1
|
Pompermaier A, Alves C, Chagas FB, Tamagno WA, Bridi C, Ferreira GF, Hartmann PA, Hartmann M. Effects of glyphosate based herbicide exposure in early developmental stages of Physalaemus gracilis. Sci Rep 2024; 14:25652. [PMID: 39465295 PMCID: PMC11514183 DOI: 10.1038/s41598-024-76338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
The impact of environmental pollutants has been a focus of investigation in recent years. Studies assessing the effects of these pollutants are essential for understanding the challenges faced by non-target species. Among the many substances used for agricultural purposes, the herbicide glyphosate is one of the most widely marketed in recent years. This broad-spectrum herbicide is commonly used to protect a variety of crops. In this study, we evaluated the effects of chronic glyphosate exposure on a native amphibian species, Physalaemus gracilis. Amphibians, which develop in aquatic environments, are highly sensitive to pesticides. Because of this, we investigated morphological, physiological, behavioral, and biochemical parameters in the early stages of development. The animals were exposed to environmentally relevant concentrations of a glyphosate-based herbicide (0, 100, 350, and 700 µg L⁻¹) during their first seven days of life. As a result, we observed impairments in anti-predatory behavior, reduced body mass index, and scaled mass index, malformations of the mouth and intestine, increased acetylcholinesterase activity, cardiotoxicity, and oxidative stress. These findings underscore the importance of studying native non-target species and highlight the need to evaluate the effects of environmentally relevant concentrations, as well as to review legislation regarding permissible levels of glyphosate in surface water and public water supplies.
Collapse
Affiliation(s)
- Aline Pompermaier
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim, RS, Brazil.
| | - Carla Alves
- Federal Institute of Education, Science and Technology of Rio Grande do Sul, Sertão, RS, Brazil
| | - Flavia Bernardo Chagas
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim, RS, Brazil
| | | | - Cristina Bridi
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim, RS, Brazil
| | | | - Paulo Afonso Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim, RS, Brazil
| | - Marilia Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim, RS, Brazil
| |
Collapse
|
2
|
Almeida-Silva D, Hipolito M, da Fonseca Martins AMCRP, Batista BL, Pedron T, Dias GM, Verdade VK. Frog hepatic health and metal pollution: An assemblage-level approach in a hotspot in southeastern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59457-59471. [PMID: 39354261 DOI: 10.1007/s11356-024-35162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Chemical pollutants include the harmful effects of various substances on soils, water bodies, and biodiversity. Amphibians are one of the most endangered groups of vertebrates and are impacted by chemical pollutants in various ways due to their complex life cycles. Since trace pollutant concentrations vary across environments, different frog ecomorphs (classified by their microhabitat use) may have different exposures. We aimed to determine the association between frog ecomorphs and the occurrence of histopathological hepatic lesions (HHLs) as an indicator of contaminant exposure. We focused on small forest streams near a large urban region in Brazil, heavily polluted in the 1980s. We examined 104 frog specimens from various families. All specimens exhibited HHLs, with melanomacrophages being the most common (n = 99). Arboreal frogs exhibited more vascular congestion, while terrestrial frogs showed structural hepatic damage. Higher cobalt levels were linked to increased liver necrosis in arboreal frogs and structural issues in both arboreal and terrestrial frogs. Cadmium was associated with hepatitis in terrestrial frogs. Although metal levels had no significant effects on rheophilic frogs, the prevalence of hepatitis and necrosis indicated complex exposure pathways. Iron and aluminum were linked to fewer lesions in rheophilic frogs, suggesting resilience. The high prevalence of HHLs signals an ongoing issue, with variations among ecomorphs suggesting differential exposure to pollutants and posing a complex challenge for community conservation.
Collapse
Affiliation(s)
- Diego Almeida-Silva
- CONICET Tucumán, Unidad Ejecutora Lillo, Miguel Lillo, 251, 4000, San Miguel de Tucumán, Tucumán, Argentina.
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC, Avenida Dos Estados, 5001, CEP 09210-971, Santo André, SP, Brazil.
| | - Marcio Hipolito
- Laboratório Interinstitucional de Sanidade Em Aquicultura, Instituto Biológico Do Estado de São Paulo, Av. Conselheiro Rodrigues Alves, 1252, CEP 04016-035, São Paulo, SP, Brazil
| | | | - Bruno Lemos Batista
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC, Avenida Dos Estados, 5001, CEP 09210-971, Santo André, SP, Brazil
| | - Tatiana Pedron
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC, Avenida Dos Estados, 5001, CEP 09210-971, Santo André, SP, Brazil
| | - Gustavo Muniz Dias
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC, Avenida Dos Estados, 5001, CEP 09210-971, Santo André, SP, Brazil
| | - Vanessa Kruth Verdade
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC, Avenida Dos Estados, 5001, CEP 09210-971, Santo André, SP, Brazil
| |
Collapse
|
3
|
Díaz-Soto JA, Mussali-Galante P, Castrejón-Godínez ML, Saldarriaga-Noreña HA, Tovar-Sánchez E, Rodríguez A. Glyphosate resistance and biodegradation by Burkholderia cenocepacia CEIB S5-2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37480-37495. [PMID: 38776026 DOI: 10.1007/s11356-024-33772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/19/2024] [Indexed: 06/20/2024]
Abstract
Glyphosate is a broad spectrum and non-selective herbicide employed to control different weeds in agricultural and urban zones and to facilitate the harvest of various crops. Currently, glyphosate-based formulations are the most employed herbicides in agriculture worldwide. Extensive use of glyphosate has been related to environmental pollution events and adverse effects on non-target organisms, including humans. Reducing the presence of glyphosate in the environment and its potential adverse effects requires the development of remediation and treatment alternatives. Bioremediation with microorganisms has been proposed as a feasible alternative for treating glyphosate pollution. The present study reports the glyphosate resistance profile and degradation capacity of the bacterial strain Burkholderia cenocepacia CEIB S5-2, isolated from an agricultural field in Morelos-México. According to the agar plates and the liquid media inhibition assays, the bacterial strain can resist glyphosate exposure at high concentrations, 2000 mg·L-1. In the degradation assays, the bacterial strain was capable of fast degrading glyphosate (50 mg·L-1) and the primary degradation metabolite aminomethylphosphonic acid (AMPA) in just eight hours. The analysis of the genomic data of B. cenocepacia CEIB S5-2 revealed the presence of genes that encode enzymes implicated in glyphosate biodegradation through the two metabolic pathways reported, sarcosine and AMPA. This investigation provides novel information about the potential of species of the genus Burkholderia in the degradation of the herbicide glyphosate and its main degradation metabolite (AMPA). Furthermore, the analysis of genomic information allowed us to propose for the first time a metabolic route related to the degradation of glyphosate in this bacterial group. According to the findings of this study, B. cenocepacia CEIB S5-2 displays a great glyphosate biodegradation capability and has the potential to be implemented in glyphosate bioremediation approaches.
Collapse
Affiliation(s)
- José Antonio Díaz-Soto
- Doctorado en Ciencias Naturales, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, CP, 62209, México
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca, CP, 62209, Morelos, México
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca, CP, 62209, Morelos, México
| | - Hugo Albeiro Saldarriaga-Noreña
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca, CP, 62209, Morelos, México
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca, CP, 62209, Morelos, México
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca, CP, 62209, Morelos, México.
| |
Collapse
|
4
|
Klátyik S, Takács E, Barócsi A, Lenk S, Kocsányi L, Darvas B, Székács A. Hormesis, the Individual and Combined Phytotoxicity of the Components of Glyphosate-Based Formulations on Algal Growth and Photosynthetic Activity. TOXICS 2024; 12:257. [PMID: 38668480 PMCID: PMC11055126 DOI: 10.3390/toxics12040257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024]
Abstract
The occurrence of the market-leading glyphosate active ingredient in surface waters is a globally observed phenomenon. Although co-formulants in pesticide formulations were considered inactive components from the aspects of the required main biological effect of the pesticide, several studies have proven the high individual toxicity of formulating agents, as well as the enhanced combined toxicity of the active ingredients and other components. Since the majority of active ingredients are present in the form of chemical mixtures in our environment, the possible combined toxicity between active ingredients and co-formulants is particularly important. To assess the individual and combined phytotoxicity of the components, glyphosate was tested in the form of pure active ingredient (glyphosate isopropylammonium salt) and herbicide formulations (Roundup Classic and Medallon Premium) formulated with a mixture of polyethoxylated tallow amines (POEA) or alkyl polyglucosides (APG), respectively. The order of acute toxicity was as follows for Roundup Classic: glyphosate < herbicide formulation < POEA. However, the following order was demonstrated for Medallon Premium: herbicide formulation < glyphosate < APG. Increased photosynthetic activity was detected after the exposure to the formulation (1.5-5.8 mg glyphosate/L and 0.5-2.2 mg POEA/L) and its components individually (glyphosate: 13-27.2 mg/L, POEA: 0.6-4.8 mg/L), which indicates hormetic effects. However, decreased photosynthetic activity was detected at higher concentrations of POEA (19.2 mg/L) and Roundup Classic (11.6-50.6 mg glyphosate/L). Differences were demonstrated in the sensitivity of the selected algae species and, in addition to the individual and combined toxicity of the components presented in the glyphosate-based herbicides. Both of the observed inhibitory and stimulating effects can adversely affect the aquatic ecosystems and water quality of surface waters.
Collapse
Affiliation(s)
- Szandra Klátyik
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (S.K.); (E.T.)
| | - Eszter Takács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (S.K.); (E.T.)
| | - Attila Barócsi
- Department of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (A.B.); (S.L.); (L.K.)
| | - Sándor Lenk
- Department of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (A.B.); (S.L.); (L.K.)
| | - László Kocsányi
- Department of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (A.B.); (S.L.); (L.K.)
| | - Béla Darvas
- Hungarian Society of Ecotoxicology, H-1022 Budapest, Hungary;
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (S.K.); (E.T.)
| |
Collapse
|
5
|
Rutkoski CF, Grott SC, Israel NG, Guerreiro FDC, Carneiro FE, Bitschinski D, Warsneski A, Horn PA, Lima D, Bastolla CLV, Mattos JJ, Bainy ACD, da Silva EB, de Albuquerque CAC, Alves TC, de Almeida EA. Prednisone and prednisolone effects on development, blood, biochemical and histopathological markers of Aquarana catesbeianus tadpoles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106869. [PMID: 38387247 DOI: 10.1016/j.aquatox.2024.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Synthetic glucocorticoids are often found in surface waters and can cause harmful effects to aquatic organisms such as amphibians. In this work we evaluated the effects of the drugs prednisone (PD) and prednisolone (PL) on developmental, molecular, blood, biochemical and histological markers. Aquarana catesbeianus tadpoles were exposed for 16 days to environmentally relevant concentrations of 0, 0.1, 1 and 10 µg/L of both drugs. PD increased the transcript levels of the enzyme deiodinase III (Dio3), the hormones cortisol and T4 and delayed development. Changes in the thyroid gland occurred after tadpoles were exposed to both drugs, with a reduction in the diameter and number of follicles and an increase/or decrease in area. Also, both drugs caused a decrease in lymphocytes (L) and an increase in neutrophils (N), thrombocytes, the N:L ratio and lobed and notched erythrocytes. Increased activity of the enzymes superoxide dismutase, glutathione S-transferase and glucose 6-phosphate dehydrogenase was observed after exposure to PD. Furthermore, both drugs caused an increase in the activity of the enzymes catalase and glutathione peroxidase. However, only PD caused oxidative stress in exposed tadpoles, evidenced by increased levels of malondialdehyde and carbonyl proteins. Both drugs caused an increase in inflammatory infiltrates, blood cells and melanomacrophages in the liver. Our results indicate that PD was more toxic than PL, affecting development and causing oxidative stress.
Collapse
Affiliation(s)
- Camila Fatima Rutkoski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Suelen Cristina Grott
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Nicole Grasmuk Israel
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | | | | - Daiane Bitschinski
- Biodiversity Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Aline Warsneski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Priscila Aparecida Horn
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Camila Lisarb Velasquez Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | | | | | - Thiago Caique Alves
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | |
Collapse
|
6
|
Felix-Nascimento G, Lucena RB, da Fonseca CF, da Silva IJS, de Moraes CCN, de Carvalho CAC, de Moura GJB, Vieira FM, Ribeiro LB, de Oliveira JB. Mineral profile and histopathological findings in the liver of white-lipped frog (Leptodactylidae) from the morphoclimatic domain of the Caatingas, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10750-10765. [PMID: 38206463 DOI: 10.1007/s11356-024-31908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
This study aimed to investigate the mineral profile and histopathological findings in the liver of Leptodactylus macrosternum (white-lipped frog) and to assess the association between melanomacrophage areas and hepatic fungal granuloma with several factors such as weight, snout-cloacal length, sex, hepatosomatic index, season (dry and rainy), and condition factor K. A total of 135 frogs of different ages were collected from three areas in the city of Petrolina, Pernambuco, with varying land use (conventional agriculture, organic agriculture, and Caatinga stricto sensu). The liver of all specimens exhibited changes such as granulomatous lesions, inflammatory cell infiltrate, blood vessel congestion, and sinusoid dilation. The melanomacrophage areas were influenced by weight, snout-cloacal length, and hepatosomatic index. Our findings revealed a positive correlation between body size (weight and snout-cloacal length) and melanomacrophage/hepatic granuloma, while the hepatosomatic index showed a negative relationship. For the condition factor K, only age presents relationship. Eleven elements were quantified for the mineral profile, with aluminum (Al), iron (Fe), and zinc (Zn) being the most abundant in both liver and muscle. Although the histopathological findings and mineral profile of the liver and muscle in this study indicate an effect on the health of L. macrosternum in different collection areas, confirming the relationship between environmental characteristics and these findings requires future studies. Furthermore, long-term studies would be necessary to allow the monitoring of all stages of development of these populations, from tadpoles to adults, for a better evaluation of these effects in L. macrosternum.
