroascorbate and glutathione/glutathione disulphide ratios, lipid peroxidation, malondialdehyde concentration, lipoxygenase activity, and the accumulation of proline. SA induced the up-regulation of heat shock proteins (Hsp70) and attenuated the adverse effects of Cd on cell viability. These results suggest that SA confers tolerance to Cd stress in L. minor through different mechanisms.
Collapse
Affiliation(s)
- Qianqian Lu
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Tingting Zhang
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Wei Zhang
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Chunlei Su
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Yaru Yang
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Dan Hu
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Qinsong Xu
- College of Life Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
35
|
Chen Y, Zhi J, Li X, Zhang H, Liu H, Xu J. Diversity in cadmium accumulation and resistance associated with various metallothionein genes (type III) in Phytolacca americana L. Int J Biol Macromol 2017; 108:704-709. [PMID: 29197572 DOI: 10.1016/j.ijbiomac.2017.11.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 11/19/2022]
Abstract
Metallothioneins (MTs) are known for their heavy metal deoxidation during phytoremediation. To estimate their roles in the cadmium (Cd) hyperaccumulator Phytolacca americana L., three MT genes, PaMT3-1, PaMT3-2 and PaMT3-3, belonging to the MT3 subfamily were cloned. They separately encoded 63, 65 and 65 amino acids, containing12, 10 and 11 cysteines (Cys), respectively. Each gene was individually transformed and expressed in Escherichia coli cells. A Cd-resistance assay showed that the recombinant strains had enhanced survival rates, especially those containing PaMT3-1 and PaMT3-3. Additionally, the recombinant strains were high Cd accumulators, with the recombinant PaMT3-1's maximum accumulation being 2.16 times that of the empty vector strains. The numbers of cysteines and the structures of MT proteins were associated with the Cd enrichment and resistance capabilities. PaMT3-1 could be an effective gene resource in future plant Cd remediation-related breeding programs.
Collapse
Affiliation(s)
- Yongkun Chen
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Junkai Zhi
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Xiaoyu Li
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Hao Zhang
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Huabo Liu
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Jichen Xu
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China.
| |
Collapse
|
36
|
Chen Y, Zhi J, Zhang H, Li J, Zhao Q, Xu J. Transcriptome analysis of Phytolacca americana L. in response to cadmium stress. PLoS One 2017; 12:e0184681. [PMID: 28898278 PMCID: PMC5595333 DOI: 10.1371/journal.pone.0184681] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/29/2017] [Indexed: 11/18/2022] Open
Abstract
Phytolacca americana L. (pokeweed) has metal phytoremediation potential, but little is known about its metal accumulation-related genes. In this study, the de novo sequencing of total RNA produced 53.15 million reads covering 10.63 gigabases of transcriptome raw data in cadmium (Cd)-treated and untreated pokeweed. Of the 97,502 assembled unigenes, 42,197 had significant matches in a public database and were annotated accordingly. An expression level comparison between the samples revealed 1515 differentially expressed genes (DEGs), 923 down- and 592 up-regulated under Cd treatment. A KEGG pathway enrichment analysis of DEGs revealed that they were involved in 72 metabolism pathways, with photosynthesis, phenylalanine metabolism, ribosome, phenylpropanoid biosynthesis, flavonoid biosynthesis and carbon fixation in photosynthetic organisms containing 24, 18, 72, 14, 7 and 15 genes, respectively. Genes related to heavy metal tolerance, absorption, transport and accumulation were also identified, including 11 expansins, 8 nicotianamine synthases, 6 aquaporins, 4 ZRT/IRT-like proteins, 3 ABC transporters and 3 metallothioneins. The gene expression results of 12 randomly selected DEGs were validated using quantitative real-time PCR, and showed different response patterns to Cd in their roots, stems and leaves. These results may be helpful in increasing our understanding of heavy metal hyperaccumulators and in future phytoremediation applications.
