1
|
Liu H, Billington C, Ji X, Sun H, Hou X, Soleimani-Delfan A, Wang R, Wang H, Zhang L. Effect of temperate bacteriophage vB_SauS_S1 on the adaptability and pathogenicity of Staphylococcus aureus ST398. BMC Microbiol 2025; 25:184. [PMID: 40165043 PMCID: PMC11956185 DOI: 10.1186/s12866-025-03900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
Livestock-associated Staphylococcus aureus ST398 is a highly pathogenic species that causes infections in a wide variety of animals, including humans. The bacteriophage (phage) vB_SauS_S1 was isolated originally using a ST398 strain as its "isolating host", then the spot tests showed it was able to infect 73.33% (22/30) ST398 isolates. Phage S1 was assigned as a temperate phage based on genome analysis and phenotypic validation. Phylogenetic analysis showed that S1 was closely related to temperate phages tp310-2 and SA137ruMSSAST121PVL. Following infection of ST398 by phage S1, the lysogenic strain showed enhanced biofilm forming ability compared to the wildtype strain, and the invasion rate of MAC-T cells increased by 10.39%. The minimum inhibitory concentration showed that phage S1 did not change the antibiotic sensitivity of the lysogen strain, and the virulence of the lysogen strain did not change significantly in the injection models of Galleria mellonella (G. mellonella) and mice. The lysogen demonstrated superinfection immunity and reduced sensitivity to virulent phage infection. Thus, this study contributes to understanding the co-evolutionary relationships between temperate phages and the multi-host zoonotic pathogen S. aureus ST398.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, P.R. China
| | - Craig Billington
- Institute of Environmental Science and Research, 27 Creyke Road, Ilam, Christchurch, 8041, New Zealand
| | - Xing Ji
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Haichang Sun
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Xiang Hou
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Abbas Soleimani-Delfan
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Ran Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Heye Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Lili Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China.
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| |
Collapse
|
2
|
Fong SA, Bouras G, Houtak G, Nepal R, Feizi S, Morales S, Psaltis AJ, Wormald PJ, Vreugde S. Genomic variation in Pseudomonas aeruginosa clinical respiratory isolates with de novo resistance to a bacteriophage cocktail. Microbiol Spectr 2025:e0214924. [PMID: 40162801 DOI: 10.1128/spectrum.02149-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/20/2025] [Indexed: 04/02/2025] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can cause sinus infections and pneumonia in cystic fibrosis (CF) patients. Bacteriophage therapy is being investigated as a treatment for antibiotic-resistant P. aeruginosa infections. Although virulent bacteriophages have shown promise in treating P. aeruginosa infections, the development of bacteriophage-insensitive mutants (BIMs) in the presence of bacteriophages has been described. The aim of this study was to examine the genetic changes associated with the BIM phenotype. Biofilms of three genetically distinct P. aeruginosa strains, including PAO1 (ATCC 15692), and two clinical respiratory isolates (one CF and one non-CF) were grown for 7 days and treated with either a cocktail of four bacteriophages or a vehicle control for 7 consecutive days. BIMs isolated from the biofilms were detected by streak assays, and resistance to the phage cocktail was confirmed using spot test assays. Comparison of whole genome sequencing between the recovered BIMs and their respective vehicle control-treated phage-sensitive isolates revealed structural variants in two strains, and several small variants in all three strains. These variations involved a TonB-dependent outer membrane receptor in one strain, and mutations in lipopolysaccharide synthesis genes in two strains. Prophage deletion and induction were also noted in two strains, as well as mutations in several genes associated with virulence factors. Mutations in genes involved in susceptibility to conventional antibiotics were also identified in BIMs, with both decreased and increased antibiotic sensitivity to various antibiotics being observed. These findings may have implications for future applications of lytic phage therapy.IMPORTANCELytic bacteriophages are viruses that infect and kill bacteria and can be used to treat difficult-to-treat bacterial infections, including biofilm-associated infections and multidrug-resistant bacteria. Pseudomonas aeruginosa is a bacterium that can cause life-threatening infections. Lytic bacteriophage therapy has been trialed in the treatment of P. aeruginosa infections; however, sometimes bacteria develop resistance to the bacteriophages. This study sheds light on the genetic mechanisms of such resistance, and how this might be harnessed to restore the sensitivity of multidrug-resistant P. aeruginosa to conventional antibiotics.
Collapse
Affiliation(s)
- Stephanie A Fong
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - George Bouras
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Ghais Houtak
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Roshan Nepal
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Sholeh Feizi
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Sandra Morales
- AmpliPhi Australia, Brookvale, New South Wales, Australia
| | - Alkis J Psaltis
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Peter-John Wormald
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Sarah Vreugde
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| |
Collapse
|
3
|
Hu H, Popp PF, Hughes TCD, Roa-Eguiara A, Rutbeek NR, Martin FJO, Hendriks IA, Payne LJ, Yan Y, Humolli D, Klein-Sousa V, Songailiene I, Wang Y, Nielsen ML, Berry RM, Harms A, Erhardt M, Jackson SA, Taylor NMI. Structure and mechanism of the Zorya anti-phage defence system. Nature 2025; 639:1093-1101. [PMID: 39662505 PMCID: PMC11946911 DOI: 10.1038/s41586-024-08493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Zorya is a recently identified and widely distributed bacterial immune system that protects bacteria from viral (phage) infections. Three Zorya subtypes have been identified, each containing predicted membrane-embedded ZorA-ZorB (ZorAB) complexes paired with soluble subunits that differ among Zorya subtypes, notably ZorC and ZorD in type I Zorya systems1,2. Here we investigate the molecular basis of Zorya defence using cryo-electron microscopy, mutagenesis, fluorescence microscopy, proteomics and functional studies. We present cryo-electron microscopy structures of ZorAB and show that it shares stoichiometry and features of other 5:2 inner membrane ion-driven rotary motors. The ZorA5B2 complex contains a dimeric ZorB peptidoglycan-binding domain and a pentameric α-helical coiled-coil tail made of ZorA that projects approximately 70 nm into the cytoplasm. We also characterize the structure and function of the soluble Zorya components ZorC and ZorD, finding that they have DNA-binding and nuclease activity, respectively. Comprehensive functional and mutational analyses demonstrate that all Zorya components work in concert to protect bacterial cells against invading phages. We provide evidence that ZorAB operates as a proton-driven motor that becomes activated after sensing of phage invasion. Subsequently, ZorAB transfers the phage invasion signal through the ZorA cytoplasmic tail to recruit and activate the soluble ZorC and ZorD effectors, which facilitate the degradation of the phage DNA. In summary, our study elucidates the foundational mechanisms of Zorya function as an anti-phage defence system.
Collapse
Affiliation(s)
- Haidai Hu
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Philipp F Popp
- Institute of Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas C D Hughes
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Aritz Roa-Eguiara
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicole R Rutbeek
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Freddie J O Martin
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivo Alexander Hendriks
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leighton J Payne
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Yumeng Yan
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dorentina Humolli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Victor Klein-Sousa
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Inga Songailiene
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Michael Lund Nielsen
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard M Berry
- Department of Physics and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Alexander Harms
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Marc Erhardt
- Institute of Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany.
- Max Planck Unit for the Science of Pathogens, Berlin, Germany.
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Getz LJ, Fairburn SR, Vivian Liu Y, Qian AL, Maxwell KL. Integrons are anti-phage defence libraries in Vibrio parahaemolyticus. Nat Microbiol 2025; 10:724-733. [PMID: 39870871 DOI: 10.1038/s41564-025-01927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
Bacterial genomes have regions known as defence islands that encode diverse systems to protect against phage infection. Although genetic elements that capture and store gene cassettes in Vibrio species, called integrons, are known to play an important role in bacterial adaptation, a role in phage defence had not been defined. Here we combine bioinformatic and molecular techniques to show that the chromosomal integron of Vibrio parahaemolyticus is a hotspot for anti-phage defence genes. Using bioinformatics, we discovered that previously characterized defences localize to integrons. Intrigued by this discovery, we cloned 57 integron gene cassettes and identified 9 previously unrecognized systems that mediate defence. Our work reveals that integrons are an important reservoir of defence systems in V. parahaemolyticus. As integrons are of ancient origin and are widely distributed among Proteobacteria, these results provide an approach for the discovery of anti-phage defence systems across a broad range of bacteria.
Collapse
Affiliation(s)
- Landon J Getz
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Sam R Fairburn
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Y Vivian Liu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Amy L Qian
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Gu Y, Li H, Deep A, Enustun E, Zhang D, Corbett KD. Bacterial Shedu immune nucleases share a common enzymatic core regulated by diverse sensor domains. Mol Cell 2025; 85:523-536.e6. [PMID: 39742666 PMCID: PMC11805627 DOI: 10.1016/j.molcel.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 07/25/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025]
Abstract
Prokaryotes possess diverse anti-bacteriophage immune systems, including the single-protein Shedu nuclease. Here, we reveal the structural basis for activation of Bacillus cereus Shedu. Two cryoelectron microscopy structures of Shedu show that it switches between inactive and active states through conformational changes affecting active-site architecture, which are controlled by the protein's N-terminal domain (NTD). We find that B. cereus Shedu cleaves near DNA ends with a 3' single-stranded overhang, likely enabling it to specifically degrade the DNA injected by certain bacteriophages. Bioinformatic analysis of Shedu homologs reveals a conserved nuclease domain with remarkably diverse N-terminal regulatory domains: we identify 79 distinct NTD types falling into eight broad classes, including those with predicted nucleic acid binding, enzymatic, and other activities. Together, these data reveal Shedu as a broad family of immune nucleases with a common nuclease core regulated by diverse NTDs that likely respond to a range of signals.
Collapse
Affiliation(s)
- Yajie Gu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Huan Li
- Department of Biology, Saint Louis University, Saint Louis, MO, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Eray Enustun
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Dapeng Zhang
- Department of Biology, Saint Louis University, Saint Louis, MO, USA.
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Stefanic P, Stare E, Floccari VA, Kovac J, Hertel R, Rocha U, Kovács ÁT, Mandić-Mulec I, Strube ML, Dragoš A. Ecology of prophage-like elements in Bacillus subtilis at global and local geographical scales. Cell Rep 2025; 44:115197. [PMID: 39798088 DOI: 10.1016/j.celrep.2024.115197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/27/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025] Open
Abstract
Prophages constitute a substantial portion of bacterial genomes, yet their effects on hosts remain poorly understood. We examine the abundance, distribution, and activity of prophages in Bacillus subtilis using computational and laboratory analyses. Genome sequences from the NCBI database and riverbank soil isolates reveal prophages primarily related to mobile genetic elements in laboratory strains. Distinct and previously unknown prophages in local isolates prompt an investigation into factors shaping prophage presence, with phylogenetic relatedness predicting the prophage repertoire slightly better than geographical origin. Data also show that prophages exhibit strong co-occurrence and exclusion patterns within genomes. Laboratory experiments indicate that most predicted prophages are cryptic, as they are not induced under DNA-damaging conditions. Importantly, stress responses increase with the number of predicted prophages, suggesting their influence on host physiology. This study highlights the diversity, integration patterns, and potential roles of prophages in B. subtilis, shedding light on bacterial genome evolution and phage-host dynamics.