Collapse
Affiliation(s)
- Gabriela Felix-Nascimento
- Laboratory of Anatomy of Domestic and Wild Animals (LAADS), Federal University of the San Francisco Valley (UNIVASF), Rodovia BR-407, Km. 12 Lote 543 S/n Projeto de Irrigação Nilo Coelho, Petrolina, Pernambuco, 56300-000, Brazil.
- Postgraduate Program in Animal Bioscience (PPGBA), Rural Federal University of Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, S/N, Dois Irmãos, Recife, Pernambuco, 52171-900, Brazil.
- Federal University of the San Francisco Valley (UNIVASF), Rodovia BR-407, Km. 12 Lote 543 S/n Projeto de Irrigação Nilo Coelho, Petrolina, Pernambuco, 56300-000, Brazil.
| | - Ricardo Barbosa Lucena
- Microscopy Sector of the Center for Agricultural Sciences, Federal University of Paraiba (UFPB), Rodovia PB 079, Km 12, Areia, Paraíba, 58.397-000, Brazil
| | - Cristina Farias da Fonseca
- Brazilian Institute for the Environment and Renewable Natural Resources (IBAMA), Casa Forte, Av. 17 de Agosto 1057, Recife, Pernambuco, 52060-590, Brazil
| | - Iago José Santos da Silva
- Rural Federal University of Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, S/N, Dois Irmãos, Recife, Pernambuco, 52171-900, Brazil
| | - Caio Carvalho Novais de Moraes
- Federal University of the San Francisco Valley (UNIVASF), Rodovia BR-407, Km. 12 Lote 543 S/n Projeto de Irrigação Nilo Coelho, Petrolina, Pernambuco, 56300-000, Brazil
| | - Carla Adrielle Costa de Carvalho
- Federal University of the San Francisco Valley (UNIVASF), Rodovia BR-407, Km. 12 Lote 543 S/n Projeto de Irrigação Nilo Coelho, Petrolina, Pernambuco, 56300-000, Brazil
| | - Geraldo Jorge Barbosa de Moura
- Postgraduate Program in Animal Bioscience (PPGBA), Rural Federal University of Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, S/N, Dois Irmãos, Recife, Pernambuco, 52171-900, Brazil
- Rural Federal University of Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, S/N, Dois Irmãos, Recife, Pernambuco, 52171-900, Brazil
| | - Fabiano Matos Vieira
- Federal University of the San Francisco Valley (UNIVASF), Rodovia BR-407, Km. 12 Lote 543 S/n Projeto de Irrigação Nilo Coelho, Petrolina, Pernambuco, 56300-000, Brazil
| | - Leonardo Barros Ribeiro
- Federal University of the San Francisco Valley (UNIVASF), Rodovia BR-407, Km. 12 Lote 543 S/n Projeto de Irrigação Nilo Coelho, Petrolina, Pernambuco, 56300-000, Brazil
| | - Jaqueline Bianque de Oliveira
- Postgraduate Program in Animal Bioscience (PPGBA), Rural Federal University of Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, S/N, Dois Irmãos, Recife, Pernambuco, 52171-900, Brazil
- Rural Federal University of Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, S/N, Dois Irmãos, Recife, Pernambuco, 52171-900, Brazil
- Parasitology Laboratory (LAPAR), Rural Federal University of Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, S/N, Dois Irmãos, Recife, Pernambuco, 52171-900, Brazil
| |
Collapse
|
7
|
Warsneski A, Bitschinski D, Rutkoski CF, Israel NG, Pereira Gonçalves GH, Lã L, Guerreiro F, Menta Giasson LO, Coelho de Albuquerque CA, Hasckel RP, Barbosa da Silva E, Alves TC, Alves de Almeida E. Fungicides from rice cultivation (tebuconazole and azoxystrobin) alters biochemical and histological markers of hammertoad tadpoles (Boanafaber). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122900. [PMID: 37952920 DOI: 10.1016/j.envpol.2023.122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Tebuconazole (TBZ) and azoxystrobin (AZX) are fungicides frequently used in rice cultivation. Despite protecting crops against fungal diseases, these compounds can contaminate the natural environments close to the crops, exerting negative effects on non-target organisms, the present study aimed to characterize the contamination by fungicides of a river that flows in an area dominated by rice cultivation in the north of the state of Santa Catarina, SC, Brazil. Concentrations of TBZ and AZX found in the field were used to evaluate their negative effects on development, biochemical biomarkers and histopatology of the liver of a native tadpole species, the hammerfrog (Boana faber). Tadpoles were exposed for 16 days to the lowest (1.20 μg/L) and highest (2.60 μg/L) concentration of TBZ, lowest (0.70 μg/L) and highest (1.60 μg/L) concentration of AZX, and the mix of both fungicides at lowest and highest concentration of each found in field analyses. Exposure to the lower TBZ concentration and both concentrations of the Mix accelerated the development of tadpoles. AZX caused an increase in the activities of glutathione S-transferase (GST), carboxylesterase (CbE) and glucose-6-phosphate dehydrogenase (G6PDH) in the liver, an increase in the levels of protein carbonyls (PC) in the liver and an increase in the activity of acetylcholinesterase (AChE) in muscle of tadpoles. TBZ, on the other hand, generated an increase in GST, G6PDH, PC and histopathological severity scores in liver and in muscle AChE activity. The effects were more intense in the groups exposed to the Mix of contaminants. No treatment altered brain AChE. The data showed that the fungicides from in rice cultivation found in natural aquatic environments around the crops pose risks to the health of the animals, compromising their metabolism and development.
Collapse
Affiliation(s)
- Aline Warsneski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Daiane Bitschinski
- Biodiversity Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Camila Fátima Rutkoski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Nicole Grasmuk Israel
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | | - Luiza Lã
- Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil
| | - Fernando Guerreiro
- Biodiversity Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | | | | | | | | - Thiago Caíque Alves
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Eduardo Alves de Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil; Biodiversity Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil; Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil.
| |
Collapse
|
8
|
Mendonça JDS, de Almeida JCN, Vieira LG, Hirano LQL, Santos ALQ, Andrade DV, Malafaia G, de Oliveira Júnior RJ, Beletti ME. Mutagenicity, hepatotoxicity, and neurotoxicity of glyphosate and fipronil commercial formulations in Amazon turtles neonates (Podocnemis expansa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165529. [PMID: 37453711 DOI: 10.1016/j.scitotenv.2023.165529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Pesticides are considered one of the main causes of the population decline of reptiles worldwide, with freshwater turtles being particularly susceptible to aquatic contamination. In this context, we investigated the potential mutagenic, hepatotoxic, and neurotoxic effects in neonates of Podocnemis expansa exposed to substrate contaminated with different concentrations of glyphosate and/or fipronil during embryonic development. Eggs collected from the natural environment were artificially incubated in sand moistened with pure water, water added with glyphosate Atar 48® at concentrations of 65 and 6500 μg/L (groups G1 and G2, respectively), water added with fipronil Regent® 800WG at 4 and 400 μg/L (groups F1 and F2, respectively) and, water added with the combination of 65 μg/L glyphosate and 4 μg/L fipronil or with 6500 μg/L glyphosate and 400 μg/L fipronil (groups GF1 and GF2, respectively). For mutagenicity analysis, we evaluated the frequency of micronuclei (MN) and other erythrocyte nuclear abnormalities (ENAs), while for evaluation of hepatotoxicity and neurotoxicity, livers and encephalon were analyzed for histopathological alterations. Exposure to pesticides, alone or in combination, increased the frequency of erythrocyte nuclear abnormalities, particularly blebbed nuclei, moved nuclei, and notched nuclei. Individuals exposed to fipronil exhibited congestion and inflammatory infiltrate in their liver tissue, while, in the encephalon, congestion, and necrosis were present. Our study confirms that the incubation of eggs in substrate polluted with glyphosate and fipronil causes histopathological damage and mutagenic alteration in P. expansa, highlighting the importance of using different biomarkers to evaluate the ecotoxicological effects of these pesticides, especially in oviparous animals.
Collapse
Affiliation(s)
- Juliana Dos Santos Mendonça
- Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Toxicologia Aplicada ao Meio Ambiente, Instituto Federal Goiano, Urutaí, GO, Brazil.
| | - Julio Cesar Neves de Almeida
- Programa de Pós-graduação em Ciências Veterinárias, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Lucélia Gonçalves Vieira
- Laboratório Multidisciplinar em Morfologia e Ontogenia, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Líria Queiroz Luz Hirano
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília (UNB), Brasília, DF, Brazil
| | - André Luiz Quagliatto Santos
- Organização Não Governamental - Preservação dos Animais Silvestres do Brasil - ONG PAS do Brasil, Uberlândia, MG, Brazil
| | - Denis Vieira Andrade
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Guilherme Malafaia
- Laboratório de Toxicologia Aplicada ao Meio Ambiente, Instituto Federal Goiano, Urutaí, GO, Brazil; Programa de Pós-Graduação em Conservação dos Recursos Naturais do Cerrado, Instituto Federal Goiano, Urutaí, GO, Brazil; Programa de Pós-Graduação em Ecologia, Conservação e Biodiversidade, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil; Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil.
| | - Robson José de Oliveira Júnior
- Laboratório de Citogenética, Instituto de Biotecnologia, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Marcelo Emílio Beletti
- Laboratório de Biologia da Reprodução, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
| |
Collapse
|
9
|
Wingen NMDA, Cubas GK, Oliveira GT. Impact of 2,4-D and glyphosate-based herbicides on morphofunctional and biochemical markers in Scinax squalirostris tadpoles (Anura, Hylidae). CHEMOSPHERE 2023; 340:139918. [PMID: 37611768 DOI: 10.1016/j.chemosphere.2023.139918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/13/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Understanding the effects of pesticides on non-target organisms is essential to assess the impact of these xenobiotics on the environment, allowing for a more informative and safer usage. The present study sought to evaluate the response of Scinax squalirostris tadpoles when exposed to different concentrations of two herbicides, DEZ® (i.e., dichlorophenoxyacetic acid or 2,4-D) and Roundup® Original (i.e., glyphosate). We collected 140 tadpoles between Gosner's 25 and 34 stages in a preservation area of the South American jelly palm Butia odorata. The animals were separated into eight groups and maintained in aquariums: acclimatization control (17 days), exposure control (24 days), and six exposure groups (7 days), including three concentration groups of each pesticide (4 μg/L, 15 μg/L, and 30 μg/L 2,4-D acid equivalent; 65 μg/L, 250 μg/L, and 500 μg/L glyphosate acid equivalent). Markers of body condition (length, body mass, K and Kn index) and oxidative balance (superoxide dismutase, catalase, glutathione S-transferase, TBARS, and carbonyl proteins) were analyzed. After 24 days (17 days of acclimation plus 7 days of exposure), tadpoles exposed to 15 μg/L of 2,4-D and 65 μg/L of glyphosate grew at higher than expected concentrations. They also had less lipoperoxidation than control tadpoles and higher superoxide dismutase, catalase, and glutathione S-transferase activity, specifically at the highest herbicide concentrations (2,4-D: 30 μg/L; glyphosate: 500 μg/L of glyphosate). Only the highest concentration of 2,4-D determined an increase in the levels of carbonyl proteins, indicating oxidative damage induced. DEZ® required more antioxidant defenses and induced a concentration-dependent answer of carbonylated proteins, suggesting oxidative stress and more toxic potential. These results may help government agencies make more conscious decisions regarding the usage of these chemicals and consider a balance between the conservation of amphibian species and agribusiness economic sustenance.
Collapse
Affiliation(s)
- Natália Medeiros de Albuquerque Wingen
- Programa de Pós-Graduação Em Ecologia e Evolução da Biodiversidade, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| | - Gustavo Kasper Cubas
- Universidade Federal Do Rio Grande Do Sul, Ciências Biológicas, Porto Alegre, RS, Brazil.
| | - Guendalina Turcato Oliveira
- Programa de Pós-Graduação Em Ecologia e Evolução da Biodiversidade, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
10
|
López-Flórez C, Ruíz MAO, Gómez-Ramírez E. Effect of sublethal concentrations of glyphosate-based herbicides (Roundup Active®) on skin of the tropical frog (Dendropsophus molitor). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109618-109626. [PMID: 37775634 PMCID: PMC10622380 DOI: 10.1007/s11356-023-29816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/06/2023] [Indexed: 10/01/2023]
Abstract
In Colombia, glyphosate (GP) is used to control weeds, with Roundup Active® being the most widely used. This use has affected aquatic ecosystems, causing malformations in amphibians. The Savannah frog (D. molitor) is a tropical frog inhabiting the mountain of Colombia. In the present study, we determined the effect of sublethal concentrations of GP (Roundup Active®) on the skin of D. molitor. Twenty-four tadpoles were exposed to concentrations of GP (T1: 0, T2: 1.4, T3: 3.6, and T4: 5.6 a.e mg/L) during 31 days. In 10 individuals per treatment, two skin regions were evaluated: dorsal cranial and caudal ventral to determine histopathological alterations. Morphometric analysis of the layers of the skin was performed: epidermis, dermis, and hypodermis-muscular. T1 did not present histopathological alterations. Since T2 was identified, glandular cell hyperplasia and hypertrophy increased melanophores and melanin accumulations in the highest concentrations of GP. The ultrastructure revealed an increase in excretory glands in the dermis. In the other layers, an increase of melanophores and melanocyte clusters was observed accompanied by vacuolization of basal cells. The morphometry showed an increase in the thickness of the dermis in the dorso-cranial region in T2 compared to the other treatments, while the ventral caudal region exhibited a variation in the thickness of the dermis from T2 and a decrease in T4. Despite evaluating sublethal concentrations, the skin of D. molitor tadpoles presents histopathological, ultrastructural, and morphometric alterations that could affect the survival of the species in the natural environment.
