1
|
Verbeeck Mendez S, Do Orozco IL, Gavilanez-Chavez GE, Nava-Zavala AH, Zavala-Cerna MG. Challenges and Opportunities for Post-COVID Pulmonary Disease: A Focused Review of Immunomodulation. Int J Mol Sci 2025; 26:3850. [PMID: 40332501 PMCID: PMC12027742 DOI: 10.3390/ijms26083850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
The resolution of the recent COVID-19 pandemic still requires attention, since the consequences of having suffered the infection, even in mild cases, are associated with several acute and chronic pathological conditions referred to as post-COVID syndrome (PCS). PCS often manifests with pulmonary disease and, in up to 9% of cases, a more serious complication known as post-COVID-19 pulmonary fibrosis (PC19-PF), which has a similar clinical course as idiopathic pulmonary fibrosis (IPF). Generating knowledge to provide robust evidence about the clinical benefits of different therapeutic strategies to treat the pulmonary effects of PCS can provide new insights to amplify therapeutic options for these patients. We present evidence found after a scoping review, following extended PRIMSA guidelines, for the use of immunomodulators in pulmonary PCS. We start with a brief description of the immunomodulatory properties of the relevant drugs, their clinically proven efficacy for viral infections and chronic inflammatory conditions, and their use during the COVID-19 pandemic. We emphasize the need for well-designed clinical trials to improve our understanding the physiopathology of pulmonary PCS and PC19-PF and also to determine the efficacy and safety of candidate treatments.
Collapse
Affiliation(s)
| | - Isabella L. Do Orozco
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Guadalupe E. Gavilanez-Chavez
- Hospital General Regional 46, Órgano de Operación Administrativa Desconcentrada Jalisco, Instituto Mexicano del Seguro Social, Guadalajara 44329, Mexico;
| | - Arnulfo Hernán Nava-Zavala
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Centro Médico Nacional de Occidente Órgano de Operación Administrativa Desconcentrada Jalisco, Instituto Mexicano del Seguro Social, Guadalajara 44329, Mexico;
- Programa Internacional de Medicina, Universidad Autónoma de Guadalajara, Guadalajara 45129, Mexico
- Departamento de Inmunología y Reumatología, Hospital General de Occidente, Secretaría de Salud Jalisco, Zapopan 45170, Mexico
| | - Maria G. Zavala-Cerna
- Facultad de Medicina, Universidad Autónoma de Guadalajara, Guadalajara 45129, Mexico;
| |
Collapse
|
2
|
Adalja AA, Inglesby TV. Immunomodulator Stockpiling as a Means of Broad Defense From Biological Threats. Crit Care Explor 2025; 7:e1244. [PMID: 40126911 PMCID: PMC11936613 DOI: 10.1097/cce.0000000000001244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Affiliation(s)
- Amesh A. Adalja
- Both authors: Johns Hopkins Center for Health Security, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Thomas V. Inglesby
- Both authors: Johns Hopkins Center for Health Security, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
3
|
Bonomini A, Mercorelli B, Loregian A. Antiviral strategies against influenza virus: an update on approved and innovative therapeutic approaches. Cell Mol Life Sci 2025; 82:75. [PMID: 39945883 PMCID: PMC11825441 DOI: 10.1007/s00018-025-05611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/27/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025]
Abstract
Influenza viruses still represent a great concern for Public Health by causing yearly seasonal epidemics and occasionally worldwide pandemics. Moreover, spillover events at the animal-human interface are becoming more frequent nowadays, also involving animal species not previously found as reservoirs. To restrict the effects of influenza virus epidemics, especially in at-risk population, and to prepare a drug arsenal for possible future pandemics, researchers worldwide have been working on the development of antiviral strategies since the 80's of the last century. One of the main obstacles is the considerable genomic variability of influenza viruses, which constantly poses the issues of drug-resistance emergence and immune evasion. This review summarizes the approved therapeutics for clinical management of influenza, promising new anti-flu compounds and monoclonal antibodies currently undergoing clinical evaluation, and molecules with efficacy against influenza virus in preclinical studies. Moreover, we discuss some innovative anti-influenza therapeutic approaches such as combination therapies and targeted protein degradation. Given the limited number of drugs approved for influenza treatment, there is a still strong need for novel potent anti-influenza drugs endowed with a high barrier to drug resistance and broad-spectrum activity against influenza viruses of animal origin that may be responsible of future large outbreaks and pandemics.
Collapse
Affiliation(s)
- Anna Bonomini
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy.
- Microbiology and Virology Unit, Padua University Hospital, Padua, Italy.
| |
Collapse
|
4
|
Gupta C, Kalafut NC, Clarke D, Choi JJ, Arachchilage KH, Khullar S, Xia Y, Zhou X, Gerstein M, Wang D. Network-based drug repurposing for psychiatric disorders using single-cell genomics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.01.24318008. [PMID: 39677458 PMCID: PMC11643187 DOI: 10.1101/2024.12.01.24318008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Neuropsychiatric disorders lack effective treatments due to a limited understanding of underlying cellular and molecular mechanisms. To address this, we integrated population-scale single-cell genomics data and analyzed cell-type-level gene regulatory networks across schizophrenia, bipolar disorder, and autism (23 cell classes/subclasses). Our analysis revealed potential druggable transcription factors co-regulating known risk genes that converge into cell-type-specific co-regulated modules. We applied graph neural networks on those modules to prioritize novel risk genes and leveraged them in a network-based drug repurposing framework to identify 220 drug molecules with the potential for targeting specific cell types. We found evidence for 37 of these drugs in reversing disorder-associated transcriptional phenotypes. Additionally, we discovered 335 drug-associated cell-type eQTLs, revealing genetic variation's influence on drug target expression at the cell-type level. Our results provide a single-cell network medicine resource that provides mechanistic insights for advancing treatment options for neuropsychiatric disorders.
Collapse
|
5
|
Sun Y, Liu K. Mechanistic Insights into Influenza A Virus-Induced Cell Death and Emerging Treatment Strategies. Vet Sci 2024; 11:555. [PMID: 39591329 PMCID: PMC11598850 DOI: 10.3390/vetsci11110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Influenza A virus (IAV) infection initiates a complex interplay of cell death modalities, including apoptosis, necroptosis, pyroptosis, and their integration, known as PANoptosis, which significantly impacts host immune responses and tissue integrity. These pathways are intricately regulated by viral proteins and host factors, contributing to both viral clearance and pathogenesis-related tissue damage. This review comprehensively explores the molecular mechanisms underlying these cell death processes in influenza infection. We highlight the roles of key regulatory proteins, such as ZBP1 (Z-DNA binding protein 1) and RIPK3 (receptor-interacting protein kinase 3), in orchestrating these responses, emphasizing the dual roles of cell death in both antiviral defense and tissue injury. Furthermore, we discuss emerging therapeutic strategies targeting these pathways, aiming to enhance antiviral efficacy while minimizing collateral tissue damage. Future research should focus on targeted approaches to modulate cell death mechanisms, aiming to reduce tissue damage and improve clinical outcomes for patients with severe influenza.
Collapse
Affiliation(s)
- Yuling Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Kaituo Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Raza MA, Ashraf MA. Drug resistance and possible therapeutic options against influenza A virus infection over past years. Arch Microbiol 2024; 206:458. [PMID: 39499323 DOI: 10.1007/s00203-024-04181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024]
Abstract
Influenza A virus infection, commonly known as the flu, has persisted in the community for centuries. Although we have yearly vaccinations to prevent seasonal flu, there remains a dire need for antiviral drugs to treat active infections. The constantly evolving genome of the influenza A virus limits the number of effective antiviral therapeutic options. Over time, antiviral drugs become inefficient due to the development of resistance, as seen with adamantanes, which are now largely ineffective against most circulating strains of the virus. Neuraminidase inhibitors have long been the drug of choice, but due to selection pressure, strains are becoming resistant to this class of drugs. Baloxavir marboxil, a drug with a novel mode of action, can be used against strains resistant to other classes of drugs but is still not available in many countries. Deep research into nanoparticles has shown they are effective as antiviral drugs, opening a new avenue of research to use them as antiviral agents with novel modes of action. As this deadly virus, which has killed millions of people in the past, continues to develop resistance, there is an urgent need for new therapeutic agents with novel modes of action to halt active infections in patients. This review article covers the available therapeutic antiviral drug options with different modes of action, their effectiveness, and resistance to various strains of influenza A virus.
Collapse
Affiliation(s)
- Muhammad Asif Raza
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Muhammad Awais Ashraf
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Chakraborty S, Chauhan A. Fighting the flu: a brief review on anti-influenza agents. Biotechnol Genet Eng Rev 2024; 40:858-909. [PMID: 36946567 DOI: 10.1080/02648725.2023.2191081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
The influenza virus causes one of the most prevalent and lethal infectious viral diseases of the respiratory system; the disease progression varies from acute self-limiting mild fever to disease chronicity and death. Although both the preventive and treatment measures have been vital in protecting humans against seasonal epidemics or sporadic pandemics, there are several challenges to curb the influenza virus such as limited or poor cross-protection against circulating virus strains, moderate protection in immune-compromised patients, and rapid emergence of resistance. Currently, there are four US-FDA-approved anti-influenza drugs to treat flu infection, viz. Rapivab, Relenza, Tamiflu, and Xofluza. These drugs are classified based on their mode of action against the viral replication cycle with the first three being Neuraminidase inhibitors, and the fourth one targeting the viral polymerase. The emergence of the drug-resistant strains of influenza, however, underscores the need for continuous innovation towards development and discovery of new anti-influenza agents with enhanced antiviral effects, greater safety, and improved tolerability. Here in this review, we highlighted commercially available antiviral agents besides those that are at different stages of development including under clinical trials, with a brief account of their antiviral mechanisms.
Collapse
Affiliation(s)
| | - Ashwini Chauhan
- Department of Microbiology, Tripura University, Agartala, India
| |
Collapse
|
8
|
Li Y, Huo S, Yin Z, Tian Z, Huang F, Liu P, Liu Y, Yu F. Retracted and republished from: "The current state of research on influenza antiviral drug development: drugs in clinical trial and licensed drugs". mBio 2024; 15:e0017524. [PMID: 38551343 PMCID: PMC11077966 DOI: 10.1128/mbio.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Abstract
Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the Food and Drug Administration are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. These recommended antivirals are currently effective for major subtypes of IVs as the compounds target conserved domains in neuraminidase or polymerase acidic (PA) protein. However, this trend may gradually change due to the selection of antiviral drugs and the natural evolution of IVs. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.
