1
|
Yang W, Deng X, Li C, Yang Y, Zeng Q. Novel sustainable extraction of vegetable oils with simultaneous heavy metal and anti-nutrient removal capability. Food Res Int 2025; 211:116484. [PMID: 40356143 DOI: 10.1016/j.foodres.2025.116484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/08/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
The accumulation of heavy metals (HMs) in oilseeds presents a serious risk to food safety, emphasizing the necessity of developing effective methods for producing safe vegetable oils and oilseed meals. This study proposed a biphasic system consisting of methanol, water, and additives as the polar phase and n-hexane as the nonpolar phase to simultaneously extract vegetable oils while removing HMs and anti-nutrients from oilseeds. Results indicated that the optimal oil extraction time for the four oilseeds was 180 min. The highest HMs removal rate of 64.3 % was achieved using 0.5 % HCl as an additive. The extracted vegetable oils met both Chinese and international standards for HMs content and adhered to Chinese standards for fatty acid composition ratios. The biphasic system decreased surface functional groups in the oilseed meal by 58.8-75.0 %. The oilseed meal retained all its proteins, while glucosinolate and phytic acid contents decreased by 86.8 % and 81.2 %, respectively. The flocculation and precipitation method successfully recovered 95.9 %-99.6 % of HMs and 44.2 %-92.8 % of anions, ensuring that the treated polar phase complied with China's surface water quality standards. Consequently, 82.7 % of the polar phase and 66.7 % of the nonpolar phase were efficiently recovered and reused, significantly reducing operational costs. The biphasic system maintained high efficiency in oil extraction and HMs removal during the second cycle. Collectively, the biphasic system provided a sustainable and innovative approach for the simultaneous safe production of vegetable oils and oilseed meals.
Collapse
Affiliation(s)
- Wenjun Yang
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory of China, Changsha 410128, China
| | - Xiao Deng
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory of China, Changsha 410128, China
| | - Chaoyi Li
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yang Yang
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory of China, Changsha 410128, China.
| | - Qingru Zeng
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory of China, Changsha 410128, China
| |
Collapse
|
2
|
Nie X, Huang X, Li M, Lu Z, Ling X. Advances in Soil Amendments for Remediation of Heavy Metal-Contaminated Soils: Mechanisms, Impact, and Future Prospects. TOXICS 2024; 12:872. [PMID: 39771087 PMCID: PMC11679158 DOI: 10.3390/toxics12120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Heavy metal contamination is a critical factor contributing to soil degradation and poses significant environmental threats with profound implications for ecosystems and human health. Soil amendments have become an effective strategy to address these challenges by reducing heavy metal hazards and remediating contaminated soils. This review offers a comprehensive analysis of recent advancements in soil amendments for heavy metal-contaminated soils, with a focus on natural, synthetic, natural-synthetic copolymer, and biological amendments. By thoroughly examining and contrasting their remediation mechanisms and effects, this study provides a detailed evaluation of their influence on soil physicochemical properties, leachable heavy metal content, and microbial communities. Through bibliometric analysis, current research priorities and trends are highlighted, offering a multidimensional comparison of these amendments and clarifying their varying applicability and limitations. Furthermore, this review explores future prospects and the inherent challenges in soil amendments for heavy metal contamination, aiming to offer valuable insights and theoretical references for the development and selection of novel, efficient, multifunctional, environmentally friendly amendments.
Collapse
Affiliation(s)
- Xinyi Nie
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230601, China
| | - Xianhuai Huang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230601, China
| | - Man Li
- Institute of Geotechnical Engineering, Southeast University, Nanjing 211189, China
| | - Zhaochi Lu
- Institute of Geotechnical Engineering, Southeast University, Nanjing 211189, China
| | - Xinhe Ling
- College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
3
|
Song H, Chen SF, Si G, Bhatt K, Chen SH, Chen WJ. Removal of environmental pollutants using biochar: current status and emerging opportunities. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:384. [PMID: 39167116 DOI: 10.1007/s10653-024-02142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
In recent times, biochar has emerged as a novel approach for environmental remediation due to its exceptional adsorption capacity, attributed to its porous structure formed by the pyrolysis of biomass at elevated temperatures in oxygen-restricted conditions. This characteristic has driven its widespread use in environmental remediation to remove pollutants. When biochar is introduced into ecosystems, it usually changes the makeup of microbial communities by offering a favorable habitat. Its porous structure creates a protective environment that shields them from external pressures. Consequently, microorganisms adhering to biochar surfaces exhibit increased resilience to environmental conditions, thereby enhancing their capacity to degrade pollutants. During this process, pollutants are broken down into smaller molecules through the collaborative efforts of biochar surface groups and microorganisms. Biochar is also often used in conjunction with composting techniques to enhance compost quality by improving aeration and serving as a carrier for slow-release fertilizers. The utilization of biochar to support sustainable agricultural practices and combat environmental contamination is a prominent area of current research. This study aims to examine the beneficial impacts of biochar application on the absorption and breakdown of contaminants in environmental and agricultural settings, offering insights into its optimization for enhanced efficacy.
Collapse
Affiliation(s)
- Haoran Song
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Guiling Si
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Kalpana Bhatt
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Hua Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Niculescu AG, Tudorache DI, Bocioagă M, Mihaiescu DE, Hadibarata T, Grumezescu AM. An Updated Overview of Silica Aerogel-Based Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:469. [PMID: 38470798 DOI: 10.3390/nano14050469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Silica aerogels have gained much interest due to their unique properties, such as being the lightest solid material, having small pore sizes, high porosity, and ultralow thermal conductivity. Also, the advancements in synthesis methods have enabled the creation of silica aerogel-based composites in combination with different materials, for example, polymers, metals, and carbon-based structures. These new silica-based materials combine the properties of silica with the other materials to create a new and reinforced architecture with significantly valuable uses in different fields. Therefore, the importance of silica aerogels has been emphasized by presenting their properties, synthesis process, composites, and numerous applications, offering an updated background for further research in this interdisciplinary domain.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| | - Dana-Ionela Tudorache
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| | - Maria Bocioagă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Tony Hadibarata
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University, Miri 98000, Malaysia
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| |
Collapse
|
5
|
Soares VR, Silva EC, Gomes CG, Vieira MA, Fajardo AR. Fluorescent composite beads: An advanced tool for environmental monitoring and harmful pollutants removal from water. CHEMOSPHERE 2024; 350:140911. [PMID: 38145844 DOI: 10.1016/j.chemosphere.2023.140911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/18/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
The quality and safety of water sources have been significantly impacted by various pollutants, including trace elements. To address this concern, this study utilized composite beads made of alginate and carbon quantum dots (CDs) for detecting and removing As(III) and Se(IV) ions in tap water. Fluorescent CDs were hydrothermally synthesized and incorporated into an alginate-Ca2+ matrix through a straightforward procedure. Characterization analyses revealed distinct properties of the composite beads, containing varying amounts of CDs, compared to the pristine beads. Optimal adsorption parameters (30 mg of adsorbent, 10 mg/L of initial pollutant concentration, 35 °C, and 180 min of contact time) for the beads containing 30 w/w-% of CDs (Alg@CDs30) were determined through a fractional factorial design. These composite beads exhibited the highest adsorption capacity for both metals, achieving a removal rate of 94.5% for As(III) and 98.0% for Se(IV) in tap water. Kinetic and isothermal analyses indicated that the adsorption of both metals on Alg@CDs30 involves a combination of chemisorption and diffusion processes. Recycling experiments demonstrated that the composite beads could be reused up to 20 times without a noticeable loss of adsorption efficiency. Regarding the sensing property, our experiments revealed a significant reduction in the fluorescence emission intensity of Alg@CDs30 upon interaction with As(III) and Se(IV), confirming its ability to detect both ions in tap water, with limits of detection (LOD) of 2.6 ± 0.5 μg/L for As(III) and 1.1 ± 0.2 μg/L for Se(IV). The alginate-Ca2+ matrix s contributed to the stability of the CDs' fluorescence. These results confirm the potential of Alg@CDs beads as effective tools for the simultaneous monitoring and removal of hazardous metal ions from real water samples.
Collapse
Affiliation(s)
- Victória R Soares
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900, Pelotas-RS, Brazil
| | - Emilly C Silva
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900, Pelotas-RS, Brazil
| | - Charlie G Gomes
- Laboratório de Metrologia Química (LabMequi), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900, Pelotas-RS, Brazil
| | - Mariana A Vieira
- Laboratório de Metrologia Química (LabMequi), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900, Pelotas-RS, Brazil
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900, Pelotas-RS, Brazil.
| |
Collapse
|
6
|
Jawaharlal S, Subramanian S, Palanivel V, Devarajan G, Veerasamy V. Cyclodextrin-based nanosponges as promising carriers for active pharmaceutical ingredient. J Biochem Mol Toxicol 2024; 38:e23597. [PMID: 38037252 DOI: 10.1002/jbt.23597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Effective drug distribution at the intended or particular location is a critical issue that researchers are now dealing. Nanosponges have significantly increased in importance in medication delivery using nanotechnology in recent years. An important step toward solving these problems has been the development of nanosponges. Recently created and proposed for use in drug delivery, nanosponge is a unique type of hyper-crosslinked polymer-based colloidal structures made up of solid nanoparticles with colloidal carriers. Nanosponges are solid porous particles that may hold pharmaceuticals and other actives in their nanocavities. They can be made into dosage forms for oral, parenteral, topical, or inhalation use. The targeted distribution of drugs in a regulated manner is greatly aided by nanosponge. The utilization of nanosponges, their benefits, their production processes, the polymers they are made of, and their characterization have all been covered in this review article.
