1
|
Acchioni M, Acchioni C, Hiscott J, Sgarbanti M. Origin and function of anti-interferon type I viral proteins. Virology 2025; 605:110456. [PMID: 39999585 DOI: 10.1016/j.virol.2025.110456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Type I interferons (IFN-I) are the most important innate immune cytokines produced by vertebrate host cells following, virus infection. Broadly speaking, detection of infecting viral nucleic acids by pattern recognition receptors (PRR) and subsequent downstream signaling triggers synthesis of a large number of IFN-I-stimulated genes (ISGs), endowed with diverse antiviral effector function. The co-evolution of virus-host interactions over million years has resulted in the emergence of viral strategies that target and inhibit host PRR-mediated detection, signal transduction pathways and IFN-I-mediated stimulation of ISGs. In this review, we illustrate the multiple mechanisms of viral immune evasion and discuss the co-evolution of anti-IFN-I viral proteins by summarizing key examples from recent literature. Due to the large number of anti-IFN-I proteins described, we provide here an evaluation of the prominent examples from different virus families. Understanding the unrelenting evolution of viral evasion strategies will provide mechanistic detail concerning these evolving interactions but will further enhance the development of tailored antiviral approaches.
Collapse
Affiliation(s)
- Marta Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Chiara Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - John Hiscott
- Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
2
|
Hansen CB, Møller MEE, Pérez-Alós L, Israelsen SB, Drici L, Ottenheijm ME, Nielsen AB, Wewer Albrechtsen NJ, Benfield T, Garred P. Differences in biomarker levels and proteomic survival prediction across two COVID-19 cohorts with distinct treatments. iScience 2025; 28:112046. [PMID: 40124495 PMCID: PMC11927729 DOI: 10.1016/j.isci.2025.112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/07/2024] [Accepted: 02/13/2025] [Indexed: 03/25/2025] Open
Abstract
Prognostic biomarkers have been widely studied in COVID-19, but their levels may be influenced by treatment strategies. This study examined plasma biomarkers and proteomic survival prediction in two unvaccinated hospitalized COVID-19 cohorts receiving different treatments. In a derivation cohort (n = 126) from early 2020, we performed plasma proteomic profiling and evaluated innate and complement system immune markers. A proteomic model based on differentially expressed proteins predicted 30-day mortality with an area under the curve (AUC) of 0.81. The model was tested in a validation cohort (n = 80) from late 2020, where patients received remdesivir and dexamethasone, and performed with an AUC of 0.75. Biomarker levels varied considerably between cohorts, sometimes in opposite directions, highlighting the impact of treatment regimens on biomarker expression. These findings underscore the need to account for treatment effects when developing prognostic models, as treatment differences may limit their generalizability across populations.
Collapse
Affiliation(s)
- Cecilie Bo Hansen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Laura Pérez-Alós
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Simone Bastrup Israelsen
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Lylia Drici
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg Hospital, Copenhagen, Denmark
| | - Maud Eline Ottenheijm
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg Hospital, Copenhagen, Denmark
| | - Annelaura Bach Nielsen
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg Hospital, Copenhagen, Denmark
| | - Nicolai J. Wewer Albrechtsen
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Zhao Y, Sui L, Pan M, Jin F, Huang Y, Fang S, Wang M, Che L, Xu W, Liu N, Gao H, Hou Z, Du F, Wei Z, Bell-Sakyi L, Zhao J, Zhang K, Zhao Y, Liu Q. The segmented flavivirus Alongshan virus reduces mitochondrial mass by degrading STAT2 to suppress the innate immune response. J Virol 2025; 99:e0130124. [PMID: 39655955 PMCID: PMC11784234 DOI: 10.1128/jvi.01301-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/20/2024] [Indexed: 02/01/2025] Open
Abstract
Alongshan virus (ALSV) is a newly discovered pathogen in the Flaviviridae family, characterized by a unique multi-segmented genome that is distantly related to the canonical flaviviruses. Understanding the pathogenic mechanism of this emerging segmented flavivirus is crucial for the development of effective intervention strategies. In this study, we demonstrate that ALSV can infect various mammalian cells and induce the expression of antiviral genes. Furthermore, ALSV is sensitive to IFN-β, but it has developed strategies to counteract the host's type I IFN response. Mechanistically, ALSV's nonstructural protein NSP1 interacts with and degrades human STAT2 through an autophagy pathway, with species-dependent effects. This degradation directly inhibits the expression of interferon-stimulated genes (ISGs). Additionally, NSP1-mediated degradation of STAT2 disrupts mitochondrial dynamics, leading to mitophagy and inhibition of mitochondrial biogenesis. This, in turn, suppresses the host's innate immune response. Interestingly, we found that inhibiting mitophagy using 3-methyladenine and enhancing mitochondrial biogenesis with the PPARγ agonist pioglitazone can reverse NSP1-mediated inhibition of ISGs, suggesting that promoting mitochondrial mass could serve as an effective antiviral strategy. Specifically, the NSP1 methyltransferase domain binds to the key sites of F175/R176 located in the coiled-coil domain of STAT2. Our findings provide valuable insights into the intricate regulatory cross talk between ALSV and the host's innate immune response, shedding light on the pathogenesis of this emerging segmented flavivirus and offering potential intervention strategies.IMPORTANCEAlongshan virus (ALSV), a segmented flavivirus belonging to the Flaviviridae family, was first identified in individuals who had been bitten by ticks in Northeastern China. ALSV infection is responsible for causing Alongshan fever, a condition characterized by various clinical symptoms, including fever, headache, skin rash, myalgia, arthralgia, depression, and coma. There is an urgent need for effective antiviral therapies. Here, we demonstrate that ALSV is susceptible to IFN-β but has developed mechanisms to counteract the host's innate immune response. Specifically, the ALSV nonstructural protein NSP1 interacts with STAT2, leading to its degradation via an autophagy pathway that exhibits species-dependent effects. Additionally, NSP1 disrupts mitochondrial dynamics and suppresses mitochondrial biogenesis, resulting in a reduction in mitochondrial mass, which ultimately contributes to the inhibition of the host's innate immune response. Interestingly, we found that inhibiting mitophagy and promoting mitochondrial biogenesis can reverse NSP1-mediated suppression of innate immune response by increasing mitochondrial mass. These findings provide valuable insights into the molecular mechanisms of ALSV pathogenesis and suggest potential therapeutic targets against ALSV infection.
Collapse
Affiliation(s)
- Yinghua Zhao
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Liyan Sui
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Mingming Pan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Fangyu Jin
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yuan Huang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shu Fang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Mengmeng Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Lihe Che
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Wenbo Xu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Nan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Haicheng Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Fang Du
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhengkai Wei
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jixue Zhao
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun, China
| | - Kaiyu Zhang
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Yicheng Zhao
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Quan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Ren W, Fu C, Zhang Y, Ju X, Jiang X, Song J, Gong M, Li Z, Fan W, Yao J, Ding Q. Zika virus NS5 protein inhibits type I interferon signaling via CRL3 E3 ubiquitin ligase-mediated degradation of STAT2. Proc Natl Acad Sci U S A 2024; 121:e2403235121. [PMID: 39145933 PMCID: PMC11348293 DOI: 10.1073/pnas.2403235121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
The ZIKA virus (ZIKV) evades the host immune response by degrading STAT2 through its NS5 protein, thereby inhibiting type I interferon (IFN)-mediated antiviral immunity. However, the molecular mechanism underlying this process has remained elusive. In this study, we performed a genome-wide CRISPR/Cas9 screen, revealing that ZSWIM8 as the substrate receptor of Cullin3-RING E3 ligase is required for NS5-mediated STAT2 degradation. Genetic depletion of ZSWIM8 and CUL3 substantially impeded NS5-mediated STAT2 degradation. Biochemical analysis illuminated that NS5 enhances the interaction between STAT2 and the ZSWIM8-CUL3 E3 ligase complex, thereby facilitating STAT2 ubiquitination. Moreover, ZSWIM8 knockout endowed A549 and Huh7 cells with partial resistance to ZIKV infection and protected cells from the cytopathic effects induced by ZIKV, which was attributed to the restoration of STAT2 levels and the activation of IFN signaling. Subsequent studies in a physiologically relevant model, utilizing human neural progenitor cells, demonstrated that ZSWIM8 depletion reduced ZIKV infection, resulting from enhanced IFN signaling attributed to the sustained levels of STAT2. Our findings shed light on the role of ZIKV NS5, serving as the scaffold protein, reprograms the ZSWIM8-CUL3 E3 ligase complex to orchestrate STAT2 proteasome-dependent degradation, thereby facilitating evasion of IFN antiviral signaling. Our study provides unique insights into ZIKV-host interactions and holds promise for the development of antivirals and prophylactic vaccines.
Collapse
Affiliation(s)
- Wenlin Ren
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Chonglei Fu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yu Zhang
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Xiaohui Ju
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Xi Jiang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Jingwei Song
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Mingli Gong
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Zhuoyang Li
- Shanxi Medical University-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan030001, China
- School of Management, Shanxi Medical University, Taiyuan030001, China
| | - Wenchun Fan
- Life Science Institute, Zhejiang University, Hangzhou31008, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Qiang Ding
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
- Shanxi Medical University-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan030001, China
| |
Collapse
|
5
|
Goh JZH, De Hayr L, Khromykh AA, Slonchak A. The Flavivirus Non-Structural Protein 5 (NS5): Structure, Functions, and Targeting for Development of Vaccines and Therapeutics. Vaccines (Basel) 2024; 12:865. [PMID: 39203991 PMCID: PMC11360482 DOI: 10.3390/vaccines12080865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and antiviral therapeutics is imperative. The flaviviral non-structural protein 5 (NS5) is a highly conserved and multifunctional protein that is crucial for viral replication, and the NS5 protein of many flaviviruses has been shown to be a potent inhibitor of interferon (IFN) signalling. In this review, we discuss the functions of NS5, diverse NS5-mediated strategies adopted by flaviviruses to evade the host antiviral response, and how NS5 can be a target for the development of vaccines and antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | - Andrii Slonchak
- Australian Infectious Diseases Research Center, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Z.H.G.); (L.D.H.); (A.A.K.)
| |
Collapse
|
6
|
Prančlová V, Hönig V, Zemanová M, Růžek D, Palus M. Robust CXCL10/IP-10 and CCL5/RANTES Production Induced by Tick-Borne Encephalitis Virus in Human Brain Pericytes Despite Weak Infection. Int J Mol Sci 2024; 25:7892. [PMID: 39063134 PMCID: PMC11276942 DOI: 10.3390/ijms25147892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Tick-borne encephalitis virus (TBEV) targets the central nervous system (CNS), leading to potentially severe neurological complications. The neurovascular unit plays a fundamental role in the CNS and in the neuroinvasion of TBEV. However, the role of human brain pericytes, a key component of the neurovascular unit, during TBEV infection has not yet been elucidated. In this study, TBEV infection of the primary human brain perivascular pericytes was investigated with highly virulent Hypr strain and mildly virulent Neudoerfl strain. We used Luminex assay to measure cytokines/chemokines and growth factors. Both viral strains showed comparable replication kinetics, peaking at 3 days post infection (dpi). Intracellular viral RNA copies peaked at 6 dpi for Hypr and 3 dpi for Neudoerfl cultures. According to immunofluorescence staining, only small proportion of pericytes were infected (3% for Hypr and 2% for Neudoerfl), and no cytopathic effect was observed in the infected cells. In cell culture supernatants, IL-6 production was detected at 3 dpi, together with slight increases in IL-15 and IL-4, but IP-10, RANTES and MCP-1 were the main chemokines released after TBEV infection. These chemokines play key roles in both immune defense and immunopathology during TBE. This study suggests that pericytes are an important source of these signaling molecules during TBEV infection in the brain.