Collapse
Affiliation(s)
- Yanbai Li
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhe Yin
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zuguang Tian
- Department of High-Tech Development, Baoding City Science and Technology Bureau, Baoding, China
| | - Fang Huang
- Epidemic Prevention Laboratory, Tongzhou District Center For Animal Disease Control and Prevention, Beijing, China
| | - Peng Liu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yue Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
9
|
Cavallazzi R, Ramirez JA. Influenza and Viral Pneumonia. Infect Dis Clin North Am 2024; 38:183-212. [PMID: 38280763 DOI: 10.1016/j.idc.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Influenza and other respiratory viruses are commonly identified in patients with community-acquired pneumonia, hospital-acquired pneumonia, and in immunocompromised patients with pneumonia. Clinically, it is difficult to differentiate viral from bacterial pneumonia. Similarly, the radiological findings of viral infection are in general nonspecific. The advent of polymerase chain reaction testing has enormously facilitated the identification of respiratory viruses, which has important implications for infection control measures and treatment. Currently, treatment options for patients with viral infection are limited but there is ongoing research on the development and clinical testing of new treatment regimens and strategies.
Collapse
Affiliation(s)
- Rodrigo Cavallazzi
- Division of Pulmonary, Critical Care, and Sleep Disorders, University of Louisville, Louisville, KY, USA.
| | - Julio A Ramirez
- Norton Infectious Diseases Institute, Norton Healthcare, Louisville, KY, USA
| |
Collapse
|
10
|
Ishiguro T, Kobayashi Y, Shimizu Y, Uemura Y, Toriba R, Takata N, Ueda M, Shimizu Y. Prognostic factors of virus-associated pneumonia other than COVID-19 in adults. Respir Med 2024; 221:107497. [PMID: 38097142 DOI: 10.1016/j.rmed.2023.107497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
OBJECTIVE To determine prognostic factors of virus-associated pneumonia other than coronavirus disease 2019. METHODS We retrospectively studied patients suffering from virus-associated community-acquired pneumonia, and who were admitted to Saitama Cardiovascular and Respiratory Center from 2002 to 2020. Prognostic factors were analyzed by univariable and multivariable regression analysis of patient demographics, laboratory data, chest imaging, severity on admission, and initial treatment. PATIENTS HIV-positive patients, those with non-resected lung cancer or receiving chemotherapy, and those with COVID-19 were excluded. Included were 363 patients diagnosed by nucleic acid amplification method, paired sera, and rapid diagnostic tests. RESULTS A CURB-65 score of ≥3 was significant by univariable analysis for 60-day mortality but was nonsignificant by multivariable analysis. The poor prognostic factors that were significant by multivariable analysis (p < 0.05) included immunosuppressive state due to systemic corticosteroid or immunosuppressant administration, acute kidney injury on admission, and corticosteroid administration initiated within 5 days or 5 days to 2 weeks from onset. CONCLUSION A CURB-65 score of ≥3, which is considered to indicate severe pneumonia, was of limited value for predicting mortality of virus-associated pneumonia. We showed patients' underlying diseases and complications to be independent factors of poor prognosis for 60-day mortality. Timing of the initiation of corticosteroid administration remains to be elucidated.
Collapse
Affiliation(s)
- Takashi Ishiguro
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Japan.
| | - Yoichi Kobayashi
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Japan
| | - Yosuke Shimizu
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yukari Uemura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Riho Toriba
- Pathology, Saitama Cardiovascular and Respiratory Center, Japan
| | - Naomi Takata
- Department of Radiology, Saitama Cardiovascular and Respiratory Center, Saitama, Japan
| | - Miyuki Ueda
- Department of Radiology, Saitama Cardiovascular and Respiratory Center, Saitama, Japan
| | | |
Collapse
|
11
|
Li Y, Huo S, Yin Z, Tian Z, Huang F, Liu P, Liu Y, Yu F. The current state of research on influenza antiviral drug development: drugs in clinical trial and licensed drugs. mBio 2023; 14:e0127323. [PMID: 37610204 PMCID: PMC10653855 DOI: 10.1128/mbio.01273-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the FDA are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. Notably, owing to the high variability of IVs, no drug exists that can effectively treat all types and subtypes of IVs. Moreover, the current trend of drug resistance is likely to continue as the viral genome is constantly mutating. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.
Collapse
Affiliation(s)
- Yanbai Li
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhe Yin
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zuguang Tian
- Baoding City Science and Technology Bureau, Baoding, China
| | - Fang Huang
- Tongzhou District Center For Animal Disease Control and Prevention, Beijing, China
| | - Peng Liu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yue Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
12
|
Tokito T, Kido T, Muramatsu K, Tokutsu K, Okuno D, Yura H, Takemoto S, Ishimoto H, Takazono T, Sakamoto N, Obase Y, Ishimatsu Y, Fujino Y, Yatera K, Fushimi K, Matsuda S, Mukae H. Impact of Administering Intravenous Azithromycin within 7 Days of Hospitalization for Influenza Virus Pneumonia: A Propensity Score Analysis Using a Nationwide Administrative Database. Viruses 2023; 15:1142. [PMID: 37243228 PMCID: PMC10222596 DOI: 10.3390/v15051142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The potential antimicrobial and anti-inflammatory effectiveness of azithromycin against severe influenza is yet unclear. We retrospectively investigated the effect of intravenous azithromycin administration within 7 days of hospitalization in patients with influenza virus pneumonia and respiratory failure. Using Japan's national administrative database, we enrolled and classified 5066 patients with influenza virus pneumonia into severe, moderate, and mild groups based on their respiratory status within 7 days of hospitalization. The primary endpoints were total, 30-day, and 90-day mortality rates. The secondary endpoints were the duration of intensive-care unit management, invasive mechanical ventilation, and hospital stay. The inverse probability of the treatment weighting method with estimated propensity scores was used to minimize data collection bias. Use of intravenous azithromycin was proportional to the severity of respiratory failure (mild: 1.0%, moderate: 3.1%, severe: 14.8%). In the severe group, the 30-day mortality rate was significantly lower with azithromycin (26.49% vs. 36.65%, p = 0.038). In the moderate group, the mean duration of invasive mechanical ventilation after day 8 was shorter with azithromycin; there were no significant differences in other endpoints between the severe and moderate groups. These results suggest that intravenous azithromycin has favorable effects in patients with influenza virus pneumonia using mechanical ventilation or oxygen.
Collapse
Affiliation(s)
- Takatomo Tokito
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Takashi Kido
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Keiji Muramatsu
- Department of Preventive Medicine and Community Health, University of Occupational and Environmental Health, Japan, Kitakyushu 807-0804, Japan
| | - Kei Tokutsu
- Department of Preventive Medicine and Community Health, University of Occupational and Environmental Health, Japan, Kitakyushu 807-0804, Japan
| | - Daisuke Okuno
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Hirokazu Yura
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Shinnosuke Takemoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Hiroshi Ishimoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Takahiro Takazono
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Noriho Sakamoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Yasushi Obase
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Yuji Ishimatsu
- Department of Nursing, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Yoshihisa Fujino
- Department of Environmental Epidemiology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Japan, Kitakyushu 807-0804, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu 807-0804, Japan
| | - Kiyohide Fushimi
- Department of Health Policy and Informatics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan, Tokyo 113-8519, Japan
| | - Shinya Matsuda
- Department of Preventive Medicine and Community Health, University of Occupational and Environmental Health, Japan, Kitakyushu 807-0804, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| |
Collapse
|
13
|
Batool S, Chokkakula S, Song MS. Influenza Treatment: Limitations of Antiviral Therapy and Advantages of Drug Combination Therapy. Microorganisms 2023; 11:183. [PMID: 36677475 PMCID: PMC9865513 DOI: 10.3390/microorganisms11010183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Influenza infection is serious and debilitating for humans and animals. The influenza virus undergoes incessant mutation, segment recombination, and genome reassortment. As a result, new epidemics and pandemics are expected to emerge, making the elimination challenging of the disease. Antiviral therapy has been used for the treatment of influenza since the development of amantadine in the 1960s; however, its use is hampered by the emergence of novel strains and the development of drug resistance. Thus, combinational therapy with two or more antivirals or immunomodulators with different modes of action is the optimal strategy for the effective treatment of influenza infection. In this review, we describe current options for combination therapy, their performance, and constraints imposed by resistance, calling attention to the advantages of combination therapy against severe influenza infections. We also discuss the challenges of influenza therapy and the limitations of approved antiviral drugs.
Collapse
Affiliation(s)
| | | | - Min-Suk Song
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
14
|
Amponsah SK, Tagoe B, Adams I, Bugyei KA. Efficacy and safety profile of corticosteroids and non-steroidal anti-inflammatory drugs in COVID-19 management: A narrative review. Front Pharmacol 2022; 13:1063246. [PMID: 36532785 PMCID: PMC9751434 DOI: 10.3389/fphar.2022.1063246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/17/2022] [Indexed: 12/19/2024] Open
Abstract
Due to the fact that coronavirus disease 2019 (COVID-19) is still prevalent, and current reports show that some parts of the world have seen increase in incidence, it is relevant that health professionals and scientists know about recent or novel trends, especially drug treatments. Additionally, the safety profiles of these drug treatments need to be documented and shared with the public. Some studies have demonstrated the clinical benefits of non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids in COVID-19 treatment. On the contrary, others have also reported that NSAIDs and corticosteroids may worsen symptoms associated with COVID-19. While some researchers have suggested that corticosteroids may be helpful if used in the early stages of COVID-19, there are still some conflicting findings regarding the use of corticosteroids in certain viral infections. Our review suggests that methylprednisolone, dexamethasone, and ibuprofen have therapeutic potential in reducing mortality due to COVID-19 among hospitalized patients. This review also highlights the fact that the use of NSAIDs is not associated with adverse outcomes of COVID-19. In reality, evidence suggests that NSAIDs do not increase the risk of COVID-19 infections. Also, the literature reviewed suggests that corticosteroid treatment in COVID-19 was linked with a decrease in all-cause mortality and disease progression, without increase in adverse events when compared to no corticosteroid treatment.