Collapse
Affiliation(s)
- Saranya Jawaharlal
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | | | - Venkatesan Palanivel
- Department of Pharmacy, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Geetha Devarajan
- Department of Physics, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Vinothkumar Veerasamy
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| |
Collapse
|
7
|
Silva EC, Gomes CG, Pina J, Pereira RFP, Murtinho D, Fajardo AR, Valente AJM. Carbon quantum dots-containing poly(β-cyclodextrin) for simultaneous removal and detection of metal ions from water. Carbohydr Polym 2024; 323:121464. [PMID: 37940321 DOI: 10.1016/j.carbpol.2023.121464] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/18/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
This study investigates the synthesis and characterization of supramolecular composites composed of poly(β-cyclodextrin-co-citric acid) and carbon quantum dots (QDs). These composites serve a dual purpose as adsorbents and photoluminescent probes for divalent metal ions, including Ni(II), Cu(II), Cd(II), and Pb(II), which can have detrimental effects on the environment. Various characterization techniques were employed to confirm the successful synthesis of the composites and the interaction between cyclodextrins and QDs. By using mathematical tools, optimal conditions for metal adsorption were determined, resulting in the composites exhibiting high adsorption capacities, reaching 220 mg/g, and impressive removal efficiencies exceeding 90 % for Ni(II) and Cu(II). The supramolecular composites also exhibit selective adsorption of metal ions with small ionic radio and can be reused with minimal loss of efficiency. In addition to their adsorption capabilities, these composites display luminescence quenching upon the adsorption of metal ions, which can be utilized for sensing applications. Spectroscopic evaluation reveals Stern-Volmer quenching constants for the accessible fraction of QDs in the range of 3777 to 13,359 M-1. The high stability of QDs on the composites allows for long-term storage. In summary, this original supramolecular composite shows promise for simultaneously monitoring and treating water and wastewater, making it a valuable tool in environmental applications.
Collapse
Affiliation(s)
- Emilly C Silva
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900, Pelotas-RS, Brazil; Chemistry Center and Chemistry Department, University of Minho, 4710-057 Braga, Portugal
| | - Charlie G Gomes
- Laboratório de Metrologia Química (LabMequi), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900, Pelotas-RS, Brazil
| | - João Pina
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Rui F P Pereira
- Chemistry Center and Chemistry Department, University of Minho, 4710-057 Braga, Portugal
| | - Dina Murtinho
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900, Pelotas-RS, Brazil.
| | - Artur J M Valente
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal.
| |
Collapse
|
8
|
Sozcu S, Venkataraman M, Wiener J, Tomkova B, Militky J, Mahmood A. Incorporation of Cellulose-Based Aerogels into Textile Structures. MATERIALS (BASEL, SWITZERLAND) 2023; 17:27. [PMID: 38203881 PMCID: PMC10779952 DOI: 10.3390/ma17010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Given their exceptional attributes, aerogels are viewed as a material with immense potential. Being a natural polymer, cellulose offers the advantage of being both replenishable and capable of breaking down naturally. Cellulose-derived aerogels encompass the replenish ability, biocompatible nature, and ability to degrade naturally inherent in cellulose, along with additional benefits like minimal weight, extensive porosity, and expansive specific surface area. Even with increasing appreciation and acceptance, the undiscovered possibilities of aerogels within the textiles sphere continue to be predominantly uninvestigated. In this context, we outline the latest advancements in the study of cellulose aerogels' formulation and their diverse impacts on textile formations. Drawing from the latest studies, we reviewed the materials used for the creation of various kinds of cellulose-focused aerogels and their properties, analytical techniques, and multiple functionalities in relation to textiles. This comprehensive analysis extensively covers the diverse strategies employed to enhance the multifunctionality of cellulose-based aerogels in the textiles industry. Additionally, we focused on the global market size of bio-derivative aerogels, companies in the industry producing goods, and prospects moving forward.
Collapse
Affiliation(s)
- Sebnem Sozcu
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, 46117 Liberec, Czech Republic; (J.W.); (B.T.); (J.M.); (A.M.)
| | - Mohanapriya Venkataraman
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, 46117 Liberec, Czech Republic; (J.W.); (B.T.); (J.M.); (A.M.)
| | | | | | | | | |
Collapse
|
9
|
Matias PMC, Sousa JFM, Bernardino EF, Vareda JP, Durães L, Abreu PE, Marques JMC, Murtinho D, Valente AJM. Reduced Chitosan as a Strategy for Removing Copper Ions from Water. Molecules 2023; 28:molecules28104110. [PMID: 37241851 DOI: 10.3390/molecules28104110] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Toxic heavy metals are priority pollutants in wastewater, commonly present in dangerous concentrations in many places across the globe. Although in trace quantities copper is a heavy metal essential to human life, in excess it causes various diseases, whereby its removal from wastewater is a necessity. Among several reported materials, chitosan is a highly abundant, non-toxic, low-cost, biodegradable polymer, comprising free hydroxyl and amino groups, that has been directly applied as an adsorbent or chemically modified to increase its performance. Taking this into account, reduced chitosan derivatives (RCDs 1-4) were synthesised by chitosan modification with salicylaldehyde, followed by imine reduction, characterised by RMN, FTIR-ATR, TGA and SEM, and used to adsorb Cu(II) from water. A reduced chitosan (RCD3), with a moderate modification percentage (43%) and a high imine reduction percentage (98%), proved to be more efficient than the remainder RCDs and even chitosan, especially at low concentrations under the best adsorption conditions (pH 4, RS/L = 2.5 mg mL-1). RCD3 adsorption data were better described by the Langmuir-Freundlich isotherm and the pseudo-second-order kinetic models. The interaction mechanism was assessed by molecular dynamics simulations, showing that RCDs favour Cu(II) capture from water compared to chitosan, due to a greater Cu(II) interaction with the oxygen of the glucosamine ring and the neighbouring hydroxyl groups.
Collapse
Affiliation(s)
- Pedro M C Matias
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Joana F M Sousa
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Eva F Bernardino
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - João P Vareda
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Luisa Durães
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Paulo E Abreu
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Jorge M C Marques
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Dina Murtinho
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Artur J M Valente
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal
| |
Collapse
|
10
|
Matias PMC, Murtinho D, Valente AJM. Triazine-Based Porous Organic Polymers: Synthesis and Application in Dye Adsorption and Catalysis. Polymers (Basel) 2023; 15:polym15081815. [PMID: 37111962 PMCID: PMC10143168 DOI: 10.3390/polym15081815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The scientific community has been developing promising materials to increase the sustainability and efficiency of production processes and pollutant environmental remediation strategies. Porous organic polymers (POPs) are of special interest, as they are insoluble custom-built materials at the molecular level, endowed with low densities and high stability, surface areas, and porosity. This paper describes the synthesis, characterization, and performance of three triazine-based POPs (T-POPs) in dye adsorption and Henry reaction catalysis. T-POPs were prepared by a polycondensation reaction between melamine and a dialdehyde (terephthalaldehyde (T-POP1) or isophthalaldehyde derivatives with a hydroxyl group (T-POP2) or both a hydroxyl and a carboxyl group (T-POP3)). The crosslinked and mesoporous polyaminal structures, with surface areas between 139.2 and 287.4 m2 g-1, positive charge, and high thermal stability, proved to be excellent methyl orange adsorbents, removing the anionic dye with an efficiency >99% in just 15-20 min. The POPs were also effective for methylene blue cationic dye removal from water, reaching efficiencies up to ca. 99.4%, possibly due to favorable interactions via deprotonation of T-POP3 carboxyl groups. The modification of the most basic polymers, T-POP1 and T-POP2, with copper(II) allowed the best efficiencies in Henry reactions catalysis, leading to excellent conversions (97%) and selectivities (99.9%).
Collapse
Affiliation(s)
- Pedro M C Matias
- Department of Chemistry, CQC-IMS, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Dina Murtinho
- Department of Chemistry, CQC-IMS, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Artur J M Valente
- Department of Chemistry, CQC-IMS, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| |
Collapse
|
11
|
Wu C, Hu X, Wang H, Lin Q, Shen C, Lou L. Exploring key physicochemical sediment properties influencing bioleaching of heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130506. [PMID: 36495639 DOI: 10.1016/j.jhazmat.2022.130506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Bioleaching is a promising technology to remediate sediments contaminated by heavy metals. However, the complex heterogeneities of the sediments can reduce the acidification efficiency and the heavy metal removal rate, thus hindering the practical application of sediment bioleaching. This experiment conducted comparative bioleaching experiments between the inoculated group (average leaching percentages: Cu 67.64%; Zn 54.44%; Ni 29.59%) and the non-inoculated control group (Cu 37.10%; Zn 41.04%; Ni 19.89%) on 28 sediments characterized by different physicochemical properties to explore the key factors influencing bioleaching. The results indicated that the bioleaching process was predominated by the indigenous bioleaching bacteria and the bioleaching inoculum, respectively. The ACCpH=4 (acid-consuming capacity), TOC (total organic carbon), and TN (total nitrogen) of the sediments played an essential role in influencing the microbial community structure and bioleaching performance: the ACCpH=4, as the inhibitive factor, could influence the succession growth of the indigenous bioleaching bacteria and the inoculum during the bioleaching process, while the TOC and TN, as the contributing factor, could influence the metabolism of the indigenous bioleaching bacteria. Based on these results, the bioleaching process was improved with the classification and pretreatments of sediment to realize successful bioleaching of all types of the sediments examined in this research.
Collapse
Affiliation(s)
- Chuncheng Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Xinyi Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Haizhen Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Qi Lin
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Chaofeng Shen
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310020, China.
| |
Collapse
|
12
|
Lamy-Mendes A, Lopes D, Girão AV, Silva RF, Malfait WJ, Durães L. Carbon Nanostructures-Silica Aerogel Composites for Adsorption of Organic Pollutants. TOXICS 2023; 11:232. [PMID: 36976997 PMCID: PMC10059775 DOI: 10.3390/toxics11030232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Silica aerogels are a class of materials that can be tailored in terms of their final properties and surface chemistry. They can be synthesized with specific features to be used as adsorbents, resulting in improved performance for wastewater pollutants' removal. The purpose of this research was to investigate the effect of amino functionalization and the addition of carbon nanostructures to silica aerogels made from methyltrimethoxysilane (MTMS) on their removal capacities for various contaminants in aqueous solutions. The MTMS-based aerogels successfully removed various organic compounds and drugs, achieving adsorption capacities of 170 mg⋅g-1 for toluene and 200 mg⋅g-1 for xylene. For initial concentrations up to 50 mg⋅L-1, removals greater than 71% were obtained for amoxicillin, and superior to 96% for naproxen. The addition of a co-precursor containing amine groups and/or carbon nanomaterials was proven to be a valuable tool in the development of new adsorbents by altering the aerogels' properties and enhancing their adsorption capacities. Therefore, this work demonstrates the potential of these materials as an alternative to industrial sorbents due to their high and fast removal efficiency, less than 60 min for the organic compounds, towards different types of pollutants.