Collapse
Affiliation(s)
- Polonca Stefanic
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Eva Stare
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Valentina A Floccari
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jasna Kovac
- Department of Food Science, Pennsylvania State University, University Park, PA 16802, USA
| | - Robert Hertel
- Department of Genomic and Applied Microbiology, Georg-August-University of Göttingen, 37077 Göttingen, Germany
| | - Ulisses Rocha
- Department of Applied Microbial Ecology, Helmholtz Center for Environmental Research, 04318 Leipzig, Germany
| | - Ákos T Kovács
- Institute of Biology, Leiden University, 2333 Leiden, the Netherlands; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Ines Mandić-Mulec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Anna Dragoš
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Zhang Z, Todeschini TC, Wu Y, Kogay R, Naji A, Rodriguez JC, Mondi R, Kaganovich D, Taylor DW, Bravo JPK, Teplova M, Amen T, Koonin EV, Patel DJ, Nobrega FL. Kiwa is a bacterial membrane-embedded defence supercomplex activated by phage-induced membrane changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.02.26.530102. [PMID: 39896579 PMCID: PMC11785009 DOI: 10.1101/2023.02.26.530102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Bacteria and archaea deploy diverse, sophisticated defence systems to counter virus infection, yet many immunity mechanisms remain poorly understood. Here, we characterise the Kiwa defence system as a membrane-associated supercomplex that senses changes in the membrane induced by phage infection and plasmid conjugation. This supercomplex, comprising KwaA tetramers bound to KwaB dimers, as its basic repeating unit, detects structural stress via KwaA, activating KwaB, which binds ejected phage DNA through its DUF4868 domain, stalling phage DNA replication forks and thus disrupting replication and late transcription. We show that phage-encoded DNA mimic protein Gam, which inhibits RecBCD, also targets Kiwa through KwaB recognition. However, Gam binding to one defence system precludes its inhibition of the other. These findings reveal a distinct mechanism of bacterial immune coordination, where sensing of membrane disruptions and inhibitor partitioning enhance protection against phages and plasmids.
Collapse
Affiliation(s)
- Zhiying Zhang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Shared first authors
| | - Thomas C. Todeschini
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
- Shared first authors
- Current address: RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Yi Wu
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
- Shared first authors
| | - Roman Kogay
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Ameena Naji
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
- Current address: School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | - Rupavidhya Mondi
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
- Current address: The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Daniel Kaganovich
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - David W. Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Interdisciplinary Life Sciences Graduate Programs, Austin, TX 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
- LIVESTRONG Cancer Institutes, Dell Medical School, Austin, TX, 78712, USA
| | - Jack P. K. Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Current address: Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Marianna Teplova
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Triana Amen
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Franklin L. Nobrega
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
| |
Collapse
|
8
|
Dong Q, Harper S, McSpadden E, Son SS, Allen MM, Lin H, Smith RC, Metcalfe C, Burgo V, Woodson C, Sundararajan A, Rose A, McMillin M, Moran D, Little J, Mullowney MW, Sidebottom AM, Fortier LC, Shen A, Pamer EG. Protection against Clostridioides difficile disease by a naturally avirulent strain. Cell Host Microbe 2025; 33:59-70.e4. [PMID: 39610252 PMCID: PMC11731898 DOI: 10.1016/j.chom.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/24/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024]
Abstract
Clostridioides difficile is a leading cause of healthcare infections. Gut dysbiosis promotes C. difficile infection (CDI) and CDIs promote gut dysbiosis, leading to frequent CDI recurrence. Although therapies preventing recurrent CDI have been developed, including live biotherapeutic products, existing therapies are costly and do not prevent primary infections. Here, we show that an avirulent C. difficile isolate, ST1-75, protects mice from developing colitis induced by a virulent R20291 strain when coinfected at a 1:1 ratio. In metabolic analyses, avirulent ST1-75 depletes amino acids more rapidly than virulent R20291 and supplementation with amino acids ablates this competitive advantage, indicating that ST1-75 limits the growth of virulent R20291 through amino acid depletion. Overall, our study identifies inter-strain nutrient depletion as a potentially exploitable mechanism to reduce the incidence of CDI and reveals that the ST1-75 strain may be a biotherapeutic agent that can prevent CDI in high-risk patients.
Collapse
Affiliation(s)
- Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA.
| | - Stephen Harper
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Emma McSpadden
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Sophie S Son
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Rita C Smith
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Carolyn Metcalfe
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Victoria Burgo
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Che Woodson
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | | | - Amber Rose
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Mary McMillin
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - David Moran
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Jessica Little
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| | - Eric G Pamer
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Sargen MR, Helaine S. A prophage competition element protects Salmonella from lysis. Cell Host Microbe 2024; 32:2063-2079.e8. [PMID: 39515326 PMCID: PMC11840918 DOI: 10.1016/j.chom.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Most bacteria are polylysogens that carry multiple prophages integrated into the chromosome. These prophages confer advantages to their bacterial host, yet also pose a lethal threat as they can reactivate and enter a lytic cycle. DNA damage of the bacterial host is a common trigger of prophage lytic cycles. Because DNA damage is frequently experienced by bacterial pathogens exposed to host immune defenses, prophage activation may be common during infection. Investigating the consequences of prophage induction in Salmonella, we discover a prophage competition element in the Gifsy-1 prophage that we name ribonuclease effector module with ATPase, inhibitor, and nuclease (RemAIN) because it blocks the lytic cycles and release of viral particles of co-resident prophages. Intramacrophage Salmonella persisters, a subpopulation that incurs DNA damage, experience prophage reactivation and subsequent RemAIN activation, which influences Salmonella persisters and macrophage response to infection. Our findings reveal a multi-layered host-pathogen arms race in which prophage-prophage competition influences bacterial persistence and the mammalian immune response.
Collapse
Affiliation(s)
- Molly R Sargen
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Gu J, Zhang X, Liu T, Guo Y. Isolation and Characterization of a Lytic Phage PaTJ Against Pseudomonas aeruginosa. Viruses 2024; 16:1816. [PMID: 39772127 PMCID: PMC11680426 DOI: 10.3390/v16121816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Pseudomonas aeruginosa is a major global threat to human health, and phage therapy has emerged as a promising strategy for treating infections caused by multidrug-resistant pathogens. In this study, we isolated and characterized a Pseudomonas lytic phage, PaTJ, from wastewater. PaTJ belongs to the phage family Mesyanzhinovviridae, and is featured by short latency (30 min) and large burst size (103 PFU per infected cell). Our investigation revealed that PaTJ utilizes the type IV Pili (T4P) as a receptor. Transcriptome analysis of PaTJ infected host at latent stage showed distinct expression patterns of PaTJ encoding genes involved in replication and structure assembly, without expression of the majority of toxic accessory genes responsible for phage release. In addition, host bacteria exhibited specific induction of host metabolism-related genes in response to the PaTJ's infection. Furthermore, our findings demonstrated the PaTJ's potential in degrading biofilms. This work sheds light on the multifaceted impact of this lytic phage PaTJ on P. aeruginosa, presenting potential applications in both gene expression modulation and biofilm management.
Collapse
Affiliation(s)
- Jiayu Gu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China; (J.G.); (T.L.)
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Xinqiao Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300000, China;
| | - Tianlang Liu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China; (J.G.); (T.L.)
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China; (J.G.); (T.L.)
- University of Chinese Academy of Sciences, Beijing 100000, China
| |
Collapse
|
11
|
Peters TL, Schow J, Spencer E, Van Leuven JT, Wichman H, Miller C. Directed evolution of bacteriophages: thwarted by prolific prophage. Appl Environ Microbiol 2024; 90:e0088424. [PMID: 39475284 DOI: 10.1128/aem.00884-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/27/2024] [Indexed: 11/06/2024] Open
Abstract
Various directed evolution methods exist that seek to procure bacteriophages with expanded host ranges, typically targeting phage-resistant or non-permissive bacterial hosts. The general premise of these methods involves propagating phage(s) on multiple bacterial hosts, pooling the lysate, and repeating this process until phage(s) can form plaques on the target host(s). In theory, this produces a lysate containing input phages and their evolved phage progeny. However, in practice, this lysate can also include prophages originating from bacterial hosts. Here, we describe our experience implementing one directed evolution method, the Appelmans protocol, to study phage evolution in the Pseudomonas aeruginosa phage-host system, where we observed rapid host-range expansion of the phage cocktail. Further experimentation and sequencing revealed that the observed host-range expansion was due to a Casadabanvirus prophage originating from a lysogenic host that was only included in the first three rounds of the experiment. This prophage could infect five of eight bacterial hosts initially used, allowing it to persist and proliferate until the termination of the experiment. This prophage was represented in half of the sequenced phage samples isolated from the Appelmans experiment, but despite being subjected to directed evolution conditions, it does not appear to have evolved. This work highlights the impact of prophages in directed evolution experiments and the importance of genetically verifying output phages, particularly for those attempting to procure phages intended for phage therapy applications. This study also notes the usefulness of intraspecies antagonism assays between bacterial host strains to establish a baseline for inhibitory activity and determine the presence of prophage.IMPORTANCEDirected evolution is a common strategy for evolving phages to expand the host range, often targeting pathogenic strains of bacteria. In this study, we investigated phage host-range expansion using directed evolution in the Pseudomonas aeruginosa system. We show that prophages are active players in directed evolution and can contribute to observation of host-range expansion. Since prophages are prevalent in bacterial hosts, particularly pathogenic strains of bacteria, and all directed evolution approaches involve iteratively propagating phage on one or more bacterial hosts, the presence of prophage in phage preparations is a factor that needs to be considered in experimental design and interpretation of results. These results highlight the importance of screening for prophages either genetically or through intraspecies antagonism assays during selection of bacterial strains and will contribute to improving the experimental design of future directed evolution studies.
Collapse
Affiliation(s)
- Tracey Lee Peters
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, USA
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Jacob Schow
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Emma Spencer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - James T Van Leuven
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
| | - Holly Wichman
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, USA
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Craig Miller
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
12
|
Hossain M, Aslan B, Hatoum-Aslan A. Tandem mobilization of anti-phage defenses alongside SCCmec elements in staphylococci. Nat Commun 2024; 15:8820. [PMID: 39394251 PMCID: PMC11470126 DOI: 10.1038/s41467-024-53146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
Recent research has identified multiple immune systems that bacteria use to protect themselves from viral infections. However, little is known about the mechanisms by which these systems horizontally spread, especially among bacterial pathogens. Here, we investigate antiviral defenses in staphylococci, opportunistic pathogens that constitute leading causes of antibiotic-resistant infections. We show that these organisms harbor a variety of anti-phage defenses encoded within or near SCC (staphylococcal cassette chromosome) mec cassettes, mobile genomic islands that confer methicillin resistance. Importantly, we demonstrate that SCCmec-encoded recombinases mobilize not only SCCmec, but also tandem SCC-like cassettes enriched in genes coding for diverse defense systems. Further, we show that phage infection stimulates cassette mobilization (i.e. excision and circularization). Thus, our findings indicate that SCC/SCCmec cassettes not only spread antibiotic resistance but can also play a role in mobilizing anti-phage defenses.