Collapse
Affiliation(s)
- Seth Kwabena Amponsah
- Department of Medical Pharmacology, University of Ghana Medical School, Accra, Ghana
| | - Benjamin Tagoe
- Fulfillment Operations and Academy, Zipline Ghana, Accra, Ghana
| | - Ismaila Adams
- Department of Medical Pharmacology, University of Ghana Medical School, Accra, Ghana
| | - Kwasi Agyei Bugyei
- Department of Medical Pharmacology, University of Ghana Medical School, Accra, Ghana
| |
Collapse
|
15
|
Abstract
Annual seasonal influenza epidemics of variable severity caused by influenza A and B virus infections result in substantial disease burden worldwide. Seasonal influenza virus circulation declined markedly in 2020-21 after SARS-CoV-2 emerged but increased in 2021-22. Most people with influenza have abrupt onset of respiratory symptoms and myalgia with or without fever and recover within 1 week, but some can experience severe or fatal complications. Prevention is primarily by annual influenza vaccination, with efforts underway to develop new vaccines with improved effectiveness. Sporadic zoonotic infections with novel influenza A viruses of avian or swine origin continue to pose pandemic threats. In this Seminar, we discuss updates of key influenza issues for clinicians, in particular epidemiology, virology, and pathogenesis, diagnostic testing including multiplex assays that detect influenza viruses and SARS-CoV-2, complications, antiviral treatment, influenza vaccines, infection prevention, and non-pharmaceutical interventions, and highlight gaps in clinical management and priorities for clinical research.
Collapse
Affiliation(s)
- Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - David S Hui
- Division of Respiratory Medicine and Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Maria Zambon
- Virology Reference Department, UK Health Security Agency, London, UK
| | - David E Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Arnold S Monto
- Center for Respiratory Research and Response, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Abstract
Antiviral drugs are an important measure of control for influenza in the population, particularly for those that are severely ill or hospitalised. The neuraminidase inhibitor (NAI) class of drugs, including oseltamivir, have been the standard of care (SOC) for severe influenza illness for many years. The approval of drugs with novel mechanisms of action, such as baloxavir marboxil, is important and broadens potential treatment options for combination therapy. The use of antiviral treatments in combination for influenza is of interest; one potential benefit of this treatment strategy is that the combination of drugs with different mechanisms of action may lower the selection of resistance due to treatment. In addition, combination therapy may become an important treatment option to improve patient outcomes in those with severe illness due to influenza or those that are immunocompromised. Clinical trials increasingly evaluate drug combinations in a range of patient cohorts. Here, we summarise preclinical and clinical advances in combination therapy for the treatment of influenza with reference to immunocompromised animal models and clinical data in hospitalised patient cohorts where available. There is a wide array of drug categories in development that have also been tested in combination. Therefore, in this review, we have included polymerase inhibitors, monoclonal antibodies (mAbs), host-targeted therapies, and adjunctive therapies. Combination treatment regimens should be carefully evaluated to determine whether they provide an added benefit relative to effectiveness of monotherapy and in a variety of patient cohorts, particularly, if there is a greater chance of an adverse outcome. Safe and effective treatment of influenza is important not only for seasonal influenza infection, but also if a pandemic strain was to emerge.
Collapse
|
17
|
Sridhar S, To KKW. Severe influenza: is there a role for antiviral combinations? THE LANCET. INFECTIOUS DISEASES 2022; 22:574-576. [PMID: 35085509 DOI: 10.1016/s1473-3099(21)00484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Siddharth Sridhar
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China.
| |
Collapse
|
18
|
Azh N, Barzkar F, Motamed‐Gorji N, Pourvali‐Talatappeh P, Moradi Y, Vesal Azad R, Ranjbar M, Baradaran H. Nonsteroidal anti-inflammatory drugs in acute viral respiratory tract infections: An updated systematic review. Pharmacol Res Perspect 2022; 10:e00925. [PMID: 35218614 PMCID: PMC8881905 DOI: 10.1002/prp2.925] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/26/2021] [Accepted: 01/17/2022] [Indexed: 01/08/2023] Open
Abstract
In this systematic review, we aimed to assess the efficacy and safety of nonsteroidal anti-inflammatory drugs (NSAIDs) in treating respiratory tract infections in adults and children. PubMed, Scopus, Web of Science, Cochrane, and Embase databases were searched. A total of 34 randomized clinical trials were included in this systematic review. We assessed the risk of bias of all included studies using the Cochrane tool for risk of bias assessment. The evidence on ibuprofen, naproxen, aspirin, diclofenac, and other NSAIDs were rated for degree of uncertainty for each of the study outcomes and summarized using the grading of recommendations assessment, development, and evaluation (GRADE) approach. Our findings suggest that high-quality evidence supports the use of NSAIDs to reduce fever in both adults and children. However, the evidence was uncertain for the use of NSAIDs to reduce cough. Most studies showed that NSAIDs significantly relieved sore throat. The evidence for mortality and oxygenation is limited. Regarding the adverse events, gastrointestinal discomfort was more frequently reported in children. For adults, our overall certainty in effect estimates was low and the increase in gastrointestinal adverse events was not clinically significant. In conclusion, NSAIDs seem to be beneficial in the outpatient management of fever and sore throat in adults and children. Although the evidence does not support their use to decrease mortality nor improve oxygenation in inpatient settings, the use of NSAIDs did not increase the rate of death or the need for ventilation in patients with respiratory tract infections. Further studies with a robust methodology and larger sample sizes are recommended.
Collapse
Affiliation(s)
- Nima Azh
- School of MedicineIran University of Medical SciencesTehranIran
| | - Farzaneh Barzkar
- Center for Educational Research in Medical SciencesIran University of Medical SciencesTehranIran
| | | | | | - Yousef Moradi
- Social Determinants of Health Research CenterResearch Institute for Health DevelopmentKurdistan University of Medical SciencesSanandajIran
| | - Roya Vesal Azad
- School of Public HealthIran University of Medical SciencesTehranIran
| | - Mitra Ranjbar
- Department of Infectious DiseasesSchool of MedicineIran University of Medical ScienceTehranIran
| | - Hamid Reza Baradaran
- Ageing Clinical and Experimental Research TeamInstitute of Applied Health SciencesSchool of MedicineMedical SciencesNutrition University of AberdeenAberdeenUK
- Department of EpidemiologySchool of Public HealthIran University of Medical SciencesTehranIran
| |
Collapse
|
19
|
Sauer A, Peukert K, Putensen C, Bode C. Antibiotics as immunomodulators: a potential pharmacologic approach for ARDS treatment. Eur Respir Rev 2021; 30:210093. [PMID: 34615700 PMCID: PMC9489085 DOI: 10.1183/16000617.0093-2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/02/2021] [Indexed: 11/05/2022] Open
Abstract
First described in the mid-1960s, acute respiratory distress syndrome (ARDS) is a life-threatening form of respiratory failure with an overall mortality rate of approximately 40%. Despite significant advances in the understanding and treatment of ARDS, no substantive pharmacologic therapy has proven to be beneficial, and current management continues to be primarily supportive. Beyond their antibacterial activity, several antibiotics such as macrolides and tetracyclines exert pleiotropic immunomodulatory effects that might be able to rectify the dysregulated inflammatory response present in patients with ARDS. This review aims to provide an overview of preclinical and clinical studies that describe the immunomodulatory effects of antibiotics in ARDS. Moreover, the underlying mechanisms of their immunomodulatory properties will be discussed. Further studies are necessary to investigate their full therapeutic potential and to identify ARDS phenotypes which are most likely to benefit from their immunomodulatory effects.
Collapse
Affiliation(s)
- Andrea Sauer
- Dept of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Konrad Peukert
- Dept of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Christian Putensen
- Dept of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Christian Bode
- Dept of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
20
|
Yamamoto K, Hosogaya N, Sakamoto N, Yoshida H, Ishii H, Yatera K, Izumikawa K, Yanagihara K, Mukae H. Efficacy of clarithromycin in patients with mild COVID-19 pneumonia not receiving oxygen administration: protocol for an exploratory, multicentre, open-label, randomised controlled trial (CAME COVID-19 study). BMJ Open 2021; 11:e053325. [PMID: 34548368 PMCID: PMC8458001 DOI: 10.1136/bmjopen-2021-053325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The COVID-19 pandemic has emerged worldwide. Although several medications have been approved for treating moderate-to-severe COVID-19, very few treatment strategy has been established for patients with mild COVID-19 who do not require oxygen administration. Clarithromycin is a macrolide antimicrobial agent that has been widely used for bacterial respiratory infectious diseases. Clarithromycin also acts an immunomodulating drug and suppresses cytokine storms in viral respiratory diseases, including influenza. In this study, we aim to evaluate the efficacy of clarithromycin in patients with mild COVID-19. METHODS AND ANALYSIS This is an exploratory, multicentre, open-label, randomised controlled trial. This study was initiated in May 2021 and will end in July 2022. Patients with mild COVID-19 pneumonia who do not require oxygen administration will be enrolled and randomly assigned in a 1:1:1 ratio to group A (administration of clarithromycin 800 mg/day), group B (administration of clarithromycin 400 mg/day) or group C (standard treatment without clarithromycin). The planned number of enrolled patients is 60 (20 patients × three groups). The primary endpoint is the number of days required to improve the clinical symptoms as measured by the severity score. Secondary endpoints include days for recovery of the body temperature, proportion of patients with oxygen administration, inflammatory cytokines, viral load, serum immunoglobulins, peripheral blood lymphocytes, blood biomarkers and pneumonia infiltrations. ETHICS AND DISSEMINATION The study protocol was approved by the Clinical Research Review Board of Nagasaki University in accordance with the Clinical Trials Act in Japan. The study will be conducted in accordance with the Declaration of Helsinki, the Clinical Trials Act and other current legal regulations in Japan. Written informed consent will be obtained from all the participants. The results of this study will be reported as journal publications. TRIAL REGISTRATION NUMBER jRCTs071210011.