Collapse
Affiliation(s)
- Alyne Lamy-Mendes
- University of Coimbra, CIEPQPF—Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
- CICECO—Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - David Lopes
- University of Coimbra, CIEPQPF—Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Ana V. Girão
- CICECO—Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rui F. Silva
- CICECO—Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Wim J. Malfait
- Laboratory for Building Energy Materials and Components, Empa—Swiss Federal Laboratory for Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Luísa Durães
- University of Coimbra, CIEPQPF—Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| |
Collapse
|
13
|
Wyszkowski M, Wyszkowska J, Kordala N, Zaborowska M. Molecular Sieve, Halloysite, Sepiolite and Expanded Clay as a Tool in Reducing the Content of Trace Elements in Helianthus annuus L. on Copper-Contaminated Soil. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1827. [PMID: 36902943 PMCID: PMC10004638 DOI: 10.3390/ma16051827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to determine the effect of copper soil contamination on the trace element content of sunflower aerial parts and in roots. Another aim was to assess whether the introduction of selected neutralizing substances (molecular sieve, halloysite, sepiolite and expanded clay) into the soil could reduce the impact of copper on the chemical composition of sunflower plants. Copper soil contamination with 150 mg Cu2+ kg-1 of soil and 10 g of each adsorbent per kg of soil were used. Soil contamination with copper caused a significant increase in the content of this element in the aerial parts (by 37%) and roots (by 144%) of sunflower. Enriching the soil with the mineral substances reduced the amount of copper in the aerial parts of sunflower. Halloysite had the greatest effect (35%), while expanded clay had the smallest effect (10%). An opposite relationship was found in the roots of this plant. In copper-contaminated objects, a decrease in the content of cadmium and iron and an increase in the concentrations of nickel, lead and cobalt in the aerial parts and roots of sunflower were observed. The applied materials reduced the content of the remaining trace elements more strongly in the aerial organs than in the roots of sunflower. Molecular sieve had the greatest reducing effect on the content of trace elements in sunflower aerial organs, followed by sepiolite, while expanded clay had the least impact. The molecular sieve also reduced the content of iron, nickel, cadmium, chromium, zinc and, especially, manganese, whereas sepiolite reduced the content of zinc, iron, cobalt, manganese and chromium in sunflower aerial parts. Molecular sieve contributed to a slight increase in the content of cobalt, while sepiolite had the same effect on the content of nickel, lead and cadmium in the aerial parts of sunflower. All materials decreased the content of chromium in sunflower roots, molecular sieve-zinc, halloysite-manganese, and sepiolite-manganese and nickel. The materials used in the experiment, especially the molecular sieve and to a lesser extent sepiolite, can be used effectively to reduce the content of copper and some other trace elements, particularly in the aerial parts of sunflower.
Collapse
Affiliation(s)
- Mirosław Wyszkowski
- Department of Agricultural and Environmental Chemistry, University of Warmia and Mazury in Olsztyn, Łódzki 4 Sq., 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Łódzki 3 Sq., 10-727 Olsztyn, Poland
| | - Natalia Kordala
- Department of Agricultural and Environmental Chemistry, University of Warmia and Mazury in Olsztyn, Łódzki 4 Sq., 10-727 Olsztyn, Poland
| | - Magdalena Zaborowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Łódzki 3 Sq., 10-727 Olsztyn, Poland
| |
Collapse
|
14
|
On validity, physical meaning, mechanism insights and regression of adsorption kinetic models. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
15
|
Straightforward Purification Method for the Determination of the Activity Of Glucose Oxidase and Catalase in Honey by Extracting Polyphenols with a Film-Shaped Polymer. Food Chem 2022; 405:134789. [DOI: 10.1016/j.foodchem.2022.134789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022]
|
16
|
Sivaraman D, Siqueira G, Maurya AK, Zhao S, Koebel MM, Nyström G, Lattuada M, Malfait WJ. Superinsulating nanocellulose aerogels: Effect of density and nanofiber alignment. Carbohydr Polym 2022; 292:119675. [PMID: 35725170 DOI: 10.1016/j.carbpol.2022.119675] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/09/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
Cellulose aerogels are potential alternatives to silica aerogels with advantages in cost, sustainability and mechanical properties. However, the density dependence of thermal conductivity (λ) for cellulose aerogels remains controversial. Cellulose aerogels were produced by gas-phase pH induced gelation of TEMPO-oxidized cellulose nanofibers (CNF) and supercritical drying. Their properties are evaluated by varying the CNF concentration (5-33 mg·cm-3) and by uniaxial compression (9-115 mg·cm-3). The aerogels are transparent with specific surface areas of ~400 m2·g-1, mesopore volumes of ~2 cm3·g-1 and a power-law dependence of the E-modulus (α ~ 1.53, and the highest reported E of ~1 MPa). The dataset confirms that λ displays a traditional U-shaped density dependence with a minimum of 18 mW·m-1·K-1 at 0.065 g·cm-3. For a given density, λ is ~5 mW·m-1·K-1 lower for compressed aerogels due to the alignment of nanofibers, confirmed by small angle X-ray scattering (SAXS).
Collapse
Affiliation(s)
- Deeptanshu Sivaraman
- Empa - Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland; Department of Chemistry, University of Fribourg, Fribourg, Switzerland.
| | - Gilberto Siqueira
- Cellulose & Wood Materials Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Anjani K Maurya
- Empa - Center for X-ray Analytics, Swiss Federal Laboratories for Materials Science and Technology, Empa, St. Gallen, Switzerland
| | - Shanyu Zhao
- Empa - Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Matthias M Koebel
- Empa - Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Gustav Nyström
- Cellulose & Wood Materials Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland; Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Marco Lattuada
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Wim J Malfait
- Empa - Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
17
|
Zhang SZ, Chen S, Jiang H. A back propagation neural network model for accurately predicting the removal efficiency of ammonia nitrogen in wastewater treatment plants using different biological processes. WATER RESEARCH 2022; 222:118908. [PMID: 35917670 DOI: 10.1016/j.watres.2022.118908] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Accurately predicting the water quality of treated water from a water treatment plant (WWTP) based on the obtained operating database is of great significance. However, it is difficult for common mechanistic models to work well. In this study, a back propagation artificial neural network (BPANN) model with high accuracy was developed to predict the denitrification efficiency based on a 1-year operating database. Standardized principal component analysis (PCA) methods were used to address the data, and the PCA processed data exhibited the best accuracy. In three WWTPs adopting the anaerobic/anoxic/oxic (A2O) process, the ammonia nitrogen removal efficiency of WWTPs was successfully predicted by using five variables: inlet flow rate, pH value, original ammonia nitrogen concentration, Chemical oxygen demand (COD) concentration, and total phosphorus concentration. Importantly, the obtained BPANN model can be effectively used for other widely used treatment processes, such as oxidation ditch (OD), sequencing batch reactor activated sludge process (SBR), membrane bioreactor (MBR), and cyclic activated sludge technology (CAST), by simply optimizing the training data ratios between 50/50 and 90/10. This is the first trial to set up a universal model for predicting the denitrification efficiency of WWTPs adopting common biological processes. The model could be used to choose the optimum treatment process in the new WWTP design or take action in advance to avoid the risk of excessive emissions when the already built WWTPs are subjected to sudden shocks.
Collapse
Affiliation(s)
- Shu-Zhe Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shuo Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hong Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
18
|
Machado TF, Santos FA, Pereira RFP, de Zea Bermudez V, Valente AJM, Serra MES, Murtinho D. β-Ketoenamine Covalent Organic Frameworks—Effects of Functionalization on Pollutant Adsorption. Polymers (Basel) 2022; 14:polym14153096. [PMID: 35956612 PMCID: PMC9370968 DOI: 10.3390/polym14153096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Water pollution due to global economic activity is one of the greatest environmental concerns, and many efforts are currently being made toward developing materials capable of selectively and efficiently removing pollutants and contaminants. A series of β-ketoenamine covalent organic frameworks (COFs) have been synthesized, by reacting 1,3,5-triformylphloroglucinol (TFP) with different C2-functionalized and nonfunctionalized diamines, in order to evaluate the influence of wall functionalization and pore size on the adsorption capacity toward dye and heavy metal pollutants. The obtained COFs were characterized by different techniques. The adsorption of methylene blue (MB), which was used as a model for the adsorption of pharmaceuticals and dyes, was initially evaluated. Adsorption studies showed that –NO2 and –SO3H functional groups were favorable for MB adsorption, with TpBd(SO3H)2-COF [100%], prepared between TFP and 4,4′-diamine- [1,1′-biphenyl]-2,2′-disulfonic acid, achieving the highest adsorption capacity (166 ± 13 mg g−1). The adsorption of anionic pollutants was less effective and decreased, in general, with the increase in –SO3H and –NO2 group content. The effect of ionic interactions on the COF performance was further assessed by carrying out adsorption experiments involving metal ions. Isotherms showed that nonfunctionalized and functionalized COFs were better described by the Langmuir and Freundlich sorption models, respectively, confirming the influence of functionalization on surface heterogeneity. Sorption kinetics experiments were better adjusted according to a second-order rate equation, confirming the existence of surface chemical interactions in the adsorption process. These results confirm the influence of selective COF functionalization on adsorption processes and the role of functional groups on the adsorption selectivity, thus clearly demonstrating the potential of this new class of materials in the efficient and selective capture and removal of pollutants in aqueous solutions.