Collapse
Affiliation(s)
- Catalina López-Flórez
- Faculty of Applied Basic Sciences, Universidad Militar Nueva Granada, Cajicá, Km 3, Cajica, Colombia.
| | - Monica Andrea Ortíz Ruíz
- Faculty of Applied Basic Sciences, Universidad Militar Nueva Granada, Cajicá, Km 3, Cajica, Colombia
| | - Edwin Gómez-Ramírez
- Faculty of Applied Basic Sciences, Universidad Militar Nueva Granada, Cajicá, Km 3, Cajica, Colombia
| |
Collapse
|
11
|
Flach H, Dietmann P, Liess M, Kühl M, Kühl SJ. Glyphosate without Co-formulants affects embryonic development of the south african clawed frog Xenopus laevis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115080. [PMID: 37262967 DOI: 10.1016/j.ecoenv.2023.115080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/16/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Glyphosate (GLY) is the most widely used herbicide in the world. Due to its mode of action as an inhibitor of the 5-enolpyruvylshikimate-3-phosphate synthase, an important step in the shikimate pathway, specifically in plants, GLY is considered to be of low toxicity to non-target organisms. However, various studies have shown the negative effects of GLY on the mortality and development of different non-target organisms, including insects, rodents, fish and amphibians. To better understand the various effects of GLY in more detail, we studied the effects of GLY without co-formulants during the embryogenesis of the aquatic model organism Xenopus laevis. RESULTS A treatment with GLY affected various morphological endpoints in X. laevis tadpoles (body length, head width and area, eye area). Additionally, GLY interfered with the mobility as well as the neural and cardiac development of the embryos at stage 44/45. We were able to detect detailed structural changes in the cranial nerves and the heart and gained insights into the negative effects of GLY on cardiomyocyte differentiation. CONCLUSION The application of GLY without co-formulants resulted in negative effects on several endpoints in the early embryonic development of X. laevis at concentrations that are environmentally relevant and concentrations that reflect the worst-case scenarios. This indicates that GLY could have a strong negative impact on the survival and lives of amphibians in natural waters. As a result, future GLY approvals should consider its impact on the environment.
Collapse
Affiliation(s)
- Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Matthias Liess
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
12
|
Burraco P, Salla RF, Orizaola G. Exposure to ionizing radiation and liver histopathology in the tree frogs of Chornobyl (Ukraine). CHEMOSPHERE 2023; 315:137753. [PMID: 36608893 DOI: 10.1016/j.chemosphere.2023.137753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Ionizing radiation has the potential to damage organic molecules and decrease the health and survival of wildlife. The accident at the Chornobyl Nuclear Plant (Ukraine, 1986) led to the largest release of radioactive material to the environment. Among the different organs of a vertebrate, the liver plays a crucial role in detoxification processes, and has been used as a biomarker to investigate cellular damage in ecotoxicological research. Here, we examined the impact of the exposure to the current levels of ionizing radiation present in the Chornobyl Exclusion Zone on the liver of Eastern tree frogs (Hyla orientalis). We quantified the area of melanomacrophage cells and morphological variables of hepatocytes, two cell types often used to estimate damage caused by pollutants in vertebrates. First, we investigated whether these hepatic parameters were indicative of frog (individual) condition. Then, we analyzed the effect of individual absorbed dose rates and ambient radiation levels on frog livers. Most of the studied parameters were correlated with individual body condition (a good predictor of amphibian fitness and survival). We did not detect marked morphological lesions in the liver of frogs captured in medium-high radiation environments. The area occupied by melanomacrophages and the morphology of hepatocytes did not change across a gradient of radiocontamination covering two orders of magnitude. Once accounting for body condition and sampling locality, the area of melanomacrophages was lower in areas with high radiation levels. Finally, the area occupied by melanomacrophages was not linked to dorsal skin coloration. Our results indicate that current levels of radiation experienced by tree frogs in Chornobyl do not cause histopathological damage in their liver. These results agree with previous physiological work in the species in the Chornobyl area, and encourage further molecular and physiological research to fully disentangle the current impact of the Chornobyl accident on wildlife.
Collapse
Affiliation(s)
- Pablo Burraco
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden; Doñana Biological Station, Spanish Research Council (EBD-CSIC), 41092, Sevilla, Spain
| | - Raquel Fernanda Salla
- Postgraduate Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos, 18052-780, Sorocaba, São Paulo, Brazil; Institute of Tropical Pathology and Public Health, Federal University of Goiás, 74605-050, Goiania, Goias, Brazil
| | - Germán Orizaola
- IMIB-Biodiversity Research Institute (Univ. Oviedo-CSIC-Princip. Asturias), University of Oviedo, 33600, Mieres, Asturias, Spain; Zoology Unit, Department of Biology of Organisms and Systems, University of Oviedo, 33071, Oviedo, Asturias, Spain.
| |
Collapse
|
13
|
Grott SC, Israel NG, Bitschinski D, Abel G, Carneiro F, Alves TC, Alves de Almeida E. Influence of temperature on biomarker responses of bullfrog tadpoles (Lithobates catesbeianus) exposed to the herbicide ametryn. CHEMOSPHERE 2022; 308:136327. [PMID: 36087723 DOI: 10.1016/j.chemosphere.2022.136327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The S-triazine herbicide ametryn (AMT) is relatively low adsorbed in soils and has high solubility in water, thus believed to affect non-target aquatic organisms such as amphibians. Temperature increases can intensify the effects of herbicides, possibly increasing the susceptibility of amphibians to these compounds. The aim of this study was to evaluate the influence of temperature (25 and 32 °C) on the responses of biochemical biomarkers in bullfrog tadpoles (Lithobates catesbeianus) exposed to different concentrations of AMT (0, 10, 50 and 200 ng.L-1) for a period of 16 days. The antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) and the biotransformation enzyme glutathione S-transferase (GST) had their activity decreased at the highest temperature (32 °C). SOD activity was reduced at 200 ng.L-1 and 32 °C compared to the control at the same temperature. AMT exposure also decreased the activities of alanine aminotransferase and gamma glutamyl transferase. On the other hand, the activities of acetylcholinesterase, carboxylesterase, alkaline phosphatase, levels of lipid peroxidation and protein carbonyl, as well genotoxic markers (micronucleus and nuclear abnormalities frequencies) were unchanged. The evaluation of integrated biomarker response index (IBR) indicated highest variations at the concentration of 200 ng.L-1 at 32 °C, suggesting that the combination of high AMT concentrations and temperatures generate more pronounced negative effects to tadpoles.
Collapse
Affiliation(s)
- Suelen Cristina Grott
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| | - Nicole Grasmuk Israel
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| | - Daiane Bitschinski
- Biodiversity Post-graduate Program, University of Blumenau, Blumenau, SC, Brazil.
| | - Gustavo Abel
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Francisco Carneiro
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| | - Thiago Caique Alves
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| | - Eduardo Alves de Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| |
Collapse
|
14
|
Rutkoski CF, Grott SC, Israel NG, Carneiro FE, de Campos Guerreiro F, Santos S, Horn PA, Trentini AA, Barbosa da Silva E, Coelho de Albuquerque CA, Alves TC, Alves de Almeida E. Hepatic and blood alterations in Lithobates catesbeianus tadpoles exposed to sulfamethoxazole and oxytetracycline. CHEMOSPHERE 2022; 307:136215. [PMID: 36041517 DOI: 10.1016/j.chemosphere.2022.136215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/10/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
In this study the effects of environmentally realistic concentrations of the antibiotics sulfamethoxazole (SMX) and oxytetracyclyne (OTC) on Lithobates catesbeianus tadpoles were evaluated, through the analyzes of the frequencies of micronucleus and nuclear abnormalities in erythrocytes, alterations in leucocytes, liver histopathology, and changes in hepatic esterase activities and oxidative stress biomarkers. The animals were exposed for 16 days at concentrations of 0 (control), 20, 90 and 460 ng L-1. No significant difference was found in the frequencies of micronucleus and nuclear abnormalities. The two highest concentrations of SMX and all concentrations of OTC caused a significant increase in the number of lymphocytes. A significant decrease in the number of neutrophils compared to the control group was observed for all concentrations tested of both antibiotics. Also, decrease in the activity of glutathione S-transferase and high histopathological severity scores, indicating liver damage, were found in tadpoles exposed to the two highest concentrations of SMX and all concentrations of OTC. The main changes in the liver histopathology were the presence of inflammatory infiltrate, melanomacrophages, vascular congestion, blood cells and eosinophils. Esterase activities were unchanged. Indeed, the two highest concentrations of OTC caused a reduction in the activities of superoxide dismutase and glucose 6-phosphate dehydrogenase, while the highest concentration inhibited the activity of glutathione peroxidase and increased protein carbonyl levels. These results evidences that environmentally realistic concentrations of SMX and OTC in aquatic environments are capable to significantly disrupt tadpoles' physiology, possibly affecting negatively their survival rate in natural environments.
Collapse
Affiliation(s)
- Camila Fatima Rutkoski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Suelen Cristina Grott
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Nicole Grasmuk Israel
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | | | | - Sabrina Santos
- Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil
| | - Priscila Aparecida Horn
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Amanda Alves Trentini
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | | | | - Thiago Caique Alves
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Eduardo Alves de Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil; Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil.
| |
Collapse
|
15
|
Sabrina T, Matthias R, Marion C, Léa-Lise G, Solenn C, François B. Did decades of glyphosate use have selected for resistant amphibians in agricultural habitats? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119823. [PMID: 35931387 DOI: 10.1016/j.envpol.2022.119823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate-based herbicides are used worldwide, and glyphosate's primary metabolite (aminomethylphosphonic acid: AMPA), is globally retrieved in surface waters. AMPA induces various adverse effects on aquatic wildlife, including selective mortality, which suggests that glyphosate exposure may have selected for AMPA-resistant individuals. We tested this hypothesis using spined toads (Bufo spinosus), an amphibian found in a variety of habitats, from AMPA-exposed agricultural lands to AMPA-free forested areas. We predicted that the offspring of individuals originating from agricultural habitats would develop AMPA-resistance - and be less prone to develop adverse effects from- AMPA exposure. To investigate this question, we performed a common garden brood-rearing experiment. The embryos and larvae of 40 spined toad pairs captured in agricultural and forest ponds were exposed either to an environmental relevant concentration of AMPA (0.4 μg L-1) or to control conditions (n = 8160 embryos, n = 240 tadpoles). We monitored development durations, developmental abnormalities and morphology, measured across key developmental stages. Although we observed significant effects of AMPA on fitness parameters in each group, these effects were not exacerbated in individuals from AMPA-free habitats. We suggest that temporal and/or spatial dynamics of contamination, as well as gene flow between exposed and preserved populations, may hinder adaptive divergence between populations. Yet, we show strong adverse effects of AMPA exposure at early developmental stages. AMPA could therefore be one of the numerous causes of declining wild amphibian populations.
Collapse
Affiliation(s)
- Tartu Sabrina
- Centre D'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS- Université de La Rochelle, 79360, Villiers-en-Bois, France.
| | - Renoirt Matthias
- Centre D'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS- Université de La Rochelle, 79360, Villiers-en-Bois, France
| | - Cheron Marion
- Centre D'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS- Université de La Rochelle, 79360, Villiers-en-Bois, France
| | - Gisselmann Léa-Lise
- Centre D'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS- Université de La Rochelle, 79360, Villiers-en-Bois, France
| | - Catoire Solenn
- Centre D'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS- Université de La Rochelle, 79360, Villiers-en-Bois, France
| | - Brischoux François
- Centre D'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS- Université de La Rochelle, 79360, Villiers-en-Bois, France
| |
Collapse
|
16
|
Ruthsatz K, Bartels F, Stützer D, Eterovick PC. Timing of parental breeding shapes sensitivity to nitrate pollution in the common frog Rana temporaria. J Therm Biol 2022; 108:103296. [DOI: 10.1016/j.jtherbio.2022.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
|
17
|
Ascoli-Morrete T, Bandeira NMG, Signor E, Gazola HA, Homrich IS, Biondo R, Rossato-Grando LG, Zanella N. Bioaccumulation of pesticides and genotoxicity in anurans from southern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45549-45559. [PMID: 35147872 DOI: 10.1007/s11356-022-19042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The expansion of agricultural activities causes habitat loss and fragmentation and the pollution of natural ecosystems through the intense use of pesticides, which may affect the populations of amphibian anurans that inhabit agricultural areas. The present study evaluated the in situ bioaccumulation of pesticides in a population of Leptodactylus luctator that occupies farmland in southern Brazil. We also compared the genotoxicity of L. luctator populations from farmland and forested areas in the same region. We analyzed the micronuclei and nuclear abnormalities of 34 adult anurans, 19 from farmland, and 15 from the forested area. We also assessed the presence of 32 pesticides in liver samples obtained from 18 farmland-dwelling anurans, using chromatographic analysis. We recorded significantly higher rates of nuclear abnormalities in the individuals from the farmland, in comparison with the forest. We detected nine pesticides in the liver samples, of which, deltamethrin was the most common and carbosulfan was recorded at the highest concentrations. The bioaccumulation of pesticides and the higher levels of genotoxic damage found in the anurans from agricultural areas, as observed in the present study, represent a major potential problem for the conservation of these vertebrates, including the decline of their populations and the extinction of species.
Collapse
Affiliation(s)
- Thaís Ascoli-Morrete
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil.