Collapse
Affiliation(s)
- Kazuko Yamamoto
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- Clinical Research Center, National Organization Hospital Nagasaki Medical Center, Omura, Japan
| | - Naoki Hosogaya
- Clinical Research Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Noriho Sakamoto
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Haruo Yoshida
- Department of Otolaryngology-Head and Neck Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Ishii
- Department of Respiratory Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Koichi Izumikawa
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
21
|
Kapoor M, Panda PK. SARS-CoV-2 Viral Load. JOURNAL OF MEDICAL EVIDENCE 2021; 2:222-227. [DOI: https:/doi.org/10.4103/jme.jme_134_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The SARS-CoV-2 viral load may have importance in assessing COVID-19's pathogenesis, clinical presentation, diagnosis, treatment, prognosis and infectivity. The severity of the disease has been attributed to the dysregulated immune mechanisms, but studies have suggested a correlation between disease severity and viral loads although evidence is not strong enough in justifying the same. Viraemia is shown to be keenly related to the disease progression. Viraemia has an association with increased Interleukin-6 levels and poorer prognosis. In terms of symptomatology, any definite correlations are not yet deduced, with no difference in viral loads among symptomatic and asymptomatic individuals. Reduction of viral load may be used as a marker of treatment success. Cycle threshold (Ct) values correlate with the SARS-CoV-2 viral loads. Ct values have shown a correlation with viral cultures and sub-genomic RNA values, both of which are considered the gold standard for determining infectivity but are expensive. Thereby, Ct value titres form an economical basis for deciding the de-isolation of the patients, which has implications in better resource management. Various limitations of viral load testing, especially of Ct values including human and laboratory factors are also discussed.
Collapse
|
22
|
Hiscox JA, Khoo SH, Stewart JP, Owen A. Shutting the gate before the horse has bolted: is it time for a conversation about SARS-CoV-2 and antiviral drug resistance? J Antimicrob Chemother 2021; 76:2230-2233. [PMID: 34142123 PMCID: PMC8361339 DOI: 10.1093/jac/dkab189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This article provides a brief overview of drug resistance to antiviral therapy as well as known and emergent variability in key SARS-CoV-2 viral sequences. The purpose is to stimulate deliberation about the need to consider drug resistance prior to widespread roll-out of antivirals for SARS-CoV-2. Many existing candidate agents have mechanisms of action involving drug targets likely to be critical for future drug development. Resistance emerged quickly with monotherapies deployed for other pulmonary viruses such as influenza virus, and in HIV mutations in key drug targets compromised efficacy of multiple drugs within a class. The potential for drug resistance in SARS-CoV-2 has not yet been rigorously debated or assessed, and we call for more academic and industry research on this potentially important future threat prior to widespread roll-out of monotherapies for COVID-19 treatment and prevention.
Collapse
Affiliation(s)
- Julian A. Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Infectious Diseases Horizontal Technology Centre (ID HTC), A*STAR, Singapore
| | - Saye H. Khoo
- Department of Pharmacology and Therapeutics, Materials Innovation Factory, University of Liverpool, Liverpool, L7 3NY, UK
| | - James P. Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Materials Innovation Factory, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long acting Therapeutics (CELT), University of Liverpool, Liverpool, L69 3BX, UK
| |
Collapse
|
23
|
Ma R, Ma RQ, Chen B, Wang LY, Fan XY. Compound Cocktail Inhibits Influenza Viral Pneumonia via Phospholipase Cγ1 Phosphorylation-Related Necroptosis and Partial Autophagy in Natural Killer Cells. PLANTA MEDICA 2021; 87:538-549. [PMID: 33545719 DOI: 10.1055/a-1353-6672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Influenza viral infections are prone to global outbreaks and cause pneumonia in affected populations. High morbidity and mortality caused by pneumonia occur during an influenza pandemic. Antivirals or control of inflammation is the primary means of influenza treatment. A compound cocktail composed of arctiin, daidzein, glycyrrhizic acid, and liquiritin inhibited mouse pneumonia resulting from a PR8 viral infection and caused a weight gain after oral administration. Natural killer cell activating receptors, both Ly49D and Ly49H in the lungs, were increased in the treatment in mice. In H3N2 virus-infected natural killer-92MI cells, the cocktail treatment had different effects on phosphorylation sites of phospholipase Cγ1 (PLCγ1) and killed infected cells through necroptosis or late apoptosis, in which RIP3 was increased and both caspase-3 and phosphorylated-JNK in the cells were downregulated. Acid phosphatase activity in viral-infected natural killer-92MI cells was induced by the compound cocktail treatment, which could be related to the p62 decrease in natural killer-92MI cells. In addition, an autophagic flux induction was observed in alveolar basal epithelial cells (A549). Protein p65, but not phosphorylated-p65, was significantly decreased by the treatment. Our results indicate that the compound cocktail strengthened the phosphorylation of PLCγ1-related necroptosis and partial autophagy in natural killer cells, which could yield an inhibitory effect on viral pneumonia in influenza.
Collapse
Affiliation(s)
- Rong Ma
- Clinical Research Institute of Integrative Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui-Qing Ma
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bei Chen
- Department of Clinical Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Li-Yu Wang
- Oncology Department, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Liu X, Peng X, Lin Z. Evodiamine Enhanced the Anti-Inflammation Effect of Clindamycin in the BEAS-2B Cells Infected with H5N1 and Pneumoniae D39 Through CREB-C/EBPβ Signaling Pathway. Viral Immunol 2021; 34:410-415. [PMID: 33945347 DOI: 10.1089/vim.2020.0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pneumonia is a pulmonary disease among children. Evodiamine, a traditional Chinese medicine, is known for anti-inflammatory effect. This study aimed to investigate the impact of evodiamine on severe pneumonia-like cells and the underlying mechanism involved. H5N1 and pneumoniae D39 was used to induce severe pneumonia-like conditions in BEAS-2B cells. The cell viability in BEAS-2B cells after treatments with 0, 20, 40, 60, 80, and 100 μM evodiamine was examined using MTT assays. The protein concentrations of inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β, and Toll-like receptors (TLRs) were measured by enzyme-linked immunosorbent assay methods and the protein and mRNA changes in C/EBPβ/CREB were measured using Real Time-quantitative polymerase chain reaction and Western blot methods. Our results revealed that Evodiamine significantly decreased TNF-α, IL-6, and IL-1β in BEAS-2B cells. Moreover, evodiamine markedly reduced TLR2,3,4 protein expression and the phosphorylated protein of C/EBPβ and CREB. Besides, evodiamine combined with clindamycin exerted more significant effects than clindamycin alone. Taken together, our results demonstrated that evodiamine enhanced the anti-inflammation effect of clindamycin in the BEAS-2B cells infected with H5N1 and pneumoniae D39 through CREB-C/EBPβ signaling pathway.
Collapse
Affiliation(s)
- Xiaqing Liu
- Children's Respiratory Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaofang Peng
- Cell and Molecular Diagnosis Center, Sun Yat Sen Memorial Hospital, Sun Yat Sen University, Guangzhou, China
| | - Zhengfang Lin
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
25
|
Antiviral Properties of the NSAID Drug Naproxen Targeting the Nucleoprotein of SARS-CoV-2 Coronavirus. Molecules 2021; 26:molecules26092593. [PMID: 33946802 PMCID: PMC8124269 DOI: 10.3390/molecules26092593] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
There is an urgent need for specific antiviral treatments directed against SARS-CoV-2 to prevent the most severe forms of COVID-19. By drug repurposing, affordable therapeutics could be supplied worldwide in the present pandemic context. Targeting the nucleoprotein N of the SARS-CoV-2 coronavirus could be a strategy to impede viral replication and possibly other essential functions associated with viral N. The antiviral properties of naproxen, a non-steroidal anti-inflammatory drug (NSAID) that was previously demonstrated to be active against Influenza A virus, were evaluated against SARS-CoV-2. Intrinsic fluorescence spectroscopy, fluorescence anisotropy, and dynamic light scattering assays demonstrated naproxen binding to the nucleoprotein of SARS-Cov-2 as predicted by molecular modeling. Naproxen impeded recombinant N oligomerization and inhibited viral replication in infected cells. In VeroE6 cells and reconstituted human primary respiratory epithelium models of SARS-CoV-2 infection, naproxen specifically inhibited viral replication and protected the bronchial epithelia against SARS-CoV-2-induced damage. No inhibition of viral replication was observed with paracetamol or the COX-2 inhibitor celecoxib. Thus, among the NSAID tested, only naproxen combined antiviral and anti-inflammatory properties. Naproxen addition to the standard of care could be beneficial in a clinical setting, as tested in an ongoing clinical study.
Collapse
|
26
|
Beigel JH, Hayden FG. Influenza Therapeutics in Clinical Practice-Challenges and Recent Advances. Cold Spring Harb Perspect Med 2021; 11:a038463. [PMID: 32041763 PMCID: PMC8015700 DOI: 10.1101/cshperspect.a038463] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the last few years, several new direct-acting influenza antivirals have been licensed, and others have advanced in clinical development. The increasing diversity of antiviral classes should allow an adequate public health response should a resistant virus to one agent or class widely circulate. One new antiviral, baloxavir marboxil, has been approved in the United States for treatment of influenza in those at high risk of developing influenza-related complications. Except for intravenous zanamivir in European Union countries, no antivirals have been licensed specifically for the indication of severe influenza or hospitalized influenza. This review addresses recent clinical developments involving selected polymerase inhibitors, neuraminidase inhibitors, antibody-based therapeutics, and host-directed therapies. There are many knowledge gaps for most of these agents because some data are not published and multiple pivotal studies are in progress at present. This review also considers important clinical research issues, including regulatory pathways, study designs, endpoints, and target populations encountered during the clinical development of novel therapeutics.
Collapse
Affiliation(s)
- John H Beigel
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20892-9826, USA
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
27
|
In Vitro Assessment of the Antiviral Activity of Ketotifen, Indomethacin and Naproxen, Alone and in Combination, against SARS-CoV-2. Viruses 2021; 13:v13040558. [PMID: 33810356 PMCID: PMC8065848 DOI: 10.3390/v13040558] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/19/2022] Open
Abstract
The 2019 coronavirus infectious disease (COVID-19) is caused by infection with the new severe acute respiratory syndrome coronavirus (SARS-CoV-2). Currently, the treatment options for COVID-19 are limited. The purpose of the experiments presented here was to investigate the effectiveness of ketotifen, naproxen and indomethacin, alone or in combination, in reducing SARS-CoV-2 replication. In addition, the cytotoxicity of the drugs was evaluated. The findings showed that the combination of ketotifen with indomethacin (SJP-002C) or naproxen both reduce viral yield. Compared to ketotifen alone (60% inhibition at EC50), an increase in percentage inhibition of SARS-CoV-2 to 79%, 83% and 93% was found when co-administered with 25, 50 and 100 μM indomethacin, respectively. Compared to ketotifen alone, an increase in percentage inhibition of SARS-CoV-2 to 68%, 68% and 92% was found when co-administered with 25, 50 and 100 μM naproxen, respectively. For both drug combinations the observations suggest an additive or synergistic effect, compared to administering the drugs alone. No cytotoxic effects were observed for the administered dosages of ketotifen, naproxen, and indomethacin. Further research is warranted to investigate the efficacy of the combination of ketotifen with indomethacin (SJP-002C) or naproxen in the treatment of SARS-CoV-2 infection in humans.