Collapse
Affiliation(s)
- Tiago F. Machado
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.F.M.); (F.A.S.); (M.E.S.S.); (D.M.)
| | - Filipa A. Santos
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.F.M.); (F.A.S.); (M.E.S.S.); (D.M.)
| | - Rui F. P. Pereira
- Chemistry Department and Chemistry Center, University of Minho, 4710-057 Braga, Portugal;
| | - Verónica de Zea Bermudez
- Chemistry Department and CQ-VR, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal;
| | - Artur J. M. Valente
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.F.M.); (F.A.S.); (M.E.S.S.); (D.M.)
- Correspondence: ; Tel.: +351-966047336
| | - M. Elisa Silva Serra
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.F.M.); (F.A.S.); (M.E.S.S.); (D.M.)
| | - Dina Murtinho
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.F.M.); (F.A.S.); (M.E.S.S.); (D.M.)
| |
Collapse
|
19
|
Delińska K, Machowski G, Kloskowski A. Development of SPME fiber coatings with tunable porosity for physical confinement of ionic liquids as an extraction media. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Yaashikaa PR, Devi MK, Kumar PS. Advances in the application of immobilized enzyme for the remediation of hazardous pollutant: A review. CHEMOSPHERE 2022; 299:134390. [PMID: 35339523 DOI: 10.1016/j.chemosphere.2022.134390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, ecofriendly, low-cost, and sustainable alternatives techniques have been focused on the effective removal of hazardous pollutants from the water streams. In this context, enzyme immobilization seems to be of specific interest to several researchers to develop novel, effective, greener, and hybrid strategies for the removal of toxic contaminants. Immobilization is a biotechnological tool, anchoring the enzymes on support material to enhance the stability and retain the structural conformation of enzymes for catalysis. Recyclability and reusability are the main merits of immobilized enzymes over free enzymes. Studies showed that immobilized enzyme laccase can be used up to 7 cycles with 66% efficiency, peroxidase can be recycled to 2 cycles with 50% efficiency, and also cellulase to 3 cycles with 91% efficiency. In this review, basic concepts of immobilization, different immobilization techniques, and carriers used for immobilization are summarized. In addition to that, the potential of immobilized enzymes as the bioremediation agents for the effective degradation of pollutants from the contaminated zone and the impact of different operating parameters are summarized in-depth. Further, this review provides future trends and challenges that have to be solved shortly for enhancing the potential of immobilized systems for large-scale industrial wastewater treatment.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - M Keerthana Devi
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| |
Collapse
|
21
|
Shi D, Wu W, Li X. Ultrasensitive detection of mercury(II) ions on a hybrid film of a graphene and gold nanoparticle-modified electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2161-2167. [PMID: 35593172 DOI: 10.1039/d2ay00413e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aggravated by human and industrial activities, heavy metal pollution has become a severe problem, causing widespread concern in society, and cannot be ignored. Herein, a graphene/gold nanoparticle-hybrid (AuNPs/ERGO) was proposed and synthesized by electrochemical methods. Based on the AuNPs/ERGO hybrid, a novel electrochemical sensing platform was established and successfully applied for the selective, quantitative detection of Hg2+, taking advantage of the well-established anodic stripping voltammetry (ASV). This hybrid material not only increases the surface area and charge transfer rate but also provides more active sites for Hg deposition due to the formation of homogeneous, high density and monodispersed AuNPs on the ERGO film. The prepared AuNPs/ERGO hybrid was modified on a glassy carbon electrode (GCE) to detect Hg2+ with a linear range from 0.5 to 20 μg L-1 and a low limit of detection (LOD) of 0.06 μg L-1. The selectivity and stability of the as-prepared electrode were investigated and showed promising results. In addition, a screen-printed carbon electrode (SPCE) was also employed to verify the practical application ability of our assay with an excellent performance, which presents a bright application prospect for in situ Hg2+ detection.
Collapse
Affiliation(s)
- Dongmin Shi
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong S.A.R., China.
| | - Wenzhan Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong S.A.R., China.
| | - Xiaoyuan Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong S.A.R., China.
| |
Collapse
|
22
|
Kang X, Geng N, Li X, Yu J, Wang H, Pan H, Yang Q, Zhuge Y, Lou Y. Biochar Alleviates Phytotoxicity by Minimizing Bioavailability and Oxidative Stress in Foxtail Millet ( Setaria italica L.) Cultivated in Cd- and Zn-Contaminated Soil. FRONTIERS IN PLANT SCIENCE 2022; 13:782963. [PMID: 35401634 PMCID: PMC8993223 DOI: 10.3389/fpls.2022.782963] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Soil contamination with multiple heavy metals is a global environmental issue that poses a serious threat to public health and ecological safety. Biochar passivation is an efficient and economical technology to prevent heavy metal contamination of Cd; however, its effects on compound-contaminated and weakly alkaline soil remain unclear. Further, the mechanisms mediating the immobilization effects of biochar have not been evaluated. In this study, three biochar treated at different pyrolytic temperatures [300°C (BC300), 400°C (BC400), and 500°C (BC500)] were applied to Cd-/Zn-contaminated soils, and their effects on plant growth, photosynthetic characteristics, Cd/Zn accumulation and distribution in foxtail millet were evaluated. Further, the effect of biochar application on the soil physicochemical characteristics, as well as the diversity and composition of the soil microbiota were investigated. Biochar significantly alleviated the phytotoxicity of Cd and Zn. DTPA (diethylenetriamine pentaacetic acid)-Cd and DTPA-Zn content was significantly reduced following biochar treatment via the transformation of exchangeable components to stable forms. BC500 had a lower DTPA-Cd content than BC300 and BC400 by 42.87% and 39.29%, respectively. The BC500 passivation ratio of Cd was significantly higher than that of Zn. Biochar application also promoted the growth of foxtail millet, alleviated oxidative stress, and reduced heavy metal bioaccumulation in shoots, and transport of Cd from the roots to the shoots in the foxtail millet. The plant height, stem diameter, biomass, and photosynthetic rates of the foxtail millet were the highest in BC500, whereas the Cd and Zn content in each organ and malondialdehyde and hydrogen peroxide content in the leaves were the lowest. Moreover, biochar application significantly increased the abundance of soil bacteria and fungi, as well as increasing the fungal species richness compared to no-biochar treatment. Overall, biochar was an effective agent for the remediation of heavy metal-contaminated soil. The passivation effect of biochar exerted on heavy metals in soil was affected by the biochar pyrolysis temperature, with BC500 showing the best passivation effect.
Collapse
|
23
|
Utzeri G, Matias PMC, Murtinho D, Valente AJM. Cyclodextrin-Based Nanosponges: Overview and Opportunities. Front Chem 2022; 10:859406. [PMID: 35402388 PMCID: PMC8987506 DOI: 10.3389/fchem.2022.859406] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/02/2022] [Indexed: 01/18/2023] Open
Abstract
Nanosponges are solid cross-linked polymeric nano-sized porous structures. This broad concept involves, among others, metal organic frameworks and hydrogels. The focus of this manuscript is on cyclodextrin-based nanosponges. Cyclodextrins are cyclic oligomers of glucose derived from starch. The combined external hydrophilicity with the internal hydrophobic surface constitute a unique "microenvironment", that confers cyclodextrins the peculiar ability to form inclusion host‒guest complexes with many hydrophobic substances. These complexes may impart beneficial modifications of the properties of guest molecules such as solubility enhancement and stabilization of labile guests. These properties complemented with the possibility of using different crosslinkers and high polymeric surface, make these sponges highly suitable for a large range of applications. Despite that, in the last 2 decades, cyclodextrin-based nanosponges have been developed for pharmaceutical and biomedical applications, taking advantage of the nontoxicity of cyclodextrins towards humans. This paper provides a critical and timely compilation of the contributions involving cyclodextrins nanosponges for those areas, but also paves the way for other important applications, including water and soil remediation and catalysis.
Collapse
|
24
|
Zheng M, Cao M, Yang D, Tu S, Xiong S, Shen W, Zhou H. Enhanced desorption of cationic and anionic metals/metalloids from co-contaminated soil by tetrapolyphosphate washing and followed by ferrous sulfide treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118688. [PMID: 34921946 DOI: 10.1016/j.envpol.2021.118688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
In this study, a novel approach was employed for the remediation of cationic and anionic metals/metalloids co-contaminated soil by tetrapolyphosphate enhanced soil washing coupled with ferrous sulfide treatment. Tetrapolyphosphate could simultaneously enhance the desorption of cationic metals (Pb and Zn) and anionic metal/metalloid (Cr and As) from the contaminated soil in the whole tested pH range of 2-10. With addition of 0.15 mol/L tetrapolyphosphate at pH 7.0, the removal ratio of Pb, Zn, As and Cr could achieve 83.1%, 70.4%, 75.7% and 66.4% respectively. The fractionation analysis of heavy metals/metalloids demonstrated the release of exchangeable and Fe/Mn bound forms contributed to most desorption of Pb and Zn. The decreases of non-specifically sorbed form and amorphous and poorly-crystalline hydrous oxides of Fe and Al bound form were responsible for most removal of As. The comparison with other common washing agents (EDTA, oxalate and phosphate) under their respective optimal dosage could confirm that tetrapolyphosphate was superior to simultaneously desorb the cationic and anionic metals/metalloids with higher efficiency. After 12 h, applying 150 mg/L FeS at pH 3.5 could totally remove Pb, Zn, As and Cr from the washing effluent by sulfide precipitation, reduction and adsorption processes. Higher pH would inhibit the removal of As and Cr by FeS. Meanwhile, the residual of tetrapolyphosphate could be totally recovered from the washing effluent by employing anion exchange resin. This study suggests tetrapolyphosphate enhanced soil washing coupled with ferrous sulfide treatment is a promising approach for remediation of cationic and anionic metals/metalloids co-contaminated soil in view of its high efficiency and simple operation.