Collapse
Affiliation(s)
- Veronika Prančlová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic (V.H.)
- Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czech Republic
| | - Václav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic (V.H.)
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, CZ-62100 Brno, Czech Republic
| | - Marta Zemanová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic (V.H.)
| | - Daniel Růžek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic (V.H.)
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, CZ-62100 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic (V.H.)
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, CZ-62100 Brno, Czech Republic
| |
Collapse
|
7
|
Moon S, Lee KW, Park M, Moon J, Park SH, Kim S, Hwang J, Yoon JW, Jeon SM, Kim JS, Jeon YJ, Kweon DH. 3-Fucosyllactose-mediated modulation of immune response against virus infection. Int J Antimicrob Agents 2024; 64:107187. [PMID: 38697577 DOI: 10.1016/j.ijantimicag.2024.107187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Viral pathogens, particularly influenza and SARS-CoV-2, pose a significant global health challenge. Given the immunomodulatory properties of human milk oligosaccharides, in particular 2'-fucosyllactose and 3-fucosyllactose (3-FL), we investigated their dietary supplementation effects on antiviral responses in mouse models. This study revealed distinct immune modulations induced by 3-FL. RNA-sequencing data showed that 3-FL increased the expression of interferon receptors, such as Interferon Alpha and Beta Receptor (IFNAR) and Interferon Gamma Receptor (IFNGR), while simultaneously downregulating interferons and interferon-stimulated genes, an effect not observed with 2'-fucosyllactose supplementation. Such modulation enhanced antiviral responses in both cell culture and animal models while attenuating pre-emptive inflammatory responses. Nitric oxide concentrations in 3-FL-supplemented A549 cells and mouse lung tissues were elevated exclusively upon infection, reaching 5.8- and 1.9-fold increases over control groups, respectively. In addition, 3-FL promoted leukocyte infiltration into the site of infection upon viral challenge. 3-FL supplementation provided protective efficacy against lethal influenza challenge in mice. The demonstrated antiviral efficacy spanned multiple influenza strains and extended to SARS-CoV-2. In conclusion, 3-FL is a unique immunomodulator that helps protect the host from viral infection while suppressing inflammation prior to infection.
Collapse
Affiliation(s)
- Seokoh Moon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ki Wook Lee
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeonghui Moon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sang Hee Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Soomin Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jaehyeon Hwang
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Won Yoon
- Advanced Protein Technologies Corp., Suwon, Republic of Korea
| | - Seon-Min Jeon
- Advanced Protein Technologies Corp., Suwon, Republic of Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea.
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea; Advanced Protein Technologies Corp., Suwon, Republic of Korea.
| |
Collapse
|
8
|
Veit EC, Salim MS, Jung MJ, Richardson RB, Boys IN, Quinlan M, Barrall EA, Bednarski E, Hamilton RE, Kikawa C, Elde NC, García-Sastre A, Evans MJ. Evolution of STAT2 resistance to flavivirus NS5 occurred multiple times despite genetic constraints. Nat Commun 2024; 15:5426. [PMID: 38926343 PMCID: PMC11208600 DOI: 10.1038/s41467-024-49758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Zika and dengue virus nonstructural protein 5 antagonism of STAT2, a critical interferon signaling transcription factor, to suppress the host interferon response is required for viremia and pathogenesis in a vertebrate host. This affects viral species tropism, as mouse STAT2 resistance renders only immunocompromised or humanized STAT2 mice infectable. Here, we explore how STAT2 evolution impacts antagonism. By measuring the susceptibility of 38 diverse STAT2 proteins, we demonstrate that resistance arose numerous times in mammalian evolution. In four species, resistance requires distinct sets of multiple amino acid changes that often individually disrupt STAT2 signaling. This reflects an evolutionary ridge where progressive resistance is balanced by the need to maintain STAT2 function. Furthermore, resistance may come with a fitness cost, as resistance that arose early in lemur evolution was subsequently lost in some lemur lineages. These findings underscore that while it is possible to evolve resistance to antagonism, complex evolutionary trajectories are required to avoid detrimental host fitness consequences.
Collapse
Affiliation(s)
- Ethan C Veit
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madihah S Salim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mariel J Jung
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R Blake Richardson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ian N Boys
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Meghan Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Erika A Barrall
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eva Bednarski
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachael E Hamilton
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caroline Kikawa
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Division of Basic Sciences and Computational Biology Program, Fred Hutch Cancer Center, Seattle, WA, USA
| | - Nels C Elde
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew J Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Naveed A, Eertink LG, Wang D, Li F. Lessons Learned from West Nile Virus Infection:Vaccinations in Equines and Their Implications for One Health Approaches. Viruses 2024; 16:781. [PMID: 38793662 PMCID: PMC11125849 DOI: 10.3390/v16050781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Humans and equines are two dead-end hosts of the mosquito-borne West Nile virus (WNV) with similar susceptibility and pathogenesis. Since the introduction of WNV vaccines into equine populations of the United States of America (USA) in late 2002, there have been only sporadic cases of WNV infection in equines. These cases are generally attributed to unvaccinated and under-vaccinated equines. In contrast, due to the lack of a human WNV vaccine, WNV cases in humans have remained steadily high. An average of 115 deaths have been reported per year in the USA since the first reported case in 1999. Therefore, the characterization of protective immune responses to WNV and the identification of immune correlates of protection in vaccinated equines will provide new fundamental information about the successful development and evaluation of WNV vaccines in humans. This review discusses the comparative epidemiology, transmission, susceptibility to infection and disease, clinical manifestation and pathogenesis, and immune responses of WNV in humans and equines. Furthermore, prophylactic and therapeutic strategies that are currently available and under development are described. In addition, the successful vaccination of equines against WNV and the potential lessons for human vaccine development are discussed.
Collapse
Affiliation(s)
| | | | | | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA; (A.N.); (L.G.E.); (D.W.)
| |
Collapse
|
10
|
Lin S, Wang X, Sallapalli BT, Hage A, Chang P, He J, Best SM, Zhang Y. Langat virus inhibits the gp130/JAK/STAT signaling by reducing the gp130 protein level. J Med Virol 2024; 96:e29522. [PMID: 38533889 DOI: 10.1002/jmv.29522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
The tick-borne encephalitis virus (TBEV) serocomplex includes several medically important flavivirus members endemic to Europe, Asia, and North America, which can induce severe neuroinvasive or viscerotropic diseases with unclear mechanisms of pathogenesis. Langat virus (LGTV) shares a high sequence identity with TBEV but exhibits lower pathogenic potential in humans and serves as a model for virus-host interactions. In this study, we demonstrated that LGTV infection inhibits the activation of gp130/JAK/STAT (Janus kinases (JAK) and signal transducer and activator of transcription (STAT)) signaling, which plays a pivotal role in numerous biological processes. Our data show that the LGTV-infected cells had significantly lower phosphorylated STAT3 (pSTAT3) protein upon oncostatin M (OSM) stimulation than the mock-infected control. LGTV infection blocked the nuclear translocation of STAT3 without a significant effect on total STAT3 protein level. LGTV inhibited JAK1 activation and reduced gp130 protein expression in infected cells, with the viral NS5 protein mediating this effect. TBEV infection also reduces gp130 level. On the other hand, pretreatment of Vero cells with OSM significantly reduces LGTV replication, and STAT1/STAT2 knockdown had little effect on OSM-mediated antiviral effect, which suggests it is independent of STAT1/STAT2 and, instead, it is potentially mediated by STAT3 signlaing. These findings shed light on the LGTV and TBEV-cell interactions, offering insights for the future development of antiviral therapeutics and improved vaccines.
Collapse
Affiliation(s)
- Shaoli Lin
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Xiaochun Wang
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Bhargava Teja Sallapalli
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Adam Hage
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Peixi Chang
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Jia He
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Sonja M Best
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Yanjin Zhang
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| |
Collapse
|
11
|
Peng NYG, Sng JDJ, Setoh YX, Khromykh AA. Residue K28 of Zika Virus NS5 Protein Is Implicated in Virus Replication and Antagonism of STAT2. Microorganisms 2024; 12:660. [PMID: 38674605 PMCID: PMC11052099 DOI: 10.3390/microorganisms12040660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
The identification of four potential nonstructural 5 (NS5) residues-K28, K45, V335, and S749-that share the same amino acid preference in STAT2-interacting flaviviruses [Dengue virus (DENV) and Zika virus (ZIKV)], but not in STAT2-non-interacting flaviviruses [West Nile virus (WNV) and/or Yellow fever virus (YFV)] from an alignment of multiple flavivirus NS5 sequences, implied a possible association with the efficiency of ZIKV to antagonize the human signal transducer and activator of transcription factor 2 (STAT2). Through site-directed mutagenesis and reverse genetics, mutational impacts of these residues on ZIKV growth in vitro and STAT2 antagonism were assessed using virus growth kinetics assays and STAT2 immunoblotting. The results showed that mutations at the residue K28 significantly reduced the efficiency of ZIKV to antagonize STAT2. Further investigation involving residue K28 demonstrated its additional effects on the phenotypes of ZIKV-NS5 nuclear bodies. These findings demonstrate that K28, identified from sequence alignment, is an important determinant of replication and STAT2 antagonism by ZIKV.
Collapse
Affiliation(s)
- Nias Y. G. Peng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.D.J.S.); (Y.X.S.)
| | - Julian D. J. Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.D.J.S.); (Y.X.S.)
| | - Yin Xiang Setoh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.D.J.S.); (Y.X.S.)
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.D.J.S.); (Y.X.S.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072, Australia
| |
Collapse
|
12
|
Eni-Aganga I, Lanaghan ZM, Ismail F, Korolkova O, Goodwin JS, Balasubramaniam M, Dash C, Pandhare J. KLF6 activates Sp1-mediated prolidase transcription during TGF-β 1 signaling. J Biol Chem 2024; 300:105605. [PMID: 38159857 PMCID: PMC10847167 DOI: 10.1016/j.jbc.2023.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
Prolidase (PEPD) is the only hydrolase that cleaves the dipeptides containing C-terminal proline or hydroxyproline-the rate-limiting step in collagen biosynthesis. However, the molecular regulation of prolidase expression remains largely unknown. In this study, we have identified overlapping binding sites for the transcription factors Krüppel-like factor 6 (KLF6) and Specificity protein 1 (Sp1) in the PEPD promoter and demonstrate that KLF6/Sp1 transcriptionally regulate prolidase expression. By cloning the PEPD promoter into a luciferase reporter and through site-directed deletion, we pinpointed the minimal sequences required for KLF6 and Sp1-mediated PEPD promoter-driven transcription. Interestingly, Sp1 inhibition abrogated KLF6-mediated PEPD promoter activity, suggesting that Sp1 is required for the basal expression of prolidase. We further studied the regulation of PEPD by KLF6 and Sp1 during transforming growth factor β1 (TGF-β1) signaling, since both KLF6 and Sp1 are key players in TGF-β1 mediated collagen biosynthesis. Mouse and human fibroblasts exposed to TGF-β1 resulted in the induction of PEPD transcription and prolidase expression. Inhibition of TGF-β1 signaling abrogated PEPD promoter-driven transcriptional activity of KLF6 and Sp1. Knock-down of KLF6 as well as Sp1 inhibition also reduced prolidase expression. Chromatin immunoprecipitation assay supported direct binding of KLF6 and Sp1 to the PEPD promoter and this binding was enriched by TGF-β1 treatment. Finally, immunofluorescence studies showed that KLF6 co-operates with Sp1 in the nucleus to activate prolidase expression and enhance collagen biosynthesis. Collectively, our results identify functional elements of the PEPD promoter for KLF6 and Sp1-mediated transcriptional activation and describe the molecular mechanism of prolidase expression.