Collapse
|
28
|
Acharya A, Pandey K, Thurman M, Challagundala KB, Vann KR, Kutateladze TG, Morales GA, Durden DL, Byrareddy SN. Blockade of SARS-CoV-2 infection in vitro by highly potent PI3K-α/mTOR/BRD4 inhibitor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33688653 DOI: 10.1101/2021.03.02.433604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pathogenic viruses like SARS-CoV-2 and HIV hijack the host molecular machinery to establish infection and survival in infected cells. This has led the scientific community to explore the molecular mechanisms by which SARS-CoV-2 infects host cells, establishes productive infection, and causes life-threatening pathophysiology. Very few targeted therapeutics for COVID-19 currently exist, such as remdesivir. Recently, a proteomic approach explored the interactions of 26 of 29 SARS-CoV-2 proteins with cellular targets in human cells and identified 67 interactions as potential targets for drug development. Two of the critical targets, the bromodomain and extra-terminal domain proteins (BETs): BRD2/BRD4 and mTOR, are inhibited by the dual inhibitory small molecule SF2523 at nanomolar potency. SF2523 is the only known mTOR PI3K-α/(BRD2/BRD4) inhibitor with potential to block two orthogonal pathways necessary for SARS-CoV-2 pathogenesis in human cells. Our results demonstrate that SF2523 effectively blocks SARS-CoV-2 replication in lung bronchial epithelial cells in vitro , showing an IC 50 value of 1.5 µM, comparable to IC 50 value of remdesivir (1.1 µM). Further, we demonstrated that the combination of doses of SF2523 and remdesivir is highly synergistic: it allows for the reduction of doses of SF2523 and remdesivir by 25-fold and 4-fold, respectively, to achieve the same potency observed for a single inhibitor. Because SF2523 inhibits two SARS-CoV-2 driven pathogenesis mechanisms involving BRD2/BRD4 and mTOR signaling, our data suggest that SF2523 alone or in combination with remdesivir could be a novel and efficient therapeutic strategy to block SARS-CoV-2 infection and hence be beneficial in preventing severe COVID-19 disease evolution. One Sentence Summary Evidence of in silico designed chemotype (SF2523) targeting PI3K-α/mTOR/BRD4 inhibits SARS-CoV-2 infection and is highly synergistic with remdesivir.
Collapse
|
29
|
Ishaqui A, Hayat Khan A, Sulaiman SAS, Taher Alsultan M, Khan I. Comparative efficacy assessment of antiviral alone and antiviral-antibiotic combination in prevention of influenza-B infection associated complications. Expert Rev Anti Infect Ther 2021; 19:1165-1173. [PMID: 33567928 DOI: 10.1080/14787210.2021.1889369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The study aimed to compare the efficacy of antiviral drug alone and antiviral-antibiotic combination therapy in prevention of complications associated with influenza B hospitalized patients. METHOD Laboratory confirmed influenza B hospitalized patients presented in emergency room after 48 hours of symptoms onset were identified and divided into two groups; Group-1 patients were initiated on Antiviral drug (oseltamivir) alone while Group-2 patients were initiated on Antiviral drug (oseltamivir) in combination with Antibiotic for at least 3 days. Patients were evaluated for different clinical outcomes among both treatment group. RESULTS A total of 153 and 131 patients were identified for Group-1 and Group-2, respectively. Clinical outcomes such as secondary bacterial infections (20.9%-vs-9.1%; P = 0.031), need of respiratory support (28.7%-vs-12.9%; P = 0.002), length of hospitalization stay (6.57-vs-4.95 days; P = <0.001), incidences of ICU admission (15.7%-vs-7.6%; P = 0.036), early clinical failure (32.6%-vs-16.1%; P = 0.01), and time to clinical stability (4.83-vs-4.1 days; P = 0.001) were found to be statistically less significant (P-value <0.05) for Group-2 patients. CONCLUSION Early initiation of antibiotic therapy in combination with oseltamivir was found to be more efficacious than oseltamivir alone in prevention of influenza B-associated complications especially in high-risk influenza patients.
Collapse
Affiliation(s)
- Azfar Ishaqui
- Department of Pharmacy, King Abdulaziz Hospital, Ministry of National Guard Health Affairs, Alahsa, Saudi Arabia.,King Abdullah International Medical Research Center, Alahsa, Saudi Arabia.,Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Malaysia
| | - Amer Hayat Khan
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Malaysia
| | - Syed Azhar Syed Sulaiman
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Malaysia
| | - Muhammad Taher Alsultan
- Department of Pharmacy, King Abdulaziz Hospital, Ministry of National Guard Health Affairs, Alahsa, Saudi Arabia.,King Abdullah International Medical Research Center, Alahsa, Saudi Arabia
| | - Irfanullah Khan
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Malaysia
| |
Collapse
|
30
|
Meganck RM, Baric RS. Developing therapeutic approaches for twenty-first-century emerging infectious viral diseases. Nat Med 2021; 27:401-410. [PMID: 33723456 DOI: 10.1038/s41591-021-01282-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 01/31/2023]
Abstract
The twenty-first century has already recorded more than ten major epidemic or pandemic virus emergence events, including the ongoing and devastating coronavirus disease 2019 (COVID-19) pandemic. As viral disease emergence is expected to accelerate, these data dictate a need for proactive approaches to develop broadly active family-specific and cross-family therapeutics for use in future disease outbreaks. Emphasis should focus not only on the development of broad-spectrum small-molecule and antibody direct-acting antivirals, but also on host-factor therapeutics, including repurposing previously approved or in-pipeline drugs. Another new class of therapeutics with great antiviral therapeutic potential is RNA-based therapeutics. Rather than only focusing on known risks, dedicated efforts must be made toward pre-emptive research focused on outbreak-prone virus families, ultimately offering a strategy to shorten the gap between outbreak and response. Emphasis should also focus on orally available drugs for outpatient use, if possible, and on identifying combination therapies that combat viral and immune-mediated pathologies, extend the effectiveness of therapeutic windows and reduce drug resistance. While such an undertaking will require new vision, dedicated funding and private, federal and academic partnerships, this approach offers hope that global populations need never experience future pandemics such as COVID-19.
Collapse
Affiliation(s)
- Rita M Meganck
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
31
|
Oliver ME, Hinks TSC. Azithromycin in viral infections. Rev Med Virol 2021; 31:e2163. [PMID: 32969125 PMCID: PMC7536932 DOI: 10.1002/rmv.2163] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022]
Abstract
Azithromycin (AZM) is a synthetic macrolide antibiotic effective against a broad range of bacterial and mycobacterial infections. Due to an additional range of anti-viral and anti-inflammatory properties, it has been given to patients with the coronaviruses SARS-CoV or MERS-CoV. It is now being investigated as a potential candidate treatment for SARS-CoV-2 having been identified as a candidate therapeutic for this virus by both in vitro and in silico drug screens. To date there are no randomised trial data on its use in any novel coronavirus infection, although a large number of trials are currently in progress. In this review, we summarise data from in vitro, murine and human clinical studies on the anti-viral and anti-inflammatory properties of macrolides, particularly AZM. AZM reduces in vitro replication of several classes of viruses including rhinovirus, influenza A, Zika virus, Ebola, enteroviruses and coronaviruses, via several mechanisms. AZM enhances expression of anti-viral pattern recognition receptors and induction of anti-viral type I and III interferon responses. Of relevance to severe coronavirus-19 disease (COVID-19), which is characterised by an over-exuberant innate inflammatory response, AZM also has anti-inflammatory properties including suppression of IL-1beta, IL-2, TNF and GM-CSF. AZM inhibits T cells by inhibiting calcineurin signalling, mammalian target of rapamycin activity and NFκB activation. AZM particularly targets granulocytes where it concentrates markedly in lysosomes, particularly affecting accumulation, adhesion, degranulation and apoptosis of neutrophils. Given its proven safety, affordability and global availability, tempered by significant concerns about antimicrobial stewardship, there is an urgent mandate to perform well-designed and conducted randomised clinical trials.
Collapse
Affiliation(s)
| | - Timothy S. C. Hinks
- Nuffield Department of Medicine Experimental Medicine, Respiratory Medicine Unit and National Institute for Health Research (NIHR), Oxford Biomedical Research Centre (BRC)University of OxfordOxfordUK
| |
Collapse
|
32
|
Gorgulla C, Padmanabha Das KM, Leigh KE, Cespugli M, Fischer PD, Wang ZF, Tesseyre G, Pandita S, Shnapir A, Calderaio A, Gechev M, Rose A, Lewis N, Hutcheson C, Yaffe E, Luxenburg R, Herce HD, Durmaz V, Halazonetis TD, Fackeldey K, Patten J, Chuprina A, Dziuba I, Plekhova A, Moroz Y, Radchenko D, Tarkhanova O, Yavnyuk I, Gruber C, Yust R, Payne D, Näär AM, Namchuk MN, Davey RA, Wagner G, Kinney J, Arthanari H. A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening. iScience 2021; 24:102021. [PMID: 33426509 PMCID: PMC7783459 DOI: 10.1016/j.isci.2020.102021] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/28/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
The unparalleled global effort to combat the continuing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic over the last year has resulted in promising prophylactic measures. However, a need still exists for cheap, effective therapeutics, and targeting multiple points in the viral life cycle could help tackle the current, as well as future, coronaviruses. Here, we leverage our recently developed, ultra-large-scale in silico screening platform, VirtualFlow, to search for inhibitors that target SARS-CoV-2. In this unprecedented structure-based virtual campaign, we screened roughly 1 billion molecules against each of 40 different target sites on 17 different potential viral and host targets. In addition to targeting the active sites of viral enzymes, we also targeted critical auxiliary sites such as functionally important protein-protein interactions.
