1
|
Guo M, Wu H, Zhang J, Zhao L, He J, Yu Z, Ma X, Yong Y, Li Y, Ju X, Liu X. Baicalin n-butyl ester alleviates inflammatory bowel disease and inhibits pyroptosis through the ROS/ERK/P-ERK/NLRP3 pathway in vivo and in vitro. Biomed Pharmacother 2025; 186:118012. [PMID: 40168722 DOI: 10.1016/j.biopha.2025.118012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Baicalin is a flavonoid extracted from dried roots of the plant Scutellariabaicalensis. Baicalin n-butyl ester (BNE) is a flavonoid obtained by esterification of baicalin and has anti-inflammatory and antioxidant effects. PURPOSE The therapeutic efficacy and potential mechanism of BNE in inflammatory bowel disease remain unclear. This study investigated the effects and underlying mechanisms of BNE in ulcerative colitis. METHODS Dextran sulfate sodium (DSS) was used to construct a mouse model of ulcerative colitis, and mice were given intragastric administration of BNE. During the experiment, the changes of body weight and hematochezia of mice were observed. At the end of administration, the levels of inflammatory factors, colonic microbial changes and pyroptosis of colonic cells were measured. Mouse intestinal epithelial cells were stimulated by lipopolysaccharide/adenosine-5'-triphosphate to establish an in vitro model. ELISA, qRT-PCR and immunoblotting were used to explore the effect and mechanism of BNE on pyroptosis. RESULTS In vivo, BNE drastically attenuated ulcerative colitis symptoms by relieving body weight loss, a decline in colon length, and destruction of colon tissue structure. BNE also reduced the secretion of pro-inflammatory cytokines, including IL-1β, IL-18, and TNF-α, and reactive oxygen species (ROS). Furthermore, 16S rRNA sequencing analyses of gut microbiota revealed that BNE reversed gut microbiota dysbiosis by reducing the abundance of unclassified-Clostridia-UCG-014 and increasing that of Lachnospiraceae. BNE also inhibited cell pyroptosis in mice with DSS-induced colitis. In vitro analyses showed that BNE decreased the secretion of IL-1β, IL-18, TNF-α, and ROS in lipopolysaccharide/adenosine-5'-triphosphate-stimulated mouse intestinal epithelial cells, and it inhibited pyroptosis mediated by oligomeric domain-like receptor protein 3 (NLRP3). Addition of ROS scavenger and ERK inhibitor further confirmed that BNE down-regulated ROS and inhibited the phosphorylation of ERK, thus inhibiting NLRP3-mediated cell pyroptosis. The magnetic beads pull-down assay showed that BNE had the capacity to bind directly to the ERK proteinin MODE-K cells. CONCLUSION BNE protects against colitis by increasing the abundance of Lachnospiraceae in vivo and suppressing pyroptosis via binding ERK protein and inhibiting ROS/ERK/P-ERK/NLRP3 in vivo and in vitro.
Collapse
Affiliation(s)
- Mengru Guo
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huining Wu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Jin Zhang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Linlu Zhao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Jieyi He
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhichao Yu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xingbin Ma
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Youquan Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
2
|
Cao Y, Fan X, Zang T, Li Y, Tu Y, Wei Y, Bai J, Liu Y. Gut microbiota causes depressive phenotype by modulating glycerophospholipid and sphingolipid metabolism via the gut-brain axis. Psychiatry Res 2025; 346:116392. [PMID: 39933221 DOI: 10.1016/j.psychres.2025.116392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Emerging evidence suggests that changes in the gut microbiota (GM) are related to prenatal depression onset, but the underlying molecular mechanisms remain obscure. This study was conducted to explore how disordered GM is involved in the onset of prenatal depression through the microbiome-gut-brain (MGB) axis. We transplanted fecal microbiota from women with and without prenatal depression into germ-free mice. Fecal metagenomic sequencing and LC-MS untargeted metabolomics analysis were performed to identify the GM composition, function, and metabolites in mice. Lipid metabolomics analysis was then used to characterize the lipid metabolism of brain tissue in mice. We found that mice transplanted with fecal microbiota from women with prenatal depression exhibited depressive-like behaviors as well as characteristic disorders of the phylum Firmicutes. Weighted Gene Correlation Network Analysis identified three microbial and one metabolic module in the gut, alongside two lipid metabolic modules in the brain, as significantly related to all depressive-like behaviors. These modules were enriched for glycerophospholipid and sphingolipid metabolism. In addition, the GM of mice with depressive-like behaviors were enriched and deficient in relevant functions and enzymes in the glycerophospholipid (mainly phosphatidylethanolamine) and sphingolipid (mainly hexosyl-ceramide) metabolic pathways, respectively. Consistently, glycerophospholipid and sphingolipid metabolites in the brains of depressive-like mice were up- and down-regulated. Increased phosphatidylethanolamine and decreased hexosyl-ceramide were significantly related to differential genera in the gut. Collectively, our findings provide a novel microbial and metabolic framework for understanding the role of the MGB axis in prenatal depression, indicating that the GM may be involved in the onset of depressive phenotypes by modulating central glycerophospholipid and sphingolipid metabolic homeostasis.
Collapse
Affiliation(s)
- Yanan Cao
- Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
| | - Xiaoxiao Fan
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, PR China
| | - Tianzi Zang
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, PR China
| | - Yanting Li
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, PR China
| | - Yiming Tu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, PR China
| | - Yi Wei
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, PR China
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA, 30322, USA
| | - Yanqun Liu
- Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
3
|
Wang H, Lei Z, Zhai Y, Sun M, Chen S, Yin P, Duan Z, Wang X. Latroeggtoxin-VI improves depression by regulating the composition and function of gut microbiota in a mouse model of depression. J Med Microbiol 2025; 74. [PMID: 40202502 DOI: 10.1099/jmm.0.001977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Introduction. Depression has become one of the mental diseases that seriously affect human health. Its mechanism is very complex, and many factors influence the condition. An imbalance of the gut microbiota is being considered as a factor that impacts the occurrence and progression of depression. Future therapies may therefore tap into this connection, treating depression through manipulation of the gut microbiome.Hypothesis/Gap Statement. Latroeggtoxin-VI (LETX-VI), a proteinaceous neurotoxin from Latrodectus tredecimguttatus eggs, was previously demonstrated to inhibit excessive inflammation and improve depression behaviours, suggesting that it might be able to regulate the balance of gut microbiota. The aim of this study was to explore the effects of LPS and LETX-VI on depressive behaviours and gut microbiota and to analyse correlations between changes in the gut microbiota and depressive behaviours.Methodology. A murine model of depression was established, and the effects of LPS and LETX-VI treatment on depressive behaviours and gut microbiota were investigated.Results. In the murine model, depressive behaviour was induced by LPS; the ratio of Firmicutes to Bacteroidetes (F/B) and the number of pro-inflammatory bacteria in the gut microbiota increased (P<0.01), while butyric acid-producing bacteria with anti-inflammatory effect decreased (P<0.05). Furthermore, the metabolic function of the gut microbiota was disrupted, and the level of virulence factors among gut microbiota was up-regulated (P<0.05). Association analysis showed that the changes in the composition and function of gut microbiota were closely related to the depression phenotype of mice, suggesting that the abnormal function of gut microbiota is linked to depression. However, when LETX-VI was applied before LPS injection, the LPS-induced changes in the gut microbiota were alleviated, and the depressive behaviour greatly improved.Conclusion. LETX-VI can prevent depressive behaviour by regulating the composition and/or function of the gut microbiota.
Collapse
Affiliation(s)
- Haiyan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Zhixiang Lei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Yiwen Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Minglu Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Panfeng Yin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Zhigui Duan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| |
Collapse
|
4
|
Kaden T, Alonso‐Román R, Stallhofer J, Gresnigt MS, Hube B, Mosig AS. Leveraging Organ-on-Chip Models to Investigate Host-Microbiota Dynamics and Targeted Therapies for Inflammatory Bowel Disease. Adv Healthc Mater 2025; 14:e2402756. [PMID: 39491534 PMCID: PMC12004439 DOI: 10.1002/adhm.202402756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/29/2024] [Indexed: 11/05/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic gastrointestinal disease with drastically increasing incidence rates. Due to its multifactorial etiology, a precise investigation of the pathogenesis is extremely difficult. Although reductionist cell culture models and more complex disease models in animals have clarified the understanding of individual disease mechanisms and contributing factors of IBD in the past, it remains challenging to bridge research and clinical practice. Conventional 2D cell culture models cannot replicate complex host-microbiota interactions and stable long-term microbial culture. Further, extrapolating data from animal models to patients remains challenging due to genetic and environmental diversity leading to differences in immune responses. Human intestine organ-on-chip (OoC) models have emerged as an alternative in vitro model approach to investigate IBD. OoC models not only recapitulate the human intestinal microenvironment more accurately than 2D cultures yet may also be advantageous for the identification of important disease-driving factors and pharmacological interventions targets due to the possibility of emulating different complexities. The predispositions and biological hallmarks of IBD focusing on host-microbiota interactions at the intestinal mucosal barrier are elucidated here. Additionally, the potential of OoCs to explore microbiota-related therapies and personalized medicine for IBD treatment is discussed.
Collapse
Affiliation(s)
- Tim Kaden
- Dynamic42 GmbH07745JenaGermany
- Institute of Biochemistry IICenter for Sepsis Control and CareJena University Hospital07747JenaGermany
| | - Raquel Alonso‐Román
- Department of Microbial Pathogenicity MechanismsLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
- Junior Research Group Adaptive Pathogenicity StrategiesLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
| | | | - Mark S. Gresnigt
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
- Junior Research Group Adaptive Pathogenicity StrategiesLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
| | - Bernhard Hube
- Department of Microbial Pathogenicity MechanismsLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
- Institute of MicrobiologyFaculty of Biological SciencesFriedrich Schiller University07743JenaGermany
| | - Alexander S. Mosig
- Institute of Biochemistry IICenter for Sepsis Control and CareJena University Hospital07747JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
| |
Collapse
|
5
|
Wei X, Tang D. Effect of Bacteroides on Crohn's disease. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2025; 63:393-402. [PMID: 39586813 DOI: 10.1055/a-2435-2659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Crohn's disease (CD), also known as cicatrizing enteritis, is an inflammatory bowel disease that occurs in the distal ileum and right colon of unknown cause and is also called inflammatory bowel disease (IBD) with ulcerative colitis (UC). In recent years, intestinal biota have been confirmed to play a significant role in various gastrointestinal diseases. Studies have found that intestinal microbiota disorders are closely associated with the onset and progression of Crohn's disease. Bacteroidetes, the second largest microbiota in the intestine, are crucial for equilibrium in the microbiota and intestinal environment. Certain Bacteroides can induce the development of Crohn's disease and aggravate intestinal inflammation directly or through their metabolites. Conversely, certain Bacteroides can reduce intestinal inflammation and symptoms of Crohn's disease. This article reviews the effect of several intestinal Bacteroides in the onset and progression of Crohn's disease and their impact on its treatment.
Collapse
Affiliation(s)
- Xuanyu Wei
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Nanjing University, Yangzhou, China
| |
Collapse
|
6
|
Kim S, Ndwandwe C, Devotta H, Kareem L, Yao L, O'Mahony L. Role of the microbiome in regulation of the immune system. Allergol Int 2025; 74:187-196. [PMID: 39955207 DOI: 10.1016/j.alit.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 02/17/2025] Open
Abstract
Immune health and metabolic functions are intimately connected via diet and the microbiota. Immune cells are continuously exposed to a wide range of microbes and microbial-derived compounds, with important mucosal and systemic ramifications. Microbial fermentation of dietary components in vivo generates thousands of molecules, some of which are integral components of the molecular circuitry that regulates immune and metabolic functions. These in turn protect against aberrant inflammatory or hyper-reactive processes and promote effector immune responses that quickly eliminate pathogens, such as SARS-CoV-2. Potent tolerance mechanisms should ensure that these immune cells do not over-react to non-pathogenic factors (e.g. food proteins), while maintaining the ability to respond to infectious challenges in a robust, effective and well controlled manner. In this review we examine the factors and mechanisms that shape microbiota composition and interactions with the host immune system, their associations with immune mediated disorders and strategies for intervention.