Collapse
Affiliation(s)
- Ireti Eni-Aganga
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA; School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA; Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Zeljka Miletic Lanaghan
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA; Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee, USA
| | - Farah Ismail
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
| | - Olga Korolkova
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA; Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Jeffery Shawn Goodwin
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA; Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA; Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA; Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee, USA; Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA.
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA; School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA; Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee, USA.
| |
Collapse
|
13
|
Guo J, Mi Y, Guo Y, Bai Y, Wang M, Wang W, Wang Y. Current Advances in Japanese Encephalitis Virus Drug Development. Viruses 2024; 16:202. [PMID: 38399978 PMCID: PMC10892782 DOI: 10.3390/v16020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Japanese encephalitis virus (JEV) belongs to the Flaviviridae family and is a representative mosquito-borne flavivirus responsible for acute encephalitis and meningitis in humans. Despite the availability of vaccines, JEV remains a major public health threat with the potential to spread globally. According to the World Health Organization (WHO), there are an estimated 69,000 cases of JE each year, and this figure is probably an underestimate. The majority of JE victims are children in endemic areas, and almost half of the surviving patients have motor or cognitive sequelae. Thus, the absence of a clinically approved drug for the treatment of JE defines an urgent medical need. Recently, several promising and potential drug candidates were reported through drug repurposing studies, high-throughput drug library screening, and de novo design. This review focuses on the historical aspects of JEV, the biology of JEV replication, targets for therapeutic strategies, a target product profile, and drug development initiatives.
Collapse
Affiliation(s)
- Jiao Guo
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China; (J.G.); (Y.M.); (Y.B.)
| | - Yunqi Mi
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China; (J.G.); (Y.M.); (Y.B.)
| | - Yan Guo
- College of Animal Science and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yang Bai
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China; (J.G.); (Y.M.); (Y.B.)
| | - Meihua Wang
- Faculty of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China;
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yang Wang
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China; (J.G.); (Y.M.); (Y.B.)
| |
Collapse
|
14
|
Biswal M, Yao W, Lu J, Chen J, Morrison J, Hai R, Song J. A conformational selection mechanism of flavivirus NS5 for species-specific STAT2 inhibition. Commun Biol 2024; 7:76. [PMID: 38195857 PMCID: PMC10776582 DOI: 10.1038/s42003-024-05768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Flaviviruses, including Zika virus (ZIKV) and Dengue virus (DENV), rely on their non-structural protein 5 (NS5) for both replication of viral genome and suppression of host IFN signaling. DENV and ZIKV NS5s were shown to facilitate proteosome-mediated protein degradation of human STAT2 (hSTAT2). However, how flavivirus NS5s have evolved for species-specific IFN-suppression remains unclear. Here we report structure-function characterization of the DENV serotype 2 (DENV2) NS5-hSTAT2 complex. The MTase and RdRP domains of DENV2 NS5 form an extended conformation to interact with the coiled-coil and N-terminal domains of hSTAT2, thereby promoting hSTAT2 degradation in cells. Disruption of the extended conformation of DENV2/ZIKV NS5, but not the alternative compact state, impaired their hSTAT2 binding. Our comparative structural analysis of flavivirus NS5s further reveals a conserved protein-interaction platform with subtle amino-acid variations likely underpinning diverse IFN-suppression mechanisms. Together, this study uncovers a conformational selection mechanism underlying species-specific hSTAT2 inhibition by flavivirus NS5.
Collapse
Affiliation(s)
- Mahamaya Biswal
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Wangyuan Yao
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Jianbin Chen
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Juliet Morrison
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Rong Hai
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA, USA.
| |
Collapse
|
15
|
Gracias S, Chazal M, Decombe A, Unterfinger Y, Sogues A, Pruvost L, Robert V, Lacour SA, Lemasson M, Sourisseau M, Li Z, Richardson J, Pellegrini S, Decroly E, Caval V, Jouvenet N. Tick-borne flavivirus NS5 antagonizes interferon signaling by inhibiting the catalytic activity of TYK2. EMBO Rep 2023; 24:e57424. [PMID: 37860832 PMCID: PMC10702846 DOI: 10.15252/embr.202357424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
The mechanisms utilized by different flaviviruses to evade antiviral functions of interferons are varied and incompletely understood. Using virological approaches, biochemical assays, and mass spectrometry analyses, we report here that the NS5 protein of tick-borne encephalitis virus (TBEV) and Louping Ill virus (LIV), two related tick-borne flaviviruses, antagonize JAK-STAT signaling through interactions with the tyrosine kinase 2 (TYK2). Co-immunoprecipitation (co-IP) experiments, yeast gap-repair assays, computational protein-protein docking and functional studies identify a stretch of 10 residues of the RNA dependent RNA polymerase domain of tick-borne flavivirus NS5, but not mosquito-borne NS5, that is critical for interactions with the TYK2 kinase domain. Additional co-IP assays performed with several TYK2 orthologs reveal that the interaction is conserved across mammalian species. In vitro kinase assays show that TBEV and LIV NS5 reduce the catalytic activity of TYK2. Our results thus illustrate a novel mechanism by which viruses suppress the interferon response.
Collapse
Affiliation(s)
- Ségolène Gracias
- Virus Sensing and Signaling Unit, CNRS UMR3569, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Maxime Chazal
- Virus Sensing and Signaling Unit, CNRS UMR3569, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Alice Decombe
- AFMB UMR 7257, CNRS, Aix Marseille Université, Marseille, France
| | - Yves Unterfinger
- UMR1161 Virologie Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Adrià Sogues
- Structural and Molecular Microbiology, VIB-VUB, Center for Structural Biology, Brussels, Belgium
| | - Lauryne Pruvost
- Virus Sensing and Signaling Unit, CNRS UMR3569, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Valentine Robert
- AFMB UMR 7257, CNRS, Aix Marseille Université, Marseille, France
| | - Sandrine A Lacour
- UMR1161 Virologie Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Manon Lemasson
- UMR1161 Virologie Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
- Phagos Pépinière Genopole Entreprise, Evry-Courcouronnes, France
| | - Marion Sourisseau
- UMR1161 Virologie Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Zhi Li
- Unit of Cytokine Signaling, INSERM U122, Institut Pasteur, Paris, France
- Human Evolutionary Genetics Unit, CNRS UMR2000, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Jennifer Richardson
- UMR1161 Virologie Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Sandra Pellegrini
- Unit of Cytokine Signaling, INSERM U122, Institut Pasteur, Paris, France
| | - Etienne Decroly
- AFMB UMR 7257, CNRS, Aix Marseille Université, Marseille, France
| | - Vincent Caval
- Virus Sensing and Signaling Unit, CNRS UMR3569, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Nolwenn Jouvenet
- Virus Sensing and Signaling Unit, CNRS UMR3569, Institut Pasteur, Université de Paris Cité, Paris, France
| |
Collapse
|
16
|
Zoladek J, Nisole S. Mosquito-borne flaviviruses and type I interferon: catch me if you can! Front Microbiol 2023; 14:1257024. [PMID: 37965539 PMCID: PMC10642725 DOI: 10.3389/fmicb.2023.1257024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Mosquito-borne flaviviruses include many viruses that are important human pathogens, including Yellow fever virus, Dengue virus, Zika virus and West Nile virus. While these viruses have long been confined to tropical regions, they now pose a global public health concern, as the geographical distribution of their mosquito vectors has dramatically expanded. The constant threat of flavivirus emergence and re-emergence underlines the need for a better understanding of the relationships between these viruses and their hosts. In particular, unraveling how these viruses manage to bypass antiviral immune mechanisms could enable the design of countermeasures to limit their impact on human health. The body's first line of defense against viral infections is provided by the interferon (IFN) response. This antiviral defense mechanism takes place in two waves, namely the induction of type I IFNs triggered by viral infection, followed by the IFN signaling pathway, which leads to the synthesis of interferon-stimulated genes (ISGs), whose products inhibit viral replication. In order to spread throughout the body, viruses must race against time to replicate before this IFN-induced antiviral state hinders their dissemination. In this review, we summarize our current knowledge on the multiple strategies developed by mosquito-borne flaviviruses to interfere with innate immune detection and signaling pathways, in order to delay, if not prevent, the establishment of an antiviral response.
Collapse
Affiliation(s)
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| |
Collapse
|
17
|
Tan Z, Wu J, Huang L, Wang T, Zheng Z, Zhang J, Ke X, Zhang Y, Liu Y, Wang H, Tao J, Gong P. LGP2 directly interacts with flavivirus NS5 RNA-dependent RNA polymerase and downregulates its pre-elongation activities. PLoS Pathog 2023; 19:e1011620. [PMID: 37656756 PMCID: PMC10501626 DOI: 10.1371/journal.ppat.1011620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 09/14/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
LGP2 is a RIG-I-like receptor (RLR) known to bind and recognize the intermediate double-stranded RNA (dsRNA) during virus infection and to induce type-I interferon (IFN)-related antiviral innate immune responses. Here, we find that LGP2 inhibits Zika virus (ZIKV) and tick-borne encephalitis virus (TBEV) replication independent of IFN induction. Co-immunoprecipitation (Co-IP) and confocal immunofluorescence data suggest that LGP2 likely colocalizes with the replication complex (RC) of ZIKV by interacting with viral RNA-dependent RNA polymerase (RdRP) NS5. We further verify that the regulatory domain (RD) of LGP2 directly interacts with RdRP of NS5 by biolayer interferometry assay. Data from in vitro RdRP assays indicate that LGP2 may inhibit polymerase activities of NS5 at pre-elongation but not elongation stages, while an RNA-binding-defective LGP2 mutant can still inhibit RdRP activities and virus replication. Taken together, our work suggests that LGP2 can inhibit flavivirus replication through direct interaction with NS5 protein and downregulates its polymerase pre-elongation activities, demonstrating a distinct role of LGP2 beyond its function in innate immune responses.
Collapse
Affiliation(s)
- Zhongyuan Tan
- The Joint Laboratory for Translational Precision Medicine, a. Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China and b. Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jiqin Wu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Li Huang
- The Joint Laboratory for Translational Precision Medicine, a. Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China and b. Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ting Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenhua Zheng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jianhui Zhang
- The Joint Laboratory for Translational Precision Medicine, a. Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China and b. Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xianliang Ke
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yuan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yan Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hanzhong Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jianping Tao
- The Joint Laboratory for Translational Precision Medicine, a. Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China and b. Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
18
|
Jia X, Tan L, Chen S, Tang R, Chen W. Monogenic lupus: Tracing the therapeutic implications from single gene mutations. Clin Immunol 2023; 254:109699. [PMID: 37481012 DOI: 10.1016/j.clim.2023.109699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/21/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Monogenic lupus, a distinctive variant of systemic lupus erythematosus (SLE), is characterized by early onset, family-centric clustering, and heightened disease severity. So far, over thirty genetic variations have been identified as single-gene etiology of SLE and lupus-like phenotypes. The critical role of these gene mutations in disrupting various immune pathways is increasingly recognized. In particular, single gene mutation-driven dysfunction within the innate immunity, notably deficiencies in the complement system, impedes the degradation of free nucleic acid and immune complexes, thereby promoting activation of innate immune cells. The accumulation of these components in various tissues and organs creates a pro-inflammatory microenvironment, characterized by a surge in pro-inflammatory cytokines, chemokines, reactive oxygen species, and type I interferons. Concurrently, single gene mutation-associated defects in the adaptive immune system give rise to the emergence of autoreactive T cells, hyperactivated B cells and plasma cells. The ensuing spectrum of cytokines and autoimmune antibodies drives systemic disease manifestations, primarily including kidney, skin and central nervous system-related phenotypes. This review provides a thorough overview of the single gene mutations and potential consequent immune dysregulations in monogenic lupus, elucidating the pathogenic mechanisms of monogenic lupus. Furthermore, it discusses the recent advances made in the therapeutic interventions for monogenic lupus.