Collapse
Affiliation(s)
- Christoph Gorgulla
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Krishna M. Padmanabha Das
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kendra E. Leigh
- Max Planck Institute of Biophysics, Frankfurt am Main, Hessen 60438, Germany
| | | | - Patrick D. Fischer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Saarland 66123, Germany
| | - Zi-Fu Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | | | | | | | - Anthony Calderaio
- VirtualFlow Organization, https://virtual-flow.org/, Boston, MA 02115, USA
| | | | - Alexander Rose
- Mol∗ Consortium, https://molstar.org, San Diego, CA 92109, USA
| | | | | | | | | | - Henry D. Herce
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | - Konstantin Fackeldey
- Zuse Institute Berlin (ZIB), Berlin 14195, Germany
- Institute of Mathematics, Technical University Berlin, Berlin 10587, Germany
| | - J.J. Patten
- Department of Microbiology, Boston University Medical School, Boston University, Boston, MA 02118, USA
| | | | | | | | - Yurii Moroz
- Chemspace, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | - Dmytro Radchenko
- Enamine, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | | | | | - Christian Gruber
- Innophore GmbH, Graz 8010, Austria
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Ryan Yust
- Google, Mountain View, CA 94043, USA
| | | | - Anders M. Näär
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Mark N. Namchuk
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Robert A. Davey
- Department of Microbiology, Boston University Medical School, Boston University, Boston, MA 02118, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | | | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
33
|
Ison MG, Linder JA. Optimizing Use of Antibiotics and Antivirals in Ambulatory Patients With Influenza. Clin Infect Dis 2021; 72:574-575. [PMID: 31974584 PMCID: PMC7884799 DOI: 10.1093/cid/ciaa078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 11/12/2022] Open
Affiliation(s)
- Michael G Ison
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jeffrey A Linder
- General Internal Medicine and Geriatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
34
|
Abstract
BACKGROUND Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatory actions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19. METHODS In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospital with COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients were randomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once per day by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatment groups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment and were twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants and local study staff were not masked to the allocated treatment, but all others involved in the trial were masked to the outcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. FINDINGS Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) were eligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was 65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomly allocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall, 561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days (rate ratio 0·97, 95% CI 0·87-1·07; p=0·50). No significant difference was seen in duration of hospital stay (median 10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days (rate ratio 1·04, 95% CI 0·98-1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, no significant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilation or death (risk ratio 0·95, 95% CI 0·87-1·03; p=0·24). INTERPRETATION In patients admitted to hospital with COVID-19, azithromycin did not improve survival or other prespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restricted to patients in whom there is a clear antimicrobial indication. FUNDING UK Research and Innovation (Medical Research Council) and National Institute of Health Research.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Influenza represents a significant treatment burden to critical care services. A variety of treatment strategies exist, with more and more therapeutic avenues opening up as research progresses. We examined both pharmacological and supportive treatment strategies currently available to see how they might be applied in an ICU setting. RECENT FINDINGS Supportive care in Influenza centres around optimizing respiratory failure, particularly through well established and recognized ventilatory strategies. Noninvasive ventilation and high-flow nasal oxygen may have a limited role in selected patients under carefully monitored circumstances. Drug therapy exerts only a modest clinical effect and has been poorly studied in the critically ill, though there is some evidence to support the use of neuraminidase inhibitors (NAI) - particularly oseltamivir - as early as possible in this cohort. Newer agents have failed to demonstrate superiority over NAIs but may be useful options if the patient fails to respond or should resistant influenza strains emerge. Steroid therapy, in the absence of another indication, must be recommended against given the repeated trend towards increased mortality in this group. SUMMARY Influenza management is an evolving field of significant interest to any critical care provider. Currently, good respiratory supportive care and early enteral oseltamivir are the best supported treatment strategies. Further study in the intensive care setting will be needed before the use of novel agents can be recommended.
Collapse
|
36
|
N-(2-(1H-Indol-3-yl)ethyl)-2-(6-methoxynaphthalen-2-yl)propanamide. MOLBANK 2021. [DOI: 10.3390/m1187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The title compound was obtained in high yield in the reaction between tryptamine and naproxen. The newly synthesized naproxen derivative was fully analyzed and characterized via 1H, 13C-NMR, UV, IR, and mass spectral data.
Collapse
|
37
|
Ishaqui AA, Khan AH, Sulaiman SA, Alsultan M, Khan I. Efficacy comparison of oseltamivir alone and oseltamivir-antibiotic combination for early resolution of symptoms of severe influenza-A and influenza-B hospitalized patients. Saudi Med J 2021; 41:1015-1021. [PMID: 32893285 PMCID: PMC7557556 DOI: 10.15537/smj.2020.9.25249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objectives: To assess the comparative efficacy of oseltamivir alone and oseltamivir-antibiotic therapy for early relief of symptoms associated with severe influenza-A (non-H1N1) and influenza-B infection hospitalized patients. Methods: In this retrospective multicenter study conducted from 2016-2019, enrolled patients were divided into 2 treatment groups. Group 1 patients were started on Antiviral drug (oseltamivir) alone therapy. Group 2 patients were initiated on Antiviral drug (oseltamivir) in combination with Antibiotic therapy. Using acute respiratory illness scoring, symptom severity score was assessed daily for 8 symptoms namely, fever, fatigue, headache, cough, sore throat, wheezing, muscle ache and nasal congestion. For each symptom the severity was scored from scale 0-3. Results: Overall mean ARI severity score was statistically significantly lower (p<0.05) on day 2 (14.65-vs-13.68), day 3 (12.95-vs-11.67) and day 4 (10.31-vs-9.12 ) for influenza-A (non-H1N1) while day 3 (12.52-vs-11.87) and day 4 (11.21-vs-10.18) for influenza-B patients for patients who were initiated on oseltamivir-antibiotic combination therapy. Fever, cough and nasal congestion showed statistically significant improvement within 4 days of initiation of combination treatment. Fatigue, sore throat and muscle ache improvement pattern was same for both treatment protocols. Conclusion: Oseltamivir-antibiotic combination treatment showed early resolution of some symptoms with cumulatively reduced mean symptom severity score in severe influenza infection hospitalized patients.
Collapse
Affiliation(s)
- Azfar A Ishaqui
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia. E-mail.
| | | | | | | | | |
Collapse
|
38
|
Terrier O, Slama-Schwok A. Anti-Influenza Drug Discovery and Development: Targeting the Virus and Its Host by All Possible Means. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:195-218. [PMID: 34258742 DOI: 10.1007/978-981-16-0267-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infections by influenza virus constitute a major and recurrent threat for human health. Together with vaccines, antiviral drugs play a key role in the prevention and treatment of influenza virus infection and disease. Today, the number of antiviral molecules approved for the treatment of influenza is relatively limited, and their use is threatened by the emergence of viral strains with resistance mutations. There is therefore a real need to expand the prophylactic and therapeutic arsenal. This chapter summarizes the state of the art in drug discovery and development for the treatment of influenza virus infections, with a focus on both virus-targeting and host cell-targeting strategies. Novel antiviral strategies targeting other viral proteins or targeting the host cell, some of which are based on drug repurposing, may be used in combination to strengthen our therapeutic arsenal against this major pathogen.
Collapse
Affiliation(s)
- Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Anny Slama-Schwok
- Sorbonne Université, Centre de Recherche Saint-Antoine, INSERM U938, Biologie et Thérapeutique du Cancer, Paris, France.
| |
Collapse
|
39
|
Duanmu N, He Z, Huang X, Fu L, Wang N. Oseltamivir in the treatment of severe type-A H1N1 flu and autoregressive integrated moving average mathematical model analysis of epidemiology. RESULTS IN PHYSICS 2020; 19:103617. [DOI: 10.1016/j.rinp.2020.103617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Baradaran H, Hamishehkar H, Rezae H. NSAIDs and COVID-19: A New Challenging Area. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Hananeh Baradaran
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Hamishehkar
- Department of Clinical Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haleh Rezae
- Department of Clinical Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
von Philipsborn P, Biallas R, Burns J, Drees S, Geffert K, Movsisyan A, Pfadenhauer LM, Sell K, Strahwald B, Stratil JM, Rehfuess E. Adverse effects of non-steroidal anti-inflammatory drugs in patients with viral respiratory infections: rapid systematic review. BMJ Open 2020; 10:e040990. [PMID: 33444207 PMCID: PMC7678345 DOI: 10.1136/bmjopen-2020-040990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES To assess the effects of non-steroidal anti-inflammatory drugs (NSAIDs) in patients with viral respiratory infections on acute severe adverse outcomes, healthcare utilisation, quality of life and long-term survival. DESIGN Rapid systematic review. PARTICIPANTS Humans with viral respiratory infections, exposed to systemic NSAIDs. PRIMARY OUTCOMES Acute severe adverse outcomes, healthcare utilisation, quality of life and long-term survival. RESULTS We screened 10 999 titles and abstracts and 738 full texts, including 87 studies. No studies addressed COVID-19, Severe Acute Respiratory Syndrome or Middle East Respiratory Syndrome; none examined inpatient healthcare utilisation, quality of life or long-term survival. Effects of NSAIDs on mortality and cardiovascular events in adults with viral respiratory infections are unclear (three observational studies; very low certainty). Children with empyema and gastrointestinal bleeding may be more likely to have taken NSAIDs than children without these conditions (two observational studies; very low certainty). In patients aged 3 years and older with acute respiratory infections, ibuprofen is associated with a higher rate of reconsultations with general practitioners than paracetamol (one randomised controlled trial (RCT); low certainty). The difference in death from all causes and hospitalisation for renal failure and anaphylaxis between children with fever receiving ibuprofen versus paracetamol is likely to be less than 1 per 10 000 (1 RCT; moderate/high certainty). Twenty-eight studies in adults and 42 studies in children report adverse event counts. Most report that no severe adverse events occurred. Due to methodological limitations of adverse event counts, this evidence should be interpreted with caution. CONCLUSIONS It is unclear whether the use of NSAIDs increases the risk of severe adverse outcomes in patients with viral respiratory infections. This absence of evidence should not be interpreted as evidence for the absence of such risk. This is a rapid review with a number of limitations. PROSPERO REGISTRATION NUMBER CRD42020176056.