Collapse
Affiliation(s)
- Yongkun Chen
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Junkai Zhi
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Hao Zhang
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Jian Li
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Qihong Zhao
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Jichen Xu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- * E-mail:
| |
Collapse
|
37
|
Hasan MK, Cheng Y, Kanwar MK, Chu XY, Ahammed GJ, Qi ZY. Responses of Plant Proteins to Heavy Metal Stress-A Review. FRONTIERS IN PLANT SCIENCE 2017; 8:1492. [PMID: 28928754 PMCID: PMC5591867 DOI: 10.3389/fpls.2017.01492] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/11/2017] [Indexed: 05/17/2023]
Abstract
Plants respond to environmental pollutants such as heavy metal(s) by triggering the expression of genes that encode proteins involved in stress response. Toxic metal ions profoundly affect the cellular protein homeostasis by interfering with the folding process and aggregation of nascent or non-native proteins leading to decreased cell viability. However, plants possess a range of ubiquitous cellular surveillance systems that enable them to efficiently detoxify heavy metals toward enhanced tolerance to metal stress. As proteins constitute the major workhorses of living cells, the chelation of metal ions in cytosol with phytochelatins and metallothioneins followed by compartmentalization of metals in the vacuoles as well as the repair of stress-damaged proteins or removal and degradation of proteins that fail to achieve their native conformations are critical for plant tolerance to heavy metal stress. In this review, we provide a broad overview of recent advances in cellular protein research with regards to heavy metal tolerance in plants. We also discuss how plants maintain functional and healthy proteomes for survival under such capricious surroundings.
Collapse
Affiliation(s)
- Md. Kamrul Hasan
- Department of Horticulture, Zhejiang UniversityHangzhou, China
- Department of Agricultural Chemistry, Sylhet Agricultural UniversitySylhet, Bangladesh
| | - Yuan Cheng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | | | - Xian-Yao Chu
- Zhejiang Institute of Geological Survey, Geological Research Center for Agricultural Applications, China Geological SurveyBeijing, China
| | | | - Zhen-Yu Qi
- Agricultural Experiment Station, Zhejiang UniversityHangzhou, China
| |
Collapse
|
38
|
Nianiou-Obeidat I, Madesis P, Kissoudis C, Voulgari G, Chronopoulou E, Tsaftaris A, Labrou NE. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. PLANT CELL REPORTS 2017; 36:791-805. [PMID: 28391528 DOI: 10.1007/s00299-017-2139-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/27/2017] [Indexed: 05/07/2023]
Abstract
Plant glutathione transferases (EC 2.5.1.18, GSTs) are an ancient, multimember and diverse enzyme class. Plant GSTs have diverse roles in plant development, endogenous metabolism, stress tolerance, and xenobiotic detoxification. Their study embodies both fundamental aspects and agricultural interest, because of their ability to confer tolerance against biotic and abiotic stresses and to detoxify herbicides. Here we review the biotechnological applications of GSTs towards developing plants that are resistant to biotic and abiotic stresses. We integrate recent discoveries, highlight, and critically discuss the underlying biochemical and molecular pathways involved. We elaborate that the functions of GSTs in abiotic and biotic stress adaptation are potentially a result of both catalytic and non-catalytic functions. These include conjugation of reactive electrophile species with glutathione and the modulation of cellular redox status, biosynthesis, binding, and transport of secondary metabolites and hormones. Their major universal functions under stress underline the potential in developing climate-resilient cultivars through a combination of molecular and conventional breeding programs. We propose that future GST engineering efforts through rational and combinatorial approaches, would lead to the design of improved isoenzymes with purpose-designed catalytic activities and novel functional properties. Concurrent GST-GSH metabolic engineering can incrementally increase the effectiveness of GST biotechnological deployment.