Collapse
Affiliation(s)
- Songhui Kim
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Cebile Ndwandwe
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hannah Devotta
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Lamiah Kareem
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Lu Yao
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Liam O'Mahony
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Medicine, University College Cork, Cork, Ireland.
| |
Collapse
|
7
|
Yan F, Wang S, Wang Y, Sun Y, Yang J, Sun L, Zaytseva YY, Deng P, Wang L. LC-MS analysis of serum lipidomic and metabolomic signatures in pediatric patients with acute lymphoblastic leukemia. Ital J Pediatr 2025; 51:74. [PMID: 40075508 PMCID: PMC11905700 DOI: 10.1186/s13052-025-01921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is a prevalent hematologic malignancy that primarily affects children. The diagnosis and treatment of pediatric ALL remain challenging. This study aimed to identify differential lipids and metabolites that may hold potential for improving ALL treatment. METHODS In this retrospective case-control study, serum samples obtained from children with ALL and healthy controls were analyzed. Serum lipidome and metabolome alterations of ALL were analyzed by comparing pediatric patients with ALL with healthy controls based on liquid chromatography high-resolution mass spectrometry analysis of serum lipidomic and metabolomic signatures. RESULTS We identified 2,298 lipid features in the serum. Among them, 72 (3.13%) differed significantly in pediatric patients with ALL compared to healthy controls. Notably, sphingolipids (ceramide and sphingomyelin) and phospholipids exhibited the most pronounced changes. Targeted analysis of ceramides revealed significantly elevated levels of Cer 18:0 and Cer 20:0 in the serum of pediatric patients with ALL. Additionally, gut microbial-related lipids (such as sulfonolipids and fatty acid esters of hydroxy fatty acids) showed significant alterations. Metabolomic analysis identified 15 differential metabolites, indicating disrupted nucleotide and amino acid metabolism. Furthermore, the dysregulated lipids and metabolites correlated with various blood indicators, with ceramide and nucleosides positively associated with white blood cell count but negatively correlated with hemoglobin and platelet. CONCLUSION These findings shed light on abnormal molecular signatures contributing to pediatric ALL and may serve as potential biomarker panel for therapy of ALL.
Collapse
Affiliation(s)
- Feiyu Yan
- Department of Pediatrics Hematology and Oncology, The Affiliated Hospital of Qingdao University, Shandong, 266003, Shandong, China
| | - Shengnan Wang
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yilin Wang
- Department of Pediatrics Hematology and Oncology, The Affiliated Hospital of Qingdao University, Shandong, 266003, Shandong, China
| | - Yan Sun
- Department of Pediatrics Hematology and Oncology, The Affiliated Hospital of Qingdao University, Shandong, 266003, Shandong, China
| | - Jing Yang
- Department of Pediatrics Hematology and Oncology, The Affiliated Hospital of Qingdao University, Shandong, 266003, Shandong, China
| | - Lirong Sun
- Department of Pediatrics Hematology and Oncology, The Affiliated Hospital of Qingdao University, Shandong, 266003, Shandong, China
| | - Yekaterina Y Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Pan Deng
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Lingzhen Wang
- Department of Pediatrics Hematology and Oncology, The Affiliated Hospital of Qingdao University, Shandong, 266003, Shandong, China.
| |
Collapse
|
8
|
Winsor NJ, Bayer G, Singh O, Chan JK, Li LY, Lieng BY, Foerster E, Popovic A, Tsankov BK, Maughan H, Lemire P, Tam E, Streutker C, Chen L, Heaver SL, Ley RE, Parkinson J, Montenegro-Burke JR, Birchenough GMH, Philpott DJ, Girardin SE. Cross-kingdom-mediated detection of intestinal protozoa through NLRP6. Cell Host Microbe 2025; 33:388-407.e9. [PMID: 40043701 DOI: 10.1016/j.chom.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/13/2024] [Accepted: 02/10/2025] [Indexed: 03/15/2025]
Abstract
Intestinal protists are detected by the host innate immune system through mechanisms that remain poorly understood. Here, we demonstrate that Tritrichomonas protozoa induce thickening of the colonic mucus in an NLRP6-, ASC-, and caspase-11-dependent manner, consistent with the activation of sentinel goblet cells. Mucus growth is recapitulated with cecal extracts from Tritrichomonas-infected mice but not purified protozoa, suggesting that NLRP6 may detect infection-induced microbial dysbiosis. In agreement, Tritrichomonas infection causes a shift in the microbiota with the expansion of Bacteroides and Prevotella, and untargeted metabolomics reveals a dramatic increase in several classes of metabolites, including sphingolipids. Finally, using a combination of gnotobiotic mice and ex vivo mucus analysis, we demonstrate that wild-type, but not sphingolipid-deficient, B. thetaiotaomicron is sufficient to induce NLRP6-dependent sentinel goblet cell function, with the greatest effect observed in female mice. Thus, we propose that NLRP6 is a sensor of intestinal protozoa infection through monitoring microbial sphingolipids.
Collapse
Affiliation(s)
- Nathaniel J Winsor
- Department of Immunology, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Giuliano Bayer
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Ojas Singh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jeremy K Chan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lu Yi Li
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Brandon Y Lieng
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Ana Popovic
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Boyan K Tsankov
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Paul Lemire
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Elaine Tam
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Lina Chen
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Stacey L Heaver
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - John Parkinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - J Rafael Montenegro-Burke
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - George M H Birchenough
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| | - Stephen E Girardin
- Department of Immunology, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Guggeis MA, Harris DM, Welz L, Rosenstiel P, Aden K. Microbiota-derived metabolites in inflammatory bowel disease. Semin Immunopathol 2025; 47:19. [PMID: 40032666 DOI: 10.1007/s00281-025-01046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/25/2025] [Indexed: 03/05/2025]
Abstract
Understanding the role of the gut microbiota in the pathogenesis of inflammatory bowel diseases (IBD) has been an area of intense research over the past decades. Patients with IBD exhibit alterations in their microbial composition compared to healthy controls. However, studies focusing solely on taxonomic analyses have struggled to deliver replicable findings across cohorts regarding which microbial species drive the distinct patterns in IBD. The focus of research has therefore shifted to studying the functionality of gut microbes, especially by investigating their effector molecules involved in the immunomodulatory functions of the microbiota, namely metabolites. Metabolic profiles are altered in IBD, and several metabolites have been shown to play a causative role in shaping immune functions in animal models. Therefore, understanding the complex communication between the microbiota, metabolites, and the host bears great potential to unlock new biomarkers for diagnosis, disease course and therapy response as well as novel therapeutic options in the treatment of IBD. In this review, we primarily focus on promising classes of metabolites which are thought to exert beneficial effects and are generally decreased in IBD. Though results from human trials are promising, they have not so far provided a large-scale break-through in IBD-therapy improvement. We therefore propose tailored personalized supplementation of microbiota and metabolites based on multi-omics analysis which accounts for the individual microbial and metabolic profiles in IBD patients rather than one-size-fits-all approaches.
Collapse
Affiliation(s)
- Martina A Guggeis
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
| | - Danielle Mm Harris
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Division Nutriinformatics, Institute for Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Lina Welz
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany.
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany.
| |
Collapse
|
10
|
Wu S, Bu X, Chen D, Wu X, Wu H, Caiyin Q, Qiao J. Molecules-mediated bidirectional interactions between microbes and human cells. NPJ Biofilms Microbiomes 2025; 11:38. [PMID: 40038292 PMCID: PMC11880406 DOI: 10.1038/s41522-025-00657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/22/2025] [Indexed: 03/06/2025] Open
Abstract
Complex molecules-mediated interactions, which are based on the bidirectional information exchange between microbes and human cells, enable the defense against diseases and health maintenance. Recently, diverse single-direction interactions based on active metabolites, immunity factors, and quorum sensing signals have largely been summarized separately. In this review, according to a simplified timeline, we proposed the framework of Molecules-mediated Bidirectional Interactions (MBI) between microbe and humans to decipher and understand their intricate interactions systematically. About the microbe-derived interactions, we summarized various molecules, such as short-chain fatty acids, bile acids, tryptophan catabolites, and quorum sensing molecules, and their corresponding human receptors. Concerning the human-derived interactions, we reviewed the effect of human molecules, including hormones, cytokines, and other circulatory metabolites on microbial characteristics and phenotypes. Finally, we discussed the challenges and trends for developing and deciphering molecule-mediated bidirectional interactions and their potential applications in the guard of human health.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China
| | - Xueying Bu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Danlei Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China
| | - Xueyan Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hao Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
11
|
Wei H, Suo C, Gu X, Shen S, Lin K, Zhu C, Yan K, Bian Z, Chen L, Zhang T, Yan R, Yang Z, Yu Y, Li Z, Liu R, He J, He Q, Zhong X, Jia W, Wong CM, Dong Z, Cao J, Sun L, Zhang H, Gao P. AKR1D1 suppresses liver cancer progression by promoting bile acid metabolism-mediated NK cell cytotoxicity. Cell Metab 2025:S1550-4131(25)00011-7. [PMID: 40010348 DOI: 10.1016/j.cmet.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/31/2024] [Accepted: 01/14/2025] [Indexed: 02/28/2025]
Abstract
Bile acid metabolism and antitumor immunity are both disrupted during liver cancer progression. However, the complex regulatory relationship between them remains largely unclear. Here, we find that loss of aldo-keto reductase 1D1 (AKR1D1) promotes the accumulation of isolithocholic acid (iso-LCA) through gut microbiome dysregulation, thereby impairing the cytotoxic function of natural killer (NK) cells and leading to the accelerated development of hepatocellular carcinoma (HCC). Mechanistically, AKR1D1 deficiency leads to an increased proportion of Bacteroidetes ovatus (B. ovatus), which breaks down chenodeoxycholic acid (CDCA) into iso-LCA. Moreover, accumulated iso-LCA impairs the antitumor activity of hepatic NK cells in a phosphorylated-CREB1 (p-CREB1)-dependent manner. The potassium-sparing diuretic spironolactone treatment significantly enhances the inhibitory effect of anti-PD1 antibody on HCC progression by targeting iso-LCA-mediated tumor immune escape. Taken together, our results uncover a previously unappreciated link between AKR1D1 and HCC and suggest that targeting iso-LCA produced by B. ovatus might be a promising strategy to activate NK cell cytotoxicity to treat HCC.
Collapse
Affiliation(s)
- Haoran Wei
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China; National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Caixia Suo
- Department of Colorectal Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Xuemei Gu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Shengqi Shen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Kashuai Lin
- Department of Colorectal Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Chuxu Zhu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Kai Yan
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhenhua Bian
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Liang Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Tong Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ronghui Yan
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhiyi Yang
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yingxuan Yu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhikun Li
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Rui Liu
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Junming He
- School of Medicine and Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Qiwei He
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiuying Zhong
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weidong Jia
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Chun-Ming Wong
- State Key Laboratory of Liver Research, Department of Pathology, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Zhongjun Dong
- School of Medicine and Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Jie Cao
- Department of Colorectal Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Linchong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Huafeng Zhang
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Ping Gao
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China.
| |
Collapse
|
12
|
Wang L, Zhang Z, Chen X, Wang Z, Song X, Geng Z, Zhang X, Wang Y, Li J, Hu J, Zuo L. Sakuranetin ameliorates experimental colitis in a gut microbiota-dependent manner. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156540. [PMID: 40007342 DOI: 10.1016/j.phymed.2025.156540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/29/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND The progression of inflammatory bowel disease (IBD) is closely connected with intestinal flora dysbiosis. Sakuranetin (SAK) is a natural compound with anti-inflammatory and antibiosis activities. We investigated the properties and mechanisms of SAK on IBD-like colitis. METHODS Mice with dextran sulfate sodium (DSS)-induced colitis were accomplished to assess the effects of SAK on colitis, as well as intestinal mucosal immune imbalance and intestinal barrier dysfunction. 16S rDNA was used to characterize the intestinal flora, and the short-chain fatty acid (SCFA) content in faeces was calculated using GS‒MS. Faecal microbiota transplantation (FMT) and a pseudosterile model (antibiotic cocktail, ABX) were used to evaluate whether the effects of SAK on colitis were dependent on the gut flora. Pathohistological and biochemical tests were used to estimate the safety of SAK. RESULTS SAK significantly ameliorated DSS-induced colitis in mice, verified by decreased weight loss, less colon shortening, and lower disease activity, histology and colonoscopy scores. Moreover, SAK alleviated gut dysbiosis and elevated the abundance of SCFA-producing bacteria in DSS-treated mice. Meanwhile, SAK increased faecal SCFA levels and activated GPR41/43 signalling. SAK also improved Treg/Th17 homeostasis and intestinal barrier function. In addition, ABX and FMT experiments confirmed that the ability of SAK to alleviate colitis was mediated through the gut flora. Finally, a safety experiment revealed that SAK had no significant adverse effects on major organ or liver/kidney function. CONCLUSIONS SAK may improve the intestinal immune balance and barrier function by regulating intestinal flora dysbiosis and increasing SCFA production, thereby protecting against colitis.