Collapse
Affiliation(s)
- Motaher Hossain
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL, USA
| | - Barbaros Aslan
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL, USA
| | - Asma Hatoum-Aslan
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL, USA.
| |
Collapse
|
13
|
Vladimirova ME, Roumiantseva ML, Saksaganskaia AS, Muntyan VS, Gaponov SP, Mengoni A. Hot Spots of Site-Specific Integration into the Sinorhizobium meliloti Chromosome. Int J Mol Sci 2024; 25:10421. [PMID: 39408745 PMCID: PMC11476347 DOI: 10.3390/ijms251910421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
The diversity of phage-related sequences (PRSs) and their site-specific integration into the genomes of nonpathogenic, agriculturally valuable, nitrogen-fixing root nodule bacteria, such as Sinorhizobium meliloti, were evaluated in this study. A total of 314 PRSs, ranging in size from 3.24 kb to 88.98 kb, were identified in the genomes of 27 S. meliloti strains. The amount of genetic information foreign to S. meliloti accumulated in all identified PRSs was 6.30 Mb. However, more than 53% of this information was contained in prophages (Phs) and genomic islands (GIs) integrated into genes encoding tRNAs (tRNA genes) located on the chromosomes of the rhizobial strains studied. It was found that phiLM21-like Phs were predominantly abundant in the genomes of S. meliloti strains of distant geographical origin, whereas RR1-A- and 16-3-like Phs were much less common. In addition, GIs predominantly contained fragments of phages infecting bacteria of distant taxa, while rhizobiophage-like sequences were unique. A site-specific integration analysis revealed that not all tRNA genes in S. meliloti are integration sites, but among those in which integration occurred, there were "hot spots" of integration into which either Phs or GIs were predominantly inserted. For the first time, it is shown that at these integration "hot spots", not only is the homology of attP and attB strictly preserved, but integrases in PRSs similar to those of phages infecting the Proteobacteria genera Azospirillum or Pseudomonas are also present. The data presented greatly expand the understanding of the fate of phage-related sequences in host bacterial genomes and also raise new questions about the role of phages in bacterial-phage coevolution.
Collapse
Affiliation(s)
- Maria E. Vladimirova
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia; (M.E.V.); (A.S.S.); (V.S.M.)
| | - Marina L. Roumiantseva
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia; (M.E.V.); (A.S.S.); (V.S.M.)
| | - Alla S. Saksaganskaia
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia; (M.E.V.); (A.S.S.); (V.S.M.)
| | - Victoria S. Muntyan
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia; (M.E.V.); (A.S.S.); (V.S.M.)
| | | | - Alessio Mengoni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
14
|
Getz LJ, Maxwell KL. Diverse Antiphage Defenses Are Widespread Among Prophages and Mobile Genetic Elements. Annu Rev Virol 2024; 11:343-362. [PMID: 38950439 DOI: 10.1146/annurev-virology-100422-125123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Bacterial viruses known as phages rely on their hosts for replication and thus have developed an intimate partnership over evolutionary time. The survival of temperate phages, which can establish a chronic infection in which their genomes are maintained in a quiescent state known as a prophage, is tightly coupled with the survival of their bacterial hosts. As a result, prophages encode a diverse antiphage defense arsenal to protect themselves and the bacterial host in which they reside from further phage infection. Similarly, the survival and success of prophage-related elements such as phage-inducible chromosomal islands are directly tied to the survival and success of their bacterial host, and they also have been shown to encode numerous antiphage defenses. Here, we describe the current knowledge of antiphage defenses encoded by prophages and prophage-related mobile genetic elements.
Collapse
Affiliation(s)
- Landon J Getz
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;
| | - Karen L Maxwell
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
15
|
He L, Miguel-Romero L, Patkowski JB, Alqurainy N, Rocha EPC, Costa TRD, Fillol-Salom A, Penadés JR. Tail assembly interference is a common strategy in bacterial antiviral defenses. Nat Commun 2024; 15:7539. [PMID: 39215040 PMCID: PMC11364771 DOI: 10.1038/s41467-024-51915-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Many bacterial immune systems recognize phage structural components to activate antiviral responses, without inhibiting the function of the phage component. These systems can be encoded in specific chromosomal loci, known as defense islands, and in mobile genetic elements such as prophages and phage-inducible chromosomal islands (PICIs). Here, we identify a family of bacterial immune systems, named Tai (for 'tail assembly inhibition'), that is prevalent in PICIs, prophages and P4-like phage satellites. Tai systems protect their bacterial host population from other phages by blocking the tail assembly step, leading to the release of tailless phages incapable of infecting new hosts. To prevent autoimmunity, some Tai-positive phages have an associated counter-defense mechanism that is expressed during the phage lytic cycle and allows for tail formation. Interestingly, the Tai defense and counter-defense genes are organized in a non-contiguous operon, enabling their coordinated expression.
Collapse
Affiliation(s)
- Lingchen He
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Laura Miguel-Romero
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
| | - Jonasz B Patkowski
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Nasser Alqurainy
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences & King Abdullah International Medical Research Centre, Riyadh, Saudi Arabia
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Tiago R D Costa
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Alfred Fillol-Salom
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
| | - José R Penadés
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
- School of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Alfara del Patriarca, Spain.
| |
Collapse
|
16
|
Grosboillot V, Dragoš A. synphage: a pipeline for phage genome synteny graphics focused on gene conservation. BIOINFORMATICS ADVANCES 2024; 4:vbae126. [PMID: 39224836 PMCID: PMC11368388 DOI: 10.1093/bioadv/vbae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/30/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Motivation Visualization and comparison of genome maps of bacteriophages can be very effective, but none of the tools available on the market allow visualization of gene conservation between multiple sequences at a glance. In addition, most bioinformatic tools running locally are command line only, making them hard to setup, debug, and monitor. Results To address these motivations, we developed synphage, an easy-to-use and intuitive tool to generate synteny diagrams from GenBank files. This software has a user-friendly interface and uses metadata to monitor the progress and success of the data transformation process. The output plot features colour-coded genes according to their degree of conservation among the group of displayed sequences. The strength of synphage lies also in its modularity and the ability to generate multiple plots with different configurations without having to re-process all the data. In conclusion, synphage reduces the bioinformatic workload of users and allows them to focus on analysis, the most impactful area of their work. Availability and implementation The synphage tool is implemented in the Python language and is available from the GitHub repository at https://github.com/vestalisvirginis/synphage. This software is released under an Apache-2.0 licence. A PyPI synphage package is available at https://pypi.org/project/synphage/ and a containerized version is available at https://hub.docker.com/r/vestalisvirginis/synphage. Contributions to the software are welcome whether it is reporting a bug or proposing new features and the contribution guidelines are available at https://github.com/vestalisvirginis/synphage/blob/main/CONTRIBUTING.md.
Collapse
Affiliation(s)
- Virginie Grosboillot
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Anna Dragoš
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
17
|
Guo Y, Tang K, Sit B, Gu J, Chen R, Shao X, Lin S, Huang Z, Nie Z, Lin J, Liu X, Wang W, Gao X, Liu T, Liu F, Luo HR, Waldor MK, Wang X. Control of lysogeny and antiphage defense by a prophage-encoded kinase-phosphatase module. Nat Commun 2024; 15:7244. [PMID: 39174532 PMCID: PMC11341870 DOI: 10.1038/s41467-024-51617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
The filamentous 'Pf' bacteriophages of Pseudomonas aeruginosa play roles in biofilm formation and virulence, but mechanisms governing Pf prophage activation in biofilms are unclear. Here, we identify a prophage regulatory module, KKP (kinase-kinase-phosphatase), that controls virion production of co-resident Pf prophages and mediates host defense against diverse lytic phages. KKP consists of Ser/Thr kinases PfkA and PfkB, and phosphatase PfpC. The kinases have multiple host targets, one of which is MvaU, a host nucleoid-binding protein and known prophage-silencing factor. Characterization of KKP deletion and overexpression strains with transcriptional, protein-level and prophage-based approaches indicates that shifts in the balance between kinase and phosphatase activities regulate phage production by controlling MvaU phosphorylation. In addition, KKP acts as a tripartite toxin-antitoxin system that provides defense against some lytic phages. A conserved lytic phage replication protein inhibits the KKP phosphatase PfpC, stimulating toxic kinase activity and blocking lytic phage production. Thus, KKP represents a phosphorylation-based mechanism for prophage regulation and antiphage defense. The conservation of KKP gene clusters in >1000 diverse temperate prophages suggests that integrated control of temperate and lytic phage infection by KKP-like regulatory modules may play a widespread role in shaping host cell physiology.
Collapse
Grants
- R01 AI042347 NIAID NIH HHS
- This work was supported by the National Science Foundation of China (42188102, 92451302, 31625001, 91951203, 42376128 and 31970037), by the Science & Technology Fundamental Resources Investigation Program (2022FY100600), by the National Science Foundation of Guangdong Province (2024A1515011146), by the Guangdong Major Project of Basic and Applied Basic Research (2019B030302004), by the Guangdong Local Innovation Team Program (2019BT02Y262), by the Tianjin Municipal Science and Technology Commission Grant (21JCQNJC01550), and by the Haihe Laboratory of Cell Ecosystem Innovation Fund (HH22KYZX0019).
Collapse
Affiliation(s)
- Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Brandon Sit
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jiayu Gu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xinqi Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zixian Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaolong Nie
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Gao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianlang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hongbo R Luo
- Boston Children's Hospital, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Matthew K Waldor
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute, Bethesda, MD, USA.
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
18
|
Went SC, Picton DM, Morgan RD, Nelson A, Brady A, Mariano G, Dryden DTF, Smith DL, Wenner N, Hinton JCD, Blower TR. Structure and rational engineering of the PglX methyltransferase and specificity factor for BREX phage defence. Nat Commun 2024; 15:7236. [PMID: 39174540 PMCID: PMC11341690 DOI: 10.1038/s41467-024-51629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
Bacteria have evolved a broad range of systems that provide defence against their viral predators, bacteriophages. Bacteriophage Exclusion (BREX) systems recognise and methylate 6 bp non-palindromic motifs within the host genome, and prevent replication of non-methylated phage DNA that encodes these same motifs. How BREX recognises cognate motifs has not been fully understood. In this study we characterise BREX from pathogenic Salmonella and present X-ray crystallographic structures of the conserved BREX protein, PglX. The PglX N-terminal domain encodes the methyltransferase, whereas the C-terminal domain is for motif recognition. We also present the structure of PglX bound to the phage-derived DNA mimic, Ocr, an inhibitor of BREX activity. Our analyses propose modes for DNA-binding by PglX and indicate that both methyltransferase activity and defence require larger BREX complexes. Through rational engineering of PglX we broaden both the range of phages targeted, and the host motif sequences that are methylated by BREX. Our data demonstrate that PglX is used to recognise specific DNA sequences for BREX activity, contributing to motif recognition for both phage defence and host methylation.