Collapse
Affiliation(s)
- Irini Nianiou-Obeidat
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124, Thessaloniki, Greece.
| | - Panagiotis Madesis
- Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, Thermi, P.O. Box 361, 57001, Thessaloniki, Greece
| | - Christos Kissoudis
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124, Thessaloniki, Greece
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Georgia Voulgari
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124, Thessaloniki, Greece
| | - Evangelia Chronopoulou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece
| | - Athanasios Tsaftaris
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124, Thessaloniki, Greece
- Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, Thermi, P.O. Box 361, 57001, Thessaloniki, Greece
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece
| |
Collapse
|
39
|
A simple thermodynamic model for evaluating the ecological restoration effect on a manganese tailing wasteland. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Zhang H, Xia Y, Chen C, Zhuang K, Song Y, Shen Z. Analysis of Copper-Binding Proteins in Rice Radicles Exposed to Excess Copper and Hydrogen Peroxide Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1216. [PMID: 27582750 PMCID: PMC4987373 DOI: 10.3389/fpls.2016.01216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/02/2016] [Indexed: 05/15/2023]
Abstract
Copper (Cu) is an essential micronutrient for plants, but excess Cu can inactivate and disturb the protein function due to unavoidable binding to proteins at the cellular level. As a redox-active metal, Cu toxicity is mediated by the formation of reactive oxygen species (ROS). Cu-binding structural motifs may alleviate Cu-induced damage by decreasing free Cu(2+) activity in cytoplasm or scavenging ROS. The identification of Cu-binding proteins involved in the response of plants to Cu or ROS toxicity may increase our understanding the mechanisms of metal toxicity and tolerance in plants. This study investigated change of Cu-binding proteins in radicles of germinating rice seeds under excess Cu and oxidative stress using immobilized Cu(2+) affinity chromatography, two-dimensional electrophoresis, and mass spectra analysis. Quantitative image analysis revealed that 26 protein spots showed more than a 1.5-fold difference in abundances under Cu or H2O2 treatment compared to the control. The identified Cu-binding proteins were involved in anti-oxidative defense, stress response and detoxification, protein synthesis, protein modification, and metabolism regulation. The present results revealed that 17 out of 24 identified Cu-binding proteins have a similar response to low concentration Cu (20 μM Cu) and H2O2 stress, and 5 out of 24 were increased under low and high concentration Cu (100 μM Cu) but unaffected under H2O2 stress, which hint Cu ions can regulate Cu-binding proteins accumulation by H2O2 or no H2O2 pathway to cope with excess Cu in cell. The change pattern of these Cu-binding proteins and their function analysis warrant to further study the roles of Cu ions in these Cu-binding proteins of plant cells.
Collapse
Affiliation(s)
- Hongxiao Zhang
- College of Agriculture, Henan University of Science and TechnologyLuoyang, China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Kai Zhuang
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Yufeng Song
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
41
|
Roy SK, Kwon SJ, Cho SW, Kamal AHM, Kim SW, Sarker K, Oh MW, Lee MS, Chung KY, Xin Z, Woo SH. Leaf proteome characterization in the context of physiological and morphological changes in response to copper stress in sorghum. Biometals 2016; 29:495-513. [PMID: 27067443 DOI: 10.1007/s10534-016-9932-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/03/2016] [Indexed: 02/03/2023]
Abstract
Copper (Cu) is an essential micronutrient required for normal growth and development of plants; however, at elevated concentrations in soil, copper is also generally considered to be one of the most toxic metals to plant cells due to its inhibitory effects against many physiological and biochemical processes. In spite of its potential physiological and economical significance, molecular mechanisms under Cu stress has so far been grossly overlooked in sorghum. To explore the molecular alterations that occur in response to copper stress, the present study was performed in ten-day-old Cu-exposed leaves of sorghum seedlings. The growth characteristics were markedly inhibited, and ionic alterations were prominently observed in the leaves when the seedlings were exposed to different concentrations (0, 100, and 150 µM) of CuSO4. Using two-dimensional gels with silver staining, 643 differentially expressed protein spots (≥1.5-fold) were identified as either significantly increased or reduced in abundance. Of these spots, a total of 24 protein spots (≥1.5-fold) from Cu-exposed sorghum leaves were successfully analyzed by MALDI-TOF-TOF mass spectrometry. Of the 24 differentially expressed proteins from Cu-exposed sorghum leaves, 13 proteins were up-regulated, and 11 proteins were down-regulated. The abundance of most identified protein species, which function in carbohydrate metabolism, stress defense and protein translation, was significantly enhanced, while that of another protein species involved in energy metabolism, photosynthesis and growth and development were severely reduced. The resulting differences in protein expression patterns together with related morpho-physiological processes suggested that these results could help to elucidate plant adaptation to Cu stress and provide insights into the molecular mechanisms of Cu responses in C4 plants.