Collapse
Affiliation(s)
- Lian Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
| | - Zhen Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
| | - Xiaohua Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
| | - Zhiyuan Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
| | - Xue Song
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Zhijun Geng
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xiaofeng Zhang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yueyue Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jing Li
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jianguo Hu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China.
| | - Lugen Zuo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China.
| |
Collapse
|
13
|
Elmassry MM, Sugihara K, Chankhamjon P, Kim Y, Camacho FR, Wang S, Sugimoto Y, Chatterjee S, Chen LA, Kamada N, Donia MS. A meta-analysis of the gut microbiome in inflammatory bowel disease patients identifies disease-associated small molecules. Cell Host Microbe 2025; 33:218-234.e12. [PMID: 39947133 DOI: 10.1016/j.chom.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/14/2024] [Accepted: 01/06/2025] [Indexed: 02/19/2025]
Abstract
Gut microbiome changes have been associated with several human diseases, but the molecular and functional details underlying these associations remain largely unknown. Here, we performed a meta-analysis of small molecule biosynthetic gene clusters (BGCs) in metagenomic samples of the gut microbiome from inflammatory bowel disease (IBD) patients and matched healthy subjects and identified two Clostridia-derived BGCs that are significantly associated with Crohn's disease (CD), a main IBD type. Using synthetic biology, we discovered and solved the structures of six fatty acid amides as the products of the CD-enriched BGCs, which we subsequently detected in fecal samples from IBD patients. Finally, we show that the discovered molecules disrupt gut permeability and exacerbate disease in chemically or genetically susceptible mouse models of colitis. These findings suggest that microbiome-derived small molecules may play a role in the etiology of IBD and represent a generalizable approach for discovering molecular mediators of disease-relevant microbiome-host interactions.
Collapse
Affiliation(s)
- Moamen M Elmassry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kohei Sugihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Yeji Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Francine R Camacho
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Shuo Wang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Yuki Sugimoto
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Seema Chatterjee
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lea Ann Chen
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
14
|
Li W, Wang Y, Shi Y, He F, Zhao Z, Liu J, Gao Z, Zhang J, Shen X. The gut microbiota mediates memory impairment under high-altitude hypoxia via the gut-brain axis in mice. FEBS J 2025; 292:809-826. [PMID: 39714951 DOI: 10.1111/febs.17365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/16/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Hypoxia is a predominant risk factor at high altitudes, and evidence suggests that high-altitude hypoxia alters the gut microbiota, which plays an essential regulatory role in memory function. However, the causal relationship between the gut microbiota and memory impairment under hypoxic conditions remains unclear. In this study, we employed a high-altitude hypoxia model combined with fecal microbiota transplantation (FMT) approach in mice to explore the effects of the gut microbiota on memory impairment in a hypoxic environment. We observed that high-altitude hypoxia exposure reduced short- and long-term memory and hippocampus-dependent fear memory abilities, along with decreased relative abundance of Ligilactobacillus and Muribaculum. Moreover, hypoxic conditions increased intestinal and blood-brain barrier permeability. FMT from hypoxia-exposed mice into naïve antibiotic-treated mice resulted in similar memory impairments, Ligilactobacillus and Muribaculum abundance changes, and increased intestinal/blood-brain barrier permeability. Correlation analysis showed a robust positive association between Ligilactobacillus and Muribaculum with hippocampus-dependent contextual fear memory. Likewise, Ligilactobacillus was positively correlated with short-term memory. Therefore, Ligilactobacillus and Muribaculum may be key microbes in reducing memory ability in hypoxia, with the intestinal and blood-brain barriers as primary pathways. Our findings provide further evidence for the potential regulatory mechanism by which gut microbiota dysbiosis may contribute to memory impairment in a high-altitude environment.
Collapse
Affiliation(s)
- Wenhao Li
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
- School of Public Health, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Yuhao Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases & Digestive Diseases of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Shi
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Fenfen He
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Zaihua Zhao
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Jingchun Liu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhenbo Gao
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Xuefeng Shen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
15
|
Zhang YH, Xie R, Dai CS, Gao HW, Zhou G, Qi TT, Wang WY, Wang H, Cui YM. Thyroid hormone receptor-beta agonist HSK31679 alleviates MASLD by modulating gut microbial sphingolipids. J Hepatol 2025; 82:189-202. [PMID: 39181210 DOI: 10.1016/j.jhep.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND & AIMS As the first approved medication for metabolic dysfunction-associated steatohepatitis (MASH), the thyroid hormone receptor-β (THR-β) agonist MGL-3196 (resmetirom) has garnered much attention as a liver-directed, bioactive oral drug. However, studies on MGL-3196 have also identified remarkable heterogeneity of individual clinical efficacy and its interference with gut microbiota in host hepatoenteral circulation remains to be elucidated. METHODS We compared MASH attenuation by MGL-3196 and its derivative drug HSK31679 between germ-free (GF) and specific-pathogen free (SPF) mice to evaluate the role of gut microbiota. Then cross-omics analyses of microbial metagenome, metabolome and single-cell RNA-sequencing were applied to a randomized, double-blind, placebo-controlled multiple ascending dose cohort receiving HSK31679 treatment (n = 32) or placebo (n = 8), to comprehensively investigate the altered gut microbiota metabolism and circulating immune signatures. RESULTS HSK31679 outperformed MGL-3196 in ameliorating MASH diet-induced steatohepatitis of SPF mice but not GF mice. In the multiple ascending dose cohort of HSK31679, the relative abundance of B. thetaiotaomicron was significantly enriched, impairing glucosylceramide synthase (GCS)-catalyzed monoglucosylation of microbial Cer(d18:1/16:0) and Cer(d18:1/24:1). In contrast to the non-inferior effect of MGL-3196 and HSK31679 on MASH resolution in GFBTΔGCS mice, HSK31679 led to superior benefit on steatohepatitis in GFBTWT mice, due to its steric hindrance of R123 and Y401 of gut microbial GCS. For participants with high fecal GCS activity, the administration of 160 mg HSK31679 induced a shift in peripheral compartments towards an immunosuppressive niche, characterized by decreased CD8α+ dendritic cells and MINCLE+ macrophages. CONCLUSIONS This study provided novel insights into the gut microbiota that are key to the efficacy of HSK31679 treatment, revealing microbial GCS as a potential predictive biomarker in MASH, as well as a new target for further microbiota-based treatment strategies for MASH. IMPACT AND IMPLICATIONS Remarkable heterogeneity in individual clinical efficacy of thyroid hormone receptor-β agonists and their interferences with the microbiome in host hepatoenteral circulation are poorly understood. In our current germ-free mouse models and a randomized, double-blind, multiple-dose cohort study, we identified microbial glucosylceramide synthase as a key mechanistic node in the resolution of metabolic dysfunction-associated steatohepatitis. Microbial glucosylceramide synthase activity could be a predictive biomarker of response to HSK31679 treatment or a new target for microbiota-based therapeutics in metabolic dysfunction-associated steatohepatitis.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, 100191, China; Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Ran Xie
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, 100191, China; Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Chen-Shu Dai
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, 100191, China; Department of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hong-Wei Gao
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Gan Zhou
- Department of Pharmacy, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Tian-Tian Qi
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, 100191, China
| | - Wen-Yu Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Yi-Min Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, 100191, China; Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
16
|
Meijnikman AS, Bruinstroop E. Non-responder on thyroid hormone receptor-β agonist? Bacteroides thetaiotaomicron to the rescue! J Hepatol 2025; 82:165-167. [PMID: 39550038 DOI: 10.1016/j.jhep.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Affiliation(s)
- Abraham S Meijnikman
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands; Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Dhakephalkar T, Guan Z, Klein EA. CpgD is a phosphoglycerate cytidylyltransferase required for ceramide diphosphoglycerate synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632243. [PMID: 39829823 PMCID: PMC11741362 DOI: 10.1101/2025.01.09.632243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Lipopolysaccharide (LPS) is essential in most Gram-negative bacteria, but mutants of several species have been isolated that can survive in its absence. Caulobacter crescentus viability in the absence of LPS is partially dependent on the anionic sphingolipid ceramide diphosphoglycerate (CPG2). Genetic analyses showed that ccna_01210 , which encodes a nucleotidyltransferase, is required for CPG2 production. Using purified recombinant protein, we determined that CCNA_01210 (CpgD) is a phosphoglycerate cytidylyltransferase which uses CTP and 3-phosphoglycerate to produce CDP-glycerate, which we hypothesize is the phosphoglycerate donor for CPG2 synthesis. CpgD had optimum activity at pH 7.5-8 in the presence of magnesium. CpgD exhibited Michaelis-Menten kinetics with respect to 3-phosphoglycerate (Km,app = 10.9 ± 0.7 mM; Vmax,app = 0.72 ± 0.02 µmol/min/mg enzyme) and CTP (Km,app = 4.8 ± 0.9 mM; Vmax,app = 0.44 ± 0.03 µmol/min/mg enzyme). The characterization of this enzyme uncovers another piece of the pathway towards CPG2 synthesis.
Collapse
|
18
|
Shen Y, Li W, Kai L, Fan Y, Wu Y, Wang F, Wang Y, Lu Z. Effects of dietary metabolizable energy and crude protein levels on production performance, meat quality and cecal microbiota of Taihe Silky Fowl during growing period. Poult Sci 2025; 104:104654. [PMID: 39693962 PMCID: PMC11719373 DOI: 10.1016/j.psj.2024.104654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024] Open
Abstract
This experiment aimed to investigate the effects of dietary metabolizable energy (ME) and crude protein (CP) levels and their interaction on the performance, meat quality, and cecal microbiota of Taihe Silky Fowl (Gallus gallus domesticus Brisson) during the growing period. A total of 2160 55-day-old Taihe Silky Fowl (half male and half female) were randomly divided into 9 groups with 6 replicates per group and 40 chickens per replicate. The fowl were fed with a 3 × 3 factor diet (ME: 11.7 MJ/kg, 12.1 MJ/kg, 12.6 MJ/kg; CP: 17.0%, 18.0%, 19.0%). The results showed as follows: with the increase of dietary ME level, the average daily feed intake (ADFI) and feed conversion ratio (FCR) of Taihe Silky Fowl during the growing period were significantly decreased (P < 0.05), reaching the lowest value in 12.6 MJ/kg group, which were decreased by 5.86% and 8.41% compared with 11.7 MJ/kg group, respectively. The dressing percentage and half-eviscerated yield rate were significantly increased (P < 0.01), with no significant difference between 12.1 and 12.6 MJ/kg groups. Dietary CP level and the interaction between ME and CP had no significant effects on growth performance, slaughter performance, organ index, serum biochemical indexes and meat quality of Taihe Silky Fowl during growing period. The richness and diversity of cecal microbiota decreased gradually with the increase of dietary ME level, and the community structure changed significantly (P < 0.05). High ME diet (12.6 MJ/kg) significantly increased the abundance of Bacteroides (P < 0.05), especially the genus Alistipes, which may indirectly improve nutrient absorption efficiency and overall health status of Taihe Silky Fowl through its metabolites and effects on intestinal microbial community structure, thereby reducing FCR. In conclusion, the optimal production performance and economic benefits can be obtained when the diet ME is 12.6 MJ/kg and CP is 17.0%.