- Instituto de Ciências Biológicas (ICB), Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | - Nelson M G Bandeira
- Centro de Pesquisa em Alimentação (CEPA), Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Elias Signor
- Centro de Pesquisa em Alimentação (CEPA), Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Humberto A Gazola
- Instituto de Ciências Biológicas (ICB), Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Isis S Homrich
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rhaíssa Biondo
- Instituto de Ciências Biológicas (ICB), Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Luciana G Rossato-Grando
- Instituto de Ciências Biológicas (ICB), Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Noeli Zanella
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
- Instituto de Ciências Biológicas (ICB), Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| |
Collapse
|
18
|
Karzi V, Tzatzarakis MN, Alegakis A, Vakonaki E, Fragkiadoulaki I, Kaloudis K, Chalkiadaki C, Apalaki P, Panagiotopoulou M, Kalliantasi A, Kouretas D, Docea AO, Calina D, Tsatsakis A. In Vivo Estimation of the Biological Effects of Endocrine Disruptors in Rabbits after Combined and Long-Term Exposure: Study Protocol. TOXICS 2022; 10:toxics10050246. [PMID: 35622659 PMCID: PMC9148075 DOI: 10.3390/toxics10050246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 01/25/2023]
Abstract
Recently, an increasing number of chemical compounds are being characterized as endocrine disruptors since they have been proven to interact with the endocrine system, which plays a crucial role in the maintenance of homeostasis. Glyphosate is the active substance of the herbicide Roundup®, bisphenol A (BPA) and di (2-ethylhexyl) phthalate (DEHP) are used as plasticizers, while triclosan (TCS), methyl (MePB), propyl (PrPB), and butyl (BuPB) parabens are used as antimicrobial agents and preservatives mainly in personal care products. Studies indicate that exposure to these substances can affect humans causing developmental problems and problems in the endocrine, reproductive, nervous, immune, and respiratory systems. Although there are copious studies related to these substances, there are few in vivo studies related to combined exposure to these endocrine disruptors. The aim of the present pilot study is the investigation and assessment of the above substances’ toxicity in rabbits after twelve months of exposure to glyphosate (both pure and commercial form) and to a mixture of all the above substances at subtoxic levels. The lack of data from the literature concerning rabbits’ exposure to these substances and the restrictions of the 3Rs Principle will result in a limited number of animals available for use (four animals per group, twenty animals in total).
Collapse
Affiliation(s)
- Vasiliki Karzi
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
| | - Manolis N. Tzatzarakis
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
| | - Athanasios Alegakis
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
| | - Elena Vakonaki
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
| | - Irene Fragkiadoulaki
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
| | - Konstantinos Kaloudis
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
| | - Christina Chalkiadaki
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
| | - Paraskevi Apalaki
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
| | - Maria Panagiotopoulou
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
| | - Aikaterini Kalliantasi
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece;
| | - Anca Oana Docea
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (A.O.D.); (D.C.); (A.T.)
| | - Daniela Calina
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (A.O.D.); (D.C.); (A.T.)
| | - Aristidis Tsatsakis
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
- Correspondence: (A.O.D.); (D.C.); (A.T.)
| |
Collapse
|
19
|
Qiu S, Liu Y, Gao Y, Fu H, Shi B. Response of the nuclear xenobiotic receptors to alleviate glyphosate-based herbicide-induced nephrotoxicity in weaned piglets. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2707-2717. [PMID: 34378135 DOI: 10.1007/s11356-021-15831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate-based herbicides (GBHs) are widely used worldwide. Glyphosate (GLP) is the main active component of GBHs. The presence of GBH residues in the environment has led to the exposure of animals to GBHs, but the mechanisms of GBH-induced nephrotoxicity are not clear. This study investigated the effects of GBHs on piglet kidneys. Twenty-eight healthy female hybrid weaned piglets (Duroc × Landrace × Yorkshire) with an average weight of 12.24 ± 0.61 kg were randomly divided into four treatment groups (n=7 piglets/group) that were supplemented with Roundup® (equivalent to GLP concentrations of 0, 10, 20, and 40 mg/kg) for a 35-day feeding trial. The results showed that the kidneys in the 40-mg/kg GLP group suffered slight damage. Roundup® significantly decreased the activity of catalase (CAT) (P=0.005) and increased the activity of superoxide dismutase (SOD) (P=0.029). Roundup® increased the level of cystatin-C (Cys-C) in the plasma (linear, P=0.002 and quadratic, P=0.015). The levels of neutrophil gelatinase-associated lipocalin (NGAL) in plasma increased linearly (P=0.007) and quadratically (P=0.003) as the dose of GLP increased. The mRNA expression of intercellular cell adhesion molecule-1 (ICAM-1) in the 20-mg/kg GLP group was increased significantly (P<0.05). There was a significant increase in the mRNA levels of pregnenolone X receptor (PXR), constitutive androstane receptor (CAR), and uridine diphosphate glucuronosyltransferase 1A3 (UGT1A3) (P<0.05). Our findings found that kidney nuclear xenobiotic receptors (NXRs) may play an important role in defense against GBHs.
Collapse
Affiliation(s)
- Shengnan Qiu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yang Liu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yanan Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Huiyang Fu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
20
|
Lopes A, Benvindo-Souza M, Carvalho WF, Nunes HF, de Lima PN, Costa MS, Benetti EJ, Guerra V, Saboia-Morais SMT, Santos CE, Simões K, Bastos RP, de Melo E Silva D. Evaluation of the genotoxic, mutagenic, and histopathological hepatic effects of polyoxyethylene amine (POEA) and glyphosate on Dendropsophus minutus tadpoles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117911. [PMID: 34365244 DOI: 10.1016/j.envpol.2021.117911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Herbicides improve the productivity of a monoculture by eliminating weeds, although they may also be toxic and have negative effects on non-target organisms, such as amphibians. The present study evaluated the genotoxic, mutagenic, and histopathological hepatic responses of Dendropsophus minutus tadpoles to acute exposure (96 h) to the herbicide glyphosate (GLY, 65, 130, 260 and 520 μg/L) and the surfactant polyoxyethylene amine (POEA, 1.25, 2.5, 5 and 10 μg/L). On average, 174 % more genomic damage was observed in the tadpoles exposed to all concentrations of POEA in comparison with the control, while up to seven times more micronuclei were recorded, on average, at a concentration of 5 μg/L of POEA. All the individuals exposed to 10 μg/L of POEA died. The tadpoles exposed to GLY presented 165 % more DNA damage than the control, on average, at the highest concentrations (260 and 520 μg/L), and up to six times more micronuclei at 520 μg/L. The Erythrocyte Nuclear Abnormality test (ENA) detected a relatively high frequency of cells with lobed nuclei in the tadpoles expose to POEA at 5 μg/L and binucleated cells in those exposed to GLY at 520 μg/L. The hepatic histopathological observations revealed several types of lesions in the tadpoles exposed to both GLY and POEA. Overall, then, the results of the study indicate that both GLY and POEA have potential genotoxic, mutagenic, and hepatotoxic effects in D. minutus tadpoles. We emphasize the need for further studies to monitor the amphibian populations, such as those of D. minutus, which breed in aquatic environments associated with agricultural areas. The release of pollutants into natural habitats may have significant long-term impacts on the survival of anuran tadpoles.
Collapse
Affiliation(s)
- Alice Lopes
- Laboratory of Mutagenesis, Institute of Biological Sciences, ICB I - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Marcelino Benvindo-Souza
- Laboratory of Mutagenesis, Institute of Biological Sciences, ICB I - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Wanessa Fernandes Carvalho
- Laboratory of Mutagenesis, Institute of Biological Sciences, ICB I - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Hugo Freire Nunes
- Laboratory of Mutagenesis, Institute of Biological Sciences, ICB I - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Phamella Neres de Lima
- Laboratory of Human and Animal Morphology, Institute of Biological Sciences, ICB III - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Matheus Santos Costa
- Laboratory of Human and Animal Morphology, Institute of Biological Sciences, ICB III - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Edson José Benetti
- Laboratory of Human and Animal Morphology, Institute of Biological Sciences, ICB III - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Vinicius Guerra
- Graduate Program in Ecology and Natural Resource Management, Center for Biological and Natural Sciences, Federal University of Acre, Rio Branco Campus, Rio Branco, Acre, CEP: 69915-900, Brazil.
| | - Simone Maria Teixeira Saboia-Morais
- Cell Behavior Laboratory, Institute of Biological Sciences IV - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Carolina Emilia Santos
- Laboratory of Herpetology and Animal Behavior, Institute of Biological Sciences, ICB V - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Karina Simões
- Laboratory of Human and Animal Morphology, Institute of Biological Sciences, ICB III - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Rogério Pereira Bastos
- Laboratory of Herpetology and Animal Behavior, Institute of Biological Sciences, ICB V - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| | - Daniela de Melo E Silva
- Laboratory of Mutagenesis, Institute of Biological Sciences, ICB I - Federal University of Goiás, Samambaia Campus, Goiânia, Goiás, CEP: 74690-900, Brazil.
| |
Collapse
|
21
|
de Gregorio LS, Franco-Belussi L, Goldberg J, De Oliveira C. Nonylphenol and cyproterone acetate effects in the liver and gonads of Lithobates catesbeianus (Anura) tadpoles and juveniles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62593-62604. [PMID: 34196865 DOI: 10.1007/s11356-021-14599-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Environmental pollution plays an important role in amphibian population decline. Contamination with endocrine disrupting chemicals (EDCs) is particularly worrying due to their capacity to adversely affect organisms at low doses. We hypothesized that exposure to EDCs such as 4-nonylphenol (NP) and cyproterone acetate (CPA) could trigger responses in the liver and gonads, due to toxic and endocrine disrupting effects. Growth rate may also be impaired by contamination. We investigated sublethal effects of a 28-day exposure to three different concentrations of NP and CPA on liver pigmentation, gonadal morphology, body mass, and length of tadpoles and juveniles Lithobates catesbeianus. Liver pigmentation and the gonadal morphologies of treated tadpoles did not differ from control, but growth rate was impaired by both pollutants. Juveniles treated with 10 μg/L NP and 0.025 and 0.25 ng/L CPA displayed increased liver melanin pigmentation, but gonadal morphologies, sex ratios, and body mass were not affected after treatments. The increase in liver pigmentation may be related to defensive, cytoprotective role of melanomacrophages. The decreased growth rate in tadpoles indicates toxic effects of NP and CPA. Thus, contamination with NP and CPA remains a concern and sublethal effects of different dosages of the compounds on native species should be determined.
Collapse
Affiliation(s)
- Lara Salgueiro de Gregorio
- Post-graduate Program in Biodiversity, Department of Biology, São Paulo State University (UNESP), CEP 15054-000, São José do Rio Preto, São Paulo, Brazil.
- Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas - UNESP/IBILCE, Rua Cristóvão Colombo, 2265, Bairro: Jardim Nazareth, São José do Rio Preto, SP, 15054-000, Brazil.
| | - Lilian Franco-Belussi
- Department of Biology, São Paulo State University (UNESP), CEP 15054-000, São José do Rio Preto, São Paulo, Brazil
- Laboratory of Experimental Pathology (LAPEx), Federal University of Mato Grosso do Sul (UFMS), Institute of Biosciences (INBIO), CEP 79002-970, Campo Grande, Mato Grosso do Sul, Brazil
| | - Javier Goldberg
- Laboratorio de Biología del Comportamiento, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Vélez Sársfield 299, CP X5000JJC, Córdoba, Argentina
| | - Classius De Oliveira
- Department of Biology, São Paulo State University (UNESP), CEP 15054-000, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
22
|
Faria JMDL, Guimarães LN, Silva VCD, Lima ECDO, Sabóia-Morais SMTD. Recovery trend to co-exposure of iron oxide nanoparticles (γ-Fe 2O 3) and glyphosate in liver tissue of the fish Poecilia reticulata. CHEMOSPHERE 2021; 282:130993. [PMID: 34118627 DOI: 10.1016/j.chemosphere.2021.130993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Citrate-coated iron oxide nanoparticles (IONPs) have potential use in environmental remediation, with possibilities in decontaminating aquatic environments exposed to toxic substances. This study analyzed IONPs associated to Roundup Original, a glyphosate-based herbicide (GBH), and pure glyphosate (GLY), through ultrastructural and histopathological biomarkers in liver tissue, from females of Poecilia reticulata exposed to: iron ions (0.3 mg/L) (IFe) and IONPs (0.3 mgFe/L) associated with GLY (0.65 mg/L) and GBH (0.65 mgGLY/L (IONP + GBH1) and 1.30 mgGLY/L (IONP + GBH2)) for a period of 7, 14 and 21 days, followed by an equal post-exposure period only in reconstituted water. For the assays, the synthetized IONPs had crystalline and rounded shape with an average diameter of 2,90 nm, hydrodynamic diameter 66,6 mV, zeta potential -55,4 and diffraction profile of maghemite (γ-Fe2O3). The data obtained by biomarkers indicated a high inflammatory response in all treatments. These same parameters, considered during the post-exposure period indicated recovery in reaction patterns of circulatory disturbances and regressive changes, resulting in average reductions of 37,53 points in IFe, 21 points in IONP + GBH1, 15 points in IONP + GBH2 and 11 points in IONP + GLY in total histopathological index of liver after 21 days post-exposure. However, although the cellular and tissue responses were significant, there was no change in the condition factor and hepatosomatic index, denoting resilience of the experimental model.
Collapse
Affiliation(s)
- João Marcos de Lima Faria
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lucas Nunes Guimarães
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Victória Costa da Silva
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | | |
Collapse
|
23
|
Liu JB, Chen K, Liu TB, Wang ZY, Wang L. Global transcriptome profiling reveals antagonizing response of head kidney of juvenile common carp exposed to glyphosate. CHEMOSPHERE 2021; 280:130823. [PMID: 34162096 DOI: 10.1016/j.chemosphere.2021.130823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate (GLY) frequently detected in various water bodies has imposed a serious risk on fish. Head kidney of fish is an important defense organ, playing a vital part in antagonizing exogenous hazardous matter. The objective of this study was to characterize toxic mechanisms of GLY in head kidney of common carp based on transcriptome profiling. After 45-days exposure of GLY at environmentally relevant concentrations, juvenile common carp were used as experimental subjects to analyze how the head kidney responded to GLY. The transcriptome profiling identified 1381 different expressed genes (DEGs) between the control and exposure groups (5 and 50 mg/L). Functional analysis of DEGs substantiated over-representative pathways mainly involving cellular stress responses, cell proliferation and turnover, apoptosis, lipid metabolism, and innate immune processes in both treated groups compared with the control group. Predicted network of gene regulation indicated that GLY-induced tp53 played a vital role in linking a battery of signals. Furthermore, the expression of 10 candidate genes by qRT-PCR aligned with transcriptional profiling. In addition, western blotting analysis confirmed that GLY-induced apoptosis and cellular proliferation were closely involved in activating MAKP signaling pathway and lipid metabolism pathway in both treated groups. Collectively, these data demonstrate that head kidney of juvenile common carp mainly leverages upregulation of genes related to cell proliferation and turnover, apoptosis, and lipid metabolism to combat sub-chronic exposure of GLY. This study casts new understanding into the risk of GLY in aquatic animals.