Collapse
Affiliation(s)
- Sam C Went
- Department of Biosciences, Durham University, South Road, Durham, UK
| | - David M Picton
- Department of Biosciences, Durham University, South Road, Durham, UK
| | | | - Andrew Nelson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Aisling Brady
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Giuseppina Mariano
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - David T F Dryden
- Department of Biosciences, Durham University, South Road, Durham, UK
| | - Darren L Smith
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Nicolas Wenner
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, South Road, Durham, UK.
| |
Collapse
|
19
|
Chong Qui E, Habtehyimer F, Germroth A, Grant J, Kosanovic L, Singh I, Hancock SP. Mycobacteriophage Alexphander Gene 94 Encodes an Essential dsDNA-Binding Protein during Lytic Infection. Int J Mol Sci 2024; 25:7466. [PMID: 39000573 PMCID: PMC11242194 DOI: 10.3390/ijms25137466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Mycobacteriophages are viruses that specifically infect bacterial species within the genera Mycobacterium and Mycolicibacterium. Over 2400 mycobacteriophages have been isolated on the host Mycolicibacterium smegmatis and sequenced. This wealth of genomic data indicates that mycobacteriophage genomes are diverse, mosaic, and contain numerous (35-60%) genes for which there is no predicted function based on sequence similarity to characterized orthologs, many of which are essential to lytic growth. To fully understand the molecular aspects of mycobacteriophage-host interactions, it is paramount to investigate the function of these genes and gene products. Here we show that the temperate mycobacteriophage, Alexphander, makes stable lysogens with a frequency of 2.8%. Alexphander gene 94 is essential for lytic infection and encodes a protein predicted to contain a C-terminal MerR family helix-turn-helix DNA-binding motif (HTH) and an N-terminal DinB/YfiT motif, a putative metal-binding motif found in stress-inducible gene products. Full-length and C-terminal gp94 constructs form high-order nucleoprotein complexes on 100-500 base pair double-stranded DNA fragments and full-length phage genomic DNA with little sequence discrimination for the DNA fragments tested. Maximum gene 94 mRNA levels are observed late in the lytic growth cycle, and gene 94 is transcribed in a message with neighboring genes 92 through 96. We hypothesize that gp94 is an essential DNA-binding protein for Alexphander during lytic growth. We proposed that gp94 forms multiprotein complexes on DNA through cooperative interactions involving its HTH DNA-binding motif at sites throughout the phage chromosome, facilitating essential DNA transactions required for lytic propagation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stephen P. Hancock
- Department of Chemistry, Towson University, Towson, MD 21252, USA; (E.C.Q.); (F.H.); (A.G.); (J.G.); (L.K.); (I.S.)
| |
Collapse
|
20
|
Beamud B, Benz F, Bikard D. Going viral: The role of mobile genetic elements in bacterial immunity. Cell Host Microbe 2024; 32:804-819. [PMID: 38870898 DOI: 10.1016/j.chom.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
Bacteriophages and other mobile genetic elements (MGEs) pose a significant threat to bacteria, subjecting them to constant attacks. In response, bacteria have evolved a sophisticated immune system that employs diverse defensive strategies and mechanisms. Remarkably, a growing body of evidence suggests that most of these defenses are encoded by MGEs themselves. This realization challenges our traditional understanding of bacterial immunity and raises intriguing questions about the evolutionary forces at play. Our review provides a comprehensive overview of the latest findings on the main families of MGEs and the defense systems they encode. We also highlight how a vast diversity of defense systems remains to be discovered and their mechanism of mobility understood. Altogether, the composition and distribution of defense systems in bacterial genomes only makes sense in the light of the ecological and evolutionary interactions of a complex network of MGEs.
Collapse
Affiliation(s)
- Beatriz Beamud
- Institut Pasteur, Université de Paris, Synthetic Biology, 75015 Paris, France.
| | - Fabienne Benz
- Institut Pasteur, Université de Paris, Synthetic Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, 75015 Paris, France
| | - David Bikard
- Institut Pasteur, Université de Paris, Synthetic Biology, 75015 Paris, France.
| |
Collapse
|
21
|
Brauer A, Rosendahl S, Kängsep A, Lewańczyk AC, Rikberg R, Hõrak R, Tamman H. Isolation and characterization of a phage collection against Pseudomonas putida. Environ Microbiol 2024; 26:e16671. [PMID: 38863081 PMCID: PMC7616413 DOI: 10.1111/1462-2920.16671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
The environmental bacterium, Pseudomonas putida, possesses a broad spectrum of metabolic pathways. This makes it highly promising for use in biotechnological production as a cell factory, as well as in bioremediation strategies to degrade various aromatic pollutants. For P. putida to flourish in its environment, it must withstand the continuous threats posed by bacteriophages. Interestingly, until now, only a handful of phages have been isolated for the commonly used laboratory strain, P. putida KT2440, and no phage defence mechanisms have been characterized. In this study, we present a new Collection of Environmental P. putida Phages from Estonia, or CEPEST. This collection comprises 67 double-stranded DNA phages, which belong to 22 phage species and 9 phage genera. Our findings reveal that most phages in the CEPEST collection are more infectious at lower temperatures, have a narrow host range, and require an intact lipopolysaccharide for P. putida infection. Furthermore, we show that cryptic prophages present in the P. putida chromosome provide strong protection against the infection of many phages. However, the chromosomal toxin-antitoxin systems do not play a role in the phage defence of P. putida. This research provides valuable insights into the interactions between P. putida and bacteriophages, which could have significant implications for biotechnological and environmental applications.
Collapse
Affiliation(s)
- Age Brauer
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Sirli Rosendahl
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Anu Kängsep
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Alicja Cecylia Lewańczyk
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Roger Rikberg
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Rita Hõrak
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Hedvig Tamman
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
22
|
Irby I, Broddrick JT. Microbial adaptation to spaceflight is correlated with bacteriophage-encoded functions. Nat Commun 2024; 15:3474. [PMID: 38750067 PMCID: PMC11096397 DOI: 10.1038/s41467-023-42104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 09/27/2023] [Indexed: 05/18/2024] Open
Abstract
Evidence from the International Space Station suggests microbial populations are rapidly adapting to the spacecraft environment; however, the mechanism of this adaptation is not understood. Bacteriophages are prolific mediators of bacterial adaptation on Earth. Here we survey 245 genomes sequenced from bacterial strains isolated on the International Space Station for dormant (lysogenic) bacteriophages. Our analysis indicates phage-associated genes are significantly different between spaceflight strains and their terrestrial counterparts. In addition, we identify 283 complete prophages, those that could initiate bacterial lysis and infect additional hosts, of which 21% are novel. These prophage regions encode functions that correlate with increased persistence in extreme environments, such as spaceflight, to include antimicrobial resistance and virulence, DNA damage repair, and dormancy. Our results correlate microbial adaptation in spaceflight to bacteriophage-encoded functions that may impact human health in spaceflight.
Collapse
Affiliation(s)
- Iris Irby
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, CA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jared T Broddrick
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, CA, USA.
| |
Collapse
|
23
|
García-Romero I, de Dios R, Reyes-Ramírez F. An improved genome editing system for Sphingomonadaceae. Access Microbiol 2024; 6:000755.v3. [PMID: 38868378 PMCID: PMC11165598 DOI: 10.1099/acmi.0.000755.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/05/2024] [Indexed: 06/14/2024] Open
Abstract
The sphingomonads encompass a diverse group of bacteria within the family Sphingomonadaceae, with the presence of sphingolipids on their cell surface instead of lipopolysaccharide as their main common feature. They are particularly interesting for bioremediation purposes due to their ability to degrade or metabolise a variety of recalcitrant organic pollutants. However, research and development on their full bioremediation potential has been hampered because of the limited number of tools available to investigate and modify their genome. Here, we present a markerless genome editing method for Sphingopyxis granuli TFA, which can be further optimised for other sphingomonads. This procedure is based on a double recombination triggered by a DNA double-strand break in the chromosome. The strength of this protocol lies in forcing the second recombination rather than favouring it by pressing a counterselection marker, thus avoiding laborious restreaking or passaging screenings. Additionally, we introduce a modification with respect to the original protocol to increase the efficiency of the screening after the first recombination event. We show this procedure step by step and compare our modified method with respect to the original one by deleting ecfG2, the master regulator of the general stress response in S. granuli TFA. This adds to the genetic tool repertoire that can be applied to sphingomonads and stands as an efficient option for fast genome editing of this bacterial group.
Collapse
Affiliation(s)
- Inmaculada García-Romero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, 41013 Sevilla, Spain
| | - Rubén de Dios
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life Sciences,, Brunel University London, Uxbridge, UK
| | - Francisca Reyes-Ramírez
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, 41013 Sevilla, Spain
| |
Collapse
|
24
|
Dong Q, Harper S, McSpadden E, Son SS, Allen MM, Lin H, Smith RC, Metcalfe C, Burgo V, Woodson C, Sundararajan A, Rose A, McMillin M, Moran D, Little J, Mullowney M, Sidebottom AM, Shen A, Fortier LC, Pamer EG. Protection against Clostridioides difficile disease by a naturally avirulent C. difficile strain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592814. [PMID: 38766138 PMCID: PMC11100753 DOI: 10.1101/2024.05.06.592814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Clostridioides difficile (C. difficile) strains belonging to the epidemic BI/NAP1/027 (RT027) group have been associated with increased transmissibility and disease severity. In addition to the major toxin A and toxin B virulence factors, RT027 strains also encode the CDT binary toxin. Our lab previously identified a toxigenic RT027 isolate, ST1-75, that is avirulent in mice despite densely colonizing the colon. Here, we show that coinfecting mice with the avirulent ST1-75 and virulent R20291 strains protects mice from colitis due to rapid clearance of the virulent strain and persistence of the avirulent strain. Although avirulence of ST1-75 is due to a mutation in the cdtR gene, which encodes a response regulator that modulates the production of all three C. difficile toxins, the ability of ST1-75 to protect against acute colitis is not directly attributable to the cdtR mutation. Metabolomic analyses indicate that the ST1-75 strain depletes amino acids more rapidly than the R20291 strain and supplementation with amino acids ablates ST1-75's competitive advantage, suggesting that the ST1-75 strain limits the growth of virulent R20291 bacteria by amino acid depletion. Since the germination kinetics and sensitivity to the co-germinant glycine are similar for the ST1-75 and R20291 strains, our results identify the rapidity of in vivo nutrient depletion as a mechanism providing strain-specific, virulence-independent competitive advantages to different BI/NAP1/027 strains. They also suggest that the ST1-75 strain may, as a biotherapeutic agent, enhance resistance to CDI in high-risk patients.