Collapse
Affiliation(s)
- Swapan Kumar Roy
- Department of Crop Science, Chungbuk National University, 410 Seongbong-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-763, Korea
| | - Soo Jeong Kwon
- Department of Crop Science, Chungbuk National University, 410 Seongbong-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-763, Korea
| | - Seong-Woo Cho
- Division of Crop Breeding Research, National Institute of Crop Science, Rural Development Administration, Wanju-Gun, Korea
| | - Abu Hena Mostafa Kamal
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA
| | - Sang-Woo Kim
- Department of Crop Science, Chungbuk National University, 410 Seongbong-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-763, Korea
| | - Kabita Sarker
- Department of Crop Science, Chungbuk National University, 410 Seongbong-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-763, Korea
| | - Myeong-Won Oh
- National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration, Jeonju, Korea
| | - Moon-Soon Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheong-ju, Korea
| | - Keun-Yook Chung
- Department of Environmental & Biological Chemistry, Chungbuk National University, Cheong-ju, Republic of Korea
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, USDA-ARS, 3810 4th Street, Lubbock, TX, USA
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, 410 Seongbong-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-763, Korea.
| |
Collapse
|
42
|
Physiological and Biochemical Changes in Moth Bean (Vigna aconitifolia L.) under Cadmium Stress. ACTA ACUST UNITED AC 2016. [DOI: 10.1155/2016/6403938] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Moth bean (Vigna aconitifolia L.), a drought resistant legume, possesses high nutritional value. Cadmium (Cd) is a nonessential and the most toxic heavy metal in plants. The present study was to test the hypothesis of whether moth bean being a drought resistant legume can withstand the cadmium stress. Ten-day-old moth bean seedlings were subjected to cadmium stress and investigated for a period of 15 days every 3-day intervals. Cadmium quantification in moth bean tissues suggests root accumulation and translocation to aerial parts in a concentration dependent manner. Results of physiological and biochemical studies revealed that cadmium has affected the growth parameters like shoot and root lengths and tissue dry weights. Significant alternations in relative water content and cell membrane stability were observed in stressed seedlings. Similarly superoxide radical, lipoxygenase activity, membrane lipid peroxidation products, protein carbonyls, and reduced glutathione and nonprotein thiols were found increased in stressed seedlings compared to controls. However, hydrogen peroxide and ascorbic acid levels were not altered significantly in both stressed and control seedlings. Cadmium translocation ability from roots to aerial parts and elevated levels of nonenzymatic antioxidants in stressed seedlings suggest the cadmium stress withstanding ability of moth bean.
Collapse
|
43
|
Roy SK, Cho SW, Kwon SJ, Kamal AHM, Kim SW, Oh MW, Lee MS, Chung KY, Xin Z, Woo SH. Morpho-Physiological and Proteome Level Responses to Cadmium Stress in Sorghum. PLoS One 2016; 11:e0150431. [PMID: 26919231 PMCID: PMC4769174 DOI: 10.1371/journal.pone.0150431] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/12/2016] [Indexed: 11/18/2022] Open
Abstract
Cadmium (Cd) stress may cause serious morphological and physiological abnormalities in addition to altering the proteome in plants. The present study was performed to explore Cd-induced morpho-physiological alterations and their potential associated mechanisms in Sorghum bicolor leaves at the protein level. Ten-day-old sorghum seedlings were exposed to different concentrations (0, 100, and 150 μM) of CdCl2, and different morpho-physiological responses were recorded. The effects of Cd exposure on protein expression patterns in S. bicolor were investigated using two-dimensional gel electrophoresis (2-DE) in samples derived from the leaves of both control and Cd-treated seedlings. The observed morphological changes revealed that the plants treated with Cd displayed dramatically altered shoot lengths, fresh weights and relative water content. In addition, the concentration of Cd was markedly increased by treatment with Cd, and the amount of Cd taken up by the shoots was significantly and directly correlated with the applied concentration of Cd. Using the 2-DE method, a total of 33 differentially expressed protein spots were analyzed using MALDI-TOF/TOF MS. Of these, treatment with Cd resulted in significant increases in 15 proteins and decreases in 18 proteins. Major changes were absorbed in the levels of proteins known to be involved in carbohydrate metabolism, transcriptional regulation, translation and stress responses. Proteomic results revealed that Cd stress had an inhibitory effect on carbon fixation, ATP production and the regulation of protein synthesis. Our study provides insights into the integrated molecular mechanisms involved in responses to Cd and the effects of Cd on the growth and physiological characteristics of sorghum seedlings. We have aimed to provide a reference describing the mechanisms involved in heavy metal damage to plants.