Collapse
Affiliation(s)
- Jing-Bo Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Kai Chen
- New Drug Evaluation Center of Shandong Academy of Pharmaceutical Sciences, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Ji'nan City, Shandong Province, 250101, China
| | - Tian-Bin Liu
- New Drug Evaluation Center of Shandong Academy of Pharmaceutical Sciences, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Ji'nan City, Shandong Province, 250101, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
24
|
Fanali LZ, De Oliveira C, Sturve J. Enzymatic, morphological, and genotoxic effects of benzo[a]pyrene in rainbow trout (Oncorhynchus mykiss). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53926-53935. [PMID: 34036510 DOI: 10.1007/s11356-021-14583-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Fish have defense systems that are capable of repairing damages caused by xenobiotics like benzo[a]pyrene (BaP), so the aims of this study were to identify BaP toxicity in melanomacrophages (MMs) cytoskeleton, evaluate the melanin area in MMs, and analyze genotoxicity. Rainbow trout juveniles (n = 24) were split in 48h and 7d treatments that received 2 mg/kg of BaP. After the experiment, blood samples were collected and liver was removed, to proceed with the analysis: EROD activity, MMs melanin area quantification, melanosomes movements, and a genotoxicity test. The results revealed increased in EROD activity after 48-h and 7-day BaP exposure. The group 7d displayed a reduction in MMs pigmented area, melanosomes aggregation, in addition to an increased frequency of micronucleus. By means of the EROD assay, it was possible to confirm the activation of BaP biotransformation system. The impairment of the melanosomes' movements possibly by an inactivation of the protein responsible for the pigment dispersion consequently affects the melanin area and thus might negatively impact the MMs detoxification capacity. In addition to this cytotoxicity, the increased frequency of micronucleus might also indicate the genotoxicity of BaP in this important fish species.
Collapse
Affiliation(s)
- Lara Zácari Fanali
- Graduate Program in Animal Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil.
| | - Classius De Oliveira
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30, Göteborg, Sweden
| |
Collapse
|
25
|
Fanali LZ, Sturve J, de Oliveira C. Exposure of Physalaemus cuvieri (Anura) to benzo[a]pyrene and α-naphthoflavone: Morphofunctional effects on hepatic melanomacrophages and erythrocytes abnormalities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117526. [PMID: 34380224 DOI: 10.1016/j.envpol.2021.117526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Benzo[a]pyrene (BaP) is a high-risk contaminant of elevated toxicity. Its biotransformation process occurs as the expression of CYP1A1 increases and produces toxic metabolites. In turn, α-naphthoflavone (aNF) represents an inhibitor of CYP1A1, preventing BaP metabolism. Toxicological studies in anurans show alterations in the melanomacrophage (MM) detoxification cell after exposure to xenobiotics. In this study, the production of melanin by MMs was evaluated, as were morphological alterations in the cytoskeleton, phagocytosis and the genotoxicity effects after exposure of an anuran species to BaP and aNF. Physalaemus cuvieri received subcutaneous injections of 2 mg/kg and/or 20 mg/kg aNF. For phagocytosis analyses, animals received an intraperitoneal injection with 0.4% trypan blue. The results revealed that melanin synthesis increased by 503.2% in animals exposed to BaP after 48 h, which was related to the antioxidant action of melanin, whereas the decreased in synthesis of 25.6% with the BaP + aNF interaction resulted in high toxicity to MMs and cell degeneration. The phagocytic activity reduced to 37.6% in animals exposed to BaP, characterizing a functional impairment; however, the BaP + aNF interaction led to the restoration of phagocytosis, reaching 419.23%. The decreased rate or absence of abnormalities may be explained by the fact that only the less damaged erythrocytes remained in the bloodstream, whereas the most damaged cells died. In conclusion, BaP and aNF are toxic to P. cuvieri, bringing risks to herpetofauna.
Collapse
Affiliation(s)
- Lara Zácari Fanali
- Graduate Program in Animal Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil.
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg 405 30, Box 463, Sweden
| | - Classius de Oliveira
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil
| |
Collapse
|
26
|
Santos AT, Valverde BSL, De Oliveira C, Franco-Belussi L. Genotoxic and melanic alterations in Lithobates catesbeianus (anura) tadpoles exposed to fipronil insecticide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20072-20081. [PMID: 33405149 DOI: 10.1007/s11356-020-11948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The aim of this study was to evaluate the genotoxic and morphological systemic effects of both an acute and a chronic exposure of bullfrog tadpoles to fipronil. Lithobates catesbeianus tadpoles had morphological biomarkers (skin, liver, and blood) analyzed at Gosner stages 36-38, when exposed to four different concentrations of Regent® 800 WG (80% fipronil): 0.00 (control), 0.04, 0.08, 0.4 mg/L, and four experimental times: 4, 8, 12, and 16 days. Body darkness responded directly to the treatment and exposure time. There was a treatment-dependent decrease in darkness of heads and tails. In relation to the biometric analysis, fipronil induced a decrease in the individual weight and liver mass at the end of the experiments, whereas the hepatosomatic index did not vary according to the treatment. For the exposed animals and for the control group, the area of hepatic melanin increased as exposure time increased. Fipronil has genotoxic effects on L. catesbeianus tadpoles even after short exposure times (e.g., 4 and 8 days), and the main nuclear abnormality is in the anucleate cells. A relevant correlation was observed between genotoxic biomarkers and cutaneous and internal melanin. The frequency of nuclear abnormalities is inversely correlated both with the hepatic melanin area and with the cutaneous melanin of animals. Fipronil has distinct systemic effects on tadpoles based on its concentration, as well as on its exposure time. Such alterations (pigmentation level and rate of erythrocyte abnormality) result in morphological and physiological effects, which may compromise the behavior and survival of the anurans.
Collapse
Affiliation(s)
- Arleto T Santos
- Programa de Pós-Graduação em Biodiversidade, Universidade Estadual Paulista Júlio de Mesquita Filho, Campus São José do Rio Preto, São Paulo, Brazil
| | - Bruno S L Valverde
- Programa de Pós-Graduação em Biodiversidade, Universidade Estadual Paulista Júlio de Mesquita Filho, Campus São José do Rio Preto, São Paulo, Brazil
| | - Classius De Oliveira
- Departmento de Biologia, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, Campus São José do Rio Preto, São Paulo, CEP: 15054-000, Brazil.
| | - Lilian Franco-Belussi
- Laboratório de Patologia Experimental, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
27
|
Liu J, Dong C, Zhai Z, Tang L, Wang L. Glyphosate-induced lipid metabolism disorder contributes to hepatotoxicity in juvenile common carp. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116186. [PMID: 33302084 DOI: 10.1016/j.envpol.2020.116186] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Residues of glyphosate (GLY) are widely detected in aquatic systems, raising potential environmental threats and public health concerns, but the mechanism underlying GLY-induced hepatotoxicity in fish has not been fully elucidated yet. This study was designed to explore the hepatotoxic mechanism using juvenile common carp exposed to GLY for 45 d, and plasma and liver samples were collected at 15 d, 30 d, and 45 d to analyze the assays. First, GLY-induced hepatic damage was confirmed by serum liver damage biomarker and hepatic histopathological analysis. Next, changes in oxidative stress biomarkers, gene expression levels of pro- and anti-inflammatory cytokines, and lipid metabolism-related parameters in collected samples were analyzed to clarify their roles in GLY-induced hepatic damage. Data showed that oxidative stress was an early event during GLY exposure, followed by hepatic inflammatory response. Lipid metabolism disorder was a late event during GLY exposure, as evidenced by overproduced hepatic free fatty acids, enhanced lipogenesis-related gene expression levels, reduced lipolysis-related gene expression levels, and resultant hepatic lipid accumulation. Collectively, these findings demonstrate that GLY induces hepatotoxicity in fish through involvement of oxidative stress, inflammatory response, and lipid metabolism disorder, which are intimately interrelated with each other during GLY exposure.
Collapse
Affiliation(s)
- Jingbo Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Chenyu Dong
- The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou City, Guangdong Province, 510000, China
| | - Zhenzhen Zhai
- Tai'an City Central Hospital, 29 Longtan Road, Tai'an City, Shandong Province, 271000, China
| | - Liang Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
28
|
Salla RF, Jones-Costa M, Abdalla FC, Vidal FAP, Boeing GANS, Oliveira CR, Silva-Zacarin ECM, Franco-Belussi L, Rizzi-Possignolo GM, Lambertini C, Toledo LF. Differential liver histopathological responses to amphibian chytrid infection. DISEASES OF AQUATIC ORGANISMS 2020; 142:177-187. [PMID: 33331285 DOI: 10.3354/dao03541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Amphibians have been facing a pandemic caused by the deadly fungus Batrachochytrium dendrobatidis (Bd). Although studies have elucidated cutaneous and homeostatic disturbances, it is still unknown if the hepatic function can be affected or if hepatic effects differ among host species. Thus, we evaluated the effects of an experimental Bd infection on the liver (histopathology and the hepatosomatic index) of 2 anuran species (Xenopus laevis and Physalaemus albonotatus) with different susceptibilities to Bd infection and compared them to uninfected controls. Bd infection increased the melanomacrophage cell area and induced leukocyte infiltration in both species. The effects were more pronounced in the sensitive species, P. albonotatus, which showed severe reduction in glycogen stores and liver atrophy, due to energetic imbalance. Hepatocytes of P. albonotatus also showed ballooning degeneration (vacuolization), which could lead to cell death and liver failure. Our results provide evidence that although the sensitive species showed more severe effects, the tolerant species also had hepatic responses to the infection. These findings indicate that hepatic function can play an important role in detoxification and in immune responses to chytridiomycosis, and that it may be used as a new biomarker of health status in chytrid infections.
Collapse
Affiliation(s)
- Raquel F Salla
- Laboratory of Natural History of Brazilian Amphibians, Biology Institute, State University of Campinas, Campinas, São Paulo 13083-862, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cuzziol Boccioni AP, Peltzer PM, Martinuzzi CS, Attademo AM, León EJ, Lajmanovich RC. Morphological and histological abnormalities of the neotropical toad, Rhinella arenarum (Anura: Bufonidae) larvae exposed to dexamethasone. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 56:41-53. [PMID: 33112724 DOI: 10.1080/03601234.2020.1832410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dexamethasone (DEX) is a glucocorticoid highly effective as an anti-inflammatory, immunosuppressant and decongestant drug. In the present study, a preliminary acute toxicity test was assayed in order to determinate DEX median-lethal, lowest-observed-effect and the no-observed-effect concentrations (LC50, LOEC and NOEC, respectively) on the common toad embryos (Rhinella arenarum). Also, morphological and histological abnormalities from five body larval regions, liver melanomacrophages (MM) and glutathione S-transferase (GST) activity were evaluated in the toad larvae to characterize the chronic sublethal effects of DEX (1-1,000 µg L-L). Results of the acute test showed that the LC50 of DEX at 96 h of exposure for the toad embryos (GS 18-20) was 10.720 mg L-g, and the LOEC was 1 µg L-g. In the chronic assay, the larval development and body length were significantly affected. DEX exposition also induced teratogenic effects. Most frequent external abnormalities observed in DEX-treated larvae included abdominal edema and swollen body, abnormal gut coiling and visceral congestion. Intestinal dysplasia was recurrent in cross-section of all DEX-treated larvae. Neural, conjunctive and renal epithelial cells were also affected. Significant increase in liver MM number and size, and GST activity levels were also registered in DEX treatments with respect to controls. The evaluation of a variety of biomarkers provided clear evidence of toad larvae sensitivity to DEX, and the ecotoxicological risk of these pharmaceuticals, commonly found in different water bodies worldwide on aquatic animals.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Candela S Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Evelina J León
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
30
|
Mansano AS, Moreira RA, Dornfeld HC, Freitas EC, Vieira EM, Daam MA, Rocha O, Seleghim MHR. Individual and mixture toxicity of carbofuran and diuron to the protozoan Paramecium caudatum and the cladoceran Ceriodaphnia silvestrii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110829. [PMID: 32531577 DOI: 10.1016/j.ecoenv.2020.110829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
The toxicity of the insecticide carbofuran and herbicide diuron (individually and in mixture) to the invertebrates Paramecium caudatum and Ceriodaphnia silvestrii was evaluated. Acute and chronic toxicity tests were carried out with the diuron and carbofuran active ingredients and their commercial products, Diuron Nortox® 500 SC and Furadan® 350 SC, respectively. Individual toxicity tests showed that C. silvestrii was more sensitive to both carbofuran and diuron than P. caudatum. In single exposures, both pesticides caused adverse effects to C. silvestrii in environmentally relevant concentrations (48 h EC50 = 0.001 mg L-1 and 8 d LOEC = 0.00038 mg L-1 for formulated carbofuran; 8 d LOEC < 0.05 mg L-1 for formulated diuron). For P. caudatum, carbofuran and diuron in single exposures were only slightly toxic (24 h IC50 = 5.1 mg L-1 and 6.9 mg L-1 for formulated carbofuran and diuron, respectively). Acute and chronic exposures to diuron and carbofuran mixtures caused significant deviations of the toxicity predicted by the Concentration Addition and Independent Action reference models for both test species. For the protozoan P. caudatum, a dose-dependent deviation was verified for mortality, with synergism caused mainly by carbofuran and antagonism caused mainly by diuron. For protozoan population growth, however, an antagonistic deviation was observed when the active ingredient mixtures were tested. In the case of C. silvestrii, antagonism at low concentrations and synergism at high concentrations were revealed after acute exposure to active ingredient mixtures, whereas for reproduction an antagonistic deviation was found. Commercial formulation mixtures presented significantly higher toxicity than the active ingredient mixtures. Our results showed that carbofuran and diuron interact and cause different toxic responses than those predicted by the individually tested compounds. Their mixture toxicity should therefore be considered in risk assessments as these pesticides are likely to be present simultaneously in edge-of-field waterbodies.