Collapse
Affiliation(s)
- Mingming Zheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Menghua Cao
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Danhua Yang
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shuxin Tu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shuanglian Xiong
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wenjuan Shen
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Haiyan Zhou
- Institute of Eco-environment and Soil Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, PR China
| |
Collapse
|
25
|
Membrane synthesis via in-situ pore formation in silica gels through dynamic miscibility with soybean oil. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Heavy Metals and As in Ground Water, Surface Water, and Sediments of Dexing Giant Cu-Polymetallic Ore Cluster, East China. WATER 2022. [DOI: 10.3390/w14030352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heavy metals and As (HMs) pollution in mining areas are a widespread environmental concern. In this study, ground water, surface water, and sediment samples around the Dexing area, one of the largest Cu-polymetallic ore clusters in China, were collected to examine the concentrations and distributions of As, Cd, Cr, Cu, Hg, Pb, and Zn. Pollution indices, geo-accumulation index, and potential ecological risk index were used to estimate the pollution characteristics and ecological risk of HMs. The results show that the major pollutants in the surface water were Cd, Cu, Zn, and Pb, while the dominant ecological risk of HMs in the sediments originated from Cu, As, Hg, and Cd. Moreover, HMs in the surface water and sediments exhibited substantial spatial heterogeneity in the study area, indicating a severely disturbed environment due to mining activities. The proportions of HM pollutions were higher in the Dexing River and its tributaries than in the Le’an River and its tributaries. The surface water pollution was predominant at the tributaries closest to the mine area, while the sediment contamination has been expanded several kilometers downstream of the major rivers. Overall, the ecological risk of HMs was higher in the sediments than in the surface water.
Collapse
|
27
|
Xiang Y, Jiang L, Zhou Y, Luo Z, Zhi D, Yang J, Lam SS. Microplastics and environmental pollutants: Key interaction and toxicology in aquatic and soil environments. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126843. [PMID: 34419846 DOI: 10.1016/j.jhazmat.2021.126843] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 05/27/2023]
Abstract
Nowadays, a growing number of microplastics are released into the environment due to the extensive use and inappropriate management of plastic products. With the increasing body of evidence about the pollution and hazards of microplastics, microplastics have drawn major attention from governments and the scientific community. As a kind of emerging and persistent environmental pollutants, microplastics have recently been detected on a variety of substrates in the world. Therefore, this paper reviews the recent progress in identifying the sources of microplastics in soil, water, and atmosphere and describing the transport and fate of microplastics in the terrestrial, aquatic and atmospheric ecosystems for revealing the circulation of microplastics in the ecosystem. In addition, considering the persistence of microplastics, this study elucidates the interactions of microplastics with other pollutants in the environment (i.e., organic pollutants, heavy metals) with emphasis on toxicity and accumulation, providing a novel insight into the ecological risks of microplastics in the environment. The negative impacts of microplastics on organisms and environmental health are also reviewed to reveal the environmental hazards of microplastics. The knowledge gaps and key research priorities of microplastics are identified to better understand and mitigate the environmental risks of microplastics.
Collapse
Affiliation(s)
- Yujia Xiang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Li Jiang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Zirui Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Dan Zhi
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jian Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
28
|
Możdżeń K, Barabasz-Krasny B, Kviatková T, Zandi P, Turisová I. Effect of Sorbent Additives to Copper-Contaminated Soils on Seed Germination and Early Growth of Grass Seedlings. Molecules 2021; 26:5449. [PMID: 34576920 PMCID: PMC8469091 DOI: 10.3390/molecules26185449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Heavy metal and metalloid-contaminated soil is a serious barrier to colonization for many plant species. The problem of the elimination of toxic waste accumulated in technogenous soils in many highly transformed regions is extremely important. Hence, another attempt was made to analyze the effect of the addition of sorbents (BCH-biochar, B-bentonite, ChM-chicken manure, OS-organo-zeolitic substrate) to contaminated copper soil on the germination and early growth of Eurasian common grass species (Agrostis capillaris, A. stolonifera, Festuca rubra and Poa pratensis), which could potentially be used in recultivation. This experiment was based on the laboratory sandwich method. Standard germination indexes, morphometry and biomass analysis were used. The percentage of germinating seeds was lower in each of the soil variants and sorbents used compared to the control. Dry mass was positively stimulated by all sorbents. The response to the addition of sorbents, expressed as the electrolyte leakage of seedlings, was different depending on the species and type of sorbent. Among all sorbents, the most positive effects on germination and growth were observed in the case of OS. Overall, the response to the addition of sorbents was different in the studied species, depending on their stage of development.
Collapse
Affiliation(s)
- Katarzyna Możdżeń
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2 St., 30-084 Kraków, Poland;
| | - Beata Barabasz-Krasny
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2 St., 30-084 Kraków, Poland;
| | - Tatiana Kviatková
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University in Banská Bystrica, Tajovského 40, 97401 Banská Bystrica, Slovakia; (T.K.); (I.T.)
| | - Peiman Zandi
- International Faculty of Applied Technology, Yibin University, Yibin 644000, China;
| | - Ingrid Turisová
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University in Banská Bystrica, Tajovského 40, 97401 Banská Bystrica, Slovakia; (T.K.); (I.T.)
| |
Collapse
|
29
|
Fan J, Jian X, Shang F, Zhang W, Zhang S, Fu H. Underestimated heavy metal pollution of the Minjiang River, SE China: Evidence from spatial and seasonal monitoring of suspended-load sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:142586. [PMID: 33071115 DOI: 10.1016/j.scitotenv.2020.142586] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Previous assessments on rivers in SE China with highly developed economy and enormous population indicate diverse and relatively low particulate heavy metal pollution levels. However, the controlling mechanisms for heavy metal enrichment and transport remain enigmatic. Here, we target a mesoscale mountainous river, the Minjiang River, and obtain grain size, mineralogical and heavy metal concentration (Pb, Cd, Cr, Mn, Mo, Zn, V, Co, Ni, Cu) data from seasonal suspended particulate matter (SPM) near the river mouth, riverbed sediments and SPM samples from mainstream and major tributaries of the river. The results indicate that SPM samples have higher particulate heavy metal concentrations than riverbed sediments collected in pairs. Heavy metal concentrations of Cd, Zn, Cr, V, Co, Ni and Cu are higher in upstream SPM samples than those in downstream regions, whereas Pb, Mn and Mo concentrations don't show this spatial variation. Most heavy metals (e.g., Pb and Zn) show high concentrations in flood seasons and relatively low concentrations in dry seasons, revealing a hydrologic control. However, Cr and Mn show high concentrations in some dry season samples, suggesting incidental anthropogenic input events. The SPM-based pollution assessments using enrichment factor, geoaccumulation index and potential ecological risk index demonstrate that the Minjiang River is moderately to strongly polluted by particulate Pb, Cd, Mo and Zn contaminations and most particulate heavy metals have moderate to considerable potential ecological risks. We contend that transport and discharge of particulate heavy metals by the Minjiang River are controlled by both natural and anthropogenic forcings and the pollution levels are worse than previously known. Our findings suggest that particulate heavy metal discharge by subtropical mountainous rivers is related to sediment types and hydrologic characteristics. Therefore, high-spatiotemporal-resolution investigations on river SPM samples are highly recommended to better evaluate particulate heavy metal pollution levels and aquatic environmental conditions.
Collapse
Affiliation(s)
- Jiayu Fan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Xing Jian
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China.
| | - Fei Shang
- Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, PR China
| | - Wei Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Shuo Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Hanjing Fu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| |
Collapse
|
30
|
Vareda JP, Valente AJM, Durães L. Ligands as copper and nickel ionophores: Applications and implications on wastewater treatment. Adv Colloid Interface Sci 2021; 289:102364. [PMID: 33540287 DOI: 10.1016/j.cis.2021.102364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/18/2022]
Abstract
Modern society depends on many finite natural resources, from which metals are of great importance. Copper and nickel's relevance is due to their vast applications, resulting in high market value and demand. As such, their polluting emissions are also significant and their removal from wastewaters is imperative. Moreover, effluent treatment techniques can be used to recover the metallic cations, via selective processes. In this review, copper and nickel selective ligands in the literature are surveyed. These are most commonly Schiff bases, along with crown ethers and porphyrins. They are usually employed in ion sensing (colorimetric chemosensors or electrodes) with great success - the disruption in response of colorimetric sensors is up to 7% and binding constants are usually at least one order of magnitude greater with the desired cation than with interferents. However, modified adsorbents are also reported. The possibilities of using ionophores in wastewater cleaning, allowing the treatment of effluents and the selective recovery of valuable materials, and their implications on new green policies is discussed.
Collapse
Affiliation(s)
- João P Vareda
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| | - Artur J M Valente
- University of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Luisa Durães
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| |
Collapse
|
31
|
Tang A, Lu Y, Li Q, Zhang X, Cheng N, Liu H, Liu Y. Simultaneous leaching of multiple heavy metals from a soil column by extracellular polymeric substances of Aspergillus tubingensis F12. CHEMOSPHERE 2021; 263:127883. [PMID: 32829220 DOI: 10.1016/j.chemosphere.2020.127883] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
The use of the biological agents for leaching heavy metals from contaminated soils is a very promising method that is both efficient and eco-friendly. In this study, a fungus Aspergillus tubingensis F12 was reported to possess a strong adsorption capacity for various heavy metal ions and shown to adsorb 90.8% Pb, 68.4% Zn, 64.5% Cr, 13.1% Cu, 12.9% Ni, and 6.9% Cd in aqueous solution. As extracellular polymeric substance (EPS) was found to play a leading role in the adsorption of metal ions, we applied EPS as a leaching agent to simultaneously remove six metals from soil in a column leaching experiment. The flow rate, initial solution pH, initial EPS concentration, and ionic strength were investigated using response surface methodology. The minimum and maximum metal leaching capacities were determined to be 0.089 mg/g and 3.703 mg/g, respectively. Verified by Fourier transform infrared spectroscopy, scanning electron microscope energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy, we made the preliminary deductions that ion exchange determines the leaching capacity limit and that biosorption plays a large role in reaching that limit. Additionally, the redox behaviour of Cu produced more carboxyl groups, which increased the adsorption of heavy metals. The ecological impact of this method was also examined; we found that the influences of leaching with EPS on soil properties and microbial community structure were slight. Therefore, the reported leaching process might have application prospects for metal removal from soil.