Collapse
Affiliation(s)
- Yutian Shen
- National Engineering Research Centre for Green Feed and Healthy Farming, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Taihe Silky Fowl Industrial Technology Joint Research Center of Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wentao Li
- National Engineering Research Centre for Green Feed and Healthy Farming, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Taihe Silky Fowl Industrial Technology Joint Research Center of Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lixia Kai
- National Engineering Research Centre for Green Feed and Healthy Farming, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Taihe Silky Fowl Industrial Technology Joint Research Center of Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuqing Fan
- Taihe Silky Fowl Industry Development Center of Taihe County, Jian, Jiangxi 343700, China
| | - Youping Wu
- Taihe Aoxin Silky Fowl Development Co., Ltd, Taihe County, Ji'an, Jiangxi 343700, China
| | - Fengqin Wang
- National Engineering Research Centre for Green Feed and Healthy Farming, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Taihe Silky Fowl Industrial Technology Joint Research Center of Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yizhen Wang
- National Engineering Research Centre for Green Feed and Healthy Farming, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Taihe Silky Fowl Industrial Technology Joint Research Center of Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zeqing Lu
- National Engineering Research Centre for Green Feed and Healthy Farming, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Taihe Silky Fowl Industrial Technology Joint Research Center of Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
19
|
Lee MT, Tan X, Le HH, Besler K, Thompson S, Harris-Tryon T, Johnson EL. Gut bacterial sphingolipid production modulates dysregulated skin lipid homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.29.629238. [PMID: 39803564 PMCID: PMC11722302 DOI: 10.1101/2024.12.29.629238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Sphingolipids are an essential lipid component of the skin barrier with alterations in skin sphingolipid composition associated with multiple skin disorders including psoriasis, atopic dermatitis, and ichthyosis. Contributions to skin sphingolipid abundance are not well characterized, thus the main method of modulating skin lipid levels is the topical application of creams rich with sphingolipids at the skin surface. Evidence that diet and gut microbiome function can alter skin biology proposes an intriguing potential for the modulation of skin lipid homeostasis through gut microbial metabolism, but potential mechanisms of action are not well understood. Sphingolipid synthesis by prominent gut microbes has been shown to affect intestinal, hepatic and immune functions with the potential for sphingolipid-producing bacteria to affect skin biology through altering skin sphingolipid levels. To address this question, we used bioorthogonal chemistry to label lipids from the sphingolipid-producing bacteria Bacteroides thetaiotaomicron and trace these lipids to the skin epidermis. Exposing mice to B. thetaiotaomicron strains mutant in the ability to produce sphingolipids resulted in significantly lower transfer of gut microbiome-derived lipids to the skin, while also altering skin biology and altering expression of skin barrier genes. Measurement of skin ceramide levels, a class of sphingolipids involved in skin barrier function, determined that skin sphingolipid levels were altered in the presence of gut sphingolipid-producing bacteria. Together this work demonstrates that gut bacterial lipids can transfer to the skin and provides a compelling avenue for modulating sphingolipid-dominant compartments of the skin using sphingolipid-producing bacteria of the gut microbiome.
Collapse
Affiliation(s)
- Min-Ting Lee
- Divison of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Xiaoqing Tan
- Divison of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Henry H. Le
- Divison of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Kevin Besler
- Divison of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
| | - Sharon Thompson
- Divison of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
| | - Tamia Harris-Tryon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth L. Johnson
- Divison of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
| |
Collapse
|
20
|
Sullivan JP, Jones MK. The Multifaceted Impact of Bioactive Lipids on Gut Health and Disease. Int J Mol Sci 2024; 25:13638. [PMID: 39769399 PMCID: PMC11728145 DOI: 10.3390/ijms252413638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Bioactive lipids have a multifaceted role in health and disease and are recognized to play an important part in gut immunity and disease conditions such as inflammatory bowel disease and colon cancer. Advancements in lipidomics, enabled by mass spectrometry and chromatographic techniques, have enhanced our understanding of lipid diversity and functionality. Bioactive lipids, including short-chain fatty acids, saturated fatty acids, omega-3 fatty acids, and sphingolipids, exhibit diverse effects on inflammation and immune regulation. Short-chain fatty acids like butyrate demonstrate anti-inflammatory properties, enhancing regulatory T cell function, gut barrier integrity, and epigenetic regulation, making them promising therapeutic targets for inflammatory bowel disease and colon cancer. Conversely, saturated fatty acids promote inflammation by disrupting gut homeostasis, triggering oxidative stress, and impairing immune regulation. Omega-3 lipids counteract these effects, reducing inflammation and supporting immune balance. Sphingolipids exhibit complex roles, modulating immune cell trafficking and inflammation. They can exert protective effects or exacerbate colitis depending on their source and context. Additionally, eicosanoids can also prevent pathology through prostaglandin defense against damage to epithelial barriers. This review underscores the importance of dietary lipids in shaping gut health and immunity and also highlights the potential use of lipids as therapeutic strategies for managing inflammatory conditions and cancer.
Collapse
Affiliation(s)
| | - Melissa K. Jones
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
21
|
Li Z, Li Y, Zhang J, Liu Q, Zhu L, Mao B, Ma Y, Liu Y. Serum metabolomics combined with gut microbiota reveals the effects of Polygala tenuifolia polysaccharide on the metabolic and microbial profiles in SAMP8 mouse. J Pharm Biomed Anal 2024; 251:116442. [PMID: 39197206 DOI: 10.1016/j.jpba.2024.116442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Polygala tenuifolia is a well-known traditional Chinese medicine. Polygala tenuifolia polysaccharide (PTP), as one of its main active ingredients, has excellent neuroprotective activity. PTP improved the disruption of the endogenous metabolites and gut microbiota caused by Alzheimer's disease (AD). Specifically, untargeted metabolomics results showed that 19 metabolites such as leukotriene B4, vanylglycol, and cer(d18:1/18:0) are significantly reduced, and 2 metabolites are elevated. It was significantly enriched in Sphingolipid metabolism, Glycerophospholipid metabolism, Tyrosine metabolism, and Arachidonic acid metabolism. Meanwhile, 16S rDNA analysis showed that PTP treatment significantly increased the relative abundance of bacteria such as Alistipes, Lachnospiraceae_NK4A136_group, and Lachnospiraceae_UCG-006. In addition, Spearman analysis showed that significant changes in gut microbiota were closely related to differential endogenous metabolites.
Collapse
Affiliation(s)
- Zheng Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuanyuan Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qian Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lihao Zhu
- Sishui Siheyuan Culture and Tourism Development Company, Ltd, Sishui 273200, China
| | - Beibei Mao
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yan Ma
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
22
|
Kunst C, Elger T, Loibl J, Huss M, Kandulski A, Krautbauer S, Müller M, Liebisch G, Tews HC, Buechler C. Fecal Nervonic Acid as a Biomarker for Diagnosing and Monitoring Inflammatory Bowel Disease. Biomedicines 2024; 12:2764. [PMID: 39767671 PMCID: PMC11673069 DOI: 10.3390/biomedicines12122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Inflammatory bowel disease (IBD) is a chronic immune-mediated pathology associated with the dysregulation of lipid metabolism. The administration of nervonic acid, a very long-chain fatty acid, has been shown to improve colonic inflammation in a mouse model of colitis. Our study aimed to quantify fecal levels of nervonic acid, as well as the very long-chain fatty acids, lignoceric acid, and pentacosanoic acid, to identify associations with IBD activity. METHODS Stool samples were collected from 62 patients with IBD and 17 healthy controls. Nervonic acid, lignoceric acid, and pentacosanoic acid were quantified by gas chromatography coupled with mass spectrometry (GC-MS). Lipid levels, normalized to the dry weight of fecal homogenates, were used for calculations. RESULTS Patients with IBD exhibited elevated fecal nervonic acid levels compared to healthy controls, with no significant differences observed between ulcerative colitis and Crohn's disease. A fecal nervonic acid concentration of 0.49 µmol/g distinguished IBD patients from controls, achieving a sensitivity of 71% and a specificity of 82%. Fecal nervonic acid levels showed a positive correlation with both C-reactive protein and fecal calprotectin and increased proportionally with rising fecal calprotectin levels. IBD patients treated with corticosteroids or interleukin-12/23 antibodies had higher levels of fecal nervonic acid than those in other therapies, with no difference in serum C-reactive protein and calprotectin levels between these groups. CONCLUSIONS In summary, this analysis indicates that fecal nervonic acid may emerge as a novel specific biomarker for IBD diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Claudia Kunst
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Tanja Elger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Johanna Loibl
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Muriel Huss
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (G.L.)
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (G.L.)
| | - Hauke Christian Tews
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| |
Collapse
|
23
|
Chen S, Xue X, Zhang H, Huang X, Lin X, He J, Chen L, Luo S, Gao J. Jianwei Shoutai Pills alleviates miscarriage by modulating gut microbial production of BAs and NLRP3-inflammasome at the maternal-fetal interface of rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156000. [PMID: 39293366 DOI: 10.1016/j.phymed.2024.156000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Miscarriage has the characteristics of recurrent attacks and complex etiology, so it is gradually attracted the wide attention of scholars in the fields of reproduction. Potential association between gut microbiome (GM) and pregnancy disorders has been investigated. Jianwei Shoutai pills (JWP), as a representative formula, have been proven to have protective effect in both clinical and experimental research in miscarriage. However, the specific mechanism of JWP in miscarriage through GM remains unclear. PURPOSE To investigate the underlying mechanism of JWP against miscarriage through the gut-uterus axis. METHODS The effects of JWP on an RU486-induced rat model of miscarriage were evaluated by embryo resorption rate, vaginal bleeding rate, and appearance of the uterus and embryo. We used 16S rRNA sequencing to measure the extent of the effect of JWP on GM of rats with miscarriage. Bile acid (BA) content of the feces of rats treated with JWP was evaluated by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS). The activation of bile acid-associated receptor, Farnesoid X receptor (FXR), was evaluated by immunofluorescence. The expression level of NLRP3 inflammasome-associated protein was detected by Western blot or Elisa. Fecal microbiota transplantation (FMT) was used to confirm that GM was essential for the therapeutic effect of JWP in miscarriage. RESULTS JWP significantly ameliorated miscarriage symptoms and embryo resorption rate caused by RU486-induced miscarriage as well as restored the abnormal activation of NLRP3-inflammasome at the maternal-fetal interface. Furthermore, JWP can significantly regulated GM dysbiosis and closely associated with BA metabolism by KEGG pathway prediction analysis. Several BA content were significantly restored by HPLC-MS. The expression of NLRP3 inflammasome-associated protein at maternal-fetal interface was reversed by JWP. Combined with FMT, JWP could regulate activation of NLRP3 at the maternal-fetal interface by BAs produced by GM. CONCLUSION JWP restored abnormal activation of the NLRP3-inflammasome in an RU486-induced miscarriage rat model, and corrected the BA disorder by regulating imbalance of the GM.
Collapse
Affiliation(s)
- Si Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou 510405, China
| | - Xiaomeng Xue
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huimin Zhang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xuge Huang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xinyi Lin
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiaxin He
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lizhu Chen
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Songping Luo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Jie Gao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou 510405, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510006, China.
| |
Collapse
|
24
|
Li X, Li J, Ji J, Li S, Yao X, Fan H, Yao R. Gut microbiota modification by diosgenin mediates antiepileptic effects in a mouse model of epilepsy. J Neurochem 2024; 168:3982-4000. [PMID: 38115597 DOI: 10.1111/jnc.16033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023]
Abstract
Diosgenin, a natural steroid saponin, holds promise as a multitarget therapeutic for various diseases, including neurodegenerative conditions. Its efficacy in slowing Alzheimer's disease, Parkinson's disease, multiple sclerosis, and stroke progression has been demonstrated. However, the role of diosgenin in anti-epilepsy and its potential connection to the modulation of the intestinal microbiota remain poorly understood. In this study, exogenous diosgenin significantly mitigated pentylenetetrazole (PTZ)-induced seizures, learning and memory deficits, and hippocampal neuronal injury. 16S ribosomal RNA (16S rRNA) sequencing revealed a reversal in the decrease of Bacteroides and Parabacteroides genera in the PTZ-induced mouse epileptic model following diosgenin treatment. Fecal microbiota transplantation (FMT) experiments illustrated the involvement of diosgenin in modulating gut microbiota and providing neuroprotection against epilepsy. Our results further indicated the repression of enteric glial cells (EGCs) activation and the TLR4-MyD88 pathway, coupled with reduced production of inflammatory cytokines in the colonic lumen, and improved intestinal barrier function in epilepsy mice treated with diosgenin or FMT. This study suggests that diosgenin plays a role in modifying gut microbiota, contributing to the alleviation of intestinal inflammation and neuroinflammation, ultimately inhibiting epilepsy progression in a PTZ-induced mouse model. Diosgenin emerges as a potential therapeutic option for managing epilepsy and its associated comorbidities.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Li
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jia Ji
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Saisai Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoyu Yao
- Rehabilitation Therapy, Fenyang College of Shanxi Medical University, Fenyang, Shanxi, China
| | - Hongbin Fan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
25
|
Cheng J, Williams JP, Zhou L, Wang PC, Sun LN, Li RH, An JX. Ozone rectal insufflation mitigates chronic rapid eye movement sleep deprivation-induced cognitive impairment through inflammation alleviation and gut microbiota regulation in mice. Med Gas Res 2024; 14:213-224. [PMID: 39073330 DOI: 10.4103/mgr.medgasres-d-23-00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/20/2023] [Indexed: 07/30/2024] Open
Abstract
A range of sleep disorders has the potential to adversely affect cognitive function. This study was undertaken with the objective of investigating the effects of ozone rectal insufflation (O3-RI) on cognitive dysfunction induced by chronic REM sleep deprivation, as well as elucidating possible underlying mechanisms. O3-RI ameliorated cognitive dysfunction in chronic REM sleep deprived mice, improved the neuronal damage in the hippocampus region and decreased neuronal loss. Administration of O3-RI may protect against chronic REM sleep deprivation induced cognitive dysfunction by reversing the abnormal expression of Occludin and leucine-rich repeat and pyrin domain-containing protein 3 inflammasome as well as interleukin-1β in the hippocampus and colon tissues. Moreover, the microbiota diversity and composition of sleep deprivation mice were significantly affected by O3-RI intervention, as evidenced by the reversal of the Firmicutes/Bacteroidetes abundance ratio and the relative abundance of the Bacteroides genus. In particular, the relative abundance of the Bacteroides genus demonstrated a pronounced correlation with cognitive impairment and inflammation. Our findings suggested that O3-RI can improve cognitive dysfunction in sleep deprivation mice, and its mechanisms may be related to regulating gut microbiota and alleviating inflammation and damage in the hippocampus and colon.