Collapse
Affiliation(s)
- Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Stephen Harper
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Emma McSpadden
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Sophie S. Son
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, Illinois, USA
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Rita C. Smith
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Carolyn Metcalfe
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Victoria Burgo
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Che Woodson
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | | | - Amber Rose
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Mary McMillin
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - David Moran
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Jessica Little
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Michael Mullowney
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | | | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric G. Pamer
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
25
|
Rostøl JT, Quiles-Puchalt N, Iturbe-Sanz P, Lasa Í, Penadés JR. Bacteriophages avoid autoimmunity from cognate immune systems as an intrinsic part of their life cycles. Nat Microbiol 2024; 9:1312-1324. [PMID: 38565896 PMCID: PMC11087260 DOI: 10.1038/s41564-024-01661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Dormant prophages protect lysogenic cells by expressing diverse immune systems, which must avoid targeting their cognate prophages upon activation. Here we report that multiple Staphylococcus aureus prophages encode Tha (tail-activated, HEPN (higher eukaryotes and prokaryotes nucleotide-binding) domain-containing anti-phage system), a defence system activated by structural tail proteins of incoming phages. We demonstrate the function of two Tha systems, Tha-1 and Tha-2, activated by distinct tail proteins. Interestingly, Tha systems can also block reproduction of the induced tha-positive prophages. To prevent autoimmunity after prophage induction, these systems are inhibited by the product of a small overlapping antisense gene previously believed to encode an excisionase. This genetic organization, conserved in S. aureus prophages, allows Tha systems to protect prophages and their bacterial hosts against phage predation and to be turned off during prophage induction, balancing immunity and autoimmunity. Our results show that the fine regulation of these processes is essential for the correct development of prophages' life cycle.
Collapse
Affiliation(s)
- Jakob T Rostøl
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
| | - Nuria Quiles-Puchalt
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
- School of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Alfara del Patriarca, Spain
| | - Pablo Iturbe-Sanz
- Laboratory of Microbial Pathogenesis. Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Íñigo Lasa
- Laboratory of Microbial Pathogenesis. Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - José R Penadés
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
| |
Collapse
|
26
|
Nair S, Barker CR, Bird M, Greig DR, Collins C, Painset A, Chattaway M, Pickard D, Larkin L, Gharbia S, Didelot X, Ribeca P. Presence of phage-plasmids in multiple serovars of Salmonella enterica. Microb Genom 2024; 10:001247. [PMID: 38717818 PMCID: PMC11165635 DOI: 10.1099/mgen.0.001247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/17/2024] [Indexed: 06/13/2024] Open
Abstract
Evidence is accumulating in the literature that the horizontal spread of antimicrobial resistance (AMR) genes mediated by bacteriophages and bacteriophage-like plasmid (phage-plasmid) elements is much more common than previously envisioned. For instance, we recently identified and characterized a circular P1-like phage-plasmid harbouring a bla CTX-M-15 gene conferring extended-spectrum beta-lactamase (ESBL) resistance in Salmonella enterica serovar Typhi. As the prevalence and epidemiological relevance of such mechanisms has never been systematically assessed in Enterobacterales, in this study we carried out a follow-up retrospective analysis of UK Salmonella isolates previously sequenced as part of routine surveillance protocols between 2016 and 2021. Using a high-throughput bioinformatics pipeline we screened 47 784 isolates for the presence of the P1 lytic replication gene repL, identifying 226 positive isolates from 25 serovars and demonstrating that phage-plasmid elements are more frequent than previously thought. The affinity for phage-plasmids appears highly serovar-dependent, with several serovars being more likely hosts than others; most of the positive isolates (170/226) belonged to S. Typhimurium ST34 and ST19. The phage-plasmids ranged between 85.8 and 98.2 kb in size, with an average length of 92.1 kb; detailed analysis indicated a high amount of diversity in gene content and genomic architecture. In total, 132 phage-plasmids had the p0111 plasmid replication type, and 94 the IncY type; phylogenetic analysis indicated that both horizontal and vertical gene transmission mechanisms are likely to be involved in phage-plasmid propagation. Finally, phage-plasmids were present in isolates that were resistant and non-resistant to antimicrobials. In addition to providing a first comprehensive view of the presence of phage-plasmids in Salmonella, our work highlights the need for a better surveillance and understanding of phage-plasmids as AMR carriers, especially through their characterization with long-read sequencing.
Collapse
Affiliation(s)
| | - Clare R. Barker
- UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Genomics and Enabling Data, University of Warwick, Warwick, UK
| | - Matthew Bird
- UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - David R. Greig
- UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Caitlin Collins
- UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Genomics and Enabling Data, University of Warwick, Warwick, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Marie Chattaway
- UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Genomics and Enabling Data, University of Warwick, Warwick, UK
| | - Derek Pickard
- The Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, UK
| | | | - Saheer Gharbia
- UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Genomics and Enabling Data, University of Warwick, Warwick, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Xavier Didelot
- NIHR Health Protection Research Unit in Genomics and Enabling Data, University of Warwick, Warwick, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
- School of Public Health and Department of Statistics, University of Warwick, Warwick, UK
| | - Paolo Ribeca
- UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Genomics and Enabling Data, University of Warwick, Warwick, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
- Biomathematics and Statistics Scotland, The James Hutton Institute, Edinburgh, UK
| |
Collapse
|
27
|
Quinones-Olvera N, Owen SV, McCully LM, Marin MG, Rand EA, Fan AC, Martins Dosumu OJ, Paul K, Sanchez Castaño CE, Petherbridge R, Paull JS, Baym M. Diverse and abundant phages exploit conjugative plasmids. Nat Commun 2024; 15:3197. [PMID: 38609370 PMCID: PMC11015023 DOI: 10.1038/s41467-024-47416-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Phages exert profound evolutionary pressure on bacteria by interacting with receptors on the cell surface to initiate infection. While the majority of phages use chromosomally encoded cell surface structures as receptors, plasmid-dependent phages exploit plasmid-encoded conjugation proteins, making their host range dependent on horizontal transfer of the plasmid. Despite their unique biology and biotechnological significance, only a small number of plasmid-dependent phages have been characterized. Here we systematically search for new plasmid-dependent phages targeting IncP and IncF plasmids using a targeted discovery platform, and find that they are common and abundant in wastewater, and largely unexplored in terms of their genetic diversity. Plasmid-dependent phages are enriched in non-canonical types of phages, and all but one of the 65 phages we isolated were non-tailed, and members of the lipid-containing tectiviruses, ssDNA filamentous phages or ssRNA phages. We show that plasmid-dependent tectiviruses exhibit profound differences in their host range which is associated with variation in the phage holin protein. Despite their relatively high abundance in wastewater, plasmid-dependent tectiviruses are missed by metaviromic analyses, underscoring the continued importance of culture-based phage discovery. Finally, we identify a tailed phage dependent on the IncF plasmid, and find related structural genes in phages that use the orthogonal type 4 pilus as a receptor, highlighting the evolutionarily promiscuous use of these distinct contractile structures by multiple groups of phages. Taken together, these results indicate plasmid-dependent phages play an under-appreciated evolutionary role in constraining horizontal gene transfer via conjugative plasmids.
Collapse
Affiliation(s)
- Natalia Quinones-Olvera
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Siân V Owen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Lucy M McCully
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Maximillian G Marin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Eleanor A Rand
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Alice C Fan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Boston University, Boston, MA, 02215, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Oluremi J Martins Dosumu
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Roxbury Community College, Boston, MA, 02120, USA
| | - Kay Paul
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Roxbury Community College, Boston, MA, 02120, USA
| | - Cleotilde E Sanchez Castaño
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Roxbury Community College, Boston, MA, 02120, USA
| | - Rachel Petherbridge
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jillian S Paull
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Michael Baym
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
28
|
Wang X, Tang Y, Yue X, Wang S, Yang K, Xu Y, Shen Q, Friman VP, Wei Z. The role of rhizosphere phages in soil health. FEMS Microbiol Ecol 2024; 100:fiae052. [PMID: 38678007 PMCID: PMC11065364 DOI: 10.1093/femsec/fiae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/22/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
While the One Health framework has emphasized the importance of soil microbiomes for plant and human health, one of the most diverse and abundant groups-bacterial viruses, i.e. phages-has been mostly neglected. This perspective reviews the significance of phages for plant health in rhizosphere and explores their ecological and evolutionary impacts on soil ecosystems. We first summarize our current understanding of the diversity and ecological roles of phages in soil microbiomes in terms of nutrient cycling, top-down density regulation, and pathogen suppression. We then consider how phages drive bacterial evolution in soils by promoting horizontal gene transfer, encoding auxiliary metabolic genes that increase host bacterial fitness, and selecting for phage-resistant mutants with altered ecology due to trade-offs with pathogen competitiveness and virulence. Finally, we consider challenges and avenues for phage research in soil ecosystems and how to elucidate the significance of phages for microbial ecology and evolution and soil ecosystem functioning in the future. We conclude that similar to bacteria, phages likely play important roles in connecting different One Health compartments, affecting microbiome diversity and functions in soils. From the applied perspective, phages could offer novel approaches to modulate and optimize microbial and microbe-plant interactions to enhance soil health.
Collapse
Affiliation(s)
- Xiaofang Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yike Tang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiufeng Yue
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuo Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Keming Yang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangchun Xu
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Ville-Petri Friman
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Zhong Wei
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
29
|
Agapov A, Baker KS, Bedekar P, Bhatia RP, Blower TR, Brockhurst MA, Brown C, Chong CE, Fothergill JL, Graham S, Hall JP, Maestri A, McQuarrie S, Olina A, Pagliara S, Recker M, Richmond A, Shaw SJ, Szczelkun MD, Taylor TB, van Houte S, Went SC, Westra ER, White MF, Wright R. Multi-layered genome defences in bacteria. Curr Opin Microbiol 2024; 78:102436. [PMID: 38368839 DOI: 10.1016/j.mib.2024.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Bacteria have evolved a variety of defence mechanisms to protect against mobile genetic elements, including restriction-modification systems and CRISPR-Cas. In recent years, dozens of previously unknown defence systems (DSs) have been discovered. Notably, diverse DSs often coexist within the same genome, and some co-occur at frequencies significantly higher than would be expected by chance, implying potential synergistic interactions. Recent studies have provided evidence of defence mechanisms that enhance or complement one another. Here, we review the interactions between DSs at the mechanistic, regulatory, ecological and evolutionary levels.