Collapse
Affiliation(s)
- Xiuzhi Jia
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Li Tan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Sixiu Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Ruihan Tang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| |
Collapse
|
19
|
Abstract
Re-emerging and new viral pathogens have caused significant morbidity and mortality around the world, as evidenced by the recent monkeypox, Ebola and Zika virus outbreaks and the ongoing COVID-19 pandemic. Successful viral infection relies on tactical viral strategies to derail or antagonize host innate immune defenses, in particular the production of type I interferons (IFNs) by infected cells. Viruses can thwart intracellular sensing systems that elicit IFN gene expression (that is, RIG-I-like receptors and the cGAS-STING axis) or obstruct signaling elicited by IFNs. In this Cell Science at a Glance article and the accompanying poster, we review the current knowledge about the major mechanisms employed by viruses to inhibit the activity of intracellular pattern-recognition receptors and their downstream signaling cascades leading to IFN-based antiviral host defenses. Advancing our understanding of viral immune evasion might spur unprecedented opportunities to develop new antiviral compounds or vaccines to prevent viral infectious diseases.
Collapse
Affiliation(s)
- Junji Zhu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Cindy Chiang
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| |
Collapse
|
20
|
Rescue and in vitro characterization of a divergent TBEV-Eu strain from the Netherlands. Sci Rep 2023; 13:2872. [PMID: 36807371 PMCID: PMC9938877 DOI: 10.1038/s41598-023-29075-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) may cause tick-borne encephalitis (TBE), a potential life-threatening infection of the central nervous system in humans. Phylogenetically, TBEVs can be subdivided into three main subtypes, which differ in endemic region and pathogenic potential. In 2016, TBEV was first detected in the Netherlands. One of two detected strains, referred to as Salland, belonged to the TBEV-Eu subtype, yet diverged ≥ 2% on amino acid level from other members of this subtype. Here, we report the successful rescue of this strain using infectious subgenomic amplicons and its subsequent in vitro characterization by comparison to two well-characterized TBEV-Eu strains; Neudoerfl and Hypr. In the human alveolar epithelial cell line A549, growth kinetics of Salland were comparable to the high pathogenicity TBEV-Eu strain Hypr, and both strains grew considerably faster than the mildly pathogenic strain Neudoerfl. In the human neuroblastoma cell line SK-N-SH, Salland replicated faster and to higher infectious titers than both reference strains. All three TBEV strains infected primary human monocyte-derived dendritic cells to a similar extent and interacted with the type I interferon system in a similar manner. The current study serves as the first in vitro characterization of the novel, divergent TBEV-Eu strain Salland.
Collapse
|
21
|
Ido F, Tessier S, Yoder N, Ramzy J, Longo S. Prolidase deficiency: A novel PEPD missense variant in exon 2. Am J Med Genet A 2023; 191:1388-1394. [PMID: 36757671 DOI: 10.1002/ajmg.a.63137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/10/2023]
Abstract
Prolidase deficiency is an autosomal recessive disease that causes impaired collagen degradation. Altered collagen homeostasis results in the intracellular accumulation of imidodipeptides, which contain proline and hydroxyproline. The many clinical manifestations of prolidase deficiency include dysmorphic facial features, skeletal deformities, hepatosplenomegaly, necrotizing skin ulcers, and recurrent infections. Current clinical knowledge of this genetic disease relies upon few case reports due to its extreme rarity. Diagnosis is dependent on the detection of a pathologic gene variant. Additional diagnostic confirmation may be provided by urine amino acid quantification or reduced in vitro prolidase activity. We present a case of prolidase deficiency caused by a novel variant manifested by skeletal malformations and lifelong multisystemic infections. Genetic testing revealed a homozygous missense variant in the PEPD gene at nucleotide position 200, whereby adenine was replaced by guanine (c.200A > G). The corresponding amino acid change replaced glutamine with arginine at codon 67 (p.Gln67Arg). After boiling the urine sample for hydrolysis, quantitative urine amino acids demonstrated a markedly elevated proline level, confirming the diagnosis. We also provide a discussion of the pathophysiology, clinical manifestations, diagnostic testing, and clinical management of this disease.
Collapse
Affiliation(s)
- Firas Ido
- Department of Pulmonary and Critical Care, St. Luke's University Health Network, Bethlehem, Pennsylvania, USA
| | - Steven Tessier
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Nicole Yoder
- Department of Pulmonary and Critical Care, St. Luke's University Health Network, Bethlehem, Pennsylvania, USA
| | - Joseph Ramzy
- Department of Pulmonary and Critical Care, St. Luke's University Health Network, Bethlehem, Pennsylvania, USA
| | - Santo Longo
- Department of Pathology, St. Luke's University Health Network, Bethlehem, Pennsylvania, USA
| |
Collapse
|
22
|
Jurisic L, Malatesta D, Zaccaria G, Di Teodoro G, Bonfini B, Valleriani F, Teodori L, Bencivenga F, Leone A, Ripà P, D'Innocenzo V, Rossi E, Lorusso A. Immunization with Usutu virus and with a chimeric West Nile virus (WNV) harboring Usutu-E protein protects immunocompetent adult mice against lethal challenges with different WNV lineage 1 and 2 strains. Vet Microbiol 2023; 277:109636. [PMID: 36580873 DOI: 10.1016/j.vetmic.2022.109636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
West Nile virus (WNV) and Usutu virus (USUV), two antigenically related flaviviruses co-circulating in Europe, can cause severe neurological disease in animals and humans. The immune response against USUV and WNV and their immunopathogenesis are still poorly investigated. Here we present results upon sequential infections of adult immunocompetent CD-1 and BALB/c mice primed with two different doses (high dose, HD or low dose, LD) of an USUV isolate and challenged with HD or LD of three different WNV isolates. CD-1 and BALB/c LD USUV-primed mice, regardless of the dose, are largely protected from lethal WNV challenges despite showing no detectable neutralizing antibodies. Furthermore, mice immunized with a chimeric virus harboring the E protein of USUV within the WNV backbone (WNVE-USUV) are protected against a lethal challenge with WNV. We believe these findings could contribute to understanding the dynamics of the interaction during sequential infection of these two flaviviruses.
Collapse
Affiliation(s)
- Lucija Jurisic
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Daniela Malatesta
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Guendalina Zaccaria
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Barbara Bonfini
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Fabrizia Valleriani
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | | | - Alessandra Leone
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Paola Ripà
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Vincenzo D'Innocenzo
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy.
| |
Collapse
|
23
|
Sui L, Zhao Y, Wang W, Chi H, Tian T, Wu P, Zhang J, Zhao Y, Wei ZK, Hou Z, Zhou G, Wang G, Wang Z, Liu Q. Flavivirus prM interacts with MDA5 and MAVS to inhibit RLR antiviral signaling. Cell Biosci 2023; 13:9. [PMID: 36639652 PMCID: PMC9837762 DOI: 10.1186/s13578-023-00957-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Vector-borne flaviviruses, including tick-borne encephalitis virus (TBEV), Zika virus (ZIKV), West Nile virus (WNV), yellow fever virus (YFV), dengue virus (DENV), and Japanese encephalitis virus (JEV), pose a growing threat to public health worldwide, and have evolved complex mechanisms to overcome host antiviral innate immunity. However, the underlying mechanisms of flavivirus structural proteins to evade host immune response remain elusive. RESULTS We showed that TBEV structural protein, pre-membrane (prM) protein, could inhibit type I interferon (IFN-I) production. Mechanically, TBEV prM interacted with both MDA5 and MAVS and interfered with the formation of MDA5-MAVS complex, thereby impeding the nuclear translocation and dimerization of IRF3 to inhibit RLR antiviral signaling. ZIKV and WNV prM was also demonstrated to interact with both MDA5 and MAVS, while dengue virus serotype 2 (DENV2) and YFV prM associated only with MDA5 or MAVS to suppress IFN-I production. In contrast, JEV prM could not suppress IFN-I production. Overexpression of TBEV and ZIKV prM significantly promoted the replication of TBEV and Sendai virus. CONCLUSION Our findings reveal the immune evasion mechanisms of flavivirus prM, which may contribute to understanding flavivirus pathogenicity, therapeutic intervention and vaccine development.
Collapse
Affiliation(s)
- Liyan Sui
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yinghua Zhao
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Wenfang Wang
- grid.64924.3d0000 0004 1760 5735College of Basic Medical Science, Jilin University, Changchun, China
| | - Hongmiao Chi
- grid.64924.3d0000 0004 1760 5735College of Basic Medical Science, Jilin University, Changchun, China
| | - Tian Tian
- grid.64924.3d0000 0004 1760 5735College of Basic Medical Science, Jilin University, Changchun, China
| | - Ping Wu
- grid.412246.70000 0004 1789 9091College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jinlong Zhang
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yicheng Zhao
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Zheng-Kai Wei
- grid.443369.f0000 0001 2331 8060School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zhijun Hou
- grid.412246.70000 0004 1789 9091College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Guoqiang Zhou
- grid.482450.f0000 0004 8514 6702The Biological safety level-3 Laboratory, Changchun Institute of Biological Products Co., Ltd, Changchun, China
| | - Guoqing Wang
- grid.64924.3d0000 0004 1760 5735College of Basic Medical Science, Jilin University, Changchun, China
| | - Zedong Wang
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Quan Liu
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China ,grid.443369.f0000 0001 2331 8060School of Life Sciences and Engineering, Foshan University, Foshan, China
| |
Collapse
|
24
|
Natural Compounds as Non-Nucleoside Inhibitors of Zika Virus Polymerase through Integration of In Silico and In Vitro Approaches. Pharmaceuticals (Basel) 2022; 15:ph15121493. [PMID: 36558945 PMCID: PMC9788182 DOI: 10.3390/ph15121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Although the past epidemic of Zika virus (ZIKV) resulted in severe neurological consequences for infected infants and adults, there are still no approved drugs to treat ZIKV infection. In this study, we applied computational approaches to screen an in-house database of 77 natural and semi-synthetic compounds against ZIKV NS5 RNA-dependent RNA-polymerase (NS5 RdRp), an essential protein for viral RNA elongation during the replication process. For this purpose, we integrated computational approaches such as binding-site conservation, chemical space analysis and molecular docking. As a result, we prioritized nine virtual hits for experimental evaluation. Enzymatic assays confirmed that pedalitin and quercetin inhibited ZIKV NS5 RdRp with IC50 values of 4.1 and 0.5 µM, respectively. Moreover, pedalitin also displayed antiviral activity on ZIKV infection with an EC50 of 19.28 µM cell-based assays, with low toxicity in Vero cells (CC50 = 83.66 µM) and selectivity index of 4.34. These results demonstrate the potential of the natural compounds pedalitin and quercetin as candidates for structural optimization studies towards the discovery of new anti-ZIKV drug candidates.