Collapse
Affiliation(s)
- Jie Cheng
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - John P Williams
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Li Zhou
- Institute for lnnoration Diagnosis & Treatment in Anesthesiology, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Peng-Cheng Wang
- Institute for lnnoration Diagnosis & Treatment in Anesthesiology, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Li-Na Sun
- Institute for lnnoration Diagnosis & Treatment in Anesthesiology, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Rui-Hua Li
- Institute for lnnoration Diagnosis & Treatment in Anesthesiology, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Jian-Xiong An
- Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for lnnoration Diagnosis & Treatment in Anesthesiology, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
- Center of Anesthesiology, Pain and Sleep Medicine, Rapid Anti-depression, The Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, China
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
26
|
Chen X, Mo X, Zhang Y, He D, Xiao R, Cheng Q, Wang H, Liu L, Li WW, Xie P. A comprehensive analysis of the differential expression in the hippocampus of depression induced by gut microbiota compared to traditional stress. Gene 2024; 927:148633. [PMID: 38838871 DOI: 10.1016/j.gene.2024.148633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Depression, which is a disease of heterogeneous etiology, is characterized by high disability and mortality rates. Gut microbiota are associated with the development of depression. To further explore any differences in the mechanisms of depression induced by gut microbiota and traditional stresses, as well as facilitate the development of microbiota-based interventions, a fecal microbiota transplantation (FMT) depression model was made. This was achieved by transplanting feces from major depressive disorder (MDD) patients into germ-free mice. Second, the mechanisms of the depression induced by gut microbiota were analyzed in comparison with those of the depression caused by different forms of stress. It turned out that mice exhibited depressive-like behavior after FMT. Then, PCR array analysis was performed on the hippocampus of the depressed mice to identify differentially expressed genes (DEGs). The KEGG analysis revealed that the pathways of depression induced by gut microbes are closely associated with immuno-inflammation. To determine the pathogenic pathways of physiological stress and psychological stress-induced depression, raw data was extracted from several databases and KEGG analysis was performed. The results from the analysis revealed that the mechanisms of depression induced by physiological and psychological stress are closely related to the regulation of neurotransmitters and energy metabolism. Interestingly, the immunoinflammatory response was distinct across different etiologies that induced depression. The findings showed that gut microbiota dysbiosis-induced depression was mainly associated with adaptive immunity, while physiological stress-induced depression was more linked to innate immunity. This study compared the pathogenesis of depression caused by gut microbiota dysbiosis, and physiological and psychological stress. We explored new intervention methods for depression and laid the foundation for precise treatment.
Collapse
Affiliation(s)
- Xueyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; School of Basic Medical Sciences, Department of Pathology, Chongqing Medical University, Chongqing 400016, China
| | - Xiaolong Mo
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yangdong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dian He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rui Xiao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; School of Basic Medical Sciences, Department of Pathology, Chongqing Medical University, Chongqing 400016, China
| | - Qisheng Cheng
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lanxiang Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Wen-Wen Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; School of Basic Medical Sciences, Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China.
| |
Collapse
|
27
|
Li X, Yao X, Wen J, Chen Q, Zhu Z, Zhang X, Wang S, Lan W, Huang Y, Tang S, Zhou X, Han X, Zhang T. The application of sphingomyelin in mediating the causal role of the T-cell surface glycoprotein CD5 in Crohn's disease: A two-step Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40513. [PMID: 39560554 PMCID: PMC11576039 DOI: 10.1097/md.0000000000040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Abstract
To examine the possible causative association between Crohn disease (CD) and the T-cell surface glycoprotein CD5 and to ascertain whether sphingomyelin (SM) functions as a mediator. We conducted a two-step Mendelian randomization (MR) study to further explore the pathogenesis of Crohn and its related targets. MR study was performed on CD5 and CD using summary-level data from a genome-wide association study. Additionally, by employing a two-step MR study method, we determined that SM might mediate the causal effect of CD5 on CD. There was a favorable correlation between the surface glycoprotein CD5 on T cells and vulnerability to CD, and SM mediated the causal effect of CD5 on CD (the mediating effect accounts for 9.2%). Our study revealed that CD5 and CD are causally related, with SM mediating a small fraction of the impact (approximately 9.2%). The mediating function of SM in the link between CD5 and CD is anticipated to be realized through the regulation of immune cell transportation, apoptosis of intestinal barrier cells, and maintenance of the intestinal microenvironment.
Collapse
Affiliation(s)
- Xiao Li
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xin Yao
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jieying Wen
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Qiaoling Chen
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Ziming Zhu
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xinyue Zhang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Song Wang
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Weixuan Lan
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yunsi Huang
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Shanneng Tang
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xuan Zhou
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xuedong Han
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Tao Zhang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
28
|
Yao Q, Tan W, Bai F. Gut microbiome and metabolomics in systemic sclerosis: feature, link and mechanisms. Front Immunol 2024; 15:1475528. [PMID: 39559369 PMCID: PMC11570262 DOI: 10.3389/fimmu.2024.1475528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Systemic sclerosis (SSc) is a rare and highly heterogeneous chronic autoimmune disease characterized by multi-organ and tissue fibrosis, often accompanied by a poor prognosis and high mortality rates. The primary pathogenic mechanisms of SSc are considered to involve tissue fibrosis, autoimmune dysfunction, and microvascular abnormalities. Recent studies have shed light on the gut microbiota (GM) and metabolites in SSc patients, revealing their association with gastrointestinal symptoms and disease phenotypes. However, further elucidation is needed on the specific mechanisms underlying the interactions between GM, metabolites, and the immune system and their roles in the pathogenesis of SSc. This review outlines the characteristics of GM and metabolites in SSc patients, exploring their interrelationships and analyzing their correlations with the clinical phenotypes of SSc. The findings indicate that while the α-diversity of GM in SSc patients resembles that of healthy individuals, notable differences exist in the β-diversity and the abundance of specific bacterial genera, which are closely linked to gastrointestinal symptoms. Moreover, alterations in the levels of amino acids and lipid metabolites in SSc patients are prominently observed and significantly associated with clinical phenotypes. Furthermore, this review delves into the potential immunopathological mechanisms of GM and metabolites in SSc, emphasizing the critical role of interactions between GM, metabolites, and the immune system in comprehending the immunopathological processes of SSc. These insights may offer new scientific evidence for the development of future treatment strategies.
Collapse
Affiliation(s)
- Qicen Yao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- Nanjing Medical University, Nanjing, China
| | - Wenfeng Tan
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feihu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
29
|
Drzazga A, Bernat P, Nowak A, Szustak M, Korkus E, Gendaszewska-Darmach E, Koziołkiewicz M. N-acyl glycines produced by commensal bacteria potentiate GLP-1 secretion as GPCR ligands. Biomed Pharmacother 2024; 180:117467. [PMID: 39362066 DOI: 10.1016/j.biopha.2024.117467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
Commensal microbiota is crucial for nutrient digestion and production of biologically active molecules, many of which mimic endogenous ligands of human GPCRs. Bacteroides spp. are among the most abundant bacteria residing in the human gut and their absence has been positively correlated with metabolic disorders. In the present study, we focused on N-acylated glycines (NAGlys) as products of Bacteroides spp. and potential GPCR ligands modulating GLP-1 secretion. Representative strains of the most abundant commensal Bacteroides were cultured in either yeast- or animal-based nutrient broths. The broths post-culture were investigated in terms of the contents of NAGlys and stimulatory effects towards GLP-1 production in GLUTag and NCI-H716 cell lines. Pure preparations of the detected NAGlys were further studied to evaluate stimulation of GLP-1 production and related cellular signalling evoked. The most potent NAGlys were also tested as ligands of key lipid GPCRs involved in the regulation of carbohydrate metabolism: GPR40/FFAR1, GPR55, GPR119, and GPR120/FFAR4. We found that Bacteroides potentiate GLP-1 production, depending on the strain and provided nutrient mix. Long-chain unsaturated oleoyl and arachidonoyl glycines, produced by B. thetaiotaomicron and B. intestinalis in the animal-based broth, were particularly effective in stimulation of GLP-1 secretion. They served as agonists of all the receptors under study expressed in GLP-1-producing cells. The obtained results broaden the knowledge of microbial signalling molecules and their role in regulation of carbohydrate homeostasis. They also emphasise the importance of balanced diet as a source of building blocks for commensal bacteria to produce efficient agonists of lipid GPCRs.
Collapse
Affiliation(s)
- Anna Drzazga
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, Lodz 90-537, Poland.
| | - Przemysław Bernat
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Industrial Microbiology and Biotechnology, Banacha Street 12/16, Lodz 90-237, Poland
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska Street 171/173, Lodz 90-530, Poland
| | - Marcin Szustak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, Lodz 90-537, Poland
| | - Eliza Korkus
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, Lodz 90-537, Poland
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, Lodz 90-537, Poland
| | - Maria Koziołkiewicz
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, Lodz 90-537, Poland
| |
Collapse
|
30
|
Qian S, Zhang X, Zheng X, Li R, Hao X, Tang Z, Yang Z, Sun A, Guo S, Song Y, Zhang Z, Song X, Yu L. Development of interleukin-27 recombinant Lactococcus lactis and its efficacy in treating psoriasis and colitis in mice. Int J Biol Macromol 2024; 282:137113. [PMID: 39486722 DOI: 10.1016/j.ijbiomac.2024.137113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Psoriasis and inflammatory bowel disease (IBD) are chronic immune-mediated diseases that adversely affect patients' quality of life. Interleukin (IL)-27 plays an important role in a variety of infectious diseases, autoimmune disorders, and cancers. However, its therapeutic effects in psoriasis and colitis remain underexplored. In this study, we evaluated the therapeutic potential of recombinant Lactococcus lactis (L. lactis) expressing IL-27 (pIL-27) in imiquimod-induced psoriasis and dextran sodium sulfate-induced colitis mouse models. In the psoriasis mouse model, oral administration of pIL-27 significantly reduced skin scaling, mitigated weight loss, lowered psoriasis area and severity index scores, diminished epidermal hyperplasia and inflammatory cell infiltration, and decreased inflammatory cytokine levels. In the colitis mouse model, oral administration of pIL-27 alleviated weight loss, improved disease activity index scores, prevented colon shortening, ameliorated histopathological changes, and decreased inflammatory cytokine levels. Furthermore, recombinant L. lactis expressing IL-27 could modulate the gut microbiota, increasing the amount of beneficial bacteria and reducing harmful bacteria in the intestine, thereby alleviating the progression of psoriasis and colitis. These results suggest the potential of IL-27 as a therapeutic option for treating psoriasis and IBD.
Collapse
Affiliation(s)
- Shaoju Qian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan 453003, China
| | - Xingyi Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaoxiao Zheng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Ruixue Li
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaoling Hao
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan 453003, China; Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhou Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Zishan Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan 453003, China
| | - Aiping Sun
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan 453003, China
| | - Sheng Guo
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan 453003, China
| | - Yihang Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Zihan Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiangfeng Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan 453003, China
| | - Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan 453003, China; Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
31
|
Wang D, Zhu L, Liu H, Feng X, Zhang C, Liu B, Li T, Liu L, Chang H, Sun J, Yang L, Yang W. Altered gut metabolites and metabolic reprogramming involved in the pathogenesis of colitis-associated colorectal cancer and the transition of colon "inflammation to cancer". J Pharm Biomed Anal 2024; 253:116553. [PMID: 39486392 DOI: 10.1016/j.jpba.2024.116553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Colitis-associated colorectal cancer (CAC) is fatal and can develop spontaneously or as a complication of inflammatory bowel diseases. Although co-administration of azoxymethane/dextran sulfate sodium (AOM/DSS) is a classic method for CAC modeling, its limitations need to be addressed. Accordingly, we aimed to optimize the AOM/DSS model to study CAC extensively and further investigate its pathogenic mechanisms relative to microbiota and metabolism. We optimized the CAC model via a single or enhanced injection of AOM combined with different administration modes and varying DSS concentrations. Subsequently, the fecal-microbiota composition was examined using 16S RNA sequencing, and fecal-colon-metabolome profiles were evaluated via ultra-high performance liquid chromatography-mass spectrometry. Two interval injections of AOM combined with 1.5 % DSS-free drinking resulted in a high tumor formation rate, uniform tumor formation, and low mortality. Based on this model, we innovatively divided the pathogenesis of CAC into three stages, namely inflammation induction, proliferation initiation, and tumorigenesis, and examined the pathological characteristics in each stage. Gut microbial dysbiosis and metabolic alteration drove colorectal tumorigenesis by aggravating inflammation while promoting cell proliferation and carcinogenesis in mice. For the first time, we dynamically demonstrated the process of colon "inflammation to cancer" transformation and provided novel insights to clarify the role of amino acid metabolism in the formation of CAC.