Collapse
Affiliation(s)
- Peter von Philipsborn
- Chair of Public Health and Health Services Research in its capacity as a WHO Collaborating Centre for Evidence-Based Public Health, Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Ludwig Maximilians University Munich Medical Faculty, Munchen, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Renke Biallas
- Chair of Public Health and Health Services Research in its capacity as a WHO Collaborating Centre for Evidence-Based Public Health, Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Ludwig Maximilians University Munich Medical Faculty, Munchen, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Jacob Burns
- Chair of Public Health and Health Services Research in its capacity as a WHO Collaborating Centre for Evidence-Based Public Health, Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Ludwig Maximilians University Munich Medical Faculty, Munchen, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Simon Drees
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karin Geffert
- Chair of Public Health and Health Services Research in its capacity as a WHO Collaborating Centre for Evidence-Based Public Health, Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Ludwig Maximilians University Munich Medical Faculty, Munchen, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Ani Movsisyan
- Chair of Public Health and Health Services Research in its capacity as a WHO Collaborating Centre for Evidence-Based Public Health, Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Ludwig Maximilians University Munich Medical Faculty, Munchen, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Lisa Maria Pfadenhauer
- Chair of Public Health and Health Services Research in its capacity as a WHO Collaborating Centre for Evidence-Based Public Health, Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Ludwig Maximilians University Munich Medical Faculty, Munchen, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Kerstin Sell
- Chair of Public Health and Health Services Research in its capacity as a WHO Collaborating Centre for Evidence-Based Public Health, Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Ludwig Maximilians University Munich Medical Faculty, Munchen, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Brigitte Strahwald
- Chair of Public Health and Health Services Research in its capacity as a WHO Collaborating Centre for Evidence-Based Public Health, Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Ludwig Maximilians University Munich Medical Faculty, Munchen, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Jan M Stratil
- Chair of Public Health and Health Services Research in its capacity as a WHO Collaborating Centre for Evidence-Based Public Health, Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Ludwig Maximilians University Munich Medical Faculty, Munchen, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Eva Rehfuess
- Chair of Public Health and Health Services Research in its capacity as a WHO Collaborating Centre for Evidence-Based Public Health, Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Ludwig Maximilians University Munich Medical Faculty, Munchen, Germany
- Pettenkofer School of Public Health, Munich, Germany
| |
Collapse
|
42
|
Intra-host non-synonymous diversity at a neutralizing antibody epitope of SARS-CoV-2 spike protein N-terminal domain. Clin Microbiol Infect 2020; 27:1350.e1-1350.e5. [PMID: 33144203 PMCID: PMC7605743 DOI: 10.1016/j.cmi.2020.10.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/22/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Objectives SARS-CoV-2 has evolved rapidly into several genetic clusters. However, data on mutations during the course of infection are scarce. This study aims to determine viral genome diversity in serial samples of COVID-19 patients. Methods Targeted deep sequencing of the spike gene was performed on serial respiratory specimens from COVID-19 patients using nanopore and Illumina sequencing. Sanger sequencing was then performed to confirm the single nucleotide polymorphisms. Results A total of 28 serial respiratory specimens from 12 patients were successfully sequenced using nanopore and Illumina sequencing. A 75-year-old patient with severe disease had a mutation, G22017T, identified in the second specimen. The frequency of G22017T increased from ≤5% (nanopore: 3.8%; Illumina: 5%) from the first respiratory tract specimen (sputum) to ≥60% (nanopore: 67.7%; Illumina: 60.4%) in the second specimen (saliva; collected 2 days after the first specimen). The difference in G22017T frequency was also confirmed by Sanger sequencing. G22017T corresponds to W152L amino acid mutation in the spike protein which was only found in <0.03% of the sequences deposited into a public database. Spike amino acid residue 152 is located within the N-terminal domain, which mediates the binding of a neutralizing antibody. Discussion A spike protein amino acid mutation W152L located within a neutralizing epitope has appeared naturally in a patient. Our study demonstrated that monitoring of serial specimens is important in identifying hotspots of mutations, especially those occurring at neutralizing epitopes which may affect the therapeutic efficacy of monoclonal antibodies.
Collapse
|
43
|
Robb CT, Goepp M, Rossi AG, Yao C. Non-steroidal anti-inflammatory drugs, prostaglandins, and COVID-19. Br J Pharmacol 2020; 177:4899-4920. [PMID: 32700336 PMCID: PMC7405053 DOI: 10.1111/bph.15206] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the novel coronavirus disease 2019 (COVID-19), a highly pathogenic and sometimes fatal respiratory disease responsible for the current 2020 global pandemic. Presently, there remains no effective vaccine or efficient treatment strategies against COVID-19. Non-steroidal anti-inflammatory drugs (NSAIDs) are medicines very widely used to alleviate fever, pain, and inflammation (common symptoms of COVID-19 patients) through effectively blocking production of prostaglandins (PGs) via inhibition of cyclooxyganase enzymes. PGs can exert either proinflammatory or anti-inflammatory effects depending on the inflammatory scenario. In this review, we survey the potential roles that NSAIDs and PGs may play during SARS-CoV-2 infection and the development and progression of COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Calum T. Robb
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Marie Goepp
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Adriano G. Rossi
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Chengcan Yao
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| |
Collapse
|
44
|
Hunt RH, East JE, Lanas A, Malfertheiner P, Satsangi J, Scarpignato C, Webb GJ. COVID-19 and Gastrointestinal Disease: Implications for the Gastroenterologist. Dig Dis 2020; 39:119-139. [PMID: 33040064 PMCID: PMC7705947 DOI: 10.1159/000512152] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/08/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND COVID-19 was initially considered a respiratory disease but the SARS-CoV-2 virus can lead to serious systemic consequences affecting major organs including the digestive system. SUMMARY This review brings new clinically important information for the gastroenterologist. This includes: the mechanisms of tissue damage seen with the SARS-CoV-2 virus; the consequences of immunosuppression in patients with inflammatory bowel disease (IBD) and chronic liver disease with the additional risks of decompensation in patients with cirrhosis; the impact of COVID-19 on gastrointestinal emergencies, on gastrointestinal endoscopy, diagnosis and treatments. These highlight the need to understand the clinical pharmacology, toxicology and therapeutic implications of drugs commonly used by gastroenterologists and their links with COVID-19. Key Messages: Any part of the digestive system may be affected by the SARS-CoV-2 virus, and those with pre-existing disease are at greatest risk of adverse outcomes. The risk for drug-drug interactions is considerable in patients seriously ill with COVID-19 who often require mechanical ventilation and life support. Some repurposed drugs used against SARS-CoV-2 can cause or aggravate some of the COVID-19-related gastrointestinal symptoms and can also induce liver injury. Ongoing clinical studies will hopefully identify effective drugs with a more favourable risk-benefit ratio than many initially tried treatments.
Collapse
Affiliation(s)
- Richard H Hunt
- Farncombe Family Digestive Health Research Institute, Division of Gastroenterology, McMaster University, Hamilton, Ontario, Canada,
| | - James E East
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Angel Lanas
- University Hospital Lozano Blesa, IIS Aragón, CIBER Enfermedades Hepáticas y Digestivas (CIBERehd) Digestive Diseases, Universidad de Zaragoza, Zaragoza, Spain
| | - Peter Malfertheiner
- Klinik für Gastroenterologie, Hepatologie und Infektiologie, Otto-von-Guericke-Universität, Magdeburg, Germany
- Med. Klinik und Poliklinik II, Klinikum der Universität, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jack Satsangi
- Consultant Physician, Oxford University NHS Trust and Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Gastroenterology, University of Edinburgh, Edinburgh, United Kingdom
| | - Carmelo Scarpignato
- Department of Health Sciences, United Campus of Malta, Msida, Malta
- Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Gwilym J Webb
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals, Oxford, United Kingdom
| |
Collapse
|
45
|
Furtado RHM, Berwanger O, Fonseca HA, Corrêa TD, Ferraz LR, Lapa MG, Zampieri FG, Veiga VC, Azevedo LCP, Rosa RG, Lopes RD, Avezum A, Manoel ALO, Piza FMT, Martins PA, Lisboa TC, Pereira AJ, Olivato GB, Dantas VCS, Milan EP, Gebara OCE, Amazonas RB, Oliveira MB, Soares RVP, Moia DDF, Piano LPA, Castilho K, Momesso RGRAP, Schettino GPP, Rizzo LV, Neto AS, Machado FR, Cavalcanti AB. Azithromycin in addition to standard of care versus standard of care alone in the treatment of patients admitted to the hospital with severe COVID-19 in Brazil (COALITION II): a randomised clinical trial. Lancet 2020; 396:959-967. [PMID: 32896292 PMCID: PMC7836431 DOI: 10.1016/s0140-6736(20)31862-6] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The efficacy and safety of azithromycin in the treatment of COVID-19 remain uncertain. We assessed whether adding azithromycin to standard of care, which included hydroxychloroquine, would improve clinical outcomes of patients admitted to the hospital with severe COVID-19. METHODS We did an open-label, randomised clinical trial at 57 centres in Brazil. We enrolled patients admitted to hospital with suspected or confirmed COVID-19 and at least one additional severity criteria as follows: use of oxygen supplementation of more than 4 L/min flow; use of high-flow nasal cannula; use of non-invasive mechanical ventilation; or use of invasive mechanical ventilation. Patients were randomly assigned (1:1) to azithromycin (500 mg via oral, nasogastric, or intravenous administration once daily for 10 days) plus standard of care or to standard of care without macrolides. All patients received hydroxychloroquine (400 mg twice daily for 10 days) because that was part of standard of care treatment in Brazil for patients with severe COVID-19. The primary outcome, assessed by an independent adjudication committee masked to treatment allocation, was clinical status at day 15 after randomisation, assessed by a six-point ordinal scale, with levels ranging from 1 to 6 and higher scores indicating a worse condition (with odds ratio [OR] greater than 1·00 favouring the control group). The primary outcome was assessed in all patients in the intention-to-treat (ITT) population who had severe acute respiratory syndrome coronavirus 2 infection confirmed by molecular or serological testing before randomisation (ie, modified ITT [mITT] population). Safety was assessed in all patients according to which treatment they received, regardless of original group assignment. This trial was registered at ClinicalTrials.gov, NCT04321278. FINDINGS 447 patients were enrolled from March 28 to May 19, 2020. COVID-19 was confirmed in 397 patients who constituted the mITT population, of whom 214 were assigned to the azithromycin group and 183 to the control group. In the mITT population, the primary endpoint was not significantly different between the azithromycin and control groups (OR 1·36 [95% CI 0·94-1·97], p=0·11). Rates of adverse events, including clinically relevant ventricular arrhythmias, resuscitated cardiac arrest, acute kidney failure, and corrected QT interval prolongation, were not significantly different between groups. INTERPRETATION In patients with severe COVID-19, adding azithromycin to standard of care treatment (which included hydroxychloroquine) did not improve clinical outcomes. Our findings do not support the routine use of azithromycin in combination with hydroxychloroquine in patients with severe COVID-19. FUNDING COALITION COVID-19 Brazil and EMS.