Collapse
Affiliation(s)
- Adrislaine S Mansano
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Raquel A Moreira
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Hugo C Dornfeld
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Emanuela C Freitas
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Eny M Vieira
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400, 13560-970, São Carlos, SP, Brazil
| | - Michiel A Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Mirna H R Seleghim
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
31
|
Xie L, Zhang Y, Gao J, Li X, Wang H. Nitrate exposure induces intestinal microbiota dysbiosis and metabolism disorder in Bufo gargarizans tadpoles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114712. [PMID: 32402709 DOI: 10.1016/j.envpol.2020.114712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Excess nitrate has been reported to be associated with many adverse effects in humans and experimental animals. However, there is a paucity of information of the effects of nitrate on intestinal microbial community. In this study, the effects of nitrate on development, intestinal microbial community, and metabolites of Bufo gargarizans tadpoles were investigated. B. gargarizans were exposed to control, 5, 20 and 100 mg/L nitrate-nitrogen (NO3-N) from eggs to Gosner stage 38. Our data showed that the body size of tadpoles significantly decreased in the 20 and 100 mg/L NO3-N treatment group when compared to control tadpoles. Exposure to 20 and 100 mg/L NO3-N also caused indistinct cell boundaries and nuclear pyknosis of mucosal epithelial cells in intestine of tadpoles. In addition, exposure to NO3-N significantly altered the intestinal microbiota diversity and structure. The facultative anaerobic Proteobacteria occupy the niche of the obligately anaerobic Bacteroidetes and Fusobacteria under the pressure of NO3-N exposure. According to the results of functional prediction, NO3-N exposure affected the fatty acid metabolism pathway and amino acid metabolism pathway. The whole-body fatty acid components were found to be changed after exposure to 100 mg/L NO3-N. Therefore, we concluded that exposure to 20 and 100 mg/L NO3-N could induce deficient nutrient absorption in intestine, resulting in malnutrition of B. gargarizans tadpoles. High levels of NO3-N could also change the intestinal microbial communities, causing dysregulation of fatty acid metabolism and amino acid metabolism in B. gargarizans tadpoles.
Collapse
Affiliation(s)
- Lei Xie
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China; College of Life and Environmental Science, Wenzhou University, 325035, Wenzhou, China
| | - Yuhui Zhang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Jinshu Gao
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
32
|
Franco-Belussi L, Provete DB, Borges RE, De Oliveira C, Santos LRS. Idiosyncratic liver pigment alterations of five frog species in response to contrasting land use patterns in the Brazilian Cerrado. PeerJ 2020; 8:e9751. [PMID: 32913675 PMCID: PMC7456255 DOI: 10.7717/peerj.9751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Changes in land use trigger environmental changes that can lead to decreased biodiversity and species loss. The liver is an essential detoxification organ that reflects systemic physiological responses to environmental changes. Here, we tested whether contrasting land use patterns influence the amount of substances from the hepatic cellular catabolism and melanomacrophages (MMs) of five anuran species in the Brazilian Cerrado. METHODS We collected the same five species of pond-dwelling frogs in one protected area and in an area with intense agricultural activity. We used routine histological and histochemical techniques to quantify the area occupied by lipofuscin, melanin, and hemosiderin in the liver of two frogs Leptodactylus fuscus, Physalaemus cuvieri, and three tree-frogs Dendropsophus minutus, Scinax fuscomarginatus, and Boana albopunctata. We classified land use types in a buffer around each pond based on satellite images. We then used a double-constrained Correspondence Analysis, a recently developed ecological method to relate functional traits to environmental variables, to test the effect of each land use type on the area of each liver pigment. RESULTS There was an increase in the amount of melanin in environments with high proportion of agriculture, as well as variation in the amount of lipofuscin and hemosiderin. Liver pigments of P. cuvieri and B. albopunctata varied more strongly in response to land use types, suggesting they could be good indicator species. Therefore, the area of MMs in the liver and the metabolic products in their cytoplasm can be used as biomarkers of environmental changes in regions with intense agricultural activities. Our results add a new perspective to the influence of land use patterns on environmental health by highlighting the effect of environmental changes on internal morphological aspects of animals.
Collapse
Affiliation(s)
- Lilian Franco-Belussi
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
- Departamento de Biologia, Universidade Estadual Paulista, São José do Rio Preto, São Paulo, Brazil
| | - Diogo B. Provete
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
- Gothenburg Global Biodiversity Centre, Gothenburg, Västra Götaland, Sweden
| | - Rinneu E. Borges
- Departamento de Biologia, Universidade de Rio Verde, Rio Verde, Goias, Brazil
| | - Classius De Oliveira
- Departamento de Biologia, Universidade Estadual Paulista, São José do Rio Preto, São Paulo, Brazil
| | - Lia Raquel S. Santos
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Rio Verde, Goias, Brazil
| |
Collapse
|
33
|
Lanzarin GAB, Venâncio CAS, Monteiro SM, Félix LM. Behavioural toxicity of environmental relevant concentrations of a glyphosate commercial formulation - RoundUp® UltraMax - During zebrafish embryogenesis. CHEMOSPHERE 2020; 253:126636. [PMID: 32276117 DOI: 10.1016/j.chemosphere.2020.126636] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
The use of herbicides with glyphosate as an active ingredient (a.i.) has increased dramatically in recent years, with its residues often being found in either soil or water. Nevertheless, concerns have arisen about its harmful side effects for both ecosystems and wildlife health. Therefore, the objective of this work was to assess the effects of a commercial formulation of glyphosate (RoundUp® UltraMax), at environmentally relevant concentrations on zebrafish embryos through a set of behavioural patterns. Zebrafish embryos were exposed to 0, 1, 2 and 5 μg a.i. mL-1 concentrations of the glyphosate formulation for 72 h (from 2.5 to 75 h post-fertilization (hpf)). After exposure, larvae were washed and allowed to develop until 144 hpf. At this point, the larvae behaviour was evaluated using a battery of tests to assess the general exploratory motility, escape-like responses, anxiety-related behaviours and social interactions. In addition, cortisol levels were assessed. No significant changes were observed relative to the exploratory behaviour in the standard open field. The anxiety-related behaviours were similar among groups, and no social interference was observed following exposure to these glyphosate concentrations. Likewise, cortisol levels remained similar among treatments. Still, the larvae exposed to 5 μg a.i. mL-1 did not react to the presence of an aversive stimulus, supporting glyphosate-induced changes in the sensory-motor coordination during development. In general, these results indicate a possible neurotoxic effect of this glyphosate-based formulation that should be further evaluated. In addition, the results obtained could impose a risk for wildlife sensitive species that should not be neglected.
Collapse
Affiliation(s)
- Germano A B Lanzarin
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Carlos A S Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Instituto de Investigação e Inovação em Saúde (i3s), Laboratory Animal Science (LAS), Instituto de Biologia Molecular Celular (IBMC), University of Porto (UP), Porto, Portugal.
| |
Collapse
|
34
|
Riaño C, Ortiz-Ruiz M, Pinto-Sánchez NR, Gómez-Ramírez E. Effect of glyphosate (Roundup Active®) on liver of tadpoles of the colombian endemic frog Dendropsophus molitor (amphibia: Anura). CHEMOSPHERE 2020; 250:126287. [PMID: 32135436 DOI: 10.1016/j.chemosphere.2020.126287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Glyphosate-based herbicide (GBH) using is increasing on a global scale. Few studies have investigated the sub-lethal effects of GBH in endemic amphibian species. The present work tested the GBH Roundup Active® on the tadpoles of Dendropsophus molitor. The exposure was in a range of plausible environmental concentrations (0-0.75 μg a.e./L) during a month. D. molitor is an endemic tropical frog of South America. The exposure from 325 μg a.e./L caused histological alterations in the liver. The high-resolution optical microscopy (HROM) detected sinusoidal dilatation and cytoplasmic vacuolization. The transmission electron microscopy (TEM) showed disorganization of the endoplasmic reticulum. Since the liver is essential for detoxification, these results suggest choric effects. Exposure to another GBH has caused histological alterations in liver tadpoles liver in a previous study, but, this study tested another endemic South-American frog for only 96h. The present work applied HROM to observe lipid alterations since it does not use organic solvents; and TEM for the ultrastructural observation of hepatocytes. Environmental risk of GBH can improve by including sub-lethal effects in endemic species.
Collapse
Affiliation(s)
- Camilo Riaño
- Grupo de ecotoxicología, Evolución, Medio ambiente y Conservación, Facultad de Ciencias básicas y Aplicadas, Universidad Militar Nueva Granada, Colombia.
| | - Mónica Ortiz-Ruiz
- Grupo de ecotoxicología, Evolución, Medio ambiente y Conservación, Facultad de Ciencias básicas y Aplicadas, Universidad Militar Nueva Granada, Colombia
| | - Nelsy Rocío Pinto-Sánchez
- Grupo de ecotoxicología, Evolución, Medio ambiente y Conservación, Facultad de Ciencias básicas y Aplicadas, Universidad Militar Nueva Granada, Colombia
| | - Edwin Gómez-Ramírez
- Grupo de ecotoxicología, Evolución, Medio ambiente y Conservación, Facultad de Ciencias básicas y Aplicadas, Universidad Militar Nueva Granada, Colombia
| |
Collapse
|
35
|
Tang Q, Tang J, Ren X, Li C. Glyphosate exposure induces inflammatory responses in the small intestine and alters gut microbial composition in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114129. [PMID: 32045792 DOI: 10.1016/j.envpol.2020.114129] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 05/27/2023]
Abstract
Glyphosate is the most popular herbicide used worldwide. This study aimed to investigate the adverse effects of glyphosate on the small intestine and gut microbiota in rats. The rats were gavaged with 0, 5, 50, and 500 mg/kg of body weight glyphosate for 35 continuous days. The different segments of the small intestine were sampled to measure indicators of oxidative stress, ion concentrations and inflammatory responses, and fresh feces were collected for microbiota analysis. The results showed that glyphosate exposure decreased the ratio of villus height to crypt depth in the duodenum and jejunum. Decreased activity of antioxidant enzymes (T-SOD, GSH, GSH-Px) and elevated MDA content were observed in different segments of the small intestine. Furthermore, the concentrations of Fe, Cu, Zn and Mg were significantly decreased or increased. In addition, the mRNA expression levels of IL-1β, IL-6, TNF-α, MAPK3, NF-κB, and Caspase-3 were increased after glyphosate exposure. The 16 S rRNA gene sequencing results indicated that glyphosate exposure significantly increased α-diversity and altered bacterial composition. Glyphosate exposure significantly decreased the relative abundance of the phylum Firmicutes and the genus Lactobacillus, but several potentially pathogenic bacteria were enriched. In conclusion, this study provides important insight to reveal the negative influence of glyphosate exposure on the small intestine, and the altered microbial composition may play a vital role in the process.
Collapse
Affiliation(s)
- Qian Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Ren
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
36
|
Herek JS, Vargas L, Trindade SAR, Rutkoski CF, Macagnan N, Hartmann PA, Hartmann MT. Can environmental concentrations of glyphosate affect survival and cause malformation in amphibians? Effects from a glyphosate-based herbicide on Physalaemus cuvieri and P. gracilis (Anura: Leptodactylidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22619-22630. [PMID: 32319061 DOI: 10.1007/s11356-020-08869-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Herbicides are the most common agrochemicals used in crops. Among them, glyphosate is the most widely applied in the world. Herbicides, especially organophosphates, have been shown to be hazardous to non-target species, including amphibians. The present study evaluated the acute and chronic effects of glyphosate-based herbicide (GBH), Roundup original® DI on tadpoles from two South American native species, Physalaemus cuvieri and P. gracilis. Spawnings were collected in the natural environment and maintained in the laboratory under controlled conditions. Acute and chronic toxicology trials began at stage 25 of Gosner (Herpetological 16:183-190, 1960). In an acute toxicity assay, seven GBH concentrations between 100 and 4500 μg a.e./L were tested over 96 h. For the chronic trials, tadpoles were subjected to both doses allowed by Brazilian legislation and to concentrations found in natural environment waters from Brazil and Argentina, between 65 and 1000 μg a.e/L over 14 days. Glyphosate had lethal effects on both studied species. Tadpoles showed shorter lengths and lower masses; that is, those that survived suffered chronic effects on growth and weight. The GBH maximum acceptable toxicant concentration for mortality and malformation was lower than the allowed level for Brazilian waters. The GBH tested in this study presented a high environmental and acute risk for the two studied species.