Collapse
|
25
|
Gomez S, Cox OL, Walker RR, Rentia U, Hadley M, Arthofer E, Diab N, Grundy EE, Kanholm T, McDonald JI, Kobyra J, Palmer E, Noonepalle S, Villagra A, Leitenberg D, Bollard CM, Saunthararajah Y, Chiappinelli KB. Inhibiting DNA methylation and RNA editing upregulates immunogenic RNA to transform the tumor microenvironment and prolong survival in ovarian cancer. J Immunother Cancer 2022; 10:jitc-2022-004974. [PMID: 36343976 PMCID: PMC9644370 DOI: 10.1136/jitc-2022-004974] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Novel therapies are urgently needed for ovarian cancer (OC), the fifth deadliest cancer in women. Preclinical work has shown that DNA methyltransferase inhibitors (DNMTis) can reverse the immunosuppressive tumor microenvironment in OC. Inhibiting DNA methyltransferases activate transcription of double-stranded (ds)RNA, including transposable elements. These dsRNAs activate sensors in the cytoplasm and trigger type I interferon (IFN) signaling, recruiting host immune cells to kill the tumor cells. Adenosine deaminase 1 (ADAR1) is induced by IFN signaling and edits mammalian dsRNA with an A-to-I nucleotide change, which is read as an A-to-G change in sequencing data. These edited dsRNAs cannot be sensed by dsRNA sensors, and thus ADAR1 inhibits the type I IFN response in a negative feedback loop. We hypothesized that decreasing ADAR1 editing would enhance the DNMTi-induced immune response. METHODS Human OC cell lines were treated in vitro with DNMTi and then RNA-sequenced to measure RNA editing. Adar1 was stably knocked down in ID8 Trp53-/- mouse OC cells. Control cells (shGFP) or shAdar1 cells were tested with mock or DNMTi treatment. Tumor-infiltrating immune cells were immunophenotyped using flow cytometry and cell culture supernatants were analyzed for secreted chemokines/cytokines. Mice were injected with syngeneic shAdar1 ID8 Trp53-/- cells and treated with tetrahydrouridine/DNMTi while given anti-interferon alpha and beta receptor 1, anti-CD8, or anti-NK1.1 antibodies every 3 days. RESULTS We show that ADAR1 edits transposable elements in human OC cell lines after DNMTi treatment in vitro. Combining ADAR1 knockdown with DNMTi significantly increases pro-inflammatory cytokine/chemokine production and sensitivity to IFN-β compared with either perturbation alone. Furthermore, DNMTi treatment and Adar1 loss reduces tumor burden and prolongs survival in an immunocompetent mouse model of OC. Combining Adar1 loss and DNMTi elicited the most robust antitumor response and transformed the immune microenvironment with increased recruitment and activation of CD8+ T cells. CONCLUSION In summary, we showed that the survival benefit from DNMTi plus ADAR1 inhibition is dependent on type I IFN signaling. Thus, epigenetically inducing transposable element transcription combined with inhibition of RNA editing is a novel therapeutic strategy to reverse immune evasion in OC, a disease that does not respond to current immunotherapies.
Collapse
Affiliation(s)
- Stephanie Gomez
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Olivia L Cox
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Reddick R Walker
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Uzma Rentia
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Melissa Hadley
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Elisa Arthofer
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Noor Diab
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Erin E Grundy
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Tomas Kanholm
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - James I McDonald
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Julie Kobyra
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Erica Palmer
- Department of Biochemistry, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Satish Noonepalle
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Alejandro Villagra
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - David Leitenberg
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA,Department of Pediatrics, Division of Pathology and Laboratory Medicine, Children's National Hospital, Washington, District of Columbia, USA
| | - Catherine M Bollard
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA,Department of Pediatrics, Children's National Hospital, Washington, District of Columbia, USA
| | - Yogen Saunthararajah
- Department of Hematology and Medical Oncology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
26
|
The Highly Efficient Expression System of Recombinant Human Prolidase and the Effect of N-Terminal His-Tag on the Enzyme Activity. Cells 2022; 11:cells11203284. [DOI: 10.3390/cells11203284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Prolidase is an enzyme hydrolyzing dipeptides containing proline or hydroxyprolineat the C-terminus and plays an important role in collagen turnover. Human prolidase is active as a dimer with the C-terminal domain containing two Mn2+ ions in its active site. The study aimed to develop a highly efficient expression system of recombinant human prolidase (rhPEPD) and to evaluate the effect of the N-terminal His-Tag on its enzymatic and biological activity. An optimized bacterial expression system and an optimized purification procedure for rhPEPD included the two-step rhPEPD purification procedure based on (i) affinity chromatography on an Ni2+ ion-bound chromatography column and (ii) gel filtration with the possibility of tag removal by selective digestion with protease Xa. As the study showed, a high concentration of IPTGand high temperature of induction led to a fast stimulation of gene expression, which as a result forced the host into an intensive and fast production of rhPEPD. The results demonstrated that a slow induction of gene expression (low concentration of inducing factor, temperature, and longer induction time) led to efficient protein production in the soluble fraction. Moreover, the study proved that the presence of His-Tag changed neither the expression pattern of EGFR-downstream signaling proteins nor the prolidase catalytic activity.
Collapse
|
27
|
Fishburn AT, Pham OH, Kenaston MW, Beesabathuni NS, Shah PS. Let's Get Physical: Flavivirus-Host Protein-Protein Interactions in Replication and Pathogenesis. Front Microbiol 2022; 13:847588. [PMID: 35308381 PMCID: PMC8928165 DOI: 10.3389/fmicb.2022.847588] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Flaviviruses comprise a genus of viruses that pose a significant burden on human health worldwide. Transmission by both mosquito and tick vectors, and broad host tropism contribute to the presence of flaviviruses globally. Like all viruses, they require utilization of host molecular machinery to facilitate their replication through physical interactions. Their RNA genomes are translated using host ribosomes, synthesizing viral proteins that cooperate with each other and host proteins to reshape the host cell into a factory for virus replication. Thus, dissecting the physical interactions between viral proteins and their host protein targets is essential in our comprehension of how flaviviruses replicate and how they alter host cell behavior. Beyond replication, even single interactions can contribute to immune evasion and pathogenesis, providing potential avenues for therapeutic intervention. Here, we review protein interactions between flavivirus and host proteins that contribute to virus replication, immune evasion, and disease.
Collapse
Affiliation(s)
- Adam T Fishburn
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Oanh H Pham
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Matthew W Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Nitin S Beesabathuni
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States.,Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Priya S Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States.,Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
28
|
Epigenomic and Proteomic Changes in Fetal Spleens Persistently Infected with Bovine Viral Diarrhea Virus: Repercussions for the Developing Immune System, Bone, Brain, and Heart. Viruses 2022; 14:v14030506. [PMID: 35336913 PMCID: PMC8949278 DOI: 10.3390/v14030506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 12/10/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) infection during early gestation results in persistently infected (PI) immunotolerant calves that are the primary reservoirs of the virus. Pathologies observed in PI cattle include congenital defects of the brain, heart, and bone as well as marked functional defects in their immune system. It was hypothesized that fetal BVDV infection alters T cell activation and signaling genes by epigenetic mechanisms. To test this, PI and control fetal splenic tissues were collected on day 245 of gestation, 170 days post maternal infection. DNA was isolated for reduced representation bisulfite sequencing, protein was isolated for proteomics, both were analyzed with appropriate bioinformatic methods. Within set parameters, 1951 hypermethylated and 691 hypomethylated DNA regions were identified in PI compared to control fetuses. Pathways associated with immune system, neural, cardiac, and bone development were associated with heavily methylated DNA. The proteomic analysis revealed 12 differentially expressed proteins in PI vs. control animals. Upregulated proteins were associated with protein processing, whereas downregulated proteins were associated with lymphocyte migration and development in PI compared to control fetal spleens. The epigenetic changes in DNA may explain the immune dysfunctions, abnormal bone formation, and brain and heart defects observed in PI animals.
Collapse
|
29
|
Alrumayyan N, Slauenwhite D, McAlpine SM, Roberts S, Issekutz TB, Huber AM, Liu Z, Derfalvi B. Prolidase deficiency, a rare inborn error of immunity, clinical phenotypes, immunological features, and proposed treatments in twins. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:17. [PMID: 35197125 PMCID: PMC8867623 DOI: 10.1186/s13223-022-00658-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/09/2022] [Indexed: 12/30/2022]
Abstract
Background Prolidase deficiency (PD) is an autosomal recessive inborn multisystemic disease caused by mutations in the PEPD gene encoding the enzyme prolidase D, leading to defects in turnover of proline-containing proteins, such as collagen. PD is categorized as a metabolic disease, but also as an inborn error of immunity. PD presents with a range of findings including dysmorphic features, intellectual disabilities, recurrent infections, intractable skin ulceration, autoimmunity, and splenomegaly. Despite symptoms of immune dysregulation, only very limited immunologic assessments have been reported and standard therapies for PD have not been described. We report twin females with PD, including comprehensive immunologic profiles and treatment modalities used. Case presentation Patient 1 had recurrent infections in childhood. At age 13, she presented with telangiectasia, followed by painful, refractory skin ulcerations on her lower limbs, where skin biopsy excluded vasculitis. She had typical dysmorphic features of PD. Next-generation sequencing revealed pathogenic compound heterozygous mutations (premature stop codons) in the PEPD gene. Patient 2 had the same mutations, typical PD facial features, atopy, and telangiectasias, but no skin ulceration. Both patients had imidodipeptiduria. Lymphocyte subset analysis revealed low-normal frequency of Treg cells and decreased frequency of expression of the checkpoint molecule CTLA-4 in CD4+ TEM cells. Analysis of Th1, Th2, and Th17 profiles revealed increased inflammatory IL-17+ CD8+ TEM cells in both patients and overexpression of the activation marker HLA-DR on CD4+ TEM cells, reflecting a highly activated proinflammatory state. Neither PD patient had specific antibody deficiencies despite low CD4+CXCR5+ Tfh cells and low class-switched memory B cells. Plasma IL-18 levels were exceptionally high. Conclusions Immunologic abnormalities including skewed frequencies of activated inflammatory CD4+ and CD8+ TEM cells, decreased CTLA-4 expression, and defects in memory B cells may be a feature of immune dysregulation associated with PD; however, a larger sample size is required to validate these findings. The high IL-18 plasma levels suggest underlying autoinflammatory processes.
Collapse
Affiliation(s)
- Nora Alrumayyan
- Division of Immunology, Department of Paediatrics, Dalhousie University, IWK Health Centre, Halifax, Canada
| | - Drew Slauenwhite
- Division of Immunology, Department of Paediatrics, Dalhousie University, IWK Health Centre, Halifax, Canada
| | - Sarah M McAlpine
- Division of Immunology, Department of Paediatrics, Dalhousie University, IWK Health Centre, Halifax, Canada
| | - Sarah Roberts
- Division of Immunology, Department of Paediatrics, Dalhousie University, IWK Health Centre, Halifax, Canada
| | - Thomas B Issekutz
- Division of Immunology, Department of Paediatrics, Dalhousie University, IWK Health Centre, Halifax, Canada
| | - Adam M Huber
- Division of Rheumatology, Department of Paediatrics, Dalhousie University, IWK Health Centre, Halifax, Canada
| | - Zaiping Liu
- Division of Clinical Biochemistry & Maritime Newborn Screening, Department of Pathology and Laboratory Medicine, Dalhousie University, IWK Health Centre, Halifax, Canada
| | - Beata Derfalvi
- Division of Immunology, Department of Paediatrics, Dalhousie University, IWK Health Centre, Halifax, Canada.
| |
Collapse
|
30
|
Wald ME, Sieg M, Schilling E, Binder M, Vahlenkamp TW, Claus C. The Interferon Response Dampens the Usutu Virus Infection-Associated Increase in Glycolysis. Front Cell Infect Microbiol 2022; 12:823181. [PMID: 35186796 PMCID: PMC8855070 DOI: 10.3389/fcimb.2022.823181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 01/05/2023] Open
Abstract
The mosquito-borne Usutu virus (USUV) is a zoonotic flavivirus and an emerging pathogen. So far therapeutical options or vaccines are not available in human and veterinary medicine. The bioenergetic profile based on extracellular flux analysis revealed an USUV infection-associated significant increase in basal and stressed glycolysis on Vero and with a tendency for basal glycolysis on the avian cell line TME-R derived from Eurasian blackbirds. On both cell lines this was accompanied by a significant drop in the metabolic potential of glycolysis. Moreover, glycolysis contributed to production of virus progeny, as inhibition of glycolysis with 2-deoxy-D-glucose reduced virus yield on Vero by one log10 step. Additionally, the increase in glycolysis observed on Vero cells after USUV infection was lost after the addition of exogenous type I interferon (IFN) β. To further explore the contribution of the IFN response pathway to the impact of USUV on cellular metabolism, USUV infection was characterized on human A549 respiratory cells with a knockout of the type I IFN receptor, either solely or together with the receptor of type III IFN. Notably, only the double knockout of types I and III IFN receptor increased permissiveness to USUV and supported viral replication together with an alteration of the glycolytic activity, namely an increase in basal glycolysis to an extent that a further increase after injection of metabolic stressors during extracellular flux analysis was not noted. This study provides evidence for glycolysis as a possible target for therapeutic intervention of USUV replication. Moreover, presented data highlight type I and type III IFN system as a determinant for human host cell permissiveness and for the infection-associated impact on glycolysis.