Collapse
Affiliation(s)
- Swapan Kumar Roy
- Department of Crop Science, Chungbuk National University, Cheong-ju, Korea
| | - Seong-Woo Cho
- Division of Rice Research, National Institute of Crop Science, Rural Development Administration, Suwon, Korea
| | - Soo Jeong Kwon
- Department of Crop Science, Chungbuk National University, Cheong-ju, Korea
| | - Abu Hena Mostafa Kamal
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Sang-Woo Kim
- Department of Crop Science, Chungbuk National University, Cheong-ju, Korea
| | - Myeong-Won Oh
- National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration, Jeonju, Korea
| | - Moon-Soon Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheong-ju, Korea
| | - Keun-Yook Chung
- Department of Environmental & Biological Chemistry, Chungbuk National University, Cheong-ju, Republic of Korea
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, USDA-ARS, 3810 4th Street, Lubbock, TX, United States of America
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-ju, Korea
| |
Collapse
|
44
|
Singh S, Parihar P, Singh R, Singh VP, Prasad SM. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. FRONTIERS IN PLANT SCIENCE 2016; 6:1143. [PMID: 26904030 PMCID: PMC4744854 DOI: 10.3389/fpls.2015.01143] [Citation(s) in RCA: 468] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/02/2015] [Indexed: 05/18/2023]
Abstract
Heavy metal contamination of soil and water causing toxicity/stress has become one important constraint to crop productivity and quality. This situation has further worsened by the increasing population growth and inherent food demand. It has been reported in several studies that counterbalancing toxicity due to heavy metal requires complex mechanisms at molecular, biochemical, physiological, cellular, tissue, and whole plant level, which might manifest in terms of improved crop productivity. Recent advances in various disciplines of biological sciences such as metabolomics, transcriptomics, proteomics, etc., have assisted in the characterization of metabolites, transcription factors, and stress-inducible proteins involved in heavy metal tolerance, which in turn can be utilized for generating heavy metal-tolerant crops. This review summarizes various tolerance strategies of plants under heavy metal toxicity covering the role of metabolites (metabolomics), trace elements (ionomics), transcription factors (transcriptomics), various stress-inducible proteins (proteomics) as well as the role of plant hormones. We also provide a glance of some strategies adopted by metal-accumulating plants, also known as "metallophytes."