Collapse
Affiliation(s)
- Aleksei Agapov
- ESI, Centre for Ecology and Conservation, University of Exeter, UK
| | - Kate S Baker
- Department of Genetics, University of Cambridge, CB2 3EH, UK
| | - Paritosh Bedekar
- ESI, Centre for Ecology and Conservation, University of Exeter, UK
| | - Rama P Bhatia
- ESI, Centre for Ecology and Conservation, University of Exeter, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Michael A Brockhurst
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Dover Street, Manchester M13 9PT, UK
| | - Cooper Brown
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | | | - Joanne L Fothergill
- Dept of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK
| | - Shirley Graham
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - James Pj Hall
- Dept of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 7ZB, UK
| | - Alice Maestri
- ESI, Centre for Ecology and Conservation, University of Exeter, UK
| | - Stuart McQuarrie
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Anna Olina
- ESI, Centre for Ecology and Conservation, University of Exeter, UK
| | | | - Mario Recker
- ESI, Centre for Ecology and Conservation, University of Exeter, UK
| | - Anna Richmond
- ESI, Centre for Ecology and Conservation, University of Exeter, UK
| | - Steven J Shaw
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS6 7YB, UK
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS6 7YB, UK
| | - Tiffany B Taylor
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | - Sam C Went
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Edze R Westra
- ESI, Centre for Ecology and Conservation, University of Exeter, UK.
| | - Malcolm F White
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Rosanna Wright
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Dover Street, Manchester M13 9PT, UK
| |
Collapse
|
30
|
Bisen M, Kharga K, Mehta S, Jabi N, Kumar L. Bacteriophages in nature: recent advances in research tools and diverse environmental and biotechnological applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22199-22242. [PMID: 38411907 DOI: 10.1007/s11356-024-32535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Bacteriophages infect and replicate within bacteria and play a key role in the environment, particularly in microbial ecosystems and bacterial population dynamics. The increasing recognition of their significance stems from their wide array of environmental and biotechnological uses, which encompass the mounting issue of antimicrobial resistance (AMR). Beyond their therapeutic potential in combating antibiotic-resistant infections, bacteriophages also find vast applications such as water quality monitoring, bioremediation, and nutrient cycling within environmental sciences. Researchers are actively involved in isolating and characterizing bacteriophages from different natural sources to explore their applications. Gaining insights into key aspects such as the life cycle of bacteriophages, their host range, immune interactions, and physical stability is vital to enhance their application potential. The establishment of diverse phage libraries has become indispensable to facilitate their wide-ranging uses. Consequently, numerous protocols, ranging from traditional to cutting-edge techniques, have been developed for the isolation, detection, purification, and characterization of bacteriophages from diverse environmental sources. This review offers an exploration of tools, delves into the methods of isolation, characterization, and the extensive environmental applications of bacteriophages, particularly in areas like water quality assessment, the food sector, therapeutic interventions, and the phage therapy in various infections and diseases.
Collapse
Affiliation(s)
- Monish Bisen
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sakshi Mehta
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Nashra Jabi
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
- Cancer Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Himachal Pradesh, Solan, 173229, India.
| |
Collapse
|
31
|
Patel PH, Taylor VL, Zhang C, Getz LJ, Fitzpatrick AD, Davidson AR, Maxwell KL. Anti-phage defence through inhibition of virion assembly. Nat Commun 2024; 15:1644. [PMID: 38388474 PMCID: PMC10884400 DOI: 10.1038/s41467-024-45892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Bacteria have evolved diverse antiviral defence mechanisms to protect themselves against phage infection. Phages integrated into bacterial chromosomes, known as prophages, also encode defences that protect the bacterial hosts in which they reside. Here, we identify a type of anti-phage defence that interferes with the virion assembly pathway of invading phages. The protein that mediates this defence, which we call Tab (for 'Tail assembly blocker'), is constitutively expressed from a Pseudomonas aeruginosa prophage. Tab allows the invading phage replication cycle to proceed, but blocks assembly of the phage tail, thus preventing formation of infectious virions. While the infected cell dies through the activity of the replicating phage lysis proteins, there is no release of infectious phage progeny, and the bacterial community is thereby protected from a phage epidemic. Prophages expressing Tab are not inhibited during their own lytic cycle because they express a counter-defence protein that interferes with Tab function. Thus, our work reveals an anti-phage defence that operates by blocking virion assembly, thereby both preventing formation of phage progeny and allowing destruction of the infected cell due to expression of phage lysis genes.
Collapse
Affiliation(s)
| | | | - Chi Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Landon J Getz
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Alan R Davidson
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
32
|
Wang X, Leptihn S. Defense and anti-defense mechanisms of bacteria and bacteriophages. J Zhejiang Univ Sci B 2024; 25:181-196. [PMID: 38453634 PMCID: PMC10918411 DOI: 10.1631/jzus.b2300101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/24/2023] [Indexed: 03/09/2024]
Abstract
In the post-antibiotic era, the overuse of antimicrobials has led to a massive increase in antimicrobial resistance, leaving medical doctors few or no treatment options to fight infections caused by superbugs. The use of bacteriophages is a promising alternative to treat infections, supplementing or possibly even replacing antibiotics. Using phages for therapy is possible, since these bacterial viruses can kill bacteria specifically, causing no harm to the normal flora. However, bacteria have developed a multitude of sophisticated and complex ways to resist infection by phages, including abortive infection and the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system. Phages also can evolve and acquire new anti-defense strategies to continue predation. An in-depth exploration of both defense and anti-defense mechanisms would contribute to optimizing phage therapy, while we would also gain novel insights into the microbial world. In this paper, we summarize recent research on bacterial phage resistance and phage anti-defense mechanisms, as well as collaborative win-win systems involving both virus and host.
Collapse
Affiliation(s)
- Xiaoqing Wang
- School of Medicine, Lishui University, Lishui 323000, China.
| | - Sebastian Leptihn
- University of Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9JZ, UK.
- HMU Health and Medical University, Am Anger 64/73- 99084 Erfurt, Germany.
| |
Collapse
|
33
|
Yu J, Zhang H, Ju Z, Huang J, Lin C, Wu J, Wu Y, Sun S, Wang H, Hao G, Zhang A. Increased mutations in lipopolysaccharide biosynthetic genes cause time-dependent development of phage resistance in Salmonella. Antimicrob Agents Chemother 2024; 68:e0059423. [PMID: 38193669 PMCID: PMC10848759 DOI: 10.1128/aac.00594-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/12/2023] [Indexed: 01/10/2024] Open
Abstract
Understanding how bacteria evolve resistance to phages has implications for phage-based therapies and microbial evolution. In this study, the susceptibility of 335 Salmonella isolates to the wide host range Salmonella phage BPSELC-1 was tested. Potentially significant gene sets that could confer resistance were identified using bioinformatics approaches based on phage susceptibility phenotypes; more than 90 potential antiphage defense gene sets, including those involved in lipopolysaccharide (LPS) biosynthesis, DNA replication, secretion systems, and respiratory chain, were found. The evolutionary dynamics of Salmonella resistance to phage were assessed through laboratory evolution experiments, which showed that phage-resistant mutants rapidly developed and exhibited genetic heterogeneity. Most representative Salmonella hosts (58.1% of 62) rapidly developed phage resistance within 24 h. All phage-resistant mutant clones exhibited genetic heterogeneity and observed mutations in LPS-related genes (rfaJ and rfaK) as well as other genes such as cellular respiration, transport, and cell replication-related genes. The study also identified potential trade-offs, indicating that bacteria tend to escape fitness trade-offs through multi-site mutations, all tested mutants increased sensitivity to polymyxin B, but this does not always affect their relative fitness or biofilm-forming capacity. Furthermore, complementing the rfaJ mutant gene could partially restore the phage sensitivity of phage-resistant mutants. These results provide insight into the phage resistance mechanisms of Salmonella and the complexity of bacterial evolution resulting from phage predation, which can inform future strategies for phage-based therapies and microbial evolution.
Collapse
Affiliation(s)
- Jing Yu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Haoyu Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Zijing Ju
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jiaqi Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Cong Lin
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jie Wu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yingting Wu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Shuhong Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Guijuan Hao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
34
|
Burke KA, Urick CD, Mzhavia N, Nikolich MP, Filippov AA. Correlation of Pseudomonas aeruginosa Phage Resistance with the Numbers and Types of Antiphage Systems. Int J Mol Sci 2024; 25:1424. [PMID: 38338703 PMCID: PMC10855318 DOI: 10.3390/ijms25031424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Phage therapeutics offer a potentially powerful approach for combating multidrug-resistant bacterial infections. However, to be effective, phage therapy must overcome existing and developing phage resistance. While phage cocktails can reduce this risk by targeting multiple receptors in a single therapeutic, bacteria have mechanisms of resistance beyond receptor modification. A rapidly growing body of knowledge describes a broad and varied arsenal of antiphage systems encoded by bacteria to counter phage infection. We sought to understand the types and frequencies of antiphage systems present in a highly diverse panel of Pseudomonas aeruginosa clinical isolates utilized to characterize novel antibacterials. Using the web-server tool PADLOC (prokaryotic antiviral defense locator), putative antiphage systems were identified in these P. aeruginosa clinical isolates based on sequence homology to a validated and curated catalog of known defense systems. Coupling this host bacterium sequence analysis with host range data for 70 phages, we observed a correlation between existing phage resistance and the presence of higher numbers of antiphage systems in bacterial genomes. We were also able to identify antiphage systems that were more prevalent in highly phage-resistant P. aeruginosa strains, suggesting their importance in conferring resistance.
Collapse
Affiliation(s)
| | | | | | | | - Andrey A. Filippov
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (K.A.B.); (C.D.U.); (N.M.); (M.P.N.)
| |
Collapse
|
35
|
Zhao H, Xu Y, Yang L, Wang Y, Li M, Chen L. Biological Function of Prophage-Related Gene Cluster Δ VpaChn25_RS25055~Δ VpaChn25_0714 of Vibrio parahaemolyticus CHN25. Int J Mol Sci 2024; 25:1393. [PMID: 38338671 PMCID: PMC10855970 DOI: 10.3390/ijms25031393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Vibrio parahaemolyticus is the primary foodborne pathogen known to cause gastrointestinal infections in humans. Nevertheless, the molecular mechanisms of V. parahaemolyticus pathogenicity are not fully understood. Prophages carry virulence and antibiotic resistance genes commonly found in Vibrio populations, and they facilitate the spread of virulence and the emergence of pathogenic Vibrio strains. In this study, we characterized three such genes, VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055, within the largest prophage gene cluster in V. parahaemolyticus CHN25. The deletion mutants ΔVpaChn25_RS25055, ΔVpaChn25_0713, ΔVpaChn25_0714, and ΔVpaChn25_RS25055-0713-0714 were derived with homologous recombination, and the complementary mutants ΔVpaChn25_0713-com, ΔVpaChn25_0714-com, ΔVpaChn25_RS25055-com, ΔVpaChn25_RS25055-0713-0714-com were also constructed. In the absence of the VpaChn25_RS25055, VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055-0713-0714 genes, the mutants showed significant reductions in low-temperature survivability and biofilm formation (p < 0.001). The ΔVpaChn25_0713, ΔVpaChn25_RS25055, and ΔVpaChn25_RS25055-0713-0714 mutants were also significantly defective in swimming motility (p < 0.001). In the Caco-2 model, the above four mutants attenuated the cytotoxic effects of V. parahaemolyticus CHN25 on human intestinal epithelial cells (p < 0.01), especially the ΔVpaChn25_RS25055 and ΔVpaChn25_RS25055-0713-0714 mutants. Transcriptomic analysis showed that 15, 14, 8, and 11 metabolic pathways were changed in the ΔVpaChn25_RS25055, ΔVpaChn25_0713, ΔVpaChn25_0714, and ΔVpaChn25_RS25055-0713-0714 mutants, respectively. We labeled the VpaChn25_RS25055 gene with superfolder green fluorescent protein (sfGFP) and found it localized at both poles of the bacteria cell. In addition, we analyzed the evolutionary origins of the above genes. In summary, the prophage genes VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055 enhance V. parahaemolyticus CHN25's survival in the environment and host. Our work improves the comprehension of the synergy between prophage-associated genes and the evolutionary process of V. parahaemolyticus.