Collapse
Affiliation(s)
- Maria Elisabeth Wald
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Institute of Medical Microbiology and Virology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Michael Sieg
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Erik Schilling
- Institute of Clinical Immunology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Marco Binder
- Research Group “Dynamics of early viral infection and the innate antiviral response”, Division “Virus-Associated Carcinogenesis”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Claudia Claus
- Institute of Medical Microbiology and Virology, Medical Faculty, Leipzig University, Leipzig, Germany
- *Correspondence: Claudia Claus,
| |
Collapse
|
31
|
Pan Y, Cai W, Cheng A, Wang M, Yin Z, Jia R. Flaviviruses: Innate Immunity, Inflammasome Activation, Inflammatory Cell Death, and Cytokines. Front Immunol 2022; 13:829433. [PMID: 35154151 PMCID: PMC8835115 DOI: 10.3389/fimmu.2022.829433] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
The innate immune system is the host’s first line of defense against the invasion of pathogens including flavivirus. The programmed cell death controlled by genes plays an irreplaceable role in resisting pathogen invasion and preventing pathogen infection. However, the inflammatory cell death, which can trigger the overflow of a large number of pro-inflammatory cytokines and cell contents, will initiate a severe inflammatory response. In this review, we summarized the current understanding of the innate immune response, inflammatory cell death pathway and cytokine secretion regulation during Dengue virus, West Nile virus, Zika virus, Japanese encephalitis virus and other flavivirus infections. We also discussed the impact of these flavivirus and viral proteins on these biological processes. This not only provides a scientific basis for elucidating the pathogenesis of flavivirus, but also lays the foundation for the development of effective antiviral therapies.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Renyong Jia, ; Anchun Cheng,
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Renyong Jia, ; Anchun Cheng,
| |
Collapse
|
32
|
Abstract
Viruses are essentially, obligate intracellular parasites. They require a host to replicate their genetic material, spread to other cells, and eventually to other hosts. For humans, most viral infections are not considered lethal, regardless if at the cellular level, the virus can obliterate individual cells. Constant genomic mutations, (which can alter the antigenic content of viruses such as influenza or coronaviruses), zoonosis or immunosuppression/immunocompromisation, is when viruses achieve higher host mortality. Frequent examples of the severe consequenses of viral infection can be seen in children and the elderly. In most instances, the immune system will take a multifaceted approach in defending the host against viruses. Depending on the virus, the individual, and the point of entry, the immune system will initiate a robust response which involves multiple components. In this chapter, we expand on the total immune system, breaking it down to the two principal types: Innate and Adaptive Immunity, their different roles in viral recognition and clearance. Finally, how different viruses activate and evade different arms of the immune system.
Collapse
|
33
|
Rodriguez-Hernandez CJ, Sokoloski KJ, Stocke KS, Dukka H, Jin S, Metzler MA, Zaitsev K, Shpak B, Shen D, Miller DP, Artyomov MN, Lamont RJ, Bagaitkar J. Microbiome-mediated incapacitation of interferon lambda production in the oral mucosa. Proc Natl Acad Sci U S A 2021; 118:e2105170118. [PMID: 34921113 PMCID: PMC8713781 DOI: 10.1073/pnas.2105170118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 11/03/2021] [Indexed: 09/29/2023] Open
Abstract
Here, we show that Porphyromonas gingivalis (Pg), an endogenous oral pathogen, dampens all aspects of interferon (IFN) signaling in a manner that is strikingly similar to IFN suppression employed by multiple viral pathogens. Pg suppressed IFN production by down-regulating several IFN regulatory factors (IRFs 1, 3, 7, and 9), proteolytically degrading STAT1 and suppressing the nuclear translocation of the ISGF3 complex, resulting in profound and systemic repression of multiple interferon-stimulated genes. Pg-induced IFN paralysis was not limited to murine models but was also observed in the oral tissues of human periodontal disease patients, where overabundance of Pg correlated with suppressed IFN generation. Mechanistically, multiple virulence factors and secreted proteases produced by Pg transcriptionally suppressed IFN promoters and also cleaved IFN receptors, making cells refractory to exogenous IFN and inducing a state of broad IFN paralysis. Thus, our data show a bacterial pathogen with equivalence to viruses in the down-regulation of host IFN signaling.
Collapse
Affiliation(s)
- Carlos J Rodriguez-Hernandez
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202
| | - Kevin J Sokoloski
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202
| | - Kendall S Stocke
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202
| | - Himabindu Dukka
- Department of Diagnosis and Oral Health, University of Louisville, Louisville, KY 40202
| | - Shunying Jin
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202
| | - Melissa A Metzler
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202
| | - Konstantin Zaitsev
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Boris Shpak
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Daonan Shen
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202;
| | - Juhi Bagaitkar
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202;
| |
Collapse
|
34
|
van Leur SW, Heunis T, Munnur D, Sanyal S. Pathogenesis and virulence of flavivirus infections. Virulence 2021; 12:2814-2838. [PMID: 34696709 PMCID: PMC8632085 DOI: 10.1080/21505594.2021.1996059] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 11/01/2022] Open
Abstract
The Flavivirus genus consists of >70 members including several that are considered significant human pathogens. Flaviviruses display a broad spectrum of diseases that can be roughly categorised into two phenotypes - systemic disease involving haemorrhage exemplified by dengue and yellow Fever virus, and neurological complications associated with the likes of West Nile and Zika viruses. Attempts to develop vaccines have been variably successful against some. Besides, mosquito-borne flaviviruses can be vertically transmitted in the arthropods, enabling long term persistence and the possibility of re-emergence. Therefore, developing strategies to combat disease is imperative even if vaccines become available. The cellular interactions of flaviviruses with their human hosts are key to establishing the viral lifecycle on the one hand, and activation of host immunity on the other. The latter should ideally eradicate infection, but often leads to immunopathological and neurological consequences. In this review, we use Dengue and Zika viruses to discuss what we have learned about the cellular and molecular determinants of the viral lifecycle and the accompanying immunopathology, while highlighting current knowledge gaps which need to be addressed in future studies.
Collapse
Affiliation(s)
| | - Tiaan Heunis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| | - Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| |
Collapse
|
35
|
Petit MJ, Kenaston MW, Pham OH, Nagainis AA, Fishburn AT, Shah PS. Nuclear dengue virus NS5 antagonizes expression of PAF1-dependent immune response genes. PLoS Pathog 2021; 17:e1010100. [PMID: 34797876 PMCID: PMC8641875 DOI: 10.1371/journal.ppat.1010100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/03/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Dengue virus (DENV) disruption of the innate immune response is critical to establish infection. DENV non-structural protein 5 (NS5) plays a central role in this disruption, such as antagonism of STAT2. We recently found that DENV serotype 2 (DENV2) NS5 interacts with Polymerase associated factor 1 complex (PAF1C). The primary members of PAF1C are PAF1, LEO1, CTR9, and CDC73. This nuclear complex is an emerging player in the immune response. It promotes the expression of many genes, including genes related to the antiviral, antimicrobial and inflammatory responses, through close association with the chromatin of these genes. Our previous work demonstrated that NS5 antagonizes PAF1C recruitment to immune response genes. However, it remains unknown if NS5 antagonism of PAF1C is complementary to its antagonism of STAT2. Here, we show that knockout of PAF1 enhances DENV2 infectious virion production. By comparing gene expression profiles in PAF1 and STAT2 knockout cells, we find that PAF1 is necessary to express immune response genes that are STAT2-independent. Finally, we mapped the viral determinants for the NS5-PAF1C protein interaction. We found that NS5 nuclear localization and the C-terminal region of the methyltransferase domain are required for its interaction with PAF1C. Mutation of these regions rescued the expression of PAF1-dependent immune response genes that are antagonized by NS5. In sum, our results support a role for PAF1C in restricting DENV2 replication that NS5 antagonizes through its protein interaction with PAF1C. Dengue virus (DENV) is a pathogen that infects nearly 400 million people a year and thus represents a major challenge for public health. Productive infection by DENV relies on the effective evasion of intrinsic antiviral defenses and is often accomplished through virus-host protein interactions. Here, we investigate the recently discovered interaction between DENV non-structural protein 5 (NS5) and the transcriptional regulator Polymerase associated factor 1 complex (PAF1C). Our work demonstrates PAF1C member PAF1 acts as an antiviral factor and inhibits DENV replication. In parallel, we identified immune response genes involved in intrinsic antiviral defense that depend on PAF1 for expression. We further identified the regions of NS5 required for the protein interaction with PAF1C. Breaking the NS5-PAF1C protein interaction restores the expression of PAF1-dependent immune response genes. Together, our work establishes the antiviral role of PAF1C in DENV infection and NS5 antagonism of PAF1-dependent gene expression through a virus-host protein interaction.
Collapse
Affiliation(s)
- Marine J. Petit
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
- Department of Chemical Engineering, University of California, Davis, California, United States of America
| | - Matthew W. Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Oanh H. Pham
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Ariana A. Nagainis
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
- Department of Chemical Engineering, University of California, Davis, California, United States of America
| | - Adam T. Fishburn
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
- Department of Chemical Engineering, University of California, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Elrefaey AME, Hollinghurst P, Reitmayer CM, Alphey L, Maringer K. Innate Immune Antagonism of Mosquito-Borne Flaviviruses in Humans and Mosquitoes. Viruses 2021; 13:2116. [PMID: 34834923 PMCID: PMC8624719 DOI: 10.3390/v13112116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 01/01/2023] Open
Abstract
Mosquito-borne viruses of the Flavivirus genus (Flaviviridae family) pose an ongoing threat to global public health. For example, dengue, Japanese encephalitis, West Nile, yellow fever, and Zika viruses are transmitted by infected mosquitoes and cause severe and fatal diseases in humans. The means by which mosquito-borne flaviviruses establish persistent infection in mosquitoes and cause disease in humans are complex and depend upon a myriad of virus-host interactions, such as those of the innate immune system, which are the main focus of our review. This review also covers the different strategies utilized by mosquito-borne flaviviruses to antagonize the innate immune response in humans and mosquitoes. Given the lack of antiviral therapeutics for mosquito-borne flaviviruses, improving our understanding of these virus-immune interactions could lead to new antiviral therapies and strategies for developing refractory vectors incapable of transmitting these viruses, and can also provide insights into determinants of viral tropism that influence virus emergence into new species.
Collapse
Affiliation(s)
- Ahmed M. E. Elrefaey
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (P.H.); (C.M.R.); (L.A.)
| | - Philippa Hollinghurst
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (P.H.); (C.M.R.); (L.A.)