Collapse
Affiliation(s)
- Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Parul Parihar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Rachana Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Vijay P. Singh
- Department of Botany, Government Ramanuj Pratap Singhdev Post Graduate College, Sarguja UniversityBaikunthpur, India
| | - Sheo M. Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| |
Collapse
|
45
|
Neller KCM, Klenov A, Hudak KA. The Pokeweed Leaf mRNA Transcriptome and Its Regulation by Jasmonic Acid. FRONTIERS IN PLANT SCIENCE 2016; 7:283. [PMID: 27014307 PMCID: PMC4792876 DOI: 10.3389/fpls.2016.00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/22/2016] [Indexed: 05/16/2023]
Abstract
The American pokeweed plant, Phytolacca americana, is recognized for synthesizing pokeweed antiviral protein (PAP), a ribosome inactivating protein (RIP) that inhibits the replication of several plant and animal viruses. The plant is also a heavy metal accumulator with applications in soil remediation. However, little is known about pokeweed stress responses, as large-scale sequencing projects have not been performed for this species. Here, we sequenced the mRNA transcriptome of pokeweed in the presence and absence of jasmonic acid (JA), a hormone mediating plant defense. Trinity-based de novo assembly of mRNA from leaf tissue and BLASTx homology searches against public sequence databases resulted in the annotation of 59 096 transcripts. Differential expression analysis identified JA-responsive genes that may be involved in defense against pathogen infection and herbivory. We confirmed the existence of several PAP isoforms and cloned a potentially novel isoform of PAP. Expression analysis indicated that PAP isoforms are differentially responsive to JA, perhaps indicating specialized roles within the plant. Finally, we identified 52 305 natural antisense transcript pairs, four of which comprised PAP isoforms, suggesting a novel form of RIP gene regulation. This transcriptome-wide study of a Phytolaccaceae family member provides a source of new genes that may be involved in stress tolerance in this plant. The sequences generated in our study have been deposited in the SRA database under project # SRP069141.
Collapse
|
46
|
Bai H, Wang S, Liu J, Gao D, Jiang Y, Liu H, Cai Z. Localization of ginsenosides in Panax ginseng with different age by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry imaging. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1026:263-271. [PMID: 26520809 DOI: 10.1016/j.jchromb.2015.09.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/31/2015] [Accepted: 09/17/2015] [Indexed: 01/15/2023]
Abstract
The root of Panax ginseng C.A. Mey. (P. ginseng) is one of the most popular traditional Chinese medicines, with ginsenosides as its main bioactive components. Because different ginsenosides have varied pharmacological effects, extraction and separation of ginsenosides are usually required for the investigation of pharmacological effects of different ginsenosides. However, the contents of ginsenosides vary with the ages and tissues of P. ginseng root. In this research, an efficient method to explore the distribution of ginsenosides and differentiate P. ginseng roots with different ages was developed based on matrix assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-TOF-MSI). After a simple sample preparation, there were 18 peaks corresponding to 31 ginsenosides with distinct localization in the mass range of m/z 700-1400 identified by MALDI-TOF-MSI and MALDI-TOF-MS/MS. All the three types of ginsenosides were successfully detected and visualized in images, which could be correlated with anatomical features. The P. ginseng at the ages of 2, 4 and 6 could be differentiated finely through the principal component analysis of data collected from the cork based on the ion images but not data from the whole tissue. The experimental result implies that the established method for the direct analysis of metabolites in plant tissues has high potential for the rapid identification of metabolites and analysis of their localizations in medicinal herbs. Furthermore, this technique also provides valuable information for the component-specific extraction and pharmacological research of herbs.
Collapse
Affiliation(s)
- Hangrui Bai
- Department of Chemistry, Tsinghua University, Beijing 100084, China; State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Shujuan Wang
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Dan Gao
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Yuyang Jiang
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hongxia Liu
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
47
|