Collapse
Affiliation(s)
- Remo H M Furtado
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Instituto do Coração, Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, Brazil
| | | | | | - Thiago D Corrêa
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Brazilian Research in Intensive Care Network, São Paulo, Brazil
| | | | - Maura G Lapa
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Fernando G Zampieri
- Brazilian Research in Intensive Care Network, São Paulo, Brazil; HCor Research Institute, São Paulo, Brazil
| | - Viviane C Veiga
- Brazilian Research in Intensive Care Network, São Paulo, Brazil; BP-A Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| | - Luciano C P Azevedo
- Brazilian Research in Intensive Care Network, São Paulo, Brazil; Hospital Sírio Libanês Research and Education Institute, São Paulo, Brazil
| | - Regis G Rosa
- Brazilian Research in Intensive Care Network, São Paulo, Brazil; Hospital Moinhos de Vento, Porto Alegre, Brazil
| | - Renato D Lopes
- Brazilian Clinical Research Institute, São Paulo, Brazil; Duke University Medical Centre, Duke Clinical Research Institute, Durham, NC, USA
| | - Alvaro Avezum
- International Research Center, Hospital Alemão Oswaldo Cruz, São Paulo, Brazil
| | | | | | | | | | - Adriano J Pereira
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Hospital Vila Santa Catarina, São Paulo, Brazil
| | - Guilherme B Olivato
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Hospital Vila Santa Catarina, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | - Ary Serpa Neto
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Brazilian Research in Intensive Care Network, São Paulo, Brazil; Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Flávia R Machado
- Brazilian Research in Intensive Care Network, São Paulo, Brazil; Department of Anesthesiology, Pain and Intensive Care Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alexandre B Cavalcanti
- Brazilian Research in Intensive Care Network, São Paulo, Brazil; HCor Research Institute, São Paulo, Brazil
| |
Collapse
|
46
|
|
47
|
Lee CW, Tai YL, Huang LM, Chi H, Huang FY, Chiu NC, Huang CY, Tu YH, Wang JY, Huang DTN. Efficacy of clarithromycin-naproxen-oseltamivir combination therapy versus oseltamivir alone in hospitalized pediatric influenza patients. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 54:876-884. [PMID: 32978076 DOI: 10.1016/j.jmii.2020.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 01/13/2023]
Abstract
PURPOSE This study aimed to compare the safety and efficacy of clarithromycin-naproxen-oseltamivir combination therapy to that of oseltamivir therapy alone in hospitalized pediatric influenza patients. METHODS This prospective, single-blind study included children aged 1-18 years hospitalized with influenza, in MacKay Children's Hospital, Taiwan, between December 2017 and December 2019. The primary outcomes were the time to defervescence and decrease of the Pediatric Respiratory Severity Score (PRESS) during hospitalization. The secondary outcomes were serial changes in virus titers, measured using real-time polymerase chain reaction. RESULTS Fifty-four patients were enrolled (28 in the control group and 26 in the combination group) in total. There were no differences in the patients' baseline characteristics between the groups. The time to defervescence was significantly shorter in the combination group than the oseltamivir group (13.2 h vs. 32.1 h, p = 0.002). The decrease in the virus titer from days 1-3 (log Δ13) was more pronounced in the combination group than the oseltamivir group. (39% vs. 19%, p = 0.001). There were no differences in adverse effects such as vomiting, diarrhea, and abdominal pain during the study or within 30 days after antiviral therapy. CONCLUSION The clarithromycin-naproxen-oseltamivir combination group experienced a more rapid defervescence and a more rapid decline of influenza virus titer than the group treated with oseltamivir alone. Further consideration should be given to whether the overall benefits of combination therapy in hospitalized pediatric influenza patients outweigh the risks.
Collapse
Affiliation(s)
- Chien-Wei Lee
- Department of Pediatric Infectious Diseases, MacKay Children's Hospital, Taipei, Taiwan
| | - Yu-Lin Tai
- Department of Pediatric Infectious Diseases, MacKay Children's Hospital, Taipei, Taiwan
| | - Li-Min Huang
- Department of Pediatrics Infectious Diseases, National Taiwan University Hospital, Taiwan
| | - Hsin Chi
- Department of Pediatric Infectious Diseases, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medicine College, New Taipei, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Fu-Yuan Huang
- Department of Pediatric Infectious Diseases, MacKay Children's Hospital, Taipei, Taiwan
| | - Nan-Chang Chiu
- Department of Pediatric Infectious Diseases, MacKay Children's Hospital, Taipei, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Ching-Ying Huang
- Department of Pediatric Infectious Diseases, MacKay Children's Hospital, Taipei, Taiwan
| | | | - Jin-Yuan Wang
- Department of Pediatric Infectious Diseases, MacKay Children's Hospital, Taipei, Taiwan
| | - Daniel Tsung-Ning Huang
- Department of Pediatric Infectious Diseases, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medicine College, New Taipei, Taiwan; Taiwan Digital Healthcare Association.
| |
Collapse
|
48
|
Yousefifard M, Zali A, Zarghi A, Madani Neishaboori A, Hosseini M, Safari S. Non-steroidal anti-inflammatory drugs in management of COVID-19; A systematic review on current evidence. Int J Clin Pract 2020; 74:e13557. [PMID: 32460369 PMCID: PMC7267090 DOI: 10.1111/ijcp.13557] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/20/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Since there is still no definitive conclusion regarding which non-steroidal anti-inflammatory drugs (NSAIDs) are most effective and safe in viral respiratory infections, we decided to evaluate the efficacy and safety of various NSAIDs in viral respiratory infections so that we can reach a conclusion on which NSAID is best choice for coronavirus disease 2019 (COVID-19). METHODS A search was performed in Medline (via PubMed), Embase and CENTRAL databases until 23 March 2020. Clinical trials on application of NSAIDs in viral respiratory infections were included. RESULTS Six clinical trials were included. No clinical trial has been performed on COVID-19, Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome infections. Studies show that ibuprofen and naproxen not only have positive effects in controlling cold symptoms, but also do not cause serious side effects in rhinovirus infections. In addition, it was found that clarithromycin, naproxen and oseltamivir combination leads to decrease in mortality rate and duration of hospitalisation in patients with pneumonia caused by influenza. CONCLUSION Although based on existing evidence, NSAIDs have been effective in treating respiratory infections caused by influenza and rhinovirus, since there is no clinical trial on COVID-19 and case-reports and clinical experiences are indicative of elongation of treatment duration and exacerbation of the clinical course of patients with COVID-19, it is recommended to use substitutes such as acetaminophen for controlling fever and inflammation and be cautious about using NSAIDs in management of COVID-19 patients until there are enough evidence. Naproxen may be a good choice for future clinical trials.
Collapse
Affiliation(s)
| | - Alireza Zali
- Functional Neurosurgery Research CenterShohada Tajrish Neurosurgical Comprehensive Center of ExcellenceShahid Beheshti University of Medical SciencesTehranIran
| | - Afshin Zarghi
- Department of Medicinal ChemistrySchool of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | | | - Mostafa Hosseini
- Pediatric Chronic Kidney Disease Research CenterTehran University of Medical SciencesTehranIran
- Department of Epidemiology and BiostatisticsSchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Saeed Safari
- Proteomics Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Emergency DepartmentShohadye Tajrish HospitalShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
49
|
Vaja R, Chan JSK, Ferreira P, Harky A, Rogers LJ, Gashaw HH, Kirkby NS, Mitchell JA. The COVID-19 ibuprofen controversy: A systematic review of NSAIDs in adult acute lower respiratory tract infections. Br J Clin Pharmacol 2020; 87:776-784. [PMID: 32805057 DOI: 10.1111/bcp.14514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 12/22/2022] Open
Abstract
AIMS In light of the recent safety concerns relating to NSAID use in COVID-19, we sought to evaluate cardiovascular and respiratory complications in patients taking NSAIDs during acute lower respiratory tract infections. METHODS We carried out a systematic review of randomised controlled trials and observational studies. Studies of adult patients with short-term NSAID use during acute lower respiratory tract infections, including bacterial and viral infections, were included. Primary outcome was all-cause mortality. Secondary outcomes were cardiovascular, renal and respiratory complications. RESULTS In total, eight studies including two randomised controlled trials, three retrospective and three prospective observational studies enrolling 44 140 patients were included. Five of the studies were in patients with pneumonia, two in patients with influenza, and one in a patient with acute bronchitis. Meta-analysis was not possible due to significant heterogeneity. There was a trend towards a reduction in mortality and an increase in pleuro-pulmonary complications. However, all studies exhibited high risks of bias, primarily due to lack of adjustment for confounding variables. Cardiovascular outcomes were not reported by any of the included studies. CONCLUSION In this systematic review of NSAID use during acute lower respiratory tract infections in adults, we found that the existing evidence for mortality, pleuro-pulmonary complications and rates of mechanical ventilation or organ failure is of extremely poor quality, very low certainty and should be interpreted with caution. Mechanistic and clinical studies addressing the captioned subject are urgently needed, especially in relation to COVID-19.
Collapse
Affiliation(s)
- Ricky Vaja
- Imperial College London, National Heart & Lung Institute, London, UK.,Royal Brompton Hospital, London, UK
| | - Jeffrey Shi Kai Chan
- Division of Cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Shatin, Hong Kong.,Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Plinio Ferreira
- Imperial College London, National Heart & Lung Institute, London, UK
| | - Amer Harky
- Liverpool Heart and Chest Hospital, Liverpool, UK
| | - Luke J Rogers
- University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Hime H Gashaw
- Imperial College London, National Heart & Lung Institute, London, UK
| | - Nicholas S Kirkby
- Imperial College London, National Heart & Lung Institute, London, UK
| | - Jane A Mitchell
- Imperial College London, National Heart & Lung Institute, London, UK
| |
Collapse
|
50
|
|