Collapse
Affiliation(s)
- Dunfang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haifan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caijuan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bin Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tao Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hao Chang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingwei Sun
- Beijing University of Chinese Medicine, Beijing 100700, China
| | - Lei Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Weipeng Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
32
|
Older EA, Mitchell MK, Campbell A, Lian X, Madden M, Wang Y, van de Wal LE, Zaw T, VanderVeen BN, Tatum R, Murphy EA, Chen YH, Fan D, Ellermann M, Li J. Human gut commensal Alistipes timonensis modulates the host lipidome and delivers anti-inflammatory outer membrane vesicles to suppress colitis in an Il10 -deficient mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619966. [PMID: 39484420 PMCID: PMC11527014 DOI: 10.1101/2024.10.23.619966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Correlative studies have linked human gut microbes to specific health conditions. Alistipes is one such microbial genus negatively linked to inflammatory bowel disease (IBD). However, the protective role of Alistipes in IBD has not been studied and the underlying molecular mechanisms also remain unknown. In this study, colonization of Il10 -deficient mice with Alistipes timonensis DSM 27924 delays the development of colitis. Colonization with Alistipes does not significantly alter the gut microbiome composition during colitis development, but instead shifts the host plasma lipidome, increasing phosphatidic acids while decreasing triglycerides. Outer membrane vesicles (OMVs) derived from Alistipes are also detected in the plasma of colonized mice, which carry metabolites with immunomodulatory potential into the host circulatory system. We further demonstrate that fractions of A. timonensis OMVs suppress LPS-induced Il6 , Il1b , and Tnfa expression in vitro in murine macrophages. We detect immunomodulatory sulfonolipids (SoLs) in the active fraction, which are also increased in the blood of A. timonensis -colonized mice; and we identify other putative bioactive lipids in the A. timonensis OMVs. Thus, A. timonensis OMVs represent a potential mechanism for Alistipes -mediated delay of colitis progression in Il10 -deficient mice through the delivery of immunomodulatory lipids, including SoLs, and modulation of the host plasma lipidome.
Collapse
|
33
|
Liu PY, Liaw J, Soutter F, Ortiz JJ, Tomley FM, Werling D, Gundogdu O, Blake DP, Xia D. Multi-omics analysis reveals regime shifts in the gastrointestinal ecosystem in chickens following anticoccidial vaccination and Eimeria tenella challenge. mSystems 2024; 9:e0094724. [PMID: 39287379 PMCID: PMC11494932 DOI: 10.1128/msystems.00947-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Coccidiosis, caused by Eimeria parasites, significantly impacts poultry farm economics and animal welfare. Beyond its direct impact on health, Eimeria infection disrupts enteric microbial populations leading to dysbiosis and increases vulnerability to secondary diseases such as necrotic enteritis, caused by Clostridium perfringens. The impact of Eimeria infection or anticoccidial vaccination on host gastrointestinal phenotypes and enteric microbiota remains understudied. In this study, the metabolomic profiles and microbiota composition of chicken caecal tissue and contents were evaluated concurrently during a controlled experimental vaccination and challenge trial. Cobb500 broilers were vaccinated with a Saccharomyces cerevisiae-vectored anticoccidial vaccine and challenged with 15,000 Eimeria tenella oocysts. Assessment of caecal pathology and quantification of parasite load revealed correlations with alterations to caecal microbiota and caecal metabolome linked to infection and vaccination status. Infection heightened microbiota richness with increases in potentially pathogenic species, while vaccination elevated beneficial Bifidobacterium. Using a multi-omics factor analysis, data on caecal microbiota and metabolome were integrated and distinct profiles for healthy, infected, and recovering chickens were identified. Healthy and recovering chickens exhibited higher vitamin B metabolism linked to short-chain fatty acid-producing bacteria, whereas essential amino acid and cell membrane lipid metabolisms were prominent in infected and vaccinated chickens. Notably, vaccinated chickens showed distinct metabolites related to the enrichment of sphingolipids, important components of nerve cells and cell membranes. Our integrated multi-omics model revealed latent biomarkers indicative of vaccination and infection status, offering potential tools for diagnosing infection, monitoring vaccination efficacy, and guiding the development of novel treatments or controls.IMPORTANCEAdvances in anticoccidial vaccines have garnered significant attention in poultry health management. However, the intricacies of vaccine-induced alterations in the chicken gut microbiome and its subsequent impact on host metabolism remain inadequately explored. This study delves into the metabolic and microbiotic shifts in chickens post-vaccination, employing a multi-omics integration analysis. Our findings highlight a notable synergy between the microbiome composition and host-microbe interacted metabolic pathways in vaccinated chickens, differentiating them from infected or non-vaccinated cohorts. These insights pave the way for more targeted and efficient approaches in poultry disease control, enhancing both the efficacy of vaccines and the overall health of poultry populations.
Collapse
Affiliation(s)
- Po-Yu Liu
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Janie Liaw
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - José Jaramillo Ortiz
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, London, United Kingdom
| | - Fiona M. Tomley
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Dirk Werling
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, London, United Kingdom
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Damer P. Blake
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, London, United Kingdom
| | - Dong Xia
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
34
|
Vich Vila A, Zhang J, Liu M, Faber KN, Weersma RK. Untargeted faecal metabolomics for the discovery of biomarkers and treatment targets for inflammatory bowel diseases. Gut 2024; 73:1909-1920. [PMID: 39002973 PMCID: PMC11503092 DOI: 10.1136/gutjnl-2023-329969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/23/2024] [Indexed: 07/15/2024]
Abstract
The gut microbiome has been recognised as a key component in the pathogenesis of inflammatory bowel diseases (IBD), and the wide range of metabolites produced by gut bacteria are an important mechanism by which the human microbiome interacts with host immunity or host metabolism. High-throughput metabolomic profiling and novel computational approaches now allow for comprehensive assessment of thousands of metabolites in diverse biomaterials, including faecal samples. Several groups of metabolites, including short-chain fatty acids, tryptophan metabolites and bile acids, have been associated with IBD. In this Recent Advances article, we describe the contribution of metabolomics research to the field of IBD, with a focus on faecal metabolomics. We discuss the latest findings on the significance of these metabolites for IBD prognosis and therapeutic interventions and offer insights into the future directions of metabolomics research.
Collapse
Affiliation(s)
- Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Jingwan Zhang
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong (SAR), People's Republic of China
- Microbiota I-Center (MagIC), Hong Kong (SAR), People's Republic of China
| | - Moting Liu
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
35
|
Van Hul M, Cani PD, Petitfils C, De Vos WM, Tilg H, El-Omar EM. What defines a healthy gut microbiome? Gut 2024; 73:1893-1908. [PMID: 39322314 PMCID: PMC11503168 DOI: 10.1136/gutjnl-2024-333378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024]
Abstract
The understanding that changes in microbiome composition can influence chronic human diseases and the efficiency of therapies has driven efforts to develop microbiota-centred therapies such as first and next generation probiotics, prebiotics and postbiotics, microbiota editing and faecal microbiota transplantation. Central to microbiome research is understanding how disease impacts microbiome composition and vice versa, yet there is a problematic issue with the term 'dysbiosis', which broadly links microbial imbalances to various chronic illnesses without precision or definition. Another significant issue in microbiome discussions is defining 'healthy individuals' to ascertain what characterises a healthy microbiome. This involves questioning who represents the healthiest segment of our population-whether it is those free from illnesses, athletes at peak performance, individuals living healthily through regular exercise and good nutrition or even elderly adults or centenarians who have been tested by time and achieved remarkable healthy longevity.This review advocates for delineating 'what defines a healthy microbiome?' by considering a broader range of factors related to human health and environmental influences on the microbiota. A healthy microbiome is undoubtedly linked to gut health. Nevertheless, it is very difficult to pinpoint a universally accepted definition of 'gut health' due to the complexities of measuring gut functionality besides the microbiota composition. We must take into account individual variabilities, the influence of diet, lifestyle, host and environmental factors. Moreover, the challenge in distinguishing causation from correlation between gut microbiome and overall health is presented.The review also highlights the resource-heavy nature of comprehensive gut health assessments, which hinders their practicality and broad application. Finally, we call for continued research and a nuanced approach to better understand the intricate and evolving concept of gut health, emphasising the need for more precise and inclusive definitions and methodologies in studying the microbiome.
Collapse
Affiliation(s)
- Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Camille Petitfils
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
| | - Willem M De Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medizinische Universitat Innsbruck, Innsbruck, Austria
| | - Emad M El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical Campuses, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
36
|
Kuo A, Hla T. Regulation of cellular and systemic sphingolipid homeostasis. Nat Rev Mol Cell Biol 2024; 25:802-821. [PMID: 38890457 DOI: 10.1038/s41580-024-00742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
One hundred and fifty years ago, Johann Thudichum described sphingolipids as unusual "Sphinx-like" lipids from the brain. Today, we know that thousands of sphingolipid molecules mediate many essential functions in embryonic development and normal physiology. In addition, sphingolipid metabolism and signalling pathways are dysregulated in a wide range of pathologies, and therapeutic agents that target sphingolipids are now used to treat several human diseases. However, our understanding of sphingolipid regulation at cellular and organismal levels and their functions in developmental, physiological and pathological settings is rudimentary. In this Review, we discuss recent advances in sphingolipid pathways in different organelles, how secreted sphingolipid mediators modulate physiology and disease, progress in sphingolipid-targeted therapeutic and diagnostic research, and the trans-cellular sphingolipid metabolic networks between microbiota and mammals. Advances in sphingolipid biology have led to a deeper understanding of mammalian physiology and may lead to progress in the management of many diseases.
Collapse
Affiliation(s)
- Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Chen J, Tao R, Qiu Y, Yuan Q. CMFHMDA: a prediction framework for human disease-microbe associations based on cross-domain matrix factorization. Brief Bioinform 2024; 25:bbae481. [PMID: 39327064 PMCID: PMC11427075 DOI: 10.1093/bib/bbae481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Predicting associations between microbes and diseases opens up new avenues for developing diagnostic, preventive, and therapeutic strategies. Given that laboratory-based biological tests to verify these associations are often time-consuming and expensive, there is a critical need for innovative computational frameworks to predict new microbe-disease associations. In this work, we introduce a novel prediction algorithm called Predicting Human Disease-Microbe Associations using Cross-Domain Matrix Factorization (CMFHMDA). Initially, we calculate the composite similarity of diseases and the Gaussian interaction profile similarity of microbes. We then apply the Weighted K Nearest Known Neighbors (WKNKN) algorithm to refine the microbe-disease association matrix. Our CMFHMDA model is subsequently developed by integrating the network data of both microbes and diseases to predict potential associations. The key innovations of this method include using the WKNKN algorithm to preprocess missing values in the association matrix and incorporating cross-domain information from microbes and diseases into the CMFHMDA model. To validate CMFHMDA, we employed three different cross-validation techniques to evaluate the model's accuracy. The results indicate that the CMFHMDA model achieved Area Under the Receiver Operating Characteristic Curve scores of 0.9172, 0.8551, and 0.9351$\pm $0.0052 in global Leave-One-Out Cross-Validation (LOOCV), local LOOCV, and five-fold CV, respectively. Furthermore, many predicted associations have been confirmed by published experimental studies, establishing CMFHMDA as an effective tool for predicting potential disease-associated microbes.