Chen C, Song Y, Zhuang K, Li L, Xia Y, Shen Z. Proteomic Analysis of Copper-Binding Proteins in Excess Copper-Stressed Roots of Two Rice (Oryza sativa L.) Varieties with Different Cu Tolerances. PLoS One 2015; 10:e0125367. [PMID: 25919452 PMCID: PMC4412397 DOI: 10.1371/journal.pone.0125367] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/12/2015] [Indexed: 12/30/2022] Open
Abstract
To better understand the mechanisms involved in the heavy metal stress response and tolerance in plants, a proteomic approach was used to investigate the differences in Cu-binding protein expression in Cu-tolerant and Cu-sensitive rice varieties. Cu-binding proteins from Cu-treated rice roots were separated using a new IMAC method in which an IDA-sepharose column was applied prior to the Cu-IMAC column to remove metal ions from protein samples. More than 300 protein spots were reproducibly detected in the 2D gel. Thirty-five protein spots exhibited changes greater than 1.5-fold in intensity compared to the control. Twenty-four proteins contained one or more of nine putative metal-binding motifs reported by Smith et al., and 19 proteins (spots) contained one to three of the top six motifs reported by Kung et al. The intensities of seven protein spots were increased in the Cu-tolerant variety B1139 compared to the Cu-sensitive variety B1195 (p<0.05) and six protein spots were markedly up-regulated in B1139, but not detectable in B1195. Four protein spots were significantly up-regulated in B1139, but unchanged in B1195 under Cu stress. In contrast, two protein spots were significantly down-regulated in B1195, but unchanged in B1139. These Cu-responsive proteins included those involved in antioxidant defense and detoxification (spots 5, 16, 21, 22, 28, 29 and 33), pathogenesis (spots 5, 16, 21, 22, 28, 29 and 33), regulation of gene transcription (spots 8 and 34), amino acid synthesis (spots 8 and 34), protein synthesis, modification, transport and degradation (spots 1, 2, 4, 10, 15, 19, 30, 31, 32 and 35), cell wall synthesis (spot 14), molecular signaling (spot 3), and salt stress (spots 7, 9 and 27); together with other proteins, such as a putative glyoxylate induced protein, proteins containing dimeric alpha-beta barrel domains, and adenosine kinase-like proteins. Our results suggest that these proteins, together with related physiological processes, play an important role in the detoxification of excess Cu and in maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yufeng Song
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Kai Zhuang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Lu Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| |
Collapse
|
48
|
Ali B, Gill RA, Yang S, Gill MB, Farooq MA, Liu D, Daud MK, Ali S, Zhou W. Regulation of Cadmium-Induced Proteomic and Metabolic Changes by 5-Aminolevulinic Acid in Leaves of Brassica napus L. PLoS One 2015; 10:e0123328. [PMID: 25909456 PMCID: PMC4409391 DOI: 10.1371/journal.pone.0123328] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/03/2015] [Indexed: 01/17/2023] Open
Abstract
It is evident from previous reports that 5-aminolevulinic acid (ALA), like other known plant growth regulators, is effective in countering the injurious effects of heavy metal-stress in oilseed rape (Brassica napus L.). The present study was carried out to explore the capability of ALA to improve cadmium (Cd2+) tolerance in B. napus through physiological, molecular, and proteomic analytical approaches. Results showed that application of ALA helped the plants to adjust Cd2+-induced metabolic and photosynthetic fluorescence changes in the leaves of B. napus under Cd2+ stress. The data revealed that ALA treatment enhanced the gene expressions of antioxidant enzyme activities substantially and could increase the expression to a certain degree under Cd2+ stress conditions. In the present study, 34 protein spots were identified that differentially regulated due to Cd2+ and/or ALA treatments. Among them, 18 proteins were significantly regulated by ALA, including the proteins associated with stress related, carbohydrate metabolism, catalysis, dehydration of damaged protein, CO2 assimilation/photosynthesis and protein synthesis/regulation. From these 18 ALA-regulated proteins, 12 proteins were significantly down-regulated and 6 proteins were up-regulated. Interestingly, it was observed that ALA-induced the up-regulation of dihydrolipoyl dehydrogenase, light harvesting complex photo-system II subunit 6 and 30S ribosomal proteins in the presence of Cd2+ stress. In addition, it was also observed that ALA-induced the down-regulation in thioredoxin-like protein, 2, 3-bisphosphoglycerate, proteasome and thiamine thiazole synthase proteins under Cd2+ stress. Taken together, the present study sheds light on molecular mechanisms involved in ALA-induced Cd2+ tolerance in B. napus leaves and suggests a more active involvement of ALA in plant physiological processes than previously proposed.