Collapse
Affiliation(s)
- Aixing Tang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China; Key Laboratory of Guangxi Biorefinery, Guangxi University, Nanning, 530003, China
| | - Yuhao Lu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qingyun Li
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China; Key Laboratory of Guangxi Biorefinery, Guangxi University, Nanning, 530003, China
| | - Xianglu Zhang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Ning Cheng
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Haibo Liu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Youyan Liu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China; Key Laboratory of Guangxi Biorefinery, Guangxi University, Nanning, 530003, China.
| |
Collapse
|
32
|
Konieczna K, Yavir K, Kermani M, Mielewczyk-Gryń A, Kloskowski A. The new silica-based coated SPME fiber as universal support for the confinement of ionic liquid as an extraction medium. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
An overview on alumina-silica-based aerogels. Adv Colloid Interface Sci 2020; 282:102189. [PMID: 32593008 DOI: 10.1016/j.cis.2020.102189] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/15/2020] [Accepted: 06/02/2020] [Indexed: 01/19/2023]
Abstract
Silica aerogels are remarkable materials with excellent physicochemical properties, such as high porosity and surface area, along with low density and thermal conductivity. In addition to their outstanding properties, these materials are quite interesting due to the possibility to change their chemistry according to intended applications. However, they also show some disadvantages, like low mechanical strength and poor dimensional stability under high temperatures (above 600 °C). Although these aerogels are frequently used as thermal insulators, for high temperature environments some of their properties need to be improved. The mixing with other ceramic thermally resistant phases is a viable approach. Thus, this work presents an overview on alumina-silica-based aerogels, describing their synthesis, processing and properties. The improvement on their properties will be discussed as a function of the amount of refractory phase (alumina) in the silica matrix. The introduction of the alumina phase makes them stable until 1200-1400 °C, maintaining low values of thermal conductivity at very high temperature (below 81 mW m-1 K-1). Finally, a brief survey on the most promising applications of these materials is presented, with several examples. In catalysis, alumina-silica aerogels have shown equivalent performance when compared to reference catalysts. In the field of thermal insulation, these materials show great potential, especially in high temperatures environments, due to their thermal dimensional stability and inherent low thermal conductivity. As adsorbents, higher stability and adsorption capacity were obtained with the incorporation of the alumina phase in silica aerogels, and these materials can be reused for repeated adsorption/desorption cycles. Indeed, a significant improvement of the aerogel performance by the synergetic effect of combining silica and alumina phases is usually obtained, supporting the expectation of the extension of their fields of application.
Collapse
|
34
|
Naturally available diatomite and their surface modification for the removal of hazardous dye and metal ions: A review. Adv Colloid Interface Sci 2020; 282:102198. [PMID: 32579950 DOI: 10.1016/j.cis.2020.102198] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
The presence of toxic pollutants such as dyes and metal ions at higher concentrations in water is very harmful to the environment. Removal of these pollutants using diatomaceous earth or diatomite (DE) and surface-modified DE has been extensively explored due to their excellent physio-chemical properties and low cost. Therefore, naturally available DE being inexpensive, their surface modified adsorbents could be one of the potential candidates for the wastewater treatment in the future. In this context, the current review has been summarized for the removal of both pollutants i.e., dyes and metal ions by surface-modified DE using the facile adsorption process. In addition, this review is prominently focused on the various modification process of DE, their cost-effectiveness; the physio-chemical characteristics and their maximum adsorption capacity. Further, real-time scenarios of reported adsorbents were tabulated based on the cost of the process along with the adsorption capacity of these adsorbents.
Collapse
|
35
|
Vareda JP, Valente AJM, Durães L. Silica Aerogels/Xerogels Modified with Nitrogen-Containing Groups for Heavy Metal Adsorption. Molecules 2020; 25:molecules25122788. [PMID: 32560338 PMCID: PMC7356905 DOI: 10.3390/molecules25122788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
Heavy metals are common inorganic pollutants found in the environment that have to be removed from wastewaters and drinking waters. In this work, silica-derived aerogels and xerogels were modified via a co-precursor method to obtain functional adsorbents for metal cations. A total of six formulations based upon four different functional precursors were prepared. The materials′ structural characterization revealed a decreased porosity and surface area on modified samples, more prominent in xerogel counterparts. Preliminary tests were conducted, and the prepared samples were also compared to activated carbon. Three samples were selected for in-depth studies. Isotherm studies revealed that the pre-selected samples remove well copper, lead, cadmium and nickel, and with similar types of interactions, following a Langmuir trend. The adsorption kinetics starts very fast and either equilibrium is reached quickly or slowly, in a two-stage process attributed to the existence of different types of active sites. Based on the previous tests, the best sample, prepared by mixing different functional co-precursors, was selected and its behavior was studied under different temperatures. For this material, the adsorption performance at 20 °C is dependent on the cation, ranging from 56 mg·g−1 for copper to 172 mg·g−1 for lead.
Collapse
Affiliation(s)
- João P. Vareda
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, 3030-790 Coimbra, Portugal;
- Correspondence:
| | - Artur J. M. Valente
- University of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal;
| | - Luisa Durães
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, 3030-790 Coimbra, Portugal;
| |
Collapse
|
36
|
Shah AA, Ahmed S, Ali A, Yasin NA. 2-Hydroxymelatonin mitigates cadmium stress in cucumis sativus seedlings: Modulation of antioxidant enzymes and polyamines. CHEMOSPHERE 2020; 243:125308. [PMID: 31722261 DOI: 10.1016/j.chemosphere.2019.125308] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 05/18/2023]
Abstract
Cadmium level is continuously increasing in agricultural soils mainly due to anthropogenic activities. Cadmium is one of the most phytotoxic metals in the soils. The present study investigates the possible role of 2-hydroxymelatonin (2-OHMT) in assuagement of Cd-toxicity in cucumber (Cucumis sativus L.) plants. 2-OHMT is an important metabolite produced through interaction of melatonin with oxygenated compounds. Cadmium stress decreased the activity of antioxidant enzymes and polyamines. However, exogenously applied 2-OHMT enhanced plant growth attributes including photosynthetic rate, intercellular CO2 concentration, stomatal conductance and transpiration rate in treated plants. In addition, 2-OHMT induced enhancement of the activity of PAs biosynthesizing enzymes (putrescine, spermidine and spermine) in conjunction with reduction in activity of polyamine oxidase (PAO). 2-OHMT mitigated Cd stress through up-regulation in expression of stress related CS-ERS gene along with the amplified activity of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in treated seedlings. The improved activity of antioxidant scavengers played central role in reduction of hydrogen peroxide (H2O2), electrolyte leakage (EL) and malondialdehyde (MDA) in plants under Cd stress. Recent findings also advocate the positive correlation between PAs and ethylene, as both possess common precursor. The current study reveals that priming seeds with 2-OHMT reduces Cd-toxicity and makes it possible to cultivate cucumber in Cd-contaminated areas. Future experiments will perhaps help in elucidation of 2-OHMT intervened stress mitigation procedure in C. sativus crop. Furthermore, research with reference to potential of 2-OHMT for stress alleviation in other horticultural and agronomic crops will assist in enhancement of crop productivity.
Collapse
Affiliation(s)
- Anis Ali Shah
- Department of Botany, University of the Punjab, Lahore, Pakistan
| | - Shakil Ahmed
- Department of Botany, University of the Punjab, Lahore, Pakistan
| | - Aamir Ali
- Department of Botany, University of Sargodha, Pakistan
| | - Nasim Ahmad Yasin
- Senior Superintendent Garden, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
37
|
Feizi M, Jalali M, Antoniadis V, Shaheen SM, Ok YS, Rinklebe J. Geo- and nano-materials affect the mono-metal and competitive sorption of Cd, Cu, Ni, and Zn in a sewage sludge-treated alkaline soil. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120567. [PMID: 31376720 DOI: 10.1016/j.jhazmat.2019.04.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/30/2019] [Accepted: 04/14/2019] [Indexed: 06/10/2023]
Abstract
We evaluated the effect of geomaterials (modified zeolite and bentonite using CaCl2) and nanoparticles (ZnO and MgO) on the mono-metal and competitive sorption of cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn) in an alkaline soil treated with three sewage sludges (SSs) collected from Isfahan, Rasht and Shiraz, Iran. The three SSs increased Cu sorption compared to the control. Sorption of Cd and Zn increased by the addition of Isfahan SS, but decreased by that of Rasht SS. Isfahan SS increased significantly the distribution coefficient of Cd, Cu, and Zn by 1.9, 1.2 and 1.5 times, respectively, compared to the control. The geomaterials and nanoparticles increased metal sorption in the SS-amended soil. Zeolite and MgO were the best sorbents for Cu in Rasht and Shiraz SS-treated soil, while ZnO and MgO were better in Isfahan SS-treated soil. Bentonite showed the highest Cd sorption capacity in Isfahan SS-treated soil, and MgO in the Shiraz SS-treated soil. ZnO showed the highest sorption capacity for Ni among the three SSs treatments. The nanoparticles showed higher sorption capacity for Zn than the geomaterials. We conclude that zeolite, bentonite, ZnO and MgO could be suitable immobilizing agents for Cd, Cu, Ni, and Zn in SS-amended alkaline soils.
Collapse
Affiliation(s)
- Morteza Feizi
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Mohsen Jalali
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516, Kafr El-Sheikh, Egypt.