Collapse
Affiliation(s)
- Jéssica Samara Herek
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, ERS 135 - Km 72, n°200, Erechim, RS, Brazil
| | - Luana Vargas
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, ERS 135 - Km 72, n°200, Erechim, RS, Brazil
| | - Suélen Andressa Rinas Trindade
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, ERS 135 - Km 72, n°200, Erechim, RS, Brazil
| | - Camila Fatima Rutkoski
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, ERS 135 - Km 72, n°200, Erechim, RS, Brazil
| | - Natani Macagnan
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, ERS 135 - Km 72, n°200, Erechim, RS, Brazil
| | - Paulo Afonso Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, ERS 135 - Km 72, n°200, Erechim, RS, Brazil
| | - Marilia Teresinha Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, ERS 135 - Km 72, n°200, Erechim, RS, Brazil.
| |
Collapse
|
37
|
Fu H, Qiu S, Yao X, Gao F, Tan P, Teng T, Shi B. Toxicity of glyphosate in feed for weanling piglets and the mechanism of glyphosate detoxification by the liver nuclear receptor CAR/PXR pathway. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121707. [PMID: 31776084 DOI: 10.1016/j.jhazmat.2019.121707] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Glyphosate (GLP), the most widely used and productive pesticide worldwide, which safety and reliability gradually become a social concern. It is important to explore the toxic of GLP on the limitation level by governments on piglets and the potential role of hepatic CAR/PXR and Keap1-Nrf2 pathways in low levels of glyphosate detoxification. Compared with the control group, the production performance and organ index of GLP group showed no significant change. However, the liver GLP residue of 40 mg/kg group was significantly higher than the control group. We also found that the activity of ALP increased linearly and DBIL content increased quadratically. Furthermore, GLP could significantly increase SOD and GSH-Px and decrease T-AOC and CAT activities and significantly increase MDA and H2O2 contents (P < 0.05); however, the genes expression of Keap1/Nrf2 pathway was not affected. Gene expression of CAR/PXR pathway showed that GLP could significantly stimulate the expression of CAR, but it could not affect the expression of phase Ⅰ (CYP1A1, CYP1A2, CYP2E1, CYP2A19, CYP3A29), phase Ⅱ (UGT1A6, GSTA1, GSTA2) detoxification enzymes and transporters (MDR1, MRP2, P-gp). Our study showed that although 10-40 mg/kg GLP would inevitably cause some liver damage and dysfunction, it can self-alleviating the toxic effect of GLP.
Collapse
Affiliation(s)
- Huiyang Fu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shengnan Qiu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xinxin Yao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Feng Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Peng Tan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Teng Teng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
38
|
Boiarski DR, Toigo CM, Sobjak TM, Santos AFP, Romão S, Guimarães ATB. Assessment of antioxidant system, cholinesterase activity and histopathology in Lithobates catesbeianus tadpoles exposed to water from an urban stream. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:314-326. [PMID: 32107698 DOI: 10.1007/s10646-020-02176-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Anthropogenic activities promote changes in community structure and decrease the species abundance of amphibians. The aim of this study was to assess potential alterations in the antioxidant system and cholinesterase activity, histopathological and oxidative damage in Lithobates catesbeianus tadpoles exposed to water from the Cascavel River, in Southern Brazil. Water samples (140 L each) were collected from the headwater, urban and rural areas of the river. Tadpoles were acclimated for seven days. After acclimatization tadpoles were reared in water from the river, except for the control aquarium. After seven days, a portion of the liver was removed and prepared for cholinesterase (ChE), superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation (LPO) analysis; another part of the tissue was prepared for histological examination. An elevation of CAT activity was observed for water from both urban and rural environments. A decrease in LPO reaction was detected, mainly among the tadpoles exposed to water from the rural area. These alternations can cause delay the metamorphosis and lead to metabolic dysfunction, interfering in survival capacity and diminishing, not only individual fitness, but that of the whole population.
Collapse
Affiliation(s)
- Diego Romagna Boiarski
- Undergraduate Program in Biological Sciences, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brazil
| | - Camila Maria Toigo
- Graduate Program in Conservation and Management of Natural Resources Postgraduate Program, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brazil
| | - Thaís Maylin Sobjak
- Undergraduate Program in Biological Sciences, Universidade Tecnológica Federal do Paraná-UTFPR, Dois Vizinhos, PR, Brazil.
| | | | - Silvia Romão
- Graduate Program in Agroecology and Sustainable Development, Universidade Federal da Fronteira Sul, Laranjeiras do Sul, PR, Brazil
| | - Ana Tereza Bittencourt Guimarães
- Undergraduate Program in Biological Sciences, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brazil
- Graduate Program in Biosciences and Health, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brazil
| |
Collapse
|
39
|
Araújo APDC, Gomes AR, Malafaia G. Hepatotoxicity of pristine polyethylene microplastics in neotropical physalaemus cuvieri tadpoles (Fitzinger, 1826). JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121992. [PMID: 31901713 DOI: 10.1016/j.jhazmat.2019.121992] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 05/14/2023]
Abstract
Plastic waste disposal in the environment is a major issue worldwide, whose effects on different biotas are the object of several investigations. The toxicity caused by microplastics (MPs) in organisms living in freshwater environments remains little explored. Little is known about the consequences of the exposure to these pollutants on the health of amphibians. Thus, we tested the hypothesis that the exposure of Physalaemus cuvieri tadpoles to microplastic polyethylene (PE MP) causes histopathological damage to their liver. Data collected after seven days of exposure to MPs (60 mg/L) have shown that pollutant bioaccumulation in tadpoles' liver was correlated to different histopathological changes (blood vessel dilation, infiltration, congestion, hydropic degeneration, hypertrophy and hyperplasia), which showed the histopathotoxicity of MPs. Furthermore, we observed changes in hepatocyte nuclei size (area and diameter), volume and shape induced by the exposure to PE MPs, a fact that evidenced the cytotoxic effect of these pollutants. To the best of our knowledge, the current study is the first to report the histopathotoxicity of PE MPs in representatives of the amphibian group, and it contributes to improving knowledge about these pollutants and how they may affect the health of these animals.
Collapse
Affiliation(s)
- Amanda Pereira da Costa Araújo
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil
| | - Alex Rodrigues Gomes
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil.
| |
Collapse
|
40
|
Pochron S, Simon L, Mirza A, Littleton A, Sahebzada F, Yudell M. Glyphosate but not Roundup® harms earthworms (Eisenia fetida). CHEMOSPHERE 2020; 241:125017. [PMID: 31605995 DOI: 10.1016/j.chemosphere.2019.125017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Glyphosate is the active ingredient in Roundup® formulations. While multiple studies have documented the toxicity, environmental persistence, and tendency to spread for glyphosate and Roundup®, few studies have compared the toxicity of glyphosate-based formulations to the toxicity of pure glyphosate for soil invertebrates, which contact both the herbicide and the formulations. Hundreds of formulations exist; their inert ingredients are confidential; and glyphosate persists in our food, water, and soil. In this experiment, we held glyphosate type and concentration constant, varying only formulation. Using Roundup Ready-to-Use III®, Roundup Super Concentrate®, and pure glyphosate, we delivered 26.3 mg glyphosate in the form of isopropylamine salt per kg of soil to compost worms (Eisenia fetida). We found that worms living in soil spiked with pure glyphosate lost 14.8-25.9% of their biomass and survived a stress test for 22.2-33.3% less time than worms living in uncontaminated soil. Worms living in soil spiked with Roundup Ready-to-Use III® and Roundup Super Concentrate® did not lose body mass and survived the stress test as well as worms living in uncontaminated soil. No contaminant affected soil microbial or fungal biomass over the 40-day period of this experiment. We suggest that the nitrates and phosphates in the formulations offset the toxic effects of glyphosate by spurring microbial growth and speeding glyphosate degradation. We also found a 26.5-41.3% reduction in fungal biomass across all treatments over the course of this experiment, suggesting that the worms consumed fungi and spores.
Collapse
Affiliation(s)
- Sharon Pochron
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, United States.
| | - Leora Simon
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, United States
| | - Ashra Mirza
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, United States
| | - Anne Littleton
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, United States
| | - Feisal Sahebzada
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, United States
| | - Michael Yudell
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, United States
| |
Collapse
|
41
|
Carvalho WF, Ruiz de Arcaute C, Torres L, de Melo E Silva D, Soloneski S, Larramendy ML. Genotoxicity of mixtures of glyphosate with 2,4-dichlorophenoxyacetic acid chemical forms towards Cnesterodon decemmaculatus (Pisces, Poeciliidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6515-6525. [PMID: 31873893 DOI: 10.1007/s11356-019-07379-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Acute genotoxicity of commercial glyphosate (GLY) (Credit®)-, 2,4-D-acid (2,4-D) (Dedalo Elite)-, 2,4-D-amine (2,4-D DMA) (Weedar Full®)- and 2,4-D-ester (2,4-D BE) (Herbifen Super®)-based herbicide formulations alone and their combinations were analysed in Cnesterodon decemmaculatus. Mortality was evaluated as a lethal end-point and the single cell gel electrophoresis (SCGE) bioassay was used as a sublethal end-point. LC5096h values for Dedalo Elite was 0.46 mg/L and Herbifen Super® was 2.67 mg/L based on 2,4-D and 2,4-D BE, respectively. Results reveal a higher toxicity exerted on C. decemmaculatus after exposure to 2,4-D- rather than 2,4-D BE-based herbicide formulations. Overall, results demonstrated an enhancement in the genetic damage index committed to an enhancement of damaged erythrocytes of C. decemmaculatus when exposed to Credit®, Dedalo Elite, Weedar Full® and Herbifen Super® at 5% and 10% of LC5096h values alone as well as in their combinations. Overall, the combination of GLY plus 2,4-D or GLY plus 2,4-D DMA showed a synergistic pattern whereas the combination of GLY plus 2,4-D BE was antagonic. Furthermore, this research is pioneer in the assessment of lethality and genotoxicity induced by 2,4-D-, 2,4-D DMA- and 2,4-D BE-based formulations when combined with GLY-based formulated herbicides in fish after they are acutely exposed.
Collapse
Affiliation(s)
- Wanessa F Carvalho
- Laboratório de Mutagênese, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Celeste Ruiz de Arcaute
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, B1904AMA, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Luciano Torres
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, B1904AMA, La Plata, Argentina
| | - Daniela de Melo E Silva
- Laboratório de Mutagênese, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Sonia Soloneski
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, B1904AMA, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo L Larramendy
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, B1904AMA, La Plata, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
42
|
Turhan DÖ, Güngördü A, Ozmen M. Developmental and lethal effects of glyphosate and a glyphosate-based product on Xenopus laevis embryos and tadpoles. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:173-179. [PMID: 31932905 DOI: 10.1007/s00128-019-02774-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Effects of pure glyphosate and a glyphosate-based product were evaluated comparatively using two embryonic development stages of Xenopus laevis as model system. When pure glyphosate was applied in pH adjusted media, lethal or developmental effects were not observed at concentrations up to 500 mg L-1. The 96 h LC50 values for the commercial herbicide, in contrast, were 32.1 and 35.1 mg active ingredient L-1 for embryos and tadpoles, respectively. Since pure glyphosate has no effect on the selected biomarkers, it is thought that developmental toxic effects caused by glyphosate-based products are increased mainly due to formulation additives.
Collapse
Affiliation(s)
- Duygu Özhan Turhan
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Sciences, Inonu University, 44280, Malatya, Turkey
| | - Abbas Güngördü
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Sciences, Inonu University, 44280, Malatya, Turkey.
| | - Murat Ozmen
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Sciences, Inonu University, 44280, Malatya, Turkey
| |
Collapse
|
43
|
Qiu S, Fu H, Zhou R, Yang Z, Bai G, Shi B. Toxic effects of glyphosate on intestinal morphology, antioxidant capacity and barrier function in weaned piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109846. [PMID: 31677563 DOI: 10.1016/j.ecoenv.2019.109846] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
At present, the public is paying more attention to the adverse effects of pesticides on human and animal health and the environment. Glyphosate is a broad-spectrum pesticide that is widely used in agricultural production. In this manuscript, the effects of diets containing glyphosate on intestinal morphology, intestinal immune factors, intestinal antioxidant capacity and the mRNA expression associated with the Nrf2 signaling pathway were investigated in weaned piglets. Twenty-eight healthy female hybrid weaned piglets (Duroc × Landrace × Yorkshire) were randomly selected with an average weight of 12.24 ± 0.61 kg. Weaned piglets were randomly assigned into 4 treatment groups and fed a basal diet supplemented with 0, 10, 20, and 40 mg/kg glyphosate for a 35-day feeding trial. We found that glyphosate had no effect on intestinal morphology. In the duodenum, glyphosate increased the activities of CAT and SOD (linear, P < 0.05) and increased the levels of MDA (linear and quadratic, P < 0.05). In the duodenum, glyphosate remarkably increased the relative mRNA expression levels of Nrf2 (linear and quadratic, P < 0.05) and NQO1 (linear and quadratic, P < 0.05) and reduced the relative mRNA expression levels of GPx1, HO-1 and GCLM (linear and quadratic, P < 0.05). In the jejunum, glyphosate remarkably increased the relative mRNA expression levels of Nrf2 (linear and quadratic, P < 0.05) and decreased the relative mRNA expression levels of GCLM (linear and quadratic, P < 0.05). Glyphosate increased the mRNA expression levels of IL-6 in the duodenum (linear and quadratic, P < 0.05) and the mRNA expression levels of IL-6 in the jejunum (linear, P < 0.05). Glyphosate increased the mRNA expression of NF-κB in the jejunum (linear, P = 0.05). Additionally, the results demonstrated that glyphosate linearly decreased the ZO-1 mRNA expression levels in the jejunum and the mRNA expression of claudin-1 in the duodenum (P < 0.05). In the duodenum, glyphosate increased the protein expression levels of Nrf2 (linear, P = 0.025). Overall, glyphosate exposure may result in oxidative stress in the intestines of piglets, which can be alleviated by enhancing the activities of antioxidant enzymes and self-detoxification.