Collapse
Affiliation(s)
- Basharat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Rafaqat A. Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Su Yang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Muhammad B. Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Muhammad A. Farooq
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Dan Liu
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Muhammad K. Daud
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- * E-mail:
| |
Collapse
|
49
|
Li X, Zhou Y, Yang Y, Yang S, Sun X, Yang Y. Physiological and proteomics analyses reveal the mechanism of Eichhornia crassipes tolerance to high-concentration cadmium stress compared with Pistia stratiotes. PLoS One 2015; 10:e0124304. [PMID: 25886466 PMCID: PMC4401520 DOI: 10.1371/journal.pone.0124304] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/11/2015] [Indexed: 01/16/2023] Open
Abstract
Cadmium (Cd) pollution is an environmental problem worldwide. Phytoremediation is a convenient method of removing Cd from both soil and water, but its efficiency is still low, especially in aquatic environments. Scientists have been trying to improve the ability of plants to absorb and accumulate Cd based on interactions between plants and Cd, especially the mechanism by which plants resist Cd. Eichhornia crassipes and Pistia stratiotes are aquatic plants commonly used in the phytoremediation of heavy metals. In the present study, we conducted physiological and biochemical analyses to compare the resistance of these two species to Cd stress at 100 mg/L. E. crassipes showed stronger resistance and was therefore used for subsequent comparative proteomics to explore the potential mechanism of E. crassipes tolerance to Cd stress at the protein level. The expression patterns of proteins in different functional categories revealed that the physiological activities and metabolic processes of E. crassipes were affected by exposure to Cd stress. However, when some proteins related to these processes were negatively inhibited, some analogous proteins were induced to compensate for the corresponding functions. As a result, E. crassipes could maintain more stable physiological parameters than P. stratiotes. Many stress-resistance substances and proteins, such as proline and heat shock proteins (HSPs) and post translational modifications, were found to be involved in the protection and repair of functional proteins. In addition, antioxidant enzymes played important roles in ROS detoxification. These findings will facilitate further understanding of the potential mechanism of plant response to Cd stress at the protein level.
Collapse
Affiliation(s)
- Xiong Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Zhou
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunqiang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Shihai Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xudong Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
50
|
Daud MK, Quiling H, Lei M, Ali B, Zhu SJ. Ultrastructural, metabolic and proteomic changes in leaves of upland cotton in response to cadmium stress. CHEMOSPHERE 2015; 120:309-20. [PMID: 25169734 DOI: 10.1016/j.chemosphere.2014.07.060] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/09/2014] [Accepted: 07/22/2014] [Indexed: 05/11/2023]
Abstract
Present study explores physiological, biochemical and proteomic changes in leaves of upland cotton (ZMS-49) using 500 μM cadmium (Cd) along with control. Leaves' biomass and chlorophyll pigments decreased at 500 μM Cd. Cd contents in roots were higher than leaves. Levels of ROS ( [Formula: see text] and H2O2) both in vivo and in vitro and MDA contents were significantly increased. Chlorophyll parameters (F0, Fm, Fm(') and Fv/Fm), total soluble protein contents and APX showed a decline at 500 μM Cd. SOD, CAT and POD and GR activities significantly enhanced. Less ultrastructural alterations in leaves under Cd stress could be observed. Scanning micrographs at 500 μM Cd possessed less number of stomata as well as near absence of closed stomata. Cd could be located in cell wall, vacuoles and intracellular spaces. Important upregulated proteins were methionine synthase, ribulose 1,5-bisphosphate carboxylase, apoplastic anionic guaiacol peroxidase, glyceraldehydes-3-phosphate dehydrogenase (chloroplastic isoform) and ATP synthase D chain, (mitochondrial). Important downregulated proteins were seed storage proteins (vicilin and legumin), molecular chaperones (hsp70, chaperonin-60 alpha subunit; putative protein disulfide isomerase), ATP-dependent Clp protease, ribulose-1,5-bisphophate carboxylase/oxygenase large subunit. Increase in the activities of ROS-scavenging enzymes, less ultrastructural modification, Cd-deposition in dead parts of cells as well as active regulation of different proteins showed Cd-resistant nature of ZMS-49.
Collapse
Affiliation(s)
- M K Daud
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, PR China; Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - He Quiling
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, PR China
| | - Mei Lei
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, PR China
| | - Basharat Ali
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, PR China
| | - S J Zhu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|