Collapse
Affiliation(s)
- Hui Zhao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| | - Yingwei Xu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| | - Lianzhi Yang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| | - Yaping Wang
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Richmond, VA 23284, USA;
| | - Mingyou Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| |
Collapse
|
36
|
Steensen K, Séneca J, Bartlau N, Yu XA, Hussain FA, Polz MF. Tailless and filamentous prophages are predominant in marine Vibrio. THE ISME JOURNAL 2024; 18:wrae202. [PMID: 39423289 PMCID: PMC11630473 DOI: 10.1093/ismejo/wrae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Although tailed bacteriophages (phages) of the class Caudoviricetes are thought to constitute the most abundant and ecologically relevant group of phages that can integrate their genome into the host chromosome, it is becoming increasingly clear that other prophages are widespread. Here, we show that prophages derived from filamentous and tailless phages with genome sizes below 16 kb make up the majority of prophages in marine bacteria of the genus Vibrio. To estimate prophage prevalence unaffected by database biases, we combined comparative genomics and chemical induction of 58 diverse Vibrio cyclitrophicus isolates, resulting in 107 well-curated prophages. Complemented with computationally predicted prophages, we obtained 1158 prophages from 931 naturally co-existing strains of the family Vibrionaceae. Prophages resembling tailless and filamentous phages predominated, accounting for 80% of all prophages in V. cyclitrophicus and 60% across the Vibrionaceae. In our experimental model, prophages of all three viral realms actively replicated upon induction indicating their ability to transfer to new hosts. Indeed, prophages were rapidly gained and lost, as suggested by variable prophage content between closely related V. cyclitrophicus. Prophages related to filamentous and tailless phages were integrated into only three genomic locations and restored the function of their integration site. Despite their small size, they contained highly diverse accessory genes that may contribute to host fitness, such as phage defense systems. We propose that, like their well-studied tailed equivalent, tailless and filamentous temperate phages are active and highly abundant drivers of host ecology and evolution in marine Vibrio, which have been largely overlooked.
Collapse
Affiliation(s)
- Kerrin Steensen
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
| | - Joana Séneca
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
| | - Nina Bartlau
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
| | - Xiaoqian A Yu
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
| | - Fatima A Hussain
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St., Cambridge MA 02138, United States
| | - Martin F Polz
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Vienna, Austria
| |
Collapse
|
37
|
Quinones-Olvera N, Owen SV, McCully LM, Marin MG, Rand EA, Fan AC, Martins Dosumu OJ, Paul K, Sanchez Castaño CE, Petherbridge R, Paull JS, Baym M. Diverse and abundant phages exploit conjugative plasmids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.532758. [PMID: 36993299 PMCID: PMC10055259 DOI: 10.1101/2023.03.19.532758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Phages exert profound evolutionary pressure on bacteria by interacting with receptors on the cell surface to initiate infection. While the majority of phages use chromosomally-encoded cell surface structures as receptors, plasmid-dependent phages exploit plasmid-encoded conjugation proteins, making their host range dependent on horizontal transfer of the plasmid. Despite their unique biology and biotechnological significance, only a small number of plasmid-dependent phages have been characterized. Here we systematically search for new plasmid-dependent phages targeting IncP and IncF plasmids using a targeted discovery platform, and find that they are common and abundant in wastewater, and largely unexplored in terms of their genetic diversity. Plasmid-dependent phages are enriched in non-canonical types of phages, and all but one of the 64 phages we isolated were non-tailed, and members of the lipid-containing tectiviruses, ssDNA filamentous phages or ssRNA phages. We show that plasmid-dependent tectiviruses exhibit profound differences in their host range which is associated with variation in the phage holin protein. Despite their relatively high abundance in wastewater, plasmid-dependent tectiviruses are missed by metaviromic analyses, underscoring the continued importance of culture-based phage discovery. Finally, we identify a tailed phage dependent on the IncF plasmid, and find related structural genes in phages that use the orthogonal type 4 pilus as a receptor, highlighting the promiscuous use of these distinct contractile structures by multiple groups of phages. Taken together, these results indicate plasmid-dependent phages play an under-appreciated evolutionary role in constraining horizontal gene transfer via conjugative plasmids.
Collapse
Affiliation(s)
- Natalia Quinones-Olvera
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Siân V. Owen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lucy M. McCully
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Maximillian G. Marin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Eleanor A. Rand
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alice C. Fan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Boston University, Boston, MA 02215, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Oluremi J. Martins Dosumu
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Roxbury Community College, Boston, MA, 02120, USA
| | - Kay Paul
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Roxbury Community College, Boston, MA, 02120, USA
| | - Cleotilde E. Sanchez Castaño
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Roxbury Community College, Boston, MA, 02120, USA
| | - Rachel Petherbridge
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jillian S. Paull
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael Baym
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
38
|
Irby I, Brown SP. The social lives of viruses and other mobile genetic elements: a commentary on Leeks et al. 2023. J Evol Biol 2023; 36:1582-1586. [PMID: 37975503 PMCID: PMC10805371 DOI: 10.1111/jeb.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023]
Abstract
Illustration of life-histories of phages and plasmids through horizontal and vertical transmission (see Figure 1 for more information).
Collapse
Affiliation(s)
- Iris Irby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
39
|
Georjon H, Bernheim A. The highly diverse antiphage defence systems of bacteria. Nat Rev Microbiol 2023; 21:686-700. [PMID: 37460672 DOI: 10.1038/s41579-023-00934-x] [Citation(s) in RCA: 168] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 09/14/2023]
Abstract
Bacteria and their viruses have coevolved for billions of years. This ancient and still ongoing arms race has led bacteria to develop a vast antiphage arsenal. The development of high-throughput screening methods expanded our knowledge of defence systems from a handful to more than a hundred systems, unveiling many different molecular mechanisms. These findings reveal that bacterial immunity is much more complex than previously thought. In this Review, we explore recently discovered bacterial antiphage defence systems, with a particular focus on their molecular diversity, and discuss the ecological and evolutionary drivers and implications of the existing diversity of antiphage defence mechanisms.
Collapse
Affiliation(s)
- Héloïse Georjon
- Molecular Diversity of Microbes Lab, Institut Pasteur, Université Paris Cité, INSERM, Paris, France
| | - Aude Bernheim
- Molecular Diversity of Microbes Lab, Institut Pasteur, Université Paris Cité, INSERM, Paris, France.
| |
Collapse
|
40
|
Gu Y, Li H, Deep A, Enustun E, Zhang D, Corbett KD. Bacterial Shedu immune nucleases share a common enzymatic core regulated by diverse sensor domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552793. [PMID: 37609250 PMCID: PMC10441436 DOI: 10.1101/2023.08.10.552793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Prokaryotes encode diverse anti-bacteriophage immune systems, including the single-protein Shedu nuclease. Here we reveal the structural basis for activation of Bacillus cereus Shedu. In the inactive homotetramer, a key catalytic residue in Shedu's nuclease domain is sequestered away from the catalytic site. Activation involves a conformational change that completes the active site and promotes assembly of a homo-octamer for coordinated double-strand DNA cleavage. Removal of Shedu's N-terminal domain ectopically activates the enzyme, suggesting that this domain allosterically inhibits Shedu in the absence of infection. Bioinformatic analysis of nearly 8,000 Shedu homologs reveals remarkable diversity in their N-terminal regulatory domains: we identify 79 domain families falling into eight functional classes, including diverse nucleic acid binding, enzymatic, and other domains. Together, these data reveal Shedu as a broad family of immune nucleases with a common nuclease core regulated by diverse N-terminal domains that likely respond to a range of infection-related signals.
Collapse
Affiliation(s)
- Yajie Gu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA 92093
| | - Huan Li
- Department of Biology, Saint Louis University, Saint Louis, MO 63103
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA 92093
| | - Eray Enustun
- Department of Molecular Biology, University of California San Diego, La Jolla CA 92093
| | - Dapeng Zhang
- Department of Biology, Saint Louis University, Saint Louis, MO 63103
| | - Kevin D. Corbett
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA 92093
- Department of Molecular Biology, University of California San Diego, La Jolla CA 92093
| |
Collapse
|
41
|
Huiting E, Bondy-Denomy J. Defining the expanding mechanisms of phage-mediated activation of bacterial immunity. Curr Opin Microbiol 2023; 74:102325. [PMID: 37178480 PMCID: PMC11080646 DOI: 10.1016/j.mib.2023.102325] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/15/2023]
Abstract
Due to recent discovery efforts, over 100 immune systems encoded by bacteria that antagonize bacteriophage (phage) replication have been uncovered. These systems employ direct and indirect mechanisms to detect phage infection and activate bacterial immunity. The most well-studied mechanisms are direct detection and activation by phage-associated molecular patterns (PhAMPs), such as phage DNA and RNA sequences, and expressed phage proteins that directly activate abortive infection systems. Phage effectors may also inhibit host processes and, therefore, indirectly activate immunity. Here, we discuss our current understanding of these protein PhAMPs and effectors expressed during various stages of the phage life cycle that activate immunity. Immune activators are predominantly identified from genetic approaches that isolate phage mutants that escape a bacterial immune system, coupled with biochemical validation. Although the mechanism of phage-mediated activation remains uncertain for most systems, it has become clear that each stage of the phage life cycle has the potential to induce a bacterial immune response.
Collapse
Affiliation(s)
- Erin Huiting
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
42
|
Rousset F, Sorek R. The evolutionary success of regulated cell death in bacterial immunity. Curr Opin Microbiol 2023; 74:102312. [PMID: 37030143 DOI: 10.1016/j.mib.2023.102312] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 04/09/2023]
Abstract
Bacteria employ a complex arsenal of immune mechanisms to defend themselves against phages. Recent studies demonstrate that these immune mechanisms frequently involve regulated cell death in response to phage infection. By sacrificing infected cells, this strategy prevents the spread of phages within the surrounding population. In this review, we discuss the principles of regulated cell death in bacterial defense, and show that over 70% of sequenced prokaryotes employ this strategy as part of their defensive arsenals. We highlight the modularity of defense systems involving regulated cell death, explaining how shuffling between phage-sensing and cell-killing protein domains dominates their evolution. Some of these defense systems are the evolutionary ancestors of key components of eukaryotic immunity, highlighting their importance in shaping the evolutionary trajectory of immune systems across the tree of life.
Collapse
|
43
|
Boyle TA, Hatoum-Aslan A. Recurring and emerging themes in prokaryotic innate immunity. Curr Opin Microbiol 2023; 73:102324. [PMID: 37163858 PMCID: PMC10360293 DOI: 10.1016/j.mib.2023.102324] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/12/2023]
Abstract
A resurgence of interest in the pathways that bacteria use to protect against their viruses (i.e. phages) has led to the discovery of dozens of new antiphage defenses. Given the sheer abundance and diversity of phages - the ever-evolving targets of immunity - it is not surprising that these newly described defenses are also remarkably diverse. However, as their mechanisms slowly come into focus, some common strategies and themes are also beginning to emerge. This review highlights recurring and emerging themes in the mechanisms of innate immunity in bacteria and archaea, with an emphasis on recently described systems that have undergone more thorough mechanistic characterization.