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
38
|
Lamy-Mendes A, Torres RB, Vareda JP, Lopes D, Ferreira M, Valente V, Girão AV, Valente AJM, Durães L. Amine Modification of Silica Aerogels/Xerogels for Removal of Relevant Environmental Pollutants. Molecules 2019; 24:E3701. [PMID: 31618901 PMCID: PMC6833102 DOI: 10.3390/molecules24203701] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/08/2019] [Accepted: 10/13/2019] [Indexed: 01/02/2023] Open
Abstract
Serious environmental and health problems arise from the everyday release of industrial wastewater effluents. A wide range of pollutants, such as volatile organic compounds, heavy metals or textile dyes, may be efficiently removed by silica materials advanced solutions such as aerogels. This option is related to their exceptional characteristics that favors the adsorption of different contaminants. The aerogels performance can be selectively tuned by an appropriate chemical or physical modification of the aerogel's surface. Therefore, the introduction of amine groups enhances the affinity between different organic and inorganic contaminants and the silica aerogels. In this work, different case studies are reported to investigate and better understand the role of these functional groups in the adsorption process, since the properties of the synthesized aerogels were significantly affected, regarding their microstructure and surface area. In general, an improvement of the removal efficiency after functionalization of aerogels with amine groups was found, with removal efficiencies higher than 90% for lead and Rubi Levafix CA. To explain the adsorption mechanism, both Langmuir and Freundlich models were applied; chemisorption is most likely the sorption type taking place in the studied cases.
Collapse
Affiliation(s)
- Alyne Lamy-Mendes
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal.
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Rafael B Torres
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal.
| | - João P Vareda
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal.
| | - David Lopes
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal.
| | - Marco Ferreira
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal.
| | - Vanessa Valente
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal.
| | - Ana V Girão
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Artur J M Valente
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Luísa Durães
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal.
| |
Collapse
|
39
|
Vareda JP, Valente AJM, Durães L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:101-118. [PMID: 31176176 DOI: 10.1016/j.jenvman.2019.05.126] [Citation(s) in RCA: 406] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 05/18/2023]
Abstract
Heavy metal pollution is a nefarious issue with implications for life. Heavy metals are natural occurring elements, having both natural and anthropogenic sources. The latter are however the most significant, releasing greater amounts of these pollutants in more toxic and mobile forms. Their chemistry and dynamics in the ecosystems are presented, and the relation to the pollution problematic thereof is discussed. The concentration of heavy metals in several sites, assessed in water, soil and sediment samples, affected by different pollution sources are reviewed. These evidence how human activities impact natural media and how the pollution spreads. The pollution in each media is assessed by the concentration relative to drinking and irrigation water guidelines, and by the geoaccumulation index of soils and sediments. It is found that ore extraction and processing and metallurgical industries stand atop the most polluting sources. Given the dynamics of heavy metal cations and that, most of these are released in liquid effluents, wastewater treatment techniques for the removal of heavy metals are also surveyed and critically discussed. Economic viability at a large municipal scale and the ability to comply with strict regulations are the determining factors in the selection of these techniques. A critical discussion on the viability of such techniques is made, reviewing some literature studies and commenting on their applicability on the previously found polluted media.
Collapse
Affiliation(s)
- João P Vareda
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, 3030-790, Coimbra, Portugal
| | - Artur J M Valente
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
| | - Luisa Durães
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, 3030-790, Coimbra, Portugal.
| |
Collapse
|
40
|
Use of an Environmental Pollutant From Hexavalent Chromium Removal as a Green Catalyst in The Fenton Process. Sci Rep 2019; 9:12819. [PMID: 31492935 PMCID: PMC6731299 DOI: 10.1038/s41598-019-49196-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/20/2019] [Indexed: 11/08/2022] Open
Abstract
The present study refers to the use of an environmental pollutant generated during the removal of hexavalent chromium from aqueous media. This pollutant is a material with catalytic properties suitable for application in the oxidative degradation of problematic organic compounds. The material, initially used as an adsorbent, is a composite prepared by modifying the crystalline phases of iron oxides together with the chitosan (CT-FeCr). Chemical and morphological characterizations of the materials were performed using SEM analysis coupled with EDS, XRD and DSC. The CT-FeCr beads were used in the degradation of methylene blue dye (MB) and showed excellent degradation potential (93.6%). The presence of Cr on the surface of the catalyst was responsible for the increase in catalytic activity compared to the CT-Fe and pure magnetite materials. The product of the effluent treatment and the presence of the catalyst itself in the environment do not pose toxic effects. In addition, the CT-FeCr beads showed catalytic stability for several consecutive reaction cycles with possible technical and economic viability. The concept of "industrial symbiosis" may be applied to this technology, with that term relating to the reuse of a byproduct generated in one particular industrial sector by another as a raw material.
Collapse
|
41
|
Moreno-Sader K, García-Padilla A, Realpe A, Acevedo-Morantes M, Soares JBP. Removal of Heavy Metal Water Pollutants (Co 2+ and Ni 2+) Using Polyacrylamide/Sodium Montmorillonite (PAM/Na-MMT) Nanocomposites. ACS OMEGA 2019; 4:10834-10844. [PMID: 31460181 PMCID: PMC6648792 DOI: 10.1021/acsomega.9b00981] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/10/2019] [Indexed: 05/06/2023]
Abstract
Nanocomposites composed of polyacrylamide and nanoclay were synthesized via free-radical cross-linking polymerization and used to adsorb Co2+ and Ni2+ ions from water. The polyacrylamide (PAM)/sodium montmorillonite (Na-MMT) nanocomposites were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy to confirm the interaction between montmorillonite and the polymer matrix. The effects of pH and heavy metal ion concentration on the adsorption capacity of PAM/Na-MMT were evaluated to determine suitable operating conditions for further experiments. Batch adsorption experimental data were fitted to Langmuir and Freundlich models, which provided information about the adsorption mechanism and the adsorbent surface. The highest Ni2+ removal yield was found to be 99.3% using the 2:1 (w/w) nanocomposite at pH 6 in 100 ppm of Ni2+ solution. The Co2+ removal yield was 98.7% at pH 6 in 60 ppm of Co2+ solution using the 4:1 (w/w) nanocomposite. These results were higher than those obtained by polyacrylamide and nanoclay under the same conditions (removal yield between 87.40 and 94.50%), indicating that PAM/Na-MMT nanocomposites remove heavy metal water pollutants more efficiently and can be used as a novel adsorbent for further industrial applications.
Collapse
Affiliation(s)
- Kariana Moreno-Sader
- Department
of Chemical Engineering, University of Cartagena, Avenida Consulado St. 30 #48-152, 130015 Cartagena de Indias, Colombia
- E-mail:
| | - Alvaro García-Padilla
- Department
of Chemical Engineering, University of Cartagena, Avenida Consulado St. 30 #48-152, 130015 Cartagena de Indias, Colombia
| | - Alvaro Realpe
- Department
of Chemical Engineering, University of Cartagena, Avenida Consulado St. 30 #48-152, 130015 Cartagena de Indias, Colombia
| | - María Acevedo-Morantes
- Department
of Chemical Engineering, University of Cartagena, Avenida Consulado St. 30 #48-152, 130015 Cartagena de Indias, Colombia
| | - João B. P. Soares
- Department
of Chemical and Materials Engineering, University
of Alberta, 116 St. and 85 Ave., T6G 2R3 Edmonton, Canada
| |
Collapse
|
42
|
Zhang K, Xue Y, Xu H, Yao Y. Lead removal by phosphate solubilizing bacteria isolated from soil through biomineralization. CHEMOSPHERE 2019; 224:272-279. [PMID: 30825853 DOI: 10.1016/j.chemosphere.2019.02.140] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 01/11/2019] [Accepted: 02/22/2019] [Indexed: 05/24/2023]
Abstract
Microorganisms with the function of biological mineralization were isolated from a soil. The bacteria were identified by 16S rRNA as Bacillus sp and possessed a significant lead removal ability. Lead removal experiment indicated that the mathematical model of η=ηmax-ηcet/k fit the variation of removal rate with time well. Different from the previous studies, this work discovered that the culture medium had the ability to remove aqueous lead (Pb2+). At the same dosage, the removal rates of Pb2+ followed the order of: cells < culture medium < metabolites < bacterial suspension. The lead removal mechanism was further explored using the techniques of XRD, FTIR, and SEM. The results showed that during the fermentation, the bacteria decomposed phosphate-containing organic compounds in the culture medium to generate a large amount of phosphate groups on the surface of the bacterial cells. Pb2+ was precipitated in the form of Pb3(PO4)2 stable minerals.
Collapse
Affiliation(s)
- Kejing Zhang
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Yingwen Xue
- School of Civil Engineering, Wuhan University, Wuhan, China;.
| | - Huihui Xu
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Yaonan Yao
- School of Civil Engineering, Wuhan University, Wuhan, China
| |
Collapse
|
43
|
García-González CA, Budtova T, Durães L, Erkey C, Del Gaudio P, Gurikov P, Koebel M, Liebner F, Neagu M, Smirnova I. An Opinion Paper on Aerogels for Biomedical and Environmental Applications. Molecules 2019; 24:molecules24091815. [PMID: 31083427 PMCID: PMC6539078 DOI: 10.3390/molecules24091815] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 01/08/2023] Open
Abstract
Aerogels are a special class of nanostructured materials with very high porosity and tunable physicochemical properties. Although a few types of aerogels have already reached the market in construction materials, textiles and aerospace engineering, the full potential of aerogels is still to be assessed for other technology sectors. Based on current efforts to address the material supply chain by a circular economy approach and longevity as well as quality of life with biotechnological methods, environmental and life science applications are two emerging market opportunities where the use of aerogels needs to be further explored and evaluated in a multidisciplinary approach. In this opinion paper, the relevance of the topic is put into context and the corresponding current research efforts on aerogel technology are outlined. Furthermore, key challenges to be solved in order to create materials by design, reproducible process technology and society-centered solutions specifically for the two abovementioned technology sectors are analyzed. Overall, advances in aerogel technology can yield innovative and integrated solutions for environmental and life sciences which in turn can help improve both the welfare of population and to move towards cleaner and smarter supply chain solutions.