Collapse
Affiliation(s)
- Jing Chen
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, 215009 Suzhou, China
| | - Ran Tao
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, 215009 Suzhou, China
| | - Yi Qiu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, 215009 Suzhou, China
| | - Qun Yuan
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, 215153 Suzhou, China
| |
Collapse
|
38
|
Zhang S, Lu J, Jin Z, Xu H, Zhang D, Chen J, Wang J. Gut microbiota metabolites: potential therapeutic targets for Alzheimer's disease? Front Pharmacol 2024; 15:1459655. [PMID: 39355779 PMCID: PMC11442227 DOI: 10.3389/fphar.2024.1459655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline in cognitive function, which significantly increases pain and social burden. However, few therapeutic interventions are effective in preventing or mitigating the progression of AD. An increasing number of recent studies support the hypothesis that the gut microbiome and its metabolites may be associated with upstream regulators of AD pathology. Methods In this review, we comprehensively explore the potential mechanisms and currently available interventions targeting the microbiome for the improvement of AD. Our discussion is structured around modern research advancements in AD, the bidirectional communication between the gut and brain, the multi-target regulatory effects of microbial metabolites on AD, and therapeutic strategies aimed at modulating gut microbiota to manage AD. Results The gut microbiota plays a crucial role in the pathogenesis of AD through continuous bidirectional communication via the microbiota-gut-brain axis. Among these, microbial metabolites such as lipids, amino acids, bile acids and neurotransmitters, especially sphingolipids and phospholipids, may serve as central components of the gut-brain axis, regulating AD-related pathogenic mechanisms including β-amyloid metabolism, Tau protein phosphorylation, and neuroinflammation. Additionally, interventions such as probiotic administration, fecal microbiota transplantation, and antibiotic use have also provided evidence supporting the association between gut microbiota and AD. At the same time, we propose an innovative strategy for treating AD: a healthy lifestyle combined with targeted probiotics and other potential therapeutic interventions, aiming to restore intestinal ecology and microbiota balance. Conclusion Despite previous efforts, the molecular mechanisms by which gut microbes act on AD have yet to be fully described. However, intestinal microorganisms may become an essential target for connecting the gut-brain axis and improving the symptoms of AD. At the same time, it requires joint exploration by multiple centers and multiple disciplines.
Collapse
Affiliation(s)
- Shanshan Zhang
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Ziqi Jin
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Hanying Xu
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Dongmei Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jianan Chen
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jian Wang
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
39
|
Zhang C, Wang B, Yu L, Zhao R, Zhang Q, Zhang C, Cui S, Zhao J, Narbad A, Chen W, Tian F, Zhai Q. Hyaluronic acid modulates gut microbiota and metabolites relieving inflammation: A molecular weight-dependent study. Sci Bull (Beijing) 2024; 69:2683-2687. [PMID: 38643060 DOI: 10.1016/j.scib.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 03/21/2024] [Indexed: 04/22/2024]
Affiliation(s)
- Chuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Botao Wang
- Bloomage Biotechnology Co., Ltd., Jinan 250000, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Ruohan Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingsong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China; Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4 7UA, UK
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
40
|
Hayase E, Hayase T, Mukherjee A, Stinson SC, Jamal MA, Ortega MR, Sanchez CA, Ahmed SS, Karmouch JL, Chang CC, Flores II, McDaniel LK, Brown AN, El-Himri RK, Chapa VA, Tan L, Tran BQ, Xiao Y, Fan C, Pham D, Halsey TM, Jin Y, Tsai WB, Prasad R, Glover IK, Enkhbayar A, Mohammed A, Schmiester M, King KY, Britton RA, Reddy P, Wong MC, Ajami NJ, Wargo JA, Shelburne S, Okhuysen PC, Liu C, Fowler SW, Conner ME, Katsamakis Z, Smith N, Burgos da Silva M, Ponce DM, Peled JU, van den Brink MRM, Peterson CB, Rondon G, Molldrem JJ, Champlin RE, Shpall EJ, Lorenzi PL, Mehta RS, Martens EC, Alousi AM, Jenq RR. Bacteroides ovatus alleviates dysbiotic microbiota-induced graft-versus-host disease. Cell Host Microbe 2024; 32:1621-1636.e6. [PMID: 39214085 PMCID: PMC11441101 DOI: 10.1016/j.chom.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/12/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Acute lower gastrointestinal GVHD (aLGI-GVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation. Although the intestinal microbiota is associated with the incidence of aLGI-GVHD, how the intestinal microbiota impacts treatment responses in aLGI-GVHD has not been thoroughly studied. In a cohort of patients with aLGI-GVHD (n = 37), we found that non-response to standard therapy with corticosteroids was associated with prior treatment with carbapenem antibiotics and a disrupted fecal microbiome characterized by reduced abundances of Bacteroides ovatus. In a murine GVHD model aggravated by carbapenem antibiotics, introducing B. ovatus reduced GVHD severity and improved survival. These beneficial effects of Bacteroides ovatus were linked to its ability to metabolize dietary polysaccharides into monosaccharides, which suppressed the mucus-degrading capabilities of colonic mucus degraders such as Bacteroides thetaiotaomicron and Akkermansia muciniphila, thus reducing GVHD-related mortality. Collectively, these findings reveal the importance of microbiota in aLGI-GVHD and therapeutic potential of B. ovatus.
Collapse
Affiliation(s)
- Eiko Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Tomo Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Akash Mukherjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stuart C Stinson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mohamed A Jamal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Miriam R Ortega
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Christopher A Sanchez
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Saira S Ahmed
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jennifer L Karmouch
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chia-Chi Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ivonne I Flores
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Lauren K McDaniel
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Alexandria N Brown
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Rawan K El-Himri
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Valerie A Chapa
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Bao Q Tran
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Yao Xiao
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Christopher Fan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dung Pham
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Taylor M Halsey
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yimei Jin
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Wen-Bin Tsai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Rishika Prasad
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Israel K Glover
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Altai Enkhbayar
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Aqsa Mohammed
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Maren Schmiester
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Katherine Y King
- Center for Cell and Gene Therapy and Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pavan Reddy
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew C Wong
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Nadim J Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Samuel Shelburne
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pablo C Okhuysen
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Stephanie W Fowler
- Department of Molecular Virology and Microbiology and Department of Education, Innovation, and Technology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Comparative Medicine and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Margaret E Conner
- Department of Molecular Virology and Microbiology and Department of Education, Innovation, and Technology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zoe Katsamakis
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Natalie Smith
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marina Burgos da Silva
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Doris M Ponce
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10021, USA
| | - Marcel R M van den Brink
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10021, USA
| | - Christine B Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey J Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Hematopoietic Biology & Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Rohtesh S Mehta
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eric C Martens
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Amin M Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert R Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; CPRIT Scholar in Cancer Research, Houston, TX, USA.
| |
Collapse
|
41
|
Chen X, Lu T, Ding M, Cai Y, Yu Z, Zhou X, Wang X. Targeting YTHDF2 inhibits tumorigenesis of diffuse large B-cell lymphoma through ACER2-mediated ceramide catabolism. J Adv Res 2024; 63:17-33. [PMID: 37865189 PMCID: PMC11379987 DOI: 10.1016/j.jare.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023] Open
Abstract
INTRODUCTION Epigenetic alterations play crucial roles in diffuse large B-cell lymphoma (DLBCL). Disturbances in lipid metabolism contribute to tumor progression. However, studies in epigenetics, especially its critical regulator YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), on lipid metabolism regulation in DLBCL are unidentified. OBJECTIVES Elucidate the prognostic value and biological functions of YTHDF2 in DLBCL and illuminate the underlying epigenetic regulation mechanism of lipid metabolism by YTHDF2 in DLBCL development. METHODS The expression and clinical value of YTHDF2 in DLBCL were performed in public databases and clinical specimens. The biological functions of YTHDF2 in DLBCL were determined in vivo and in vitro through overexpression and CRISPR/Cas9-mediated knockout of YTHDF2. RNA sequencing, lipidomics, methylated RNA immunoprecipitation sequencing, RNA immunoprecipitation-qPCR, luciferase activity assay, and RNA stability experiments were used to explore the potential mechanism by which YTHDF2 contributed to DLBCL progression. RESULTS YTHDF2 was highly expressed in DLBCL, and related to poor prognosis. YTHDF2 overexpression exerted a tumor-promoting effect in DLBCL, and knockdown of YTHDF2 restricted DLBCL cell proliferation, arrested cell cycle in the G2/M phase, facilitated apoptosis, and enhanced drug sensitivity to ibrutinib and venetoclax. In addition, YTHDF2 knockout drastically suppressed tumor growth in xenograft DLBCL models. Furthermore, a regulatory role of YTHDF2 in ceramide metabolism was identified in DLBCL cells. Exogenous ceramide effectively inhibited the malignant phenotype of DLBCL cells in vitro. The binding of YTHDF2 to m6A sites on alkaline ceramidase 2 (ACER2) mRNA promoted its stability and expression. Enhanced ACER2 expression hydrolyzed ceramides, disrupting the balance between ceramide and sphingosine-1-phosphate (S1P), activating the ERK and PI3K/AKT pathways, and leading to DLBCL tumorigenesis. CONCLUSION This study demonstrated that YTHDF2 contributed to the progression of DLBCL by regulating ACER2-mediated ceramide metabolism in an m6A-dependent manner, providing novel insights into targeted therapies.
Collapse
Affiliation(s)
- Xiaomin Chen
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Tiange Lu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Mengfei Ding
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Yiqing Cai
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Zhuoya Yu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong 250021, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 251006, China.
| |
Collapse
|
42
|
He M, Shi J, Wu C, Xu YJ, Liu Y. Integrating Lipidomics, Metabolomics, and Network Pharmacology to Reveal the Mechanism of Cannabidiol against Inflammation in High-Fat, High-Cholesterol Diet-Induced Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19246-19256. [PMID: 39150414 DOI: 10.1021/acs.jafc.4c04994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Inflammation plays a critical role in the development of numerous diseases. Cannabidiol (CBD), found in hemp, exhibits significant pharmacological activities. Accumulating evidence suggests that CBD has anti-inflammatory and cardiovascular protection effects, but the potential mechanisms require further exploration. In this study, we aimed to reveal the mechanisms of CBD against high-fat, high-cholesterol (HFC) diet-induced inflammation combining metabolomics with network pharmacology. First, plasma lipidomics results indicated that oxidized lipids could serve as potential biomarkers for HFC diet-induced inflammation, and CBD reversed the elevated levels of oxidized lipids. The HFC diet was also found to enhance intestinal permeability, facilitating the entry of lipopolysaccharides (LPSs) into the circulatory system and subsequently increasing systemic inflammation. Additionally, cell metabolomic results indicated that CBD could reverse 10 important differential metabolites in LPS-induced RAW 264.7 cells. Using network pharmacology, we identified 49 core targets, and enrichment analysis revealed that arachidonic acid was the most significantly affected by CBD, which was closely associated with inflammation. Further integrated analysis focused on three key targets, including PTGS2, ALOX5, and ALOX15. Molecular docking showed high affinities between key targets and CBD, and qPCR further demonstrated that CBD could reverse the mRNA expression of these key targets in RAW 264.7 cells. Collectively, this finding integrates lipidomics and metabolomics with network pharmacology to elucidate the anti-inflammatory effects of CBD and validates key therapeutic targets.
Collapse
Affiliation(s)
- Mengxue He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Cong Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
43
|
Cheng WW, Liu BH, Hou XT, Meng H, Wang D, Zhang CH, Yuan S, Zhang QG. Natural Products on Inflammatory Bowel Disease: Role of Gut Microbes. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1275-1301. [PMID: 39192679 DOI: 10.1142/s0192415x24500514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Inflammatory bowel disease (IBD) refers to long-term medical conditions that involve inflammation of the digestive tract, and the global incidence and prevalence of IBD are on the rise. Gut microbes play an important role in maintaining the intestinal health of the host, and the occurrence, development, and therapeutic effects of IBD are closely related to the structural and functional changes of gut microbes. Published studies have shown that the natural products from traditional Chinese medicine have direct or indirect regulatory impacts on the composition and metabolism of the gut microbes. In this review, we summarize the research progress of several groups of natural products, i.e., flavonoids, alkaloids, saponins, polysaccharides, polyphenols, and terpenoids, for the therapeutic activities in relieving IBD symptoms. The role of gut microbes and their intestinal metabolites in managing the IBD is presented, with focusing on the mechanism of action of those natural products. Traditional Chinese medicine alleviated IBD symptoms by regulating gut microbes, providing important theoretical and practical basis for the treatment of variable inflammatory intestinal diseases.