Collapse
Affiliation(s)
- Tori A Boyle
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL 61801, USA
| | - Asma Hatoum-Aslan
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL 61801, USA.
| |
Collapse
|
44
|
Patel PH, Maxwell KL. Prophages provide a rich source of antiphage defense systems. Curr Opin Microbiol 2023; 73:102321. [PMID: 37121062 DOI: 10.1016/j.mib.2023.102321] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023]
Abstract
Temperate phages are pervasive in nature, existing within bacterial cells in a form known as prophages. In this state, survival of the phage is intricately tied to the survival of the bacterial host. As a result, prophages often encode genes that increase bacterial fitness. One important way to increase survival is to provide defense against competing phages. Recent work reviewed here reveals that prophages provide a diverse and robust reservoir of antiphage defense systems that likely play a major role in bacterial-phage dynamics.
Collapse
Affiliation(s)
- Pramalkumar H Patel
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
45
|
Yuan X, Huang Z, Zhu Z, Zhang J, Wu Q, Xue L, Wang J, Ding Y. Recent advances in phage defense systems and potential overcoming strategies. Biotechnol Adv 2023; 65:108152. [PMID: 37037289 DOI: 10.1016/j.biotechadv.2023.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Bacteriophages are effective in the prevention and control of bacteria, and many phage products have been permitted and applied in the field. Because bacteriophages are expected to replace other antimicrobial agents like antibiotics, the antibacterial effect of bacteriophage has attracted widespread attention. Recently, the diversified defense systems discovered in the target host have become potential threats to the continued effective application of phages. Therefore, a systematic summary and in-depth illustration of the interaction between phages and bacteria is conducive to the development of this biological control approach. In this review, we introduce different defense systems in bacteria against phages and emphasize newly discovered defense mechanisms in recent years. Additionally, we draw attention to the striking resemblance between defense system genes and antibiotic resistance genes, which raises concerns about the potential transfer of phage defense systems within bacterial populations and its future impact on phage efficacy. Thus, attention should be given to the effects of phage defense genes in practical applications. This article is not exhaustive, but strategies to overcome phage defense systems are also discussed to further promote more efficient use of phages.
Collapse
Affiliation(s)
- Xiaoming Yuan
- State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Zhichao Huang
- State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Zhenjun Zhu
- Department of Food Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liang Xue
- State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; College of Food Science, South China Agricultural University, Guangzhou 510432, China.
| | - Yu Ding
- Department of Food Science & Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
46
|
Dulberger CL, Guerrero-Bustamante CA, Owen SV, Wilson S, Wuo MG, Garlena RA, Serpa LA, Russell DA, Zhu J, Braunecker BJ, Squyres GR, Baym M, Kiessling LL, Garner EC, Rubin EJ, Hatfull GF. Mycobacterial nucleoid-associated protein Lsr2 is required for productive mycobacteriophage infection. Nat Microbiol 2023; 8:695-710. [PMID: 36823286 PMCID: PMC10066036 DOI: 10.1038/s41564-023-01333-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/23/2023] [Indexed: 02/25/2023]
Abstract
Mycobacteriophages are a diverse group of viruses infecting Mycobacterium with substantial therapeutic potential. However, as this potential becomes realized, the molecular details of phage infection and mechanisms of resistance remain ill-defined. Here we use live-cell fluorescence microscopy to visualize the spatiotemporal dynamics of mycobacteriophage infection in single cells and populations, showing that infection is dependent on the host nucleoid-associated Lsr2 protein. Mycobacteriophages preferentially adsorb at Mycobacterium smegmatis sites of new cell wall synthesis and following DNA injection, Lsr2 reorganizes away from host replication foci to establish zones of phage DNA replication (ZOPR). Cells lacking Lsr2 proceed through to cell lysis when infected but fail to generate consecutive phage bursts that trigger epidemic spread of phage particles to neighbouring cells. Many mycobacteriophages code for their own Lsr2-related proteins, and although their roles are unknown, they do not rescue the loss of host Lsr2.
Collapse
Affiliation(s)
- Charles L Dulberger
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | | | - Siân V Owen
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sean Wilson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Michael G Wuo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rebecca A Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lexi A Serpa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Ben J Braunecker
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Georgia R Squyres
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Michael Baym
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
47
|
Jia PP, Yang YF, Junaid M, Jia HJ, Li WG, Pei DS. Bacteriophage-based techniques for elucidating the function of zebrafish gut microbiota. Appl Microbiol Biotechnol 2023; 107:2039-2059. [PMID: 36847856 DOI: 10.1007/s00253-023-12439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
Bacteriophages (or phages) are unique viruses that can specifically infect bacteria. Since their discovery by Twort and d'Herelle, phages with bacterial specificity have played important roles in microbial regulation. The intestinal microbiota and host health are intimately linked with nutrient, metabolism, development, and immunity aspects. However, the mechanism of interactions between the composition of the microbiota and their functions in maintaining host health still needs to be further explored. To address the lack of methodology and functions of intestinal microbiota in the host, we first proposed that, with the regulations of special intestinal microbiota and applications of germ-free (GF) zebrafish model, phages would be used to infect and reduce/eliminate the defined gut bacteria in the conventionally raised (CR) zebrafish and compared with the GF zebrafish colonized with defined bacterial strains. Thus, this review highlighted the background and roles of phages and their functional characteristics, and we also summarized the phage-specific infection of target microorganisms, methods to improve the phage specificity, and their regulation within the zebrafish model and gut microbial functional study. Moreover, the primary protocol of phage therapy to control the intestinal microbiota in zebrafish models from larvae to adults was recommended including phage screening from natural sources, identification of host ranges, and experimental design in the animal. A well understanding of the interaction and mechanism between phages and gut bacteria in the host can potentially provide powerful strategies or techniques for preventing bacteria-related human diseases by precisely regulating in vitro and in vivo, which will provide novel insights for phages' application and combined research in the future. KEY POINTS: • Zebrafish models for clarifying the microbial and phages' functions were discussed • Phages infect host bacteria with exquisite specificity and efficacy • Phages can reduce/eliminate the defined gut bacteria to clarify their function.
Collapse
Affiliation(s)
- Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Yi-Fan Yang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Huang-Jie Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
48
|
Hochhauser D, Millman A, Sorek R. The defense island repertoire of the Escherichia coli pan-genome. PLoS Genet 2023; 19:e1010694. [PMID: 37023146 PMCID: PMC10121019 DOI: 10.1371/journal.pgen.1010694] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/21/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
It has become clear in recent years that anti-phage defense systems cluster non-randomly within bacterial genomes in so-called "defense islands". Despite serving as a valuable tool for the discovery of novel defense systems, the nature and distribution of defense islands themselves remain poorly understood. In this study, we comprehensively mapped the defense system repertoire of >1,300 strains of Escherichia coli, the most widely studied organism for phage-bacteria interactions. We found that defense systems are usually carried on mobile genetic elements including prophages, integrative conjugative elements and transposons, which preferentially integrate at several dozens of dedicated hotspots in the E. coli genome. Each mobile genetic element type has a preferred integration position but can carry a diverse variety of defensive cargo. On average, an E. coli genome has 4.7 hotspots occupied by defense system-containing mobile elements, with some strains possessing up to eight defensively occupied hotspots. Defense systems frequently co-localize with other systems on the same mobile genetic element, in agreement with the observed defense island phenomenon. Our data show that the overwhelming majority of the E. coli pan-immune system is carried on mobile genetic elements, explaining why the immune repertoire varies substantially between different strains of the same species.
Collapse
Affiliation(s)
- Dina Hochhauser
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
49
|
Hossain M, Aslan B, Hatoum-Aslan A. Tandem mobilization of anti-phage defenses alongside SCC mec cassettes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533233. [PMID: 36993521 PMCID: PMC10055296 DOI: 10.1101/2023.03.17.533233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Bacterial viruses (phages) and the immune systems targeted against them significantly impact bacterial survival, evolution, and the emergence of pathogenic strains. While recent research has made spectacular strides towards discovering and validating new defenses in a few model organisms1-3, the inventory of immune systems in clinically-relevant bacteria remains underexplored, and little is known about the mechanisms by which these systems horizontally spread. Such pathways not only impact the evolutionary trajectory of bacterial pathogens, but also threaten to undermine the effectiveness of phage-based therapeutics. Here, we investigate the battery of defenses in staphylococci, opportunistic pathogens that constitute leading causes of antibiotic-resistant infections. We show that these organisms harbor a variety of anti-phage defenses encoded within/near the infamous SCC (staphylococcal cassette chromosome) mec cassettes, mobile genomic islands that confer methicillin resistance. Importantly, we demonstrate that SCCmec-encoded recombinases mobilize not only SCCmec, but also tandem cassettes enriched with diverse defenses. Further, we show that phage infection potentiates cassette mobilization. Taken together, our findings reveal that beyond spreading antibiotic resistance, SCCmec cassettes play a central role in disseminating anti-phage defenses. This work underscores the urgent need for developing adjunctive treatments that target this pathway to save the burgeoning phage therapeutics from suffering the same fate as conventional antibiotics.
Collapse
Affiliation(s)
- Motaher Hossain
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL, USA
| | - Barbaros Aslan
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL, USA
| | - Asma Hatoum-Aslan
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL, USA
| |
Collapse
|
50
|
Yue X, Liao Q, He H, Li H, Xie J, Fu Z. Mycobacteriophage Derived Lipoarabinomannan Binding Protein for Recognizing Non-Tuberculosis Mycobacteria. Anal Chem 2023; 95:3754-3760. [PMID: 36758121 DOI: 10.1021/acs.analchem.2c04851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Non-tuberculosis mycobacteria (NTM) is one family of pathogens usually leading to nosocomial infections. Exploration of high-performance biological recognition agent plays a pivotal role for the development of point-of-care testing device and kit for detecting NTM. Mycobacterium smegmatis (M. smegmatis) is a NTM which has been frequently applied as an alternative model for highly pathogenic mycobacteria. Herein, a recombinant tail protein derived from mycobacteriophage SWU1 infecting M. smegmatis was expressed with Escherichia coli system and noted as GP89. It shows a fist-like structure according to the results of homology modeling and ab initio modeling. It is confirmed as a lipoarabinomannan (LAM) binding protein, which can recognize studied NTM genus since abundant LAM constructed with d-mannan and d-arabinan is distributed over the mycobacterial surface. Meanwhile an enhanced green fluorescent protein (eGFP)-fused GP89 protein was acquired with a fusion expression technique. Then GP89 and eGFP-fused GP89 were applied to establish a sensitive and rapid method for fluorescent detection of M. smegmatis with a broad linear range of 1.0 × 102 to 1.0 × 106 CFU mL-1 and a low detection limit of 69 CFU mL-1. Rapid and reliable testing of antimicrobial susceptibility was achieved by the GP89-based fluorescent method. The present work provides a promising recognition agent for studied NTM and opens an avenue for clinical diagnosis of NTM-induced infections.
Collapse
Affiliation(s)
- Xin Yue
- The State Key Lab of Silkworm Geneome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qinchen Liao
- The State Key Lab of Silkworm Geneome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hongmei He
- College of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hongtao Li
- College of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jianping Xie
- College of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- The State Key Lab of Silkworm Geneome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|