Collapse
Affiliation(s)
- Shengnan Qiu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huiyang Fu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ruiying Zhou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zheng Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Guangdong Bai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
44
|
Okada E, Allinson M, Barral MP, Clarke B, Allinson G. Glyphosate and aminomethylphosphonic acid (AMPA) are commonly found in urban streams and wetlands of Melbourne, Australia. WATER RESEARCH 2020; 168:115139. [PMID: 31605832 DOI: 10.1016/j.watres.2019.115139] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/13/2019] [Accepted: 09/27/2019] [Indexed: 05/27/2023]
Abstract
Glyphosate is the most widely-used pesticide for weed control in agriculture and in urban and residential areas. This is the first study to quantify glyphosate and AMPA levels in surface water in Australia from different land uses. Glyphosate and AMPA was measured in surface water from 10 rural streams, 30 urban stormwater wetlands and 9 urban streams located in and around the city of Melbourne, Australia on five occasions between October 2017 and February 2018. Glyphosate and AMPA were present in most of the urban surface water samples. The frequency of detection of glyphosate was 77% in wetlands and 79% in urban streams, whereas it was only detected in 4% of the rural streams. Similarly, AMPA detection was 91% in wetlands and 97% in urban streams, whereas it was only present in 6% of the rural stream samples. In both urban streams and wetlands, the highest average glyphosate concentrations occurred in November (1.8 ± 2.2 μg L-1). Overall, wetlands and streams associated with urban land use are vulnerable to glyphosate contamination. These results highlight the importance of screening for contaminants in urban stormwater to identify the source of pollutants that may end up in aquatic ecosystems and the risks therefrom.
Collapse
Affiliation(s)
- Elena Okada
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia; INTA Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce, Route 226 Km 73.5, 7620, Balcarce, Argentina.
| | - Mayumi Allinson
- Department of Chemical Engineering, The University of Melbourne, Victoria, 3010, Australia
| | - María P Barral
- INTA Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce, Route 226 Km 73.5, 7620, Balcarce, Argentina
| | - Bradley Clarke
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia
| | - Graeme Allinson
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
45
|
Zhang JW, Xu DQ, Feng XZ. The toxic effects and possible mechanisms of glyphosate on mouse oocytes. CHEMOSPHERE 2019; 237:124435. [PMID: 31352102 DOI: 10.1016/j.chemosphere.2019.124435] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Glyphosate is a high-efficiency, low-toxicity, broad-spectrum herbicide. The residues of glyphosate-based herbicides are frequent pollutants in the environment. However, the effects of glyphosate on oocyte maturation, as well as its possible mechanisms, remain unclear. The present study revealed that mouse oocytes had reduced rates of germinal vesicle breakdown (GVBD) and first polar body extrusion (PBE) after treatment with 500 μM glyphosate. Reactive oxygen species (ROS) were found in mouse oocytes exposed to glyphosate, as shown by changes in the mRNA expression of related antioxidant enzyme genes (cat, sod2, gpx). After 14 h of exposure to glyphosate, metaphase II (MII) mouse oocytes displayed an abnormal spindle morphology and DNA double-strand breaks (DNA-DSBs). Simultaneously, mitochondria showed an aggregated distribution and decreased membrane potential in mouse oocytes exposed to glyphosate. The protein expression levels of apoptosis factors (Bax, Bcl-2) and the mRNA expression levels of apoptosis-related genes (bax, bcl-2, caspase3) were measured by Western blot and qRT-PCR, respectively. Meanwhile, the expression levels of autophagy-related genes (lc3, atg14, mtor) and proteins (LC3, Atg12) were significantly decreased in the glyphosate treatment group compared with the control group. Collectively, our results indicated that glyphosate exposure could interfere with mouse oocyte maturation by generating oxidative stress and early apoptosis.
Collapse
Affiliation(s)
- Jing-Wen Zhang
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Ding-Qi Xu
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xi-Zeng Feng
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
46
|
Daam MA, Moutinho MF, Espíndola ELG, Schiesari L. Lethal toxicity of the herbicides acetochlor, ametryn, glyphosate and metribuzin to tropical frog larvae. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:707-715. [PMID: 31250286 DOI: 10.1007/s10646-019-02067-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Despite the high amphibian biodiversity and increasing pesticide use in tropical countries, knowledge on the sensitivity of tropical amphibians to pesticides remains limited. The aim of this study was to evaluate the acute toxicity of the active ingredients of four of the main herbicides used in Brazilian sugarcane production to tadpoles of two tropical frog species: Physalaemus cuvieri and Hypsiboas pardalis. The calculated 96 h-LC50 (median lethal concentration; in mg a.s./L) values for P. cuvieri and H. pardalis were 4.4 and 7.8 (acetochlor); 15 and <10 (ametryn); 115 and 106 (glyphosate); and 85 and 68 (metribuzin), respectively. These toxicity values demonstrated little interspecies variation and the toxicity of the herbicides appeared to be at least partly related with the respective octanol-water coefficient. Published acute toxicity data of fish and amphibians for herbicides were also compiled from the US-EPA ECOTOX database. These data indicated little difference in herbicide sensitivity between tropical amphibians and both non-tropical amphibians and fish. These findings indicate that temperate (fish and amphibian) herbicide toxicity data are also protective for tropical amphibians. Constraints in such extrapolations and indications for future research are discussed.
Collapse
Affiliation(s)
- Michiel A Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Mariana F Moutinho
- Programa de Pós-Graduação em Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Evaldo L G Espíndola
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13.560-970, Brazil
| | - Luis Schiesari
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
47
|
Verderame M, Scudiero R. How Glyphosate Impairs Liver Condition in the Field Lizard Podarcis siculus (Rafinesque-Schmaltz, 1810): Histological and Molecular Evidence. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4746283. [PMID: 31218226 PMCID: PMC6536989 DOI: 10.1155/2019/4746283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022]
Abstract
The potential toxicity of glyphosate, a widely used broad-spectrum herbicide, is currently a great matter of debate. As vertebrate insectivores, lizards protect plants from herbivorous insects increasing plant biomass via the trophic cascade and represent an important link between invertebrates and higher predators. A negative effect of glyphosate on lizards' survival could have major impacts at the ecological levels. In this study, we investigated the effects of the exposure to low doses of glyphosate on the liver of the wall lizard Podarcis siculus, a suitable bioindicator of soil pollution. Two different doses of pure glyphosate (0.05 and 0.5 μg/kg body weight) were orally administered every other day for 3 weeks to sexually mature males and females. The results demonstrated that both doses, despite being very low, are toxic for the liver that showed clear signs of suffering, regardless of sex. The histological analysis provided a scenario of severe hepatic condition, which degenerated until the appearance of fibrotic formations. The morphological observations were consistent with a loss of liver physiological functions. Immunocytochemical investigations allowed us to detect an involvement of antioxidant/cytoprotective proteins, such as superoxide dismutase 1 (Cu/Zn SOD, known as SOD1), glutathione peroxidase 1 (GPx1), metallothionein (MT), and tumor suppressor protein 53, (p53) suggesting that the liver was trying to react against stress signals and damage induced by glyphosate. Finally, in situ hybridization and Real-Time PCR analysis showed the upregulation of estrogen receptor α and vitellogenin gene expression, thus demonstrating the xenoestrogenic action of glyphosate. The imbalance of the hormonal homeostasis could threaten the lizards' reproductive fitness and survival, altering the trophic cascade.
Collapse
Affiliation(s)
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Cintia, 80126 Napoli, Italy
| |
Collapse
|
48
|
Lanzarin GAB, Félix LM, Santos D, Venâncio CAS, Monteiro SM. Dose-dependent effects of a glyphosate commercial formulation - Roundup ® UltraMax - on the early zebrafish embryogenesis. CHEMOSPHERE 2019; 223:514-522. [PMID: 30784758 DOI: 10.1016/j.chemosphere.2019.02.071] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
The use of herbicides with glyphosate as an active ingredient, the so-called glyphosate-based herbicides (GBH), has increased dramatically in recent years currently being the most widely used in the world. Therefore, glyphosate residues have been detected in water and soils near the application sites. Recent studies indicate that GBH may cause adverse effects on vertebrates although these have been attributed to the presence of adjuvants in the commercial formulations rather than to the sole compound. Accordingly, the objective of this work was to investigate the lethal and sub-lethal developmental effects, neurotoxic potential and oxidative stress responses of zebrafish embryos to Roundup® Ultramax (RU) exposure. Embryos were exposed during 72 h to 0, 2, 5, 8.5 μg a.i. mL-1 of RU. Increased mortality was observed in embryos exposed to concentrations above 8.5 μg a.i. mL-1 as well as increased number of malformations. Decreased heart rate and hatchability were also observed. By contrast, exposure to concentrations that do not evoke teratogenic outcomes induced a dose-dependent decrease of heart rate although not inducing significant developmental changes. However, histological changes were not observed in the larvae exposed to these concentrations. Moreover, the generation of reactive oxygen species, the antioxidant enzymes activities (SOD and CAT), the GST biotransformation activity, the glutathione levels (GSH and GSSG), the oxidative damage (MDA) and the acetylcholinesterase and lactate dehydrogenase were similar among groups following exposure. Overall, available evidence suggests a dose-dependent toxicological effect of this formulation at concentrations that are not routinely detected in the environment. However, additional studies should be performed to better understand the underlying molecular mechanisms in favor of this formulation.
Collapse
Affiliation(s)
- Germano A B Lanzarin
- Department of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Dércia Santos
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Carlos A S Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Sandra M Monteiro
- Department of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| |
Collapse
|
49
|
Slaby S, Marin M, Marchand G, Lemiere S. Exposures to chemical contaminants: What can we learn from reproduction and development endpoints in the amphibian toxicology literature? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:478-495. [PMID: 30831345 DOI: 10.1016/j.envpol.2019.02.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/09/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Environmental contamination is one of the major factors or cofactors affecting amphibian populations. Since 2000, the number of studies conducted in laboratory conditions to understand impacts of chemical exposures increased. They aimed to characterize biological effects on amphibians. This review proposes an overview of biological responses reported after exposures to metals, phytopharmaceuticals or emerging organic contaminants and focuses on endpoints relating to reproduction and development. Due to amphibian peculiar features, these periods of their life cycle are especially critical to pollutant exposures. Despite the large range of tested compounds, the same model species are often used as biological models and morphological alterations are the most studied observations. From the results, the laboratory-to-field extrapolation remained uneasy and exposure designs have to be more elaborated to be closer to environmental conditions. Few studies proposed such experimental approaches. Lastly, gametes, embryos and larvae constitute key stages of amphibian life cycle that can be harmed by exposures to freshwater pollutants. Specific efforts have to be intensified on the earliest stages and notably germ cells.
Collapse
Affiliation(s)
- Sylvain Slaby
- Univ. Lille, CNRS, INRA, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France; Univ. Lille, EA 4515 - LGCgE - Laboratoire Génie Civil et Géo-Environnement, Cité Scientifique, SN3, F-59655, Villeneuve D'Ascq, France
| | - Matthieu Marin
- Univ. Lille, CNRS, INRA, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Guillaume Marchand
- Univ. Lille, CNRS, INRA, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Sébastien Lemiere
- Univ. Lille, EA 4515 - LGCgE - Laboratoire Génie Civil et Géo-Environnement, Cité Scientifique, SN3, F-59655, Villeneuve D'Ascq, France.
| |
Collapse
|
50
|
Pérez-Iglesias JM, Franco-Belussi L, Natale GS, de Oliveira C. Biomarkers at different levels of organisation after atrazine formulation (SIPTRAN 500SC ®) exposure in Rhinella schineideri (Anura: Bufonidae) Neotropical tadpoles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:733-746. [PMID: 30384079 DOI: 10.1016/j.envpol.2018.10.073] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Brazil is an important consumer of herbicides. In sugarcane cultivation-the country's most extensive agricultural crop-atrazine-based formulations are the principal form of weed control. Several studies have investigated adverse effects of atrazine or their formulations on anurans, but not specifically on Brazilian species. Our aim was therefore to investigate the lethal and sublethal effects of an atrazine-based herbicide in Rhinella schneideri tadpoles and, in particular, effects on the pigmentation system as a new endpoint in ecotoxicological studies. Rhinella schneideri tadpoles at the Gosner-30 stage were exposed to the atrazine-based herbicide formulation, SIPTRAN 500 SC®, in acute bioassays at concentrations of 1.5-25 mg/L. The lethal and sublethal effects induced were analysed at different ecotoxicological levels: organismal level (alterations in behaviour, growth, development, and body mass; morphologic abnormalities), histological level (liver histopathology), the pigmentation system (melanomacrophages and dermal-melanophores), and cellular level (erythrocyte micronucleus formation and other nuclear-abnormalities). This herbicide induced sublethal effects at the organismal level with alterations in swimming and growth and morphologic abnormalities. These results demonstrated that, in anuran tadpoles, the atrazine-based agrochemical increased the frequency of micronucleus formation and other nuclear-abnormalities in erythrocytes and caused liver damage. In addition, we demonstrated for the first time effects of an atrazine-based formulation on the pigmentation system of anuran tadpoles, specifically an increase in the number of melanomacrophages and dermal melanophores. This study is the first to use several widely differing endpoints at different ecotoxicological levels in a comprehensive manner for assessment of the effects of environmental stressors in order to determine the health status of Neotropical anuran species. In doing so, this study establishes a foundation for future ecological assessments.
Collapse
Affiliation(s)
- Juan Manuel Pérez-Iglesias
- Instituto de Química de San Luis, INQUISAL (UNSL-CONICET), Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700 San Luis, Argentina; UNESP - Universidade Estadual Paulista, Departamento de Biologia, São José do Rio Preto, São Paulo, Brazil
| | - Lilian Franco-Belussi
- UNESP - Universidade Estadual Paulista, Departamento de Biologia, São José do Rio Preto, São Paulo, Brazil; Instituto de Biociências (InBio), Universidade Federal de Mato Grosso do Sul, UFMS, Brazil.
| | - Guillermo Sebastián Natale
- Centro de Investigaciones del Medio Ambiente, CIM (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 Buenos Aires, Argentina
| | - Classius de Oliveira
- UNESP - Universidade Estadual Paulista, Departamento de Biologia, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|