Collapse
Affiliation(s)
- Carlos A García-González
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, R+D Pharma group (GI-1645), Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Tatiana Budtova
- MINES ParisTech, PSL Research University, CEMEF ⁻ Center for materials forming, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France.
| | - Luisa Durães
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| | - Can Erkey
- Department of Chemical and Biological Engineering, Koç University, 34450 Sariyer, Istanbul, Turkey.
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, I-84084 Fisciano (SA), Italy.
| | - Pavel Gurikov
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.
| | - Matthias Koebel
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology - Empa, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland.
| | - Falk Liebner
- Institute for Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096, Bucharest, Romania.
| | - Irina Smirnova
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.
| |
Collapse
|
44
|
Immobilization of Lead and Nickel Ions from Polluted Yam Peels Biomass Using Cement-Based Solidification/Stabilization Technique. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1155/2019/5413960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nowadays, biomass has been employed to prepare biosorbents for heavy metals uptake; however, further disposal of polluted material has limited its application. In this work, nickel and lead removal was performed using yam peels and the resulting polluted biomass was mixed with concrete to produce bricks. The biomass was characterized by FT-IR analysis for testing functional groups diversification before and after adsorption process. The effect of adsorbent dosage, temperature, and initial solution concentration was evaluated to select suitable values of these parameters. Adsorption results were adjusted to kinetic and isotherm models to determine adsorption mechanism. Desorption experiments were also performed to determine the appropriate desorbing agent as well as its concentration. Immobilization technique of cement-based solidification/stabilization was applied and the polluted biomass was incorporated to concrete bricks at 5 and 10%. Mechanical resistance and leaching tests were carried out to analyze the suitability of heavy metals immobilization. The suitable values for dosage, temperature, and initial solution concentration were 0.5 g/L, 40°C and 100 ppm, respectively. The kinetic model that best fitted experimental results was pseudo-second order indicating a dominant physicochemical interaction between the two phases. The highest desorption yields were found in 52.47 and 74.84% for nickel and lead ions. The concrete bricks exhibited compression resistance above 5 MPa and all the leachate reported concentrations below the environmental limit. These results suggested that nickel and lead immobilization using concrete bricks is a good alternative to meet disposal problems of contaminated biomass.
Collapse
|
45
|
Vareda JP, Durães L. Efficient adsorption of multiple heavy metals with tailored silica aerogel-like materials. ENVIRONMENTAL TECHNOLOGY 2019; 40:529-541. [PMID: 29098957 DOI: 10.1080/09593330.2017.1397766] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/22/2017] [Indexed: 06/07/2023]
Abstract
Recently developed tailored adsorbents for heavy metal uptake are studied in batch tests with Cu, Pb, Cd, Ni, Cr and Zn, in order to decontaminate polluted environments where these heavy metals are found in solution - water courses and groundwater. The adsorbents feature mercapto or amine-mercapto groups that are capable of complexating the cations. Through the use of equilibrium tests it is found that a remarkably high heavy metal uptake is obtained for all metals (ranging from 84 to 140 mg/g). These uptake values are quite impressive when compared to other adsorbents reported in the literature, which is also due to the double functionalization present in one of the adsorbents. For the best adsorbent, adsorption capacities followed the order Cu(II) > Pb(II) > Zn(II) > Cr(III) > Cd(II) > Ni(II). With these adsorbents, the removal process was fast with most of the metals being removed in less than 1 h. Competitive sorption tests were performed in tertiary mixtures that were based on real world polluted sites. It was found that although competitive sorption occurs, affecting the individual removal of each metal, all the cations in solution still interact with the adsorbent, achieving removal values that make this type of material very interesting for its proposed application.
Collapse
Affiliation(s)
- João P Vareda
- a Department of Chemical Engineering, CIEPQPF , University of Coimbra , Coimbra , Portugal
| | - Luisa Durães
- a Department of Chemical Engineering, CIEPQPF , University of Coimbra , Coimbra , Portugal
| |
Collapse
|
46
|
Fahmi AH, Samsuri AW, Jol H, Singh D. Bioavailability and leaching of Cd and Pb from contaminated soil amended with different sizes of biochar. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181328. [PMID: 30564418 PMCID: PMC6281937 DOI: 10.1098/rsos.181328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/16/2018] [Indexed: 05/23/2023]
Abstract
Biochars have been successfully used to reduce bioavailability and leaching of heavy metals in contaminated soils. The efficiency of biochar to immobilize heavy metals can be increased by reducing the particle size, which can increase the surface area and the cation exchange capacity (CEC). In this study, the empty fruit bunch biochar (EFBB) of oil palm was separated into two particle sizes, namely, fine (F-EFBB < 50 µm) and coarse (C-EFBB > 2 mm), to treat the contaminated soil with Cd and Pb. Results revealed that the addition of C-EFBB and F-EFBB increased the pH, electrical conductivity and CEC of the contaminated soil. The amounts of synthetic rainwater extractable and leachable Cd and Pb significantly decreased with the EFBB application. The lowest extractable and leachable Cd and Pb were observed from 1% F-EFBB-treated soil. The amount of extractable and leachable Cd and Pb decreased with increasing incubation times and leaching cycles. The application of F-EFBB to Cd and Pb-contaminated soil can immobilize the heavy metals more than that of C-EFBB. Therefore, the EFBB can be recommended for the remediation of heavy metal-contaminated soils, and a finer particle size can be applied at a lower application rate than the coarser biochar to achieve these goals.
Collapse
Affiliation(s)
- Alaa Hasan Fahmi
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Soil Science and Water Resources, College of Agriculture, University of Diyala, Diyala, Iraq
| | - Abd Wahid Samsuri
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Hamdan Jol
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Daljit Singh
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
47
|
Long LY, Weng YX, Wang YZ. Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers (Basel) 2018; 10:E623. [PMID: 30966656 PMCID: PMC6403747 DOI: 10.3390/polym10060623] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/29/2018] [Accepted: 06/02/2018] [Indexed: 01/19/2023] Open
Abstract
Due to its excellent performance, aerogel is considered to be an especially promising new material. Cellulose is a renewable and biodegradable natural polymer. Aerogel prepared using cellulose has the renewability, biocompatibility, and biodegradability of cellulose, while also having other advantages, such as low density, high porosity, and a large specific surface area. Thus, it can be applied for many purposes in the areas of adsorption and oil/water separation, thermal insulation, and biomedical applications, as well as many other fields. There are three types of cellulose aerogels: natural cellulose aerogels (nanocellulose aerogels and bacterial cellulose aerogels), regenerated cellulose aerogels, and aerogels made from cellulose derivatives. In this paper, more than 200 articles were reviewed to summarize the properties of these three types of cellulose aerogels, as well as the technologies used in their preparation, such as the sol⁻gel process and gel drying. In addition, the applications of different types of cellulose aerogels were also introduced.
Collapse
Affiliation(s)
- Lin-Yu Long
- School of Materials and Mechanical Engineering, Beijing Technology& Business University, Beijing 100048, China.
| | - Yun-Xuan Weng
- School of Materials and Mechanical Engineering, Beijing Technology& Business University, Beijing 100048, China.
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China.
| | - Yu-Zhong Wang
- Center for Degradable and Flame-Retardant Polymeric Materials, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
48
|
Filho CM, Matias T, Durães L, Valente AJ. Efficient simultaneous removal of petroleum hydrocarbon pollutants by a hydrophobic silica aerogel-like material. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
González-Núñez R, Rigol A, Vidal M. Assessing the efficacy over time of the addition of industrial by-products to remediate contaminated soils at a pilot-plant scale. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:155. [PMID: 28281133 DOI: 10.1007/s10661-017-5864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
The effect of the addition of industrial by-products (gypsum and calcite) on the leaching of As and metals (Cu, Zn, Ni, Pb and Cd) in a soil contaminated by pyritic minerals was monitored over a period of 6 months at a two-pit pilot plant. The contaminated soil was placed in one pit (non-remediated soil), whereas a mixture of the contaminated soil (80% w/w) with gypsum (10% w/w) and calcite (10% w/w) was placed in the other pit (remediated soil). Soil samples and leachates of the two pits were collected at different times. Moreover, the leaching pattern of major and trace elements in the soil samples was assessed at laboratory level through the application of the pHstat leaching test. Addition of the by-products led to an increase in initial soil pH from around 2.0 to 7.5, and it also provoked that the concentration of trace elements in soil extracts obtained from the pHstat leaching test decreased to values lower than quantification limits of inductively coupled plasma optical emission spectrometry and lower than the hazardous waste threshold for soil management. The trace element concentration in the pilot-plant leachates decreased over time in the non-remediated soil, probably due to the formation of more insoluble secondary minerals containing sulphur, but especially decreased in pit of the remediated soil, in agreement with laboratory data. The pH in the remediated soil remained constant over the 6-month period, and the X-ray diffraction analyses confirmed that the phases did not vary over time, thus indicating the efficacy of the addition of the by-products. This finding suggests that soil remediation may be a feasible option for the re-use of non-hazardous industrial by-products.
Collapse
Affiliation(s)
- Raquel González-Núñez
- Departament d'Enginyeria Química i Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, 3a Planta, 08028, Barcelona, Spain
| | - Anna Rigol
- Departament d'Enginyeria Química i Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, 3a Planta, 08028, Barcelona, Spain.
| | - Miquel Vidal
- Departament d'Enginyeria Química i Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, 3a Planta, 08028, Barcelona, Spain
| |
Collapse
|
50
|
Vareda JP, Valente AJ, Durães L. Erratum to "Heavy metals in Iberian soils: Removal by current adsorbents/amendments and prospective for aerogels"[Adv. Colloid Interf. Sci. 237 (2016) 28-42]. Adv Colloid Interface Sci 2016; 237:76-77. [PMID: 28314429 DOI: 10.1016/j.cis.2016.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 10/20/2022]
|