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | | | - Luke Alphey
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (P.H.); (C.M.R.); (L.A.)
| | - Kevin Maringer
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (P.H.); (C.M.R.); (L.A.)
| |
Collapse
|
37
|
Eni-Aganga I, Lanaghan ZM, Balasubramaniam M, Dash C, Pandhare J. PROLIDASE: A Review from Discovery to its Role in Health and Disease. Front Mol Biosci 2021; 8:723003. [PMID: 34532344 PMCID: PMC8438212 DOI: 10.3389/fmolb.2021.723003] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
Prolidase (peptidase D), encoded by the PEPD gene, is a ubiquitously expressed cytosolic metalloproteinase, the only enzyme capable of cleaving imidodipeptides containing C-terminal proline or hydroxyproline. Prolidase catalyzes the rate-limiting step during collagen recycling and is essential in protein metabolism, collagen turnover, and matrix remodeling. Prolidase, therefore plays a crucial role in several physiological processes such as wound healing, inflammation, angiogenesis, cell proliferation, and carcinogenesis. Accordingly, mutations leading to loss of prolidase catalytic activity result in prolidase deficiency a rare autosomal recessive metabolic disorder characterized by defective wound healing. In addition, alterations in prolidase enzyme activity have been documented in numerous pathological conditions, making prolidase a useful biochemical marker to measure disease severity. Furthermore, recent studies underscore the importance of a non-enzymatic role of prolidase in cell regulation and infectious disease. This review aims to provide comprehensive information on prolidase, from its discovery to its role in health and disease, while addressing the current knowledge gaps.
Collapse
Affiliation(s)
- Ireti Eni-Aganga
- Center for AIDS Health Disparities Research, Nashville, TN, United States
- School of Graduate Studies and Research, Nashville, TN, United States
- Department of Microbiology, Immunology and Physiology, Nashville, TN, United States
| | - Zeljka Miletic Lanaghan
- Center for AIDS Health Disparities Research, Nashville, TN, United States
- Pharmacology Graduate Program, Vanderbilt University, Nashville, TN, United States
| | - Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Nashville, TN, United States
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, United States
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Nashville, TN, United States
- School of Graduate Studies and Research, Nashville, TN, United States
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, United States
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Nashville, TN, United States
- School of Graduate Studies and Research, Nashville, TN, United States
- Department of Microbiology, Immunology and Physiology, Nashville, TN, United States
| |
Collapse
|
38
|
Shu J, Ma X, Zhang Y, Zou J, Yuan Z, Yi Z. NS5-independent Ablation of STAT2 by Zika virus to antagonize interferon signalling. Emerg Microbes Infect 2021; 10:1609-1625. [PMID: 34340648 PMCID: PMC8366623 DOI: 10.1080/22221751.2021.1964384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Flavivirus genus includes numerous arthropod-borne human pathogens that are clinically important. Flaviviruses are notorious for their ability to antagonize host interferon (IFN) induced anti-viral signalling. It has been documented that NS5s of flaviviruses mediate proteasome degradation of STAT2 to evade IFN signalling. Deciphering the molecular mechanism of the IFN antagonism by the viruses and reversing this antagonism may dictate anti-viral responses and provide novel antiviral approaches. In this report, by using Zika virus (ZIKV) as a model, we first demonstrated that ZIKV antagonized interferon signalling in an infectious dose-dependent manner; in other words, the virus antagonized interferon signalling at a high multiple of infection (MOI) and was sensitive to interferon signalling at a low MOI. Mechanistically, we found that ZIKV infection triggered degradation of ubiquitinated STAT2 and host short-lived proteins while didn't affect the proteasome activity per se. ZIKV infection resulted in suppression of host de novo protein synthesis. Overexpression of NS5 alone only marginally reduced STAT2 and had no effect on the host de novo protein synthesis. Ectopically expressed murine STAT2 that was resistant to NS5- and ZIKV-induced ablation exaggerated the IFN-induced anti-viral signalling. These data favour a new model of the innate immune evasion of ZIKV in which the viral infection triggers suppression of host de novo protein synthesis to accelerate the degradation of short-lived, ubiquitinated STAT2. As flaviviruses share a very conserved replication strategy, the mechanisms of IFN antagonism elucidated here might also be employed by other flaviviruses.
Collapse
Affiliation(s)
- Jun Shu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People's Republic of China
| | - Xiao Ma
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People's Republic of China
| | - Yang Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People's Republic of China
| | - Jingyi Zou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People's Republic of China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People's Republic of China
| | - Zhigang Yi
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People's Republic of China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
39
|
In Vitro Characterization of the Innate Immune Pathways Engaged by Live and Inactivated Tick-Borne Encephalitis Virus. Vaccines (Basel) 2021; 9:vaccines9060664. [PMID: 34204532 PMCID: PMC8234070 DOI: 10.3390/vaccines9060664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) infection can lead to inflammation of the central nervous system. The disease can be effectively prevented by whole inactivated virus vaccines. Here, we investigated the innate immune profile induced in vitro by the antigen component of the vaccines, inactivated TBEV (I-TBEV), to gain insights into the mechanism of action of the TBE vaccine as compared to the live virus. To this end, we exposed human peripheral blood mononuclear cells (PBMCs) to inactivated and live TBEV and assessed cellular responses by RNA sequencing. Both inactivated and live TBEV significantly induced an interferon-dominated gene signature and an increased RIG-I-like receptor (RLR) expression. Using pathway-specific inhibitors, we assessed the involvement of pattern recognition receptors in the sensing of inactivated or live TBEV. Only RLR pathway inhibition significantly suppressed the downstream cascade induced by I-TBEV, while responses to the replicating virus were impacted by the inhibition of RIG-I-like, as well as Toll-like, receptors. Our results show that inactivated and live TBEV predominantly engaged an interferon response in our in vitro PBMC platform, and indicate RLRs as the main pattern recognition receptors involved in I-TBEV sensing.
Collapse
|
40
|
Bhatia B, Haddock E, Shaia C, Rosenke R, Meade-White K, Griffin AJ, Marzi A, Feldmann H. Alkhurma haemorrhagic fever virus causes lethal disease in IFNAR -/- mice. Emerg Microbes Infect 2021; 10:1077-1087. [PMID: 34013842 PMCID: PMC8183530 DOI: 10.1080/22221751.2021.1932609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alkhurma haemorrhagic fever virus (AHFV), a tick-borne flavivirus closely related to Kyasanur Forest disease virus, is the causative agent of a severe, sometimes fatal haemorrhagic/encephalitic disease in humans. To date, there are no specific treatments or vaccines available to combat AHFV infections. A challenge for the development of countermeasures is the absence of a reliable AHFV animal disease model for efficacy testing. Here, we used mice lacking the type I interferon (IFN) receptor (IFNAR-/-). AHFV strains Zaki-2 and 2003 both caused uniform lethality in these mice after intraperitoneal injection, but strain 2003 seemed more virulent with a median lethal dose of 0.4 median tissue culture infectious doses (TCID50). Disease manifestation in this animal model was similar to case reports of severe human AHFV infections with early generalized signs leading to haemorrhagic and neurologic complications. AHFV infection resulted in early high viremia followed by high viral loads (<108 TCID50/g tissue) in all analyzed organs. Despite systemic viral replication, virus-induced pathology was mainly found in the spleen, lymph nodes, liver and heart. This uniformly lethal AHFV disease model will be instrumental for pathogenesis studies and countermeasure development against this neglected zoonotic pathogen.
Collapse
Affiliation(s)
- Bharti Bhatia
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Elaine Haddock
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Kimberly Meade-White
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Amanda J Griffin
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| |
Collapse
|
41
|
Hay-McCullough E, Morrison J. Contributions of Ubiquitin and Ubiquitination to Flaviviral Antagonism of Type I IFN. Viruses 2021; 13:763. [PMID: 33925296 PMCID: PMC8145522 DOI: 10.3390/v13050763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022] Open
Abstract
Flaviviruses implement a broad range of antagonism strategies against the host antiviral response. A pivotal component of the early host response is production and signaling of type I interferon (IFN-I). Ubiquitin, a prevalent cellular protein-modifying molecule, is heavily involved in the cellular regulation of this and other immune response pathways. Viruses use ubiquitin and ubiquitin machinery to antagonize various steps of these pathways through diverse mechanisms. Here, we highlight ways in which flaviviruses use or inhibit ubiquitin to antagonize the antiviral IFN-I response.
Collapse
Affiliation(s)
| | - Juliet Morrison
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA;
| |
Collapse
|
42
|
Trammell CE, Goodman AG. Host Factors That Control Mosquito-Borne Viral Infections in Humans and Their Vector. Viruses 2021; 13:748. [PMID: 33923307 PMCID: PMC8145797 DOI: 10.3390/v13050748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Mosquito-borne viral infections are responsible for a significant degree of morbidity and mortality across the globe due to the severe diseases these infections cause, and they continue to increase each year. These viruses are dependent on the mosquito vector as the primary means of transmission to new vertebrate hosts including avian, livestock, and human populations. Due to the dynamic host environments that mosquito-borne viruses pass through as they are transmitted between vector and vertebrate hosts, there are various host factors that control the response to infection over the course of the pathogen's life cycle. In this review, we discuss these host factors that are present in either vector or vertebrate models during infection, how they vary or are conserved between hosts, and their implications in future research pertaining to disease prevention and treatment.
Collapse
Affiliation(s)
- Chasity E. Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA;
- NIH Protein Biotechnology Training Program, Washington State University, Pullman, WA 99164-6240, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA;
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
43
|
Zhao Z, Tao M, Han W, Fan Z, Imran M, Cao S, Ye J. Nuclear localization of Zika virus NS5 contributes to suppression of type I interferon production and response. J Gen Virol 2021; 102:001376. [PMID: 31859616 PMCID: PMC8515865 DOI: 10.1099/jgv.0.001376] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus, which caused an unprecedented epidemic in Latin America. Among all viral non-structural proteins in flavivirus, NS5 is the most highly conserved and has multiple crucial functions, including participating in viral RNA replication and suppressing host innate immunity. Although ZIKV NS5 prominently localizes in the nucleus during infection, its specific nuclear localization signal (NLS), and its role in viral replication and pathogenesis remain controversial. Here, we identified aa 11-90 and aa 370-406 regions that contain NLSs, which are critical for nuclear localization of ZIKV NS5. Further experiments demonstrated that nuclear localization of ZIKV NS5 predominantly participates in suppression of interferon regulatory factor 3 (IRF3)-mediated activation of type I IFN (IFN-I) transcription and inhibition of IFN-I downstream response independent of its effect on signal transducers and activators of transcription 2 (STAT2) degradation. These results suggest that subcellular localization of NS5 is important for its function on innate immune suppression, which provides new insight into ZIKV pathogenesis.
Collapse
Affiliation(s)
- Zikai Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mengying Tao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wei Han
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zijing Fan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Imran
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
44
|
Role of PDZ-binding motif from West Nile virus NS5 protein on viral replication. Sci Rep 2021; 11:3266. [PMID: 33547379 PMCID: PMC7865074 DOI: 10.1038/s41598-021-82751-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
West Nile virus (WNV) is a Flavivirus, which can cause febrile illness in humans that may progress to encephalitis. Like any other obligate intracellular pathogens, Flaviviruses hijack cellular protein functions as a strategy for sustaining their life cycle. Many cellular proteins display globular domain known as PDZ domain that interacts with PDZ-Binding Motifs (PBM) identified in many viral proteins. Thus, cellular PDZ-containing proteins are common targets during viral infection. The non-structural protein 5 (NS5) from WNV provides both RNA cap methyltransferase and RNA polymerase activities and is involved in viral replication but its interactions with host proteins remain poorly known. In this study, we demonstrate that the C-terminal PBM of WNV NS5 recognizes several human PDZ-containing proteins using both in vitro and in cellulo high-throughput methods. Furthermore, we constructed and assayed in cell culture WNV replicons where the PBM within NS5 was mutated. Our results demonstrate that the PBM of WNV NS5 is important in WNV replication. Moreover, we show that knockdown of the PDZ-containing proteins TJP1, PARD3, ARHGAP21 or SHANK2 results in the decrease of WNV replication in cells. Altogether, our data reveal that interactions between the PBM of NS5 and PDZ-containing proteins affect West Nile virus replication.