Collapse
Affiliation(s)
- Wen-Wen Cheng
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Bao-Hong Liu
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Xiao-Ting Hou
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Huan Meng
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Dan Wang
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Cheng-Hao Zhang
- Department of Oral Teaching and Research, Yanbian University College of Medicine, Yanji, Jilin Province 133002, P. R. China
| | - Shuo Yuan
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, P. R. China
| | - Qing-Gao Zhang
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| |
Collapse
|
44
|
Xiang B, Hu J, Zhang M, Zhi M. The involvement of oral bacteria in inflammatory bowel disease. Gastroenterol Rep (Oxf) 2024; 12:goae076. [PMID: 39188957 PMCID: PMC11346772 DOI: 10.1093/gastro/goae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/23/2024] [Accepted: 03/25/2024] [Indexed: 08/28/2024] Open
Abstract
Microorganisms play an important role in the pathogenesis of inflammatory bowel disease (IBD). The oral cavity, the second-largest microbial niche, is connected to the gastro-intestinal tract. Ectopic gut colonization by oral microbes is a signature of IBD. Current studies suggest that patients with IBD often report more oral manifestations and these oral issues are closely linked with disease activity. Murine studies have indicated that several oral microbes exacerbate intestinal inflammation. Moreover, intestinal inflammation can promote oral microbial dysbiosis and the migration of oral microbes to the gastro-intestinal tract. The reciprocal consequences of oral microbial dysbiosis and IBD, specifically through metabolic alterations, have not yet been elucidated. In this review, we summarize the relationship between oral bacteria and IBD from multiple perspectives, including clinical manifestations, microbial dysbiosis, and metabolic alterations, and find that oral pathogens increase anti-inflammatory metabolites and decrease inflammation-related metabolites.
Collapse
Affiliation(s)
- Bingjie Xiang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jun Hu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Min Zhang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Min Zhi
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
45
|
Liu J, Ahmad AA, Yang C, Zhang J, Zheng J, Liang Z, Wang F, Zhai H, Qin S, Yang F, Ding X. Modulations in gastrointestinal microbiota during postpartum period fulfill energy requirements and maintain health of lactating Tibetan cattle. Front Microbiol 2024; 15:1369173. [PMID: 39228376 PMCID: PMC11368858 DOI: 10.3389/fmicb.2024.1369173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Postpartum period of dairy cattle is an important phase of their life mainly associated with the changes in physiology, rumen function, and energy metabolism. Studies have shown that gut microbial composition undergoes drastic changes during the postpartum period. However, little is known about the temporal variations in digestive tract microbiota in postpartum Tibetan cattle. The aim of this study was to investigate the temporal variations in blood metabolites, ruminal fermentation, and microbial community of oral, rumen, and gut in lactating Tibetan cattle during postpartum. Methods We collected blood, saliva, rumen fluid, and fecal samples from lactating Tibetan cattle during 1st week (1 W), the 2nd week (2 W), the 1st month (1 M), and the 2nd month (2 M) of the postpartum period. The microbiota of saliva, rumen fluid, and fecal samples were assessed using 16S rRNA sequencing. The rumen volatile fatty acid and blood parameters were also quantified. Results The content of volatile fatty acids (VFAs) and blood parameters showed opposite tendency to each other and reached to stability at 2 M. Rumen microbiota showed the highest alpha diversity compared to other two sites. At phylum level, the oral cavity was dominated by Proteobacteria, while most dominant phylum in rumen and feces were Firmicutes and Bacteroidetes, respectively. The dominant genera in oral cavity were Moraxella and Bibersteinia, while genera Prevotella 1 and Ruminococcaceae UCG-005 were dominant in rumen and fecal samples, respectively. Discussion Microbial network analysis revealed that most of the active genera in all networks belonged to phylum Firmicutes, indicating the importance of this phyla during postpartum period of lactating cattle. The functional analysis revealed distinct division of labor among three gastrointestinal sites associated with defense, fatty acid synthesis, and maintaining health of host. All in all, our findings provide insights into the metabolic and microbial changes of lactating Tibetan cattle and help to the improvement of the management strategies.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| | - Anum Ali Ahmad
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Chen Yang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| | - Jianbo Zhang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, China
| | - Juanshan Zheng
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| | - Zeyi Liang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| | - Fang Wang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| | - Huan Zhai
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| | - Shuanghong Qin
- Department of Endocrinology, The Second People's Hospital of Gansu Province, Lanzhou, Gansu, China
| | - Feng Yang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
46
|
Lee J, Reiman D, Singh S, Chang A, Morel L, Chervonsky AV. Microbial influences on severity and sex bias of systemic autoimmunity. Immunol Rev 2024; 325:64-76. [PMID: 38716867 PMCID: PMC11338725 DOI: 10.1111/imr.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Commensal microbes have the capacity to affect development and severity of autoimmune diseases. Germ-free (GF) animals have proven to be a fine tool to obtain definitive answers to the queries about the microbial role in these diseases. Moreover, GF and gnotobiotic animals can be used to dissect the complex symptoms and determine which are regulated (enhanced or attenuated) by microbes. These include disease manifestations that are sex biased. Here, we review comparative analyses conducted between GF and Specific-Pathogen Free (SPF) mouse models of autoimmunity. We present data from the B6;NZM-Sle1NZM2410/AegSle2NZM2410/AegSle3NZM2410/Aeg-/LmoJ (B6.NZM) mouse model of systemic lupus erythematosus (SLE) characterized by multiple measurable features. We compared the severity and sex bias of SPF, GF, and ex-GF mice and found variability in the severity and sex bias of some manifestations. Colonization of GF mice with the microbiotas taken from B6.NZM mice housed in two independent institutions variably affected severity and sexual dimorphism of different parameters. Thus, microbes regulate both the severity and sexual dimorphism of select SLE traits. The sensitivity of particular trait to microbial influence can be used to further dissect the mechanisms driving the disease. Our results demonstrate the complexity of the problem and open avenues for further investigations.
Collapse
Affiliation(s)
- Jean Lee
- Committee on Cancer Biology, The University of Chicago, Chicago, Illinois, USA
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Derek Reiman
- Toyota Technological Institute at Chicago, Chicago, Illinois, USA
| | - Samara Singh
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Anthony Chang
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Laurence Morel
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Alexander V Chervonsky
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, The University of Chicago, Chicago, Illinois, USA
- Committee on Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
47
|
Selmi H, Walker A, Debarbieux L, Schmitt-Kopplin P. Improving the intestinal lipidome coverage in a gnotobiotic mouse model using UHPLC-MS-based approach through optimization of mobile phase modifiers and column selection. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1242:124188. [PMID: 38901159 DOI: 10.1016/j.jchromb.2024.124188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
Lipidomics is focusing on the screening of lipid species in complex mixtures using mass spectrometry-based approaches. In this work, we aim to enhance the intestinal lipidome coverage within the Oligo-Mouse-Microbiota (OMM12) colonized mouse model by testing eight mobile phase conditions on five reversed-phase columns. Our selected mobile phase modifiers included two ammonium salts, two concentrations, and the addition of respective acids at 0.1 %. We compared two columns with hybrid surface technology, two with ethylene bridged hybrid technology and one with core-shell particles. Best performance was attained for standards and intestinal lipidome, using either ammonium formate or acetate in ESI(+) or ammonium acetate in ESI(-) for all column technologies. Notably, a concentration of 5 mM ammonium salt showed optimal results for both modes, while the addition of acids had a negligible effect on lipid ionization efficiency. The HST BEH C18 column improved peak width and tailing factor parameters compared to other technologies. We achieved the highest lipid count in colon and ileum content, including ceramides, phosphatidylethanolamines and phosphatidylcholines, when using 5 mM ammonium acetate in ESI(-). Conversely, in ESI(+) 5 mM ammonium formate demonstrated superior coverage for diacylglycerols and triacylglycerols.
Collapse
Affiliation(s)
- Habiba Selmi
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany; Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| |
Collapse
|
48
|
Doll CL, Snider AJ. The diverse roles of sphingolipids in inflammatory bowel disease. FASEB J 2024; 38:e23777. [PMID: 38934445 PMCID: PMC467036 DOI: 10.1096/fj.202400830r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The incidence of inflammatory bowel disease (IBD) has increased over the last 20 years. A variety of causes, both physiological and environmental, contribute to the initiation and progression of IBD, making disease management challenging. Current treatment options target various aspects of the immune response to dampen intestinal inflammation; however, their effectiveness at retaining remission, their side effects, and loss of response from patients over time warrant further investigation. Finding a common thread within the multitude causes of IBD is critical in developing robust treatment options. Sphingolipids are evolutionary conserved bioactive lipids universally generated in all cell types. This diverse lipid family is involved in a variety of fundamental, yet sometimes opposing, processes such as proliferation and apoptosis. Implicated as regulators in intestinal diseases, sphingolipids are a potential cornerstone in understanding IBD. Herein we will describe the role of host- and microbial-derived sphingolipids as they relate to the many factors of intestinal health and IBD.
Collapse
Affiliation(s)
- Chelsea L. Doll
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85721, USA
| | - Ashley J. Snider
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85721, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
49
|
Chetwood JD, Paramsothy S, Haifer C, Borody TJ, Kamm MA, Leong RW, Kaakoush NO. Key metabolomic alterations are associated with ulcerative colitis disease state and activity: a validation analysis. Gut 2024; 73:1392-1393. [PMID: 37591699 DOI: 10.1136/gutjnl-2023-330196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Affiliation(s)
- John David Chetwood
- Department of Gastroenterology, Concord Repatriation General Hospital, Concord, New South Wales, Australia
- The University of Sydney Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Sudarshan Paramsothy
- Department of Gastroenterology, Concord Repatriation General Hospital, Concord, New South Wales, Australia
- The University of Sydney Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Department of Gastroenterology, Macquarie University Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Craig Haifer
- Department of Gastroenterology and Hepatology, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Thomas J Borody
- Centre for Digestive Diseases, Sydney, New South Wales, Australia
| | - Michael A Kamm
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia
- Dept of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Rupert W Leong
- Department of Gastroenterology, Concord Repatriation General Hospital, Concord, New South Wales, Australia
- The University of Sydney Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Department of Gastroenterology, Macquarie University Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nadeem O Kaakoush
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
50
|
Lee J, Wellenstein K, Rahnavard A, Nelson AT, Holter MM, Cummings BP, Yeliseyev V, Castoldi A, Clish CB, Bry L, Siegel D, Kahn BB. Beneficial metabolic effects of PAHSAs depend on the gut microbiota in diet-induced obese mice but not in chow-fed mice. Proc Natl Acad Sci U S A 2024; 121:e2318691121. [PMID: 38968121 PMCID: PMC11252816 DOI: 10.1073/pnas.2318691121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
Dietary lipids play an essential role in regulating the function of the gut microbiota and gastrointestinal tract, and these luminal interactions contribute to mediating host metabolism. Palmitic Acid Hydroxy Stearic Acids (PAHSAs) are a family of lipids with antidiabetic and anti-inflammatory properties, but whether the gut microbiota contributes to their beneficial effects on host metabolism is unknown. Here, we report that treating chow-fed female and male germ-free (GF) mice with PAHSAs improves glucose tolerance, but these effects are lost upon high fat diet (HFD) feeding. However, transfer of feces from PAHSA-treated, but not vehicle-treated, chow-fed conventional mice increases insulin sensitivity in HFD-fed GF mice. Thus, the gut microbiota is necessary for, and can transmit, the insulin-sensitizing effects of PAHSAs in HFD-fed GF male mice. Analyses of the cecal metagenome and lipidome of PAHSA-treated mice identified multiple lipid species that associate with the gut commensal Bacteroides thetaiotaomicron (Bt) and with insulin sensitivity resulting from PAHSA treatment. Supplementing live, and to some degree, heat-killed Bt to HFD-fed female mice prevented weight gain, reduced adiposity, improved glucose tolerance, fortified the colonic mucus barrier and reduced systemic inflammation compared to HFD-fed controls. These effects were not observed in HFD-fed male mice. Furthermore, ovariectomy partially reversed the beneficial Bt effects on host metabolism, indicating a role for sex hormones in mediating the Bt probiotic effects. Altogether, these studies highlight the fact that PAHSAs can modulate the gut microbiota and that the microbiota is necessary for the beneficial metabolic effects of PAHSAs in HFD-fed mice.
Collapse
Affiliation(s)
- Jennifer Lee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA02215
| | - Kerry Wellenstein
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA02215
| | - Ali Rahnavard
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC20052
| | - Andrew T. Nelson
- Division of Pharmaceutical Chemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA92093
| | - Marlena M. Holter
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Cornell University, Ithaca, NY14850
| | - Bethany P. Cummings
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA95817
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis School of Veterinary Medicine, Davis, CA95616
| | - Vladimir Yeliseyev
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA02115
| | - Angela Castoldi
- Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife50670-901, Brazil
| | - Clary B. Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA02115
| | - Dionicio Siegel
- Division of Pharmaceutical Chemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA92093
| | - Barbara B. Kahn
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA02215
| |
Collapse
|