Collapse
|
45
|
Zanin N, Viaris de Lesegno C, Lamaze C, Blouin CM. Interferon Receptor Trafficking and Signaling: Journey to the Cross Roads. Front Immunol 2021; 11:615603. [PMID: 33552080 PMCID: PMC7855707 DOI: 10.3389/fimmu.2020.615603] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Like most plasma membrane proteins, type I interferon (IFN) receptor (IFNAR) traffics from the outer surface to the inner compartments of the cell. Long considered as a passive means to simply control subunits availability at the plasma membrane, an array of new evidence establishes IFNAR endocytosis as an active contributor to the regulation of signal transduction triggered by IFN binding to IFNAR. During its complex journey initiated at the plasma membrane, the internalized IFNAR complex, i.e. IFNAR1 and IFNAR2 subunits, will experience post-translational modifications and recruit specific effectors. These finely tuned interactions will determine not only IFNAR subunits destiny (lysosomal degradation vs. plasma membrane recycling) but also the control of IFN-induced signal transduction. Finally, the IFNAR system perfectly illustrates the paradigm of the crosstalk between membrane trafficking and intracellular signaling. Investigating the complexity of IFN receptor intracellular routes is therefore necessary to reveal new insight into the role of IFNAR membrane dynamics in type I IFNs signaling selectivity and biological activity.
Collapse
Affiliation(s)
- Natacha Zanin
- NDORMS, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Christine Viaris de Lesegno
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| | - Christophe Lamaze
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| | - Cedric M Blouin
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| |
Collapse
|
46
|
Tian J, Kang H, Huang J, Li Z, Pan Y, Li Y, Chen S, Zhang J, Yin H, Qu L. Feline calicivirus strain 2280 p30 antagonizes type I interferon-mediated antiviral innate immunity through directly degrading IFNAR1 mRNA. PLoS Pathog 2020; 16:e1008944. [PMID: 33075108 PMCID: PMC7571719 DOI: 10.1371/journal.ppat.1008944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Feline calicivirus (FCV) belongs to the Caliciviridae, which comprises small RNA viruses of both medical and veterinary importance. Once infection has occurred, FCV can persist in the cat population, but the molecular mechanism of how it escapes the innate immune response is still unknown. In this study, we found FCV strain 2280 to be relatively resistant to treatment with IFN-β. FCV 2280 infection inhibited IFN-induced activation of the ISRE (Interferon-stimulated response element) promoter and transcription of ISGs (Interferon-stimulated genes). The mechanistic analysis showed that the expression of IFNAR1, but not IFNAR2, was markedly reduced in FCV 2280-infected cells by inducing the degradation of IFNAR1 mRNA, which inhibited the phosphorylation of downstream adaptors. Further, overexpression of the FCV 2280 nonstructural protein p30, but not p30 of the attenuated strain F9, downregulated the expression of IFNAR1 mRNA. His-p30 fusion proteins were produced in Escherichia coli and purified, and an in vitro digestion assay was performed. The results showed that 2280 His-p30 could directly degrade IFNAR1 RNA but not IFNAR2 RNA. Moreover, the 5’UTR of IFNAR1 mRNA renders it directly susceptible to cleavage by 2280 p30. Next, we constructed two chimeric viruses: rFCV 2280-F9 p30 and rFCV F9-2280 p30. Compared to infection with the parental virus, rFCV 2280-F9 p30 infection displayed attenuated activities in reducing the level of IFNAR1 and inhibiting the phosphorylation of STAT1 and STAT2, whereas rFCV F9-2280 p30 displayed enhanced activities. Animal experiments showed that the virulence of rFCV 2280-F9 p30 infection was attenuated but that the virulence of rFCV F9-2280 p30 was increased compared to that of the parental viruses. Collectively, these data show that FCV 2280 p30 could directly and selectively degrade IFNAR1 mRNA, thus blocking the type I interferon-induced activation of the JAK-STAT signalling pathway, which may contribute to the pathogenesis of FCV infection. Vaccination against FCV has been available for many years and has effectively reduced the incidence of clinical disease. However, vaccines cannot prevent infection, and vaccinated cats can still become persistently infected by FCV, suggesting that FCV has evolved several strategies for counteracting various components of the innate and adaptive immune systems. Here, we show that FCV strain 2280 is resistant to the antiviral effect of IFN. The molecular mechanism by which this occurs is that FCV 2280 infection blocks the JAK-STAT pathway through promoting the degradation of IFNAR1 mRNA by FCV p30 protein. An in vitro degradation assay demonstrated that 2280 p30, but not p30 of the vaccine strain F9, could directly and selectively decay IFNAR1 RNA. The exchange of p30 between 2280 and F9 strains using a reverse genetic system also showed that 2280 p30 is a key factor that contributes to the resistance to IFN and enhances virulence. Our findings reveal a new mechanism evolved by FCV to circumvent the host antiviral response.
Collapse
Affiliation(s)
- Jin Tian
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
- * E-mail: (JT); (LQ)
| | - Hongtao Kang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Jiapei Huang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Zhijie Li
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yudi Pan
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yin Li
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Si Chen
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Jikai Zhang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Hang Yin
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Liandong Qu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
- * E-mail: (JT); (LQ)
| |
Collapse
|
47
|
Current Understanding of the Emerging Role of Prolidase in Cellular Metabolism. Int J Mol Sci 2020; 21:ijms21165906. [PMID: 32824561 PMCID: PMC7460564 DOI: 10.3390/ijms21165906] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022] Open
Abstract
Prolidase [EC 3.4.13.9], known as PEPD, cleaves di- and tripeptides containing carboxyl-terminal proline or hydroxyproline. For decades, prolidase has been thoroughly investigated, and several mechanisms regulating its activity are known, including the activation of the β1-integrin receptor, insulin-like growth factor 1 receptor (IGF-1) receptor, and transforming growth factor (TGF)-β1 receptor. This process may result in increased availability of proline in the mitochondrial proline cycle, thus making proline serve as a substrate for the resynthesis of collagen, an intracellular signaling molecule. However, as a ligand, PEPD can bind directly to the epidermal growth factor receptor (EGFR, epidermal growth factor receptor 2 (HER2)) and regulate cellular metabolism. Recent reports have indicated that PEPD protects p53 from uncontrolled p53 subcellular activation and its translocation between cellular compartments. PEPD also participates in the maturation of the interferon α/β receptor by regulating its expression. In addition to the biological effects, prolidase demonstrates clinical significance reflected in the disease known as prolidase deficiency. It is also known that prolidase activity is affected in collagen metabolism disorders, metabolic, and oncological conditions. In this article, we review the latest knowledge about prolidase and highlight its biological function, and thus provide an in-depth understanding of prolidase as a dipeptidase and protein regulating the function of key biomolecules in cellular metabolism.
Collapse
|
48
|
Wang B, Thurmond S, Zhou K, Sánchez-Aparicio MT, Fang J, Lu J, Gao L, Ren W, Cui Y, Veit EC, Hong H, Evans MJ, O'Leary SE, García-Sastre A, Zhou ZH, Hai R, Song J. Structural basis for STAT2 suppression by flavivirus NS5. Nat Struct Mol Biol 2020; 27:875-885. [PMID: 32778820 PMCID: PMC7554153 DOI: 10.1038/s41594-020-0472-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/25/2020] [Indexed: 11/23/2022]
Abstract
Suppressing cellular signal transducers of transcription 2 (STAT2) is a common strategy viruses use to establish infections, yet the detailed mechanism remains elusive due to lack of structural information of the viral-cellular complex involved. Here, we report the cryo-EM and crystal structures of human STAT2 (hSTAT2) in complex with the non-structural protein 5 (NS5) of Zika virus (ZIKV) and dengue virus (DENV), revealing two-pronged interactions between NS5 and hSTAT2. First, the NS5 methyltransferase and RNA-dependent RNA polymerase (RdRP) domains form a conserved inter-domain cleft harboring the coiled-coil domain of hSTAT2, thus preventing association of hSTAT2 with interferon regulatory factor 9. Second, the NS5 RdRP domain also binds the N-terminal domain of hSTAT2. Disruption of these ZIKV NS5–hSTAT2 interactions compromised NS5-mediated hSTAT2 degradation and interferon suppression, and viral infection under interferon-competent condition. Taken together, these results clarify the mechanism underlying the functional antagonism of STAT2 by both ZIKV and DENV.
Collapse
Affiliation(s)
- Boxiao Wang
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Stephanie Thurmond
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.,Cell, Molecular and Developmental Biology Graduate Program, University of California, Riverside, CA, USA
| | - Kang Zhou
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Maria T Sánchez-Aparicio
- GlobalHealth and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Fang
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Linfeng Gao
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
| | - Wendan Ren
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Yanxiang Cui
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Ethan C Veit
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - HeaJin Hong
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Matthew J Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seán E O'Leary
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Adolfo García-Sastre
- GlobalHealth and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, CA, USA. .,Departement of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA.
| | - Rong Hai
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA. .,Cell, Molecular and Developmental Biology Graduate Program, University of California, Riverside, CA, USA.
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA, USA. .,Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA.
| |
Collapse
|
49
|
Abstract
Primary atopic disorders describes a series of monogenic diseases that have allergy- or atopic effector–related symptoms as a substantial feature. The underlying pathogenic genetic lesions help illustrate fundamental pathways in atopy, opening up diagnostic and therapeutic options for further study in those patients, but ultimately for common allergic diseases as well. Key pathways affected in these disorders include T cell receptor and B cell receptor signaling, cytokine signaling, skin barrier function, and mast cell function, as well as pathways that have not yet been elucidated. While comorbidities such as classically syndromic presentation or immune deficiency are often present, in some cases allergy alone is the presenting symptom, suggesting that commonly encountered allergic diseases exist on a spectrum of monogenic and complex genetic etiologies that are impacted by environmental risk factors.
Collapse
Affiliation(s)
- Joshua D. Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
50
|
Takahashi Y, Kobayashi S, Ishizuka M, Hirano M, Muto M, Nishiyama S, Kariwa H, Yoshii K. Characterization of tick-borne encephalitis virus isolated from a tick in central Hokkaido in 2017. J Gen Virol 2020; 101:497-509. [PMID: 32134377 DOI: 10.1099/jgv.0.001400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a zoonotic virus in the genus Flavivirus, family Flaviviridae. TBEV is widely distributed in northern regions of the Eurasian continent, including Japan, and causes severe encephalitis in humans. Tick-borne encephalitis (TBE) was recently reported in central Hokkaido, and wild animals with anti-TBEV antibodies were detected over a wide area of Hokkaido, although TBEV was only isolated in southern Hokkaido. In this study, we conducted a survey of ticks to isolate TBEV in central Hokkaido. One strain, designated Sapporo-17-Io1, was isolated from ticks (Ixodes ovatus) collected in Sapporo city. Sequence analysis revealed that the isolated strain belonged to the Far Eastern subtype of TBEV and was classified in a different subcluster from Oshima 5-10, which had previously been isolated in southern Hokkaido. Sapporo-17-Io1 showed similar growth properties to those of Oshima 5-10 in cultured cells and mouse brains. The mortality rate of mice infected intracerebrally with each virus was similar, but the survival time of mice inoculated with Sapporo-17-Io1 was significantly longer than that of mice inoculated with Oshima 5-10. These results indicate that the neurovirulence of Sapporo-17-Io1 was lower than that of Oshima 5-10. Using an infectious cDNA clone, the replacement of genes encoding non-structural genes from Oshima 5-10 with those from Sapporo-17-Io1 attenuated the neuropathogenicity of the cloned viruses. This result indicated that the non-structural proteins determine the neurovirulence of these two strains. Our results provide important insights for evaluating epidemiological risk in TBE-endemic areas of Hokkaido.
Collapse
Affiliation(s)
- Yuji Takahashi
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Kobayashi
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mariko Ishizuka
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Minato Hirano
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Memi Muto
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shoko Nishiyama
- Laboratory for Zoonotic Disease, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kentaro Yoshii
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| |
Collapse
|